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RESUMO

Esta dissertação aborda o controle estático de saída de formação H2, H∞ e H2/H∞
misto para sistemas lineares multiagentes a tempo contínuo com topologias de rede de
comutação Markoviana. Supõe-se que o modo de operação da topologia da rede não pode
ser medido diretamente, mas em vez disso, pode ser estimado por um detector imperfeito.
Para modelar este problema consideramos um modelo de Markov oculto em tempo con-
tínuo, no qual o componente oculto representa o modo real de operação da topologia da
rede enquanto o componente observado representa a informação emitida pelo detector e
disponível para o controlador. Também é assumido que apenas uma informação parcial
das variáveis de estado dos sistemas multiagente está disponível. Usando uma formulação
LMI (linear matrix inequality), um controlador de saída estático distribuído que muda de
acordo com as informações do detector é projetado para garantir a estabilidade no sentido
da média quadrática do sistema de malha fechada, bem como um limite superior para um
índice de desempenho. Três situações são consideradas para os critérios de desempenho:
a norma H2, a norma H∞ e a norma mista H2/H∞. O trabalho é concluído com exemplos
numéricos para ilustrar a eficácia dos resultados teóricos.

Palavras-Chave – Controle de formação H2, H∞ e H2/H∞ misto, topologias de comu-
tação Markoviana, desigualdades matriciais lineares, sistema linear multiagente, controle
estático de saída.



ABSTRACT

This dissertation addresses the H2, H∞ and mixed H2/H∞ formation static output
control of continuous-time linear multi-agent systems with Markovian switching network
topologies. It is assumed that the mode of operation of the network topology cannot be
directly measured but, instead, can be estimated by an imperfect detector. To model
this problem we consider a continuous-time hidden Markov model, in which the hidden
component represents the real mode of operation of the network topology while the ob-
served component represents the information emitted from the detector and available for
the controller. It is also assumed that only a partial information from the state vari-
ables of the multi-agent systems is available. By using an LMI (linear matrix inequality)
formulation, a distributed static output controller which switches according to the de-
tector information is designed to guarantee the stability in the mean square sense of the
closed-loop system as well as an upper bound for an index performance. Three situations
are considered for the performance criteria: the H2 norm, the H∞ norm, and the mixed
H2/H∞ norms. This work is concluded with numerical examples to illustrate the effec-
tiveness of the theoretical results.

Keywords –H2, H∞ and mixed H2/H∞ formation control, hidden Markov switching
topologies, linear matrix inequalities, linear multi-agent system, static output control.
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1 INTRODUCTION

The synchronization of collective systems is a behavior inherent to nature. Because of
that, the study of networks of coupled dynamical systems has long aroused the curiosity
and interest of the academic community. It is possible to imagine these phenomena as
a large set of individuals or agents with their own dynamics that, when interacting with
each other, generate a network with new dynamic properties; this approach is known
as complex system dynamics (BARRAT; BARTHéLEMY; VESPIGNANI, 2008). The
dynamics of complex systems are currently studied in different fields of human knowledge
such as sociology, biology, physics, chemistry, and engineering. One that interests us
particularly is biology, where the organization of life occurs in all its scales, from cells and
microorganisms to entire ecosystems. These relationships have been favored by natural
selection since their origins. It is interesting how animals instinctively tend to generate
synchronized networks; we can imagine, for example, a flock of birds migrating due to
seasonal changes or a fish school swimming in groups to confuse predators (see Figure 1).
Related to the collective motion of animal groups (REYNOLDS, 1987), three parameters
that allow its characterization are proposed: collision avoidance, velocity matching, and
flock centering.

(a) Flock birds in migration. (b) Fish school.

Figure 1: Collective motion of animal groups.
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(a) Regular network. (b) Small-world network. (c) Scale-free network.

Figure 2: Network architectures.

The study and characterization of cooperative networks are based on graph theory
as shown in Figure 2a and, together with other areas of mathematics such as statistics
and dynamic systems, allow modeling the topology of different types of complex networks
such as neurons, oscillators, internet, etc. (STROGATZ, 2001). Depending on the process
being investigated, these networks can have purely deterministic, chaotic, or stochastic
dynamics. A well-known case is that of small-world networks (WATTS; STROGATZ,
1998) presented in Figure 2b, a simple arrangement in which the nodes have a probability
between 0 and 1 of being connected, this causes network configurations of short paths
between them and a large clustering coefficient. In real networks, some nodes are highly
connected than others; this approach shown in Figure 2c is known as scale-free networks
(BARABÁSI; BONABEAU, 2003), in this type of network, by using a statistical distribu-
tion, it is possible to model their growth in more realistic conditions, the internet, power
systems, and social networks are examples of this type of systems.

In the last decades, the study and application of automatic control systems have
allowed the development of new, more efficient and safest technologies in various fields
such as aeronautics, energy distribution, medicine, industry, etc. Currently, advances
in hardware with more compact and powerful computers have allowed the implementa-
tion of new control strategies that address systems with non-linear behavior and multiple
variables. Robust control strategies have also been developed to ensure the stability and
performance of systems under uncertainties, unmodeled dynamics, disturbances and mea-
surement noises (SKOGESTAD; POSTLETHWAITE, 2007), a general control structure
is shown in Figure 3.

Recently, the need to optimize the operation of network systems such as power sys-
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Figure 3: General control configuration.

Figure 4: Multi-agent formation.

tems, unmanned vehicles or sensor networks (BUTENKO; MURPHEY; PARDALOS,
2013) have inspired research that addresses the problem of cooperative control, achieving
interesting results from different approaches such as multi-agent system (MAS) control,
distributed systems, control of networks, swarm systems, etc. (SHAMMA, 2007). As part
of the large and diverse field of study that cooperative systems represent is the formation
control, which can be described by three factors: the agents, the communication between
them and their geographical position; taking this into account, it is possible to develop
formation strategies that allow agents to follow trajectories while maintaining predefined
geometric patterns, also known as topologies (AHN, 2020), in the Figure 4 the formation
convergence of twelve agents in a topology formed by three triangular groups is shown.

Due to changes in the environmental conditions or transmission failures, it is reason-

Figure 5: Formation switching topologies modeled as a Markov chain.
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able to consider scenarios in which the formations need to vary without losing stability,
this problem known as time-varying formation (TVF) control is receiving particular at-
tention from the academic community (DONG et al., 2016; RAHIMI; ABDOLLAHI;
NAQSHI, 2014; ANTONELLI et al., 2014). In practice, the events mentioned can hap-
pen randomly; it is possible to model these dynamic processes as a Markov jump linear
system (MJLS) (COSTA; FRAGOSO; TODOROV, 2012) to deal with this. A MJLS can
be described as a linear system with a certain number of states, these states can pass from
one to another randomly, and the probability of changing to the next state depends only
on the current state. In the case of MAS formations, it is possible to imagine the states
of the Markov chain as possible configurations in the formation network topology as seen
in Figure 5.

Inspired by the above discussions and bearing in mind the current studies of MAS
and MJLS; this work addresses the time-varying formation control of MAS, where the
topology switching is modeled in the framework of MJLS with partial observations focused
on the detector approach formulation presented in (STADTMANN; COSTA, 2017); the
so-called hidden Markov model allows to represent the case of "asynchronous behavior"
as in (NGUYEN; KIM, 2020). We try to formulate sufficient conditions based on LMI to
synthesize controllers in the framework of H∞ and H2 control and investigate the mixed
H2/H∞ control problem based on these results.
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2 LITERATURE REVIEW

This chapter presents a literature review to provide a perspective about the coop-
erative control of multi-agent systems under Markovian switching topologies. First, we
address the literature concerning the Markov Jump Linear Systems, considering the cases
of systems with complete observations and systems with partial observations modeled as
hidden MJLS. Next, a review of cooperative control on multi-agent systems is presented,
taking into account different approaches such as consensus control, leader-following control
and formation control. Finally, recent studies about the control of multi-agent systems
with Markovian switching network topologies are considered.

2.1 Markov Jump Linear Systems

Research on Markov Jump Linear Systems began in the early 1960s, a time in which
researchers were interested in studying the stability of systems with random parameters
as a function of time. The well-known Lyapunov stability theory was used to set stabil-
ity conditions for this type of stochastic systems (KATS; KRASOVSKII, 1960), taking
advantage of developments in computing, optimal control theory and dynamic program-
ming (BELLMAN, 1954; KALMAN et al., 1960). Using Bellman’s dynamic programming
concepts, a solution to the optimal control problem in partial differential equations is pre-
sented for dynamical systems with Markov processes. For the special case of linear systems
with Gaussian random components, a computable solution is defined by (FLORENTIN,
1961) starting the formal study of Markovian jump linear systems.

2.1.1 The complete observation case

The case of complete observation was the first one to be studied; in this approach,
the system states and mode of operation are considered known (SWORDER, 1969). The
optimal control of discrete-time MJLS was studied for the case of complete observa-
tions, a jump linear quadratic (JLQ) control law was proposed by using coupled Riccati
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equations to stabilize the system in the infinite time horizon (CHIZECK; WILLSKY;
CASTANON, 1986). Similarly, for continuous-time MJLS, the necessary and sufficient
conditions to computing a JQL control law were established in the Lyapunov stochastic
stability framework (JI; CHIZECK, 1990). Recently, modern control approaches have
been applied in the study of robust stability of MJLS, such is the case of (FARIAS et
al., 2000), in this work, the stability conditions in terms of LMI for the output feedback
control of continuous-time MJLS are studied, and expressions are presented for achieving
stability in the mean square sense by solving both the H∞ problem and the H2 prob-
lem. In (CHENG; ZHANG, 2006) is presented a stabilization approach of MJLS based on
adaptive control, with a switching law designed from quadratic Lyapunov functions. The
switching transition rates case is tackled in (BOLZERN; COLANERI; NICOLAO, 2010),
characterizing the transition rates as piecewise-constants, sufficient LMI conditions are
proposed to guarantee the mean square stability in the dwell-time between switching in-
stants. In (BOLZERN; COLANERI; NICOLAO, 2014) the stochastic stability of positive
Markov jump linear systems (PMJLS) is addressed, by using a novel notion of stability
(Exponential mean stability), sufficient conditions with different conservatism levels are
studied. The problem of synthesizing controllers that fulfill multiple performance cri-
teria has drawn a great deal of attention in the literature. A useful framework in this
direction is the mixed H2/H∞ control problem, which combines the minimization of a
quadratic functional, related to the H2 control while ensuring some degree of robustness
to the closed-loop system, the H∞ control problem (CHEN; ZHANG, 2004; MA; ZHANG;
HOU, 2012; HUANG; ZHANG; FENG, 2008). Another interesting formulation for the
mixed H2/H∞ problem is based on game theory associated to Nash equilibrium between
two performance indexes, as presented, for instance in (ZHU; ZHANG; BIN, 2014), in
which it is desired to minimize the output energy for the given control law whenever the
worst-case disturbance is applied to a MJLS governed by Ito-type equation.

Due to the possibility of representing systems with abrupt changes, MJLS has many
modeling and control applications. Using MJLS, it is possible to model economic systems
in continuous-time and to calculate the optimal regulation policy (BLAIR; SWORDER,
1975). There are also applications related to the modeling and control of aerial vehicles,
such as the modeling of flight systems susceptible to electromagnetic disturbances and
the control of flight dynamics related to wing deployment (GRAY; GONZALEZ, 1998;
STOICA; YAESH, 2002). Aerospace applications, such as the formation of satellites with
communications noise, were also studied (MESKIN; KHORASANI, 2009).
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2.1.2 The partial observation case

Because the controller may not always be able to access the states’ or modes of
operation, the case of partial observation is studied in the literature. Such is the case of
continuous-time MJLS with parametric uncertainties, which is expressed in the framework
of H∞ control by using matrix inequalities (FARIAS; GEROMEL; VAL, 2002). The
principle of separation is studied in (COSTA; TUESTA, 2003) by using two coupled
Riccati equations, one for controlling the state variable once it is available and the other
for filtering; the optimal control problem is solved. Robust control strategies were also
proposed for the case of partially known transition rates through characterization by LMI
to solve the general problem and the problem of uncertainties in the system and transition
matrices (XIONG et al., 2005; ZHANG; BOUKAS, 2009). The mode of operation may be
unknown; this would imply that the controller assigned for a certain mode of operation
would not be appropriate to ensure the system’s stability. This problem is addressed by
assuming that the controller can only access random samples characterized by a hidden
Markov process, by using LMI, the H∞ and H2 control problems are solved (OGURA
et al., 2018). Another approach is the use of an output feedback controller to solve
the infinite horizon problem, the necessary conditions for the MJLS stability are set up
transforming it, from an optimal problem to a H2 control problem, and by an iteration
algorithm, the controller can be estimated (DOLGOV; HANEBECK, 2017).

From the practical point of view, the controller may not always have access to the
mode of operation of the system (the Markov parameter θ(t)), so that it is important to
consider the case of partial observations. For continuous-time MJLS this has been ana-
lyzed by considering an exponential hidden Markov approach in (STADTMANN; COSTA,
2017, 2018; OLIVEIRA et al., 2020; OLIVEIRA; COSTA, 2021b) for the H2 state-
feedback, H∞ static output feedback control problems, and for the mixed H2/H∞ dynamic
control problem. In these cases the controller relies only on the information coming from
a detector device (represented by θ̂(t)), and that the joint process Z(t) = (θ(t), θ̂(t)) is an
exponential hidden Markov chain, with θ̂(t) being the observable part.

As far as the author is aware, there are not many experimental results in the literature
concerning the control of hidden MJLS, for instead in (VARGAS; COSTA; VAL, 2013) the
authors address the problem of controlling a DC Motor subject to abrupt power failures
considering it a discrete MJLS with no mode observation, using a variational method to
obtain a gain matrix that satisfies the optimal condition.
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2.2 Multi-Agent Systems Distributed Control

In the last two decades, the study of multi-agent systems (MAS) has become relevant.
A MAS can be defined as a group of coupled autonomous entities performing complex co-
operative tasks based on interaction with their neighbors. These tasks can be executed in
parallel and asynchronously between agents, with advantages such as robustness, scalabil-
ity, efficiency, and planning (DURFEE; LESSER; CORKILL, 1989; DORRI; KANHERE;
JURDAK, 2018). Currently, the control of MAS can be divided into two groups: central-
ized control and distributed control. In reduced MAS, the centralized control approach is
easier to design and implement, but as the system scales, the central station’s processing
and communications load increases rapidly (LI; TAN, 2019). For controlling complex
MAS, the distributed control approach shows improved efficiency, reliability, and per-
formance when compared to the centralized control approach (TSITSIKLIS; ATHANS,
1984).

2.2.1 MAS consensus control

The consensus control is the essence of distributed control of MAS; since the intro-
duction of the Laplacian matrix by the authors of (MURRAY, 2002), they have intro-
duced an approach to transform the consensus problem from qualitative description to
the theoretical analysis based on graph theory. Under this framework, it is possible to
design control protocols that guarantee the equilibrium and convergence of MAS (FAX;
MURRAY, 2002; OLFATI-SABER; MURRAY, 2004). The consensus problem has been
tackled from different directions. For instance, one important issue is the communication
constraints since the distributed control approach is based on the connection between
agents. In (YANG; BERTOZZI; WANG, 2008) the consensus problem for second-order
systems with time-delay is addressed by frequency analysis; a condition of convergence
is proposed for second-order MAS and generalized for high order MAS. The uncertain-
ties and time-delay are tackled by (LIU; JIA, 2011), by using a LMI formulation, a H∞

controller for MAS is designed for a given disturbance attenuation level. In (WANG et
al., 2014) the optimal consensus control problem is solved for MAS with time-delay and
disturbances; by using a Kalman filter to obtain the states and solving a set of Riccati
equations, a feedforward-feedback optimal control protocol is presented. The stochastic
control framework is introduced in (ZONG; LI; ZHANG, 2019) for consensus control of
MAS with measurement noise and time-delay; sufficient conditions for stochastic consen-
sus are provided by using a Lyapunov functional. In (WANG et al., 2020), the consensus
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for MAS with additive noise is addressed, the Lyapunov equation solution allows to derive
a control protocol for the bounded consensus. The event-triggered mean square consensus
control with measurement multiplicative noise is studied in (CONG; MU; HU, 2021).

Some improvements to the consensus problem have been developed to replicate prac-
tical cases. The leader-following consensus control addresses the MAS consensus between
one leader and multiple followers; the objective is to achieve the leader dynamics via
feedback control (LIU; CHEN, 2011). In (MA; LI; ZHANG, 2010) the leader-following
control problem is solved for MAS systems with measurement noises; by using stochastic
analysis and graph theory, a controller is designed for the cases of fixed and switch-
ing topologies. In (XIAO; SHI; LI, 2015) the leader-following consensus for second-order
MAS with switching topologies is considered via the average dwell time approach, and the
necessary condition for the agents reaching leader-following consensus is obtained. The
leader-following consensus for MAS under measurement noises and communication time-
delay is addressed in (ZHANG et al., 2018b) by using a Lyapunov functional, sufficient
conditions for mean square stability with additive and multiplicative noise are provided.
An interesting approach is the leader-following consensus control of heterogeneous MAS,
in (XIAO; CHEN, 2017) this problem is tackled for general linear systems.

In practice, the agents must be able to realize multiple parallel tasks, the group
consensus control addresses the design of control protocols to achieve different consensus
values in a MAS divided into groups or clusters, in (FENG; XU; ZHANG, 2014) the group
consensus problem is investigated for double-integrator MAS with fixed communication
topology. In (HUANG et al., 2015) the group consensus control for heterogeneous systems
is addressed, by using Lyapunov functions, sufficient conditions to achieve the group
consensus are obtained. In (REN; LIU; SUN, 2020), the authors deal with the H∞ group
consensus control for linear MAS with external disturbance under directed switching
topologies; the problem can be solved if a correct L2 gain and an appropriate intra-cluster
coupling are chosen. For systems with highly complex clustering behavior, the concepts
of multi-consensus and multi-tracking are introduced, in (LI; GUAN; CHEN, 2015), a
feedback controller for nonlinear MAS is designed to drive the system to achieve multi-
consensus. In (ZHANG et al., 2018a), the robust multi-tracking consensus problem for
MAS with uncertainties and disturbances is solved by providing a distributed impulsive
control protocol. The multi-tracking consensus in MAS under intermittent communication
is studied in (HUANG et al., 2021), the authors tackled the problem with a novel pinning
control protocol and a Lyapunov functional to provide sufficient conditions to consensus
under a dual subsystem framework.
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There exist several and diverse applications for MAS consensus control, for instead in
(WANG; DING; SHENG, 2014) the consensus control of multiple networked robots with
input delays are implemented and validated by experimental results, in (ZHONGHE et al.,
2013) a feedback controller is designed to reduce the traffic congestion in urban road traffic
networks, the control of energy storage in microgrids is addressed in (KHAZAEI; MIAO,
2016) to synchronize the state-of-charge (SoC) and power levels of batteries with limited
information exchange, in (GÜZEY; DUMLU, 2018) the nonlinear consensus synchronizing
control for networked DC motors to tracking a desired position or velocity is developed,
also, the consensus control of MAS is continuously applied in the distributed control
of unmanned vehicle groups (SHI et al., 2017; ZHANG et al., 2019; KADA; KHALID;
SHAIKH, 2020).

2.2.2 MAS formation control

In the MAS distributed cooperative control framework, the formation control is one
of the most actively studied topics, the main objective is to drive the agents to the
desired behavior, based on the sensing ability and interaction topologies (OH; PARK;
AHN, 2015). The most basic formation control scheme is position-based formation con-
trol. In this approach, the sensing capability of the MAS and a global coordinate system
is essential because each agent needs to know their absolute position to keep the forma-
tion, in (REN; ATKINS, 2007) a distributed position-based protocol control with double-
integrator agents is developed. A similar concept is treated in (DONG; FARRELL, 2008),
with the design of a position-based control protocol for nonholonomic mobile agents under
communication delay.

The global coordinate system is not always accessible for the multi-agent system.
In this case, the displacement-based formation control shows some improvements, and
the MAS only needs to have access to the local coordinate system; in contrast, the in-
teraction with neighbors is necessary to know their relative positions (REN; BEARD;
MCLAIN, 2005; LIN; FRANCIS; MAGGIORE, 2007). In (WU; SUN; WANG, 2015)
the displacement-based formation control is addressed for multi-agent systems with size
scaling by assuming the formation description and the relativity velocities are known to
all the agents. In (YAO; LIU; HUANG, 2018) the authors deal with the displacement-
based control problem to maintain a circular formation of unicycle-type agents; by using
a Lyapunov design, a control protocol is presented for time-invariant formation. For
MAS systems with energy consumption constraints, in (BABAZADEH; SELMIC, 2018)
the displacement-based formation optimal control problem is solved by using a state-



24

dependent Riccati equation (SDRE) method and weighting cost matrices.

If the agents cannot access their local coordinate system, the distance-based control
becomes a good alternative for MAS distributed formation. In this approach, it is neces-
sary to set the distances between between the neighbors and consider the entire formation
as a rigid body. In (DIMAROGONAS; JOHANSSON, 2008) the stability of a distance-
based formation control is tackled, by using a tree graph structure, a negative gradient
control law is provided. The case of nonholonomic agents is addressed in (BAROGH;
WERNER, 2017); in this work, the asymptotically stability is achieved for MAS distance-
based formation with collision avoidance. In (HOU; YU, 2018) the authors deal with the
distance-based formation control with hybrid communication topology, which means that
directed and undirected edges form the formation graph. The distance-based formation
control with exogenous disturbance is addressed in (BAE; LIM; AHN, 2020), by using an
adaptive gradient controller, the local stability is guaranteed. Other approaches include,
for instead, the flocking control based on Reynolds rules for collective behavior (LEI; LI,
2008; CAO et al., 2010), the angle-based distributed formation control based on bearing
measurements (JING; CAIXIA; MEIJIN, 2015; JING et al., 2019; CHEN et al., 2020)
and the containment control, in which the follower agents are driven to formation by
autonomous leaders (DONG et al., 2014, 2015; HU; BHOWMICK; LANZON, 2020).

The distributed formation control has several applications in real engineering prob-
lems, specially, in unmanned vehicle control. Such is the case of the formation con-
trol of mobile robots (YANGYANG; YUPING, 2007; BAZOULA; MAAREF, 2007; DU;
YANG; JIA, 2016), cooperative missions of unmanned aerial vehicles (DIERKS; JAGAN-
NATHAN, 2009; ZHU et al., 2017; ALI; SHAFIQ; FARHI, 2018) or marine autonomous
vehicles (HUANG et al., 2016; YU; FU, 2018; LIU; HU; WANG, 2021), also, can be
founded in aerospace applications such as satellites (WOOLFSON, 2004; GAUTAM; SOH;
CHU, 2008) and spacecrafts (GAO; LV; WANG, 2011; WU; CAO, 2018).

2.3 Markovian Switching Networked Systems

Several authors have been using a Markov chain formulation for the MAS topology.
As a sample of these works, we can mention (PARK et al., 2014), which considers the
problem of leader-following consensus stability and stabilization for multi-agent systems
with interval time-varying delays and Markovian switching interconnection information
among agents, by using a Lyapunov Krasovskii functional, a set of LMI based consensus
stability conditions are provided. In (LI; MU, 2020), the authors analyze the leader-
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following consensus of MAS with random switching topologies, where the dwell time in
each topology consists of a fixed part and a random part, and a semi-Markov process
models the topology switching signal in the random part. In (ZHOU et al., 2019), a
distributed formation control based on a modified integral sliding mode (ISM) controller
is designed to deal with bounded accelerations and disturbances for a group of quadrotor
unmanned aerial vehicles (UAV), which a finite-time Markov chain models the switching
topologies with partially unknown transition rates. (DING; GUO, 2015) deals with the
sampled-data leader-following consensus with Markovian switching network topologies
and delay communication by employing a Lyapunov-Krasovskii functional, and the weak
infinitesimal operation a stability criterion is derived, which ensures that the consensus
of nonlinear multi-agent systems can be globally exponentially achieved in mean-square
sense.

In (HE; MU; MU, 2020) the authors tackle the H∞ leader-following consensus prob-
lem for nonlinear MAS under semi-Markovian switching topologies, by using stochastic
techniques, sufficient conditions are derived to achieving a performance H∞ index de-
spite external perturbations and partially unknown transition rates. In (SHANG, 2016)
the authors deal with the stochastic consensus problem for MAS over Markovian switch-
ing networks with a fixed maximal allowable upper bound of time-varying delays and
topology uncertainties which are not caused by the Markov process. (GE; HAN, 2017)
addresses the consensus problem for a MAS with Markovian network topologies, external
disturbance and partial observation of system states by using an overlapping set of shared
modes approach, a distributed control protocol that relies only on a specific group and
partial modes is designed to achieve the consensus under a prescribed H∞ performance
level. (CONG; MU, 2019) investigates the H∞ consensus of MAS where the switching
network topologies are modeled by a semi-Markov model and there exist multiplicative
measurement noises in the information that each agent receives of its neighbors.

In (XUE et al., 2013), a formation controller is designed in terms of LMI and a Lya-
punov functional considering the nonlinear dynamics of each agent and potential func-
tions to stabilize a time-delay system, in which a finite-time Markov process governs
the switch between communication network topologies. (LI et al., 2020) analyzes the
TVF control of MAS with communication noises described as independent white noises,
where the communication topology switches from several different topologies following
a Markov chain, a stochastic control protocol is given to achieve stability in the mean
square sense. (NGUYEN; KIM, 2020) deals with the problem of leader-following consen-
sus for MAS with an asynchronous control mode of the Markov parameter by using a
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mode-dependent Lyapunov function and a relaxation process, sufficient conditions for the
stochastic leader-following consensus are given. In (DONG et al., 2020) it is investigated
the H∞ output consensus problem for MAS with Markov jumps and external disturbance
in both continuous-time and discrete-time domains by considering an output feedback
controller based on a hidden Markov model. Within the discrete-time set up, (ZHANG
et al., 2016) studies the H∞ consensus control problem for MAS with switching network
topologies subject to a heterogeneous Markov chain, under the hypothesis of partial in-
formation exchange among neighbor agents and (MO; GUO; YU, 2018) addresses the
velocity-constrained mean-square consensus problem of heterogeneous MAS with Marko-
vian switching topologies and time-delay, which consist of first-order and second-order
agents.

2.4 Contribution and Structure

The contributions of this dissertation are mainly concerned with the design of forma-
tion controllers for MAS under Markovian switching topologies with partial observations
and are summarized as follows:

• We propose design conditions in terms of LMI for the synthesis of an static output
TVF controller for MAS that depends only on θ̂(t) and such that the closed-loop
MAS is mean square stable with H∞ norm less than a given γ > 0.

• Similarly as above, we also treat the H2 case, and propose design conditions such
that the H2 norm of the closed-loop MAS is less than a given φ > 0.

• By combining the previous results we tackle the mixed H2/H∞ case.

• We illustrate our results by means of numerical examples of a TVF control of a
MAS consisting of six agents.

The structure of this work is briefly described below:

• In Chapter 3, we introduce basic concepts about the stability and calculation of the
H∞ and H2 norms of MJLS, as well as some topics in MAS, including graph theory
and protocol formulation for the consensus and formation problem.

• In Chapter 4, the concept of hidden MJLS is addressed, we describe some possible
cases for control systems, depending only on the observed state θ̂(t), that can be
modeled with this approach.
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• In Chapter 5, we design a formation control protocol for MAS with partial observa-
tions on the network. Then, we present sufficient conditions in LMI for the design
of H2 and H∞ static output feedback controllers for MAS formation with switch-
ing network topologies depending only on the observed variable θ̂(t), and if jointly
solved, allows a mixed H2/H∞ controller formulation.

• Finally, in Chapter 6, we conclude with some numerical examples to study the
effectiveness of the proposed method. H2, H∞ and mixed H2/H∞ controllers are
studied for the formation control of a linear MAS formed by six agents with possible
mismatching between the detector and network operation modes.

The results presented in Chapters 5 and 6 were published in the IEEE Access Journal
(RODRIGUEZ-CANALES; COSTA, 2021).
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3 PRELIMINARIES

This chapter presents some necessary concepts for the derivation of the results. First,
the notation used in this work is described. Then, we introduce some definitions related
to graph theory and Markov processes. Finally, the control problem is formulated in the
stochastic control framework, and some results in optimal control are presented.

3.1 Notation

Spaces

For the Banach spaces X and Y, we define B(X,Y) as the space of all bounded
linear operators with uniform induced norm denoted by ||.||. Rn represents the the
n-dimensional real Euclidian space and R+ the interval [0, ∞). The bounded linear
space of all m × n real matrices is denoted by B(Rn,Rm), with B(Rn) ≜ B(Rn,Rn).
For N and M positive integers we set N ≜ {1, . . . , N}, M ≜ {1, . . . , M} and
V ⊆ N × M .

Matrices

Consider the matrix A. The transpose of the matrix A is represented by A′, if
A = A′ thus A is a symmetric matrix. The eigenvalues of a matrix A are denoted
by λi(A). A < 0 and A ≤ 0 denote a negative definite and semi-definite matrix,
respectively, which means that the eigenvalues are strictly negative. The trace is
denoted by tr(A) = ∑n

i=1 aii where aii denotes the entry on the ith row and ith
column of A and Her(A) = A + A′. The Schur Complement says that

M =
Q S

S ′ R

 < 0,

if and only if Q < 0 and R − S ′Q−1S < 0,
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if and only if R < 0 and Q − SR−1S ′ < 0.

Blocks induced by symmetry in a square matrix is represent by • A B

B′ C

 =
 A •
B′ C

 .

For A = [aij] ∈ Rmxn and B = [bij] ∈ Rpxq the Kronecker product of A and B is

A ⊗ B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB
... ... . . . ...

am1B am2B . . . amnB

 .

The identity matrix of size n × n is given by In and 1n denotes the n-dimensional
column vector with all ones. In what follows let B̃ be the orthogonal complement
matrix of the row space of a matrix B, so that BB̃ = 0. We introduce the following
version of the Finsler lemma (see (FINSLER, 1937)) that will be needed later in the
results demonstration.

Lemma 3.1.1. The following statements are equivalent:

a) B̃′AB̃ > 0.

b) A + XB + B′X ′ > 0 for some matrix X.

Stochastic processes: The probability space is defined by (Ω, F , Pr), with a right-
continuous filtration Ft. E(·) denotes the mathematical expectation with respect to
Pr and Lr

2(Ω, F , Pr) (or just Lr
2 for simplicity) the set of square integrable stochastic

processes z = {z(t) ∈ Rr, t ∈ R+} with z(t) being Ft-measurable for each t ∈ R+. In this
case we set ∥z∥2

2 =
∫ ∞

0 E(∥z(t)∥2)dt. Finally, the Dirac measure over the set A ∈ F is
denoted by 11A(·) such as

11A(ω) =
 1 if ω ∈ A

0 otherwise.
(3.1)

3.2 Multi-Agent Systems

3.2.1 Graph theory

A graph represented by G(V, E) (REN; CAO, 2010) is a set of objects where the
vertices (also known as nodes or agents) V are linked by the edges E ⊆ V×V. The objects
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Figure 6: Undirected graph with 6 vertices and 7 edges.

in the graph coincides with the number of vertices and are represented by V = {1, . . . , v}.
The graphs where the edges are unordered pair of vertices (i, j) ∈ E = (j, i) ∈ E are
known as undirected graphs as shown in the Figure 6.

Two nodes are adjacent if a node have a edge with another node. The neighbors of a
node i are all those that have an edge coming from node i denoted by Ni and the degree
of this node is represented by di = |Ni|, where

Ni = {j ∈ V, (i, j) ∈ E}.

Let A = [aij] ∈ Rvxv be the adjacency matrix with

aij =
 1 if i ̸= j and (i, j) ∈ E

0 otherwise.
(3.2)

Let D = diag(di, . . . , dv) ∈ Rv×v be the degree matrix with di = ∑v
j=1 aij. The Laplacian

matrix of the graph G is defined as L = D − A where

lij =


di if i = j

−1 if i ̸= j and (i, j) ∈ E
0 otherwise.

(3.3)

Example 1. Taking the graph in Figure 6 as an example, we have that the degree, adja-
cency and Laplacian matrix are

D =



3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 1


, A =



0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 0
1 0 0 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0


, L =



3 −1 −1 −1 0 0
−1 3 −1 0 −1 0
−1 −1 2 0 0 0
−1 0 0 2 −1 0
0 −1 0 −1 3 −1
0 0 0 0 −1 1


.
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3.2.2 Consensus

An important result in MAS control is the consensus algorithm. The objective of this
algorithm is that all agents achieve the same state as their neighbors (REN; CAO, 2010).
This simple paradigm can be extended to more complex problems; to illustrate this, we
consider a group of v agents with a single-integrator dynamic given by

ẋi(t) = ui(t), i = 1, . . . , v, (3.4)

where ẋi(t) and ui(t) are the state and control input of the i-th agent, respectively.
Assuming all agents are one dimension for simplicity, a basic consensus algorithm has the
form

ui(t) =
v∑

j=1
aij[xi(t) − xj(t)], (3.5)

where aij is the (i, j)-th term of the adjacency matrix A. The consensus is achieved if for
all i, j = 1, . . . , v, the system satisfies |xi(t) − xj(t)| → 0 as t → ∞.

3.2.3 Formation

Considering the multi-agent system described in (3.4), we introduce a predefined
vector h(t) = [hT

1 (t), . . . , hT
v (t)] ∈ Rv representing the desired time-varying formation

(TVF) (DONG; HU, 2016) and the following TVF algorithm

ui(t) =
v∑

j=1
aij[(xj(t) − hj(t)) − (xi(t) − hi(t))]. (3.6)

The multi-agent system (3.4) is said to achieve time-varying formation if |xi(t) − hi(t) −
xj(t) − hj(t)| → 0 as t → 0 for all i, j = 1, . . . , v. Note that when h(t) ≡ 0, the multi-
agent system (3.4) achieves consensus if it achieves formation. Therefore, for the system
described in (3.4) the consensus problem is a special case of the formation problem.

3.3 Markov Jump Linear Systems

Previously, we mentioned that systems subject to abrupt changes could be modeled
as Markov jump linear systems. This case can be considered a set of modes subjected
to an exponential distribution for the jump times between events, also called continuous-
time Markov chains. Combining linear systems with continuous-time Markov chains is
a continuous-time Markov jump linear system (CT-MJLS). This section presents the
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mathematical formulation of the Markov process and a static output control formulation
for MJLS.

3.3.1 Markov process

Let (Ω, F , Pr) be a complete probability space, for the Markov chain, we also define
the set N = {1, . . . , N} where N is a positive integer. The set N defines the operations
modes of the linear system denoted by θ(t), where θ(t) ∈ N , t ∈ R+. The transition prob-
ability of the continuous-time Markov chain is defined as follows (COSTA; FRAGOSO;
TODOROV, 2012):

Pr{θ(t + h) = r|θ(t) = p} =
 λprh + o(h), p ̸= r

1 + λpph + o(h), p = r,
(3.7)

where Pr[·] is the probability measure, p, r ∈ N such that θ(t) = p if the p-th topology is
chosen at time instant t, o(h) denotes a function such that limh→0o(h)/h = 0, λpr is the
transition rate from p to r with λpr ≥ 0 if (p ̸= r) and λpp = − ∑

p ̸=r λpr. The transition
matrix Π = [λpr]1≤r,p≤N ∈ RNxN of {θ(t), t ≥ 0} is given by

Π =



λ11 λ12 . . . λ1N

λ21 λ22 . . . λ2N

... ... . . . ...
λN1 λN2 . . . λNN

 . (3.8)

3.3.2 Static output feedback control of MJLS

On the probability space (Ω, F , Pr), with Ft a right-continuous filtration, we consider
a continuous-time Markov jump linear system (MJLS) given by:

G :


ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t) + Eθ(t)w(t)

y(t) = Fθ(t)x(t)
(3.9)

where x(t) ∈ Rn denotes the vector of states, u(t) ∈ Rnu denotes the vector of control,
w(t) ∈ Rnw an external disturbance, y(t) ∈ Rny the measured output, and {θ(t)} is a
Markov chain taking values in the set N and with transition rates λpr, with λpr ≥ 0 for
all p ̸= r. All matrices are considered to be of compatible dimensions.

The feedback control law depends only on the variables y(t) and θ(t), so that it takes
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the form
u(t) = Kθ(t)y(t). (3.10)

By applying (3.10) into (3.9), we get that the closed loop system is given by

Gcl :


ẋ(t) = Ãθ(t)x(t) + Eθ(t)w(t)

y(t) = Fθ(t)x(t)
, (3.11)

where

Ãθ(t) = Aθ(t) + Bθ(t)Kθ(t)Fθ(t). (3.12)

3.4 Results

In this section, some results on the stability and optimal control of MJLS are pre-
sented.

3.4.1 Stability

Let us consider the reduced linear system:

ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t). (3.13)

Definition 3.4.1 (Stochastic Stability (SS) (COSTA; FRAGOSO; TODOROV, 2012)).
The system 3.13 is considered mean square stabilizable if there exist a set of controllers
K = {K1, . . . , Kn} that for any initial conditions x0, θ0 it holds that∫ ∞

0
E(||x(t)||2)dt < ∞. (3.14)

Definition 3.4.2 (Mean Square Stability (MSS) (COSTA; FRAGOSO; TODOROV,
2012)). System (3.13) is said to be mean square stable if for arbitrary initial conditions
θ0 ∈ N , and second order initial state vector x0, we have that

lim
t→∞

E(∥x(t)∥2) = 0.

Remark 1. The notions of stochastic stability and mean square stability are equivalent
(the proof can be found in (COSTA; FRAGOSO; TODOROV, 2012)).
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3.4.2 Optimal Control

For the cases of H2 and H∞ norms, the following continuous-time Markov jump linear
system (MJLS) is considered:

G :


ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t) + Eθ(t)w(t)

z(t) = Cθ(t)x(t) + Dθ(t)u(t) + Lθ(t)w(t)

y(t) = Fθ(t)x(t)

, (3.15)

where z(t) ∈ Rnz is the vector of output variables. The feedback control system for a
control law u(t) = Kθ(t)y(t) is given by:

Gcl :


ẋ(t) = Ãθ(t)x(t) + Eθ(t)w(t)

z(t) = C̃θ(t)x(t) + Lθ(t)w(t)
, (3.16)

where

C̃θ(t) = Cθ(t) + Dθ(t)Kθ(t)Fθ(t). (3.17)

3.4.2.1 H2 control

For the definition of the H2 norm we consider in system (3.16) that Lp = 0. In what
follows we set Pr(θ(0) = p) = µp ≥ 0, p ∈ N .

Definition 3.4.3 (H2 Norm (COSTA; FRAGOSO; TODOROV, 2012)). Suppose that
system (3.16) is MSS. The H2-norm for system (3.16) is defined as follows: for x0 = 0,

∥Gcl∥2
2 =

nw∑
s=1

∑
(p,k)∈V

µp∥zs,(p)∥2
2,

where zs,(p)(t) is the controlled output of (3.16) for w(t) = vsδ(t), δ(t) is the unitary
impulse, vs is the sth element of the canonical basis of Rnw and θ(0) = p.

3.4.2.2 H∞ control

Definition 3.4.4 (H∞ Norm (COSTA; FRAGOSO; TODOROV, 2012)). Suppose that
system (3.16) is MSS. The H∞-norm for system (3.16) is defined as:

∥Gcl∥∞ = sup
{

∥z∥2

∥w∥2
; w ∈ Lnw

2 , w ̸= 0
}

.
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We will need the following result along this dissertation (the proof can be found in
(COSTA; FRAGOSO; TODOROV, 2012)). The bounded-real lemma establishes an LMI
condition for the stability and optimally of a dynamic system:

Lemma 3.4.1 (Bounded Real Lemma). System (3.16) is MSS with an H∞ cost smaller
than γ if, for all p ∈ N , there exist Rp > 0 such that

RpÃp + Ã′
pRp +

∑
r∈N λprRr • •

E′
pRp −γ2Inw •
C̃p Lp −Inz

 < 0. (3.18)
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4 HIDDEN MARKOV JUMP LINEAR
SYSTEMS

Due to the possibility of imperfect detection of the operation mode, we introduce
the concept of hidden Markov model. The detector operation mode is considered as the
information emitted by a detector that observes the operation mode, this estimation of the
operation mode is represented by θ̂(t). By combining the mode of operation θ(t) and the
detector mode θ̂(t) in a joint process, it is possible to represent MJLS with uncertainties in
the observation of the operation mode. In this chapter, the framework of hidden Markov
process is presented, as well as the extended results of stability and control of MJLS in
Subsection 3.3 to the hidden MJLS approach.

4.1 Hidden Markov process

It is assumed that θ(t) is not known but, instead, there is an estimation θ̂(t) for this
variable, and that Z(t) = (θ(t), θ̂(t)), t ∈ R+, is a continuous-time hidden Markov model,
with the hidden state θ(t) taking values in N , and the observation state θ̂(t) taking
values in M . It is assumed that Z(t) is a homogeneous Markov process having transition
rates ν(pk)(rℓ), with ν(pk)(rℓ) ≥ 0 for (r, ℓ) ̸= (p, k) and −ν(pk)(pk) = ∑

(rℓ)̸=(pk) ν(pk)(rℓ). The
transition rates ν(pk)(rℓ) of Z(t) = (θ(t), θ̂(t)), are given by

Pr(Z(t + h) = (r, ℓ) | Z(t) = (p, k)) = ν(pk)(rℓ)h + o(h), (r, ℓ) ̸= (p, k)
1 + ν(pk)(pk)h + o(h), (r, ℓ) = (p, k),

(4.1)

where

ν(pk)(rℓ) =



αk
rℓλpr, p ̸= r, ℓ ∈ M ,

qp
kℓ, r = p, ℓ ̸= k, p ∈ N ,

λpp + qp
kk, r = p, ℓ = k,

0, otherwise
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and αrℓ ≥ 0, ∑
ℓ∈M αk

rℓ = 1, qp
kℓ ≥ 0, ℓ ̸= k, λpp = − ∑

r∈N λpr, qp
kk = − ∑

ℓ∈M qp
kℓ. We

denote by V ⊆ N × M an invariant set of Z(t), that is, P (Z(t) ∈ V ) = 1 whenever
Z(0) ∈ V .

Remark 2. Notice that, for the observed state θ̂(t), simultaneous or spontaneous jumps
with respect to θ(t) are modeled by the parameters αk

rℓ and qp
kℓ respectively. Indeed, recalling

that λpr represents the transition rate of θ(t), we get that αk
rl and qp

kl models simultaneous
and spontaneous jumps of θ̂(t), that is, for small h > 0, Pr(θ̂(t + h) = ℓ | θ(t +
h) = r, Z(t) = (p, k)) = αk

rℓ + r(h) for some function such that limh→0 r(h) = 0, and
Pr(θ̂(t + h) = ℓ | θ(t + h) = p, Z(t) = (r, k)) = qr

kℓh + o(h). See (OLIVEIRA et al.,
2020) for more details.

Remark 3. The above approach allows modeling the following cases (see (STADTMANN;
COSTA, 2018)):

• Mode-dependent case: M = N , qp
kℓ = 0, αk

rr = 1, and αk
rℓ = 0 for r ̸= ℓ, with

invariant set V = {(p, p) ∈ N × N }. Note that in this case θ(t) and θ̂(t) will be
equal.

• Mode-independent case: M = {1}, qp
kl = 0, and α1

r1 = 1. In this setting, the
detector would be always equal to 1.

• No Mutual Jumps: αk
rk = 1 and αk

rl = 0 for k ̸= l.

• The Cluster Case: In this case the Markov chain states can be written as the union of
M ≤ N disjoint sets (clusters) Nℓ so that N = ∪ℓ∈M Nℓ. By defining g : N → M

such that g(p) = ℓ we have that this function represents the cluster where the Markov
state belongs to, and thus the controller would have access to g(p). This would be
equivalent to take qp

kℓ = 0 and αk
pg(p) = 1, so that whenever θ(t) jumps to p, θ̂(t)

would jump simultaneously to g(p).

Example 2. We consider that the MJLS, adopted from (OLIVEIRA; COSTA, 2021a),
is modeled by a Markov chain θ(t) with three operation modes, that is N = {1, 2, 3}. The
transition probability matrix is given by

[λpr] =


0.5 −0.2 −0.3

−0.7 0.3 0.4
0.8 −1.0 0.2

 , (4.2)

Now, we consider the partial observation case with N = M , where the mode θ(t) = 1
is perfectly detected (Pr(θ̂(t) = 1|θ(t) = 1) = 1), and the detector have a probability of



38

estimating a wrong mode in θ(t) = 2 and θ(t) = 3 given by the following matrix

[αk
rℓ] =


1 0 0
0 0.2 0.8
0 0.8 0.2

 , ∀k ∈ M , (4.3)

we consider the case of only simultaneous jumps by setting [qp
kℓ] = 0. Then, the invariant

set is given by

V = {(11), (22), (23), (32), (33)}, (4.4)

and the transition rate matrix is given by

[ν(ik),(jℓ)] =

(ik)\(jℓ) (11) (22) (23) (32) (33)



(11) 0.5 −0.04 −0.16 −0.24 −0.06
(22) −0.7 0.3 0 0.32 0.08
(23) −0.7 0 0.3 0.32 0.08
(32) 0.8 −0.2 −0.8 0.2 0
(33) 0.8 −0.2 −0.8 0 0.2

. (4.5)

4.2 Static output feedback control of hidden MJLS

Now, the feedback control law depends on the observable variables y(t) and θ̂(t), so
that it takes the form

u(t) = K
θ̂(t)y(t). (4.6)

The feedback control system for a control law u(t) = K
θ̂(t)y(t) is given by:

Gcl :


ẋ(t) = Ã

θ(t)θ̂(t)x(t) + Eθ(t)w(t)

z(t) = C̃
θ(t)θ̂(t)x(t) + Lθ(t)w(t)

, (4.7)

where, for (r, ℓ) ∈ N × M ,

Ãrℓ = Ar + BrKℓFr, C̃rℓ = Cr + DrKℓFr. (4.8)

Remark 4. In practice, it is very difficult to find an ideal controller K
θ̂(t) for the sys-

tem (4.7); in this work, by using LMI, sufficient conditions for stabilization are given to
synthesize these controllers considering a suboptimal performance cost.
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4.3 Results

In this section, the results that were presented in Subsection 3.4 are generalized for
systems with imperfect observations from the detector.

4.3.1 Stability

We present now the condition of mean square stability (MSS) and operators to obtain
differential equations for the second moment of x(t) in (4.7).

Definition 4.3.1 (Linear Operators (OLIVEIRA; COSTA, 2021a)). We now introduce
conditions for verifying the MSS of (4.7). For that we define the linear operator T from
Hn to Hn such that

Tpk(R) ≜ ÃpkRpk + RpkÃ′
pk +

∑
(jℓ)∈V

ν(pk)(rℓ)Rrℓ, (4.9)

for R ∈ Hn.

We have the following lemma (see (COSTA; FRAGOSO; TODOROV, 2012)).

Lemma 4.3.1. The system ẋ(t) = Ãθ(t)θ̂(t)x(t), x(0) = x0 ∈ Rn, is MSS if and only if
there exists R ∈ Hn+ such that

R > 0, T (R) < 0. (4.10)

The set of admissible controllers (4.6) is given by

K ≜ {(K1, . . . , KM) such that (4.10) holds for (4.7)}.

4.3.2 Optimal control

4.3.2.1 H∞ control

Definition 4.3.2 (H∞ Norm (COSTA; FRAGOSO; TODOROV, 2012)). Suppose that
system (4.7) is MSS. The H∞-norm for system (4.7) is defined as:

∥Gcl∥∞ = sup
{

∥z∥2

∥w∥2
; w ∈ Lnw

2 , w ̸= 0
}

.

Notice that the norm defined above represents a measure for the worst-case effect of finite-
energy disturbances on the output.
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The following lemma provides conditions for hidden MJLS stability (the proof can be
found in (COSTA; FRAGOSO; TODOROV, 2012).

Lemma 4.3.2 (Bounded Real Lemma). System (4.7) is MSS with an H∞ cost smaller
than γ if, for all (p, k) ∈ V , there exist Rpk > 0 such that


RpkÃpk + Ã′

pkRpk + Rpk(R) • •
E ′

pRpk −γ2Inw •
C̃pk Lp −Inz

 < 0, (4.11)

where Rpk(R) = ∑
(r,ℓ)∈V ν(pk)(rℓ)Rrℓ.

4.3.2.2 H2 control

For the definition of the H2 norm we consider in system (4.7) that Lp = 0, since the
output z(t) in this case is related to the quadratic cost of the state and control variables,
and not to the external input. Now, we set Pr(Z(0) = (p, k)) = µpk ≥ 0, (p, k) ∈ V .

Definition 4.3.3 (H2 Norm (STADTMANN; COSTA, 2017)). Suppose that system (4.7)
is MSS. The H2-norm for system (4.7) is defined as follows: for x0 = 0,

∥Gcl∥2
2 =

nw∑
s=1

∑
(p,k)∈V

µpk∥zs,(p,k)∥2
2,

where zs,(p,k)(t) is the controlled output of (4.7) for w(t) = vsδ(t), vs is the sth element of
the canonical basis of Rnw and θ(0) = p, θ̂(0) = k.

For obtaining conditions for an upper-bound for the H2 norm of (4.7), we can resort
to the following lemma (see (STADTMANN; COSTA, 2017)):

Lemma 4.3.3. System (4.7) is MSS with an H2 cost smaller than φ if, for all (p, k) ∈ V ,
there exist Rpk > 0 such that

∑
(r,ℓ)∈V

µrℓTr(E ′
rRrℓEr) < φ2, (4.12)

Her(RpkÃpk) +
∑

(r,ℓ)∈V

ν(pk)(rℓ)Rrℓ + C̃ ′
pkC̃pk < 0. (4.13)
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5 FORMATION STATIC OUTPUT CONTROL
OF MAS WITH HIDDEN MARKOV
SWITCHING NETWORK TOPOLOGIES

5.1 Hidden Markov Switching Topologies

In a complete probability space (Ω, F , Pr) with a right-continuous filtration Ft, con-
sider a multi-agent time-varying topology represented by the undirected graph Gθ(t) =
G(V, Eθ(t), Aθ(t)), where θ(t) ∈ N denotes the network topology mode, V = {1, . . . , v}
and Eθ(t) ⊆ {(i, j)|i, j ∈ V, i ̸= j} are the set of nodes and edges respectively. An
edge (i, j) ∈ Eθ(t) represents a connection of node i and j. Aθ(t) = [aij,θ(t)] ∈ Rv×v is
the adjacency matrix, with aij,θ(t) = 1 if (i, j) ∈ Eθ(t) and aij,θ(t) = 0 otherwise. Let
Dθ(t) = diag(d1,θ(t), . . . , dv,θ(t)) ∈ Rv×v be the degree matrix with di,θ(t) = ∑v

j=1 aij,θ(t).
The Laplacian matrix of graph Gθ(t) is defined as Lθ(t) = Dθ(t) − Aθ(t).

We consider that the topology switching process is governed by a continuous-time
Markov process θ(t) taking values in N as described in Section 4.1, which is not observable
for the controller. Instead, it can be estimated by an imperfect detector θ̂(t) taking values
in M , with Z(t) = (θ(t), θ̂(t)), t ∈ R+ being a homogeneous hidden Markov model with
transition rate matrix given by (4.1).

5.2 Problem formulation

Consider the linear multi-agent system

G :


ẋi(t) = Axi(t) + Bui(t) + Ewi(t)
yi(t) = Fxi(t)
xi(0) = x0

i , i = 1, 2, . . . , v.

(5.1)

Let x(t) = [x′
1(t), . . . , x′

v(t)]′, u(t) = [u′
1(t), . . . , u′

v(t)]′ and y(t) = [y′
1(t), . . . , y′

v(t)]′ be
the aggregate vectors of the states xi(t) ∈ Rn, control inputs ui(t) ∈ Rnu and measured
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outputs yi(t) ∈ Rny respectively. We define {wi(t)} ∈ Lnw
2 as the i-th external disturbance

with aggregate vector w(t) = [w′
1(t), . . . , w′

v(t)]′. Moreover it is considered that only the
signal yi(t) and the observed mode of operation θ̂(t) are available for the control strategy.
For the i-th agent, we consider the following distributed control protocol

ui(t) = KhFhi(t) + K
θ̂(t)

∑
j∈V

aij,θ(t)

(
(yj(t) − Fhj(t)) − (yi(t) − Fhi(t))

)
, (5.2)

where Kh is set to manage the formation vector hi(t) and K
θ̂(t) will be designed to drive

the states of the MAS (5.1) to achieve the desired time-varying formation under switching
topologies. Notice that the feedback gain matrix K

θ̂(t) depends only on the observed mode
of operation θ̂(t) while the adjacency matrix aij,θ(t) depends on the Markov process θ(t),
with the joint process Z(t) = (θ(t), θ̂(t)) defined as in (4.1). The formation vectors hi(t)
satisfy the following dynamic equations:

ḣi(t) = (A + BKhF )hi(t). (5.3)

Substituting the control protocol (5.2) into the multi-agent system (5.1) we get that

ẋi(t) =Axi(t) + BKhFhi(t) + BK
θ̂(t)F

( ∑
j∈V

aij,θ(t)((xj(t)

− hj(t)) − (xi(t) − hi(t)))
)

+ Ewi(t). (5.4)

The output controlled variable zi(t) ∈ Rnz , i = 1, . . . , v, is defined as

zi(t) = C(xi(t) − hi(t)) + D(ui(t) − uhi
(t)) + Lwi(t),

uhi
(t) = KhFhi(t), (5.5)

where C, D and L are weighting matrices related to the state error, control effort, and
external disturbance. Let εi(t) = xi(t) − hi(t). From (5.3) and (5.4) we get that

ε̇i(t) =Aεi(t) + BK
θ̂(t)F

( ∑
j∈V

aij,θ(t)(εj(t) − εi(t))
)

+ Ewi(t), (5.6)

which, in a compact way, can be re-written as

ε̇(t) = (Iv ⊗ A)ε(t) − (Lθ(t) ⊗ BK
θ̂(t)F )ε(t) + (Iv ⊗ E)w(t). (5.7)

We define the average error δi(t) as

δi(t) = (xi(t) − hi(t)) − 1
v

v∑
j=1

(xj(t) − hj(t)), (5.8)
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which can be re-written in a compact form as

δ(t) = [(Iv − Jv) ⊗ In](x(t) − h(t)) = [(Iv − Jv) ⊗ In]ε(t), (5.9)

where Jv = 1
v
1v1′

v. Notice that for any symmetric v × v matrix S and any n × n matrix
Z, we have that (Jv ⊗ In)(S ⊗ Z) = (S ⊗ Z)(Jv ⊗ In). Thus we get that

[(Iv − Jv) ⊗ In](Iv ⊗ A) =(Iv ⊗ A)[(Iv − Jv) ⊗ In],

[(Iv − Jv) ⊗ In](Lp ⊗ BKkF ) =(Lp ⊗ BKkF )[(Iv − Jv) ⊗ In].

The output averaged controlled variable za
i (t) is defined as

za
i (t) = zi(t) − 1

v

v∑
j=1

zj(t) (5.10)

and z(t) = [za
1

′(t), . . . , za
v

′(t)]′ is the aggregate vector of the averaged controlled outputs,
with z(t) ∈ Rnzv. Considering the average error δ(t) in (5.9) and system (5.7), and the
controlled output variables (5.5), (5.10), we get the dynamical system for the error δ(t)
and z(t) as

Gcl :

 δ̇(t) = Ã
θ(t)θ̂(t)δ(t) + Ẽw(t)

z(t) = C̃
θ(t)θ̂(t)δ(t) + L̃w(t),

(5.11)

where

Ãpk = Iv ⊗ A − Lp ⊗ BKkF, Ẽ = (Iv − Jv) ⊗ E,

C̃pk = Iv ⊗ C − Lp ⊗ DKkF, L̃ = (Iv − Jv) ⊗ L.

The goal is to obtain Kk in (5.2), k ∈ M , such that we have TVF mean square stability
and either an H∞ or H2 performance (or both), as described next:

1. TVF mean square stability: system Gcl in (5.11) is MSS, that is, with w(t) = 0,

lim
t→∞

E(∥δ(t)∥2) = 0, (5.12)

for any initial conditions δ(0) and (θ(0), θ̂(0)) ∈ V .

2. H∞ performance: for some performance level γ, we have that ∥Gcl∥∞ < γ, that is,

E
∫ ∞

0
||z(t)||2dt < γ2E

∫ ∞

0
||w(t)||2dt, (5.13)

for any w ∈ Lvnw
2 , w ̸= 0.
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3. H2 performance: for some performance level φ, we have that

∥Gcl∥2 < φ. (5.14)

5.3 Main Results

In this section we present LMI conditions to obtain Kk in (5.2), k ∈ M , such that
(5.12) and either (5.13) or (5.14) (or both) are satisfied. For this we need to make the
following assumption.

Assumption 1: F has full row rank matrix.

Note that Assumption 1 is a standard assumption to avoid redundant measurements.
From Assumption 1 we have that there exists a non-singular matrix T such that

FT =
[
Iny 0

]
. (5.15)

In what follows we define, for (p, k) ∈ V ,

V(p,k) = {(r, ℓ) ∈ V ; (r, ℓ) ̸= (p, k) and ν(p,k)(r,l) ̸= 0}

= {r(p,k)(1), . . . , r(p,k)(τ(p,k)); r(p,k)(ι) ∈ V , ι = 1, . . . , τ(p,k)}.

Consider n × n matrices Xpk > 0, (p, k) ∈ V , and set

Πpk =
[√

ν(p,k)r(p,k)(1)(Iv ⊗ In) . . .
√

ν(p,k)rp,k(τ(p,k))(Iv ⊗ In)
]
,

Dpk = diag(Iv ⊗ Xr(p,k)(1), . . . , Iv ⊗ Xr(p,k)(τ(p,k))).

Notice that

∑
(r,ℓ)∈V

ν(p,k)(r,ℓ)(Iv ⊗ X−1
rl ) =

∑
(r,ℓ)∈V(p,k)

ν(p,k)(r,ℓ)(Iv ⊗ X−1
rℓ ) + ν(p,k)(p,k)(Iv ⊗ X−1

pk )

= ΠpkD
−1
pk Π′

pk + ν(p,k)(p,k)(Iv ⊗ X−1
pk ). (5.16)

5.3.1 H∞ Control

The following theorem, based on the results in (STADTMANN; COSTA, 2018),
presents a solution for the H∞ problem for the cooperative control of multi-agent sys-
tem (5.1) under hidden Markov switching topologies, based on the solution of a set of
LMI.
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Theorem 5.3.1. Consider a fixed upper-bound γ > 0 and suppose that for all (p, k) ∈ V ,
there exist matrices Xpk > 0, Gk and Vk and a scalar ϵ∞ > 0 such that the following set
of LMI is satisfied:

ν(p,k)(p,k)Iv ⊗ Xpk • • • •
(Iv − Jv) ⊗ E ′ −γ2(Iv ⊗ Inw) • • •

0 (Iv − Jv) ⊗ L −Iv ⊗ Inz • •
Iv ⊗ Xpk 0 0 0 •

Π′
pk(Iv ⊗ Xpk) 0 0 0 −Dpk


+

Her





Iv ⊗ (ATGk) − Lp ⊗ B
[
Vk 0

]
0

Iv ⊗ (CTGk) − Lp ⊗ D
[
Vk 0

]
−Iv ⊗ (TGk)

0





ϵ∞(Iv ⊗ In)
0
0

Iv ⊗ In

0



′
< 0, (5.17)

with Gk in the following form:

Gk =
Gk1 0
Gk2 Gk3

 . (5.18)

Then the multi-agent system (5.1) is mean square stable with a closed-loop norm ∥Gcl∥∞ <

γ whenever the distributed control protocol (5.2) is applied, with the feedback controller
matrices Kℓ given by:

Kk = VkG−1
k1 , k ∈ M . (5.19)

Proof. From (5.17) we have that Iv ⊗ (TGk) + Iv ⊗ (G′
kT ′) > 0 = Iv ⊗ (TGk + G′

kT ′) > 0
so that it follows that TGk + G′

kT ′ > 0, which implies that Gk is non-singular, so that the
inverse in (5.19) is well defined. From (5.18) and (5.19) we have that Vk = KkGk1 and

Kk

[
Iny 0

]
Gk =

[
Kk 0

]
Gk =

[
Vk 0

]
, (5.20)

so that from (5.15) and (5.20) we have that

Iv ⊗ (ATGk) − Lp ⊗ B
[
Vk 0

]
= Iv ⊗ (ATGk) − Lp ⊗ BKk

[
Iny 0

]
Gk

= Iv ⊗ (ATGk) − Lp ⊗ BKkFTGk

= (Iv ⊗ A − Lp ⊗ BKkF )(Iv ⊗ TGk).
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Similarly, we have that

Iv ⊗ (CTGk) − Lp ⊗ D
[
Vk 0

]
= (Iv ⊗ C − Lp ⊗ DKkF )(Iv ⊗ TGk).

Set

Ãpk = Iv ⊗ A − Lp ⊗ BKkF, Ẽ = (Iv − Jv) ⊗ E, (5.21)

C̃pk = Iv ⊗ C − Lp ⊗ DKkF, L̃ = (Iv − Jv) ⊗ L, (5.22)

so that (5.17) can be re-written as

Φpk + Her





Ãpk

0
C̃pk

−Iv ⊗ In

0


Iv ⊗ (TGk)



ϵ∞(Iv ⊗ In)
0
0

Iv ⊗ In

0



′
< 0, (5.23)

where

Φpk =



ν(p,k)(p,k)Iv ⊗ Xpk • • • •
Ẽ ′ −γ2(Iv ⊗ Inw) • • •
0 L̃ −Iv ⊗ Inz • •

Iv ⊗ Xpk 0 0 0 •
Π′

pk(Iv ⊗ Xpk) 0 0 0 −Dpk


.

Defining

W̃pk =



Iv ⊗ In 0 0 0
0 Iv ⊗ Inw 0 0
0 0 Iv ⊗ Inz 0

Ã′
pk 0 C̃ ′

pk 0
0 0 0 Iv ⊗ In


,

Wpk =
[
Ã′

pk 0 C̃ ′
pk −Iv ⊗ In 0

]
(5.24)

it follows that W̃pk has full rank and that WpkW̃pk = 0, so that from Finsler’s lemma (see
Lemma 3.1.1) and (5.23) we have that

W̃ ′
pkΦpkW̃pk < 0. (5.25)
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From (5.25) we conclude that

Zpk • • •
Ẽ ′ −γ2(Iv ⊗ Inw) • •

C̃pk(Iv ⊗ Xpk) L̃ −Iv ⊗ Inz •
Π′

pk(Iv ⊗ Xpk) 0 0 −Dpk

 < 0,

where
Zpk = ν(p,k)(p,k)Iv ⊗ Xik + Ãpk(Iv ⊗ Xpk) + (Iv ⊗ Xpk)Ã′

pk.

From Schur’s complement, we get that
Z̄pk • •
Ẽ ′ −γ2(Iv ⊗ Inw) •

C̃pk(Iv ⊗ Xpk) L̃ −Iv ⊗ Inz

 < 0,

where
Z̄pk = Zpk + (Iv ⊗ Xpk)ΠpkD

−1
pk Π′

pk(Iv ⊗ Xpk).

Multiplying on the left hand side and right hand side by diag((Iv⊗X−1
pk ), (Iv⊗Inw), Iv⊗Inz)

we get that 
Z̃pk • •

Ẽ ′(Iv ⊗ X−1
pk ) −γ2(Iv ⊗ Inw) •

C̃pk L̃ −Iv ⊗ Inz

 < 0, (5.26)

where, from (5.16),

Z̃pk =(Iv ⊗ X−1
pk )Ãpk + Ã′

pk(Iv ⊗ X−1
pk ) + ν(p,k)(p,k)(Iv ⊗ X−1

ik ) + ΠpkD
−1
pk Π′

pk

=(Iv ⊗ X−1
pk )Ãpk + Ã′

pk(Iv ⊗ X−1
pk ) +

∑
(r,ℓ)∈V

ν(p,k)(r,ℓ)(Iv ⊗ X−1
rl ). (5.27)

By combining (5.26) and (5.27) we have that (4.11) is satisfied by taking Rpk = Iv ⊗ X−1
pk .

From Lemma 4.3.2 and considering the representation in (5.11) for Gcl we get the desired
result.

The next algorithm provides the way of computing a H∞ controller such as is presented
in Theorem 5.3.1.

Algorithm 1 H∞ controller design procedure
1: Set a gain Kh such that (5.3) is satisfied.
2: Calculate matrices Xpk > 0, Gk and Vk such that the LMI (5.17) is satisfied.
3: With Gk and Vk obtained from the previous step, design a stochastic stabilizing state-

feedback gain K∞
k by means of relation (5.19).
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5.3.2 H2 Control

We present next a solution for the H2 problem for the cooperative control of multi-
agent system (5.1) under hidden Markov switching topologies, based on the solution of
a set of LMI. We recall that in this case we consider L = 0 since the output z(t) is only
related to the quadratic cost of the state and control variables.

Theorem 5.3.2. Consider a fixed upper-bound φ > 0 and suppose that for all (p, k) ∈ V ,
there exist matrices Wpk > 0, Xpk > 0, Gk and Vk and a scalar ϵ2 > 0, such that the
following set of LMI is satisfied:

∑
(p,k)∈V

µpkTr(Wpk) < φ2, (5.28)

 Wpk •
(Iv − Jv) ⊗ E Iv ⊗ Xpk

 > 0, (5.29)

and 

ν(p,k)(p,k)Iv ⊗ Xpk • • •
0 −Iv ⊗ Inz • •

Iv ⊗ Xpk 0 0 •
Π′

pk(Iv ⊗ Xpk) 0 0 −Dpk

 +

Her





Iv ⊗ (ATGk) − Lp ⊗ B
[
Vk 0

]
Iv ⊗ (CTGk) − Lp ⊗ D

[
Vk 0

]
−Iv ⊗ (TGk)

0





ϵ2(Iv ⊗ In)
0

Iv ⊗ In

0



′ < 0,

(5.30)

with Gk as in (5.18). Then the multi-agent system (5.1) is mean square stable with a
closed-loop norm ∥Gcl∥2 < φ whenever the distributed control protocol (5.2) is applied,
with the feedback controller matrices Kℓ given by (5.19).

Proof. As before, from (5.23) we have that Gk is non-singular, so that the inverse in (5.19)
is well defined. As in the proof of Theorem 5.3.1 and using the same notation as in (5.21),
(5.22), we have that (5.30) can be re-written as

Φpk + Her





Ãpk

C̃pk

−Iv ⊗ In

0

 Iv ⊗ (TGk)



ϵ2(Iv ⊗ In)
0

Iv ⊗ In

0



′ < 0, (5.31)



49

where

Φpk =



ν(p,k)(p,k)Iv ⊗ Xpk • • •
0 −Iv ⊗ Inz • •

Iv ⊗ Xpk 0 0 •
Π′

pk(Iv ⊗ Xpk) 0 0 −Dpk

 .

Defining

W̃pk =



Iv ⊗ In 0 0
0 Iv ⊗ Inz 0

Ã′
pk C̃ ′

pk 0
0 0 Iv ⊗ In

 , W ′
pk =



Ãpk

C̃pk

−Iv ⊗ In

0

 , (5.32)

it is easy to see that W̃pk has full rank and that WpkW̃pk = 0, so that from Finsler’s lemma
(see Lemma 3.1.1) and (5.32) we have that

W̃ ′
pkΦpkW̃pk < 0. (5.33)

From (5.33) we conclude that


Zpk • •
C̃pk(Iv ⊗ Xpk) −Iv ⊗ Inz •
Π′

pk(Iv ⊗ Xpk) 0 −Dpk

 < 0, (5.34)

where
Zpk = ν(p,k)(p,k)Iv ⊗ Xik + Ãpk(Iv ⊗ Xpk) + (Iv ⊗ Xpk)Ã′

pk.

By applying the Schur’s complement in (5.34) we get that

Zpk + (Iv ⊗ Xpk)ΠpkD
−1
pk Π′

pk(Iv ⊗ Xpk) + (Iv ⊗ Xpk)C̃ ′
pkC̃pk(Iv ⊗ Xpk) < 0.

Multiplying on the left and right by Iv ⊗ X−1
pk we get that

Z̃pk + C̃ ′
pkC̃pk < 0, (5.35)

where Z̃pk is as in (5.27). By combining (5.35) and (5.27) we have that (4.13) is satisfied
by taking Rpk = Iv ⊗ X−1

pk . Moreover from Schur’s complement in (5.29) we get that
Wpk > (Iv−Jv)⊗E ′(Iv⊗Xpk)(Iv−Jv)⊗E so that from (5.28) we get that ∑

(p,k)∈V Tr((Iv−
Jv) ⊗ E ′(Iv ⊗ Xpk)(Iv − Jv) ⊗ E) < φ2 showing that (4.12) is also satisfied. From Lemma
4.3.3 we get the desired result.

The next algorithm provides the way of computing a H2 controller such as is presented
in Theorem 5.3.2.
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Algorithm 2 H2 controller design procedure
1: Set a gain Kh such that (5.3) is satisfied.
2: Calculate matrices Wpk > 0, Xpk > 0, Gk and Vk such that the LMI (5.28), (5.29),

(5.30) is satisfied.
3: With Gk and Vk obtained from the previous step, design a stochastic stabilizing state-

feedback gain K2
k by means of relation (5.19).

5.3.3 Mixed H2/H∞ Control

The following corollary is straightforward after combining the results from Theorems
5.3.1 and 5.3.2.

Corollary 5.3.2.1. Consider fixed upper-bounds γ > 0 and φ > 0. If for all (p, k) ∈ V ,
there exist matrices Wpk > 0, Xpk > 0, Gk and Vk and scalars ϵ∞ > 0, ϵ2 > 0, such
that the LMI (5.17), (5.28), (5.29), (5.30) are satisfied, where Gk is as in (5.18) then the
multi-agent system (5.1) is mean square stable with a closed-loop norm ∥Gcl∥2 < φ and
∥Gcl∥∞ < γ whenever the distributed control protocol (5.2) is applied, with the feedback
controller matrices Kℓ given as in (5.19).

From the previous results the following LMI optimization problems could be defined:

1) H∞ control problem: min γ2 such that the LMI (5.17) is satisfied.

2) H2 control problem: min φ2 such that the LMI (5.28), (5.29), (5.30) are satisfied.

3) Mixed H2/H∞ control problems:

3.a) for β2 ≥ 0, β∞ ≥ 0, min β2φ
2 + β∞γ2 such that the LMI (5.17), (5.28), (5.29),

(5.30) are satisfied.

3.b) for fixed φ > 0, min γ2 such that the LMI (5.17), (5.28), (5.29), (5.30) are
satisfied.

3.c) for fixed γ > 0, min φ2 such that the LMI (5.17), (5.28), (5.29), (5.30) are
satisfied.
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6 CASE STUDY

In this section, numerical examples are presented to illustrate the effectiveness of the
proposed method. The first one deals with a comparison between the H2 and H∞ costs
for the synchronous mode and asynchronous mode cases, by varying the parameters αk

rℓ

and qp
kℓ in (4.1). Next, the average error responses δi(t) are studied for the controllers H2,

H∞ and H2/H∞. Finally, the ability of the control protocol H2/H∞ to achieve the TVF
in the MAS is verified.

Consider the multi-agent system (5.1), consisting of six agents with xi(t) = [xi1(t)
xi2(t) xi3(t) xi4(t) xi5(t) xi6(t)]′ (i = 1, 2, . . . , 6) and state matrices adopted from (LI et
al., 2020), defined as

A =
03×3 I3

−I3 03×3

 , B =
03×3

I3

 , E =



0.8
0.5
1

03×1

 ,

C(∞) = C(2) = I6, F =
[
I3 03x3

]
.

The Markovian mode-dependent network topologies, represented by the undirected graphs
G1 and G2 in Fig. 7, are described by the following Laplacian matrices Lp with p ∈ N ≜

{1, 2}

Figure 7: Network topologies.
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L1 =



2 −1 0 −1 0 0
−1 3 −1 0 −1 0
0 −1 2 0 0 −1

−1 0 0 2 −1 0
0 −1 0 −1 3 −1
0 0 −1 0 −1 2


,

L2 =



2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 2 0 −1 0
0 0 0 1 −1 0

−1 0 −1 −1 4 −1
0 0 0 0 −1 −1


,

and the transition rate matrix is given by

Λ =
−0.3 0.3

0.5 −0.5

 .

The observed mode θ̂(t) is set with M = 2 along with

[αk
rℓ] =

 ς1 1 − ς1

1 − ς2 ς2

 , ∀k ∈ M ,

[qp
kℓ] =

−ϱ1 ϱ1

ϱ2 −ϱ2

 , ∀p ∈ N ,

for ς1, ς2 ∈ [0, 1] and ϱ1, ϱ2 ∈ [0, 0.5]. The desired time-varying formation for the six agents
is a periodic rotation parallel hexagon, where the formation vector hi(t) (i = 1, 2, . . . , 6)
is specified by

hi(t) =



2sin(2t + (i−1)π
3 ) − 2cos(2t + (i−1)π

3 )
sin(2t + (i−1)π

3 ) + cos(2t + (i−1)π
3 )

4cos(2t + (i−1)π
3 )

4sin(2t + (i−1)π
3 ) + 4cos(2t + (i−1)π

3 )
2cos(2t + (i−1)π

3 ) − 2sin(2t + (i−1)π
3 )

−8sin(2t + (i−1)π
3 )


.

With the purpose of determining the performance of the proposed solutions, we set the
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gain matrix Kh = −3I3 that satisfies (5.3) as follows

ḣi(t) =



4cos(2t + (i−1)π
3 ) + 4sin(2t + (i−1)π

3 )
2cos(2t + (i−1)π

3 ) − 2sin(2t + (i−1)π
3 )

−8sin(2t + (i−1)π
3 )

8cos(2t + (i−1)π
3 ) − 8sin(2t + (i−1)π

3 )
−4sin(2t + (i−1)π

3 ) − 4cos(2t + (i−1)π
3 )

−16cos(2t + (i−1)π
3 )


=

 03×3 I3

−4I3 03×3

 hi(t).

Let the initial states xi(0) = [xi1(0) xi2(0) xi3(0) xi4(0) xi5(0) xi6(0)]′ (i = 1, 2, . . . , 6) be
random values uniformly chosen between -10 and 10 and the external disturbance input
wi(t) as follows

wi1(t) =


2, for t ∈ [0, 10) ∪ [20, 30)

−2, for t ∈ [10, 20) ∪ [30, 40)
0, otherwise

,

wi2(t) =


1, for t ∈ [0, 10) ∪ [20, 30)

−1, for t ∈ [10, 20) ∪ [30, 40)
0, otherwise

,

wi3(t) =


2, for t ∈ [0, 10) ∪ [20, 30)

−2, for t ∈ [10, 20) ∪ [30, 40)
0, otherwise

.

In order to compare the H2 and H∞ costs for the synchronous and asynchronous modes,
we set ς1 = ς2 = 1 and ϱ1 = ϱ2 = 0 for the synchronous case (θ(t) = θ̂(t)) and ς1 = ς2 = 0.6,
and ϱ1 = ϱ2 = 0.3 for the asynchronous case, which indicates the imperfect information
case (we could have θ(t) ̸= θ̂(t)). Taking this into account, the invariant set is given by

V = {(11), (12), (21), (22)}, (6.1)

and the transition rate matrix is given by

[ν(ik),(jℓ)] =

(ik)\(jℓ) (11) (12) (21) (22)


(11) λ11 + q1

11 q1
12 α1

21λ12 α1
22λ12

(12) q1
21 λ11 + q1

22 α2
21λ12 α2

22λ12

(21) α1
11λ21 α1

12λ21 λ22 + q2
11 q2

12

(22) α2
11λ21 α2

12λ21 q2
21 λ22 + q2

22

. (6.2)
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Table 1: H2 and H∞ costs.

Operation mode φ γ
Synchronous 0.1189 0.0249
Asynchronous 0.1368 0.0295

0 5 10 15 20 25 30 35 40 45 50

Time(sec)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 8: Asynchronous switching signal.

The H2 controller is obtained by solving the LMI (5.28), (5.29), (5.30) in Theorem
5.3.2 with ϵ2 = 20, which yields the performance values shown in Table 1. Notice that
the values φ = 0.1189 for the synchronous mode and φ = 0.1368 for the asynchronous
mode differ by only 13.1%. Similarly, for the H∞ controller obtained from Theorem 5.3.1
by fixing ϵ∞ = 10 and solving the LMI (5.17), the values between the synchronous mode
(γ = 0.0249) and the asynchronous mode (γ = 0.0295) differ only by 15.6%. These results
indicate that the performance and robustness are maintained even if the detector emits
mismatching signals concerning the network mode of operation.

Based on the asynchronous mode control gains, Fig. 8 shows the evolution of the
network and detector modes performed in the simulation. We notice that there are mis-
matches between the modes of the network θ(t) and the detector θ̂(t) at some times during
the simulation. Fig. 9 and Fig. 10 show the time-varying formation average error of each
agent, denoted by δi(t) = [δi1(t) δi2(t) δi3(t) δi4(t) δi5(t) δi6(t)]′ (i = 1, 2, . . . , 6). With the
purpose to study the average error responses of the H2 and H∞ solutions, we consider two
parameters: the velocity of the response, characterized by the time at which the signal
reaches a value very close to zero, denoted by ζi = [ζi1 ζi2 ζi3 ζi4 ζi5 ζi6]′ (i = 1, 2, . . . , 6)
and the maximum overshoot magnitude, denoted by ϑi = [ϑi1 ϑi2 ϑi3Fig. 9 and Fig. 10
show the time-varying formation average error of each agent, denoted by δi(t) = [δi1(t)
δi2(t) δi3(t) δi4(t) δi5(t) δi6(t)]′ (i = 1, 2, . . . , 6). With the purpose to study the average
error responses of the H2 and H∞ solutions, we consider two parameters: the velocity of
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Table 2: Selected ζi and ϑi values from Fig. 9, Fig. 10 and Fig. 11.

ζi(sec) ϑi

δiv(t) H2 H∞ H2/H∞ H2 H∞ H2/H∞
δ11(t) 1.8 2.4 2 -4.1 -3 -3.4
δ41(t) 1.8 2.8 2.1 4.5 3.4 3.5
δ12(t) 0.6 0.7 0.7 1.2 1.1 0.8
δ62(t) 2.5 3.2 2.9 0.4 0.8 0.1
δ43(t) 1.3 2 1.8 -6 -4.5 -5
δ63(t) 2.2 2.5 2.4 3.4 3.2 2.5

the response, characterized by the time at which the signal reaches a value very close to
zero, denoted by ζi = [ζi1 ζi2 ζi3 ζi4 ζi5 ζi6]′ (i = 1, 2, . . . , 6) and the maximum overshoot
magnitude, denoted by ϑi = [ϑi1 ϑi2 ϑi3 ϑi4 ϑi5 ϑi6]′ (i = 1, 2, . . . , 6). The results for some
selected responses are summarized in Table ϑi4 ϑi5 ϑi6]′ (i = 1, 2, . . . , 6). The results for
some selected responses are summarized in Table 2. In general, the H2 control shows
faster times in the parameter ζi than the H∞ control as, for instance, the value ζ2

41 = 1.8 s
(Fig. 9a) which is 35.7% lower than the value ζ∞

41 = 2.8 s (Fig. 10a). In contrast, the H∞

control shows lower values ϑi than the H2 control. This effect becomes evident in states
with high initial values such as ϑ2

43 = −6 (Fig. 9c) in comparison with ϑ∞
43 = −4.5 (Fig.

10c), with a 25% difference between them. These results suggest a robust response to a
worst-case situation. In addition to these improvements, in both solutions H2 and H∞ the
TVF average error δi(t) converges to zero, showing that the presented method is capable
to stabilize the multi-agent system even in the presence of uncertainties concerning to the
mode of operation θ(t).

We return to Corollary 5.3.2.1 in order to investigate the H2/H∞ control problem
considering case 3.a (min β2φ

2+β∞γ2). By setting β2 = 1
3 , β∞ = 2

3 and ϵ∞ = ϵ2 = 15, the
LMI (5.17), (5.28), (5.29), (5.30) are solved for the case of asynchronous mode operation
in Fig. 8. This method achieves values γ = 0.1068 and φ = 0.2188. It is worth pointing
out that the optimal values for the cost are influenced by the scalars ϵ2 and ϵ∞. Figure
11 shows that the TVF average error δi(t) converges to zero despite the topology network
changes and divergences between the mode of operation θ(t) and the detector θ̂(t). The
H2/H∞ control also combines the fast response and overshoot attenuation of the H2 and
H∞ control respectively (Table 2), for instance, the value ζ

2/∞
11 = 2 s (Fig. 11a) differs

only in 10% with respect to ζ2
11 = 1.8 s (Fig. 9a), and the value ϑ

2/∞
63 = 2.5 (Fig. 11c) is

even 28.12% lower than ϑ∞
63 = 3.2 (Fig. 10c).

Figure 12 displays snapshots of the six agents at t = 0 s, t = 15 s, t = 20 s and t = 30
s for the H2/H∞ asynchronous control, where the states of the agents are denoted by the
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Figure 9: H2 average TVF error response δi(t).
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Figure 10: H∞ average TVF error response δi(t).
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Figure 11: H2/H∞ TVF average error response δi(t).
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Figure 12: States of the six agents at different time instants t.

pentagram, triangle, square, asterisk, cross and circle respectively. From Figure 12 it can
be observed that the states of the six agents keep a parallel hexagon formation and the
edge of the parallel hexagon keeps rotating in a time-varying formation. We believe that
these results verify the effectiveness of the proposed method.
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7 CONCLUSIONS AND PERSPECTIVES

7.1 Summary

In this work, we have studied the control of continuous-time multi-agent systems
under Markovian switching network topologies under partial information on the Markov
parameter. To represent the possible mismatching between the detector and network
modes, a hidden Markov model is considered. Notice that in comparison with other
existing works, the controller relies only on the information coming from a detector device
(represented by θ̂(t)), and that the joint process Z(t) = (θ(t), θ̂(t)) is an exponential
hidden Markov chain, with θ̂(t) being the observable part. It is important to point out
that a key difference with respect to (DONG et al., 2020; NGUYEN; KIM, 2020), which
deals only with the H∞ case, lies in the model representing the detector. The formulation
considered in these papers is based on a conditional probability condition that must hold
for each time t (DONG et al., 2020) which can be hard to be checked, while in our
formulatio, the model Z(t) is assumed to be an exponential hidden Markov process so
that the time evolution of the process Z(t) is well defined and can be easily simulated.
Notice also that this formulation encompasses the so-called mode-dependent case, mode-
independent case, and cluster case.

The design technique is based on LMI optimization problems so that the powerful
toolboxes available for this class of problems can be used. A set of LMI conditions are
provided to design a distributed static output controller that guarantees the closed-loop
stability of MAS with the following performance criteria:

• H2 control. For the H2 control, a static output TVF controller is provided in
terms of LMI, for this case, we consider the quadratic cost only in the states and
control variables. The theorem 5.3.2 shows that, if the LMI (5.28), (5.29), (5.30)
are satisfied, there exists a controller that stabilizes the MAS formation in the MSS
with a H2 norm less than a given φ > 0.
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• H∞ control. Similarly, in the H∞ control case, we propose a solution for the static
output TVF control. The theorem 5.3.1 shows that if the LMI (5.17) is satisfied,
then the MAS is MSS with a closed-loop H∞ norm less than a given γ > 0 whenever
the distributed control protocol is applied, as pointed out, this norm represents the
worst-case effect of finite-energy disturbances on the output.

• H2/H∞ control. By combining the above results, we propose in the corollary
5.3.2.1 that if the LMI (5.17), (5.28), (5.29), (5.30) are satisfied, there exist a H2/H∞

controller that minimizes the quadratic functional while providing robustness to the
closed-loop MAS.

To verify the effectiveness of this method, numerical examples were performed, show-
ing that it is possible to design controllers able to stabilize a time-varying formation of
MAS while achieving a minimal performance cost. Furthermore, it is shown that the
mixed control H2/H∞ successfully combines the control properties of the pure H2 and
H∞ strategies.

7.2 Future works

There are several open problems in the formation control of MAS with partial obser-
vations on the network topology. Some are mentioned below:

• In this work, only the static output control has been considered; for this reason, the
dynamic output control problem for MAS formation under partial observations can
be tackled.

• The numerical examples that were used to verify the theoretical results are based on
simple multi-agent systems. In the future, more complex experiments, considering
realistic MAS models such as unmanned vehicles or mobile robots on large-scale
networks, could be considered.

• This work considers uncertainties in the operation mode detection. In addition,
communication signals in TVF control of MAS may be affected by transmission
noise and/or communication delays. Thus, it would be interesting to deal with the
TVF control of MAS under the hidden Markov switching topology as proposed in
this dissertation, but also incorporating communication noises and time-delay.
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APPENDIX A – NUMERICAL RESULTS
OF CHAPTER 6

The controllers calculated in Chapter 6 are shown in this appendix.

A.1 Synchronous mode

A.1.1 H2 controller

 K1

K2

 =



−0.0400 −0.0200 −0.0320
−0.0200 −0.0100 −0.0160
−0.0320 −0.0160 −0.0256
−0.0323 −0.0162 −0.0259
−0.0162 −0.0081 −0.0129
−0.0259 −0.0129 −0.0207


(A.1)

A.1.2 H∞ controller

 K1

K2

 =



−0.0058 −0.0015 −0.0024
−0.0015 −0.0036 −0.0012
−0.0024 −0.0012 −0.0048
−0.0041 −0.0009 −0.0015
−0.0009 −0.0027 −0.0007
−0.0015 −0.0007 −0.0034


(A.2)
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A.2 Asynchronous mode

A.2.1 H2 controller

 K1

K2

 =



−0.0401 −0.0195 −0.0312
−0.0195 −0.0109 −0.0156
−0.0312 −0.0156 −0.0261
−0.0319 −0.0155 −0.0248
−0.0155 −0.0086 −0.0124
−0.0248 −0.0124 −0.0207


(A.3)

A.2.2 H∞ controller

 K1

K2

 =



−0.0101 −0.0020 −0.0032
−0.0020 −0.0071 −0.0016
−0.0032 −0.0016 −0.0086
−0.0072 −0.0012 −0.0020
−0.0012 −0.0054 −0.0010
−0.0020 −0.0010 −0.0063


(A.4)

A.2.3 Mixed H2/H∞ controller

 K1

K2

 =



−0.0526 −0.0251 −0.0401
−0.0251 −0.0150 −0.0201
−0.0401 −0.00201 −0.0345
−0.0427 −0.0204 −0.0326
−0.0204 −0.0121 −0.0163
−0.0326 −0.0163 −0.0280


(A.5)
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