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Resumo 
 

A estimativa da demanda Origem-Destino (OD) é essencial para o planejamento, 
projeto e gerenciamento de transporte. Vários estudos recentes na literatura têm 
utilizado a tecnologia de Identificação Automática de Veículos (AVI) para 
complementar os dados tradicionais de contagem de tráfego. No entanto, 
extrapolar a origem e o destino das trajetórias dos veículos, combinando origem 
e destino para construir modelos de matrizes OD, não tem sido amplamente 
explorado. Portanto, este trabalho propõe um método para estimar matrizes OD 
para caracterizar o tráfego de veículos de passageiros, cobrindo uma malha 
viária de grande porte em ambiente interurbano. Os dados foram obtidos de 
equipamentos ITS, como contadores de tráfego e sistemas de identificação 
automática de veículos (AVI), na malha rodoviária do Estado de São Paulo. 
Utilizando sistemas automáticos de coleta de pedágios (ETC) e reconhecimento 
automático de placas (LPR) como fontes de dados AVI. O método teve como 
objetivo reconstruir uma viagem inteira com base em observações consecutivas 
de veículos e estimativas de zonas de origem e destino com base no modelo 
gravitacional clássico de distribuição de viagens. Em seguida, um algoritmo T-
Flow Fuzzy foi aplicado para calibrar a matriz OD final. O desempenho do 
método foi comparado com as observações dos dados da pesquisa de campo 
na Região Metropolitana de São Paulo. A matriz calibrada tem um R2 de 0,96, 
indicando que nossa metodologia fornece resultados precisos. Além disso, 65% 
dos pontos de contagem forneceram GEH abaixo de 5, enquanto 88% ficaram 
abaixo de 10, resultados considerados adequados na literatura atual. Outros 
estudos podem aplicar essa metodologia para analisar iniciativas de transporte 
público, como linhas de ônibus intermunicipais e sistemas ferroviários de 
passageiros, e estudos de viabilidade de concessões rodoviárias. 
 
Palavras-chave: AVI; identificação automática do veículo; trajetória do veículo; 

estimativa de DO; método gravitacional. 
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Abstract 
 

The Origin-Destination (OD) demand estimation is essential to transportation 
planning, design, and management. Several recent studies in the literature have 
used the Automatic Vehicle Identification (AVI) technology to complement 
traditional traffic count data. However, extrapolating the origin and destination 
of the vehicle trajectories, matching origin and destination to build matrices OD 
models, has not been extensively explored. Therefore, this paper proposes a 
method to estimate OD matrices to characterize passenger vehicles' traffic, 
covering a large-scale road network in an interurban environment. The data was 
obtained from ITS equipment, like traffic counters and AVI systems, in the 
Brazilian State of São Paulo road network. We used Electronic Toll Collection 
Systems (ETC) and License Plate Recognition (LPR) as AVI data sources. The 
method aimed to reconstruct an entire trip based on consecutive observations 
from AVIs and estimates of origin and destination zones based on the classical 
gravity model of travel distribution. Then, a T-Flow fuzzy algorithm was applied 
to calibrate the final OD matrix. The method's performance was compared to the 
observations of field research data in the Metropolitan Region of São Paulo. The 
calibrated matrix has an R2 of 0.96, indicating that our methodology provides 
very accurate results. Besides, 65% of the counting points provided GEH below 
5, while 88% were below 10, which are considered suitable results in the current 
literature. Further studies could apply this methodology to analyze public 
transportation initiatives, such as intercity bus transit lines and passenger rail 
systems, and road concessions viability studies.  
 

Keywords: AVI; automatic vehicle identification; vehicle trajectory; OD estimation; 

gravitational method. 
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1. Introduction 
 

Transportation engineering requires the update and development of a significant 

number of demand studies in which, together with other network simulation models, is 

essential for an extensive range of studies. They range from road concessions, public-

private partnerships, reduction of greenhouse gas emissions, and improvements in 

transportation modes for regional and urban users. 

 

The origin-destination (OD) matrix is essential for efficient traffic management. It 

designates the demand for trips between traffic zones (M. Nigro et al., 2018). 

Estimating the origin-destination matrix and route flows provides transportation 

engineers with essential data on the features of trips. Several surveys were conducted 

to obtain complete and quality information on the population's transportation behavior. 

However, in the case of Brazil, never has been such a survey applied at a state level. 

The biggest obstacles are the prohibitive cost and inter-regional demand for trips being 

lower than inter-metropolitan. 

 

With the deployment of automated vehicle identification (AVI) systems that collect the 

license plates, ids, timestamps, and position of vehicles, a new dataset that can help 

map vehicle path trajectories were made available. For example, electronic toll 

collection (ETC), a typical AVI system, has been deployed in numeral high traffic 

density roads in Brazil.  

 

Recently, several studies have been published where researchers use the technology 

to complement the compilation of traditional traffic count data, considering a 

complement to traditional detection, providing travel time and count data for OD 

estimation. Other researchers have put effort into model partial vehicle trajectory. 

However, extrapolating the origin and destination of the vehicle trajectories, matching 

origin and destination for matrices has not been extensively modeled. Another novel 

aspect is the scale of the study area, covering over 240,000 km2, with its challenges 

when it came to varying levels of population density and AVI equipment coverage. This 

dissertation aims to develop a method to estimate origin-destination matrices to 

characterize passenger vehicles' traffic in a road network covering an interurban 

environment with more than 1,000 traffic zones or more than 500 cities. The proposed 
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method uses data from ITS equipment, such as road traffic counters and vehicle 

identification systems (AVI), including Electronic Toll Collection Systems (ETC) on 

highways and radar (License Plate Recognition - LPR) in an urban environment. 

Additionally, socio-economic data and data from the O/D Survey of the São Paulo 

Metro - on the Contour Line of the Metropolitan Region of São Paulo were used. 

 

ITS equipment, such as vehicle counter and Automated Vehicle Identification (AVI) 

systems, makes it possible to map vehicle trajectories from a database containing 

license plates, vehicle IDs, timestamps, and vehicle position. For example, Electronic 

Toll Collection (ETC), a typical AVI system, has been deployed in several high-traffic 

density roads in Brazil. In addition, studies described how the technology could 

complement traditional traffic data, providing travel time and count data for OD 

estimation (N. J. Van Der Zijpp, 1997), (M. P. Dixon et. al., 2002), (H. S. Massamani 

et. al., 2006). Furthermore, other researchers have tried to model partial vehicle 

trajectory (Y. Feng et. al., 2014), (W. Rao et. al., 2018), (E. Castillo et. al., 2008a), (E. 

Castillo et. al., 2008b), (C. Zhang et.al., 2019).   

 

The method consists of three phases: path reconstruction, origin demand extrapolation 

- providing origin and destination selection and demand distribution - and calibration. 

The path reconstruction step translates AVI records into partial routes. The OD 

extrapolation step distributes each partial route flow into the set of most likely origin 

and destination zones, weighed by a combination of population and employment. The 

calibration step takes the estimated OD matrix and applies a fuzzy logic algorithm to 

adjust the matrix into matching count data. 

 

The matrix estimation phase determines all the routes between a pair of origin and 

destination zones, consisting of three paths: the first stretch is from the first AVI 

equipment to the origin zone. The second path is a set of sections from the first AVI 

equipment to the last AVI equipment on which the vehicle was identified, resulting from 

the path reconstruction step. Furthermore, the third path is from this last AVI equipment 

to the destination zone. Only the routes that meet the eligibility criteria will be 

considered to compose the matrix, the sum of the selected routes. The matrix is the 

sum of trips between the origin/destination pairs. The matrix calibration phase makes 
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use of road traffic counters. Additionally, the validation phase uses the O/D Survey of 

the City of São Paulo Metro. 

 

Commercial vehicles are subject to many additional variables such as large logistic 

centers, factories, ports, and farms placements. Estimating distribution weights for 

passenger vehicles is less affected by these variables and is represented by population 

and employment in a simplified way. For this reason, a decision was made to restrict 

the study to passenger vehicles. The increased complexity to determine distribution 

weights for commercial vehicles was the contributing factor. Although commercial 

vehicle impact on the road infrastructure is relevant to any capacity-restricted 

assignment model, this methodology did not apply these models in the trip distribution, 

as such a decision was made to not incorporate the Level of Service (LoS) impact of 

commercial vehicles in the network.  

 

The contributions of this dissertation include (1) proposing a method reconstructing 

partial route trajectories, (2) extrapolating origin and destination through a gravity 

model of flow distribution, and (3) generating origin-destination matrices in a extensive 

scale network consisting of the State of Sao Paulo, Brazil. Additionally, (4) answers if 

the present AVI equipment coverage can output a matrix capable of providing a 

transportation profile for the region. The OD matrix outputted in this dissertation brings 

a more up-to-date transportation profile in the region. Furthermore, the method enables 

its use for datasets from 2021 forward. Further studies can utilize the OD matrix to 

analyze public transportation initiatives, such as inter-municipal bus transit lines, 

passenger rail systems, and study road concessions: expected revenue, optimal 

segmentation of regions achieving higher coverage, and lane expansions. Another 

important line is the study of congestion in intercity traffic, where lane expansions, new 

lanes, or new highways can be proposed. 

 

1.1. Justification 
 

In Brazil throughout the mid-1950s, technological advancements in the automotive 

sector and increasing average household income made acquiring private vehicles 

much more accessible for most of the population. As a result, it has reduced pressure 

on the public transport system. However, instead of breaking this cycle, the public 
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policies adopted chose to encourage this demand for increased private transportation, 

investing more in road infrastructure to the detriment of public transit. 

 

Presently, public transport systems require significant investment to replace private 

transportation, especially when discussing rail transport. When discussing this 

thematic at the inter-regional level, it becomes much worse since passenger railway 

transport in the State of Sao Paulo ceased to exist, in any significant matter, decades 

ago. Even in the case of freight transport, most of the rail network is inactive or idle. 

Existing rail concessions are only maintaining the most lucrative segments. 

 

Although idle or in poor conditions, the lines still exist and could be reactivated by 

adopting proper technology and techniques. For this reason, it is necessary to carry 

out feasibility studies that consider the technical, economic, environmental, and 

financial aspects. It is important to note that these studies should be based on reliable 

data. Thus, this aspect will be treated with special attention in this research. 

 

Although inferior in absolute terms, the inter-regional trip demand is one of the most 

significant issues in logistics and transportation in the State of Sao Paulo. The 

highways that approach the densely populated city of Sao Paulo are already at their 

limit capacity, generating high traffic and congestion. Any region with a large enough 

economic activity attraction is subject to inter-regional demand for trips. Although the 

dissertation focuses on the State of Sao Paulo, parallels with other regions in the world 

are conceivable. 

Besides giving the possibility to estimate demand in new railway projects, Origin-

destination matrices are also essential to a multitude of other transportation studies, 

especially on the concession of highways and infrastructure. 

Given the importance of the matrices and the difficulty in obtaining them by traditional 

methods, this dissertation aims to use data from multiple sources of information, 

especially vehicle identification. 

 

1.2. Objectives 
 

The method aims to reconstruct an entire trip based on consecutive observations from 

AVIs, comprising three phases. First, AVI records are converted to partial routes in a 
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path reconstruction. Then, we build a seed OD matrix in the second phase, 

extrapolating the origin from the first AVI equipment and the destination from the last 

AVI equipment. The ETC and LPR data processing algorithm and intermediate 

mapping and imaging were developed in R language, thus obtaining the seed OD 

matrix. Next, a fuzzy logic algorithm is used to extrapolate the initial matrix while 

matching to observed traffic count data. 

   

The main objectives of this study are: 1) a method to reconstruct vehicle trajectories 

in a large-scale intercity road network, using ITS equipment like AVI data records; 2) 

estimation of origin-destination zones based on socioeconomic data; 3) seed OD 

matrix update using traffic count data; 4) OD matrix that adequately describes the 

transport profile for the Sao Paulo State region.  

 

The proposed method was tested through an experiment that consisted of using 2017 

data from 700 ETC lanes in the State of SP and over 3000 radar equipment (LPR) in 

urban regions, spread over an area of 248,209 km2, covering approximately 10,000 

km of highways and a population of over 44 million.  

 

1.3. Document structure 
 

The study uses approaches in different levels of detail to estimate those matrices 

based on automatic vehicle identification databases. The matrices resulting went 

through the second step of calibration, more representative of actual volume data in 

highways. Possible issues with the proposed methodologies are discussed, such as 

equipment deficiencies and biased samples. In addition, it addresses the potential of 

automatic vehicle identification resources to improve deficiencies with commonly 

constructed surveys applied to estimating and calibrating simulation models.  

 

This paper is organized as follows. Section 2 brings the literature review, focusing on 

an analysis of OD estimation and trajectory reconstruction with AVI technology and 

looking back on previous methods using traditional count data. Section 3 outlines the 

available data. Section 4 describes the proposed method towards partial path 

reconstruction, origin and destination extrapolation, and OD matrix calibration under a 

fuzzy logic commercial algorithm (PTV Visum). Section 5 exposes the results and 
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proposed methods for validating the algorithm. Section 6 presents the conclusions 

drawn from the results of this study and suggests directions for further research. 
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2. Current Primary Data and Literature Review 
 

This chapter brings insight into the current state of primary data available to studies 

carried on in the State of SP. As well as a systematic review of the literature on this 

topic 

 

2.1. The current state of primary data 
 

The state of SP has its secretary of transportation (STL/SP), responsible for conducting 

studies within the region. Their main goal is to increase their knowledge in the complex 

system of its many roads and transportation modes by developing and analyzing 

commissioned studies of various areas of expertise within transportation engineering. 

For this reason and to evaluate many different regions at once, in 2005, the secretary 

and its partner regulatory agency Artesp/SP1 conducted a large-scale survey with 128 

origin-destination and classified count points, distributed among 75 state roadways and 

three federal roadways. 

 

In total, 114,000 interviews were conducted, over 47,000 with truck users and over 

66,000 with automobile users. The survey also included more than 15,000 stated 

preference interviews, in 28 points distributed along with the road system divided 

among car (53%) and truck transportation modes. 

 

The survey supplied input data for the generation and distribution model calibration, 

with cars being classified by user motive (work, leisure, other) and commercial vehicles 

by their number of axles (2, 3, 4, 5, 6, or more). 

 

Many types of studies used and continue to choose matrices derived from these 

surveys, especially road concessions. However, despite that fact, even with this vast 

amount of information gathered, sampling did not capture trips from many cities, only 

by these trips being present outside the survey locations. For this reason, whenever a 

 
1 State autarchy responsible for regulating and supervising the Road Concession Program, Passenger 
Inter-municipal Public Transportation, and all other public transportation services delegated to the State 
of Sao Paulo 
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new study is in demand, there is still the need for the execution of complementary 

surveys to update the matrices. 

 

By 2015, the secretary repeated the 2005 sample scheme (128 points) and increased 

it to 230 points. The purpose of sampling the 128 points from 2005 was to evaluate the 

changes in the decade, while new ones would aim to cover previously uncovered 

areas. Stated preference surveys would also expand in the amount executed. 

 

However, a few factors would pose great difficulty for the success of this new set of 

surveys. Concluding these surveys would require a significant amount of necessary 

financial resources. Surveys also generate great disruption in traffic flow and safety 

concerns, and bring unidentified seasonal aspects of transportation due to short 

sampling periods, evidencing the main issue that this dissertation aims to propose a 

solution to. 

 

The most usual method to solve this issue is conducting domiciliary surveys. The 

demographic Census is the most comprehensive survey available for considering 

every country's domicile, with its latest one concluded in 2010 by IBGE to describe the 

population. Additionally, it applies complete questionnaires in a Census sample 

evaluating population mobility.  

 

However, its analysis does not allow the estimation of origin-destination matrices since 

its questions aim towards primarily migratory behavior. The focus of the Census is not 

to adequately evaluate trip behavior. 

 

Due to this reason, there is a need to plan specific surveys. These domiciliary origin-

demand surveys are designed to investigate trip characteristics of all domicile 

residents, determining destinations, frequencies, motives, modal choice, and other 

aspects. In addition, road and public transport (trains, airports, buses, subway) surveys 

on the outer edges complement this method.  

 

The Domiciliary origin-destination survey’s primary goal is to create a passenger 

transport model. In the State of SP, examples are: 



17 
 

• Metrô (Subway) and the STM (Secretary of Metropolitan Transportation) 

domiciliary origin-destination survey, carried on in the metropolitan region of 

Sao Paulo every 10 years (since 1977). The 2017 edition is in its final stages. 

• STM domiciliary origin-destination survey carried on in the metropolitan region 

of Campinas in 2011. 

 

2.2. Literature Review 
 

The present dissertation acquires data from the latest available technology systems in 

transportation engineering in the State of SP, being at the forefront of applying data 

from these systems in transportation models. While recent in Brazil, these systems 

have already been operational for more extended periods in more developed countries. 

Therefore, this section’s purpose is to present standard practices, methods, and 

knowledge acquired from employing data from these sources in this present 

dissertation. 

 

Although the classical 4-step model (ORTÚZAR & WILLUMSEN, 1990) is still the 

central line adopted by most transportation engineering companies, government 

agencies, and professionals, newer techniques come to supply several shortcomings 

due to non-computational data in previous methods concerning passenger or cargo 

trips. Nigro et al. (2018) state that to conduct such traffic analysis both for static and 

dynamic studies, specialists must have quality in: a representation of the traffic network 

and a data set to simulate network routes and predict the traffic flows.  

 

An accurate and reliable OD matrix, as well as vehicle trajectory data are required for 

efficient urban traffic management. Conventionally, OD matrices were derived from 

surveys, a process that is time-consuming and usually does not reach precision 

enough due to biased response and reduced sample size. With the progress of traffic 

detection technology, newer methods were propositioned to estimate OD’s matrix 

using different data sources. These different approaches, for the most part, can be 

divided into two distinct categories, the fixed-sensor-based and the trajectory-based 

methods.  
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2.2.1. Fixed sensor research 
 

Fixed sensors include radar detectors, loop detectors, and video sensors. These 

collect traffic information like volume, occupancy, and speed at fixed locations. 

Substantial research has been devoted to estimating the time-dependent traffic states 

such as OD demand with fixed-sensor data.  Initially, Willis and May (1981) proposed 

a proportional distribution method. The method considered that the OD volume on 

roads proportional to the volume at entrance ramps. Nihan (1982) proposed a gravity-

based model. The author assumed that trip distances meet a Gamma distribution, 

inferring that demand on both costs extremes is a slight possibility. Van Zuylen and 

Willumsen (1980) used the entropy minimizing principle to construct the OD estimation 

problem based on link volume observation. Michael (1991) adopted the generalized 

least squares approach to estimate OD matrices with a combination of survey and 

traffic count data. Yang et al. (1994) examined the problem of estimating OD matrices 

from traffic counts in congested networks using a least-squares technique. Since fixed 

sensors are not able to capture traffic’s origin and destination, these aforementioned 

methods introduce assumptions to estimate an OD matrix. 

 

2.2.2. Dynamic OD matrix estimation research 
 

As for dynamic OD matrix estimation, Cremer and Keller (1987) developed four 

approaches to identify OD flows and tested their performance using synthetic and 

actual data from several intersections. The results show greater accuracy and 

demonstrated the advantage of the dynamic approaches to the static estimation 

procedures.  

 

Lin and Chang (2007) applied estimated travel time distributions to OD matrix 

estimation. Sherali and Park (2001) proposed a parametric optimization based on a 

least-squares model to determine time-dependent trip tables. Furthermore, the 

algorithm needed additional time-dependent shortest-path subproblems to solve the 

problem, generating additional path information. The published methodology was 

appropriate only for offline processing purposes. Xie et al. (2011) proposed a maximum 

entropy model (ME-LS) estimator for elastic OD flow tables and tested its results on 

the Sioux Falls sample network. Castillo et al. (2014) give a Bayesian statistical 
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approach, to study the gamma-based hierarchical optimization problem to estimate OD 

matrices. They proposed a multi-level approach consisting of: (1) a Wardrop minimum 

variance assignment model for deriving the route choice probabilities, (2) a least-

squares problem for obtaining OD sample data, and (3) a maximum likelihood problem 

aimed at estimating the posterior modes. They applied the method to a sample network 

and a medium-sized city (Ciudad Real). The proposed method seems to be sufficiently 

validated, providing similar flows to existing techniques.  

 

Tobias and Bernhard (2013) proposed a combined method for short-term detector 

forecasting in urban locations and traffic demand estimation using the forecasted 

counts as constraints for estimating OD flows, route, and link volumes. Jiang et al. 

(2011) and Mussone et al. (2010) employed the neural network for large-scale OD 

estimation. They concluded that the developed methods enable capturing the spatial-

temporal correlations between OD demands. Lee et al. (2011) presented a dynamic 

OD estimation model based on a three-phase traffic theory. Real-time traffic data, such 

as traffic flows, speed, and occupancy, was used to estimate the dynamic OD demand 

between the on-ramp and off-ramp on the freeways. Perakkis et al. (2012) applied a 

Bayesian statistical approach to incorporate trip-generation, trip-attraction, and trip 

distribution in one model. A model of OD flows derived from census data associated 

to a set of explanatory variables is presented. 

 

Another source of fixed data source comes from Bluetooth and Wi-Fi. Bugeda et al. 

(2010) simulated an experiment before deploying AVI technologies by emulating the 

logging and time stamping of a set of vehicles equipped with Bluetooth and Wi-Fi 

mobile devices. The detection of these devices could provide estimates of travel times 

and OD patterns for the entire population of vehicles, and ad hoc procedures based on 

Kalman filtering were successfully implemented. Barcelo et al. (2010) looked into the 

quality of the data produced by Bluetooth detection of mobile device equipped vehicles 

for travel time forecasting and developed a Kalman Filter method to estimate time-

dependent OD matrices in highways. Suitable results were achieved in uncongested 

traffic conditions. 
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2.2.3. Automatic Vehicle Identification Research 
 

In contrast to traffic detector data typically used by the previous researchers, automatic 

license plate recognition data (AVI) represent another important and emerging data 

source for estimating dynamic OD demands and serving traffic network management. 

The trajectory data records the movement of distinct vehicles, therefore providing a 

consistent data source for OD demand estimation. Unlike traditional fixed sensors, they 

identify each vehicle or traveler via an identification (ID), which makes trajectory 

reconstruction possible. Van der Zijpp (1997) proposed a constrained optimization 

formulation to estimate OD demand and identification rates together with license-plate-

based AVI data. Dixon and Rilett (2002) calculated link flow proportions based on 

observed travel time from AVI counts. They presented offline generalized least squares 

and online Kalman filtering models for estimating OD demand. 

 

Working with data collected near the Olympic Park in Beijing, China, Feng et al. (2015) 

applied particle filter theory combining five spatial-temporal trajectory correction factors 

to estimate the vehicle's trajectory. The proposed method demonstrated high accuracy 

(90%) for reconstructing trajectories when AVI coverage is 50%. Zhou and 

Mahmassani (2006) proposed a nonlinear ordinary least-squares model. Using a 

simplified Irvine, California testbed network, they combined AVI counts with other 

available information sources into a multi-objective optimization framework and 

exploited OD demand distribution information based on synthetic data.  

 

Rao et al. (2018) introduced an offline method for historical OD pattern estimation 

based on AVI data. First, a particle filter model. By searching potential paths in pre-

determined areas based on time geography theory, it was possible to generate the 

initial particles. Through the reconstruction of completed trajectories of all vehicles in 

numerous trips, path flow estimation is determined. The study also shows a minimum 

AVI sampling rate (60% for their Kunshan, China network) for estimating the OD 

patterns with reasonable accuracy. Castillo et al. (2010) discussed the problem with 

optimizing the usage of scanning technology for traffic estimation, mainly route flow. 

Considering three problems: minimizing the usage of resources used to estimate a 

given subset of flows, identifying the selection of scanned segments for a pre-

determined number of cameras, and solving the previous problems considering errors 
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in scanning and error recovery. First, an optimization problem was solved with the 

CPLEX solver in General Algebraic Modeling System (GAMS). The method is then 

applied in a medium-sized and straightforward network of Cuenca.  

 

Fu et al. (2017) proposed a method using stochastic integer programming and branch 

and bound integer L-shaped algorithms. The first stage they approached minimizing 

total traffic scanning installation cost and the impact of paths not covered. Their second 

stage attempted to model and reach a solution that minimizes paths not covered for a 

given scenario and sensor locations. Castillo et al. (2008a) attempted to reconstruct 

the path flow to estimate the OD matrix through a Bayesian network and the Wardrop 

minimum variation model. He also examined the impact of the layout of AVI facilities 

on OD estimation based on the path-flow reconstruction method (2008b).  

 

More recent research regarding optimal placement and locating scanning devices are 

present in Sanchez Cambronero et al. (2020). For obtaining the necessary data for 

analyzing traffic and making network forecasts, the authors aimed to address the fact 

that current methodologies aimed at network modeling and data processing are not 

fully adapted for the usage of license recognition devices. Route flows are an essential 

variable in models that used data from plate scanning (predominantly AVI sensors). At 

the same time, traditional methods are based on observing link and/or OD flows.  

 

On the subject of historic automatic fare collection (AFC) data usage, Yang et al. (2020) 

introduce a nonlinear programming model for predicting the dynamic OD matrix for an 

urban rail transit system. The model assigns passenger flow to the hierarchical flow 

network, calibrated by backward propagation (BP) of the first-order gradients and 

reassignment of the passenger flow with the benefit of assigning updated weights 

between different layers. Zhang et al. (2019) extracted OD patterns with historical 

trajectory data to simulate Ramp Metering as an effective measure to alleviate freeway 

congestion. The research shows that ramp metering with trajectory data increases the 

throughput by another 4% compared with conventional fixed-sensor data, displaying a 

significant advantage under heavy traffic, situations in which traditional control loses 

effectiveness. 
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In order to obtain the OD matrix and the traffic volume metrics, Teknomo et al. (2012) 

converted trajectory data into a group of linear algebraic equations to represent the 

relationship between the OD matrix and the path flow. Parry et al. (2012) integrated 

discrete trajectory and traffic volume data to analyze OD estimation based on the 

maximum likelihood estimation method. Using high-accuracy electronic toll data, Kwon 

(2006) used a simple moment estimation method based on electronic vehicle tags for 

dynamic OD estimation. Kwon et al. (1994) used sampled vehicle trajectories to 

estimate a time-dependent OD trip table, with the addition of restrictive assumptions 

for a complete traffic assignment map. 

 

2.2.4. GPS and other on-board detectors research 
 

On-board detectors return yet another data source on vehicles. With detailed traffic 

data collected in the Chengdu, China city center, Ásmundsdóttir (2008) constructed 

matrices, analyzed route choices and trip lengths. The data consists of traffic counts, 

video camera data, and taxi floating car data (FCD). He concluded that FCD can be 

employed for estimating matrices and analyzing the route choices. However, noted 

that FCD data lack some information, due to the fact of being only sample data. 

 

Yang et al. (2017) presented two OD estimation models using sampled GPS position 

data of probe vehicles and link flow counts: (1) scaped probe OD as prior OD (SPP), 

and (2) probe ration assignment (PRA). The SPP model uses scaled probe vehicle 

matrices as prior matrices and applies conventional generalized least squares (GLS) 

into bringing OD correction with link counts. The second model (PRA) is an extension 

of SPP with observed link ratios as additional information in the estimation procedure. 

Under the circumstance of heterogeneity of probe penetration ratios among different 

OD pairs, the PRA model would outperform SPP. Such a situation could occur 

principally when probe vehicles are a specific type of commercial vehicle. Huang et al. 

(2018) applied the human mobility model estimating hourly travel demands for 

Shenzhen, China. He proposed a model combining the advantages of mobile phone 

data with urban transportation data to predict crowd gatherings that commonly 

originate traffic jams.  
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Other authors introduced GPS data, such as Ibarra-Espinosa et al. (2019) and Moreira-

Matias et al. (2016). However, because not every vehicle is equipped with GPS devices 

or not all travelers use navigation apps, Eisenman et al. (2004) presented that probe 

penetration rate influences estimation accuracy. His research also noted that adding 

probes has a significant value in providing estimates for OD flows. By introducing a 

small percentage of probe trips (e.g. 10%), when no prior seed matrix is introduced, 

improvement of matrix estimates by more than two order of magnitudes is possible. 

 

2.2.5. Mobile and Big Data research  
 

Herrera et al. (2008) propose and evaluate two approaches to reconstruct path flow by 

employing mobile data and data collected by stationary detectors. The first approach 

is based on data assimilation methods (so-called Nudging method or Newtonian), and 

the second is based on Kalman filtering.  

 

Toole et al. (2005) use call detail records (CDRs) from mobile devices in association 

with open and crowd-sourced census records, geospatial data, and surveys. Daily trips 

were constructed through an analysis of consecutive observations from users at 

different stop points during determined time frames. Zin et al. (2018) continues with 

the usage of CDR in Yangon, the economic center of Myanmar. Yang et al. (2020) 

pointed out that with traffic flow estimation, classical statistical methods are still widely 

applied in not only short-term predictions, but for more generalized studies as well. 

Nevertheless, machine learning methods are also shown to be very useful due to their 

many advantages, for example, problem adaptability, generalization, and learning 

ability, which is very important to estimate traffic flows using field data. For example, 

Sanchez Cambronero et al. (2010) used Bayesian networks, Bai and Chen (2019) 

used neural networks, and Lui et al. (2018) used deep learning. 

 

By combining research findings, partial vehicle trajectory represents a new approach 

to solving travel time analysis, construction relationships between path and links, path 

flow estimation, and OD demand acquisition. Research on reconstructing a complete 

vehicle trajectory based on a partial trajectory and corresponding spatial-temporal data 

is continuously improving. 
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2.3. Chapter final remarks 
 

This chapter discussed the current stage of primary data and its many deficiencies and 

exposed the most recent attempts to collect information essential for transportation 

forecasting. 

 

In sequence, this dissertation analyzed a selection of the most recent and relevant 

studies on utilizing AVI data for demand estimation. 

 

There have been many successful methods that use AVI datasets in generating OD 

demand estimations, some more complex and comprehensive than the method 

proposed in this dissertation. However, these studies all focused on smaller networks 

and highly sampled information, failing to fulfill the requirements of country-wise 

analysis, with its large networks and vastly more significant amounts of OD pairs. This 

dissertation uses a different approach with a few aspects from other studies. Such as 

gravitational attraction model (in contrast with particle filtering) and consecutive 

observations from users at different points, more familiar with mobile device data, to 

estimate paths on the network-defined OD zones. 
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3. Available Data 
 

In this dissertation, two separate databases are used as primary data sources. One 

being the vehicle count database (VCD) and the other being the Vehicle Identification 

Database (VID). Secondary information originates from other data sources, primarily 

economic and demographic information. 

 

3.1. Network 
 

The network used in this dissertation (shown in Figure 1) is a product of the work 

completed by the Logistics and Transportation Secretary and is under its usage policy. 

 
Figure 1: Network applied in this dissertation  

 
Source: Author 

 

3.2. Vehicle count database 
 

The vehicle count database (VCD) is organized by a sequence of volumetric data 

collected by toll plazas, SAT (traffic analysis system) equipment, and radars. Its 
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information spans a broad coverage of state road infrastructure Figure 2 shows the 

available data locations.  

 
Figure 2: Available data locations. 

 
Source: Author 

 

This dissertation was given access to 1,192 count data points originating from the state 

(Artesp/SP). Caution is necessary with the usage of a high amount of collection points. 

While it increases the calibration and validation of the model, it could also bring 

conflicting information that makes the calibration process incapable of reaching a 

balance. A method of filtering the desired set of count locations is discussed in item 

5.3.1. 

 

3.3. Vehicle identification databases 
 

In 2018, the Logistics and Transportation Secretary started to organize, tabulate, and 

store databases that come from systems that use different technologies capable of 

registering vehicles. 
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Plate (or another ID) registration, date, and time of passage of vehicles, combined with 

the location of the specific equipment that registers the information, allows the 

identification of the route (partial routes) used by each trip. One of the following 

systems should capture vehicles plates passing through their locations: 

• Electronic Roadway Monitoring from DER/SP2, by the usage of OCR; 

• Electronic Payment Systems by AVI, used by concessions across the State of 

SP (Artesp/SP); 

• Monitoring Systems partnered with the DETECTA system from the Military 

Police of the State of SP, used by the Operations Center of the Military Police 

(COPOM). 

 

Equipment present in these systems has not yet reached an outstanding coverage of 

the region, although it has a presence in the most highly-dense locations. Figure 3 

shows the zones with at least one piece of equipment present. These systems, when 

combined, are configured as a central data resource. Path reconstruction methods 

(section 4.1) make it possible to determine a set of trips from consecutive observations. 

 
2 State government department with the purpose to administrate the state owned roadway infrastructure.  
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Figure 3: Potential zones for the origin-destination where data is present (red) 

 
Source: Author 

 

3.4. Chapter final remarks 
 

The corresponding section gives an overview of the data available to the dissertation 

and its potential for, alongside the method proposed in the next chapter, fulfilling the 

primary goal of this dissertation. The section brings insight into the deficiencies in the 

data and the strategy of the method proposed to circumvent them. 
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4. Methodology 
 

This chapter discusses and presents the proposed methods for partial route 

reconstruction, OD extrapolation and distribution, and OD matrix calibration. The 

adopted strategy after the partial route’s reconstruction was to investigate the 

expansion algorithm on each of the main São Paulo highways that connect the RMSP 

to the rest of the state. This strategy configures a pre-validation step before the matrix 

calibration.  

 

The method is split into three sections, each providing valuable information to the 

following step. Figure 4 shows each step and how they tie in together. 

 
Figure 4: Diagram of the three sections in this paper 

 
Source: Author 

 

4.1. Partial routes reconstruction (Step 1) 
 

This step is designed to translate the vehicle identification database into partial routes 

that consist of sequential equipment locations that correctly identify a vehicle. Data 
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records present in the database consist of records as presented in Table 1 and Table 

2 

 
Table 1: Structure of vehicle database – DETECTA and DER system  

X coordinate Y coordinate Vehicle Plate Timestamp 
Source: Author 

 
Table 2: Structure of vehicle database – AVI electronic payment system 

X coordinate Y coordinate Vehicle Plate Timestamp Vehicle Category 
Source: Author 

 

These datasets differ in their capture system, data coming from DETECTA and DER 

systems use OCR speed scanners that record every plate captured by its software and 

image processing capabilities. Information captured is influenced by many variables, 

such as software reliability, climate variability, and readability of vehicle plates. The 

presence of so many variables gives each piece of equipment a potential margin of 

error, either by mistranslating a vehicle plate (error type A) or failing to register it (error 

type B). Comparing each equipment's total data entries to other types of information 

sources, such as vehicle counts, gives information about the order of magnitude and 

the prevalence of error type B. Not every scanner has other alternate equipment 

directly over or close to it that outputs information. This dissertation does not cover the 

effects of error type B and its prevalence. Bernardi (2017) discusses issues with OCR 

systems and brings a comprehensive insight into the technology. 

 

The capture systems used in the AVI system do not require image capture and 

recognition since the tolls scan each vehicle equipped with an information microchip 

across the many toll plazas in the State of São Paulo. This fact results in a system with 

significantly higher accuracy than OCR scanners, the downside being that not every 

vehicle carries these microchips. Adoption of this type of technology is different across 

regions; rural regions show a weaker adoption of the equipment. Highly urbanized 

regions show high adoption percentages. According to the data available to this 

dissertation, the average adoption in Sao Paulo state is at 57%3 by more recent 

 
3 https://estradas.com.br/artesp-autoriza-nova-operadora-de-pedagio-eletronico-nas-rodovias-
paulistas/ 
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estimates; according to the data available to this dissertation, adoption averages at 

56%.  The different accuracy of both systems plays an essential role in their usability. 

Therefore, data coming from each database are treated differently. 

 

4.1.1. Data coverage 
 

Ideally, as much granularity as possible of information is desirable. For example, 

having identification systems on every corner or kilometer of the road network would 

result in a much more reliable result of each vehicle trip's origin, destination, and 

midpoints.  

 

However, as seen in the Available Data section and Figure 5, sections of the State of 

SP where data granularity is not ideal, showing few equipment placements through the 

road network, which results in lower reliability on the model at those locations. 

However, these regions are usually less densely populated and have a lower demand 

for transportation infrastructure, so that a demand estimation model could fill these 

voids with sufficient data. As justified before, this added model is not used in this 

dissertation. 
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Figure 5: Equipment coverage 

 
Source: Author 

 

4.1.2. Error recognition and correction 
 

This step is necessary because, while automated systems have much higher data 

processing capabilities than manual processes, there are still errors coming from OCR 

software that could construct incompatible partial routes. 

 

It is not in the scope of this dissertation to treat error type B occurrences, but for error 

type A, a system of verification is simple and effective to filter most of these types of 

errors. The method consists of for each vehicle identified in a specific timestamp, 

querying its previous appearances and matching the displacement in a location with 

what should be a sufficient amount of time for it. Any vehicle showing a length of time 

lower than best-case intervals for each location pair is more than likely a different 

wrongly identified vehicle plate by the OCR software. A visual explanation of this 

process is present in Figure 6. For this explanation, fictional vehicle ESV4781 passed 

through segment A at 11:55:27, then again at segment B at 12:02:27, giving it an 10 
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minutes trip time. The best-case scenario is a vehicle going from point A to B in around 

25 minutes, giving an inconsistency on its speed detection of vehicle ESV4781, 

indicating an issue with identifying its license plate at location B. 

 
Figure 6: Example of Error A  

 
Source: Author 

 

The percentage of data removed through this filtering process was less than 1% of 

total records. 

 

4.1.3. Database sampling 
 

Throughout the activities in Group B, it will come of significant importance for vehicles 

to be present in both the DETECTA and the AVI system. The AVI system has a very 

high detection rate (over 99.9%), and it is safe to say that if a vehicle goes through an 

AVI-equipped tool, the record will show in the database. In such a manner, this step 

filters out every vehicle plate present in the DETECTA/DER system but not in the AVI 

system, with an additional 60% of records removed from the database due to this step. 
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4.1.4. Database simplification 
 

The modeling network plays a crucial role in many activities across this dissertation. 

Nonetheless, it is still a simplified representation of the complex road network in the 

State of SP. Many streets and less meaningful road connections are not represented 

in small cities and sparsely populated regions. For this reason, many scanners coming 

from the DETECTA/DER database are located in uncovered points by the simulation 

network. 

 

By the assignment step, some data could not be possible to model. Road networks 

usually have some sort of simplification proportional to their scale. In this case, 

equipment data outside of the road network model could not translate into accurate 

route information. Here, one simplification would be to group every scanner outside of 

the network to each zone within its borders. Then, every unique vehicle that remained 

within this equipment group had only its latest record kept. Grouping the scanners 

eliminate partial routes that would eventually become intra-zone trips. 

 

4.1.5. Partial route identification 
 

This step is designed to translate the vehicle identification database into partial routes 

that consist of sequential equipment locations that correctly identify a vehicle plate. 

When a vehicle first appears in the database, the corresponding record is regarded as 

the starting point of the partial route. For example, the following records all belong to 

this trip until one record appears on a road in which the time gap between this record 

and the previous is large enough, or there is a movement angle under a threshold.  

 

The process starts with each record of the identified plate. Its earlier record is also 

identified, and the time since the last record was calculated. Next, were calculating 

best-case times for this pair displacement through the in-network assignment. In the 

case of real-world time calculated outside a range that closely relates to actual times 

(with an added interval value of 6 hours), it is possible to infer that a stop occurred. 

Multiple intervals were tested in this dissertation, and the choice (6 hours) was selected 

based on which interval best matched with the surveys and expert suggestions. 
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An additional method applied was generating trip breaks once the trajectory of the trip 

shows a variation of less than 30° in a given direction. In this way, the outward journey 

is discriminated against the return journey. The threshold was selected based on an 

analysis of the network. Values over 30° would frequently characterize breaks on 

common paths consisting of multiple secondary accessways or mountainous roads.   

Figure 7a illustrates a path with turns over 30 degrees. Figure 9b illustrates a path with 

a turn with an angle under 30 degrees. Lastly, trips containing sub-segments with 

sequential records with speeds over 120 kph are removed, with that being over the 

highest regulated allowed speed in the state. This filtering also removes trips with 

vehicles being wrongly identified through OCR (LPR, radars). 
 

Figure 7: Visual simplified interpretation of path angles 

 
Source: Author 

  

This procedure creates splits in the vehicle identification sequence and determines 

each split as a trip destination; sequential records are the start of new trips. 
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Table 3 Sample vehicle equipment sequence with a defined split based on time interval threshold 

Row 
Vehicle 

ID 
Timestamp 

Equipment 

ID 
Sequence Split Trip 

1 231523 
5/10/2019 

15:59 
252 1  1 

2 231523 
5/10/2019 

17:05 
619 2  1 

3 231523 
5/10/2019 

17:13 
797 3  1 

4 231523 
5/10/2019 

17:57 
274 4  1 

5 231523 
6/10/2019 

09:36 
136 5 Y 2 

6 231523 
6/10/2019 

10:31 
43 6  2 

7 231523 
6/10/2019 

10:35 
451 7  2 

8 231523 
6/10/2019 

11:07 
347 8  2 

 

In the example presented in Table 3, vehicle 231523 goes through the equipment 

sequence presented in the “Equipment id” column. A significant amount of time has 

passed at the event in row five, marked as Y in the Table 3. With a split defined, the 

procedure breaks the sequence into two trips, the first beginning at id 252 and ending 

at 274 and a second trip, beginning at 136 and ending at 347. Figure 8 shows the 

general algorithm structure.  
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Figure 8: A flow chart explaining the origin-destination extraction from AVI data 

 
Source: Author 

 

First, all data points are ordered by vehicle ID and timestamp. Then, the algorithm 

compares two sequential records.  If they have the same ID, its timestamp difference 

is less than the threshold (best-case network time added with 6 hours), movement 

speed is below a maximum speed threshold (e.g., 120 kph), and the movement is 

below the angle threshold, then these records belong to the same trip, and the 

destination is updated to the last record. Otherwise, the former record is the destination 

of this trip, and the next record is the origin of the next trip. This way, the origin and 
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destination of each partial route and their corresponding location and time are 

extracted. Zhang (2019), published after this method was created, had a similar 

approach, with a few different assumptions. 

 

After the steps in this section, the method builds a database of equipment sequences 

(partial routes), grouped and summarized by vehicle category (bus, trucks, cars). By 

selecting its start and end-points, origin demand matrices are extrapolated. While 

these might seem like enough for a trip assignment step, start and end equipment are 

not directly correlated to start and end zone. Selecting the closest zones from each 

start and endpoint could give substantial errors to the zone matrices representing 

actual origins and destinations of trips. This circumstance creates the need for an 

additional step for determining the probable origin and destination zones with a more 

robust method, outlined in section 4.2. 

 

4.2. O/D Matrx construction (Step 2)  
 

As previously outlined in the earlier section, although the partial route identification can 

translate vehicle path data, it is limited to an assignment of actual O/D demand on the 

road network present at the time of data collection. Therefore, any O/D estimation 

based solely on it would not be appropriate for scenario-based studies, where different 

modes of transportation or road network changes are proposed. 

 

Therefore, it is necessary to establish a way to select and ponder whether some 

generic zone should be or not responsible for a proportion of the total vehicle flow on 

each partial route. In this scenario, each zone has a weight attributed to itself. This 

paper chose a premise of population and employment having equal contribution. 

Furthermore, a gravitational model was built using these weights and a variable of cost, 

attempting to fulfill the need for a probabilistic distribution of traffic flow. 

 

An algorithm was created that selects a set of likely origin and destination zones for 

each partial route generated. First, some essential points were established: the method 

depends on the minimum cost path assignment and the high reliability of ETC systems. 

In other words, it is postulated that if an ETC capture system did not detect a vehicle, 

it did not pass through that section. Then, they added a decimal fraction to a whole 
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network cost value allowed to different paths with or without ETC sections by their 

added final cost (Figure 9). 

 
Figure 9: Visual representation of decimal costs on ETC equipped network links 

 
Source: Author 

 

Identifying paths containing decimal components can detect trips that travel through 

ETC equipment. For a set of candidate origin or destination zones for each partial trip, 

any trips with a decimal portion would have their zone removed from the candidate 

zones. Table 4 gives an example of a trip with three candidate zones (A, B, and C). By 

analyzing zone B path cost, it is determined that it should have to cross an ETC for the 

vehicle to reach zone B. Therefore, the path and corresponding zone (B) are removed, 

and the information is not recorded in the database. The set of candidate zones for the 

vehicle is A and C. 
 

Table 4 Method to filter out paths that go through ETC detectors 

 
Path to 

zone A 

Path to 

zone B 

Path to 

zone C 

link 1 2   

link 2  3 3 

link 3 4  4 

link 4 (AVI)  0.01  

link 5 7 7 7 

link 6  3 3 

path total cost 13 13.01* 17 

Source: Author 

 

Another filtering process is eliminating origin and destination pairs with lower-cost path 

alternatives, thus eliminating improbable route choices. 
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Each unique trip is associated with an origin zone, then to the first AVI detector, then 

the last AVI detector, and finally its destination zone. This way, for each pair of first and 

last sensors the vehicle passed through, there is a set of possible origin and destination 

zones, based on the weights of each zone and the cost associated with the pair. The 

portion of the total combined trip count for the partial route segment and each of its 

origin and destination associated pairs are distributed following a classical gravity 

model of travel distribution. Following the model, force of gravity is more significant for 

a large object and small for a large distance. The classical model is as follows – 

Equation (1): 

 

G = 	g
𝑀𝑚
𝑟!    

 

Where: 

G: the force of gravity between two objects 

g: gravitational constant; 

M,m: object mass; 

r: distance between two objects 

 

Based on the notion of gravity, we can assume that a higher share of vehicles from a 

specific partial route comes from zones with higher attraction. Subsequently, the 

gravity flow model is established and indicated in Equation (2). Finally, the object mass 

is replaced with a sum of population and employment, each having equal contribution, 

and the radius is replaced with a time-based generalized trip cost. 

 

𝑉𝑜𝑙𝑢𝑚𝑒	𝑆𝑝𝑙𝑖𝑡",$% =	

(𝑃" + 𝐸") × 7𝑃$ + 𝐸$8
𝑐"$!

∑ (𝑃& + 𝐸&) × (𝑃' + 𝐸')
𝑐&'!&	∈	*!",'	∈	*#"

   

 

Where: 

𝑧+: Selected origin zones for partial route n, 

𝑧,: Selected destination zones for partial route n, 

cij: Generalized trip cost,  
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Pi: Population for zone i, 

Ei: Employment for zone i. 

 

The algorithm splits the partial trip dataset into chunks, joins tables containing all likely 

start and end zones (out of all 1.054), and then redistributes trip volumes with the 

calculated volume splits or probabilities. The complete process is exemplified in  

Figure 10. For a partial trip defined as having the first trip detection being in equipment 

3125 (𝑡!) and the last being 1231 (𝑡-), we can determine a set of probable starting 

zones (𝑡.), each having its attributed costs (𝑐.!) between the origin and the first partial 

route equipment, as well as a set of probable end zones (𝑡/), each with its attributed 

costs (𝑐-/) between the last partial trip equipment and the destination zone. The cost 

of the whole trip (𝑐./) is calculated by adding each sub-segment (𝑐.! + 𝑐!- + 𝑐-/). 
 

Figure 10: Visualization of the matrix estimation method 

 
Source: Author 

 

In practice, Figure 11 shows this step of the project: in purple are the routes that begin 

in a range of origin zones and have a high probability of passing, initially, by a specific 

toll; in red is the path from the first ETC equipment to the last one; in green are the 

most likely paths from that last equipment to a range of specific destination zones. 
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Figure 11: Result of a set of possible origin and destination zones for the selected partial route 

segment 

 
Source: Author 

 

Figure 12 shows the algorithm of OD estimation and flow distribution, and section 4.2.1 

details the commented algorithm 
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Figure 12: A flow chart explaining the algorithm for extrapolating network OD and distributing trip flows 

under a gravitational model 

 
Source: Author 

 

4.3. Matrix calibration (Step 3) 
 

The final activity group uses the T-Flow fuzzy algorithm present in the commercial 

software VISUM from PTV. The algorithm uses vehicle counts as input, correcting 

origin and destination pair total amount of trips to represent these volumes correctly. 

The steps in the algorithm are as follows. 
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4.3.1. Data Input 
 

The first step is to observe the travel demand for origin-demand pairs, which describes 

the trip demand pattern of a previous state. Multiple origin-destination pairs could have 

a contributing share of trips for each traffic count. The counted volumes account for 

the sum of all O-D pairs traveling on this specific link. The initial O-D matrix and the 

observed link counts are the input data for the algorithm. The first step of iterations is 

based on existing information of link flows and O-D demand.  

 

The notations of variables used in this step are presented as follows: 

 

ε: Maximum allowed change (percentage of matrix totals) of O-D estimated at each 

consecutive successful iteration. 

n: Iteration counter. 

𝑇"$%01: Number of trips from origin i to destination j in the starting O-D matrix. 

𝑃"$%: Link share from the calculated number of trips from origin i to destination j at 

iteration n. 

 

4.3.2. OD matrix assignment 
 

At every iteration (n), the objective matrix related to that iteration (𝑇"$%) is assigned to 

the transportation network by the User Equilibrium (UE) traffic assignment model, first 

proposed by Wardrop (Sheffi, 1985). With the calculated flows on network links by 

implementing the UE model, route choice shares (𝑃"$%) are then estimated. In 

transportation modeling, user equilibrium describes a route choice assumption 

proposed by Wardrop: “The journey times on all the routes actually used are equal and 

less than those which would be experienced by a single vehicle on any unused routes”, 

also known as Wardrop’s first principle. 

 

Next, the flows for each O-D pair are loaded onto the network based on the travel time 

(or impedance) of the alternative paths that could carry this traffic. The algorithm says 

that flows on links are in equilibrium when no user can improve his travel time by 

unilaterally shifting to another route choice. 
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4.3.3. OD matrix calibration 
 

The mathematical formulation for the O-D estimation problem considered in this 

research is shown below, Equations (3), (4) and (5). 

 

𝑀𝑎𝑥 − @ A 𝑇"$%

"$	∈23

𝑙𝑛 C
𝑇"$%

𝑡"$
D − 𝑇"$%E   

 

Restricted by: 

A 𝑇"$%

"$	∈23

× 𝑃"$% = 𝑣G&; 	∀𝑎   

𝑇"$% > 0   

 

Where: 

ε: Maximum allowed change of O-D estimated at each consecutive successful 

iteration. 

n: Iteration counter. 

𝑇"$%: Number of trips from origin i to destination j in the O-D matrix from iteration n. 

𝑡"$: Number of trips from origin i to destination j in the initial target O-D matrix. 

𝑣G&: Observed traffic count on the link with variable bandwidth. 

𝑃"$,&% : Route choice proportions for link a at iteration n. 

 

4.3.4. Convergence criteria 
 

The convergence criteria are based on the acceptable difference between the 

estimated matrix and the previous estimation step matrix (Step 1 and Step 2). If not 

met, the technique (T-Flow fuzzy algorithm) continues with redoing the previous steps, 

though, with the basic fact that the route choice proportions are updated by assigning 

the newly estimated matrix and not the initial target matrix. 
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𝐸 =A7𝑇"$% − 𝑇"$%4.8
!

"$

   

 

If E < ε stop, otherwise 𝑇"$% =
5$%
"65$%

"&'

!
 Moreover, go to data input. 

 

This step is exemplified in Figure 13 with a diagram of the algorithm's iterative nature.  

 
Figure 13: T-Flow fuzzy diagram 

 
Source: Author 

 

Yousefikia et al. proposed a modification in the T-Flow fuzzy algorithm in which the 

route choice proportions are updated successively at each iteration, allowing for a 

more precise estimation of the OD matrix [46]. However, the modified T-Flow fuzzy 

was not applied in this dissertation. 

 

4.4. Chapter final remarks 
 

This chapter presents the proposed method to fulfill the objectives outlined in this 

dissertation. It brings its steps, structure, organization, how it plans to employ the 

different datasets, and how they are treated.  A more robust and well-grounded 

technical approach to estimating attraction vectors could yield great improvements in 

the OD distribution analysis, consisting a subject for further study.  
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5. A Method for pre-Validation 
 

Following the development and application of the estimation algorithm, in conjunction 

with experts and academic advisors, a method for validating the result of extrapolating 

and distributing partial routes was proposed.  

 

The method compared aggregated zone demand with data from the Pesquisa Origem-

Destino 2017, carried out by the Companhia do Metropolitano de São Paulo. For each 

survey location, with an accompanied AVI-equipped toll plaza, we compared model 

and survey captured trips. Figure 14 displays the survey locations from Pesquisa 

Origem-Destino 2017 

  
Figure 14: Survey locations, Pesquisa Origem-Destino 2017 

 
Source: Pesquisa Origem-Destino 2017 

 

5.1. Zone aggregation 
The essential primary step was to establish a correlation and aggregation of zones 

between both sources. Unfortunately, the 517 zones defined in the survey (Figure 15) 

did not match the 1058 zones defined in this dissertation (Figure 16). Nevertheless, 

Bi-directional
Outwards
Inwards

São Paulo Metropolitan Region
Pesquisa Origem-Destino 2017
Survey Locations

Highways

RMSP Boundary

Municipal boundaries
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the significantly high level of detail was well-suited to establish an aggregated 

comparison of total origin and destination demand analysis. 

 
Figure 15: Zones, Pesquisa Origem-Destino 2017 

 
Source: (Costa, Breno, 2021) 
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Figure 16: Zones, Current Dissertation 

 
Source: (Costa, Breno, 2021) 

 

The aggregation method followed transportation planning best practices, focusing on 

zones higher in demand and inside the metropolitan region of the State of São Paulo. 

Zones within the metropolitan region had municipalities with closely tied transportation 

networks merged, except for the state capital, São Paulo, that due to its size was 

aggregated between its five zones (north, south, east, center, west). Figure 17 shows 

the result of this aggregation step, with 22 zones defined. 
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Figure 17: SP metropolitan zone aggregation  

 
Source: (Costa, Breno, 2021) 

 

With the focus of the survey being within the metropolitan region and the lack of 

detailed data from outside this boundary, we decided to aggregate zones to their 

respective microregions4. One exception was the Baixada Santista region, with its 

closely tied transportation networks between its municipalities. However, the fact that 

they are both located within the island of São Vicente required a different approach, 

detailed in Figure 18. 

 
4 https://pt.wikipedia.org/wiki/Mesorregi%C3%B5es_e_microrregi%C3%B5es_do_Brasil 
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Figure 18: Baixada Santista zone aggregation 

 
Source: (Costa, Breno, 2021) 

 

To represent the were long-distance trips in the remainder of the country, we adopted 

the criteria based on the direction of trips outside the boundaries of the dissertation. 

There are a few main axes of transportation coming from and to the State of São Paulo, 

and these can be represented by three zones, represented in Figure 19. These are the 

Southeast-Northeast zone, which includes roads that connect the state to the 

remainder of the Southeast region and the Northeast region. The center-west zone 

includes connections between the study area and the Center-west and North regions. 

Moreover, the final third is the South zone, interlinking the State of São Paulo with the 

South of Brazil. 
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Figure 19: Border aggregate regions 

 
Source: (Costa, Breno, 2021) 

 

In conclusion, Figure 20 shows the complete aggregation process, resulting in 82 

zones. 
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Figure 20: Final aggregated zones 

 
Source: (Costa, Breno, 2021) 

 

5.2. Assignment and R-squared analysis of model and survey data 
 

Following the aggregation of zones, we validated the partial results coming from the 

matrix estimation step with data from the Pesquisa OD 2017. In this section we aim to 

compare the fraction from the total flows coming from the surveys, to the results of the 

zone extrapolation.  

 

A characteristic of the main highways in the State of SP is that they are radial 

concerning the City of SP. For this reason, the analysis began separately for each 

highway – Rodovia dos Imigrantes, Rodovia Anchieta, Rodovia dos Bandeirantes, 

Rodovia Presidente Castelo Branco e Rodovia Anhanguera. The choice of these 

locations came since these highways represent the principal axes of transportation in 

the State of São Paulo, by each connecting with their four closely tied regions and 

transportation lanes to every other region in the country. Figure 21 explains this 

quadrilateral distribution in the region. 
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Figure 21: State of São Paulo Metropolitan Quadrilateral 

 
Source: Author 

 

An analysis of the R-square was performed between the Metro Survey data and the 

distribution proposed by the model. The initial procedure was aggregating trips from 

the estimated zone matrix (with 1,054 zones) into the proposed 82 zones by origin and 

comparing the contributions of each zone with an aggregation of the Metro Survey 

results (517 zones) into the same 82 zones. The analysis began separately for each 

highway – Rodovia dos Imigrantes, Rodovia Anchieta, Rodovia dos Bandeirantes, 

Rodovia Presidente Castelo Branco e Rodovia Anhanguera. The choice of these 

locations came since these highways represent the principal axes of transportation in 

the State of São Paulo, by connecting with their four closely tied regions and 

transportation lanes to every other region in the country. 

 

In the following sections, we discuss the results from the R-squared analysis for each 

of these axes and then an aggregated analysis of all data points. 
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Sistema Anhanguera-Bandeirantes, São Paulo - Campinas 
The aggregate of Rodovia dos Bandeirantes with Rodovia Anhanguera is defined as 

the Anhanguera-Bandeirantes System, as of today being administred by AutoBan. 

Considered as one of the best maintained in the country and holding significant 

commercial relevancy, as together with the Rodoanel Mário Covas and the Rodovia 

Anchieta, acts as the connection between two of the most important import and export 

centers in the country: the Viracopos International Airport and the Port of Santos. One 

other reason it holds so much significance is that it connects the two wealthiest 

metropolitan regions in the country: São Paulo and Campinas. Figure 22 to Figure 25 

show the result of the assignment prior and after the trip endpoint estimation algorithm 

for Rodovia dos Bandeirantes and Rodovia Anhanguera, respectively. These figures 

show the distribution effect and have guided the interpretation of data and the 

functionality of the procedure. Since this step only applied all or nothing assignment, 

as a tool of visual interpretation of general algorithm function, we can expect to see 

transference of trips from Bandeirantes to Anhanguera (or vice-versa) due to the close 

competition between both options. 
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Figure 22: Rodovia dos Bandeirantes, trip distribution, partial routes 

 
Source: Author 
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Figure 23: Rodovia dos Bandeirantes, trip distribution, zone extrapolation 

 
Source: Author 
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Figure 24: Rodovia Anhanguera, trip distribution, partial routes 

 
Source: Author 
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Figure 25: Rodovia Anhanguera, trip distribution, zone extrapolation 

 
Source: Author 

 

Afterward, we could plot the model outputs in a sequence of images from the 

summarized perspective or origin and another from destination demand. For example, 

Figure 26 and Figure 27 shows the R-squared analysis and result for OD survey 

outpost #809, Rodovia dos Bandeirantes. R-squared achieved was 0.463 and 0.477, 

respectively. 
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Figure 26: R-squared analysis of origin demand in outpost 809 (Anhanguera) 

 
Source: Author 
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Figure 27: R-squared analysis of destination demand in outpost 809 (Anhanguera) 

 
Source: Author 

 

The results for Rodovia Anhanguera were under this dissertation's expectations and 

could not be explained by a lack of sufficient data. Instead, the interpretation of the low 

accuracy came from the lack of network and regional detail on the smaller cities located 

between the Sao Paulo and Campinas axis, with a specific issue with the municipality 

of Cajamar and its attraction vectors exercising an over-represented attraction of 

demand. The results show the limitations of modeling demand attraction based solely 

on population and employment, thus recommending further studies to include other 

demand modeling effects. 

 

Figure 28 and Figure 29 show the R-squared analysis and result for OD survey outpost 

#810, Rodovia dos Bandeirantes. R-squared achieved was 0.889 and 0.591, 

respectively. 
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Figure 28: R-squared analysis of origin demand in outpost 810 (Bandeirantes) 

 
Source: Author 
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Figure 29: R-squared analysis of destination demand in outpost 810 (Bandeirantes) 

 
Source: Author 

 

As presented in the previous plots, the result from Rodovia dos Bandeirantes shows 

sufficient accuracy and is more in line with this dissertation's expectations. 

Furthermore, the reason is consistent with the issues brought on by the municipality of 

Cajamar, which in the case of Bandeirantes, does not hold a connecting network 

element, thus discounting its harmful effect. 

 

Sistema Imigrandes-Anchieta, São Paulo - Santos 
The Imigrantes-Anchieta system, known as SAI, comprises the SP-160 (Imigrantes) 

and SP-150 (Anchieta), with both crossing the Serra do Mar, the plains-highland 

connection between São Paulo and the coastal region of the state. As previously 

noted, it holds significant commercial relevancy tying the totality of Brazil to the Port of 

Santos, its most important marine import-export port. Figure 30 to Figure 33 show the 

result of assignment prior and after the trip endpoint estimation algorithm for Rodovia 

dos Imigrantes and Rodovia Anchieta, respectively. 
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Figure 30: Rodovia dos Imigrantes, trip distribution, partial routes 

 
Source: Author 
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Figure 31: Rodovia dos Imigrantes, trip distribution, zone extrapolation 

 
Source: Author 
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Figure 32: Rodovia Anchieta, trip distribution, partial routes 

 
Source: Author 
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Figure 33: Rodovia Anchieta, trip distribution, zone extrapolation 

 
Source: Author 

 

Afterward, we could plot the model outputs in a sequence of images from the 

summarized perspective or origin and another from destination demand. For example, 

Figure 34 and Figure 35 shows the R-squared analysis and result for OD survey 

outpost #805, Rodovia dos Imigrantes. R-squared achieved was 0.745 and 0.939, 

respectively. 
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Figure 34: R-squared analysis of origin demand in outpost 805 (Imigrantes) 

 
Source: Author 
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Figure 35: R-squared analysis of destination demand in outpost 805 (Imigrantes) 

 
Source: Author 

 

The results for Rodovia dos Imigrantes were within this dissertation’s expectations and 

one that had prospects of being more accurate since Santos and São Vicente acts by 

far as the most attractive regions for SAI. Figure 36 and Figure 37show the R-squared 

analysis and OD survey outpost #804, Rodovia Anchieta. R-squared achieved was 

0.554 and 0.378, respectively. 
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Figure 36: R-squared analysis of origin demand in outpost 804 (Anchieta) 

 
Source: Author 
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Figure 37: R-squared analysis of destination demand in outpost 804 (Anchieta) 

 
Source: Author 

 

The results for Rodovia Anchieta were under this dissertation’s expectations and could 

not be explained by a lack of sufficient data. Although, this was well within expectation 

since the transportation profile of Rodovia Anchieta is one of commercial and heavily 

truck-based modes of transportation. R-squared plots show that the model supplied 

flows below the expected amount for especially zones 4102, Santos, a destination that 

has a much stronger influence in commercial trips than passenger demand, due to the 

presence of the Port of Santos. As explained in previous sections, commercial 

transportation was not contemplated in this dissertation. 

 

Sistema Castelo-Raposo, São Paulo – Sorocaba 
The Presidente Castelo Branco highway, together with Raposo Tavares, also 

recognized as the Sistema Castelo-Raposo, is the main interconnection between the 

metropolitan region of São Paulo and the western-central region, as well as access to 

Argentina and Paraguay. In addition, the system is also known for heavy traffic 

between the municipalities of São Paulo and Osasco. Following Figure 38 and Figure 
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39 show the assignment result before and after the trip endpoint estimation algorithm 

for Rodovia Presidente Castelo Branco. 

 
Figure 38: Rodovia Presidente Castelo Branco, trip distribution, partial routes 

 
Source: Author 

 
Figure 39: Rodovia Presidente Castelo Branco, trip distribution, zone extrapolation 

 
Source: Author 

 

Figure 40 and Figure 41 show the result of the assignment prior to and after the trip 

endpoint estimation algorithm for Rodovia Raposo Tavares. 
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Figure 40: Rodovia Raposto Tavares, trip distribution, partial routes 

 
Source: Author 

 
Figure 41: Rodovia Raposo Tavares, trip distribution, zone extrapolation 

 
Source: Author 

 

Afterward, we could plot the model outputs in a sequence of images from the 

summarized perspective or origin and another from destination demand. Figure 42 and 

Figure 43 shows the R-squared analysis and result for OD survey outpost #808, 

Rodovia Presidente Castelo Branco. R-squared achieved was 0.545 and 0.771, 

respectively. 
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Figure 42: R-squared analysis of origin demand in outpost 808 (Presidente Castelo Branco) 

 
Source: Author 
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Figure 43: R-squared analysis of destination demand in outpost 808 (Presidente Castelo Branco) 

 
Source: Author 

 

The results for Rodovia dos Presidente Castelo Branco were within this dissertation’s 

expectations and could mostly be improved by further detailing the network and zones 

and a more robust approach to model attraction vectors. Figure 44 and Figure 45 show 

the R-squared analysis and result for OD survey outpost #807, Rodovia Raposo 

Tavares. R-squared achieved was 0.33 and 0.736, respectively. 
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Figure 44: R-squared analysis of origin demand in outpost 807 (Raposo Tavares) 

 
Source: Author 
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Figure 45: R-squared analysis of destination demand in outpost 807 (Raposo Tavares) 

 
Source: Author 

 

The results for Rodovia Raposo Tavares were under this dissertation’s expectations 

and could not be explained by a lack of sufficient data. We concluded that toll 

avoidance in SP270-079 is a possible culprit since this tool has many possible escape 

routes considering its close to the municipality of Alumínio.  

 

Sistema Dutra-Ayrton Senna, São Paulo – São José dos Campos 
Unfortunately, due to the lack of access to data from the Dutra highway, this 

transportation system significantly reduced algorithm output quality, which is expected 

from such a significant deficiency of data. For these reasons, results were excluded, 

with R-squared results under 0.1. 

 

Aggregate Analysis 
As a final analysis for R-squared between survey and model trip distribution data, an 

aggregate plot of all results is shown in Figure 46 and Figure 47. R-squared achieved 

was 0.767 and 0.705, respectively. 
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Figure 46: R-squared analysis of aggregate origin demand 

 
Source: Author 
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Figure 47: R-squared analysis of aggregate destination demand 

 
Source: Author 

 

This section concluded the R-squared analysis and demonstrated a good 

approximation of the algorithm faced with real-world survey data, with a global R-

squared of around 0.74. 

 

5.3. Chapter final remarks 
 

This chapter presents the proposed a method for validating the distribution of trips. The 

achieved R-squared metric demonstrated a good approximation of the algorithm faced 

with real world survey data, with a global R-squared of around 0.74 showing a suitable 

estimate of real-world profiles in intercity traffic. Table 5 displays the results from the 

individual analysis locations in the aggregate analysis. A more robust and well-

grounded technical approach to estimating attraction vectors could yield great 

improvements in the OD distribution analysis, consisting a subject for further study. 
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Table 5: Individual location R-squared analysis 

Location Survey ID Origin R-

squared 

Destination 

R-squared 

Comments/ Issues 

Anhanguera  809 0.463 0.477 This region requires additional network 

details and a more in-depth modeling of 

attraction vectors due to high amounts of 

urban traffic in this section of the 
highway. 

Bandeirantes 810 0.889 0.591  

Imigrantes 805 0.745 0.939  

Anchieta 804 0.554 0.378 Issued due to mainly commercial vehicle 

usage attributed to the Port of Santos. 

Castelo 

Branco 

808 0.545 0.771  

Raposo 

Tavares 

807 0.33 0.736 Issues due to high % of urban traffic 

among intermunicipal 

Dutra-Ayrton * Insufficient AVI data resulted in R-squared under 0.2 
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6. Results 
 

This chapter presents the estimated OD matrix from the combined activity groups. It 

examines the result with a selection of methods to give a verdict on the attempt of 

matrix estimation, its applicability, and suggestions in techniques to improve its results. 

 

6.1. Partial Route reconstruction results (Step 1) 
 

For this section, to analyze the result of the partial route reconstruction, a matrix was 

assembled. By grouping each partial route for each equal origin and destination, all 

cells of the OD matrix are defined. Figure 48 shows a map representing the assignment 

of partial routes of 1,931,561 trips recognized for 22/03/2017, based on 1,230 AVI 

equipment, part of them on state highways (144 ETC equipment) 1,086 radars. These 

allocated trips exclude 2% expurgated trips that have been filtered out, applying the 

eligibility criteria. The identification of partial routes was performed using the procedure 

described in section 4.1. There is a precise concentration of trips around Sao Paulo 

state's most densely populated zones. 
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Figure 48: Partial route matrix assignment 

 
Source: Author 
 

Figure 49 displays the trip length distribution and the cumulative distribution for Step 

1. 

 
Figure 49: Analysis of partial route matrix (Step 1) 

 
Source: Author 
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The average trip length for this dataset is 15km, intracity trip length at 10km, and 

intercity traffic at around 46km. For the sampled period, the most extended trip 

recorded was 772km. 

 

Figure 50 shows the distribution of intercity trips. An essential aspect of this result is 

that single passages on ETC locations are recorded as 0km length trips (as seen on 

the vertical line in Figure 49), which would not contribute to intercity traffic. Without 

considering 0km length trips, intercity traffic is around 22%. Considering that trips that 

pass through ETCs and considering the distribution of equipment in the state of São 

Paulo are likely to be intercity trips when grouping these 0km length trips into intercity 

traffic, we reach a more realistic 48% for intercity trips. Both the interpretation and 

consideration of 0km length trips has been a topic of much discussion in this 

dissertation, while potentially bringing insights into a greater amount of passenger 

movement patterns, they can also cast doubt in its extrapolation of origin and 

destinations due to the lack of constraints in their determination. Further studies could 

bring insights in the value of usage or elimination of these trips, as well as propose 

modified trip origin and destination extrapolation. 

 
Figure 50: Analysis of partial route matrix (Step 1) for intercity traffic 

 
Source: Author 
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6.2. O/D Matrix construction results (Step 2)  
 

The resulting extrapolated routes matrix, generated with the application of the 

algorithm to the partial route matrix, is shown in Figure 51, with a total of 1,931,561 

unique trips for one day. 

 
Figure 51: O/D Matrix construction (Step 2) assignment 

 
Source: Author 

 

Matrix assignment of this initial step shows a promising first glance at the profile of 

intercity traffic in the State of São Paulo, and even exhibiting a suitable approximation 

from intracity traffic in the city of São Paulo, with its several OCR equipment 

placements. Figure 52 displays the trip length distribution and the cumulative 

distribution for Step 2. 
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Figure 52: Analysis of O/D Matrix construction (Step 2)  

 
Source: Author 

 

The analysis of the resulting extrapolated matrix demonstrates a significant increase 

in trip length. After extrapolation of origin and destinations for the previously described 

0km trips, resulting trip lengths contributed to this increase in overall length. 

Extrapolating 0km trips is a contested subject and while presented in this dissertation, 

would benefit from further analysis. 

The average trip length for this dataset is 55km, intracity trip length at 21km, and 

intercity traffic at around 78km. The most extended trip generated was 1,200km and 

intercity traffic at around 60% for the sampled period, a 12-percentage point increase 

from the partial route analysis. Figure 53 displays the trip length and cumulative 

distribution for the intercity traffic for this step. The assignment of the intracity matrix is 

presented in Figure 54, showing a profile of traffic without noticeable flaws. 
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Figure 53: Analysis of O/D Matrix construction (Step 2) for intercity traffic 

 
Source: Author 

 
Figure 54: O/D Matrix construction (Step 2) without noticeable flaws 

 
Source: Author 
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Figure 55 presents the assignment of intracity traffic around the metropolitan region of 

São Paulo (MRSP). It shows the trips within city bounds and respects intracity traffic 

characteristics.  

 
Figure 55: Intracity O/D Matrix construction (Step 2) assignment for the MRSP 

 
Source: Author 

 

6.3.  Matrix calibration results (Step 3) 
 

Once the matrix estimation algorithm was applied, a seed matrix (Step 2) could be 

used to input the transportation planning software PTV Visum. Setting up a network, 

connectors, capacities, costs, and so on is an exhaustive process and not the focus of 

this dissertation, so that no further detail will be discussed. 

 

With the appropriate setup and data entered on PTV’s Visum, we could create a 

selection of the count data that was used in the calibration algorithm T-Flow Fuzzy. 
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6.3.1. Selection of count data 
 

The total number of count locations available was 1,192, which is considerably large 

compared to the number of zones. For this reason, it was necessary to select a more 

specific set of data points carefully. The first exclusion was locations with a high 

percentage of urban traffic, the reason being that this dissertation focuses on intercity 

traffic, resulting in 744 count locations. Then we removed count locations where the 

assigned amount was zero, carefully considering not removing count data relevant to 

this dissertation, such as dual carriageway high traffic roads. Lastly, we singled out 

points in more remote locations, not within proximity of high traffic roads, and those 

with multiple close concurrent locations, such as those in Figure 56. These multiple 

count locations within proximity can disturb the calibration algorithm, having different 

targets for the same road segment when there is not any zone that could attribute the 

variation in traffic volume. 

 
Figure 56: Count data points with close proximity 

 
Source: (Costa, Breno, 2021) 

 

The final selected set of count locations is presented in Figure 57. 
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Figure 57: Final count data location selected 

 
Source: (Costa, Breno, 2021) 

 

6.3.2. T-Flow Fuzzy algorithm results 
 

Once completed the selection of points, we set the necessary configurations within the 

VISUM and proceeded to run with the set amount of count data as inputs in the 

calibration algorithm.  Following the algorithm's output, with results tabulated, we 

plotted an R-squared of observed and model traffic shown in Figure 58. 

The algorithm proposed supplied the calibration algorithm with a quality seed matrix 

for count volume correction, achieving an R2 of over 0.96.  The coefficient R2 indicates 

how well the regression predictions approximate the real points. The value found (0.96) 

indicates that the estimated data provides very accurate results compared to the real 

flow of vehicles measured in traffic counters. 
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Figure 58: R-squared of Model x Observed traffic 

 
Source: Author 

 

Being of standard practice in transportation engineering to analyze the GEH statistic 

(Equation 6), an established measure to evaluate how well the model represents real-

world traffic. M represents the model traffic, and C, the observed traffic. 

 

GEH = 	N
2(𝑀 − 𝐶)!

M+ C  (6) 

 
 

In more complex network models, a standard recommendation is to aim for 85% of 

calibration points under a GEH of 5. However, a value of 10 is also suitable (Friedrich 

et al., 2019). Friedrich et al. (2019) recommends the categories shown in Table 6.  

 
Table 6: Friedrich et al. GEH category recommendations 

SQV statistic GEH Evaluation 

0.90 3.4 to 3.6 Excellent match 

0.85 5.4 to 5.8 Good match 

0.80 7.5 to 8.5 Acceptable match 
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 (Since the GEH statistic is not 

symmetrical, the same absolute 

deviation of a measured value 

upwards and downwards are 

evaluated differently) 

 

 

Our results show that 65% of the counting points provided GEH below 5, while 88% of 

them were below 10 (Table 7). 

 
Table 7: T-Flow Fuzzy calibration GEH results 

Average GEH 5.0 

GEH < 5 65% 

GEH < 10 88% 

 

 

6.4. Chapter final remarks 
 

This chapter presented the results and analysis of the algorithm proposed in this 

dissertation.  The partial route trip algorithm shows its capability in generating partial 

route reconstruction. An analysis of assignment and trip lengths showed a capability 

to extend trip lengths beyond first and last sensor detection. Most importantly the 

algorithm proposed supplied the calibration algorithm with a quality seed matrix for 

count volume correction, achieving an R-squared of over 0.9 and suitable GEH metrics 

with 88% of count sections showing a GEH under the value of 10. 

 

The algorithm has trouble dealing with missing data from high traffic demand 

roadways, but besides data issues availability, the region in the study showed sufficient 

coverage to create traffic profiles for intercity traffic. Throughout the development of 

this research, new and improved methods advanced in popularity, with machine 

learning techniques becoming more mainstream, as such that the method proposed in 

this paper might have improved alternatives. 

 

Some key aspects remain as for what is required to make use of this methodology: 

First an adequate network, zoning, and link cost determination. Second is AVI data 

sources, either from ETC, OCR, or as the case in this paper, both. The third is a large 
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collection of count data, for the calibration algorithm present in PTV Visum. Lastly, a 

way to determine weights for the distribution of flows, either by calibrating attraction 

vectors or making use of approximations, such as the one in this paper. As for 

validating the results, sampling of OD patterns in key locations should be implemented, 

either by surveys or other location tagging information, such as mobile location data, 

GPS sources, or other vehicle tracking technologies. 

 

The state of São Paulo has the highest coverage of AVI technology out of the entirety 

of the country of Brazil, as such for the application on other regions, as well as regions 

in other countries with reduced AVI coverage should be proceeded with caution. For 

the scenarios in which researchers aim to apply the methodology or a variation of it, 

for regions that lack ETC information (information key to filtering candidate zones for 

extrapolation), a modification of the method can be implemented. A recommendation 

is to apply a layered approach to vehicles crossing OCR equipment, for example, 

considering the accuracy of detection in OCR equipment being around 80%, there is a 

20% chance of it crossing the road section and not being recorded. For a second OCR 

equipment a vehicle that escaped detection, the probability of not being detected again 

decreases to 4%, as for the third failure of detection has a negligible probability of not 

being detected at under 1%. Each further OCR equipment barrier defines a layer of 

the network, with probabilities of paths ending on each layer according to the combined 

detection probability.  
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7. Conclusion 
 

This dissertation proposes a novel approach to estimating OD matrices based on data 

from AVI and traffic count devices in large-scale road networks. The proposed method: 

a) builds vehicle trajectories; b) extrapolates the OD zones from partial routes, and c) 

distributes flows through the gravity flow distribution model. 

 

We applied the method in the road network of the State of São Paulo, Brazil. This 

method was validated by contrasting the results with the data from the demand survey 

in the RMSP. As a result, the estimated OD matrix can be considered suitable for 

practical application, as the calibration reaches an accuracy (R2) above 0.96 and GEH 

below 10 in 88% of the calibration points.  

 

The method provided suitable accuracy in the estimations when comparing the flows 

over a few network links through a regression modeling measure of performance and 

the GEH index. However, missing data is essential to the algorithm's success, though 

the studied region showed sufficient coverage to create traffic profiles for intercity 

traffic. The importance of modeling attraction for each zone with more detail and 

constructing a network cost calculation that accurately reflects the real world should 

be noted.  

 

The OD matrix would benefit other studies to analyze and compare OD demand 

matrices from other resources and apply both into public transportation initiatives, such 

as intercity bus lines and passenger rail systems, and study road concessions, such 

as expected revenue capacity expansions, among other predictive estimations. 

Additionally, further studies can improve on this method by including capacity-

restricted assignment in the trip-distribution phase, include trip distribution for 

commercial modes of transportation, by means of appropriate modelling of commercial 

attraction variables, as well as simplify commercial impact by including a capacity 

restriction based on a preload of commercial vehicle volume on network links. Capacity 

restriction is a method of adding fixed link loads (preload) appropriate in representing 

common commercial vehicle network usage. 
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Glossary 
 

In this section, a list of frequently utilized terms, as to abbreviations related to the 

subject of this study. For the elaboration of the list, the study utilized the literature 

reviewed, as to publications from government agencies. 

Terms are presented in alphabetical order. 

ALPR (Automatic License Plate Recognition) - Automatic vehicle license plate 

recognition (also: ANPR, APR, ALR, ARPI, CLI, CLPR, CPR, LAP, LAPI, LPI, LPR, 

NPR). 

ALR (Automatic License Recognition) - Automatic vehicle license plate recognition 

(also: ANPR, ANPR, ALPR, ARPI, CLI, CLPR, CPR, LAP, LAPI, LPI, LPR, NPR). 

ANPR (Automatic Number Plate Recognition) - Automatic vehicle license plate 

recognition (also: APR, ALPR, ALR, ARPI, CLI, CLPR, CPR, LAP, LAPI, LPI, LPR, 

NPR). 

APR (Automatic Plate Recognition) - Automatic vehicle license plate recognition (also: 

ANPR, ALPR, ALR, ARPI, CLI, CLPR, CPR, LAP, LAPI, LPI, LPR, NPR). 

ARPI (Automatic Registration Plate Identification) - Automatic vehicle license plate 

recognition (also: ANPR, APR, ALPR, ALR, CLI, CLPR, CPR, LAP, LAPI, LPI, LPR, 

NPR). 

AVI (Automatic Vehicle Identification) - Automatic identification of a vehicle, through 

different methods, such as OCR, ETC, etc. 

AVIS (Automatic Vehicle Identification System) - A system of automatic vehicle 

identification. 

AVRS (Automatic Vehicle Recognition System) - A system of automatic vehicle 

recognition. 

CLI (Car License Identification) - Automatic recognition of a vehicle license plate (also: 

ANPR, APR, ALPR, ALR, ARPI, CLPR, CPR, LAP, LAPI, LPI, LPR, NPR). 

ETC (Electronic Toll Collection) - Automatic recognition of a vehicle, for tool collection 

charging purposes. 

ITS (Intelligent Transportation Systems or Intelligent Transport Systems) - Intelligent 

transport systems 

LPI (License Plate Identification) - Automatic license plate identification. (also: ANPR, 

APR, ALPR, ALR, ARPI, CLI, CLPR, CPR, LAP, LPR, NPR). 
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LPR (License Plate Recognition) - Automatic license plate recognition. (also: ANPR, 

APR, ALPR, ALR, ARPI, CLI, CLPR, CPR, LAP, LPI, NPR). 

NPR (Number Plate Recognition) - Automatic license plate recognition. (also: ANPR, 

APR, ALPR, ALR, ARPI, CLI, CLPR, CPR, LAP, LPI, LPR). 

License plate - Consisting of codes, generally national, that represent the 

identification of the vehicle in each country. 

OCR (Optical Character Recognition) - Process of scanning text images, with 

identification of the characters that make up the image. 

ODS (Origin Demand Survey) - Surveys that aim to understand the trips in one 

roadway, usually about their origin and destination characteristics. 

SPS (Stated Preference Survey) - Surveys that aim to obtain specific data to input in 

the modal choice models, such as interpretation of hypothetic alternatives during 

surveys. 

UE (User Equilibrium) - User equilibrium traffic assignment model. 

VCS (Vehicle count surveys) - Surveys that account for, in a determined period, the 

traffic that crosses a specific section. 
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Appendix - Software and code 
 

The software chosen for managing the database was SQL Server 2017, and the R 

programming language was applied to crunch the data. Later this dissertation moved 

into creating samples of the database in a plain text file to facilitate other contributors 

making use of the data. 

 

The general query sequence was structured starting with database clean up and 

restructure to save disk memory, remove redundant fields, and move that information 

to accessory tables. Furtherly, routines of error checking, database sampling and 

simplification, and partial route identification were developed. Figure 59 shows the 

code leading to results of partial route reconstruction. 

 
Figure 59: R code workflow 

# Calculates partial route costs and merges with cost file for all starting 
trip points adding N candidate t1 starting zones while also filtering zones 
not passing through ETCs 

dt <- dt0 %>% as.data.table() %>% setnames(.,c("orig","dest"),c("t2","t3"),
skip_absent = T) %>% 

  .[as.data.table(cost_min), `:=`(cost23=cost), on=.(t2=fid,t3=tid)] %>% 

  .[as.data.table(cost_min), `:=`(cost32=cost), on=.(t3=fid,t2=tid)] %>% 

  .[is.na(cost23) | is.na(cost32),`:=`(cost23=dtm/60,cost32=dtm/60)] %>% 

  .[t2==t3,`:=`(cost23=0,cost32=0)] %>% 

  merge(.,as.data.table(cost_min_f), by.x="t2", by.y="tid", allow.cartesian
=T) %>% 

  setnames(., c("cost","fid","fidg",'fzclust',"atr_fid"),c("cost12","t1","t
1g","t1zc","atr_t1"),skip_absent = T) %>% 

  .[,`:=`(tidg=NULL,dist=NULL,pass_avi=NULL,atr_tid=NULL,tzclust=NULL)] %>% 

  .[t1>30000] %>% 

# Calculates update trip costs and eliminates pairs with alternate, lower c
osting routes 

  .[as.data.table(cost_min), `:=`(cost_min13=cost+5/60), on=.(t1=fid,t3=tid
)] %>% 

  .[as.data.table(cost_min), `:=`(cost_min12=cost+5/60), on=.(t1=fid,t2=tid
)] %>% 

  .[,cost13:=cost12+cost23] %>%  

  .[(cost13<=cost_min13 & cost23>=5/60) | cost23<5/60] %>% 

  .[,cost13:=cost13+5/60] %>%  

  .[,atr_t1c:=atr_t1/(cost13^gfct)] 
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cols_atrk_t1 <- list("atr_t1c") 

  zones_f_t1 <- lapply(cols_atrk_t1, function(x,dt) { 

    setorderv(dt, cols = x,order = -1) %>% .[, head(.SD, 50), by = c("t1g",
"t2","t3")]  

  },dt=dt) %>% bind_rows(.) %>% as.data.table(.) %>% .[,c("t1","t2","t3"),w
ith=F] %>% unique(.) 

 

# Calculates partial route costs and merges with cost file for all ending t
rip points adding N candidate t4 ending zones while also filtering zones no
t passing through ETCs 

dt2 <- dt %>% semi_join(zones_f_t1,by=c('t1'='t1','t2'='t2','t3'='t3')) %>% 
as.data.table(.) %>% 

  merge(.,as.data.table(cost_min_f), by.x="t3", by.y="fid", allow.cartesian
=T) %>% 

  setnames(., c("cost","tid","tidg",'tzclust',"atr_tid"),c("cost34","t4","t
4g",'t4zc',"atr_t4"),skip_absent = T) %>% 

  .[,`:=`(fidg=NULL,dist=NULL,pass_avi=NULL,atr_fid=NULL,fzclust=NULL)] %>% 

  .[t4>30000] %>% 

# Calculates update trip costs and eliminates pairs with alternate, lower c
osting routes 

  .[as.data.table(cost_min), `:=`(cost_min24=cost+5/60), on=.(t2=fid,t4=tid
)] %>% 

  .[as.data.table(cost_min), `:=`(cost_min34=cost+5/60), on=.(t3=fid,t4=tid
)] %>% 

  .[,`:=`(cost14=cost12+cost23+cost34,cost24=cost23+cost34)] %>% 

  .[(cost24<=cost_min24 & cost13>=5/60) | cost13<5/60] %>% 

  .[,`:=`(cost14=cost14+5/60,cost24=cost24+5/60)] %>% 

  .[,atr_t14c:=atr_t1*atr_t4/(cost14^gfct)] 

 

cols_atrk_t14 <- list("atr_t14c") 

zones_f_t4 <- lapply(cols_atrk_t14, function(x,dt) { 

  setorderv(dt, cols = x,order = -1) %>% .[, head(.SD, 100), by = c("t2","t
3","t4g")]  

},dt=dt2) %>% bind_rows(.) %>% as.data.table(.) %>% .[,c("t1","t2","t3","t4
"),with=F] %>% unique(.) 

 

# Calculates update trip costs for t1 through t4 and eliminates pairs with 
alternate, lower costing routes 

dt3 <- dt2 %>% semi_join(zones_f_t4,by=c('t4'='t4','t2'='t2','t3'='t3')) %>
% as.data.table(.) %>% 

  .[as.data.table(cost_min), `:=`(cost_min14=cost+10/60), on=.(t1=fid,t4=ti
d)] %>% 
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  .[,exclude:=NA] %>% .[as.data.table(group_exceptions), `:=`(exclude=F), o
n=.(t1g=group_orig,t4g=group_dest)] %>% 

  .[cost14<=cost_min14 | (exclude==F)] 

 

# Distributes partial route flows, based on gravitational-based flow model 

dt4 <- dt3 %>% 

  .[,`:=`(atr_t14c=atr_t1*atr_t4/(cost14^gfct))] %>% 

  setorderv(.,cols = "atr_t14c",order = -1) %>% 

  .[,(c("atr_t14c_g")):=lapply(.SD, function(x) {sum(x,na.rm=T)}),.SDcols=c
("atr_t14c"),by=c("t2","t3")] %>% 

  .[,`:=`(per_dist1=atr_t14c/atr_t14c_g)] %>% 

  .[,(c("per_dist1t")):=lapply(.SD, function(x) {sum(x,na.rm=T)}),.SDcols=c
("per_dist1"),by=c("t2","t3")] %>% 

  .[,`:=`(`11d`=`11`*per_dist1)] %>% 

  .[,lapply(.SD, sum),.SDcols=c("11d"),by=c("t1","t4")] %>% 

  setnames(., c("11d"),c("11"),skip_absent = T) 

Source: Author 

 

Figure 60 shows the detailed commented code for extrapolating and distributing partial 

routes 

 
Figure 60: R code workflow 

fdata <- initdata[,1:5] %>% .[as.data.table(equips_all),`:=`(id_new=id_new,
in_net=in_net,toll=ifelse(tipo=='avi',1,0)), on=.(id)] %>% 

  .[id_new %in% points_graph$id_new] %>% setorder(.,vehicle_id,timestamp) %
>% 

  # compares next records vehicle license to establish a trip end flag 

   

  .[,`:=`(diff_veic_lead=shift(vehicle_id,1,type = 'lead')!=vehicle_id)] %>
%  

  # write inline next locations and timestamps 

  .[,`:=`(id_next=shift(id,1,type = 'lead'),id_new_next=shift(id_new,1,type 
= 'lead') 

          ,timestamp_next=shift(timestamp,1,type = 'lead'))] %>%  

  # for the next record being from a different vehicle all time and locatio
ns columns are set to NA 

  .[diff_veic_lead==T,`:=`(id_next=NA,id_new_next=NA,timestamp_next=NA)] %>
%  

  # calculates the duration in hours of the time passed from current until 
next location 
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  .[diff_veic_lead==F,hours23:=round(as.numeric(difftime(timestamp_next,tim
estamp, units = "hours")),3)] %>%  

  # removes movements that take 0h (duplicate database identifications) 

  .[hours23>0 | is.na(hours23)] %>%  

  # recreate different vehicle flag after duplicate removal 

  .[,`:=`(diff_veic_lead=shift(vehicle_id,1,type = 'lead')!=vehicle_id)] %>
%  

  # rewrite inline next locations and timestamps 

  .[,`:=`(id_next=shift(id,1,type = 'lead') 

          ,id_new_next=shift(id_new,1,type = 'lead') 

          ,timestamp_next=shift(timestamp,1,type = 'lead'))] %>%  

  # for the next record being from a different vehicle all time and locatio
ns columns are set to NA 

  .[diff_veic_lead==T,`:=`(id_next=NA,id_new_next=NA,timestamp_next=NA)] %>
%  

  # compares previous records vehicle license to establish a trip start fla
g 

  .[,`:=`(diff_veic_lag=shift(vehicle_id,1,type = 'lag')!=vehicle_id)] %>%  

  # write inline previous locations and timestamps 

  .[,`:=`(id_prev=shift(id,1,type = 'lag'),id_new_prev=shift(id_new,1,type 
= 'lag') 

          ,timestamp_prev=shift(timestamp,1,type = 'lag'))] %>%  

  # for the previous record being from a different vehicle all time and loc
ations columns are set to NA 

  .[diff_veic_lag==T,`:=`(id_prev=NA,id_new_prev=NA,timestamp_prev=NA)] %>%  

  # recalculate new movement times 

  .[diff_veic_lead==F,hours23:=round(as.numeric(difftime(timestamp_next,tim
estamp, units = "hours")),3)] %>% 

  # calculate prior movement times 

  .[diff_veic_lag==F,hours12:=round(as.numeric(difftime(timestamp,timestamp
_prev, units = "hours")),3)] %>%  

  # merge minimum estimated time between current and next locations 

  .[as.data.table(cost_min[,c("fid","tid","cost")]), hours_min:=cost, on=.(
id_new=fid,id_new_next=tid)] %>%  

  # creates a trip end flag on the basis of being different vehicles, time 
between current and next location over an estimated minimum and added 6 hou
rs 

  .[,trip_break:=case_when( 

    diff_veic_lead ~ 1, 

    is.na(hours_min) ~ if_else(hours23>t,1,0), 

    TRUE ~ if_else(hours23>(hours_min+t),1,0))] %>%  

  # trip id creation with a cumulative sum of breaks 
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  .[,trip_id:=cumsum(shift(trip_break,1,type = 'lag', fill = 0))] %>%  

  # flags identifying next and previous trips being different 

  .[,`:=`(diff_trip_lead=shift(trip_id,1,type = 'lead')!=trip_id,diff_trip_
lag=shift(trip_id,1,type = 'lag')!=trip_id)] %>%  

  # in case of different trip for the next record, locations are set to NA 

  .[diff_trip_lead==T,`:=`(id_next=NA,id_new_next=NA)] %>%  

  # in case of different trip for the previous record, locations are set to 
NA 

  .[diff_trip_lag==T,`:=`(id_prev=NA,id_new_prev=NA)]  

 

# memory dump 

rm(initdata);gc() 

 

# determine every unique combination of previous, current and next location
s for the database and calculates the distance between each of them 

pairs <- rbind(fdata[,c('id_prev','id'),with=F] %>% na.omit(.) %>% unique(.
) %>% setnames(c('id1','id2')) 

               ,fdata[,c('id','id_next'),with=F] %>% na.omit(.) %>% unique(
.) %>% setnames(c('id1','id2')) 

               ,fdata[,c('id_prev','id_next'),with=F] %>% na.omit(.) %>% un
ique(.) %>% setnames(c('id1','id2'))) %>%  

  unique(.) %>%   

  .[as.data.table(equips_all),`:=`(x1=x,y1=y), on=.(id1=id)] %>% 

  .[as.data.table(equips_all),`:=`(x2=x,y2=y), on=.(id2=id)] %>% 

  .[,dist:=distCosine(cbind(x1,y1),cbind(x2,y2))/1000] 

 

fdata <- fdata %>%  

  # merges the pairs table to the database (faster than calculating every p
airs distance) 

  .[pairs, `:=`(dist12=dist), on=.(id_prev=id1,id=id2)] %>% 

  .[pairs, `:=`(dist13=dist), on=.(id_prev=id1,id_next=id2)] %>% 

  .[pairs, `:=`(dist23=dist), on=.(id=id1,id_next=id2)] %>% 

  # determine estimated speed of the displacement (disregarding the path ge
ometry) 

  .[,speed12:=if.na(round(dist12/hours12,0))] %>% 

  .[,speed23:=if.na(round(dist23/hours23,0))] %>% 

  # removes trips with speed higher than defined speed of 120kph 

  .[!trip_id %in% unique(fdata[speed23>speed_max | speed12>speed_max]$trip_
id)] %>%  

  # calculates angles and creates a trip break flag on angles under 30 degr
ees 
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  .[(dist12*dist23)>0,angle_turn:=360/(2*pi)*acos((dist12^2+dist23^2-dist13
^2)/(2*dist12*dist23))] %>% 

  .[(dist12*dist23)==0,angle_turn:=0] %>% 

  .[,trip_break:=trip_break+ifelse(diff_trip_lead,0,if_else(shift(angle_tur
n,1,type = 'lead',fill = 0)<angle,1,0,0))] %>% 

  # recreates trip ids based on newly established break points 

  .[,trip_id:=cumsum(shift(trip_break,1,type = 'lag',fill = 0))] %>% 

  # in case of different trip for the next record, locations are set to NA 

  .[,diff_trip_lead:=shift(trip_id,1,type = 'lead',fill = T)!=trip_id] %>% 

  .[,id_new_next:=ifelse(diff_trip_lead,NA,shift(id_new,1,type = 'lead'))] 
%>%  

  # remove movements not captured on network, whenever the current or next 
location is the same (due to simplification) the record is removed 

  .[id_new!=ifelse(is.na(id_new_next),0,id_new_next)] %>%  

  # trip sequence of movements 

  .[,`:=`(seq=1:.N,first=first(id_new),last=last(id_new)),by="trip_id"] %>% 

  # trip sequence simplified to only represent first and last radar equipme
nt and avi's in between 

  .[seq==1 | seq>=shift(seq,1,type='lead') | id_new %in% filter(equips_all,
tipo=='avi')$id_new] %>%  

  .[,`:=`(trip_seq=paste(id_new, collapse = ",")),by="trip_id"] 

 

# filters trips in network 

fdata_fil <- fdata %>% filter(in_net==1)  

 

# determines the amount of trips for each simplified trip sequence, first a
nd last equipment and vehicle category 

trips <- unique(fdata_fil[,c('trip_id','trip_seq','first','last','cat','tol
l')]) %>%  

  .[,.(vehicle_count=.N,toll=max(toll)),by=list(trip_seq,first,last,cat)] 

 

# determines the amount of trips a municipality generates based on vehicles 
with registered license plates 

trips_city_count <- unique(fdata[,c('trip_id','city_id','cat','toll')]) %>%  

  .[!is.na(city_id),.(vehicle_count=.N),by=list(city_id,cat,toll)] 

Source: Author 

 


