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ABSTRACT

In this work, we study the stochastic multi-period optimal control for discrete-time
linear systems subject to multiplicative noises. Initially, we consider a multi-period
mean-variance trade-off performance criterion for the finite-horizon case with and with-
out constraints, and then, its infinite-horizon case with the long-run as well as the dis-
count factor criteria. We adopt the mean-field approach to tackle the problems and get
their solutions in terms of a set of two generalised coupled algebraic Riccati equations
(GCARE for short). For the finite-horizon case, we derive the optimal control law for a
general multi-period mean-variance problem and obtain the optimal control strategy for
the constrained problems using the Lagrangian multipliers approach. From the gen-
eral unrestricted result, we obtain a sufficient condition for a closed-form solution for
one of the constrained problems considered in this work. For the infinite-horizon case,
we establish sufficient conditions for the existence of the maximal solution, necessary
and sufficient conditions for the existence of the mean-square stabilising solution to
the GCARE, and derive the optimal control laws for the discounted and long-run prob-
lems. When particularised to the portfolio selection problem, we show that our results
match some of the results available in the literature. A numerical example illustrates
the obtained optimal controls for the multi-period portfolio selection problem in which is
desired to optimise the sum of the mean-variance trade-off costs of a portfolio against
a benchmark along the time.

Keywords: Stochastic control. Linear systems. Optimal control. Stabilising solu-
tion. Portfolio optimisation. Intertemporal restrictions.



RESUMO

Neste trabalho, estudamos o controle ótimo estocástico multi-período de sistemas
lineares em tempo discreto sujeitos a ruidos multiplicativos. Inicialmente, consider-
amos como critério de desempenho a combinação multi-período entre média e var-
iância para o caso de horizonte finito com e sem restrições, e posteriormente con-
sideramos o caso de horizonte infinito com a abordagem de campos de médias para
resolvermos os problemas e obtemos suas soluções em termos de um conjunto de
duas equações generalizadas de Riccati (GCARE). Para o caso de horizonte finito,
derivamos o controle ótimo para um problema geral de média variância multi-período e
obtemos as estratégias de controle ótimo para os problemas com restrições através de
multiplicadores de Lagrange. Do resultado geral sem restrições, obtemos condições
suficientes para uma solução fechada para um dos problemas com restrições con-
siderado neste trabalho. Para o caso de horizonte infinito, são fornecidas condições
suficientes para a existência da solução máxima, condições necessárias e suficientes
para a existência da solução estabilizadora de média quadrática da GCARE e deriva-
mos as leis de controle ótimo para os problemas com critério de longo prazo e com
fator de desconto. Quando particularizado para o problema de alocação de carteiras
de investimento, mostramos que nossos resultados são equivalentes há alguns resul-
tados disponíveis na literatura. Concluímos esta tese ilustrando os resultados obtidos
com um problema multi-período de alocação de carteira de investimentos no qual é
desejado otimizar a soma de médias e variâncias do valor da carteira versus um ativo
de referência.

Palavras-chave: Controle estocástico. Sistemas lineares. Controle ótimo.
Solução estabilizadora. Otimização de carteiras de investimento. Restrições intertem-
porais.
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1 INTRODUCTION

In this thesis, we study discrete-time linear systems subject to multiplicative noises.

This class of models incorporates a stochastic behaviour in the dynamics of the sys-

tem and has found applications in many fields of science such as signal processing,

biological motor systems, aerospace, finance, among others.

We want to apply linear systems with multiplicative noises to multi-period mean-

variance problems and obtain the optimal solution to a variety of situations such as

(i) the more general case without constraints, (ii) imposing restrictions on either the

output’s mean or its variance, and (iii) considering the system stabilisation with infinite

horizon, expanding the current results in the literature.

Our methodology consists of applying dynamic programming for the optimisation

and Lagrangian multipliers to deal with the imposed restrictions. The formulation fol-

lows the same approach as in the mean-field theory, which consists of solving the

problems in terms of the state’s mean. This approach allows us to overcome some

issues that arise from the quadratic term of the variance, in particular to multi-period

mean-variance problems with restrictions.

We apply our results in the financial context, specifically in the optimisation of a

portfolio of financial assets. The management of financial portfolios requires the possi-

bility of imposing many sorts of situations, for instance, achieving a return higher than

inflation, limiting the variance over time, and considering an infinite-time horizon, which

suits the application of our findings.

The results compiled here can also be found in the papers (BARBIERI; COSTA,

2020a) and (BARBIERI; COSTA, 2020b).

1.1 Document structure

In Chapter 2, we present a brief literature review with a focus on the main theoret-

ical achievements regarding our system’s model. In Chapters 3 and 4, we define the

formulations of our problems and detail some previous results, respectively. In Chap-
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ter 5, we present the solutions to our problems and, in Chapter 6, we summarise the

necessary steps on how to compute the optimal control strategies for the finite and

infinite-horizon cases. In Chapter 7, we show how to model a portfolio of risky assets

against a benchmark using our system’s notation. In Chapter 8, we compare some

of our findings to known results from the literature. In Chapter 9, we give an example

about how to estimate the model parameters and run numerical simulations to each of

our results. Finally, in Chapter 10, we present our final considerations.
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2 LITERATURE REVIEW AND CONTRIBUTIONS OF THIS WORK

In this chapter, we present the main literature regarding linear systems with multi-

plicative noises, mean-field theory, and some aspects of mean-variance control prob-

lems that evidence the mathematical difficulties we face when imposing restrictions to

such problems.

2.1 Linear systems with multiplicative noises

A relevant goal in engineering is to describe the evolution of observable processes

through mathematical equations that can be either continuous or discrete in time, linear

or non-linear, stochastic or not, and so on.

We are interested in a class of models regarding discrete-time linear systems with

multiplicative noises due to their fundamental variety of applications. For example, they

are particularly suited to describe nuclear fission, heat transfer, population immunology,

portfolio optimisation, among others. We can refer the book (DRAGAN; MOROZAN;

STOICA, 2013) and references therein for an overview for this class of models. Con-

sider the following general linear system with multiplicative noises:

x(k + 1) =
(
Ā(k) + Ã(k)wx(k)

)
x(k) +

(
B̄(k) + B̃(k)wu(k)

)
u(k),

x(0) = x0, k = 0, 1, . . . ,T − 1,

where x(k) denotes the system state at instant k with initial condition x0, u(k) represents

the control input, the matrices Ā(k), Ã(k), B̄(k), and B̃(k) represent the environment dy-

namics, and wx(k) and wu(k) are both zero-mean random variables with unitary variance

that operate directly on the dynamics and control of the system, respectively.

The optimal control of such systems are obtained through the optimisation of some

functional cost. For instance, the linear-quadratic (LQ) cost is a common choice due

to the possibility of having a global minimum or maximum. For illustration purposes,
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consider a general LQ cost problem for the discrete-time as:

inf
u

E

T−1∑
k=0

[x(k)′Q(k)x(k) + u(k)′R(k)u(k)] + x(T )′Q(T )x(T )

 , (2.1)

and assume the optimal solution to be of the form

u(k) = −K(k)x(k), (2.2)

where K(k) is the feedback gain we want to calculate.

Several results related to the control of these class of systems have already been

achieved. In (BEGHI; D’ALESSANDRO, 1998), the authors presented the optimal con-

trol law by studying a Riccati type equation obtained by applying (2.2) into (2.1) and

solving it for K(k).

In (CHEN; LI; ZHOU, 1998), the authors proved that some linear quadratic prob-

lems are non-trivial when the control weighting matrix is indefinite. In (BOUKAS; LIU,

2004), the authors combined the linear system with Markov jumps and established

sufficient conditions for the solvability of the Riccati equation through linear matrices

inequalities (LMI). Linear-systems with Markov jumps and multiplicative noises were

studied in more detail in (COSTA; PAULO, 2007; COSTA; PAULO, 2008; COSTA;

FRAGOSO; MARQUES, 2005; DOMBROVSKII; LYASHENKO, 2003; ELLIOTT; DU-

FOUR; MALCOLM, 2005). In (DRAGAN; MOROZAN, 2006a; DRAGAN; MOROZAN,

2006b), the authors studied the stability, observability, and detectability of discrete-time

stochastic linear system.

Examples of optimal controls and necessary and sufficient conditions for the solv-

ability of indefinite stochastic control problems can be found in (LI; ZHOU; RAMI, 2003;

LIM; ZHOU, 1999; MOORE; ZHOU, 1999; RAMI; CHEN; ZHOU, 2002; RAMI; ZHOU,

2000; WU; ZHOU, 2002; ZHU, 2005).

For the continuous-time control problems, the reader is referred to (ZHOU; LI, 2000;

ZHOU; YIN, 2003; BOUKAS; LIU, 2004) for further details.
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2.2 Mean-field control problems

The mean-field approach considers the state as well as its expected value in either

the system dynamics or the objective functions, or both. Lately, there has been a great

deal of attention to the mean-field formulation followed by an increasing number of

successful applications in various fields of science, engineering, financial management

and economics.

The mean-field games and the mean-field (type) control problems have emerged

based on the idea of the mean-field approach. Mean-field theory can be traced back

to Kac (KAC, 1956), who presented the McKean-Vlasov stochastic differential equa-

tion motivated by a stochastic toy model for the Vlasov kinetic equation of plasma.

Mean-field games is a new area of research developed in the engineering community

by (HUANG; MALHAMÈ; CAINES, 2006; HUANG; CAINES; MALHAMÈ, 2007), and

independently and about the same time by (LASRY; LIONS, 2006a; LASRY; LIONS,

2006b; LASRY; LIONS, 2007).

There are several differences between these two theories. However, in general

terms, we can state that the mean-field games can be reduced to a standard con-

trol problem, while the search for Nash equilibria in mean-field games is more of a

fixed point problem than an optimisation problem. See (BENSOUSSAN; FREHSE;

YAM, 2013; HUANG; LI, 2018; GOMES; SAUDE, 2014; CARMONA; DELARUE, 2018;

MOON, 2019) for more details on mean-field games.

There are several results related to mean-field linear-quadratic unconstrained prob-

lems applied to linear systems with multiplicative noises. See (YONG, 2013; HUANG;

LI; YONG, 2015; LI; SUN; XIONG, 2019; MOON; KIM, 2019) and references therein for

examples of unconstrained optimal control laws in the continuous-time with finite and

infinite horizon.

Regarding the discrete-time mean-field finite-horizon problem, the authors in (EL-

LIOTT; NI, 2013; NI; ELLIOTT; LI, 2015; NI; LI; ZHANG, 2016a; ZHANG; QI; FU, 2019)

investigated the unconstrained multi-period control problem of systems with multiplica-



Literature review and contributions of this work 6

tive noises defined as:

x(k + 1) =
(
Ax(k) + ĀE(x(k)) + Bu(k) + B̄E(u(k))

)
+

(
Cx(k) + C̄E(x(k)) + Du(k) + D̄E(u(k))

)
ω(k),

x(0) = x0, (2.3)

where, A, Ā, B, B̄, C, C̄, D, and D̄ are deterministic matrices of proper dimensions, x(k)

and u(k) are the state and control as defined earlier, and ω(k) is a white noise.

Consider a more general LQ problem associated with (2.3) as:

inf
u

T−1∑
k=0

E
(
x(k)′Q(k)x(k) + E(x(k))′Q̄(k)E(x(k)) + 2x(k)′L(k)u(k) + 2E(x(k))′L̄(k)E(u(k))

+ u(k)′R(k)u(k) + E(u(k))′R̄(k)E(u(k)) + E(x(T )′G(T )x(T )) + E(x(T ))′Ḡ(T )E(x(T ))
)
, (2.4)

where Q(k), Q̄(k), L(k), L̄(k), R(k), R̄(k), G(k), and Ḡ(k) are deterministic symmetric

matrices of appropriate dimensions.

ELLIOTT; NI (2013) proved that

Q(k),Q(k) + Q̄(k) ≥ 0,

R(k),R(k) + R̄(k) > 0,

G(k),G(k) + Ḡ(k) ≥ 0, k = 0, . . . ,T − 1,

are necessary and sufficient solvability conditions to Problem (2.4), with L(k)=L̄(k) = 0,

and that the unique optimal control is given in terms of some difference Riccati type

equations.

NI; ELLIOTT; LI (2015) studied the infinite case of Problem (2.4), with

L(k)=L̄(k)=G(k)=Ḡ(k) = 0. They presented a variety of results, including the equivalence

of several notions of stability for linear mean-field stochastic difference equations. They

also showed that the optimal control of a mean-field linear-quadratic optimal control

with an infinite-time horizon uniquely exists, and the optimal control can be expressed

as a linear state feedback involving the state and its mean via the minimal non-negative

definite solution of two coupled algebraic Riccati equations.

NI; LI; ZHANG (2016a) provided results for the finite as well as the infinite-time

horizon case of Problem (2.4). The finite-horizon optimal control is presented based
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on the assumption thatQ(k) L(k)

L(k)′ R(k)

 ≥ 0,

Q(k) + Q̄(k) L(k) + L̄(k)

L(k)′ + L̄(k)′ R(k) + R̄(k)

 > 0, G(T ) ≥ 0, and G(T ) + Ḡ(k) ≥ 0.

In the same way, the optimal and maximal stabilising solution to the infinite horizon

case is also based on the assumption of some matrices and sum of matrices being

positive (positive semi-definite).

In (ZHANG; QI; FU, 2019), the authors considered the infinite horizon of Problem

(2.4), with L(k)=L̄(k)=G(k)=Ḡ(k) = 0 and under the assumption that Q ≥ 0,Q+ Q̄ ≥ 0 and

R ≥ 0,R + R̄ ≥ 0 holds. They obtained that if (A, Ā,C, C̄,Q1/2) is exact detectable, then

system (2.3) is stabilisable in the mean-square sense if and only if there exists a unique

positive semi-definite solution to a coupled algebraic Riccati equation (ARE). Another

result states that if (A, Ā,C, C̄,Q1/2) is exact observable, then system (2.3) is stabilisable

in the mean-square sense if and only if there exists a unique positive definite solution

to a coupled ARE. In both cases, the optimal control has the form of u(k) = K x(k) +

K̄E(x(k)), where K and K̄ are gains associate to the solution of the coupled ARE

calculated.

Finally, the authors in (NI; LI; ZHANG, 2016b) combined System (2.3) with Markov

jumps, which means they allowed each of the matrices A, Ā, B, B̄, C, C̄, D, and D̄ to

change at every step k according to a Markov process (a random process in which the

future is independent of the past, given the present). They also considered Problem

(2.4), with L(k)=L̄(k) = 0, but this time the weighting matrices also varies in time accord-

ing to a Markov process and are re-defined as Qi(k), Q̄i(k), Ri(k), R̄i(k), Gi(k), and Ḡi(k),

where i represents the Markov state at time k. They proved that under the assumption

that Qi(k), Q̄i(k), Gi(k), Ḡi(k) ≥ 0 and Ri(k), R̄i(k) > 0, then there exists a unique optimal

control, which can be explicitly given via solutions of two generalised difference Riccati

equations.

The literature on mean-field control is extensive, and for more information, the

reader is referred to (BUCKDAHN; LI; PENG, 2009; BUCKDAHN; DJEHICHE; LI,

2009; BUCKDAHN; DJEHICHE; LI, 2011; ANDERSSON; DJEHICH, 2011; MEYER-

BRANDIS; ØKSENDAL; ZHOU, 2012) for maximum principles for stochastic differential

equations (SDEs) among other results regarding SDEs, (DAWSON, 1983) for mean-
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field model of cooperative behaviour, and (NI; ZHANG; LI, 2015; ZHANG; QI, 2016) for

more results on stabilisation and indefinite LQ optimal control.

As exemplified by the papers above, there are many relevant results in the literature

regarding the unconstrained multi-period optimal control strategy using the mean-field

formulation. However, to the best of our knowledge, mean-variance and constrained

multi-period optimal control problems for systems with multiplicative noises lacks fur-

ther investigation and poses new challenges in this field.

Also, previous papers regarding the stabilisation using the mean-field formulation

considered neither the discounted cost problem nor the long-run problem with linear

terms on the performance criterion. They had the stabilisation based on the assump-

tions of some matrices and sum of matrices being positive definite (semi-definite) and

related to the exact observability and detectability of their systems as shown above.

Compared to previous works in the mean-field, we solve classical constrained multi-

period problems in a vector space and generalise the stabilisation conditions to just

some positive semi-definite matrices and kernels restrictions on some matrices and

also considered both the discounted cost problem and the long-run problem with linear

terms on the performance criterion.

2.3 Mean-variance optimisation problems

Let us consider the following static form for the multi-period mean-variance (MV)

problem:

MV(ω) : max
u
E(x(T )) − ωVar(x(T )) =

max
u
E(x(T )) − ωE(x(T )2) + ωE(x(T))2, (2.5)

where x(T ) is the state of a system at the final instant T , u is the control applied to

the system, and ω is an input parameter. Note that problem MV(ω) is non-separable

in the sense of dynamic programming due to the quadratic term that arises from the

variance. In other words, we cannot decompose it by a stage-wise backward recursion

and thus, it does not satisfy the principle of optimality. Therefore, all the traditional

dynamic programming-based optimal stochastic control solution methods no longer
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apply in such non-separable situations.

Notwithstanding, there are some approaches in the literature to overcome the dif-

ficulty resulted from the non-separability. In (LI; NG, 2000) and (ZHOU; LI, 2000), the

authors adopted an embedding scheme and considered the following family of auxiliary

problem, A(ω, λ), parameterised in λ,

A(ω, λ) : min
u
E(ωx(T )2 − λx(T )). (2.6)

Note that problem A(ω, λ) is a separable linear-quadratic stochastic control formulation

and can thus be solved analytically. In the same papers, the authors derived the optimal

policy to the non-separable problem MV(ω) via identifying the optimal parameter λ∗

under which the optimal policy to A(ω, λ∗) also solves MV(ω). In (CERNÝ; KALLSEN,

2009; LI; ZHOU; LIM, 2002; SCHWEIZER, 1996) and (XIA; YAN, 2006), we can see

other methods to overcome the non-separability issue in the MV problem.

The MV problems mentioned above consider only the final value of the state. How-

ever, we can also find in the literature the optimisation problem that considers the

intermediate steps, as shown in the more general problem (2.7).

MV(ν, ξ) : min
u

T∑
t=1

(
ν(t)Var

(
yu(t)

)
− ξ(t)E

(
yu(t)

))
, (2.7)

where yu(t) is the system’s output subjected to the control policy u. The parameters ξ(t)

and ν(t) are inter-temporal weights associated with the expected value of the output

and its variance, respectively.

To get an optimal policy for the MV(ν, ξ) problem, one needs to follow a similar

approach as in (LI; NG, 2000) and solve an auxiliary problem that also solves the non-

separable mean-variance problem as shown in (COSTA; OLIVEIRA, 2012). However,

in the same paper, the authors were only able to develop an optimal policy with restric-

tions on the minimum expected output over time, leaving the problem with restrictions

on the variance without a solution.

In (BARBIERI; COSTA, 2018), the authors managed a workaround to the multi-

period mean-variance control problem with restrictions on the variance as defined in

(2.8). They obtained an optimal policy by considering an upper-bound value to the total
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weighted sum of the system’s output variance, defined as α > 0.

MV(ν, β, α) : max
u∈U

T∑
t=1

[
β(t)E

[
yu(t)

]]
,

subject to:
T∑

t=1

ν(t)Var
[
yu(t)

]
6 α, (2.8)

where β = [β(1) . . . β(T )]′, β(t) > 0, is an input parameter associated to the expected

system’s output and ν = [ν(1) . . . ν(T )]′, ν(t) > 0, is as defined above.

There, they proved that the solution to Problem (2.8) can be obtained through the

solution of the unconstrained Problem (2.7) by establishing a linear relationship be-

tween ξ and β.

Despite the constraint being on to the total variance, one could manipulate β to

(de)increase the variance in particular periods; however, without being able to spec-

ify the constrain neither directly nor precisely. Nonetheless, the ingenuity of this

workaround exemplifies the difficulties that one faces when dealing with multi-period

problems and helps to highlight the benefits and contributions of methodologies that

avoid the auxiliary problems to solve them as the mean-field approach explained in the

previous section.

2.4 Mean-variance problems applied to finance

From the portfolio optimisation point of view, one of the main applications of linear

systems with multiplicative noises is related to the classical portfolio’s mean-variance

problem.

Mean-variance portfolio optimisation is a classical financial problem introduced by

Markowitz (MARKOWITZ, 1959) which paved the foundation for the modern portfolio

theory. The main goal is to maximise the expected return for a given level of risk,

minimise the expected risk for a given level of expected return, or minimise a trade-off

between the variance of the portfolio and its expected return.

There has been nowadays a vast literature about this subject with some exten-

sions for the uni-period case as can be seen, for instance, in (ELTON; GRUBER,

1995; HOWE; RUSTEM; SELBY, 1996; HOWE; RUSTEM, 1997; RUSTEM; BECKER;
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MARTY, 1995; STEINBACH, 2001), among others.

The multi-period version of this problem has recently been analysed in continuous

as well as in discrete time. The continuous-time multi-period version of the Markowitz’s

problem was studied in (ZHOU; LI, 2000), using a stochastic linear quadratic theory

developed in (CHEN; LI; ZHOU, 1998) with closed-form optimal policies derived, along

with an explicit expression of the efficient frontier.

The discrete-time version of the MV allocation problem has dramatically evolved

since one of its earlier studies in (LI; NG, 2000), with its generalisation for the risk con-

trol over bankruptcy (ZHU; LI; WANG, 2004), the addition of intermediate restrictions

(COSTA; NABHOLZ, 2007), and the consideration of liabilities in the portfolio (LEIP-

POLD; TROJANI; VANINI, 2004).

Following a different approach to tackle the non-separability issue, the authors in

(CUI; LI; LI, 2014) obtained an optimal policies to the multi-period mean-variance prob-

lem using the mean-field formulation for the scalar case.They considered the portfolio’s

wealth dynamic described by

x(k + 1) =

n∑
j=1

R j(k)u j(k) +

x(k) −
n∑

j=1

u j(k)

 s(k), k = 0, . . . ,T − 1,

where x(k) represents the portfolio’s wealth, s(k) > 1 is the deterministic return of the

riskless asset at period k, R(k) = [R1(k), . . . ,Rn(k)]′ is the vector of random returns of

the n risky assets at period k, and u(k) = [u1(k), . . . , un(k)]′ represents the asset alloca-

tion strategy. Then, they solved the unconstrained Problems (2.7) and (2.5), and also

Problem (2.5) subject to a restriction on the variance given by

Var(x(k)) ≤ a(k) (E(x(k)) − b(k))2 , k = 1, . . . ,T − 1,

where a(t) represents a maximum probability of the level of wealth b(t) to occur. This

kind of problem is also known as control over bankruptcy.

In this work, we generalise the scalar unified framework in (CUI; LI; LI, 2014) for

linear systems with multiplicative noises and use the mean-field approach to solve the

stabilisation problem and some classical multi-period MV problems with control over

bankruptcy and with restrictions on a minimum level of return or maximum level of

variance.
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2.5 Methodology

Our methodology consists of expanding the state space and study the dynamics

and control of a system, x(k), by analysing its expected value, given by x̄(k), together

with z(k) = x(k) − x̄(k). Thus, the optimal control regarding the dynamics of x(k) is

given now by a set of two related optimal controls associated with the dynamics of

x̄(k) and z(k). This expanded state space allows us to tackle directly the mean-variance

control problem instead of resorting to embedding schemes, and their family of auxiliary

problems (LI; NG, 2000; ZHOU; LI, 2000), to overcome the non-separability issue that

arises from the quadratic term in the variance formula.

Regarding the finite-horizon case, we derive the control law for a general multi-

period MV problem using dynamic programming and, based on this solution, we obtain

the optimal control strategy for the unconstrained problem. In order to solve the con-

strained problems, we adopt the Lagrangian multipliers approach to re-write the prob-

lems with restrictions as unconstrained ones, and in one of these problems a closed-

form solution is derived.

The mean-field approach, however, also brings some challenges, especially re-

garding the stabilisation problem because we have now a set of two GCAREs related

to x̄(k) and z(k). In this case, we managed to treat both GCAREs as one and asso-

ciate the system stabilisation to the spectral radius of some operator following a similar

approach as developed in (COSTA; FRAGOSO; MARQUES, 2005; COSTA; PAULO,

2008).

2.6 Contributions

The main contributions of this thesis are summarised below and the results can

also be found in the papers (BARBIERI; COSTA, 2020a) and (BARBIERI; COSTA,

2020b).

1) We generalise the scalar unified framework in (CUI; LI; LI, 2014) for discrete-

time linear systems with multiplicative noises and obtain the multi-period optimal

control law for a general MV problem. The optimal control strategy is derived
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from a set of two generalised Riccati difference equations and some parameters

obtained from some recursive equations.

2) Based on the solution to this general problem, we consider four other finite-

horizon problems. The first one minimises an unconstrained trade-off between

the variance and expectation of the output of the system. The second one min-

imises the variance while keeping the expected output of the system constrained

by a minimum value. The third performance criterion maximises the expected

output of the system while keeping its variance constrained by a maximum value,

and the fourth performance criterion maximises the expected output of the system

while restricting its minimum value to a given probability of occurrence. For the

last three constrained problems, we adopt the Lagrangian multipliers approach to

re-write the problems as unconstrained ones.

3) We derive a sufficient condition for a closed-solution for the problem of minimising

the variance while keeping the expected output constrained by a minimum value.

4) We show that when particularised to the portfolio optimisation problem, we re-

trieve the results obtained in (CUI; LI; LI, 2014) using the mean-field formulation.

5) We derive sufficient conditions for the existence of the maximal solution and

necessary and sufficient conditions for the existence of the mean square sta-

bilising solution for a set of two generalised coupled algebraic Riccati equa-

tions (GCARE for short) following a similar approach as developed in (COSTA;

FRAGOSO; MARQUES, 2005) and applied in (COSTA; PAULO, 2008) for multi-

period discrete-time linear systems with Markov jumps and multiplicative noise.

6) A solution to the related infinite-horizon discounted and long-run average cost

problems are derived from the mean square stabilising solution to the GCARE.

Furthermore, we show that the stabilisation analysis using the mean-field for-

mulation can be greatly simplified when considering the stabilisation of f (k) =

[x̄(k) z(k)]′ instead of x(k) directly.

7) We present some numerical examples for the multi-period portfolio selection

problem, where we wish to minimise the sum of the mean-variance trade-off costs

of a portfolio against a benchmark along the time.
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3 PROBLEMS DEFINITIONS AND MEAN-FIELD FORMULATION

In this chapter, we present the notations and problems definitions. Section 3.1 in-

troduces the notation used along the thesis. Section 3.2 presents our systems and the

unconstrained, constrained, and infinite-horizon problems. In Section 3.4, we present

the same systems and problems that will be solved in this work using the mean-field

formulation, and in Section 3.5, we summarise in a table the equivalence from the

original equations to the mean-field formulation.

3.1 Notation

In this section, we define our spaces and some matrices notation used throughout

the thesis.

For X and Y Banach spaces, we set B(X,Y) the Banach space of all linear opera-

tors of X into Y, with the uniform induced norm represented by ‖.‖. For simplicity, we

shall set B(X) := B(X,X).

The spectral radius of an operator T ∈ B(X) will be denoted by rσ(T ). If X is a

Hilbert space then the inner product will be denoted by
〈
.; .

〉
and T ∗ will denote the

adjoint operator of T for T ∈ B(X).

Throughout the paper, the n-dimensional real Euclidean space will be denoted by

Rn and the normed linear space of all n×m real matrices will be expressed by Hn,m, with

Hn = Hn,n.

For A ∈ Hn, we use the standard notation tr(A) to represent the trace of a matrix

A ∈ Hn, A ≥ 0 (A > 0 respectively) to denote that the matrix A is positive semi-definite

(positive definite) and write Hn+ for the set of positive semi-definite matrices.

For A ∈ Hn,m, A′ will represent the transpose of A, and the range and null spaces

of A will be denoted respectively by Im(A) and Ker(A). We recall that Im(A) = Ker(A′)⊥,

where X⊥ represents the orthogonal complement of a linear subspace X.

For a matrix A ∈ Hn,m, the generalized inverse of A (or Moore-Penrose inverse of A)

is defined to be the unique matrix A† ∈ Hm,n such that i) AA†A = A, ii) A†AA† = A†, iii)
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(AA†)′ = AA†, and iv) (A†A)′ = A†A, see (SABERI; SANNUTI, 1995), page 12-13.

For A, B ∈ Hn,m, we consider the following norms and inner product in Hn,m: ‖A‖1 :=

tr(A), ‖A‖2 := tr(A′A)1/2, and 〈A; B〉 = tr(A′B).

We denote by T(Hm,n) the linear space made up of all matrices of type V =

V1 0

0 V2


with V1,V2 ∈ H

m,n.

In a probabilistic space (Ω,P,F ), the operator expected value will be represented

by E(·) and the variance will be represented by Var(·).

3.2 Finite-horizon problem formulation

We consider the following linear system with multiplicative noises on a probabilistic

space (Ω,P,F ), with F being a Borel σ-field, running up to a final time T :

x(k + 1) =
(
Ā(k) +

εx∑
s=1

Ãs(k)wx
s(k)

)
x(k) +

(
B̄(k) +

εu∑
s=1

B̃s(k)wu
s(k)

)
u(k),

x(0) = x0, k = 0, . . . ,T − 1. (3.1)

We consider the following scalar output of system (3.1):

y(k) = L(k)x(k), (3.2)

where L(k) ∈ H1,n.

We have for each k = 0, 1, . . . ,T − 1, Ā(k) ∈ Hn, Ãs(k) ∈ Hn, s = 1, . . . , εx, B̄(k) ∈ Hm,n,

and B̃s(k) ∈ Hm,n, s = 1, . . . , εu.

The multiplicative noises {wx
s(k); s = 1, . . . εx, k = 0, 1, . . .} and {wu

s(k); s = 1, . . . εu, k =

0, 1, . . .} are both collections of independent and stationary zero-mean random variables

with variance equal to 1 and E(wx
i (k)wx

j(k)) = 0, E(wu
i (k)wu

j(k)) = 0, for all k and i , j. We

assume without loss of generality that ε = εx = εu and that wx
s(k), wu

s(k), wx
s′(k

′) and wu
s′(k

′)

are independent for k , k′ and s, s′ = 1, . . . , ε. The mutual correlation between wx
s1

(k)

and wu
s2

(k) is denoted by E(wx
s1

(k)wu
s2

(k)) = ρs1,s2(k). The initial condition x0 is assumed

to be a random vector in Rn with finite second moment and independent of {wx
s(k)} and

{wu
s(k)}.
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We define Fτ as the σ-field generated by {wx
s(k),wu

s(k); s = 1, . . . , ε, k = 0, . . . , τ − 1}

for τ = 1, . . . ,T , and F0 the trivial σ-field over Ω, so that the expected value E(·|F0)

is just the unconditional expected value E(·). We write Q(k) = {u(k); u(k) is an m-

dimensional random vector with finite second moments and Fk-measurable} and U(τ) =

{uτ = (u(τ), . . . , u(T − 1)); u(k) ∈ Q(k) for each k = τ, . . . ,T − 1}. For simplicity we write

U = U(0).

3.2.1 General finite-horizon problem, PG

The mean-variance general problem, denoted by PG (ν, ξ, lM, lV , LD), will be used as

a base problem to solve all our finite-horizon problems and is defined as:

PG (ν, ξ, lM, LV , lD) : min
u∈U

T∑
t=0

(
ν(t)Var (yu (t)) − (ξ(t) − lV(t))E (yu (t)) − lM(t)E (yu (t))2 + lD(t)

)
,

(3.3)

where yu is the system’s output when the control u is applied, ν′ = [ν(1), . . . , ν(T )],

ν(t) ≥ 0 and ξ′ = [ξ(1), . . . , ξ(T )], ξ(t) ≥ 0 are the input parameters and can be seen as

risk aversion coefficients, giving a trade-off preference between the expected output

and the associated risk (variance) level at time t. We also have the input parameters

l′V = [lV(1), . . . , lV(T )], l′M = [lM(1), . . . , lM(T )], and l′D = [lD(1), . . . , lD(T )] introduced just

to help the notation of the constrained problems to be defined later. Note that, since

lD does not depend on the control variable, it could be removed from the optimisation

problem. The parameters lV(t), lM(t), and lD(t) will be appropriately specified in the

sequel.

3.2.2 Finite-horizon unconstrained problem, PU

Remark 3.1: In what follows it will be convenient to set ν(0) = 0, ξ(0) = 0, lV(0) = 0,

lM(0) = 0, and lD(0) = 0.

The mean-variance unconstrained problem is defined as:

PU (ν, ξ) : min
u∈U

T∑
t=0

(
ν(t)Var (yu (t)) − ξ(t)E (yu (t))

)
(3.4)

and in this case, we wish an optimal control with no restriction in neither the expected



Problems definitions and mean-field formulation 17

output nor its variance. Notice that Problem PU (ν, ξ) in Equation (3.4) can be re-written

as in Equation (3.3) by taking lV(t) = 0, lM(t) = 0, and lD(t) = 0, t = 1, . . . ,T .

3.2.3 Constrained finite-horizon problems, PC1, PC2, and PC3

Providing an analytical solution to the optimal control law that takes into considera-

tion a restriction on either the minimum expected output or the maximum variance over

time would be relevant to extend the applicability of our formulation. Portfolio managers

of pension funds, for instance, would be interested in achieving a return above infla-

tion or even defining a portfolio that has limited risk over specific periods. These two

constrained problems are defined as:

PC1 (ν, ε) : min
u∈U

T∑
t=0

(
ν(t)Var (yu(t))

)
s.t. : E (yu(t)) > ε(t) (3.5)

and

PC2 (ξ, ϕ) : min
u∈U
−

T∑
t=0

(
ξ(t)E (yu(t))

)
s.t. : Var (yu(t)) 6 ϕ(t), (3.6)

for t = 1, . . . ,T . In problem PC1, we wish the control strategy that minimises the

weighted sum of the variance while restricting the expected return to a minimum value,

ε(t). In problem PC2, we wish the control strategy that maximises the weighted sum of

the expected output while restricting its variance to a maximum value, ϕ(t). As before,

ν and ξ are input parameters that represent a trade-off between risk and return over

time.

Another relevant problem for investors, for instance, would involve the risk con-

trol that maintains the portfolio value above a minimum value with a given probability.

This dynamic mean-variance problem with risk control over a minimum expected out-

put subjected to a maximum probability of occurrence is formulated as the following
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problem,

min
u∈U
−

T∑
t=0

(
ξ(t)E (yu(t))

)
s.t. : P (y(t) 6 b(t)) 6 a(t), (3.7)

for t = 1, · · · ,T , where b(t) is the disaster level of the output and a(t) is its ac-

ceptable maximum probability of occurrence. In a portfolio management perspec-

tive, for instance, b(t) can be considered as the minimum level of capital and a(t)

as the maximum acceptable probability of achieving b(t). As the problem defined

in Equation (3.7) is hard to be directly solved, we replace P (y(t) 6 b(t)) by its upper

bound Var (yu(t)) /
[
E (yu(t)) − b(t)

]2 using Tchebycheff inequality as proposed in (ZHU;

LI; WANG, 2004), resulting in the following generalised mean-variance model,

PC3 (ξ, a, b) : min
u∈U
−

T∑
t=0

(
ξ(t)E (yu(t))

)
s.t. : Var (yu(t)) 6 a(t)

[
E (yu(t)) − b(t)

]2 , (3.8)

for t = 1, . . . ,T . The optimal solution to Problem PC3 (ξ, a, b) is feasible for Problem

(3.7), thus serving as an approximate solution to this problem.

3.2.4 Lagrangian optimisation problems for PC1, PC2, and PC3

In order to solve Problems (3.5), (3.6), (3.8), we adopt as in (ZHU; LI; WANG, 2004)

a primal-dual method by attaching the constraints to the objective function through the

Lagrangian multipliers ω′ = [ω(1), . . . , ω(T )], ω(t) ≥ 0, t = 1, . . . ,T .

The new problems PC1, PC2, and PC3 take the following unconstrained forms:

PL1(ω) : min
u∈U

T∑
t=0

(
ν(t)Var (yu(t)) + ω(t) (ε(t) − E (yu(t)))

)
, (3.9)

PL2(ω) : min
u∈U

T∑
t=0

(
ω(t) (Var (yu(t)) − ϕ(t)) − ξ(t)E (yu(t))

)
, and (3.10)

PL3(ω) : min
u∈U

T∑
t=0

(
ω(t)

(
Var (yu(t)) − a(t)

[
E (yu(t)) − b(t)

]2
)
− ξ(t)E (yu(t))

)
. (3.11)
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In order to solve them, we need to solve the Lagrangian dual problem

PCi = max
ω≥0
H(ω), where H(ω) = PLi(ω), i = 1, 2, 3

(see also (BAZARAA; SHERALI; SHETTY, 2013)). Notice that Equations (3.4), (3.9),

(3.10), and (3.11) can be re-written as in Equation (3.3) by choosing the parameters

ν(k), ξ(k), lV(k), lM(k), and lD(k) as in Table 1.

Table 1: Input parameters.

Parameter PU PL1 PL2 PL3
ν(k) ν(k) ν(k) ω(k) ω(k)
ξ(k) ξ(k) ω(k) ξ(k) ξ(k)
lV(k) 0 0 0 2ω(k)a(k)
lM(k) 0 0 0 ω(k)a(k)
lD(k) 0 ω(k)ε(k) −ω(k)ξ(k) −ω(k)a(k)b(k)2

Source: Author.

3.3 Infinite-horizon problem formulation

Consider the multiplicative noises, σ-field, Fτ, Q, and U as defined before with

T → ∞. We have, for k = 0, 1, . . ., s = 1, . . . , ε, Ā ∈ Hn, Ãs ∈ H
n, B̄ ∈ Hn,m, B̃s ∈ H

n,m, the

following linear system with multiplicative noises on a probabilistic space (Ω,P,F ):

x(k + 1) =
(
Ā +

εx∑
s=1

Ãswx
s(k)

)
x(k) +

(
B̄ +

εu∑
s=1

B̃swu
s(k)

)
u(k),

x(0) = x0, k = 0, 1, . . . . (3.12)

With the following scalar output of system (3.12):

y(k) = Lx(k), (3.13)

where L ∈ H1,n.
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3.3.1 Long-run and discounted average cost problems, PL and PD

The long-run and discounted infinite-horizon optimal control problems associated

to System (3.12) are defined respectively as:

PL (ν, ξ) : inf
u∈Uav

lim inf
T→∞

1
T

T−1∑
t=0

(
νVar (yu (t)) − ξE (yu (t))

)
and (3.14)

PD (ν, ξ) : inf
u∈Uα

lim inf
T→∞

T−1∑
t=0

αt
(
νVar (yu (t)) − ξE (yu (t))

)
, (3.15)

where α ∈ (0, 1) is the discount factor and ν ∈ R+ and ξ ∈ R+ are constant input pa-

rameters that represent a trade-off preference between the expected output and the

associated risk as before.

We define the set of admissible controllers for the discounted and long-run average

cost problems as follows. For the discounted case, with discount factor α ∈ (0, 1),

the set of admissible controllers Uα is defined as Uα={u ∈ Q for x(k) as in (3.12),

limT→∞ α
T (E(‖x(T )‖2) + ‖x̄(T )‖)=0}. For the long-run case, the set of admissible con-

trollers Uav is defined as Uav = {u ∈ Q; for x(k) as in (3.12), limT→∞
1
T (E(‖x(T )‖2) +

‖x̄(T )‖) = 0}.

3.4 Mean-field formulation

In this section, we apply the mean-field approach to our problems and re-write them

using the following notation. Notice that the formulation in this section is the one used

to solve the original problems presented earlier and the references to their solutions

will be interchangeable between them.

Define x̄(k) = E(x(k)), z(k) = x(k) − x̄(k), ū(k) = E(u(k)), v(k) = u(k) − ū(k). From

Equation (3.1) and the independence hypothesis made on the multiplicative noises, we

get that

x̄(k + 1) = Ā(k)x̄(k) + B̄(k)ū(k),

x̄(0) = x̄0, k = 0, . . . ,T − 1, (3.16)
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and

z(k + 1) =
(
Ā(k) +

εx∑
s=1

Ãs(k)wx
s(k)

)
z(k) +

εx∑
s=1

Ãs(k)wx
s(k)x̄(k)+

(
B̄(k) +

εu∑
s=1

B̃s(k)wu
s(k)

)
v(k) +

εu∑
s=1

B̃s(k)wu
s(k)ū(k),

z(0) = z0, k = 0, . . . ,T − 1. (3.17)

By the fact that E(v(k)) = 0, we get from Equation (3.17) that E(z(k)) = 0 for all

k = 0, . . . ,T . Indeed, by induction, clearly we have that E(z(0)) = 0 and, considering

E(z(k)) = 0, we have from the independence hypothesis made on the multiplicative

noises and Equation (3.17) that

E(z(k + 1)) =
(
Ā(k) +

εx∑
s=1

Ãs(k)E(wx
s(k))

)
E(z(k)) +

εx∑
s=1

Ãs(k)E(wx
s(k))x̄(k)+

(
B̄(k) +

εu∑
s=1

B̃s(k)E(wu
s(k))

)
E(v(k)) +

εu∑
s=1

B̃s(k)E(wu
s(k))ū(k) = 0.

We define S(k), V(τ), M(τ) as follows: we say that (ū(k), v(k)) ∈ S(k) if ū(k) ∈ Rm and

v(k) ∈ Q(k) satisfying E(v(k)) = 0, that (ūτ, vτ) ∈ V(τ) if (ūτ, vτ) = ((ū(τ), v(τ)), . . . , (ū(T −

1), v(T − 1))) with (ū(k), v(k)) ∈ S(k) for each k = τ, . . . ,T − 1, and that (ūτ, vτ) =

((ū(0), v(0)), . . . , (ū(τ), v(τ))) ∈ M(τ) if (ū(k), v(k)) ∈ S(k) for each k = 0, . . . , τ. We set

V = V(0) and write (ū, v) = (ū0, v0) ∈ V.

3.4.1 Mean-field formulation for the finite-horizon problems

In this section, we use the mean-field formulation to re-write Problems (3.3), (3.4),

(3.9), (3.10), and (3.11), for t = 1, · · · ,T , respectively as:

PG (ν, ξ, lM, lV , lD) : J0 (x̄(0), z(0)) = min
(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − (ξ(t) − lV(t))L(t)x̄(t)

− lM(t)(L(t)x̄(t))2 + lD(t)
)
, (3.18)

with x̄ and z satisfying Equations (3.16) and (3.17).
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PU (ν, ξ) := min
(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − ξ(t)L(t)x̄(t)

)
, (3.19)

PL1(ω) : JPL1
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − ω(t)L(t)x̄(t) + ω(t)ε(t)

)
, (3.20)

PL2(ω) : JPL2
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ω(t)(L(t)z(t))2 − ξ(t)L(t)x̄(t) − ω(t)ϕ(t)

)
, and

(3.21)

PL3(ω) : JPL3
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ω(t) (L(t)z(t))2

− ω(t)a(t) (L(t)x̄(t))2

− (ξ(t) − 2ω(t)a(t)b(t))L(t)x̄(t) − ω(t)a(t)b(t)2
)
. (3.22)

3.4.2 Mean-field formulation for the infinite-horizon problems

From Equation (3.12) and the independence hypothesis made on the multiplicative

noises we get that

x̄(k + 1) = Āx̄(k) + B̄ū(k),

x̄(0) = x̄0, k = 0, 1, . . . , (3.23)

and

z(k + 1) =
(
Ā +

εx∑
s=1

Ãswx
s(k)

)
z(k) +

εx∑
s=1

Ãswx
s(k)x̄(k)+

(
B̄ +

εu∑
s=1

B̃swu
s(k)

)
v(k) +

εu∑
s=1

B̃swu
s(k)ū(k),

z(0) = z0, k = 0, 1, . . . . (3.24)

We define S(k), V(τ), M(τ) as before with T → ∞.
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For the long-run case, the set of admissible controllers Vav is defined as

Vav =
{
(ū, v) ∈ V; for x̄(k) and z(k) as in (3.16) and (3.17),

lim
T→∞

1
T
E(‖z(T )‖2) = 0 and lim

T→∞

1
T
‖x̄(T )‖2 = 0

}
.

For the discounted case with discount factor α, the set of admissible controllers Vα

is defined as

Vα =
{
(ū, v) ∈ V; for x̄(k) and z(k) as in (3.16) and (3.17),

lim
T→∞

αTE(‖z(T )‖2) = 0 and lim
T→∞

αT ‖x̄(T )‖2 = 0
}
.

Remark 3.2: Notice that if limT→∞
1
T ‖x̄(T )‖2 = 0, then limT→∞

1
T ‖x̄(T )‖ = 0. Similarly, if

limT→∞ α
T ‖x̄(T )‖2 = 0, then limT→∞ α

T ‖x̄(T )‖ = 0. We also have, from Jensen’s inequality,

that ‖x̄(T )‖2 ≤ E(‖x(T )‖2) and, since z(T ) = x(T )−x̄(T ), we obtain that ‖z(T )‖2 ≤ 2(‖x(T )‖2+

‖x̄(T )‖2) and ‖x(T )‖2 ≤ 2(‖z(T )‖2 + ‖x̄(T )‖2). Therefore, if u ∈ Uav, then (ū, v) ∈ Vav with

ū(k) = E(u(k)), v(k) = u(k) − ū(k) and, conversely, if (ū, v) ∈ Vav, then u ∈ Uav with

u(k) = v(k) + ū(k). The result also holds replacing Uav and Vav by respectively Uα and

Vα.

Problems PL (ν, ξ) in (3.14) and PD (ν, ξ) in (3.15) can be re-written now as

PL (ν, ξ) : JPL (x̄(0), z(0)) = inf
(ū,v)∈Vav

lim inf
T→∞

1
T

T−1∑
t=0

E
(
ν(Lz(t))2 − ξLx̄(t)

)
and (3.25)

PD (ν, ξ) : JPD (x̄(0), z(0)) = inf
(ū,v)∈Vα

lim inf
T→∞

T−1∑
t=0

αtE
(
ν(Lz(t))2 − ξLx̄(t)

)
, (3.26)

with x̄ and z satisfying Equations (3.23) and (3.24). Once more, by the fact that E(v(k)) =

0, we get from Equation (3.24) that E(z(k)) = 0 for all k = 0, 1, . . ..

We say that Problems (3.25) or (3.26) is well-posed if JPL (x̄(0), z(0)) or

JPD (x̄(0), z(0)), respectively, is finite for any initial condition x̄(0) and z(0). As we will

show in Theorems 5.5 and 5.6, the well-posedness of Problems (3.25) and (3.26) will

be derived from the stabilising solution to the GCARE.
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3.4.2.1 Formulation adaptation for the discounted problem

In order to solve Problem (3.26), we take a step further and make the following

definitions to incorporate the discount factor α ∈ (0, 1) into a similar notation to the long-

run problem. In this way, we will be able to use the same results with few adaptions.

Consider Problem (3.26) with a discount factor α ∈ (0, 1). Defining Āα = α1/2Ā,

B̄α = α1/2B̄, Ãα
s = α1/2Ãs, B̃α

s = α1/2B̃s, Āα(k) = α1/2Ā(k), B̄α(k) = α1/2B̄(k), zα(k) = αk/2z(k),

xα(k) = αk/2x(k), x̄α(k) = αk/2 x̄(k), ūα(k) = αk/2ū(k), and vα(k) = αk/2v(k), we re-write

Equations (3.23), (3.24), and (3.26) as follows:

x̄α(k + 1) = Āα x̄α(k) + B̄αūα(k),

x̄α(0) = x̄0, k = 0, 1, . . . , (3.27)

zα(k + 1) =
(
Āα +

εx∑
s=1

Ãα
s wx

s(k)
)
zα(k) +

εx∑
s=1

Ãα
s wx

s(k)x̄α(k)+

(
B̄α +

εu∑
s=1

B̃α
s wu

s(k)
)
vα(k) +

εu∑
s=1

B̃α
s wu

s(k)ūα(k),

zα(0) = z0, k = 0, 1, . . . , (3.28)

and Problem PD(ν, ξ) can be re-written as

PD (ν, ξ) : JPD (x̄(0), z(0)) = inf
(ū,v)∈Vα

lim inf
T→∞

( T−1∑
t=0

E
(
ν(Lzα(t))2 − αt/2ξLx̄α(t)

))
. (3.29)

3.5 Formulation equivalence guide

Table 2 summarises the equivalence between the equations of our systems and

problems.
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Table 2: Formulation equivalence.

System / Problem Original Lagrangian Mean-Field Mean-Field

Equation Equation Equation with α

Finite-horizon system (3.1), (3.2) - (3.16),(3.17) -

PG (3.3) - (3.18) -

PU (3.4) - (3.19) -

PC1 (3.5) (3.9) (3.20) -

PC2 (3.6) (3.10) (3.21) -

PC3 (3.8) (3.11) (3.22) -

Infinite-horizon system (3.12), (3.13) - (3.23), (3.24) (3.27), (3.28)

PL (3.14) - (3.25) -

PD (3.15) - (3.26) (3.29)
Source: Author.

Note that for PC1, PC2, and PC3, we need to solve the Lagrangian dual problem

PCi = max
ω≥0
H(ω), where H(ω) = PLi(ω), i = 1, 2, 3,

with PLi given by the Equations in the column "Mean-Field Equation" in Table 2.
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4 MAIN OPERATORS AND AUXILIARY RESULTS

In this chapter, we define the main operators and some auxiliary results that we use

to solve our finite and infinite-horizon problems. Section 4.1 refers to the finite-horizon

problems while Section 4.2 refers to the infinite-horizon case.

4.1 Main operators and auxiliary results for the finite-horizon problems

We will use the Bellman optimality equation, written in terms of the operators as

in Equations (4.1), (4.2), and (4.3) to solve Problem (3.18) through the intermediate

problem as in (5.1).

For k = 0, . . . ,T − 1, and X,Y ∈ Hn, set the following operators A(k, ., .) ∈ Hn,

G(k, ., .) ∈ Hn × Hn,Hn,m, R(k, .) ∈ Hn × Hn,Hm, and the non-linear operators K(k, ., .),

M(k, ., .), M̄(k, ., .), and P(k, .) as:

A(k, X,Y) = Ā(k)′XĀ(k) +

ε∑
s=1

Ãs(k)′YÃs(k),

G(k, X,Y) =
(
Ā(k)′XB̄(k) +

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)
)′
,

R(k, X,Y) = B̄(k)′XB̄(k) +

ε∑
s=1

B̃s(k)′YB̃s(k),

K(k, X,Y) = R(k, X,Y)†G(k, X,Y),

M(k, X,Y) = A(k, X,Y) − G(k, X,Y)′R(k, X,Y)†G(k, X,Y),

M̄(k, X,Y) =M(k, X,Y) − lM(k)L(k)′L(k), and

P(k, X) =M(k, X, X) + ν(k)L(k)′L(k). (4.1)

Define also the non-linear operatorsV(k, ., .) andD(k, ., ., .) as follows. For X,Y ∈ Hn,

V ∈ H1,n, γ ∈ R,

V(k, X,Y,V) = V
(
Ā(k) − B̄(k)K(k, X,Y)

)
+ (ξ(k) − lV(k))L(k), and (4.2)

D(k, X,Y,V, γ) = γ −
1
4

VB̄(k)R(k, X,Y)†B̄(k)′V ′ + lD(k). (4.3)
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For k = T,T − 1, . . . , 0, set the sequences

P(k) = P(k, P(k + 1)), P(T ) = ν(T )L(T )′L(T ), (4.4)

M(k) = M̄(k,M(k + 1), P(k + 1)), M(T ) = −lM(T )L(T )′L(T ), (4.5)

V(k) = V(k,M(k + 1), P(k + 1),V(k + 1)), V(T ) = (ξ(T ) − LV(T ))L(T ), and (4.6)

γ(k) = D(k,M(k + 1), P(k + 1),V(k + 1), γ(k + 1)), γ(T ) = lD(T ). (4.7)

Remark 4.1: If Ãs(k) = 0, k = 0, . . . ,T − 1, and lM(k) = 0, k = 1, . . . ,T , then M(k) = 0 for

all k = 0, . . . ,T . Indeed, by applying induction on k = T,T − 1, . . . , 0 in Equation (4.5)

we have by definition that M(T ) = 0. Now, supposing that M(k + 1) = 0, we get that

A(k,M(k+1), P(k+1)) = A(k, 0, P(k+1)) = 0 and G(k,M(k+1), P(k+1)) = G(k, 0, P(k+1)) = 0

since Ãs(k) = 0, and thus M(k) = M(k,M(k + 1), P(k + 1)) = M(k, 0, P(k + 1)) = 0 (notice

that in this case M̄ =M), completing the induction arguments.

Set also

K(k) = R(k, P(k + 1), P(k + 1))†G(k, P(k + 1), P(k + 1)) and (4.8)

H(k) = R(k,M(k + 1), P(k + 1))†G(k,M(k + 1), P(k + 1)). (4.9)

The following auxiliary propositions will be useful when computing the optimal con-

trol law through the generalised inverse of the operator R(k, X,Y) as defined in (4.1)

Proposition 4.1: Consider Z ∈ Hn and M ∈ Hm with Z ≥ 0 and M ≥ 0. Let A

and B be matrices of appropriate dimensions whose entries are random variables.

Then E(A′ZA) − E(A′ZB)
(
E(B′ZB + M)

)†
E(B′ZA) ≥ 0 and E(A′ZB) = E(A′ZB)

(
E(B′ZB) +

M
)†(
E(B′ZB) + M

)
.

Proof. See Proposition 3 in (COSTA; PAULO, 2007). �

Proposition 4.2: For G = G′ ∈ Hn and H ∈ Hn,m, it follows that H(I − GG†) = 0 if and

only if Ker(G) ⊆ Ker(H).

Proof. See Lemma 4.2 in (RAMI; CHEN; ZHOU, 2002). �

Proposition 4.3: For X,Y ∈ Hn+, we have that P(k, X) ∈ Hn+,M(k, X,Y) ∈ Hn+ and

G(k, X,Y)′ = G(k, X,Y)′R(k, X,Y)†R(k, X,Y). (4.10)
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Proof. Set in Proposition 4.1 M = 0,

A =

 Ā(k)∑ε
s=1 Ãs(k)wx

s(k)

 , B =

 B̄(k)∑ε
s=1 B̃s(k)wu

s(k)

 , and Z =

X 0

0 Y

 ≥ 0. (4.11)

Then, from the hypothesis made for {wx
s(k)} and {wu

s(k)}, we have that E(A′ZA) =

A(k, X,Y), E(A′ZB) = G(k, X,Y)′, E(B′ZB) = R(k, X,Y) and that M(k, X,Y) = E(A′ZA) −

E(A′ZB)
(
E(B′ZB)

)†
E(B′ZA). Then Equation (4.10) follows from Proposition 4.1. �

From Proposition 4.3, we have the following result.

Proposition 4.4: We have that P(k) ∈ Hn+, M(k) ∈ Hn+,

G(k, P(k), P(k))′ = G(k, P(k), P(k))′R(k, P(k), P(k))†R(k, P(k), P(k)), and (4.12)

G(k,M(k), P(k))′ = G(k,M(k), P(k))′R(k,M(k), P(k))†R(k,M(k), P(k)). (4.13)

Proof. The result follows from Proposition 4.3 after induction on k to show that P(k) ∈

Hn+ and M(k) ∈ Hn+ for all k = T, . . . , 0. �

We make the following assumption:

Assumption 4.1: We assume that for k = 0, . . . ,T − 1,

B̄(k)′V(k + 1)′ ∈ Im(R(k,M(k + 1), P(k + 1))) and (4.14)

R(k,M(k + 1), P(k + 1)) ≥ 0. (4.15)

Remark 4.2: Notice that from Proposition 4.3 and Equation (4.4), we have that P(k) ≥ 0

for all k = 0, . . . ,T since P(T ) ≥ 0. If lM(k) = 0 for all k = 1, . . . ,T (as in Problems PU,

PL1 and PL2) then from Equation (4.1) we get that M̄ = M so that from Proposition

4.3 and Equation (4.5) we have that M(t) ≥ 0 for all t = 0, . . . ,T . In this case, lM(k) = 0,

k = 1, . . . ,T , and we only require Equation (4.14) in Assumption 4.1 since from the

definition of R in Equation (4.1) and the fact that M(k) ≥ 0, P(k) ≥ 0 for all k = 0, . . . ,T ,

we get that Equation (4.15) will always be satisfied.

We have the following result:

Proposition 4.5: We have that for k = 0, . . . ,T − 1,

V(k + 1)B̄(k) = V(k + 1)B̄(k)R(k,M(k + 1), P(k + 1))†R(k,M(k + 1), P(k + 1)). (4.16)
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Proof. Set for simplicity R = R(k,M(k + 1), P(k + 1)) and H = B̄(k)′V(k + 1)′. Since

Im(R) = Im(R†) and Im(R†) = Ker(R†)⊥, we have from Equation (4.14) that H ∈ Im(R†),

and thus Ker(R†) ⊆ Ker(H′). From Proposition 4.2, we get Equation (4.16). �

Conditions (4.14) and (4.15) are equivalent to the following computationally easier

to check condition:B̄(k)V(k + 1)R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′ B̄(k)V(k + 1)

B̄(k)V(k + 1) R(k,M(k + 1), P(k + 1))

 ≥ 0. (4.17)

Indeed, from Schur’s complement, (4.17) is equivalent to R(k,M(k + 1), P(k + 1)) ≥ 0 and

(4.16) (see (SABERI; SANNUTI, 1995), pages 12-13), which is equivalent to (4.14),

see Proposition 4.5.

4.1.1 Concavity for discrete functions

Let f : Rn → R. The first forward diference of f in the direction of ei = ith unit vector

at a point ω ∈ Rn (provided that ω + ei ∈ R
n) is defined as follows.

∆i f (ω) = f (ω + ei) − f (ω) (4.18)

Now, the definition of concavity for discrete functions which states that a discrete

function is concanve if its first forward diferences are decreasing (nonincreasing) will

be established by the following proposition and corollary.

Proposition 4.6: A discretely concave function of a single variable has its first forward

diferences decreasing (nonincreasing). Conversely, if the first forward diferences of a

discrete function of a single variable are decreasing (nonincreasing), then it is discretely

concave.

Proof. See Theorem 1 in (YÜCEER, 2002). �

Corollary 4.1. A separable function is discretely concave if and only if it is discretely

concave in each component.

Proof. See Corollary 1 in (YÜCEER, 2002). �
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4.2 Main operators and auxiliary results for the infinite-horizon problems

The following operators A(.) ∈ Hn, G(.) ∈ Hn × Hn,Hm,n, R(.) ∈ Hn × Hn,Hm, and the

non-linear operators K(., .), M(k, ., .), and P(.) will be useful in the sequel to compute

the Riccati equation and optimal control laws. For Z1,Z2 ∈ H
n,

A(Z1,Z2) = Ā′Z1Ā +

ε∑
s=1

Ã′sZ2Ãs,

G(Z1,Z2) =
(
Ā′Z1B̄ +

ε∑
s1=1

ε∑
s2=1

ρs1,s2 Ã′s1
Z2B̃s2

)′
,

R(Z1,Z2) = B̄′Z1B̄ +

ε∑
s=1

B̃′sZ2B̃s,

K(Z1,Z2) = −R(Z1,Z2)†G(Z1,Z2),

M(Z1,Z2) = A(Z1,Z2) − G(Z1,Z2)′R(Z1,Z2)†G(Z1,Z2),

P(Z1) =M(Z1,Z1) + νL′L. (4.19)

Whenever Z1 = Z2, the above operators will be displayed with only one input to easy

the notation.

The superscript ˘ applied on a matrix or an operator will represent them in the

space T of appropriate dimension. For instance, Ă(Z) =

A(Z1,Z2) 0

0 A(Z2)

, and when

applied on a constant it will just repeat the constant in a block diagonal such as in

˘̄A =

Ā 0

0 Ā

 ∈ T(Hn). In this way, we can write, for instance, Ă(Z) =

A(Z1,Z2) 0

0 A(Z2)

 =

˘̄A′

Z1 0

0 Z2

 ˘̄A +
∑ε

s=1
˘̃A′s

Z2 0

0 Z2

 ˘̃As.

The Riccati operator T ∈ T(Hn) is defined as follows, for Z =

X 0

0 Y

 ∈ T(Hn):

T (Z) =

M(X,Y) 0

0 P(Y)

 − Z = −Z + I + Ă(Z) − Ğ(Z)′R̆(Z)†Ğ(Z), (4.20)

where I =

0 0

0 νL′L

. We will study the following generalised coupled algebraic Riccati
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equation (GCARE), with variable in Z =

X 0

0 Y

 ∈ T(Hn):

T (Z) = 0. (4.21)

As we will see later on, in order to assure that the criterion costs will be finite, we

need to introduce the following sets:

D(T ) := {Z ∈ T(Hn); Ker(R̆(Z)) ⊆ Ker(Ğ(Z)′)} and

D+(T ) := {Z ∈ T(Hn); Ker(R̆(Z)) ⊆ Ker(Ğ(Z)′) and R̆(Z) ≥ 0}. (4.22)

4.2.1 Additional operators and results for the stabilisation problem

We present next some operators, definitions, and results that will be related to the

mean square stabilisability of System (3.12).

Defining f (k) = [x̄(k) z(k)]′ and re-arranging Equations (3.23) and (3.24), we obtain

that

f (k + 1) = A(k) f (k) + B(k)c(k),

f (0) = f0 = [x̄0 z0]′, (4.23)

where, A(k) =

 Ā 0∑εx

s=1 Ãswx
s(k) Ā +

∑εx

s=1 Ãswx
s(k)

, B(k) =

 B̄ 0∑εu

s=1 B̃swu
s(k) B̄ +

∑εu

s=1 B̃swu
s(k)

,
and c(k) =

ū(k)

v(k)

. We define next the stability and stabilisability concepts that we shall

consider in the following sections.

Definition 4.1. We say that K̃ ∈ Hm,n stabilises System (3.12) in the mean-square

sense if, when we make u(k) = K̃x(k) in Equation (3.12), we have that E(‖x(k)‖2) → 0

as k → ∞ for any initial condition x0 such that E(‖x0‖
2) < ∞. System (3.12) is said

to be mean-square stabilisable if for some K̃, we have that K̃ stabilises (3.12) in the

mean-square sense.

Definition 4.2. We say that K ∈ T(Hm,n) stabilises System (4.23) in the mean-square

sense if, when we make c(k) = K f (k) in Equation (4.23), we have that E(‖ f (k)‖2) → 0

as k → ∞ for any initial condition f0 = [x̄0 z0]′ with E(z0) = 0, E(‖z0‖
2) < ∞ and x̄0 ∈ R

n.
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System (4.23) is said to be mean-square stabilisable if for some K ∈ T(Hm,n), we have

that K stabilises (4.23) in the mean-square sense. The set of mean-square stabilising

K ∈ T(Hm,n) will be represented by K.

For K̃ ∈ Hm,n define the operator SK̃ on B(Hn) as follows:

SK̃(V) = (Ā + B̄K̃)V(Ā + B̄K̃)′ +
ν∑

s=1

ÃsVÃ′s +

ν∑
s1=1

ε∑
s2=1

ρs1,s2

(
Ãs1VK̃′B̃′s2

+ B̃s2 K̃VÃ′s1

)
+

ν∑
s=1

B̃sK̃VK′B̃′s, (4.24)

where V ∈ Hn. Notice that, by defining U(k) = E((x(k)x(k)′) in (3.12) with u(k) = K̃x(k),

we get that (see (COSTA; PAULO, 2008))

U(k + 1) = SK̃(U(k)). (4.25)

We have the following result.

Proposition 4.7: rσ(SK̃) < 1 if and only if Sk
K̃

(V)→ 0 as k → ∞ for any V ∈ Hn+.

Proof. See (COSTA; FRAGOSO; MARQUES, 2005), Proposition 2.5. �

From Proposition 4.7, we have the following equivalence.

Proposition 4.8: System (3.12) is mean-square stabilisable if and only if System

(4.23) is mean-square stabilisable.

Proof. Suppose that K̃ ∈ Hm,n stabilises System (3.12). Then, we will show that K =K̃ 0

0 K̃

 stabilises System (4.23) in the mean-square sense. Indeed, set x0 = x̄0 + z0 for

any initial condition f0 = [x̄0 z0]′ with E(z0) = 0, E(‖z0‖
2) < ∞ and x̄0 ∈ R

n. From Definition

4.1, we have that E(‖x(k)‖2)→ 0. From Jensen’s inequality, ‖x̄(k)‖2 ≤ E(‖x(k)‖2)→ 0 and,

since z(k) = x(k) − x̄(k), we have that E(‖z(k)‖2) ≤ 2(E(‖x(k)‖2) + ‖x̄(k)‖2)) → 0, showing

that E(‖ f (k)‖2) = E(‖z(k)‖2) + ‖x̄(k)‖2 → 0 as k → ∞, as desired. Suppose now that

K =

K1 0

0 K2

 stabilises System (4.23) in the mean-square sense. We will show that, by

taking K̃ = K2, we have that K̃ stabilises (3.12) in the mean-square sense. First notice

that for any V ∈ Hn+, we can find z0 such that E(z0z′0) = V and E(z0) = 0 (indeed just
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take z0 = V1/2χ where E(χ) = 0, E(χχ′) = I). By considering x̄0 = 0, we get from (3.12),

(4.23), and (4.25) that x̄(k) = 0 and z(k) = x(k) for all k, and tr(U(k)) = E(‖z(k)‖2) → 0 as

k → ∞. From Proposition 4.7, we get that rσ(SK̃) < 1 and thus K̃ stabilises (3.12) in the

mean-square sense, completing the proof. �

We define the positive operator LF ∈ B(T(Hn)) as follows. For Z =

Z1 0

0 Z2

 ∈ T(Hn)

and F =

F1 0

0 F2

, set

LF(Z) =

LF1(Z1,Z2) 0

0 LF2(Z2)

 = Ă(Z) + F′R̆(Z)F + F′Ğ(Z) + Ğ(Z)′F, (4.26)

where, LF1(Z1,Z2) and LF2(Z2) ∈ Hn are defined as

LF1(Z1,Z2) = A(Z1,Z2) + F′1R(Z1,Z2)F1 + F′1G(Z1,Z2) + G(Z1,Z2)′F1 (4.27)

and

LF2(Z2) = A(Z2) + F′2R(Z2)F2 + F′2G(Z2) + G(Z2)′F2. (4.28)

The next result shows an important connection between T (Z) and LF(Z), provided

that Z ∈ D(T ).

Lemma 4.1. For any Z ∈ D(T ) and F ∈ T(Hm,n), we have that

T (Z) + Z − I = LF(Z) − (K̆(Z) − F)′R̆(Z)(K̆(Z) − F). (4.29)

Proof. From the properties of the generalized inverse, we have that R† = R†RR†

and (R†)′ = R†. By definition, for any Z ∈ D(T ), Z =

Z1 0

0 Z2

, we have that

Ker(R(Z1,Z2)) ⊆ Ker(G(Z1,Z2)′) so that G(Z1,Z2)′ = G(Z1,Z2)′ R(Z1,Z2)† R(Z1,Z2), and

Ker(R(Z2)) ⊆ Ker(G(Z2)′) so that G(Z2)′ = G(Z2)′R(Z2)†R(Z2). Thus, using the definition of

K in (4.19), we obtain that

Ğ(Z)′R̆(Z)†Ğ(Z) = K̆(Z)′R̆(Z)K̆(Z). (4.30)
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Applying Equation (4.20) into (4.30), we obtain that

−T (Z) − Z + I +A(Z) = K̆(Z)′R̆(Z)K̆(Z) (4.31)

and substituting Ă(Z) from Equation (4.26), for some F ∈ T(Hm,n), we obtain Equation

(4.29) after some algebraic manipulation. �

Next, we present the definition of a symmetric solution, maximal solution and sta-

bilising solution to the GCARE.

Definition 4.3. We say that X ∈ T(Hn) is a symmetric solution to the GCARE if it

satisfies Equation (4.21) and X ∈ D(T ). We say that X is a maximal solution over

L, L ⊆ D(T ), if it is a symmetric solution to the GCARE and X ≥ W for any W ∈ L.

Thus, X =

X1 0

0 X2

 is said to be the mean-square stabilising solution if it is a symmetric

solution to the GCARE and

K(X1, X2) 0

0 K(X2)

 ∈ K.

The next lemma shows that if W ∈ D+(T ) and Z ∈ D+(T ), then W + Z ∈ D+(T ) (

D+(T ) = D+(T ) + T(Hn) ).

Lemma 4.2. If X̂ ∈ D+(T ) and X > X̂, then X ∈ D+(T ).

Proof. The proof follows a similar approach as in Lemma 7 in (COSTA; PAULO, 2008).

By hypothesis, Ker(R̆(X̂)) ⊆ Ker(Ğ(X̂)′) and R̆(X̂) ≥ 0. Since X ≥ X̂ we get that

R̆(X) > R̆(X̂) ≥ 0, R̆(X) ≥ R̆(X)−R̆(X̂) = R̆(X−X̂), and Ker(R̆(X)) ⊆ Ker(R̆(X̂)) ⊆ Ker(Ğ(X̂)′).

Consider Propositions 4.2 and 4.3 with their operators independent of k to comply

with the operators as in (4.19). Thus, from Proposition 4.3, we have that Ğ(X − X̂)′ =

Ğ(X−X̂)′R̆(X−X̂)†R̆(X−X̂) and from Proposition 4.2, we obtain that Ker(R̆(X)) ⊆ Ker(R̆(X−

X̂)) ⊆ Ker(Ğ(X − X̂)′).

This means that for any v ∈ Ker(R̆(X− X̂)), R̆(X)v = 0, Ğ(X− X̂)′v = 0, and Ğ(X̂)′v = 0,

so that Ğ(X)′v = 0 and hence v ∈ Ker(Ğ(X)′). Therefore, R̆(X) > 0 and Ker(R̆(X)) ⊆

Ker(Ğ(X)′). �

The following Lemmas 4.3 to 4.6 will be required to establish a sufficient condition

to obtain the maximal and stabilising solution of the GCARE.
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Lemma 4.3. If L ∈ B(T(Hn)) is a positive operator, then there exists Z ∈ T(Hn), Z , 0,

such that

L(Z)∗ = rσ(L)Z. (4.32)

Proof. The proof follows from the application of the Perron-Frobenius theory for posi-

tive operators on general partially-ordered finite-dimensional linear spaces (see Theo-

rem 2.6 in (DAMM; HINRICHSEN, 2003) or Theorem 3.2.3 in (DAMM, 2004) for more

general conditions and its proof in (SCHAEFER, 1971), appendix 2.6).

Suppose that for a sufficiently large α, the operator T = V(αV − L(V))−1 is positive.

From Theorem 3.2.3 in (DAMM, 2004) (see also appendix 2.6 in (SCHAEFER, 1971)),

under more general conditions, we have that there is a vector v , 0 of proper dimension

such that (αV − L(V)′)−1)Vv = rασv, where rασ = rσ(T ).

Multiplying this equation from the left by (αV − L(V)′) and after some algebraic

manipulation, we obtain L(V)′ = λ0V, where λ0 = α − 1/rασ.

Moreover, for L(V) = LV, we have that T = (αI − L)−1 and rασ(T ) = 1/(α − rσ(L)).

Therefore, λ0 = rσ(L), completing the proof. �

Lemma 4.4. Suppose that M ∈ T(Hn) and F ∈ T(Hm,n) are such that M ≥ 0 and Ker(M) ⊆

Ker(F′), then F′MF ≥ δF′F for some small enough δ > 0.

Proof. It follows the same arguments as in Lemma 3 in (COSTA; PAULO, 2008) for

i = 1. Consider the singular decomposition of M (see (HORN; JOHNSON, 1990)),

M = V

Σ 0

0 0

 V ′, where Σ is a non-singular diagonal matrix with the positive eigenvalues

of M, V is a matrix such that VV ′ = I and V can be decomposed as V = [V1 V2], where

the columns of the matrix V2 form a basis of Ker(M).

Since Ker(M) ⊆ Ker(F′), it follows that F′V2 = 0 and thus F′V = [F′V1 0].

Therefore, taking δ > 0 such that Σ ≥ δI, we get that F′MF = (F′V)(V ′MV)(V ′F) =

F′V1ΣV ′1F ≥ δF′V1V ′1F = δF′VV ′F = δF′F. �

Lemma 4.5. Consider F,G ∈ T(Hm,n) and rσ(LF) < 1, with LF as defined in Equation
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(4.26). Suppose

Y − LG(Y) ≥ δ(G − F)′(G − F)

for some Y ∈ T(Hn+) and δ > 0, then rσ(LG) < 1.

Proof. See Lemma 9 in (COSTA; PAULO, 2008). �

Lemma 4.6. If K ∈ K, then for any S ∈ T(Hn), there exists a unique solution Y ∈ T(Hn)

that satisfies

Y − LK(Y) = S . (4.33)

Moreover, if S is symmetric (≥ 0, > 0 respectively), then Y is symmetric (≥ 0, > 0).

Conversely, if there is Y > 0 satisfying Equation (4.33) for some S ∈ T(Hn), S > 0, then

rσ(LK) < 1.

Proof. The proof follows the reasoning in Lemma 10 in (COSTA; PAULO, 2008) and

recalling that (I − LK)−1(·) =
∑∞

j=0L
j
K(·) (see (WEIDMANN, 1980), page 102). �

Finally, we conclude this section with the following comparisons that will be useful in

the next chapter to prove under what conditions there is a maximal stabilising solution

to the GCARE.

Lemma 4.7. Consider that X ∈ D(T ) and for some F̂ ∈ T(Hm,n), we have that X̂ ∈ T(Hn)

satisfies

X̂ − LF̂(X̂) = I. (4.34)

Then,

(X̂ − X) − LF̂(X̂ − X) =

(F̂ − K̆(X))′R̆(X)(F̂ − K̆(X)) + T (X). (4.35)

Moreover, if X̂ ∈ D(T ), then

(X̂ − X) − L
K̆(X̂)(X̂ − X) = (K̆(X̂) − K̆(X))′R̆(X)(K̆(X̂)

− K̆(X)) + (F̂ − K̆(X̂))′R̆(X̂)(F̂ − K̆(X̂)) + T (X). (4.36)
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Furthermore, if Ŷ ∈ T(Hn∗) and satisfies

Ŷ − L
K̆(X̂)(Ŷ) = I, (4.37)

then

(X̂ − Ŷ) − L
K̆(X̂)(X̂ − Ŷ) = (F̂ − K̆(X̂))′R̆(X̂)(F̂ − K̆(X̂)). (4.38)

Proof. We have that, taking Z = X and F = F̂ in Equation (4.29) yields

X − LF̂(X) = −(K̆(X) − F̂)′R̆(X)(K̆(X) − F̂) − T (X) + I, (4.39)

and by subtracting Equation (4.39) from Equation (4.34), we get Equation (4.35). From

Equation (4.29) with Z = X and F = K̆(X̂), we have that

X − L
K̆(X̂)(X) = −(K̆(X) − K̆(X̂))′R̆(X)(K̆(X) − K̆(X̂)) − T (X) + I. (4.40)

By taking Z = X̂ and F = F̂ in Equation (4.29), we have that

X̂ − LF̂(X̂) = −(K̆(X̂) − F̂)′R̆(X̂)(K̆(X̂) − F̂) − T (X̂) + I, (4.41)

and from Equations (4.34) and (4.41),

−T (X̂) = (K̆(X̂) − F̂)′R̆(X̂)(K̆(X̂) − F̂). (4.42)

Once more, taking Z = X̂ and F = K̆(X̂) in Equation (4.29), we have from Equation

(4.42) that

X̂ − L
K̆(X̂)(X̂) = (K̆(X̂) − F̂)′R̆(X̂)(K̆(X̂) − F̂) + I. (4.43)

We have that Equation (4.43) minus Equation (4.40) yields Equation (4.36) and that

Equation (4.43) minus Equation (4.37) yields Equation (4.38). �
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5 MAIN RESULTS

In the following sections, we solve the problems presented in Section 3.4. Section

5.1 shows the optimal control to the unconstrained and constrained problems regarding

the finite-time horizon along with some comparison with current results in the literature.

In Section 5.2, we present necessary and sufficient conditions for the maximal stabil-

ising solution to the infinite-horizon case and the optimal stabilising control policies to

the discounted and long-run problems.

5.1 Constrained and unconstrained finite-horizon control

We start this section with a result that will be useful to define the benefit-to-go

function of our problems. At each time k ∈ {1, . . . ,T } and for any (ūk−1, vk−1) ∈ M(k − 1),

define the following intermediate problem for Problem (3.18):

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
= min

(ūk ,vk)∈V(k)

T∑
t=k

E
(
ν(t)(L(t)z(t))2 − (ξ(t) − lV(t))x̄(t)

− lM(t)(L(t)x̄(t))2 + lD(t)|Fk

)
. (5.1)

We have the following result.

Lemma 5.1. Assume that for t ∈ {1, . . . ,T } and any (ūt−1, vt−1) ∈ M(t − 1),

E(Jt

(
x̄(t), z(t), (ūt−1, vt−1)

)
|Ft−1) = G1

t−1(x̄(t − 1), z(t − 1), (ūt−1, vt−1))

+ G2
t−1(x̄(t − 1), z(t − 1), (ūt−1, vt−1)) (5.2)

with

E(G2
t−1(x̄(t − 1), v(t − 1), (ūt−1, vt−1))) = 0. (5.3)

Then, for t = 0, . . . ,T − 1,

(ū∗(t), v∗(t)) = arg min
(ū(t),v(t))∈S(t)

{
G1

t (x̄(t), z(t), ((ūt−1, vt−1), (ū(t), v(t)))

+ ν(t)(L(t)z(t))2 − (ξ(t) − lV(t))L(t)x̄(t) − lM(t)(L(t)x̄(t))2 + lD(t)
}
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and

J0 (x̄(0), z(0)) = min
(ūt ,vt)∈M(t)

{
E
(
G1

t (x̄(t), z(t), (ūt, vt))
)

+

t∑
j=0

E
(
ν( j)(L( j)z( j))2

− (ξ(t) − lV(t))L( j)x̄( j) − lM( j)(L(t)x̄( j))2 + lD( j)
)}
,

i.e. G1
t (x̄(t), z(t), ((ūt−1, vt−1), (ū(t), v(t)))+ν(t)(L(t)z(t))2−(ξ(t)− lV(t))L(t)x̄(t)− lM(t)(L(t)x̄(t))2 +

lD(t) can be regarded as the benefit-to-go function at time t of problem PG.

Proof. It is an immediate application of Lemma 3 in (CUI; LI; LI, 2014) �

Define for k = 0, . . . ,T − 1, and (ūk, vk) ∈ M(k)

G1
k(x̄(k), z(k), (ūk, vk)) = z(k)′(A(k, P(k + 1), P(k + 1))z(k)+

x̄(k)′(A(k,M(k + 1), P(k + 1)))x̄(k)′ + v(k)′(R(k, P(k + 1), P(k + 1)))v(k)+

ū(k)′(R(k,M(k + 1), P(k + 1)))ū(k) + 2z(k)′G(k, P(k + 1), P(k + 1))′v(k)+

2x̄(k)′G(k,M(k + 1), P(k + 1))′ū(k) − V(k + 1)(Ā(k)x̄(k) + B̄(k)ū(k)) + γ(k + 1), and (5.4)

G2
k(x̄(k), z(k), (ūk, vk)) =

2z(k)′
( ε∑

s=1

Ãs(k)′P(k)Ãs(k)x̄(k) +

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k)B̃s2(k)
)
ū(k)

+ 2
(
x̄(k)′

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k)B̃s2(k) + ū(k)′
ε∑

s=1

B̃s(k)′P(k)B̃s(k)
)
v(k). (5.5)

Note that

E(G2
k(x̄(k), z(k), (ūk, vk))) = 2

(
E(z(k))′

(
(

ε∑
s=1

Ãs(k)′P(k)Ãs(k))x̄(k)

+ (
ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k)B̃s2(k))
)
ū(k)

+ 2
(
x̄(k)′(

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k)B̃s2(k))

+ ū(k)′(
ε∑

s=1

B̃s(k)′P(k)B̃s(k))
)
E(v(k)) = 0

since E(z(k)) = 0 and E(v(k)) = 0.

The next theorem presents the optimal control law for PG as in (3.3).
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Theorem 5.1. Suppose that Assumption 4.1 holds. We have that

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
= z(k)′P(k)z(k) + x̄(k)′M(k)x̄(k) − V(k)x̄(k) + γ(k) (5.6)

and Equation (5.2) is satisfied with G1
k and G2

k as in Equations (5.4) and (5.5), re-

spectively. Moreover, the optimal control strategy for Problem (3.3) is given by

u∗(k) = v∗(k) + ū∗(k), where

v∗(k) = −K(k)z(k) and (5.7)

ū∗(k) = −H(k)x̄(k) +
1
2
R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′. (5.8)

Proof. Recall the definitions of our operators in (4.1):

A(k, X,Y) = Ā(k)′XĀ(k) +

ε∑
s=1

Ãs(k)′YÃs(k),

G(k, X,Y) =
(
Ā(k)′XB̄(k) +

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)
)′
,

R(k, X,Y) = B̄(k)′XB̄(k) +

ε∑
s=1

B̃s(k)′YB̃s(k),

K(k, X,Y) = R(k, X,Y)†G(k, X,Y),

M(k, X,Y) = A(k, X,Y) − G(k, X,Y)′R(k, X,Y)†G(k, X,Y),

M̄(k, X,Y) =M(k, X,Y) − lM(k)L(k)′L(k),

P(k, X) =M(k, X, X) + ν(k)L(k)′L(k),

V(k, X,Y,V) = V
(
Ā(k) − B̄(k)K(k, X,Y)

)
+ (ξ(k) − lV(k))L(k),

D(k, X,Y,V, γ) = γ −
1
4

VB̄(k)R(k, X,Y)†B̄(k)′V ′ + lD(k),

where P(k), M(k), V(k), γ(k), and their final values are defined as in Equations (4.4),

(4.5), (4.6), and (4.7), respectively, for k = T,T − 1, . . . , 0:

P(k) = P(k, P(k + 1)), P(T ) = ν(T )L(T )′L(T ),

M(k) = M̄(k,M(k + 1), P(k + 1)), M(T ) = −lM(T )L(T )′L(T ),

V(k) = V(k,M(k + 1), P(k + 1),V(k + 1)), V(T ) = (ξ(T ) − LV(T ))L(T ), and

γ(k) = D(k,M(k + 1), P(k + 1),V(k + 1), γ(k + 1)), γ(T ) = lD(T ).
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We apply backward induction on k. For k = T we have that

JT

(
x̄(T ), z(T ), (ūT−1, vT−1)

)
= ν(T )z(T )′L(T )′L(T )z(T ) − lM(T )x̄(T )L(T )′L(T )x̄(T )′

− (ξ(T ) − lV(T ))L(T )x̄(T ) + lD(T )

and the results follow with P(T ) = ν(T )L(T )′L(T ), M(T ) = −lM(T )L(T )′L(T ), V(T ) =

(ξ(T ) − lV(T ))L(T ), and γ(T ) = lD(T ). Suppose that Equation (5.6) holds for k + 1. In this

case we have that

E(Jk

(
x̄(k + 1), z(k + 1), (ūk, vk)

)
|Fk) = E(z(k + 1)′P(k + 1)z(k + 1)+

x̄(k + 1)′M(k + 1)x̄(k + 1) − V(k + 1)x̄(k + 1)|Fk) + γ(k + 1). (5.9)

Let us evaluate each term in Equation (5.9). For the first term, we have from Equation

(3.17) that

E(z(k + 1)′P(k + 1)z(k + 1)|Fk) = z(k)′
(
Ā(k)′P(k + 1)Ā(k)

+

ε∑
s=1

Ãs(k)′P(k + 1)Ãs(k)
)
z(k) + x̄(k)′

( ε∑
s=1

Ãs(k)′P(k + 1)Ãs(k)
)
x̄(k)

+ v(k)′
(
B̄(k)′P(k + 1)B̄(k) +

ε∑
s=1

B̃s(k)′P(k + 1)B̃s(k)
)
v(k)

+ ū(k)′
( ε∑

s=1

B̃s(k)′P(k + 1)B̃s(k)
)
ū(k) + 2z(k)′

( ε∑
s=1

Ãs(k)′P(k + 1)Ãs(k)
)
x̄(k)

+ 2z(k)′
(
Ā(k)′P(k + 1)B̄(k) +

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k + 1)B̃s2(k)
)
v(k)

+ 2z(k)′
( ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k + 1)B̃s2(k)
)
ū(k)

+ 2x̄(k)′
( ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k + 1)B̃s2(k)
)
v(k)

+ 2x̄(k)′
( ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′P(k + 1)B̃s2(k)
)
ū(k)

+ 2ū(k)′
( ε∑

s=1

B̃s(k)′P(k + 1)B̃s(k)
)
v(k). (5.10)
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For the second term, we have from Equation (3.16) that

E(x̄(k + 1)′M(k + 1)x̄(k + 1)|Fk) = x̄(k + 1)′M(k + 1)x̄(k + 1) =

x̄(k)′Ā(k)′M(k + 1)Ā(k)x̄(k) + 2x̄(k)′Ā(k)′M(k + 1)B̄(k)ū(k)

+ ū(k)′B̄(k)′M(k + 1)B̄(k)ū(k). (5.11)

For the third term, we have again from Equation (3.16) that

E(V(k + 1)x̄(k + 1)|Fk) = V(k + 1)x̄(k + 1) = V(k + 1)(Ā(k)x̄(k) + B̄(k)ū(k)). (5.12)

Summing up the terms in Equations (5.10), (5.11), and (5.12), we get from Equation

(5.9) that Equations (5.2) and (5.3) are satisfied with G1
k and G2

k as respectively in

Equations (5.4) and (5.5). Notice now that we can write the benefit-to-go function at

time k using Lemma 5.1 as

G1
k(x̄(k), z(k), ((ūk−1, vk−1), (ūk, vk))) + ν(k)(L(k)z(k))2 − lM(k)(L(k)x̄(k))2

− (ξ(k) − lV(k))L(k)x̄(k) + lD(k) = z(k)′(A(k, P(k + 1), P(k + 1) + ν(k)L(k)′L(k))z(k)

+ x̄(k)′(A(k,M(k + 1), P(k + 1)) − lM(k)L(k)′L(k))x̄(k) − (V(k + 1)Ā(k)

+ (ξ(k) − lV(k))L(k))x̄(k) + γ(k + 1) + lD(k) + F1(z(k), v(k), k) + F2(x̄(k), ū(k), k), (5.13)

where

F1(z(k), v(k), k) = v(k)′R(k, P(k + 1), P(k + 1))v(k)

+ 2z(k)′G(k, P(k + 1), P(k + 1))′v(k), and

F2(x̄(k), ū(k), k) = ū(k)′R(k,M(k + 1), P(k + 1))ū(k)+{
2x̄(k)′G(k,M(k + 1), P(k + 1))′ − V(k + 1)B̄(k)

}
ū(k).

For simplicity, we set next R1 = R(k, P(k + 1), P(k + 1)), R2 = R(k,M(k + 1), P(k + 1)),

G1 = G(k, P(k + 1), P(k + 1)), and G2 = R(k,M(k + 1), P(k + 1)).

Recalling the definitions of Equations (4.8) and (4.9):

K(k) = R(k, P(k + 1), P(k + 1))†G(k, P(k + 1), P(k + 1)) and

H(k) = R(k,M(k + 1), P(k + 1))†G(k,M(k + 1), P(k + 1)),
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and from Proposition 4.4 and the properties of the generalised inverse, it follows that

F1(z(k), v(k), k) = (v(k) + K(k)z(k))′R1(v(k) + K(k)z(k)) − z(k)′G′1R
†

1G1z(k), (5.14)

and from Proposition 4.5,

F2(x̄(k), ū(k), k) = (ū(k) + (H(k)x̄(k) −
1
2
R
†

2B̄(k)′V(k + 1)′))′R2(ū(k) + (H(k)x̄(k)

−
1
2
R
†

2B̄(k)′V(k + 1)′)) − x̄(k)′G′2R
†

2G2 x̄(k) + x̄(k)′G′2R
†

2B̄(k)′V(k + 1)′

−
1
4

V(k + 1)B̄(k)R†2B̄(k)′V(k + 1)′. (5.15)

Replacing Equations (5.14) and (5.15) into Equation (5.13), we get that

G1
k(x̄(k), z(k), ((ūk−1, vk−1), (ūk, vk))) + ν(k)(L(k)z(k))2 − lM(k)(L(k)x̄(k))2−

(ξ(k) − lV(k))L(k)x̄(k) + lD(k) = z(k)′(P(k, P(k + 1))z(k) + x̄(k)′(M(k,M(k + 1), P(k + 1))

− lM(k)L(k)′L(k))x̄(k) − (V(k + 1)(Ā(k) − B̄(k)H(k)) + ξ(k) − lV(k)L(k))x̄(k)

−
1
4

V(k + 1)B̄(k)R†2B̄(k)′V(k + 1)′ + γ(k + 1) + lD(k) + (v(k) + K(k)z(k))′R1(v(k)

+ K(k)z(k)) + (ū(k) + (H(k)x̄(k) −
1
2
R
†

2B̄(k)′V(k + 1)′))′R2(ū(k) + (H(k)x̄(k)

−
1
2
R
†

2B̄(k)′V(k + 1)′)) = z(k)′P(k)z(k) + x̄(k)′M(k)x̄(k) − V(k)x̄(k) + γ(k)

+ φ1(v(k)) + φ2(ū(k)), (5.16)

where

φ1(v(k)) = (v(k) + K(k)z(k))′R1(v(k) + K(k)z(k)) and (5.17)

φ2(ū(k)) = (ū(k) + (H(k)x̄(k) −
1
2
R
†

2B̄(k)′V(k + 1)′))′R2(ū(k) + (H(k)x̄(k)

−
1
2
R
†

2B̄(k)′V(k + 1)′)). (5.18)

We get that minimising the left hand side of Equation (5.16) in v(k) and ū(k) is equivalent

to minimise φ1(v(k)) and φ2(ū(k)) since the other terms do not depend on v(k) and ū(k).

Since R1 ≥ 0 and R2 ≥ 0, the minimum is φ1(v∗(k)) = 0 and φ2(ū∗(k)) = 0 with v∗(k) and

ū∗(k) given as in Equations (5.7) and (5.8). Note that E(v∗(k)) = −K(k)E(z(k)) = 0 and
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thus (ū∗(k), v∗(k)) ∈ S(k). Since

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
=

min
(ū(k),v(k))∈S(k)

{G1
k(x̄(k), z(k), ((ūk−1, vk−1), (ū(k), v(k)))) + ν(k)(L(k)z(k))2−

lM(k)(L(k)x̄(k))2 − (ξ(k) − lV(k))L(k)x̄(k) + lD(k)},

we get from Equation (5.16) that Equation (5.6) is satisfied, completing the proof. �

We have from Theorem 5.1 that PU (ν, ξ) = E(z(k)′P(k)z(k)) + x̄′0M(0)x̄0−V(0)x̄0 +γ(0)

and, for H(ω) = PLi(ω), i = 1, 2 or 3, with PLi as in Table 2:

H(ω) = E(z(k)′P(k)z(k)) + x̄′0M(0)x̄0 − V(0)x̄0 + γ(0), (5.19)

where the input parameters for problems PU, PL1, PL2, and PL3 as shown in Table 1.

If x0 is known, then z(0) = 0 and Equation (5.19) becomes

H(ω) = x̄′0M(0)x̄0 − V(0)x̄0 + γ(0). (5.20)

For problems PC1, PC2, and PC3, (see Table 2 for the equations equivalences)

we still have to solve the Lagrangian dual problem maxω≥0H by applying a search

algorithm on ω. As pointed out in (ZHU; LI; WANG, 2004), H is a concave function

so that a primal-dual method based on the gradient method can be applied. Using a

different approach, one could also apply Proposition 4.6 and Corollary 4.1 to verify the

concavity of H . Notice that some extra care need to be taken since at each iteration it

is required to check if Assumption 4.1 is true.

The next proposition shows an explicit formula for the expected output value and

its variance in each period k.

For k = 0, . . . ,T − 1 and j = 1, . . . ,T , the following new operators will be useful

to present an expression for the output variance Var (yu(t)) when the optimal control
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strategy u∗(k) = v∗(k) + ū∗(k) is applied to system (3.1). For Y ∈ Hn, define

P̄(k,Y) = A(k,Y,Y) + K(k)′R(k,Y,Y)K(k) − 2G(k,Y,Y)′K(k),

Q̄(k,Y) = A(k, 0,Y) + H(k)′R(k, 0,Y)H(k) − 2G(k, 0,Y)′H(k),

R̄(k,Y) = G(k, 0,Y)′R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′

−H(k)′R(k, 0,Y)R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′,

S̄(k,Y) =
1
4

V(k + 1)B̄(k)R(k,M(k + 1), P(k + 1))†R(k, 0,Y)

R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′, and

Θk
j = P̄( j, . . . P̄(k − 1, P̄(k, L(k + 1)′L(k + 1))) . . .), with

Θk
j = L(k + 1)′L(k + 1) if j > k. (5.21)

We have the following proposition.

Proposition 5.1: Suppose that Assumption 4.1 holds and x0 is known. If the optimal

control strategy u∗(k) = v∗(k) + ū∗(k) as in (5.7) and (5.8) is applied to system (3.1), then

the expected value of the output E
(
yu∗(t)

)
and the variance output Var

(
yu∗(t)

)
are given

respectively by

E
(
yu∗(t)

)
= L(t)

t−1∏
j=0

(
Ā( j) − B̄( j)H( j)

)
x0 + L(t)

t−1∑
i=0

[  t−1∏
j=i+1

(
Ā( j) − B̄( j)H( j)

)(
1
2

B̄(i)R(i,M(i + 1), P(i + 1))†B̄(i)′V(i + 1)′
) ]

and (5.22)

Var
(
yu∗(t)

)
=

t−1∑
j=0

[
x̄( j)′Q̄( j,Θt−1

j+1)x̄( j) + x̄( j)′R̄( j,Θt−1
j+1) + S̄( j,Θt−1

j+1)
]
. (5.23)

Proof. To easy the notation, we remove the supercript dependence on u∗. Substituting

(5.8) into (3.16) we obtain that

x̄(k + 1) = (Ā(k) − B̄(k)H(k))x̄(k) +
1
2

B̄(k)R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′. (5.24)

Iterating (5.24) for k = 0, . . . ,T − 1, with x(0) = x0 and using (3.2), we obtain (5.22).

To prove Equation (5.23), we use the dynamics in Equation (3.17), the independence

hypothesis made on the multiplicative noises, and recall that Var(yu(t)) = E
(
(L(t)z(t))2

)
.
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To easy the notation, we set Y = L(k + 1)′L(k + 1). Thus, for t = k + 1, we have that

E(z(k + 1)′Yz(k + 1)) = E {z(k)′ [A(k,Y,Y)] z(k)} + x̄(k)′
 ε∑

s=1

Ãs(k)′YÃs(k)

 x̄(k)+

v(k)′ [R(k,Y,Y)] v(k) + u(k)′
 ε∑

s=1

B̃s(k)′YB̃s(k)

 u(k) + 2z(k)′
[
G(k,Y,Y)′

]
v(k)+

2x̄(k)′
 ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)

 ū(k) + G(k), (5.25)

where

G(k) = 2E(z(k)′)

 ε∑
s=1

Ãs(k)′YÃs(k)

 x̄(k)

+2E(z(k)′)

 ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)

 ū(k)+

2x̄(k)′
 ε∑

s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)

E(v(k))

+2E(v(k)′)

 ε∑
s=1

B̃s(k)′YB̃s(k)

 ū(k).

Note that G(k) = 0 since E(z(k)) = 0 and E(v(k)) = 0. Therefore, applying Equations (5.7)

and (5.8) into (5.25), we obtain that

E(z(k + 1)′Yz(k + 1)) = E {z(k)′ [A(k,Y,Y)] z(k)} + x̄(k)′ [A(k, 0,Y)] x̄(k)+

z(k)′
[
K(k)′R(k,Y,Y)K(k)

]
z(k) + x̄(k)′

[
H(k)′R(k, 0,Y)H(k)

]
x̄(k)+

1
4

V(k + 1)B̄(k)R(k,M(k + 1), P(k + 1))†R(k, 0,Y)R(k,M(k + 1), P(k + 1))†

B̄(k)′V(k + 1)′ − x̄(k)′
[
H(k)′R(k, 0,Y)R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′

]
−2z(k)′

[
G(k,Y,Y)′

]
K(k)z(k) − 2x̄(k)′

[
G(k, 0,Y)′H(k)

]
x̄(k)

+x̄(k)′
[
G(k, 0,Y)′R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′

]
. (5.26)

Rearranging the terms in Equation (5.26) and applying the operators (5.21), we obtain

that

E(z(k + 1)′Yz(k + 1)) =

E
{
z(k)′P̄(k,Y)z(k)

}
+ x̄(k)′Q̄(k,Y)x̄(k) + x̄(k)′R̄(k,Y) + S̄(k,Y). (5.27)

Finally, we apply Equation (5.27) recursively on E
{
z(k)′P̄(k,Y)z(k)

}
and so on to obtain

Equation (5.23), completing the proof. �
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Next, we present a sufficient condition for a closed form solution to problem PC1.

From Table 1, notice that in this case P(k) and M(k), as defined in Equations (4.4) and

(4.5), will not depend on the parameter ω, so that Assumption 4.1 can be checked

independently of ω. Notice also that, as seen in Remark 4.2, P(k) ≥ 0 and M(k) ≥ 0 for

all k. Define for k = 0, . . . ,T − 1,

AH(k) = Ā(k) − B̄(k)H(k), (5.28)

B̃(k, t) =
1
2

 t−1∏
j=k+1

AH( j)

 B̄(k)R(k,M(k + 1), P(k + 1))†B̄(k)′, (5.29)

and let the elements in row r and column c of C ∈ HT and D ∈ HT,1 be given as

Cr,c = L(r)
min(r,c)−1∑

i=0

B̃(i, r)

 c−1∏
j=i+1

AH( j)


′

L(c)′ and (5.30)

Dr,1 = L(r)
r−1∏
j=0

AH( j)x0. (5.31)

The following theorem establishes a sufficient condition for the analytical solution

to the Lagrangian dual problem PC1 = maxω≥0 H(ω), where H(ω) = PL1(ω), PL1 as in

(3.20).

Theorem 5.2. Suppose that Assumption 4.1 holds and assume that det(C) , 0. Set

ω∗ = C−1(ε − D). (5.32)

Then, if ω∗ ≥ 0, we have that PC1 = maxω≥0H(ω) = H(ω∗) and an optimal control

strategy for problem PC1 is given by u∗(k) = v∗(k) + ū∗(k) as in Equations (5.7) and (5.8),

with the parameter ω = ω∗ as in Table 1.

Proof. Set for any u ∈ U, Ψ(u) =
∑T

t=1

(
ν(t)Var (yu(t))

)
, Φ(u) =

∑T
t=1

(
ε(t) − E (yu(t))

)
, so

that H(ω) = minu∈U(Ψ(u) + ωΦ(u)). From Theorem 5.1, we have that H(ω) = U(Ψ(uω) +

ωΦ(uω)), with uω is as in Equations (5.7) and (5.8), where we have replaced ω∗ by

ω to indicate the dependence on the parameter ω. The proof consists in developing

Equation (5.22) to obtain E(y(t)) explicitly on each ω(t) and then solving it for ω in order

to get E(y(t)) = ε(t). From Equation (5.22) and using the definitions of AH and B̃ in
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Equations (5.28) and (5.29), respectively, we have that

E
(
yuω(t)

)
= L(t)

t−1∏
j=0

AH( j)x0 + L(t)
t−1∑
i=0

B̃(i, t)V(i + 1)′. (5.33)

Using Equations (4.6) and (5.28), we re-write V(t)′ explicitly on each ω(t), t = 1, . . . ,T ,

as

V(k)′ =

T∑
c=k

 c−1∏
j=k

AH( j)


′

L(c)′ω(c). (5.34)

Applying Equation (5.34) into (5.33), we get that

E
(
yuω(t)

)
= L(t)

t−1∏
j=0

AH( j)x0 + L(t)
t−1∑
i=0

B̃(i, t)
T∑

c=i+1

 c−1∏
j=i+1

AH( j)


′

L(c)′ω(c)

= L(t)
t−1∏
j=0

AH( j)x0 + L(t)
T∑

c=1

min(t,c)−1∑
i=0

B̃(i, t)

 c−1∏
j=i+1

AH( j)


′

L(c)′ω(c). (5.35)

Then, we set E(yuω(t)) = ε(t) for t = 1, . . . ,T , where ε(t) is a known restriction, and apply

Equation (5.35) to obtain a set of T equations on T unknown ω(t). Finally, using the

definitions in Equations (5.30) and (5.31) for r, c = 1, . . . ,T , we rearrange this system of

equations into a vector form as ε = Cω + D, which can be solved for ω as in Equation

(5.32) if det(C) , 0. Set now for any u ∈ U, Ψ(u) =
∑T

t=1

(
ν(t)Var (yu(t))

)
, Φ(u) =

∑T
t=1

(
ε(t)−

E (yu(t))
)
, so that H(ω) = minu∈U(Ψ(u) + ωΦ(u)). Consider u∗ as in Theorem 5.1 with

ω = ω∗. We have that Φ(u∗) = 0 and for any ω ≥ 0, H(ω) ≤ Ψ(u∗) + ωΦ(u∗) = Ψ(u∗) =

Ψ(u∗) + ω∗Φ(u∗) = H(ω∗), so that H(ω∗) ≥ H(ω) and thus PC1 = maxω≥0H(ω) = H(ω∗),

completing the proof. �

5.2 Infinite-horizon control and stabilisation

The following sections will show the main results regarding the infinite-horizon con-

trol and stabilisation. Section 5.2.1 presents sufficient conditions for the maximal and

stabilising solutions to the GCARE. Section 5.2.2 shows the optimal stabilising control

policies to the discounted and long-run problems along with a numerical approach for

obtaining a stabilising solution to the GCARE.
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5.2.1 Conditions for maximal and stabilising solutions

In this section, we show some results regarding the sufficient conditions for the ex-

istence of the maximal solution to the GCARE and necessary and sufficient conditions

for the existence of the mean-square stabilising solution. Those results shall be useful

to obtain the stabilising optimal control policies in the following section and a numerical

procedure to compute it.

First, we recall the domain definition in (4.22):

D(T ) := {Z ∈ T(Hn); Ker(R̆(Z)) ⊆ Ker(Ğ(Z)′)} and

D+(T ) := {Z ∈ T(Hn); Ker(R̆(Z)) ⊆ Ker(Ğ(Z)′) and R̆(Z) ≥ 0},

and make the following definitions. From Lemma 4.6, for K ∈ K and X ∈ T(Hn), there is

unique solution to

X − LK(X) = I (5.36)

defined therein as X(K). We also define the following subsets of D+(T ):

M := {X ∈ D+(T );T (X) ≥ 0},

M̂ := {X ∈ D+(T );T (X) = 0},

and, for K ∈ K,

M(K) := {X ∈ M; Ker(R̆(X)) ⊆ Ker(K′) and Ker(R̆(X)) ⊆ Ker(R̆(X(K)))} and

M̂(K) := {X ∈ M̂; Ker(R̆(X)) ⊆ Ker(K′) and Ker(R̆(X)) ⊆ Ker(R̆(X(K)))}.

The next theorem provides a sufficient condition for the existence of the maximal

symmetric solution of Equation (4.21) over M(K) for K ∈ K.

Theorem 5.3. Suppose that M(F̃) , ∅ for some F̃ ∈ K, then there exists Xs ∈ D+(T )

and F s ∈ T(Hm,n), for s = 0, 1, . . ., satisfying the following properties:

i. X0 ≥ X1 ≥ · · · ≥ Xs ≥ X, for an arbitrary X ∈ M(F̃);

ii. rσ(LF s) < 1, with F s = K̆(Xs−1) for s ≥ 1;

iii. Xs = X(F s);
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iv. Ker(R̆(Xs)) ⊆ Ker(F s′) and Ker(R̆(Xs)) = Ker(R̆(X)).

Moreover, there exists X+ ∈ M̂(F̃) such that X+ ≥ X for any X ∈ M(F̃), rσ(LK̆(X+)) ≤ 1,

and Xs → X+ as s→ ∞.

Proof. We shall apply induction on s to prove the result following the same reasoning as

in Theorem 1 in (COSTA; PAULO, 2008). The auxiliary results used here are in Section

4.2. Consider an arbitrary X ∈ M(F̃) so R̆(X) ≥ 0, T (X) ≥ 0, and F = K̆(X). Take F0 = F̃

so that rσ(LF0) < 1. Thus, from Lemma 4.6, there exists a unique X0 = X(F0) ∈ T(Hn∗)

satisfying Equation (4.33) for K = F0. We have from Equation (4.35) that

(X0 − X) − LF0(X0 − X) = (F0 − F)′R̆(X)(F0 − F) + T (X)

and, since (F0 − F)′R̆(X)(F0 − F) + T (X) ≥ 0 and rσ(LF0) < 1, we have from Lemma 4.6

that X0 − X ≥ 0. From Lemma 4.2, we also have that X0 ∈ D+(T ) and R̆(X0) ≥ R̆(X) ≥ 0,

which implies that Ker(R̆(X0)) ⊆ Ker(R̆(X)). But by definition, X ∈ M(F0) implies that

Ker(R̆(X)) ⊆ Ker(F0′) and Ker(R̆(X)) ⊆ Ker(R̆(X0)) so that Ker(R̆(X)) = Ker(R̆(X0)) and

Ker(R̆(X0)) ⊆ Ker(F0′), and the result holds for s=0.

Suppose now that the result holds for s − 1 and recall that F s = K̆(Xs−1). From

Equation (4.36), we get that

(Xs−1 − X) − LF s(Xs−1 − X) = (F s − F)′R̆(X)(F s − F)

+ (F s − F s−1)′R̆(Xs−1)(F s − F s−1) + T (X)

≥ (F s − F s−1)′R̆(Xs−1)(F s − F s−1). (5.37)

We want to use Lemma 4.4 to show that for some small enough δ > 0,

(F s − F s−1)′R̆(Xs−1)(F s − F s−1) ≥ δ(F s − F s−1)′(F s − F s−1). (5.38)

Noticing that F s′ = −Ğ(Xs−1)′R̆(Xs−1)† and Ker(R̆(Xs−1)†) = Ker (R̆(Xs−1)), it follows that

Ker(R̆(Xs−1)) ⊆ Ker(F s′). Furthermore, by the induction hypothesis, Ker(R̆(Xs−1)) ⊆

Ker(F s−1′) and combining the results, we get that Ker(R̆(Xs−1)) ⊆ Ker((F s−F s−1)′). There-

fore, we obtain Equation (5.38) by applying Lemma 4.4 and we get that rσ(LF s) < 1

from Equations (5.37), (5.38), and Lemma 4.5. Suppose now that Xs = X(F s) ∈ T(Hn)
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so from Lemma 4.7, we have that Equation (4.35) yields

(Xs − X) − LF s(Xs − X) = (F s − F)′R̆(X)(F s − F) + T (X)

and, since rσ(LF s) < 1, we get from Lemma 4.6 that Xs ≥ X and, from Lemma 4.2, we

have that Xs ∈ D+(T ). Equation (4.38) yields

(Xs−1 − Xs) − LF s(Xs−1 − Xs) = (F s−1 − F s)′R̆(Xs−1)(F s−1 − F s),

which shows that Xs−1 ≥ Xs ≥ X from the fact that rσ(LF s) < 1, (F s−1 − F s)′R̆(Xs−1)(F s−1 −

F s) ≥ 0, and from Lemma 4.6. We also have that R̆(Xs−1) ≥ R̆(Xs) ≥ R̆(X) ≥ 0 so

that from the induction hypothesis, Ker(R̆(X)) = Ker(R̆(Xs−1)) ⊆ Ker(R̆(Xs)) ⊆ Ker(R̆(X)),

showing that Ker(R̆(Xs)) = Ker (R̆(X)) = Ker(R̆(Xs−1)) ⊆ Ker(F s′), completing the induction

arguments.

We get that there exists X+ symmetric such that Xs ↓ X+ as s → ∞ given that

{Xs}
∞
s=0 is a decreasing sequence with Xs ≥ X for all s = 0, 1, . . . (see page 79 in

(SONTAG, 1990)). Clearly, X+ ≥ X and, from Lemma 4.2, we get that X+ ∈ D+(T ).

Since X0 ≥ X+ ≥ X, we get that R̆(X0) ≥ R̆(X+) ≥ R̆(X) ≥ 0 and thus Ker(R̆(X)) ⊆

Ker(R̆(X0)) ⊆ Ker(R̆(X+)) ⊆ Ker(R̆(X)), showing that Ker (R̆(X+)) = Ker(R̆(X0)) and

Ker(R̆(X+)) = Ker(R̆(X)) ⊆ Ker(R̆(F0′)). Moreover, X+ ∈ M̂(F̃) since substituting

K = F s = K̆(Xs−1) and X = Xs into Equation (5.36) and taking the limit as s → ∞, we

get, after rearranging the terms, that T (X+) = 0. Given that X is arbitrary in M(F̃), we

have that X+ ≥ X for all X ∈ M(F̃). Finally, note that rσ(LF s) < 1 implies that rσ(LF+) ≤ 1,

where F+ = K̆(X+) (see page 328 in (SONTAG, 1990) regarding the continuity of the

eigenvalues on finite-dimensional linear operator entries). �

We show next that there exists at most one mean square stabilising solution to

Equation (4.21).

Lemma 5.2. Suppose that M(F̃) , ∅ for some F̃ ∈ K, then there is at most one mean-

square stabilising solution to the GCARE (4.21) and it coincides with the maximal so-

lution over M(F̃).

Proof. We follow the same approach as in Lemma 12 in (COSTA; PAULO, 2008) and

consider that X̂ is the mean-square stabilising solution to the GCARE (4.21), thus
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T (X̂) = 0. From Lemma 4.1 with Z = X̂ and F = K̆(X̂), we have that

X̂ − L
K̆(X̂)(X̂) − I = 0. (5.39)

From Theorem 5.3, there exists the maximal solution X+ ∈ M̂(F̃) over M(F̃). Again,

from Lemma 4.1 with Z = X+, F = K̆(X̂) and T (X+) = 0, we have that

X+ − I − L
K̆(X̂)(X

+) = −(K̆(X+) − K̆(X̂))′R̆(X+)(K̆(X+) − K̆(X̂)). (5.40)

Thus, from Equations (5.39) and (5.40), we obtain that

(X̂ − X+) − L
K̆(X̂)(X̂ − X+) = (K̆(X+) − K̆(X̂))′R̆(X+)(K̆(X+) − K̆(X̂)) ≥ 0

since R̆(X+) ≥ 0. Thereby, from Lemma 4.6, we have that X̂ − X+ ≥ 0. However, it

also implies that R̆(X̂) ≥ R̆(X+) ≥ 0. Therefore, Ker(R̆(X̂)) ⊆ Ker(R̆(X+)) ⊆ Ker(R̆(F̃)) and

Ker(R̆(X̂)) ⊆ Ker(R̆(X+)) ⊆ Ker(F̃′), showing that X̂ − X+ ≤ 0, completing the proof. �

The following theorem provides necessary and sufficient conditions for the exis-

tence of the mean square stabilising solution. First, we define for K ∈ T(Hm,n) and

Ψ ∈ T(Hn), the following operator NΨ,K ∈ T(Hn): for Z ∈ T(Hn),

NΨ,K(Z) = LK(Z) + (Ψ + ˘̄BK)′Z(Ψ + ˘̄BK) − ( ˘̄A + ˘̄BK)′Z( ˘̄A + ˘̄BK). (5.41)

Theorem 5.4. Suppose that M(F̃) , ∅ for some F̃ ∈ K, then the following statements

are equivalent

i. There is a V ∈ T(Hn) such that rσ(NΓ(X),K̆(X)) < 1, for some X ∈ M(F̃), where

Γ(X) = ˘̄A + VT (X)1/2.

ii. There exists the mean-square stabilising solution to the GCARE (4.21).

Proof. First, let us prove that i) implies ii). From Theorem 5.3, there exists the maximal

solution X+ ∈ M̂(F̃) over M(F̃). Consider X ∈ M(F̃) and V ∈ T(Hn) satisfying i). Set

F+ = K̆(X+) and F = K̆(X). If X+ = X, then it is easy to verify that LF+ = NΓ(X),K̆(X) and

the result is proved. Suppose that X+ , X. Since from Lemma 4.1, X+ − LF+(X+) = I,
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we have from Equation (4.35) that

(X+ − X) − LF+(X+ − X) = (F+ − F)′R̆(X)(F+ − F) + T (X). (5.42)

As seen in Theorem 5.3, X(F̃) ≥ X+ ≥ X so that R̆(X(F̃)) ≥ R̆(X+) ≥ R̆(X) ≥ 0 and

recalling that X ∈ M(F̃) implies that Ker(R̆(X)) ⊆ Ker(R̆(X(F̃))), we get that Ker(R̆(X)) ⊆

Ker(R̆(X(F̃))) ⊆ Ker(R̆(X+)) ⊆ Ker(R̆(X)) and thus Ker (R̆(X)) = Ker(R̆(X+)). Noticing that

F′ = −Ğ(X)′R̆(X)†, F+′ = −Ğ(X+)′R̆(X+)†, and recalling that Ker(R̆(X)†) = Ker(R̆(X)) and

that Ker(R̆(X+)†) = Ker(R̆(X+)), it follows that Ker(R̆(X)) ⊆ Ker((F+ − F)′). From Lemma

4.4, we can find a small enough δ, with 0 < δ < 1, such that (F+ − F)′R̆(X)(F+ − F) ≥

δ(F+ − F)′(F+ − F). Since T (X) ≥ δT (X) ≥ 0, we get from Equation (5.42) that

(X+ − X) − LF+(X+ − X) ≥ δ((F+ − F)′(F+ − F) + T (X)). (5.43)

Considering G =

G1 0

0 G2

, G ∈ T(Hn), F =

F1 0

0 F2

, and F+ =

F+
1 0

0 F+
2

, define F̂+ ∈

H2(m+n),2n, F̂ ∈ H2(m+n),2n, ̂̄B ∈ H2n,2(m+n), and ̂̃B ∈ H2n,2(m+n) as follows: F̂+ :=



0 0

F+
1 0

0 0

0 F+
2


, F̂ :=



T
1/2
1 0

F1 0

0 T
1/2
2

0 F2


, ̂̄B :=

G1 B̄ 0 0

0 0 G2 B̄

, and ̂̃Bs :=

0 B̃s 0 0

0 0 0 B̃s

. Consider the operator

L̂K̂ as defined in Equation (4.26) replacing ˘̄B, ˘̃Bs, and F by ̂̄B, ̂̃Bs, and K̂ ∈ T(H2(m+n),2n),

respectively. Thereby, it is easy to verify that L̂F̂+ = LF+ and L̂F̂ = NΓ(X),F. Since

Equation (5.43) can be re-written as

(X+ − X) − L̂F̂+(X+ − X) ≥ δ(F̂+ − F̂)′(F̂+ − F̂)

and recalling that (X+ − X) ≥ 0 and rσ(L̂F̂) = rσ(NΓ(X),F) < 1, we can conclude from

Lemma 4.5 that rσ(L̂F̂+) = rσ(LF+) < 1, showing the first part. Let us prove now that ii)

implies i). Consider that X ∈ M̂(F̃) is the mean-square stabilising solution to Equation

(4.21). Then, since T (X) = 0, Γ(X) = ˘̄A implying that N ˘̄A,K̆(X) = LK̆(X) and the result

follows since rσ(LK̆(X)) < 1. �
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5.2.2 Discounted and long-run problems

In this section, we present an optimal control strategy for the long-run and dis-

counted problems as in Equations (3.25) and (3.26). See Table 2 for the equivalence

between the different formulations.

5.2.2.1 Preliminaries

In this section, we recall and adapt some results related to the finite-horizon prob-

lem, with final time T . At each time k ∈ {1, . . . ,T } and for any (ūk−1, vk−1) ∈ M(k − 1),

define the following intermediate problem:

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
= min

(ūk ,vk)∈V(k)
E
( T−1∑

t=k

ν(Lz(t))2 − ξV(t)x̄(t)

+ z(T )′PT z(T ) + x̄(T )′MT x̄(T ) − VT x̄(T )|Fk

)
. (5.44)

Recall the definitions of A, G, R, K ,M, and P as in (4.19):

A(Z1,Z2) = Ā′Z1Ā +

ε∑
s=1

Ã′sZ2Ãs,

G(Z1,Z2) =
(
Ā′Z1B̄ +

ε∑
s1=1

ε∑
s2=1

ρs1,s2 Ã′s1
Z2B̃s2

)′
,

R(Z1,Z2) = B̄′Z1B̄ +

ε∑
s=1

B̃′sZ2B̃s,

K(Z1,Z2) = −R(Z1,Z2)†G(Z1,Z2),

M(Z1,Z2) = A(Z1,Z2) − G(Z1,Z2)′R(Z1,Z2)†G(Z1,Z2),

P(Z1) =M(Z1,Z1) + νL′L.

We define the following sequences, for k = 0, 1, . . . ,T − 1:

P(k) = P(P(k + 1)), P(T ) = PT , (5.45)

M(k) =M(k + 1,M(k + 1), P(k + 1)), M(T ) = MT , (5.46)

V(k) = V(k + 1,M(k + 1), P(k + 1),V(k + 1)), V(T ) = VT , (5.47)

γ(k) = D(M(k + 1), P(k + 1),V(k + 1), γ(k + 1)), γ(T ) = 0, (5.48)

where the non-linear operators V(., .) and D(., ., .) are as follows. For Z1,Z2 ∈ H
n, V ∈
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H1,n, γ ∈ H1,

V(t,Z1,Z2,V) = V
(
Ā − B̄K(Z1,Z2)

)
+ ξV(t), and (5.49)

D(Z1,Z2,V, γ) = γ −
1
4

VB̄R(Z1,Z2)†B̄′V ′. (5.50)

We have the following result.

Proposition 5.2: Suppose that for k = 0, . . . ,T − 1,

B̄′V(k + 1)′ ∈ Im(R(M(k + 1), P(k + 1))) and (5.51)

R(M(k + 1), P(k + 1)) ≥ 0. (5.52)

Then, we have that

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
= z(k)′P(k)z(k) + x̄(k)′M(k)x̄(k) − V(k)x̄(k) + γ(k). (5.53)

Moreover, the optimal control strategy for Problem (5.44) is given by

v∗(k) = K(k)z(k) and (5.54)

ū∗(k) = H(k)x̄(k) +
1
2
R(M(k + 1), P(k + 1))†B̄′V(k + 1)′, (5.55)

where

K(k) = R(P(k + 1), P(k + 1))†G(P(k + 1), P(k + 1)) and (5.56)

H(k) = R(M(k + 1), P(k + 1))†G(M(k + 1), P(k + 1)). (5.57)

Proof. See Theorem 5.1 or Theorem 4.1 in (BARBIERI; COSTA, 2020b). �

The following lemma will be useful to prove that the optimal controls are admissible.

Lemma 5.3. Set U x̄(k) = x̄(k)x̄(k)′ in (3.23) and Uz(k) = E (z(k)z(k)′) in (3.24), with

ū(k) = K1 x̄(k) + α(k+1)/2

2 φ, v(k) = K2z(k), and α ∈ (0, 1]. We have that

U x̄(k + 1) = Sx̄
K1

(U x̄(k)) + Ox̄(x̄(k)) and (5.58)

Uz(k + 1) = SK2(U
z(k)) + Oz(U x̄(k), x̄(k)), (5.59)
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with SK2(U
z(k)) as in Equation (4.24),

Sx̄
K1(U

x̄(k)) = (Ā + B̄K1)U x̄(k)(Ā + B̄K1)′,

Ox̄(x̄(k)) =
α(k+1)/2

2
(
B̄K1 x̄(k)φ′B̄′ + B̄φx̄(k)′K′1B̄′

+ Āx̄(k)φ′B̄′ + B̄φx̄(k)′Ā′
)

+
α(k+1)

4
B̄φ′φB̄′, and

Oz(U x̄(k), x̄(k)) =

ν∑
s=1

(
ÃsU x̄(k)Ã′s + B̃sK1U x̄(k)K′1B̃′s +

α(k+1)/2

2(
B̃sK1 x̄(k)φ′B̃′s + B̃sφx̄(k)′K′1B̃′s +

α(k+1)/2

2
B̃sφ

′φB̃′s
))

+

ν∑
s1=1

ε∑
s2=1

ρs1,s2

(
Ãs1U

x̄(k)K′1B̃′s2
+ B̃s2 K1U x̄(k)Ã′s1

+
α(k+1)/2

2
(
Ãs1 x̄(k)φ′B̃′s2

+ B̃s2φx̄(k)′Ã′s1

))
.

Moreover, if rσ(Ā+ B̄K1) < 1 and rσ(SK2) < 1, then U x̄(k)→ U x̄ and Uz(k)→ Uz as k → ∞,

where U x̄ and Uz ∈ Hn are given by:

i) U x̄ = 0 and Uz = 0, for 0 < α < 1, or

ii) U x̄ = (I − Sx̄
K1

)−1Ox̄(x̄) and Uz = (I − SK2)
−1Oz(U x̄, x̄), where x̄ = (I − Ā − B̄K1)−1B̄φ/2,

for α = 1.

Proof. Consider the control law as defined above. Computing x̄(k + 1)x̄(k + 1)′ us-

ing Equation (3.23), we have that the terms with U x̄(k) are captured by Sx̄
K1

(U x̄(k))

and the remaining terms are captured by Ox̄(x̄(k)) so that Equation (5.58) holds. In

the same way, calculating E (z(k + 1)z(k + 1)′) using Equation (3.24) and recalling that

E (z(k)) = 0 and that wx
s1

and wu
s2

are white noises with mutual correlation ρs1,s2, we have

that the terms with Uz(k) are captured by SK2(U
z(k)) and the remaining terms differ-

ent than zero are captured by Oz(U x̄(k), x̄(k)) so that Equation (5.59) holds. Next, we

show that limk→∞U x̄(k) < ∞ and limk→∞Uz(k) < ∞ for α ∈ (0, 1]. We first prove the

results for α ∈ (0, 1). From Equation (3.23) and ū(k) = K1 x̄(k) +α(k+1)/2φ/2, we obtain that

x̄(k+1) = (Ā+ B̄K1)x̄(k)+b(k), with b(k) = α(k+1)/2φ/2. Notice that
∑∞

k=0 supτ≥0 ‖b(k+τ)−b(k)‖

=
∑∞

k=0 supτ≥0 |α
k/2(ατ − 1)|‖φ‖/2 < ‖φ‖/2(1 − α) and, thereby, b(k) is a Cauchy summable

sequence according to Proposition 2.8 in (COSTA; FRAGOSO; MARQUES, 2005).

Given that rσ(Ā + B̄K1) < 1, from Proposition 2.9 in (COSTA; FRAGOSO; MARQUES,
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2005), we obtain that x̄(k) is a Cauchy summable sequence and that x̄ = limk→∞ x̄(k) =

(I − Ā − B̄K1)−1 limk→∞ α
(k+1)/2B̄φ/2 = 0. Since x̄(k) is a Cauchy summable sequence,

we can easily verify that Ox̄(x̄(k)) is also a Cauchy summable sequence. Therefore,

given that rσ(Ā + B̄K1) < 1 implies that rσ(Sx̄
K1

) < 1, from Proposition 2.9 in (COSTA;

FRAGOSO; MARQUES, 2005) and Equation (5.58), we get that U x̄(k) is a Cauchy

summable sequence and that U x̄ = limk→∞U x̄(k) = (I − Sx̄
K1

)−1 limk→∞O
x̄(x̄(k)) = 0.

Once more, since x̄(k) and U x̄(k) are Cauchy summable sequences and given that

rσ(SK2) < 1, we use the same reasoning as above to obtain that Oz(U x̄(k), x̄(k)) is a

Cauchy summable sequence and that Uz = (I − SK2)
−1 limk→∞O

z(U x̄(k)(k), x̄(k)) = 0,

proving (i). Repeating the same steps for α = 1 we obtain that (ii) holds. �

5.2.2.2 Long-run average problem PL(ν, ξ)

In this section, we assume that the mean square stabilising solution Z =

M̄ 0

0 P̄


for Equation (4.21) exists. Set K̆ =

K(M̄, P̄) 0

0 K(P̄)

. Since Z is the mean square

stabilising solution, we have that rσ(Ā + B̄K(M̄, P̄)) < 1 so that there exist a unique

solution V̄ satisfying

V̄ − V̄(Ā + B̄K(M̄, P̄)) = V̄(I − (Ā + B̄K(M̄, P̄)) = ξL. (5.60)

Considering PT = P̄ in (5.45), MT = M̄ in (5.46), VT = V̄ in (5.47) and V(t) = L in (5.49),

we get for all k that P(k) = P̄, M(k) = M̄ and V(k) = V̄ from (5.60). We make the following

assumption:

Assumption 5.1: We assume that B̄′V̄ ′ ∈ Im(R(M̄, P̄)) and R(M̄, P̄) ≥ 0.

Notice that from Assumption 5.1, we have that the conditions of Proposition 5.2 are

satisfied (see Equations (5.51) and (5.52)). We have the following theorem.

Theorem 5.5. Suppose that the mean square stabilising solution Z =

M̄ 0

0 P̄

 for Equa-

tion (4.21) exists, and that Assumption 5.1 holds. Set K̆ =

K(M̄, P̄) 0

0 K(P̄)

 and V̄

as (5.60). We have that an optimal control strategy for Problem (3.25) is given by
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û(k) = v̂(k) + ˆ̄u(k), where

v̂(k) = K(P̄)z(k) and (5.61)

ˆ̄u(k) = K(M̄, P̄)x̄(k) +
1
2
R(M̄, P̄)†B̄′V̄ ′. (5.62)

Moreover, Problem (3.25) is well-posed and the optimal cost is

JPL (x̄(0), z(0)) = −
1
4

V̄ B̄R(M̄, P̄)†B̄′V̄ ′.

Proof. Set for simplicity Jk = Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
in (5.44). From Proposition 5.2

with V(t) = L in (5.44) and (5.49), we have that

Jk

(
x̄(k), z(k), (ūk−1, vk−1)

)
= z(k)′P̄z(k) + x̄(k)′M̄(k)x̄(k) − V̄ x̄(k) + γ(k), (5.63)

with the optimal control strategy as in (5.54) and (5.55), which coincides with (5.61)

and (5.62). From (5.48) we get that γ(k) = T−k
4 V̄ B̄R(M̄, P̄)†B̄′V̄ ′ so that, from (5.63), we

obtain that

Jk = z(k)′P̄z(k) + x̄(k)′M̄x̄(k) − V̄ x̄(k) −
T − k

4
V̄ B̄R(M̄, P̄)†B̄′V̄ ′. (5.64)

Then, considering k = 0 in (5.64) and from (5.44), we get that for any (ū, v) ∈ Vav,

E(z′0P̄z0) + x̄′0M̄x̄0 − V̄ x̄0 −
T
4

V̄ B̄R(M̄, P̄)†B̄′V̄ ′ ≤

E
( T−1∑

t=0

ν(Lz(t))2 − ξLx̄(t) + z(T )′P̄z(T ) + x̄(T )′M̄x̄(T ) − V̄ x̄(T )
)
, (5.65)

with equality for the control strategy given by (5.61) and (5.62).

We can show now that ( ˆ̄u, v̂) ∈ Vav. Set K1 = K(M̄, P̄), K2 = K(P̄), and

φ = R(M̄, P̄)†B̄′V̄ ′, then Equations (5.58) and (5.59) hold for v(k) and ū(k) as in (5.61)

and (5.62), respectively. Since Z is the mean-square stabilising solution, we have that

rσ(Ā + B̄K1) < 1, rσ(Sx̄
K1

) < 1, rσ(SK2) < 1, and for α = 1, Lemma 5.3 item (ii) gives the

convergence of U x̄(k) and Uz(k) to stationary matrices U x̄ and Uz as k → ∞, respec-

tively. Therefore, limT→∞
1
TE(‖x̄(T )‖2) = limT→∞

1
T tr[U x̄(T )] = 0 and limT→∞

1
TE(‖z(T )‖2) =

limT→∞
1
T tr[Uz(T )] = 0, showing that ( ˆ̄u, v̂) ∈ Vav.
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Since (ū, v) ∈ Vav, we have that

lim
T→∞

1
T
|E(z(T )′P̄z(T )) + x̄(T )′M̄x̄(T ) − V̄ x̄(T )|

≤ ‖P̄‖ lim
T→∞

1
T
E(‖z(T )‖2) + ‖M̄‖ lim

T→∞

1
T
‖x̄(T )‖2 + ‖V̄‖ lim

T→∞

1
T
‖x̄(T )‖ = 0. (5.66)

Thus, dividing Equation (5.65) by T , we get from (5.66), after taking the lim inf as

T → ∞, that

−
1
4

V̄ B̄R(M̄, P̄)†B̄′V̄ ′ ≤ lim inf
T→∞

1
T
E
( T−1∑

t=0

ν(Lz(t))2 − ξLx̄(t)
)
,

with equality for the strategy ( ˆ̄u, v̂) ∈ Vav, completing the proof. �

5.2.2.3 Discounted problem PD(ν, ξ)

In this section, we consider Problem (3.26) with a discount factor α ∈ (0, 1) as

defined in Equation (3.29):

PD (ν, ξ) : JPD (x̄(0), z(0)) = inf
(ū,v)∈Vα

lim inf
T→∞

( T−1∑
t=0

E
(
ν(Lzα(t))2 − αt/2ξLx̄α(t)

))
.

Recall from Section 3.4.2.1 that Āα = α1/2Ā, B̄α = α1/2B̄, Ãα
s = α1/2Ãs, B̃α

s = α1/2B̃s,

Āα(k) = α1/2Ā(k), B̄α(k) = α1/2B̄(k), zα(k) = αk/2z(k), xα(k) = αk/2x(k), x̄α(k) = αk/2 x̄(k),

ūα(k) = αk/2ū(k), vα(k) = αk/2v(k), and Equations (3.23), (3.24), and (3.26) respectively

as:

x̄α(k + 1) = Āα x̄α(k) + B̄αūα(k),

x̄α(0) = x̄0, k = 0, 1, . . . ,

zα(k + 1) =
(
Āα +

εx∑
s=1

Ãα
s wx

s(k)
)
zα(k) +

εx∑
s=1

Ãα
s wx

s(k)x̄α(k)+

(
B̄α +

εu∑
s=1

B̃α
s wu

s(k)
)
vα(k) +

εu∑
s=1

B̃α
s wu

s(k)ūα(k),

zα(0) = z0, k = 0, 1, . . . .

Next, we adapt the operators notation to incorporate the discount factor in order to

use the same reasoning and similar formulation as in the previous section to solve our

problem PD. Define the operators Aα, Gα, Rα, Kα, Mα, Pα, and T α as in Equations
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(4.19) and (4.29), replacing Ā, B̄, Ãs, and B̃s by Āα, B̄α, Ãα
s , and B̃α

s , respectively. We

suppose in this subsection that the mean square stabilising solution Zα =

M̄α 0

0 P̄α

 to

the GCARE T α(Zα) = 0 exists and we set K̆α =

Kα(M̄α, P̄α) 0

0 Kα(P̄α)

. Since Zα is the

mean square stabilising solution, we have that rσ(Āα + B̄αKα(M̄α, P̄α)) < 1 so that there

exist a unique solution V̄α satisfying

V̄α − α1/2V̄α(Āα + B̄αKα(M̄α, P̄α)) = ξL. (5.67)

By setting Pα
T = P̄α and Mα

T = M̄α in (5.45) and (5.46), respectively, we get that Pα(k) =

P̄α and Mα(k) = M̄α for all k. Consider V(t) = αt/2L in (5.49), Vα
T = αT/2V̄α, and set Vα(k)

as in (5.49). Then from (5.67), we have that Vα(k) = αk/2V̄α. We make the following

assumption.

Assumption 5.2: We assume that B̄α′V̄α′ ∈ Im(R(M̄α, P̄α)) and R(M̄α, P̄α)) ≥ 0.

Notice that from Assumption 5.2, we have that the conditions of Proposition 5.2

(see (5.51), (5.52)) are satisfied. We have the following theorem.

Theorem 5.6. Suppose that the mean square stabilising solution Zα =

M̄α 0

0 P̄α

 to

the GCARE T α(Zα) = 0 exists and that Assumption 5.2 is satisfied. Then, an optimal

control strategy for Problem (3.26) is given by û(k) = v̂(k) + ˆ̄u(k), where

v̂(k) = Kα(P̄α)z(k) and (5.68)

ˆ̄u(k) = Kα(M̄α, P̄α)x̄(k) +
α1/2

2
Rα(M̄α, P̄α)†B̄α′V̄α′. (5.69)

Furthermore, Problem (3.26) is well-posed and the optimal cost is

JPD (x̄(0), z(0)) = E(z′0P̄αz0) + x̄′0M̄α x̄0 − V̄α x̄0 −
α

4(1 − α)
V̄αB̄αRα(M̄α, P̄α)†B̄α′V̄α′. (5.70)

Proof. Following the same reasoning as in Theorem 5.5, we have from Proposition 5.2
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with V(t) = αt/2L in (5.44) and (5.49), that

Jk = zα(k)′P̄αzα(k) + x̄α(k)′M̄α x̄α(k) − Vα(k)x̄α(k) + γα(k)

= zα(k)′P̄αzα(k) + x̄α(k)′M̄α x̄α(k) − αk/2V̄α x̄α(k) −
1
4

V̄αB̄αRα(M̄α, P̄α)†B̄α′V̄α′
T∑

t=k

αt

≤ E
( T−1∑

t=k

(
ν(Lzα(t))2 − ξαt/2Lx̄α(t)

)
+ zα(T )′P̄αzα(T ) + x̄α(T )′M̄α x̄(T ) − αT/2V̄α x̄α(T )

)
,

(5.71)

with equality in (5.71) when we take the optimal control given by Equations (5.68) and

(5.69).

We can show now that ( ˆ̄u, v̂) ∈ Vα. Set K1 = Kα(M̄α, P̄α), K2 = Kα(P̄α), and φ =

Rα(M̄α, P̄α)†B̄α′V̄α′, then Lemma 5.3 holds substituting Ā, B̄, Ã, B̃ for Āα, B̄α, Ãα, B̃α and

x̄(k), z(k), v(k), and ū(k) as in (3.27), (3.28), (5.68), and (5.69), respectively. Since Zα

is the mean-square stabilising solution, we have that rσ(Āα + B̄αK1) < 1, rσ(Sx̄
K1

) < 1,

rσ(SK2) < 1, and for α ∈ (0, 1), Lemma 5.3 item (i) gives the convergence of U x̄(k)

and Uz(k) to zero as k → ∞. Therefore, limT→∞
1
TE(‖x̄α(T )‖2) = limT→∞

1
T tr[U x̄(T )] = 0,

limT→∞
1
TE(‖x̄α(T )‖) = 0, and limT→∞

1
TE(‖zα(T )‖2) = limT→∞

1
T tr[Uz(T )] = 0, showing that

( ˆ̄uα, v̂α) ∈ Vα.

Since ( ˆ̄u, v̂) ∈ Vα and recalling that zα(t) = αt/2z(t) and x̄α(t) = αt/2 x̄(t), we have

lim
T→∞
|E(zα(T )′P̄αzα(T ))| ≤ ‖P̄α‖ lim

T→∞
αTE(‖z(T )‖2) = 0,

lim
T→∞
‖x̄α(T )′M̄α x̄(T )‖ ≤ ‖M̄α‖ lim

T→∞
αT ‖x̄(T )‖2 = 0,

lim
T→∞

αt/2‖Lx̄α(t)‖ ≤ ‖L‖ lim
T→∞

αT ‖x̄(T )‖ = 0, (5.72)

and taking the lim inf as T goes to infinity in (5.71) with k = 0, we get that, from (5.72),

for any (ū, v) ∈ Vα,

E(z(0)′P̄αz(0)) + x̄(0)′M̄α x̄(0) − V̄α x̄(0) −
1

4(1 − α)
V̄αB̄αRα(M̄α, P̄α)†B̄α′V̄α′

≤ lim inf
T→∞

E
( T−1∑

t=0

(
ν(Lzα(t))2 − ξαt/2Lx̄α(t)

))
= lim inf

T→∞
E
( T−1∑

t=0

αt
(
ν(Lz(t))2 − ξLx̄(t)

))
, (5.73)

with equality for the control ( ˆ̄u, v̂) ∈ Vα, completing the proof. �

Remark 5.1: Lemma 5.3 allows us to analyse the behaviour of x(k) as k → ∞. As

shown in Theorems 5.5 and 5.6, the optimal control law will assume the form as pre-
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sented in Lemma 5.3 and the spectral radius conditions will be satisfied leading to

U x̄(k) → U x̄ and Uz(k) → Uz as k → ∞. Therefore, since E (x(k)x(k)′) = U x̄(k) + Uz(k),

when we apply the optimal control strategy ū(k) = K1 x̄(k) + α(k+1)/2

2 φ and v(k) = K2z(k), as

k → ∞ we obtain that:

i) αkE (x(k)x(k)′)→ 0 for 0 < α < 1 and

ii) E (x(k)x(k)′)→ (I − Sx̄
K1

)−1Ox̄(x̄) + (I − SK2)
−1Oz(U x̄, x̄) for α = 1,

where x̄ = (I − Ā − B̄K1)−1B̄φ/2. It shows that the obtained optimal control strategy for

Problem PL leads to the convergence of E (x(k)x(k)′) to a stationary matrix, while for

Problem PD, it leads to the convergence of E(xα(k)xα(k)′) to zero without E (x(k)x(k)′)

necessarily converging. In fact, as we will show in the numerical example in Chapter 9,

x̄(k) diverges to infinity while x̄α(k) converges to zero with probability 1, and E(‖x(k)‖2)→

∞ while E(‖xα(k)‖2) → 0. If the optimal control did not have a constant term, then

E (x(k)x(k)′) would converge to zero for α = 1 as can be easily verified from Lemma 9

with φ = 0.

Remark 5.2: We could consider the vector output y(t) ∈ RN and replace the cost

νVar(y(t)) − ξE(y(t)) by the cost

N∑
i=1

(νVar(yi(t)) − ξE(yi(t))) ,

y(t) = Lx(t), L = [L′1 · · · L
′
N]′ ∈ HN,n

and applying the mean-field formulation, we would obtain that

N∑
i=1

E
(
ν(Liz(t))2 − ξLi x̄(t)

)
=

E
(
νz(t)′(L′1L1 + · · · + L′NLN)z(t) − ξ(L1 + · · · + LN)x̄(t)

)
=

E
(
νz(t)′L′Lz(t) − ξ [1 · · · 1]Lx̄(t)

)
.

Therefore, we could apply our solution to this new cost by replacing νL′L by νL′L in

Equations (4.19) and (4.20) and L by (L1 + · · · + LN) in Equations (5.60) and (5.67).
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5.2.2.4 A numerical approach for the stabilising solution to the GCARE

In this subsection, we establish a link between a LMI (linear matrix inequality) op-

timisation problem and the maximal solution X+ ∈ M. This link provides a numerical

way of obtaining stabilising solution to the GCARE and the optimal control laws as pro-

posed in Theorems 5.5 and 5.6. In particular, using the Python library CVXPY and its

class "Problem" and method "Solve", one could easily set the LMI as the constraint and

maximise the unknown variable X. CVXPY relies on the open source solvers ECOS,

OSQP, and SCS. For background on convex optimisation, see the book (DIAMOND;

BOYD, 2016). Suppose that all matrices below are real and that D+(T ) is as defined

previously. Consider the following convex optimisation problem:

max tr(X) subject to

−X + I + Ă(X) Ğ(X)′

Ğ(X) R̆(X)

 ≥ 0,

R̆(X) > 0. (5.74)

Lemma 5.4. Suppose that Equation (4.23) is mean square stabilisable. Then, there

exist X+ ∈ M̂ such that X+ ≥ X for all X ∈ M if and only if there exists a solution X̂ for the

above convex programming problem (5.74). Moreover, X̂ = X+.

Proof. Note that, from Schur’s complement, X ∈ T(Hn) satisfies the restriction (5.74) if

and only if −X +I+Ă(X)−Ğ(X)′R̆(X)†Ğ(X) ≥ 0 and R̆(X) > 0, that is, if and only if X ∈ M.

Thus, if X+ ∈ M is such that X+ > X for all X ∈ M clearly tr(X+) ≥ tr(X) for all X ∈ M and,

since X+ ∈ M̂ ⊆ M, it follows that X+ is the solution of the convex programming problem

(5.74). On the other hand, suppose that X̂ is the solution of the convex programming

problem (5.74). Thus X̂ ∈ M , ∅ and from Theorem 5.4, there exists X+ ∈ M such that

X+ ≥ X̂. But from the optimality of X and the fact that M̂ ⊆ M, we have that tr(X+−X) ≤ 0.

Since X+ − X ≥ 0, we have that X+ = X. �
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6 IMPLEMENTATION PROCEDURES FOR THE FINITE AND
INFINITE-HORIZON CASES

In this chapter, we consolidate the results obtained above into chronological steps

in order to compute the optimal control for each of our problems using the mean-field

formulation. The reader is referred to Table 2 for the formulation equivalence of our

problems. Section 6.1 shows the steps to obtain a stabilising optimal control law for the

finite-horizon problems and Section 6.2 shows the steps for the infinite horizon cases.

In the following sections, we are going to repeat some equations to easy the reading.

6.1 Implementation procedure for the finite-horizon case

In Section 6.1.1, we show the procedures to solve the general problem PG (ν, ξ, l,D)

and then, in Section 6.1.2, we particularise the adaptations and extra steps to solve the

unconstrained Problem PU and the constrained Problems PL1, PL2, and PL3.

6.1.1 General problem

To solve the general problem PG as in Equation (3.18):

PG (ν, ξ, l,D) : J0 (x̄(0), z(0)) = min
(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − (ξ(t) − lV(t))L(t)x̄(t)

− lM(t)(L(t)x̄(t))2 + lD(t)
)
,

we start by computing backwards the operators M̄(k, P(k + 1)),M(k,M(k + 1), P(k + 1)),

V(k,M(k + 1), P(k + 1),V(k + 1)), and D(k,M(k + 1), P(k + 1),V(k + 1), γ(k + 1)) using the
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definitions in (4.1), (4.2), and (4.3) for some X,Y ∈ Hn:

A(k, X,Y) = Ā(k)′XĀ(k) +

ε∑
s=1

Ãs(k)′YÃs(k),

G(k, X,Y) =
(
Ā(k)′XB̄(k) +

ε∑
s1=1

ε∑
s2=1

ρs1,s2(k)Ãs1(k)′YB̃s2(k)
)′
,

R(k, X,Y) = B̄(k)′XB̄(k) +

ε∑
s=1

B̃s(k)′YB̃s(k),

K(k, X,Y) = R(k, X,Y)†G(k, X,Y),

M(k, X,Y) = A(k, X,Y) − G(k, X,Y)′R(k, X,Y)†G(k, X,Y),

M̄(k, X,Y) =M(k, X,Y) − lM(k)L(k)′L(k),

P(k, X) =M(k, X, X) + ν(k)L(k)′L(k),

V(k, X,Y,V) = V
(
Ā(k) − B̄(k)K(k, X,Y)

)
+ (ξ(k) − lV(k))L(k),

D(k, X,Y,V, γ) = γ −
1
4

VB̄(k)R(k, X,Y)†B̄(k)′V ′ + lD(k),

where P(k), M(k), V(k), γ(k), and their final values are defined as in Equations (4.4),

(4.5), (4.6), and (4.7), respectively, for k = T,T − 1, . . . , 0:

P(k) = P(k, P(k + 1)), P(T ) = ν(T )L(T )′L(T ),

M(k) = M̄(k,M(k + 1), P(k + 1)), M(T ) = −lM(T )L(T )′L(T ),

V(k) = V(k,M(k + 1), P(k + 1),V(k + 1)), V(T ) = (ξ(T ) − LV(T ))L(T ), and

γ(k) = D(k,M(k + 1), P(k + 1),V(k + 1), γ(k + 1)), γ(T ) = lD(T ).

Then, using Equations (4.8) and (4.9) given by

K(k) = R(k, P(k + 1), P(k + 1))†G(k, P(k + 1), P(k + 1)) and

H(k) = R(k,M(k + 1), P(k + 1))†G(k,M(k + 1), P(k + 1)),

we can compute v∗(k) and ū∗(k), k = 0, . . . ,T − 1, applying Equations (5.7) and (5.8):

v∗(k) = −K(k)z(k) and

ū∗(k) = −H(k)x̄(k) +
1
2
R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′.

Finally, from Theorem 5.1, we obtain the optimal control of System (3.1) using the

fact that u∗(k) = v∗(k) + ū∗(k) and computing x̄(k) and z(k) applying Equations 3.16 and
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(3.17) as in

x̄(k + 1) = Ā(k)x̄(k) + B̄(k)ū(k),

x̄(0) = x̄0, k = 0, . . . ,T − 1,

and

z(k + 1) =
(
Ā(k) +

εx∑
s=1

Ãs(k)wx
s(k)

)
z(k) +

εx∑
s=1

Ãs(k)wx
s(k)x̄(k)+

(
B̄(k) +

εu∑
s=1

B̃s(k)wu
s(k)

)
v(k) +

εu∑
s=1

B̃s(k)wu
s(k)ū(k),

z(0) = z0, k = 0, . . . ,T − 1.

To check if conditions (4.14) and (4.15) are true in each step of the interaction we

use Equation (4.17):B̄(k)V(k + 1)R(k,M(k + 1), P(k + 1))†B̄(k)′V(k + 1)′ B̄(k)V(k + 1)

B̄(k)V(k + 1) R(k,M(k + 1), P(k + 1))

 ≥ 0.

The expected output and its variance can be calculate using either Proposition 5.1

or a simulation for verification.

6.1.2 Unconstrained and constrained problems

To solve problems PU, PL1, PL2, and PL3:

PU (ν, ξ) := min
(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − ξ(t)L(t)x̄(t)

)
,

PL1(ω) : JPL1
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ν(t)(L(t)z(t))2 − ω(t)L(t)x̄(t) + ω(t)ε(t)

)
,

PL2(ω) : JPL2
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ω(t)(L(t)z(t))2 − ξ(t)L(t)x̄(t) − ω(t)ϕ(t)

)
, and
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PL3(ω) : JPL3
0 (x̄(0), z(0)) = min

(ū,v)∈V

T∑
t=0

E
(
ω(t) (L(t)z(t))2

− ω(t)a(t) (L(t)x̄(t))2

− (ξ(t) − 2ω(t)a(t)b(t))L(t)x̄(t) − ω(t)a(t)b(t)2
)
,

we follow the same steps as in Section 6.1.1 to solve PG and apply the input parame-

ters as shown in Table 1.

Parameter PU PL1 PL2 PL3

ν(k) ν(k) ν(k) ω(k) ω(k)

ξ(k) ξ(k) ω(k) ξ(k) ξ(k)

lV(k) 0 0 0 2ω(k)a(k)

lM(k) 0 0 0 ω(k)a(k)

lD(k) 0 ω(k)ε(k) −ω(k)ξ(k) −ω(k)a(k)b(k)2

Source: Author.

Note that for problems PC1, PC2, and PC3, we have to solve the Lagrangian dual

problem maxω≥0H , where H(ω) = PLi(ω), i = 1, 2 or 3 by applying a search algorithm

on ω using Equation (5.20) according to each problem PLi,

H(ω) = x̄′0M(0)x̄0 − V(0)x̄0 + γ(0),

for x(0) = x0 and z(0) = 0. In this thesis, we adopt the Nelder-Mead simplex method to

solve the Lagrangian problems, which is an available option of the Python optimisation

function "scipy.optimize.sco.fmin".

In particular for Problem PL1, we can also obtain ω∗ using Theorem 5.2 with

ω∗ = C−1(ε − D),

where, the elements in row r and column c of C ∈ HT and D ∈ HT,1 are given by

Equations (5.30) and (5.31):

Cr,c = L(r)
min(r,c)−1∑

i=0

B̃(i, r)

 c−1∏
j=i+1

AH( j)


′

L(c)′ and

Dr,1 = L(r)
r−1∏
j=0

AH( j)x0,
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with

AH(k) = Ā(k) − B̄(k)H(k),

B̃(k, t) =
1
2

 t−1∏
j=k+1

AH( j)

 B̄(k)R(k,M(k + 1), P(k + 1))†B̄(k)′,

for k = 0, . . . ,T − 1, and t = 1, . . . ,T .

6.2 Implementation procedure for the infinite-horizon case

In Section 6.2.1, we show how to use our results to obtain a stabilising optimal

control law for the long-run problem PL(ν, ξ) and, in Section 6.2.2, we adapt the same

procedures to solve the discounted problem PD(ν, ξ).

Recall that the superscript ˘ applied on a matrix or an operator will represent them

in the space T of appropriate dimension. For instance, Ă(Z) =

A(X,Y) 0

0 A(Y)

, and

when applied on a constant it will just repeat the constant in a block diagonal such as

in ˘̄A =

Ā 0

0 Ā

 ∈ T(Hn). In this way, we can write, for instance, Ă(Z) =

A(X,Y) 0

0 A(Y)

 =

˘̄A′

X 0

0 Y

 ˘̄A +
∑ε

s=1
˘̃A′s

Y 0

0 Y

 ˘̃As.

6.2.1 Long-run problem

We first consider the long-run problem as in Equation (3.25):

PL (ν, ξ) : JPL (x̄(0), z(0)) = inf
(ū,v)∈Vav

lim inf
T→∞

1
T

T−1∑
t=0

E
(
ν(Lz(t))2 − ξLx̄(t)

)
.

To solve the stabilisation problem, we need to obtain a mean square stabilising solution

to the GCARE T (Z) = 0 defined in Equation (4.21) for Z =

X 0

0 Y

 ∈ T(Hn):

T (Z) =

M(X,Y) 0

0 P(Y)

 − Z = −Z + I + Ă(Z) − Ğ(Z)′R̆(Z)†Ğ(Z) = 0,
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where the operators in (4.19) are defined as

A(X,Y) = Ā′XĀ +

ε∑
s=1

Ã′sYÃs,

G(X,Y) =
(
Ā′XB̄ +

ε∑
s1=1

ε∑
s2=1

ρs1,s2 Ã′s1
YB̃s2

)′
,

R(X,Y) = B̄′XB̄ +

ε∑
s=1

B̃′sYB̃s,

M(X,Y) = A(X,Y) − G(X,Y)′R(X,Y)†G(X,Y),

P(X) =M(X, X) + νL′L.

We obtain the stabilising solution to the GCARE by solving the LMI Equation (5.74)

numerically:

max tr(Z) subject to

−Z + I + Ă(Z) Ğ(Z)′

Ğ(Z) R̆(Z)

 ≥ 0,

R̆(Z) > 0.

Then, we can compute the gain K̆(Z) as

K̆(Z) =

K(X,Y) 0

0 K(Y)

 =

−R(X,Y)†G(X,Y) 0

0 −R(Y)†G(Y)


.

In the next steps, we wish to compute V̄. From Theorem 5.4 and T (Z) = 0, we

obtain that Γ(X) = ˘̄A. It follows from the definitions of N ˘̄A,K̆ (Z) in (5.41) and LK̆ (Z) in

(4.26) that N ˘̄A,K̆ (Z) = LK̆ (Z) for Γ(X) = ˘̄A, with

LK̆ (Z) =

LK (X,Y) 0

0 LK (Y)

 = Ă(Z) + K̆(Z)′R̆(Z)K̆(Z) + K̆(Z)′Ğ(Z) + Ğ(Z)′K̆(Z).

Now, we are in a position to check whether rσ(LK̆ ) = rσ(LK̆ ) < 1, and if so there is

a unique solution V̄ satisfying (5.60):

V̄(I − (Ā + B̄K(X,Y)) = ξL.

Finally, from Theorem 5.5, we can compute an stabilising optimal strategy for Prob-
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lem PD in Equation (3.25) using Equations (5.61) and (5.62):

v̂(k) = K(Y)z(k) and

ˆ̄u(k) = K(X,Y)x̄(k) +
1
2
R(X,Y)†B̄′V̄ ′.

Similarly as in the finite case, we obtain the optimal control for System (3.12) using

the fact that û(k) = v̂(k) + ˆ̄u(k) and computing x̄(k) and z(k) applying Equations (3.23)

and (3.24) as in

x̄(k + 1) = Āx̄(k) + B̄ū(k),

x̄(0) = x̄0, k = 0, 1, . . . ,

and

z(k + 1) =
(
Ā +

εx∑
s=1

Ãswx
s(k)

)
z(k) +

εx∑
s=1

Ãswx
s(k)x̄(k)+

(
B̄ +

εu∑
s=1

B̃swu
s(k)

)
v(k) +

εu∑
s=1

B̃swu
s(k)ū(k),

z(0) = z0, k = 0, 1, . . . .

To verify if Assumption 5.1 is true in each step of the interaction, we check if the

adapted Equation (4.17) to our system’s dynamics holds:B̄V̄R(X,Y)†B̄′V̄ ′ B̄V̄

B̄V̄ R(X,Y)

 ≥ 0.

The expected output and its variance can be calculate using either Proposition 5.1

or a simulation for verification.

6.2.2 Discounted problem

Recall the definitions of Āα = α1/2Ā, B̄α = α1/2B̄, Ãα
s = α1/2Ãs, B̃α

s = α1/2B̃s, Āα(k) =

α1/2Ā(k), B̄α(k) = α1/2B̄(k), zα(k) = αk/2z(k), xα(k) = αk/2x(k), x̄α(k) = αk/2 x̄(k), ūα(k) =

αk/2ū(k), and vα(k) = αk/2v(k) leading to the new system dynamics as in (3.27) and

(3.28).
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The steps to obtain an stabilising optimal control law for Problem (3.26),

PD (ν, ξ) : JPD (x̄(0), z(0)) = inf
(ū,v)∈Vα

lim inf
T→∞

T−1∑
t=0

αtE
(
ν(Lz(t))2 − ξLx̄(t)

)
,

re-written as in (3.29),

PD (ν, ξ) : JPD (x̄(0), z(0)) = inf
(ū,v)∈Vα

lim inf
T→∞

( T−1∑
t=0

E
(
ν(Lzα(t))2 − αt/2ξLx̄α(t)

))
,

follow the same procedures as described for the long-run problem in Section 6.2.1 with

the following differences.

Define the operators Aα, Gα, Rα, Kα, Mα, Pα, and T α as in Equations (4.19) and

(4.29), replacing Ā, B̄, Ãs, and B̃s by Āα, B̄α, Ãα
s , and B̃α

s , respectively.

Then, we compute the mean square stabilising solution Zα =

Xα 0

0 Yα

 to the

GCARE T α(Zα) = 0 by solving the adapted LMI Equation (5.74) numerically:

max tr(Zα) subject to

−Zα + I + Ă(Zα) Ğα(Zα)′

Ğα(Zα) R̆α(Zα)

 ≥ 0,

R̆α(Zα) > 0

and set K̆α =

Kα(Xα,Yα) 0

0 Kα(Yα)

. As beforfe and since Zα is the mean square sta-

bilising solution, we have that rσ(Āα + B̄αKα(Xα,Yα)) < 1 so that there exist a unique

solution V̄α satisfying Equation (5.67):

V̄α − α1/2V̄α(Āα + B̄αKα(Xα,Yα)) = ξL.

Finally, from Theorem 5.6, we obtain the optimal control using the fact that û(k) =

v̂(k) + ˆ̄u(k) and Equations (5.68) and (5.69):

v̂(k) = Kα(Yα)z(k) and

ˆ̄u(k) = Kα(Xα,Yα)x̄(k) +
α1/2

2
Rα(Xα,Yα)†B̄α′V̄α′,

with x̄(k) and z(k) as in (3.23) and (3.24), respectively.
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7 PORTFOLIO MANAGEMENT MODEL

A specific problem of great interest regards the management of a portfolio of as-

sets. This challenge is probably as old as the economy itself, but only with Markowitz,

it was framed in proper technical terms and improved in many ways since then.

In this chapter, we show how to model the dynamics of a portfolio of assets using

the notation describe in detail in Chapter 3, allowing us to use our results in control

theory to find the optimal allocation of its assets.

This chapter is organised as follows: In Section 7.1 we cite some examples on how

the complexity of portfolio management models evolved to meet specific needs such

as the consideration of changes in expectation, use of benchmarks, and computation

of cash flows. Then, in Section 7.2, we develop a portfolio selection formulation that

matches the notation of our system.

7.1 Brief historical overview

The seminal works of Markowitz (MARKOWITZ, 1952; MARKOWITZ, 1959) verified

the benefits of diversification and framed the asset allocation in a way to maximise the

expected portfolio’s return while minimising its variance. However, he incorporated

expectations about the future in a single period and did not consider the liabilities and

leverages.

Naturally, subsequent studies took into consideration more characteristics such as

leverage (TOBIN, 1958), liabilities (SHARPE; TINT, 1990), and a multi-period invest-

ment horizon (MOSSIN, 1968; SAMUELSON, 1969; HAKANSSON, 1970).

A variety of portfolio planning models have been proposed and investigated besides

the mean-variance model of Markowitz. They include the mean absolute variance, the

weighted goal programming, the minimax model which use alternative metrics for risk,

and the use of genetic algorithms for efficiently selecting a subset of stocks to trade.

The reader is referred to (SATCHEL; SCOWCROFT, 2003) for detailed information on

the subject.
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Other relevant characteristics of portfolio management models include the possibil-

ity of considering a benchmark, cash flows within the investment period, and a risk-free

security. The relevance of these characteristics becomes evident due to their practical

applications, exemplified below.

Exchange-traded funds or pension funds with a mandate to track the return of

an index is a classic example of a practical problem that led to the asset allocation

formulation with a benchmark. There, the optimisation considers the maximisation of

the excess return over the benchmark while minimising its variance.

Another example of model regards the Asset Liability Management (ALM) theory

in which we must consider cash inflows and outflows besides the benchmark and risky

assets. This type of model would be of great value for pension funds that must provide

returns higher than inflation in a long time horizon while creating wealth to honour the

actuarial liabilities.

A very relevant model described in detail in the next section regards a portfolio

with risky assets and a reference security (potentially risk-free). This type of model

is a typical application for portfolio management and, in Chapter 9, it was chosen to

exemplify our results.

7.2 Model formulation

In this section, we will examine a portfolio of market securities against a benchmark.

We consider m financial assets with random prices represented by the vector S̄ (t) ∈ Rm,

S̄ (t) = [S 1(t), . . . , S m(t)]′ ∈ Rm, (7.1)

with the first security representing a reference asset and consider a benchmark with

random prices B(t) ∈ R, t = 0, 1, . . . , T .

Set the random return vector R̄(t) ∈ Rm+1 with relative returns as

R̄(t) =


R1(t)

R̂(t)

Rm+1(t)

 , R̂(t) =


R2(t)
...

Rm(t)

 , (7.2)
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with Ri(t) =
S i(t+1)

S i(t)
, i = 1, . . . ,m, and Rm+1(t) =

B(t+1)
B(t) satisfying the following equation:

R̄(t) = ( ē + µ̄(t) ) + σ̄(t)w(t), (7.3)

where ē = [1, e]′, e ∈ Rm, is a vector with 1’s in all its components, µ̄(t) ∈ Rm+1 represents

the expected returns of the assets, while σ̄(t)σ̄(t)′ ∈ Rm+1,m+1 is the covariance matrix of

the returns.

The vectors {w(t)′ = [w1(t), . . . , wm+1(t)]; t = 0, . . . ,T − 1} constitute a sequence

of random and independent vectors of m + 1 dimension with zero mean and covariance

equal to the identity matrix.

For convenience, we write

µ̄(t) =


µ1(t)

µ̂(t)

µm+1(t)

 , µ̂(t) =


µ2(t)
...

µm(t)

 . (7.4)

Repeating the decomposition above to σ̄(t), we have that

σ̄(t) =


σ1(t)

σ̂(t)

σm+1(t)

 , (7.5)

where

σ1(t) =
[
σ1,1(t), . . . , σ1,m+1(t)

]
, (7.6)

σ̂(t) =


σ2(t)
...

σm(t)

 =


σ2,1(t) · · · σ2,m+1(t)
...

. . .
...

σm,1(t) · · · σm,m+1(t)

 , (7.7)

and

σm+1(t) =
[
σm+1,1(t), . . . , σm+1,m+1(t)

]
. (7.8)

Consider the wealth allocated to the ith asset at time t as Ui(t), U(t) =

[ U1(t), . . . ,Um(t) ]′ =

U1(t)

u(t)

.
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Let XU(t) be the portfolio’s value process associated with the investment strategy

U at each t = 0, 1, . . . , T . Suppressing the superscript U for simplicity and assuming

X(0) > 0, B(0) > 0, then the portfolio’s value at time t can be described as

X(t) = U1(t) + u(t)′e′, (7.9)

and the wealth allocated in the reference asset will be given by

U1(t) = X(t) − u(t)′e′. (7.10)

Considering there are neither cash inflows nor cash outflows, the portfolio is self-

financed and the wealth process is given by

X(t + 1) = R1(t)U1(t) + R̂(t)′u(t) (7.11)

and the benchmark process is given by

B(t + 1) = Rm+1B(t). (7.12)

Define the random vector

η(t) = R̂(t) − R1(t)e′ (7.13)

and, as shown in Proposition 1.1.3 in (DAVIS; VINTER, 1985), we can write

η(t) = E(η(t)) + σ̂(t)w(t), E(η(t)) = µ̂(t) − µ1(t)e′, E(w(t)) = 0, cov(w(t)) = I, (7.14)

with σ̂(t) = cov(η(t))1/2.

Set σ̂(t) = [σ̂1(t), . . . , σ̂m+1(t)], that is, σ̂ j(t) is the jth column of σ̂(t), and noticing that

σ̂(t)σ̂(t)′ =

m+1∑
j=1

σ̂ j(t)σ̂ j(t)′ =

[
σ̂1(t), . . . , σ̂m+1(t)

] 
σ̂1(t)′

...

σ̂m+1(t)′

 ,
the evolution of X(t) and B(t) in Equations (7.9), (7.11), and (7.12) can be represented
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as

X(t + 1) =

(1 + µ1(t)) +

m+1∑
s=1

σ1(t)sws(t)

 X(t)

+

(̂µ(t) − µ1(t)e′)′ +
m+1∑
s=1

(σ̂s(t) − σs
1(t)e′)′ws(t)

 u(t), (7.15)

B(t + 1) =

(1 + µm+1(t)) +

m+1∑
s=1

σs
m+1(t)ws(t)

 B(t). (7.16)

Setting x(t) = [X(t), B(t)]′, the first asset as the reference (or risk-free) security,

and rearranging Equations (7.15) and (7.16), we recover Equations (3.1) and (3.2) by

considering

Ā(t) =

1 + µ1(t) 0

0 1 + µm+1(t)

 , Ãs(t) =

σs
1(t) 0

0 σs
m+1(t)

 ,
B̄(t) =

(̂µ(t) − µ1(t)e′)′

0

 , B̃s(t) =

(σ̂s(t) − σs
1(t)e′)′

0

 ,
and L = [1, −1]. (7.17)

The system considered for the stabilisation problem is recovered considering the

same arguments as above, but with constant expected returns and covariances over

time leading to constant matrices in Equation (7.17). Note that the covariances are as-

sumed to be homoscedastic within each step t for the finite horizon and homoscedastic

over all steps for the infinite horizon.
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8 COMPARISON WITH RESULTS IN THE CURRENT LITERATURE

In this chapter, we apply the results obtained in Section 5.1 to recover some known

results analysed in (CUI; LI; LI, 2014) for the scalar portfolio selection problem using

the mean-field formulation. In Section 8.1, we write the portfolio selection problem as

the linear system with multiplicative noises introduced in Chapter 3, and show that the

solution derived from Theorem 5.1 coincide with the one obtained in (CUI; LI; LI, 2014).

In Section 8.2, we present the portfolio selection problem considering the risk control

over the bankruptcy problem.

We start by recalling the following result, known as the Schur’s complement.

Proposition 8.1: (Schur’s complement) Suppose that Q > 0 and R > 0. The following

assertions are equivalent.

a)

Q S

S ′ R

 ≥ 0.

b) Q ≥ S R−1S ′.

c) R ≥ S ′Q−1S .

Recalling that η(k) = R̂(k) − R1(k)e′ as defined in Section 7.2 and defining B(k) =

E(η(k))′E(η(k)η(k)′)−1E(η(k)), we have the following auxiliary result.

Proposition 8.2: For given scalars X and Y > 0, if B(k)X + (1 − B(k))Y > 0 then

R(k, X,Y) = E(η(k)η(k)′)Y + E(η(k))E(η(k))′(X − Y) > 0. (8.1)

Proof. From B(k)X + (1 − B(k))Y > 0 we have that X − Y > −Y
B(k) and thus

E(η(k)η(k)′)Y + E(η(k))E(η(k))′(X − Y) ≥
(
E(η(k)η(k)′) −

E(η(k))E(η(k))′

B(k)

)
Y. (8.2)

From the definition of B(k) and Schur’s complement (Proposition 8.1), we have thatE(η(k)η(k)′) E(η(k))

E(η(k))′ B(k)

 ≥ 0⇔
(
E(η(k)η(k)′) −

E(η(k))E(η(k))′

B(k)

)
≥ 0. (8.3)
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Applying Lemma 4 in (CUI; LI; LI, 2014), we have that R(k, X,Y) has inverse since by

assumption B(k)X + (1 − B(k))Y > 0. From this and (8.3) and (8.2), we get (8.1). �

8.1 Portfolio selection considering problem PU

Let us consider an asset allocation model as described in Chapter 7 with m financial

assets, one riskless asset (σ1 = 0), and no benchmark (µm+1 = 0 and σm+1 = 0). Define

s(k) = 1 + µ1(k) as the deterministic return of the riskless asset at period k and, as in

Equation (7.13), set the random vector η(k) = (1 + R̂(k)) − s(k)e′.

As shown in (CUI; LI; LI, 2014), cov(η(k)) > 0 and thus E(η(k)η(k)′) > 0. Note that

m∑
j=1

σ j(k)σ j(k)′ =

[
σ1(k) . . . σm(k)

] 
σ1(k)′

...

σm(k)′

 = σ̂(k)σ̂(k)′ = cov(η(k)). (8.4)

Finally, set B(k) = E(η(k))′E(η(k)η(k)′)−1E(η(k)). From Lemma 2 in (CUI; LI; LI, 2014),

we have that

cov(η(k))−1E(η(k)) =
E(η(k)η(k)′)−1E(η(k))

1 − B(k)
. (8.5)

Using the formulation as in Chapter 7, we recover Equations (3.1) and (3.2) con-

sidering Ā(k) = s(k), Ãs(k) = 0, B̄(k) = E(η(k))′, B̃ j(k) = σ j(k)′, ε = m, and L(k) = 1 so that

y(k) = x(k).

In what follows, consider lM(k) = 0, lV(k) = 0, and lD(k) = 0 for all k = 1, . . . ,T .

Since Ãs(k) = 0, we have from Remark 4.1 that M(k) = 0, A(k, X,Y) = s(k)2X, and

G(k, X,Y) = s(k)E(η(k))X. From Equation (8.4),

R(k, X,Y) = E(η(k))E(η(k))′X +

n∑
j=1

σ j(k)σ j(k)′Y = E(η(k))E(η(k))′X + cov(η(k))Y,

so that we have

R(k, 0, P(k + 1)) = cov(η(k))P(k + 1) > 0 (8.6)

provided that P(k + 1) > 0. Noticing that E(η(k)η(k)′) = cov(η(k)) + E(η(k))E(η(k))′ =
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cov(η(k)) + E(η(k))E(η(k))′, we have that for Y > 0,

P(k,Y) = s(k)2Y − s(k)2YE(η(k))′(E(η(k))E(η(k))′ + cov(η(k)))−1E(η(k)) + ν(k)

= s(k)2Y(1 − E(η(k))′E(η(k)η(k)′)−1E(η(k))) + ν(k)

= s(k)2Y(1 − B(k)) + ν(k). (8.7)

From this and Equation (4.4), we get that P(k) > 0 and P(k) = s(k)2(1−B(k))P(k+1)+ν(k),

k = 0, . . . ,T − 1, P(T ) = ν(T ). From Equation (8.6), we have that Assumption 4.1 holds

true. Note now that, since G(k,M(k + 1), P(k + 1)) = G(k, 0, P(k + 1)) = 0, we have from

Equation (4.6) that

V(k) = V(k,M(k + 1), P(k + 1),V(k + 1)) = s(k)V(k + 1) + ξ(k), V(T ) = ξ(T )

and since from Equation (8.5),

B̄(k)R(k,M(k + 1), P(k + 1))†B̄(k)′ =
1

P(k + 1)
E(η(k))′cov(η(k))−1E(η(k))

=
B(k)

P(k + 1)(1 − B(k))
,

we get from Equations (4.3) and (4.7) that for k = T − 1, . . . , 0,

γ(k) = γ(k + 1) −
V(k + 1)2

4P(k + 1)
B(k)

(1 − B(k))
, γ(T ) = 0.

Repeating the arguments above, we have from Equation (4.8) that

K(k) = s(k)(E(η(k))E(η(k))′ + cov(η(k)))−1E(η(k)) = s(k)E(η(k)η(k)′)−1E(η(k))

and from Equation (4.9) that H(k) = 0. From Equations (5.7), (5.8) and (8.5), we get

that

v∗(k) = −s(k)E(η(k)η(k)′)−1E(η(k))(x(k) − E(x(k))),

ū∗(k) =
V(k + 1)
2P(k + 1)

cov(η(k))−1E(η(k)) =
( V(k + 1)
2P(k + 1)

)E(η(k)η(k)′)−1E(η(k))
1 − B(k)

,

and from Equation (5.6), we obtain that Jk (E(x(k)), x(k) − E(x(k))) = P(k)(x(k)−E(x(k)))2−

V(k)E(x(k)) + γ(k).

Finally, for problem PU(ν, ξ), we have that

Ā(k) − B̄(k)H(k) = s(k) − E(η(k)′)0 = s(k) (8.8)
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and

1
2

B̄(k)R†(k)B̄(k)′V(k + 1)′ =
E(η(k)′)cov(η(k))−1E(η(k))V(k + 1)

2P(k + 1)

=
E(η(k)′)E(η(k)η(k)′)−1E(η(k))V(k + 1)

2(1 − B(k))P(k + 1)

=
B(k)V(k + 1)

2(1 − B(k))P(k + 1)
. (8.9)

Applying Equations (8.8) and (8.9) into Equation (5.22), we obtain that

E (yu(t)) = x0

t−1∏
j=0

s( j) +

t−1∑
i=0

 t−1∏
j=i+1

s( j)

 B(i)V(i + 1)
2((1 − B(i)) P(i + 1))

.

These results coincide with those obtained in Proposition 1 in (CUI; LI; LI, 2014).

8.2 Portfolio selection considering the risk control over bankruptcy

We now apply the results regarding the mean-variance with risk-control over a min-

imum expected output obtained in Section 5.1 to recover some known results analysed

in (CUI; LI; LI, 2014) using the mean-field formulation. Let us consider a financial mar-

ket as defined in Section 8.1 and a modification of problem PC3(ω) similar to the one

in (CUI; LI; LI, 2014) and stated as

PC3 (ξ, a, b) : max
u∈U

(
ξ(T )E (yu(T )) − ω(T )Var (yu(T ))

)
(8.10)

s.t. : Var (yu(t)) 6 a(t)
[
E (yu(t)) − b(t)

]2 . (8.11)

Taking L(t) = 1, ξ(t) = 0, t = 1, . . . ,T − 1, ξ(T ) = 1, and a(T ) = 0, we get the problem as

defined in Equation (3.11) for the Lagrangian multipliers ω(t), t = 1, . . . ,T − 1. We also

have that P(T ) = ω(T ), M(T ) = 0, V(T ) = 1, and γ(T ) = 0. Since Ãs(k) = 0, we have

that A(k, X,Y) = s(k)2X and G(k, X,Y) = s(k)E(η(k))X. From Equations (4.4) and (8.7),

we have that P(k) = s(k)2(1−B(k))P(k + 1) +ω(k), k = 0, . . . ,T − 1, P(T ) = ω(T ), and thus

P(k) > 0. From Equation (8.4), we have that

R(k, X,Y) = E(η(k))E(η(k))′X +

n∑
j=1

σ j(k)σ j(k)′Y = E(η(k))E(η(k))′X + cov(η(k))Y

= E(η(k)η(k)′)Y − E(η(k))E(η(k))′(Y − X). (8.12)
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Applying Lemma 4 in (CUI; LI; LI, 2014), we have that

R(k,M(k + 1), P(k + 1))−1E(η(k)) =
E(η(k)η(k)′)−1E(η(k))

B(k)M(k + 1) + (1 − B(k)) P(k + 1)
(8.13)

provided that B(k)M(k + 1) + (1 − B(k)) P(k + 1) , 0. Define

δ(k + 1) =
(1 − B(k)) P(k + 1)

B(k)M(k + 1) + (1 − B(k)) P(k + 1)
.

Since B(k) = E(η(k))′E(η(k)η(k)′)−1E(η(k)), we have from Equations (4.5) and (8.13),

M(k) = A(k, X,Y) − G(k, X,Y)′R(k, X,Y)−1G(k, X,Y) − ω(k)a(k)L(k)′L(k)

= s(k)2M(k + 1) −
s(k)2M(k + 1)2E(η(k))′E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

− ω(k)a(k)

=
s(k)2M(k + 1)2B(k) + s(k)2M(k + 1) (1 − B(k)) P(k + 1) − s(k)2M(k + 1)2B(k)

B(k)M(k + 1) + (1 − B(k)) P(k + 1)

− ω(k)a(k) = s(k)2δ(k + 1)M(k + 1) − ω(k)a(k). (8.14)

From Proposition 8.2, we have that if B(k)M(k +1)+ (1 − B(k)) P(k +1) > 0 then Assump-

tion 4.1 will hold and M(k) is given by (8.14). From Equation (4.6),

V(k) =

V(k + 1)
(
s(k) −

s(k)M(k + 1)E(η(k))′E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

)
− ω(k)a(k)b(k)

= V(k + 1)
( s(k)B(k)M(k + 1) + s(k) (1 − B(k)) P(k + 1) − s(k)B(k)M(k + 1)

B(k)M(k + 1) + (1 − B(k)) P(k + 1)

)
− ω(k)a(k)b(k) = s(k)δ(k + 1)V(k + 1) − ω(k)a(k)b(k) (8.15)

and, from Equation (4.7),

γ(k) = γ(k + 1) +
V(k + 1)2E(η(k))′E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

+ ω(k)a(k)b(k)2

= γ(k + 1) +
V(k + 1)2B(k)

B(k)M(k + 1) + (1 − B(k)) P(k + 1)
+ ω(k)a(k)b(k)2. (8.16)

Note that repeating the arguments above, we have from Equation (4.8) that

K(k) = s(k)E(η(k)η(k)′)†E(η(k)) (8.17)

and from Equation (4.9) that

H(k) =
s(k)M(k + 1)E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

. (8.18)
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From Equations (5.7) and (5.8), we get that

v∗(k) = − s(k)E(η(k)η(k)′)−1E(η(k))′(k),

ū∗(k) = −
s(k)M(k + 1)E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

x̄(k)

+
V(k + 1)E(η(k)η(k)′)−1E(η(k))

2B(k)M(k + 1) + (1 − B(k)) P(k + 1)

=
0.5V(k + 1) − s(k)M(k + 1)x̄(k)
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

E(η(k)η(k)′)−1E(η(k))

and, from Equation (5.20), we obtain that

H(ω) = M(1)δ(1)s(0)2x(0)2 − V(1)δ(1)s(0)x(0)

−

T−1∑
j=0

[
V( j + 1)2B( j)

B( j)M( j + 1) + (1 − B( j)) P( j + 1)
+ ω( j)a( j)b( j)2

]
.

Finally, we apply Equations (5.22), (5.23), and the operators in Equation (5.21) to re-

cover the expected output and its variance formulas obtained in (CUI; LI; LI, 2014). For

problem PL3(ω), we have that

Ā(k) − B̄(k)H(k) = s(k) −
s(k)M(k + 1)E(η(k)′)E(η(k)η(k)′)−1E(η(k))
B(k)M(k + 1) + (1 − B(k)) P(k + 1)

=
(1 − B(k)) P(k + 1)

B(k)M(k + 1) + (1 − B(k)) P(k + 1)
s(k) = δ(k + 1)s(k) (8.19)

and

1
2

B̄(k)R†(k)B̄(k)′V(k + 1)′ =
E(η(k)′)E(η(k)η(k)′)−1E(η(k))V(k + 1)
2(B(k)M(k + 1) + (1 − B(k)) P(k + 1))

=
B(k)V(k + 1)

2(B(k)M(k + 1) + (1 − B(k)) P(k + 1))
. (8.20)

Applying Equations (8.19) and (8.20) into Equation (5.22), we obtain that

E (yu(t)) = x0

t−1∏
j=0

δ( j + 1)s( j)

+

t−1∑
i=0

 t−1∏
j=i+1

δ( j + 1)s( j)

 B(i)V(i + 1)
2(B(i)M(i + 1) + (1 − B(i)) P(i + 1))

.
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From Equations (5.21) and (5.23), we obtain that

Var (yu(t)) =

t−1∑
j=0

[ (0.5V( j + 1) − s( j)M( j + 1)x̄( j))2
(
B( j) − B( j)2

)
(B( j)M(k + 1) + (1 − B( j)) P( j + 1))2

] t−1∏
l= j+1

s(l)2 (1 − B(l)) .

These results coincide with those obtained in Section IV in (CUI; LI; LI, 2014).
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9 NUMERICAL EXAMPLES

In this chapter, we illustrate the application of our results in the management of

a portfolio of financial assets against a benchmark. Section 9.1 shows examples re-

garding the unconstrained and constrained problems in finite-horizon while, in Section

9.2, we present a simulation regarding the stabilisation of the discounted problem with

infinite horizon.

We consider the Brazilian market with the reference asset represented by the CDI

("Cédula de Crédito Interbancário") and the benchmark represented by the inflation in-

dex IPCA ("Índice de Preços ao Consumidor Amplo"). The risk assets are represented

by the Ibovespa stock market index (IBOV), the fixed income index (IRF-M), the US

dollar versus the Brazilian reais (PTAX), and the gold. Table 3 shows the Bloomberg’s

ticker applied to retrieve the historical data used in our simulations and the assigned

index to each security as in our formulation in Chapter 7.

Table 3: Securities used in our simulations.

Index Security Ticker

1 Reference asset - CDI BZACCETP
2 Equity market index - Ibovespa IBOV
3 Fixed income index - IRF-M BZRFIRFM
4 Exchange rate - R$/US$ BZFXPINT
5 Gold XAU BGN
6 Benchmark - IPCA BZPIIPCA

Source: Bloomberg.

We obtained the historical prices from February, 3rd 2006 to February, 21st 2020 in

a interval of seven days, except for the IPCA, which is a monthly index. It led to 733

weekly returns assuming the IPCA has constant weekly returns within each month.

The weekly expected returns and their covariance matrix are shown below in Equa-

tions (9.1) and (9.2) for k = 0, . . . ,T − 1,.

µ(k) = [0.09 0.16 0.23 0.09 0.14 0.05]′ 10−2, (9.1)
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σ(k)σ(k)′ =



0.003 −0.006 0.003 −0.0007 0.002 0.0002

−0.006 11.82 0.50 −4.49 1.61 −0.01

0.003 0.50 0.16 −0.34 0.11 −0.002

−0.0007 −4.49 −0.34 4.29 −1.18 0.001

0.002 1.61 0.11 −1.18 5.91 −0.003

0.0002 −0.01 −0.002 0.001 −0.003 0.004


10−4. (9.2)

Finally, from Equations (9.1) and (9.2), we obtain the system dynamics using (7.17):

Ā(t) =

1 + µ1(t) 0

0 1 + µm+1(t)

 , Ãs(t) =

σs
1(t) 0

0 σs
m+1(t)

 ,
B̄(t) =

(̂µ(t) − µ1(t)e′)′

0

 , B̃s(t) =

(σ̂s(t) − σs
1(t)e′)′

0

 ,
and L = [1, −1].

For all problems, we set x0 = [1.0 1.0]′ and ρs1,s2(k) = 1 for s1 = s2 and 0 otherwise.

The finite-horizon problems will have a time horizon of T = 5 weeks.

In the following sections, we solve the finite and infinite-horizon control problems.

9.1 Constrained and unconstrained finite-horizon control

We solve problems PU, PC1, PC2, and PC3 by applying Theorem 5.1 together

with Table 1 and the risk coefficients and their respective restrictions as in Table 4 for

t = 1, . . . ,T .

Table 4: Risk and restrictions coefficients.

Problem ν(t) ξ(t) Restriction
PU 1 1 -
PL1 1 ω(t) ε = [0.12, 0.2, 0.3, 0.4, 0.5]′

PL2 ω(t) 1 ϕ = [0.005, 0.01, 0.01, 0.015, 0.015]′

PL3 ω(t) 1 a(t) = 0.05 and b(t) = 0.1
Source: Author.

To solve problem PU(ν, ξ), we follow the same steps as described in Sections 6.1.1

and 6.1.2 and start by computing backwards the operators in Equations (4.1), (4.2),

and (4.3) using the definitions as in Equations (4.4), (4.5), (4.6), and (4.7). Then,



Numerical examples 86

using Equations (4.8) and (4.9), we can compute v∗(k) and ū∗(k), k = 0, . . . ,T − 1,

applying Equations (5.7) and (5.8). Figure 1 shows the expected optimal control for the

simulation.

Figure 1: Expected optimal control law for the unconstrained problem PU.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Week

−80

−60

−40

−20

0

20

40

60

Ex
pe

ct
ed

 c
on

tro
   

aw
 (R

$)

CDI IBOV IFRM FX GOLD

Source: Author.

Finally, the expected output and variance is calculated using Proposition 5.1 and

simulation data leading to the results in Figures 2 and 3.



Numerical examples 87

Figure 2: Expected output for the unconstrained problem PU versus simulation data.
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Figure 3: Output variance for the unconstrained problem PU versus simulation data.
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In order to compare our results, we also solve PU using an embedding scheme as

applied in (COSTA; OLIVEIRA, 2012), where an auxiliary problem parameterised in λ

is solved. This technique led to exact the same optimal control law, expected output

and variance as before, corroborating our formulation.

In problems PC1, PC2, and PC3, we solved the Lagrangian dual problem PCi =

maxω≥0H(ω), where H(ω) = PLi(ω), i = 1, 2, or 3, is given by Equation (5.20) with their

respective input parameters as in Table 1. In this thesis, we adopt the Nelder-Mead

simplex method to solve the Lagrangian problems, which is an available option of the

Python optimisation function "scipy.optimize.sco.fmin".

The resulting Lagrangian multipliers for each problem are shown in Table 5.

Table 5: Lagrangian multipliers.

Problem ω∗′

PL1 [2.581, 0, 0.972, 1.118, 1.290]
PL2 [4.837, 0, 11.940, 1.112, 4.413]
PL3 [0, 33.034, 31.923, 30.672, 29.271]

Source: Author.

In the case of problem PC1(ω), we can also obtain ω∗ analytically. Thus, applying

Theorem 5.2, we obtain that

C =



2.007 2.009 2.010 2.012 2.014

2.009 4.365 4.369 4.373 4.377

2.010 4.369 7.315 7.321 7.328

2.012 4.373 7.321 11.456 11.466

2.014 4.377 7.328 11.466 19.188


10−2,

det(C) = 4.43 × 10−8, and D = [0.378, 0.757, 1.136, 1.516, 1.897]′ 10−3. Finally, applying

Equation (5.32), we get the same ω∗ as in Table 5 for PL1, corroborating our results.

Figures 4 to 12 show the expected optimal control, output and its variance for each

problem PL1, PL2, and PL3.
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Figure 4: Expected optimal control law for the constrained problem PC1.
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Figure 5: Expected output for the constrained problem PC1 versus PU.
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Figure 6: Output variance for the unconstrained problem PC1 versus PU.
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Note the variance for PC1 is higher than the one for PU as expected, given that we

are imposing a higher expected return for PC1 than for PU.

Figure 7: Expected optimal control law for the constrained problem PC2.
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Figure 8: Expected output for the constrained problem PC2 versus PU.
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Figure 9: Output variance for the unconstrained problem PC2 versus PU.
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For PC2, we are imposing a lower variance than the one for PU, and as a result,

we obtain a lower expected return for PC2 as expected.

Figure 10: Expected optimal control law for the constrained problem PC3.
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Figure 11: Expected output for the constrained problem PC3 versus PU.
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Figure 12: Output variance for the unconstrained problem PC3.
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Once more, the imposed restriction was attained with a lower variance for problem

PC3 and a resulting lower expected output as expected.

9.2 Infinite-horizon control and stabilisation

In the following example, we follow the procedures as described in Section 6.2.2

and solve the discounted problem as in Equation (3.29) using the system notations as

stated in Equations (3.27) and (3.28), in order to consider the discount factor, α.

Set α = 0.7 and ξ = ν = 1. The problem is to find the optimal portfolio allocation at

each time t that minimizes the functional cost (3.29), which can be solved applying the

results presented in Theorem 5.6.

To get the mean square stabilising solution to the GCARE, we solved the LMI opti-
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mization problem presented in Equation (5.74). For the optimal solution Zα ∈ T(Hn),

Zα =



2, 9027.9 −2, 9366.5 0 0

−2, 9366.5 2, 8798.1 0 0

0 0 1.552 0.655

0 0 0.655 1.210


× 10−4,

we get that T (Zα) = 0, Γ(Zα) = ˘̄A and rσ(LK̆α) = 0.7013, so that Zα is indeed the mean-

square stabilising solution to the GCARE and we can apply Theorem 5.6 to obtain V̄α

and the optimal control policies using Equations (5.68) and (5.69). Figure 13 shows

the resulting expected control law for PD.

Figure 13: Optimal asset allocation.
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Source: Author.

We present in Figure 14 the expected tracking error output of the portfolio value

against its benchmark, yα(t) = Lxα(t), and its variance, Var(yα(t)), after 10,000 simula-

tions.



Numerical examples 95

Figure 14: Expected output and its variance with a discount factor α.
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Figure 15 shows the individual evolution of both the expected portfolio value and the

benchmark without considering the effects of the discount factor α. Figure 16 shows

the behaviour of the state xα(k), confirming its convergence to zero with probability 1

even though the state x(k) does not converge in this particular example.

Figure 15: Expected portfolio value versus the benchmark.
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Figure 16: Expected value of xα(k).
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9.3 A note on the homoscedasticity hypothesis and future works including
Markov chains

In statistics, a sequence (or a vector) of random variables is homoscedastic if all

its random variables have the same finite variance. The complementary notion is

called heteroscedasticity. In the same sense, two or more normal distributions are

homoscedastic if they share a common covariance (or correlation) matrix. Therefore,

a homoscedastic sequence will display a constant covariance matrix over time.

To illustrate the homoscedastic (or heteroscedastic) of our dataset, we present be-

low how the covariance changed over time for some assets. In Appendix A, we present

the covariances among all assets. Figure 17 shows the covariance of CDI against

IFR-M (covariance 13) and the variance of gold (covariance 55) considering different

windows of measurement of 108, 270, 540 and all weeks in the dataset. Please, refer

to Table 3 for the index attributed to each asset.
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Figure 17: Covariances of CDI against IFR-M (covariance 13) and the variance of gold
(covariance 55).

Source: Author.

In the previous sections, we assumed that the covariances are homoscedastic

within each step k for the finite horizon and over all steps for the infinite horizon. How-

ever, as illustrated above, the covariances vary over time and a more appropriate way

of estimating it is paramount to obtain more significant results. There is an ample range

of possible ways of modelling covariances, and the most immediate choice is usually

between static and dynamic models.

The most common static models are those in which the covariance matrix is uncon-

ditionally estimated based on a sample of asset returns or estimated on a factor model

that captures cross-sectional characteristics of asset returns or estimated by shrinking

the sample covariance matrix towards alternative targets. See (CHAMBERLAIN, 1983;

CHAMBERLAIN; ROTHSCHILD, 1983; STOCK; WATSON, 1989; BAI; NG, 2002; BAI;

NG, 2007) for instance.
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Dynamic models are based on the idea that next period’s covariances depend on

the covariances of previous periods, and they are updated according to alternative au-

toregressive structures such as multivariate GARCH and stochastic volatility models,

see (SILVENNOINEN; ASVIRTA, 2005; SILVENNOINEN; ASVIRTA, 2009; BAUWENS;

LAURENT, 2005; BAUWENS; LAURENT; ROMBOUTS, 2006). On the other hand, tra-

ditional multivariate time series methods, as a rule, are quite helpless in large samples,

and alternatives methodologies such as dynamic factor models have been developed.

In these models, the market and the stock-specific components are assessed indepen-

dently in an attempt to improve the covariances estimates (SHIOHAMA et al., 2010).

Another approach considers stochastic volatility models which treat price volatility

as a random variable, allowing the price to vary over time and improving the accuracy

of calculations and forecasts. In particular, a Markov process or a Markov chain is

a stochastic model that seems well suited for financial modelling. A Markov chain

describes a sequence of possible events in which the probability of each event depends

only on the state attained in the previous event. For example, imagine a market that

operates in two states, i = 1 ("bearish"), i = 2 ("bull"), with their respective expected

returns and covariances given by µ = [−7% 5%] and cov = [0.25% 0.09%], and

assume that the transition probability matrix from state i (row) to j (column) is given by

P =

0.7 0.3

0.4 0.6

. Thus, given the current market state, say i = 1, it will continue in the

current state 70% of the time and show a −7% return or jump to another state in 30% of

the cases and present a return of 5%. More generally, we could imagine the expected

returns and their covariances jumping into a series os possible states over time.

Systems that incorporate such models have already been the subject of many

studies and several results related to the control of these systems have already

been derived in the literature, see (COSTA; FRAGOSO; MARQUES, 2005; DRAGAN;

MOROZAN, 2006a; DRAGAN; MOROZAN, 2006b; COSTA; PAULO, 2008; ZHANG;

WANG, 2015; MA; JIA, 2013) as a sample of works in this area. Therefore, the mean-

variance optimal control of linear systems with Markov jumps and multiplicative noises

seems an excellent candidate for future works regarding the mean-field approach de-

veloped in this thesis.
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10 CONCLUSION

In this work, we have considered stochastic multi-period mean-variance optimal

control problems and adopted the mean-field formulation to solve them.

Regarding the finite-horizon case, we generalise previous works in the literature

by considering discrete-time linear systems with multiplicative noises and tackle the

problem by expanding the state space to (E(x(t)), x(t)−E(x(t))) and develop the optimal

control in terms of (E(u(t)), u(t) − E(u(t))).

Thereby, under these new state and solution space, we can eliminate the quadratic

term from the variance in our initial problem and solve it to a variety of situations. We

first applied this method to a general problem with finite horizon and no constraints.

Then, we solved finite-horizon problems with inter-temporal restrictions on either the

expected value of the output or its variance and with restrictions on the minimum value

of the output associated with a given probability of occurrence.

An explicit sufficient condition for the existence of an optimal control strategy for

the general unconstrained problem and the value functions for the dual Lagrangian

optimisation problems for the constrained cases were derived. The solution to the

general problem was derived from a set of two generalised Riccati difference equations

interconnected with a set of linear recursive equations (see the definitions of P(k), M(k),

V(k) in Equations (4.4), (4.5), and (4.6)). We also presented a sufficient condition for

an explicit solution for the problem that restricts the output to a minimum value while

minimising its variance over time.

We then studied the multi-period infinite-horizon stabilisation problem of discrete-

time linear systems with multiplicative noises under the mean-field approach. We con-

sidered the existence of the maximal and mean square stabilising solutions for a set of

two generalised coupled algebraic Riccati equations associated to the infinite-horizon

stochastic model, see the definitions ofM, P, and T in Equations (4.19) and (4.21).

Regarding the stabilisation problem, the results include a necessary and sufficient

condition under which there exists the mean square stabilising solution and a sufficient

condition under which there exists the maximal solution to the GCARE, all in terms
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of the spectral radius of an operator. Compared to previous works, we generalise

the stabilisation conditions to just some positive semi-definite matrices and kernels

restrictions on some matrices and also solved both the discounted cost problem and

the long-run problem with linear terms on the performance criterion.

When specialised to the optimal asset allocation problem, we showed that our re-

sults retrieve some known outcomes in the literature. We also applied our formulation

to a numerical case of a multi-period portfolio selection problem with a benchmark,

where we find the best asset allocation to optimise the sum of the trade-off between

the variance and the excess return of the portfolio against a benchmark.

Regarding future developments, we would consider the following relevant topics:

1. Development of optimal control policies using the mean-field formulation consid-

ering systems that follow a Markov process. Systems modelled by Markov jumps

are well suited to represent environment dynamics that are subjected to signifi-

cant changes. There are many examples of situations that would require such

complex models, for instance:

i) Aircraft control systems dealing with abrupt changes in pressure, altitude,

and speed.

ii) Economic models facing the burst of financial crisis or changes of govern-

ments and policies.

iii) Population models with the advent of diseases.

It would also lead to a more robust methodology to estimate the non-stationary

input parameters as described in Section 9.3.

2. Consideration of transactions costs and restriction on the maximum and minimum

limits allocated per asset. For a portfolio manager, for instance, imposing such

restrictions seems vital to the proper use of our system. Transactions costs are

always present as well as investment policies that limit the portfolio exposure to

specific assets, countries, currencies, or leverage.

3. Expansion of our results by applying the mean-field approach to filtering,

quadratic optimal control with partial information, and H∞-control.
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APPENDIX A -- COVARIANCE CHARTS

Figure 18 shows the covariance of each security as defined in Chapter 9, Table

3, assuming different windows of measurement of 108, 270, 540 and all weeks in the

dataset.

Figure 18: Covariances of assets 1 to 6 (see index in Table 3).
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Source: Bloomberg and author.


