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Resumo

Controle preditivo baseado em modelo tem uma extensa literatura voltada a estabilidade em
malha fechada, sendo grande parte voltada a controladores baseados em modelos lineares. Faz-se
uso de modelos não-lineares quando o processo químico tem não-linearidades importantes, isto
é, quando a capacidade de um modelo linear em descrever a dinâmica do processo é limitada.
Parte-se do mesmo princípio de adotar um horizonte infinito para que o controlador conceda
estabilidade para a malha fechada. Porém, deve-se contornar a impossibilidade de computar uma
trajetória infinita com um modelo não-linear. Assim, diversas estratégias foram desenvolvidas
para conferir garantia de estabilidade através de provas de factibilidade recursiva e convergência
da malha fechada para controladores preditivos que fazem uso de modelos não-lineares. As
principais estratégias consistem em utilizar restrições terminais de igualdade, restrições terminais
de desigualdade e restrições de contração. Como a aplicabilidade destes controladores não se
resume à recursividade e convergência, deve-se avaliar também a capacidade do controlador em
entregar ações de controle em tempo viável. Essa foi uma motivação inicial desta dissertação para
a busca de estratégias estabilizantes menos restritivas que restrições de igualdade, conhecidas
por demandarem consideravelmente mais esforço computacional. Assim, algumas considerações
quanto à estratégias que aceleram o tempo de cômputo - estratégias de shooting e alternativas de
integração numérica do sistema de equações diferenciais ordinárias - da solução do problema
de otimização também foram feitas. Antes da implementação das formulações, um capítulo foi
dedicado para melhor explorar estratégias de estabilização por retroalimentação. Essas estratégias
são relevantes no escopo do trabalho por seu uso na formulação com restrição terminal de
desigualdade - que depende da construção de uma região terminal invariante. Dois métodos
de cálculo dessa região invariante, para sistemas em tempo discreto - foram considerados: um
método baseado em um problema de desigualdades lineares matriciais (LMI, do inglês) e um
problema de programação semidefinida (SDP, do inglês). Na comparação entre estes métodos,
foi mostrado que o método baseado em LMI produz reguladores de ganho menor e regiões
operacionais maiores, enquanto que o método baseado em SDP resulta em reguladores de
ganho maior e regiões operacionais menores. Algumas formulações de controladores preditivos
baseados em modelo não-linear foram implementadas, juntamente com um controlador sem
elementos estabilizantes - denominado controlador sem estabilidade garantida, para comparar
suas performances e requerimentos de esforço computacional. A performance das formulações
foi comparada por três métricas: distância da zona de controle, esforço de controle e distância de
alvo econômico, considerando um sistema não-linear que representa uma associação de quatro
tanques. No exemplo do tanque quádruplo em malha fechada com as formulações mostradas, no
quesito de distância da zona de controle a restrição terminal de desigualdade demonstrou a melhor
performance, enquanto que a formulação sem estabilidade garantida mostrou a pior performance.
O menor esforço de controle foi observado pela formulação sem estabilidade garantida, enquanto
que o maior esforço de controle foi exercido pela formulação com restrição terminal de contração.



Quanto a distância do alvo econômico, ambas as formulações sem estabilidade garantida e com
restrição terminal de igualdade obtiveram a pior performance, sendo a melhor performance
econômica da formulação com restrição terminal de desigualdade. Como a formulação com
restrição terminal de igualdade demandou maior esforço computacional no exemplo mencionado,
essa formulação foi então adaptada para acelerar a velocidade de convergência da otimização por
meio de alteração de seus métodos de shooting e de integração numérica. Com essas alterações,
a demanda de esforço computacional dessa formulação foi reduzida a ponto de ter demandar
esforço computacional comparável a todas as outras formulações. Fez-se também uma análise
de sensibilidade dos parâmetros de sintonia para todas as formulações, e suas performances em
malha fechada considerando estes índices de performance citados foi avaliada mais uma vez.

Palavras-chave: Controle preditivo, controle de processos, controle não-linear, estabilidade de
controle



Abstract

Model predictive control has extensive literature on closed-loop stability, with most of it dealing
with predictive controllers based on linear models. Nonlinear models are used when the chemical
process has considerable nonlinearities which cannot be properly described by linear models.
Infinite horizon controller is the starting point for both linear and nonlinear model predictive
controllers, with the latter being impossible to compute. Multiple strategies were developed
in order to grant closed-loop stability via recursive feasibility and closed-loop convergence.
Main stabilizing strategies consist of utilizing terminal equality constraints, terminal inequality
constraints and terminal contracting constraints. However, the applicability of such controllers
does not only rely on feasibility and convergence but these formulations must be able to deliver,
in proper time, the next control actions. This was an initial motivation of this dissertation.
Stabilizing strategies less restrictive than equality constrained formulations were researched.
Before implementing NMPC formulations, feedback stabilization strategies are explored in a
separate chapter - since these are relevant in the construction of an invariant region for a controller
formulation dependant on terminal regions. Two discrete-time strategies of computing said
invariant regions are compared in a closed-loop simulation, LMI-based and SDP-based operating
regions. The trade-off between closed-loop performance and operating region size is shown, with
LMI-based methods favoring operating region size and SDP-based methods producing regulators
with larger gain matrices. Some stabilizing strategies were implemented, along with a controller
without stabilizing elements - named no guaranteed stability controller - in order to compare
their performance and computational effort demands. Their performances were compared in
three aspects: distance-to-zone, control effort and distance to economic target, considering these
formulations were in closed-loop with a nonlinear system representing a quadruple-tank system.
In the quadruple-tank example and regarding distance-to-zone, best and worst formulations were
respectively terminal inequality constrained formulation and formulation without guaranteed
stability. Terminal contracting constraint formulation exerted the most control effort while the
least control effort was performed by the formulation without guaranteed stability. Economic
performance of the terminal inequality constraint formulation was the best, while the worst
performance was close between terminal equality constraint formulation and formulation without
guaranteed stability. On computational effort, as expected the terminal equality constrained
showed the highest average computer time. This formulation was modified in order to improve
its convergence speed, with changes to its shooting method and numerical integration. With these
changes, computational effort was sufficiently reduced such that its convergence speed became
comparable with all other formulations deployed. Sensitivity analysis of the tuning parameters
of each formulation was executed as well for all of the deployed formulations, and the effect of
changes in tuning parameters on closed-loop performance indexes proposed was evaluated once
again.



Keywords: Predictive control, process control, nonlinear control, control stability.
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1 Introduction

In process systems, a process that operates autonomously and delivers product of con-
sistent quality is most desirable. One would develop a process that allows products of different
qualities through manipulation of certain process parameters, with said manipulation being
handled by a controller. The controller manipulates these process parameters, named inputs, in
order to bring product quality, determined by outputs, to a desired value, named set point.

Through successive solutions of online optimal control problems, model predictive
control (MPC) computes the control actions to be taken in order to reach its specified objective.
A common objective given to an MPC is set point tracking, sometimes control move smoothing
(for actuator preservation) and some economy-related such as product maximization or minimal
expenditure of resources. The controller uses a given model in order to predict the future values
of outputs and compute control actions that satisfy its given objective.

MPC is classified by the mathematical model it uses for output or state prediction: linear
or nonlinear (NMPC). Earlier applications of MPC used linear models with some sort of circum-
vention of constraints - formulations such as LDMC (MORSHEDI; CUTLER; SKROVANEK,
1985) and QDMC (GARCIA; MORSHEDI, 1986), as solving nonlinear programming (NLP)
problems - result of constrained MPC schemes - lead to prohibitive computational times to be
used online. Recently there were advances to solve these types of problems, along with a desire
for better product quality, operational safety, and economic gains, so nonlinear models have
received more attention industry-wise, although there were NMPC formulations (ECONOMOU;
MORARI; PALSSON, 1986) studied along with linear MPC.

When in closed-loop, stability leads to product quality of little to no qualitative or
quantitative variation, as well as theoretically rendering process runoffs impossible. With this
argument, stability should be an important characteristic of any deployed formulation.

However, product quality cannot be achieved by use of a controller with a rigorous
nonlinear model alone, as the controller may not deliver control actions in proper time. Recursive
feasibility and convergence are desirable theoretical properties but in practice, computational
effort demanded by the formulation must be compatible with process sampling time and available
computational power for safe closed-loop operation.

1.1 Motivation

As the algorithms for solving nonlinear programming problems improve, model pre-
dictive control can use nonlinear models in its predictions. These models may better represent
process systems in chemical engineering, as first-principle models are often used in process
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synthesis. Prior to implementing stabilizing strategies, an NMPC without any stabilizing element
was implemented. In its simulation results, it has been observed that nonlinear model predictive
controllers demonstrate behavior of guaranteed stable controllers - namely nonincreasing cost
function - without any stabilizing elements in its formulation. Understanding the conditions that
grant stability in this case was one driving force in the production of this work.

Most of the stabilizing strategies in the literature were developed when online solving of
nonlinear programming problems (NLPs) was nearly impossible. Due to minute computational
power, solution times incompatible with sampling times of process systems. The industry has
not yet reached abundance in computational power, which calls for cautious evaluation whether
a formulation could be implemented online. Regardless of theoretical results, this work was
concerned with theoretically sound formulations while attempting to lower computational effort.

Finally, this work was designed as an effort to expand comparisons between stabilizing
formulations. Unfortunately, literature in stabilizing formulations is often concerned with a novel
stabilizing strategy but rarely bringing a comparison with other stabilizing strategies. In addition
to that, since theoretically sound formulations will operate with any tuning parameters (error
penalties, horizon lengths), controller tuning - performance-wise a very important topic - is rarely
discussed.

1.2 Objectives

This work seeks to demonstrate some of the stabilizing strategies found in NMPC
literature, adapt said formulations to operate with control zones and optimizing targets, and
develop a method that compares closed-loop performance of said controllers.

1.2.1 Specific objectives

• Expose different concepts of equilibrium from nonlinear system theory as well as dynamic
system theory and show the evolution from optimal control problems to finite horizon
optimal control problems;

• Expose, implement multiple stabilizing NMPC formulations from the literature, and
compare closed-loop performance with different performance metrics;

• Evaluate controller tuning effects on closed-loop performance of different stabilizing
strategies.

1.3 Methodology

This work consists of in silico simulations of mathematical models represented by
ordinary differential equations, operating in closed-loop with optimization problems that rep-
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resent nonlinear model predictive controllers. The optimization problems were programmed
with CasADi (ANDERSSON et al., 2019) in MATLAB (THE MATHWORKS, INC., 2017).
Numerical integrations of said differential equations were performed with CVODES solver
from the SUNDIALS suite (HINDMARSH et al., 2005). Quadrature procedures for the differen-
tial equations were performed with CasADi functions as well, with Gauss-Radau polynomial
with three appending points used. The optimization algorithm used to solve the nonlinear
programming problems was IPOpt, an interior-point filter line-search algorithm (WÄCHTER;
BIEGLER, 2006). The linear matrix inequality (LMI) problems were programmed with YALMIP
(LÖFBERG, 2004) in MATLAB, with an additional algorithm for semi-definite programming
from SDPT3 (TÜTÜNCÜ; TOH; TODD, 2003) due to its capability of handling logarithms
of determinants. Semidefinite programming problems (SDP) were also programmed with
YALMIP, and solved via SeDuMi-1.3 (STURM, 1999). The computer used in the in silico

simulations has an AMD Ryzen 7 5700X @ 3.4GHz, with its Matlab built-in benchmark times
of

[
0.1548 0.0439 0.0294 0.1246 0.1733 0.2584

]
computed via benchmark function.

1.4 Organization of the dissertation

This dissertation consists of four parts. Part II approaches nonlinear systems theory
as well as concepts utilized in the equilibrium point studies performed in this area. Part III
approaches feedback stabilization techniques of nonlinear systems. Part IV exposes NMPC
formulations and their closed-loop convergence capabilities, as well as some discussion regarding
computational effort of each formulation. Part V contains most of the closed-loop results of some
of the NMPC formulations presented in the previous part, as well as closed-loop performance and
computational effort comparisons between deployed formulations. Then, conclusions obtained
from each part are recalled, as well as lines of work that can originate from this work are
discussed.





Part I

Nonlinear systems





35

2 Nonlinear systems

A mathematical model composed of equations that contain nonlinearities (relationships
between variables that cannot be globally approximated by linear combinations of these variables)
is named a nonlinear system. Its most generic form is

ẋxx(t) = fff (t,xxx(t),uuu(t)), ∀ t ≥ 0, (2.1)

where the relations between time t, the states xxx ∈X ⊂ Rnx and other parameters uuu ∈U ⊂ Rnu ,
represented by the mapping fff : R×Rnx×Rnu → Rnx , may or may not be necessarily nonlinear.
Time-invariant systems have no parameters that are time dependent, whereas time-variant systems
do have such time dependencies. This work will focus on time-invariant systems, such as

ẋxx(t) = fff (xxx(t),uuu(t)), ∀ t ≥ 0. (2.2)

Notice how time is no longer an argument of the mapping fff .

A central definition of nonlinear systems analysis is the concept of equilibrium.

Definition 1 A point (xxxeq,uuueq), xxxeq ∈X ⊂ Rnx , uuueq ∈ U ⊂ Rnu , is said to be an equilibrium

point of a system ẋxx = fff (xxx,uuu) if:

fff (xxxeq,uuueq) = 000 (2.3)

The equilibrium points can be found by open-loop simulations of the system, via root finding
algorithms or by parametric continuation methods (DHOOGE et al., 2008). They can be classified
by their stability by evaluating the system’s eigenvalues at that specific point. The eigenvalues λ

are computed from the Jacobian linearization of the nonlinear system at said point.

AAA :=
∂ fff
∂xxx

∣∣∣∣
(xxxeq,uuueq)

(2.4)

BBB :=
∂ fff
∂uuu

∣∣∣∣
(xxxeq,uuueq)

(2.5)

λ = eig(AAA) (2.6)
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Regarding models defined in continuous-time, eigenvalues with negative real parts mean
the equilibrium point is stable. Eigenvalues with non-negative real parts mean that the equilibrium
point is unstable. Eigenvalues with imaginary parts indicate oscillatory behavior.

As for models in discrete-time, eigenvalues contained in the unit circle are stable, other-
wise the model is unstable.

We follow the definition of an equilibrium point to the definition of the set of equilibrium
points.

Definition 2 A ω-limit set, denoted by Xω , is the set of all equilibrium points for positive infinite

time. For a nonlinear system (2.1) we have

lim
n→∞

tn =+∞ (2.7)

lim
n→∞

fff (tn,xxx(t),uuueq) = 000 (2.8)

lim
n→∞

xxx(tn) = xxxeq (2.9)

Regarding stability of trajectories, evaluating eigenvalues does not contribute to stability
analysis since it is valid for one point only instead of the whole trajectory. Lyapunov stability
theory, to be exposed in Section 2.1, offers strong tools that enable determining stability of a
system, be it a closed-loop or open-loop system.

2.1 Stability in the sense of Lyapunov

Stability evaluation of nonlinear systems consist of evaluating its functions instead of
point-wise eigenvalue. Consider the following system of differential equations that describe the
evolution of the states xxx with uuu as parameters:

ẋxx = fff (xxx,uuu) (2.10)

where xxx(t) ∈ Rnx and ẋxx = fff (xxx,uuu), fff : Rnx×Rnu → Rnx is continuous. We also assume that fff is
globally continuous in Lipschitz, which means it satisfies a Lipschitz condition such as:

∥ fff (xxx1,uuu)− fff (xxx2,uuu)∥ ≤CL ∥xxx1− xxx2∥ , CL > 0. (2.11)

where ∥·∥ stands for a norm. Some authors refer to the smallest value of CL that attends to
condition (2.11) as the Lipschitz constant.

Lyapunov’s direct method revolves around the time derivative of fff . This method has
received this denomination because it handles the differential equation directly, instead of
working with its solutions. It is also referred to as the second method in the literature. Lyapunov
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methods that evaluate solutions of differential equations have received the denomination of
(Lyapunov) indirect methods.

Theorem 1 (VIDYASAGAR, 1993) An equilibrium point 000 is said to be stable in the sense of

Lyapunov if there is a continously differentiable, locally positive definite function fff :Rnx×Rnu→
Rnx and a constant r > 0 such that:

∂ fff
∂ t
≤ 0, ∀t ≥ t0, ∀xxx ∈ Br (2.12)

Theorem 1 says that a candidate Lyapunov function fff is stable in an open ball Br around
the equilibrium point 000 if its time derivative shows nonpositive behavior. When condition 2.12 is
satisfied, then the candidate Lyapunov function is named Lyapunov function.

Another type of stability is exponential.

Definition 3 A system is said to be exponentially stable if there are two positive constants c,σ

where the following condition holds:

∥xxx∥ ≤ ce−σt (2.13)

Meaning that if one can show that the evolution of the norm ∥xxx∥ over time is bounded
from above by an exponential decay function with parameters c and σ , the system is exponentially
stable.

For model predictive control, one usually evaluates the objective function in order to
identify nonincreasing behavior observed by Lyapunov functions. Such behavior indicates
closed-loop stability. Stability classification then depends on the characteristics of the bounding
functions used to show stability: asymptotic bounding functions yield asymptotic stability and
exponentially decaying bounding functions yield exponential stability.

2.2 Dynamic systems

In this section a different approach to dynamic system analysis is given. The intent of this
approach is to enable studies on stability and controllability of dynamic systems in the same way
as it has been done throrougly in linear systems. The first application of differential geometry
was done by Sussmann & Jurdjevic (1972), where the discussion of controllability for nonlinear
systems was initiated.

Some concepts of differential geometry are exposed in Appendix A, regarding manifolds,
(geometric) flows and the tools necessary to establish equilibrium points from another perspective,
such as Lie brackets and Lie algebras. The main result in this work regarding differential geometry
is enabling the computation of equilibrium points via commutativity of vector fields that define
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a dynamic system, meaning the endpoints of a flow are equal - the dynamic system does not
change state.

Flow endpoints meeting can be evaluated point-wise by checking for linear independence
of vector fields at that point. When they are linearly dependent, they are incapable of generating
non-zero flow. In dynamic systems, one usually wishes to determine either a vector field which
enables access to a part of the state space (for example, a vector field which would enable
one vehicle to access a specific direction) or which vector fields one should add to completely
eliminate any kind of dynamic (namely, an annihilator).

2.2.1 Case study: jacketed reactor

Application of meeting endpoints was done in Souza et al. (2021), where we compute
the static operability region of a plant via Lie algebra, instead of computing the steady state
directly as a solution of a system of ordinary differential equations which represents the plant.
In this work, the following dynamic system - which represents a jacketed continuously-stirred
tank reactor (CSTR) - was studied. The dynamic system was approached in the work of Russo &
Bequette (1995). The system in question can be visualized in Figure 1.

Figure 1 – Diagram of a jacketed CSTR

q,γ7,γ8

qC,γ9

CA,TR

TC

∞

Source: Own author.

where the reactor and the jacket have their own inlets and outlets. The dynamic system is as
follows:

ĊA

ṪR

ṪC

=


−γ6CAexp

(
TR

1+ TR
γ2

)
−γ3(TR−TC)+ γ1γ6CAexp

(
TR

1+ TR
γ2

)
γ4γ3γ5(TR−TC)


︸ ︷︷ ︸

fff

+

γ7−CA

γ8−TR

0


︸ ︷︷ ︸

ggg1

q+

 0
0

γ4(γ9−TC)


︸ ︷︷ ︸

ggg2

qC, (2.14)
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where there are three ordinary differential equations: dimensionless mass and energy balances for
the reactor and a dimensionless energy balance for its jacket. The states CA, TR and TC represent
respectively the reactor output reactant concentration ratio, reactor output temperature ratio and
jacket output temperature ratio. Inputs q, qC represent respectively the reactor feed flow ratio
and the jacket feed flow ratio. The parameters γi, i = 1, . . . ,9, correspond to case 2 (RUSSO;
BEQUETTE, 1995):

γ =
[
8.0 20.0 0.3 10 1 0.072 1 0 −1

]
.

With these parameters, the system shows an interesting behavior, given by an ignition
state and an extinction state. Due to the presence of these modes, inbetween there lies an unstable
mode.

The static operability region of the reactor is computed. An alternative definition of this
region is a subset of the ω-limit set of the dynamic system. This subset is determined by equation
(2.15):

det
[

fff (xxx) ggg1(xxx) ggg2(xxx)
]
= 0, (2.15)

with the state xxx as the unknown. The determinant equation (2.15) is used to determine states
xxx where the vector fields fff (xxx), ggg1(xxx), and ggg2(xxx) commute, that is, when they have meeting
endpoints or are linearly dependent, as described earlier. States that solve such equation can be
seen in Figure 2.
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Figure 2 – Unstable CSTR static operability surface. Colormap on the right represents jacket
temperature ratio.

Source: Own author.

This surface can be obtained by writing the determinant equation (2.15) with the Sym-
bolic Math Toolbox in MATLAB (THE MATHWORKS, INC., 2017), then using the plotting
command surf.

From Figure 2, one could affirm that this reactor can be maintained at every reactant
conversion. However, this cannot be concluded without further information about inputs required
to attain such equilibria.

The next step of the method is to compute the corresponding inputs to the operating
regions one would choose in Figure 2. These inputs are computed as roots for the dynamic
system itself, after substitution of the points that are elements to ω-limit set. Assuming the
following admissible and desired input sets:

Uadm =

{
uuu ∈ Rnu

∣∣∣∣[0.5 0
]T
≤ uuu≤

[
1.5 2

]T
}
,

Udes =

{
uuu ∈ Rnu

∣∣∣∣[0.8 0
]T
≤ uuu≤

[
1.2 1

]T
}
.

Figure 3 marks equilibria that are attained with admissible and desired inputs chosen.
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Figure 3 – CSTR static operability surface with admissible ( ) and desired inputs ( ). Colormap
on the right represents jacket temperature ratio.

Source: Own author.

The admissible input set and desired input set realize limit points for high and low
conversion operating regions. This information serves as a guide in choosing operating zones
for zone control, as well as indicating in process synthesis step whether operability regions
are feasible or not. As an example, one can conclude from Figure 3 that conversion of 40%,
CA = 0.6, with reactor temperature ratio TR = 1 is a possible static operating point, but unrelated
to admissible inputs.

Further understanding of this system is done via parametric continuation of equilibrium
points, performed via MatCont (DHOOGE et al., 2008) in MATLAB (THE MATHWORKS,
INC., 2017). Parametric continuation requires a degree of freedom in order to compute close
equilibria "forward" or "backward". Figure 4 illustrates an example of MatCont’s output.
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Figure 4 – Output reactant ratio CA by feed flow ratio q for nominal jacket feed flow ratio qc = 1,
with stable ( ) and unstable equilibria ( )

Source: Own author.

MatCont not only computes equilibria by varying the chosen degree of freedom, q in
Figure 4, but is capable of classifying equilibria via eigenvalues. Determining unstable equilibria
via open-loop simulations is nearly impossible since the initial guess has to be exact - otherwise
the simulation evolves towards a stable equilibrium. Parametric continuation in the context of
process systems engineering is useful for determining equilibria with interesting product qualities
that are difficult to determine via open-loop simulations.

For this system, if one were interested in finding a static operating point of intermediary
conversion with nominal reactor feed flow ratio and nominal jacket feed flow ratio, Figure 4
shows that there exists such point, whereas open-loop simulations would yield either equilibria
in the ignition zone of high conversion or extinction zone of low conversion.

Figure 4 also shows output multiplicity as well as input multiplicity. In chemical engineer-
ing, it is known that reactive systems such as reactors (RUSSO; BEQUETTE, 1995) and reactive
distillation columns (KUMAR; KAISTHA, 2008) may show output and input multiplicity. For
this system, if one were to draw a vertical line, one can find up to three different outputs for the
same input - output multiplicity, whereas horizontal line drawn would show three different inputs
for the same output - input multiplicity.

If one were to compute these curves for multiple fixed values for jacket feed flow ratio
with free reactor feed flow ratio, as well as multiple fixed values for reactor feed flow ratio with
free jacket feed flow ratio, these curves show a surface equilibria, now relating an output by both
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inputs. Figure 5 shows the output reactant ratio by both reactor and jacket feed flow ratio. Figure
6 the output temperature ratio TR equilibrium surface is shown.

Figure 5 – Output reactant ratio CA by feed flow ratio q and jacket feed flow ratio qc, with stable
( ) and unstable equilibria ( )

Source: Own author.

Figure 6 – Output temperature ratio TR by feed flow ratio q and jacket feed flow ratio qc, with
stable ( ) and unstable equilibria ( )

Source: Own author.
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Figures 5 and 6 show that the reactor presents an entire unstable operating region of
intermediary conversion (approximately CA = [0.4, 0.7]). It is seen in detail as well the extinction
and ignition modes of the reactor. The high temperature ratio surface in Figure 6 is connected to
the low concentration ratio surface of Figure 5, since the ongoing reaction is exothermic. The
correspondence is evident from the input values as well.

For completion’s sake, Figure 7 contains the equilibrium surface for the jacket tempera-
ture ratio.

Figure 7 – Output jacket temperature ratio TC by feed flow ratio q and jacket feed flow ratio qc,
with stable ( ) and unstable equilibria ( )

Source: Own author.

This surface is similar to the reactor temperature ratio because of the thermodynamic
equilibrium between the reactor and the jacket. Notice as well that as the jacket feed flow ratio qc

increases, the temperature difference between the reactor and the jacket increases. With excess
coolant used, the jacket temperature tends to not change as the coolant removes heat from the
reactor. This is the main difference between the two temperature surfaces, the jacket temperature
ratio surface becomes more "flattened" as the jacket feed flow ratio increases.

Finally, the static operability region in the state space can be seen in Figure 8.
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Figure 8 – Output reactor temperature ratio TR by output reactant ratio CA, with stable ( ) and
unstable equilibria ( )

Source: Own author.

Figure 8 shows an interesting detail that was not present in Figure 2, the location of the
unstable equilibrium region. A limitation of the parametric continuation is also seen: the surface
is not complete due to the chosen cut-off interval of input variation, that was [0,2.0] for both
inputs. Most of the missing surface at the bottom of the figure correspond to high values of inputs
- not contemplated by the interval chosen.

For comparison, the static operability regions determined by both sets are compared.

Figure 9 – Static operability regions determined by determinant equation (2.15) (left) and para-
metric continuation (right)

Source: Own author.
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The input cut-off for the parametric continuation method limits the method’s applicability
over the entire state space, but most of the state space information is useless since very high
values of inputs in this case are impractical: the reactor or jacket would not be designed to
support over two times its nominal feed flow.

These methods were useful in gathering equilibria information of the system in question.
Stabilizing MPC strategies often revolve around an equilibrium point, so strategies of gather-
ing such points are useful, especially when these equilibria are not accessible by open-loop
simulations.



Part II

Feedback stabilization
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Feedback stabilization is a commonly studied control problem in the literature. In this
work, the linear quadratic regulator (LQR) will be explored in discrete-time applications. Some
formulations require the development of LQR in continuous-time, such as the work of (CHEN;
ALLGÖWER, 1998). However, since continuous-time formulations are of little interest for
industrial applications, said formulations will not be shown in this work. The discrete-time LQR
is used as a virtual controller, enabling boundedness of the "tail" of the cost function of an NMPC
formulation. Before it is deployed along with an NMPC formulation in a latter part of this work,
the discrete-time regulator is better explored on its own.

The methods of obtaining an LQR in this work consist of a traditional and a more recent
approach found in the literature. These methods were extended to account for bounded input
moves. These modifications enhance applicability of the methods found in the literature, as
controllers synthesized with input move bounds have more general applications in the industry.
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3 Discrete-time feedback stabilization

Feedback stabilization of a discrete-time nonlinear system will be discussed. We begin
with a nonlinear system such as

ẋxx = fff (xxx(t),uuu(t)), (3.1)

and the corresponding Jacobian linearization, (AAAcontinuous,BBBcontinuous), obtained on an equilibrium
point, (xxxsp,uuusp), that can be determined by discretizing a continuous-time Jacobian linearization
such as

ẋxx = AAAcontinuous(xxx(t)− xxxsp)+BBBcontinuous(uuu(t)−uuusp)

=
∂ fff
∂xxx

∣∣∣∣
(xxxsp,uuusp)

(xxx(t)− xxxsp)+
∂ fff
∂uuu

∣∣∣∣
(xxxsp,uuusp)

(uuu(t)−uuusp),

with a command such as MATLAB’s c2d. The linearized model after discretization would be of
the form

xxx(k+1) = AAA(xxx(k)− xxxsp)+BBB(uuu(k)−uuusp), (3.2)

which is a linear difference equation. Notice that the models (3.1) and (3.2) are not the same,
since the former can be simply a nonlinear system, whereas the latter is a linear model with state
gain and input gain matrices (AAA,BBB). One can determine a gain matrix KKK such that a control law

uuu(k) = uuusp−KKK(xxx(k)− xxxsp) (3.3)

is stabilizing for the discrete linear system (3.2) when the following equation, referred to as the
discrete-time algebraic Riccati equation

AAAT
KKKPPPAAAKKK−PPP =−Q̃QQ−KKKT R̃RRKKK, (3.4)

KKK = (R̃RR+BBBT PPPBBB)−1BBBT PPPAAA, (3.5)

accepts a symmetric positive-definite matrix PPP. The objective function of this problem is

J =
∥∥(xxx(k)− xxxsp)

∥∥2
PPP , (3.6)
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which can be used as a first guess for an operating region.

Since this is the discrete-time case, dlqr or dare will compute the matrix PPP and the gain
matrix KKK. dare function does not allow for an input penalty matrix as input.

Another modification to the discretized model is the conversion from positional form,
such as (3.2), to a velocity form such as

zzz(k+1) =

[
xxx(k+1)

uuu(k)

]
= AAAv(zzz(k)− zzzsp)+BBBv∆∆∆uuu(k), (3.7)

where

AAAv :=

[
AAA BBB

000 III

]
,

BBBv :=

[
BBB

III

]
.

By the extension of the state vector by the input vector, with the new input as the input
move ∆∆∆uuu, the discrete-time model is now in velocity form, and one can proceed with bounds
on both input and input moves. The matrices AAAv and BBBv can substitute the positional form state
space model matrices (AAA, BBB) in DARE (3.4), while the objective function is changed to

J =
∥∥(zzz(k)− zzzsp)

∥∥2
PPP . (3.8)

3.1 Semi-definite programming approach

Computing the operating region of a LQR subject to input and state bounds is not a
novel topic. It is proposed by Sznaier & Damborg (1987) a constrained LQR in a constraint set
described by a convex polyhedron, which is often how state and input bounds are described. The
regulator control actions are computed via solution of an online quadratic programming (QP)
problem. Then, Scokaert & Rawlings (1998) discusses this implementation also while discussing
an important point regarding finiteness of QP problem to be solved on-line. However, there is no
indication as to how to implement or solve the optimization problems proposed by Scokaert &
Rawlings (1998).

Say that one desires to determine an operating region Ω where a state constraint such as

X = {xxx(k) ∈ Rnx |xxxmin ≤ xxx(k)≤ xxxmax,k ≥ 0} . (3.9)

must be satisfied. This set can be expressed as a set of inequalities such as
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[
xxx(k)

−xxx(k)

]
≤

[
xxxmax

−xxxmin

]
,

which when rearrange, yields an inequality of the form AAAcxxx≤ bbb:

[
IIInx

−IIInx

]
xxx(k)≤

[
xxxmax

−xxxmin

]
. (3.10)

This can also be done for input constraints. In this case, the constraint (3.10) can have
said constraints appended to it, such as

[
IIInx+nu

−IIInx+nu

][
xxx(k)

uuu(k−1)

]
≤

[
zzzmax

−zzzmin

]
. (3.11)

Problem Pa is proposed as an attempt to produce an operating region where the closed-
loop satisfies not only state and input constraints but input move constraints as well.

Problem Pa:
max

r
r, (3.12)

subject to

AAAcr(zzz(k)− zzzsp)≤ bbb, (3.12a)∥∥(zzz(k)− zzzsp)
∥∥2

PPP ≤ 1, (3.12b)

−∆∆∆uuumax ≤−KKK(zzz(k)− zzzsp)≤ ∆∆∆uuumax. (3.12c)

Where r is the radius of the operating region, computed as an ellipsoid with weighting
matrix P. The radius is a decision variable for the SDP problem which must satisfy the extended
state constraint (3.12a) as well as the input move constraint (3.12c).

3.2 LMI-based approach

Obtaining the regulator and operating region are much more convenient to be obtained
through an LMI problem, since it can account for input, input move, and state constraints while
yielding the largest feasible operating region with one single optimization problem. Through the
LMI problem, the decision variables are the regulator and the terminal penalty matrix, while in
the successive optimization problems - the operating region radius is the only decision variable.
The LMI is capable of delivering larger operating regions at the expense of the regulator’s gain.

Problem Pc is the corresponding LMI problem for computing penalty and gain matrices.
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Problem Pc:

min
WWW 1,WWW 2

−log det(WWW 1)
−1 (3.13)

subject to

WWW 1 > 0, (3.13a)[
−WWW 1 AAAvWWW 1 +BBBvWWW 2

WWW 1AAAT
v +WWW T

2 BBBT
v −WWW 1

]
≤ 0 (3.13b)[

1
[
c′iWWW 1 +d′iWWW 2

]
∗ WWW 1

]
≥ 0, i = 1, . . . ,ni. (3.13c)

with

PPP =WWW−1
1 (3.14)

KKK =WWW 2WWW−1
1 . (3.15)

The stability constraint (3.13b) was shown in Duan & Yu (2013), Theorem 6.7, which
says that the discrete-time linear system to be controlled is stabilizable if and only if there exist a
symmetric matrix WWW 1 and a matrix WWW 2 satisfying the LMI (3.13b). It can be proved by way of
the LMI (3.16), which guarantees that the linear system in question is stabilizable if and only if
there exist a matrix KKK and a symmetric matrix PPP that satisfy

[
−PPP (AAAv−BBBvKKK)PPP

PPP(AAAv−BBBvKKK)T −PPP

]
≤ 0. (3.16)

Having WWW 2 = KKKPPP and substituting it in the expression above, we obtain the stability
constraint (3.13b). If the matrices WWW 1 and WWW 2 exist, then by expression (3.15) as well we arrive
at the condition (3.16).

The state and input constraint (3.13c) represents an inscribed ellipsoid to the constraint
set

Zc :=
{
|ccc′i +ddd′iKKK|(zzz(k)− zzzsp)≤ 1

}
. (3.17)

This set is a constraint of the form AAAcxxx≤ bbb, with the RHS scaled to unit value.

The demonstration of the effect of the constraint (3.13c) begins with its manipulation.
Due to positive definiteness of WWW 1, as per constraint (3.13a), we can rewrite this expression as:

1+(ccc′iWWW 1 +ddd′iWWW 2)(WWW 1)
−1(ccc′iWWW 1 +ddd′iWWW 2)

T ≥ 0, i = 1, . . . ,ni (3.18)
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where ni represents the number of inequalities used to define Zc.

We then take the Schur complement of (3.18). Schur complements enables establishing
the equivalence between the following expressions:

QQQ−SSSRRR−1SSST > 0,[
QQQ SSS

SSST RRR

]
> 0.

Schur complement of expression (3.18) is, after substitutions of expressions (3.14) and
(3.15) and remembering once again the positive definiteness of WWW 1 as per constraint (3.13a):

1− (ccc′i +ddd′iKKK)PPP(ccc′i +ddd′iKKK)T ≥ 0,

which is the inscribed ellipsoid mentioned earlier.

This is not the method proposed by Rajhans et al. (2019), where it is suggested that the
practictioner obtain the regulator through Matlab’s function dlqr, then successive optimizations
are to be solved in order to determine the ellipsoid radius γ where

Ωγ =
{

zzz(k) ∈X ×U :
∥∥zzz(k)− zzzsp

∥∥2
PPP ≤ γ,−KKK(zzz(k)− zzzsp) ∈U∆

}
. (3.19)

Lemma 1 states when a discrete-time regulator stabilizes a discrete-time nonlinear
system.

Lemma 1 (adapted from Lemma 8 of Rajhans et al. (2019)) A discrete-time nonlinear sys-

tem (3.1) controlled by the LQR that solves the DAREs

AAAT
KKKPPPAAAKKK−PPP =−Q̃QQ−KKKT R̃RRKKK (3.20)

KKK = (R̃RR+BBBT
v PPPBBBv)

−1BBBT
v PPPAAAv (3.21)

is asymptotically stable for all states inside the operating region (3.19) if the nonlinearity ϕ(zzz(k))

ϕ(zzz(k)) = (zzz(k)− zzzsp)
T

∆∆∆QQQd(zzz(k)− zzzsp)−2ΨΨΨ(zzz(k))T PPPAAAKKK(zzz(k)− zzzsp)−ΨΨΨ(zzz(k))T PPPΨΨΨ(zzz(k))

(3.22)

is non-negative.

We have PPP and KKK as the unique positive-definite solution for the DARE, penalty matrix
and gain matrix respectively. As the DARE admits a solution, the closed-loop represented by the
matrix AAAKKK = AAAv−BBBvKKK is Hurwitz, that is, asymptotically stable. Rewriting the discrete nonlinear
system in terms of the closed-loop matrix, which is where ΨΨΨ(zzz(k)) is shown, we have:
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zzz(k+1) = AAAKKK(zzz(k)− zzzsp)+ΨΨΨ(zzz(k)) (3.23)

ΨΨΨ(zzz(k)) = fff (xxx(k),uuu(k−1)−KKK(zzz(k)− zzzsp))−AAAKKK(zzz(k)− zzzsp). (3.24)

Consider now a candidate Lyapunov function for the nonlinear system controlled by the
LQR KKK inside the operating region Ω:

Vt(zzz(k)) =
∥∥zzz(k)− zzzsp

∥∥2
PPP

Comparing the candidate Lyapunov functions for times k and k+1:

Vt(zzz(k+1))−Vt(zzz(k)) = (zzz(k)− zzzsp)
T (AAAT

KKKPPPAAAKKK−PPP)(zzz(k)− zzzsp)

+2ΨΨΨ(zzz(k))T PPPAAAKKK(zzz(k)− zzzsp)+ΨΨΨ(zzz(k))T PPPΨΨΨ(zzz(k)) (3.25)

Defining the RHS of the DARE (3.4) as

QQQd :=−QQQx−KKKT RRRKKK, (3.26)

∆∆∆QQQd := ∆∆∆QQQ+KKKT
∆∆∆RRRKKK, (3.27)

∆∆∆QQQ := Q̃QQ−QQQ≥ 000, (3.28)

∆∆∆RRR := R̃RR−RRR≥ 000 (3.29)

noticing that the DARE was modified in order to accommodate the tuning parameters ∆∆∆QQQ and
∆∆∆RRR, that enlarge the operating region:

AAAT
KKKPPPAAAKKK−PPP =−(QQQd +∆∆∆QQQd)

and substituting it in equation (3.25), we have

Vt(zzz(k+1))−Vt(zzz(k)) = (zzz(k)− zzzsp)
T (QQQd)(zzz(k)− zzzsp)+ϕ(zzz(k)) (3.30)

ϕ(zzz(k)) =
∥∥zzz(k)− zzzsp

∥∥2
∆∆∆QQQd
−2ΨΨΨ(zzz(k))T PPPAAAKKK(zzz(k)− zzzsp)−ΨΨΨ(zzz(k))T PPPΨΨΨ(zzz(k)). (3.31)

The induced norm of the operator ΨΨΨ(zzz(k)) is defined as

βΨ = sup

{
∥ΨΨΨ(zzz(k))∥∥∥zzz(k)− zzzsp

∥∥
∣∣∣∣∣zzz(k) ∈Ω,zzz(k) ̸= zzzsp

}
(3.32)
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which grants useful inequalities that help defining a bound for nonlinearity ϕ(zzz(k)):

ΨΨΨ(zzz(k))T PPPAAAKKK(zzz(k)− zzzsp)≤ βΨΨΨ ∥PPPAAAKKK∥
∥∥zzz(k)− zzzsp

∥∥2 (3.33)

ΨΨΨ(zzz(k))T PPPΨΨΨ(zzz(k))≤ β
2
ΨΨΨ
∥PPP∥

∥∥zzz(k)− zzzsp
∥∥2 (3.34)∥∥zzz(k)− zzzsp

∥∥2
∆∆∆QQQd
≥ λmin(∆∆∆QQQd)

∥∥zzz(k)− zzzsp
∥∥2 (3.35)

When combining inequalities 3.33 and 3.34 with the comparison 3.31, we have that the
comparison has an upper bound:

Vt(zzz(k+1))−Vt(zzz(k))≤−
∥∥zzz(k)− zzzsp

∥∥2
QQQd

−(λmin(∆∆∆QQQd)−2βΨΨΨ ∥PPPAAAKKK∥−β
2
ΨΨΨ
∥PPP∥)

∥∥zzz(k)− zzzsp
∥∥2

With this inequality, we have an expression that relates the non-increasing behavior of
the objective function value Vt(zzz(k)) with the induced norm of the nonlinearity ΨΨΨ(zzz(k)).

λmin(∆∆∆QQQd)−2βΨΨΨ ∥PPPAAAKKK∥−β
2
ΨΨΨ
∥PPP∥= 0

that is, an upper bound for the induced norm of the nonlinearity βΨΨΨ:

β
∗
ΨΨΨ
=
−∥PPPAAAKKK∥+

√
∥PPPAAAKKK∥2 +λmin(∆∆∆QQQd)∥PPP∥
∥PPP∥

The induced norm βΨΨΨ along with its upper bound β ∗
ΨΨΨ

can be used to determine where
in the terminal region Ω the inequality ϕ(zzz(k))≥ 0 is satisfied, indicating asymptotic stability
of the nonlinear system when controlled by the linear quadratic regulator computed by DAREs
(3.20) and (3.21). ■

With this theoretical result, one has a direct expression that indicates if a closed-loop
system composed of a LQR and a nonlinear system is asymptotically stable. For the case where
the regulator is computed through the LMIP Pc, the existence of a positive-definite matrix ∆∆∆QQQd ,
large enough in order to make the nonlinearity ϕϕϕ(zzz) be non-negative, is checked through two
optimization problems: one that computes the value of the nonlinearity for a null ∆∆∆QQQd at the
border of the operating region, and another that computes a positive-definite ∆∆∆QQQd matrix that
makes the nonlinearity value be zero. The following algorithm demonstrates this procedure.
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Figure 10 – Algorithm for nonlinearity bound identification of closed-loop with nonlinear system
and LQR

r = 1

min
zzz(k)

ϕ(zzz(k))

s.t.
∆∆∆QQQd = 000∥∥zzz(k)− zzzsp

∥∥2
PPP = r

min
∆∆∆QQQd

∥∥zzz(k)− zzzsp
∥∥2

∆∆∆QQQd

s.t.
∆∆∆QQQd > 000∥∥zzz(k)− zzzsp

∥∥2
∆∆∆QQQd

+ϕ(zzz)≥ 0 END, Ω radius γ (3.19) is r

r← r′ with r′ < r

r ̸= 0 END, Ω radius is 0

zzz(k),ϕ(zzz(k))

feasible

infeasible

TRUE FALSE

Source: Own author.

This algorithm was developed as an alternative to the proposal of Rajhans et al. (2019),
which consists of tuning the original DARE equation with increasingly larger state and input
penalty matrices Q̃QQ and R̃RR in order to achieve a ∆∆∆QQQd matrix sufficiently high that it is capable
of making the nonlinearity ϕ(zzz) nonpositive. This trial and error method is replaced by two
optimization problems. They are proposed in order to compute such ∆∆∆QQQd matrix for the radius
of the operating region where the constrained LQR acts. When such matrix does not exist, with
the second optimization problem infeasible, the algorithm proposes to diminish the guess radius
r and the optimization problems are to be solved again, until the optimization problems are
feasible or no ∆∆∆QQQd is found. When it is not found, it can be said that the terminal region consists
of the reference value of the regulator.

If the practitioner desires, the matrix ∆∆∆QQQd can be used to determine a possible tuning of
QQQx and RRR that satisfies the redefinition of the DARE equation with the expressions (3.26)-(3.29).

3.3 Case study: quadruple tank system controlled by LQR in

discrete-time

In this section, the system to be controlled by an LQR is first exposed. Its first principle
model and physical limitations are exposed. Then, the operating regions computed by the
methods shown in the previous sections are compared visually. Finally, the controllers computed
by both methods (Problems Pa and Pc) are simulated in closed-loop with the nonlinear system
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in question, with exposition of results obtained.

3.3.1 Quadruple tank system

A common benchmark to control systems is the quadruple-tank system, which describes
the liquid level of an association of tanks in parallel and series that are fed by two pumps. The
ODE system that describes this system states over time is as follows:

ẋxx =


ẋ1

ẋ2

ẋ3

ẋ4

=


− a1

A1

√
2gx1 +

a3
A1

√
2gx3

− a2
A2

√
2gx2 +

a4
A2

√
2gx4

− a3
A3

√
2gx3

− a4
A4

√
2gx4

+


γ1
A1

0
0

1−γ1
A4

u1 +


0
γ2
A2

1−γ2
A3

0

u2, (3.36)

where xi represents the i-th tank level [cm], ui represents the i-th pump flowrate [ml.s−1], ai

representing the i-th tank’s outlet transversal area [cm2], Ai representing the i-th tank’s transversal
area [cm2], γi representing the i-th pump’s split ratio, and g as the gravitational acceleration
[m.s−2]. The numerical values of these constants were estimated by Raff et al. (2006) in its
experimental module - and to be used in this work - are:

AAA =
[
50.27 50.27 28.27 28.27

]
,

aaa =
[
0.233 0.242 0.127 0.127

]
,

g = 9.81, γγγ =
[
0.4 0.4

]
.

Figure 11 represents the diagram of the quadruple tank system used in this work.

Limitations of the mathematical model (based on Bernoulli’s law for the tank emptying
term) were adopted as hard state constraints, represented by set X . Physical limitations on the
pump’s minimum and maximum flowrate were adopted as hard input constraints, represented by
set U . As an input move constraint, it was considered that the pumps cannot change flowrate
faster than 1 ml.s−2. With sampling of 4s, this corresponds to a limitation to the input move of
4ml.s−1, which is then represented by set U∆:

X =

{
xxx ∈ Rnx

∣∣∣∣[7.5 7.5 3.5 4.5
]T
≤ xxx≤

[
28 28 28 28

]T
}
,

U =

{
uuu ∈ Rnu

∣∣∣∣[0 0
]T
≤ uuu≤

[
60 60

]T
}
,

U∆ =

{
∆∆∆uuu ∈ Rnu

∣∣∣∣[−4 −4
]T
≤ ∆∆∆uuu≤

[
4 4

]T
}
.
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3.3.2 Operating region and LQR computation

The methods exposed in the previous sections of this chapter were implemented in
MATLAB (THE MATHWORKS, INC., 2017). Problems Pa and Pc were written in YALMIP
(LÖFBERG, 2004). The first was solved by algorithm SeDuMi-1.3 (STURM, 1999) while the
latter was solved via SDPT3 (TÜTÜNCÜ; TOH; TODD, 2003). The first optimization problem
in the algorithm shown in Figure 10 was written in CasADi with IPOpt as its solver, while the
second was written in YALMIP with SDPT3 as its solver.

The resulting operating regions are seen in Figures 12 and 13. In the state space, the
proposed region computed via LMIP presents significantly larger operating terminal region, when
compared to the SDP method of computing penalty matrix PPP and gain KKK through DARE then
identifying a radius where state, input, and input move bounds are satisfied. The difference in the
operating region in the input space is closely related to the controller gain of each formulation.
The resulting region from the LMIP is larger than the SDP method due to the controller gain
being one of the decision variables when it computes the terminal region. When the regulator
gain is a decision variable, the solution of the optimization will consist of smaller gains in order

Figure 11 – Quadruple-tank system diagram

x4
a4
A4

x2
a2
A2

x1
a1
A1

x3
a3
A3

γ1 γ2

u1 u2

Source: Own author



3.3. Case study: quadruple tank system controlled by LQR in discrete-time 61

Figure 12 – LQR operating region in the input space ( ) for Problem Pa ( ) and Problem Pc
( )

to enlarge the operating region radius, which is to be maximized - as per objective function of
Problem Pc.



62 Chapter 3. Discrete-time feedback stabilization

Figure 13 – LQR operating region in the state space ( ) for Problem Pa ( ) and Problem Pc
( )

The penalty matrix PPP, controller gain KKK, and radius r are
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PPPc =



43.3510 0 0 0 0 0
0 54.4376 0 0 0 0
0 0 9.1822 0 0 0
0 0 0 7.4666 0 0
0 0 0 0 2.0661 0
0 0 0 0 0 2.0661


×10−3, (3.37)

KKKc =

[
0.1936 0.0813 0.0257 0.1167 0.1126 0.0007
0.0798 0.2165 0.1150 0.0395 0.0018 0.1175

]
, (3.38)

rc = 1. (3.39)

Considering the operating region has a fixed radius of 1, the LMIP was capable of
maximizing the operating region under such constraint, by determining smaller values of the
penalty matrix while varying controller gain. The resulting regulator gain and penalty matrix for
Problem Pa, now in discrete-time, are

PPPa =



6.3856 −0.1410 1.2763 −0.4704 0.0790 0.0560
−0.1410 6.0693 −0.4140 1.140 0.0482 0.0759
1.2763 −0.4140 6.4555 −0.3262 0.0095 0.2698
−0.4704 1.140 −0.3262 6.6913 0.2806 0.0063
0.0790 0.0482 0.0095 0.2806 1.6343 0.0014
0.0560 0.0759 0.2698 −0019 0.0014 1.6337


(3.40)

KKKa =

[
0.0790 0.0482 0.0095 0.2806 0.6343 0.0014
0.0560 0.0759 0.2698 0.0063 0.0014 0.6337

]
(3.41)

ra = 7.9813 (3.42)

The radii and penalty matrices are not directly comparable, however, the figures just
exposed demonstrate that the LMIP approach produces larger operating regions. The region
computed via LMIP Pc is larger due to the capability of the optimization problem of changing
both the regulator gain KKK and the objective funciton penalty matrix PPP. The SDP method is unable
to change these values, hence its optimization problem will only compute the radius of the
operating region where the state and input constraints are satisfied.

3.3.3 Closed-loop simulation

The regulator computed via Pc was simulated in closed-loop with the nonlinear system
under study. Figure 14 shows states in pairs.
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Figure 14 – Closed-loop under controllers computed via Pa and Pc with operating regions
computed via Pa ( ) and Pc ( ): state trajectory regulated by Pa ( ) and Pc
( )

The regulators successfully bring the states towards its operating region center, the
reference. The controller obtained via SDP Problem Pa shows better performance, as was
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expected, since the LMI method prioritizes the operating region size over the regulator gain
magnitude. The state evolution over time is seen in Figure 15.

Figure 15 – Reference ( ) and state profile over time under controllers computed via Pa ( )
and Pc ( )

System states in closed-loop show oscillatory behavior. Drifting states were observed in
Raff et al. (2006) in the case of closed-loop with a NMPC without stability constraints. In said
work, the implemented formulation had no guaranteed stability, hence the states in closed-loop
would drift until reaching a state boundary, where it would stop.

This regulator has guaranteed closed-loop stability with a nonlinear system according to
the algorithm in Figure 10. Before that algorithm is executed, the eigenvalues of the Jacobian
linearization in closed-loop with the computed gain KKKc, the controller which shows significantly
more oscillatory behavior, are obtained and seen in Figure 16.

All the eigenvalues lie within the unit circle, indicating stability of the autonomous
system AAAv−BBBvKKKc. Since the system presents eigenvalues with imaginary parts, oscillatory
behavior is expected. However, this is not enough for stating stability for the nonlinear system.

The computed inputs are displayed in Figures 17 and 18.
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Figure 16 – Eigenvalues of closed-loop system with controller computed by Pc within the unit
circle. Marker × indicate eigenvalues
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Figure 17 – Input profile over time determined by controller computed via Pc

Inputs also converge to the reference value. However, the SDP-based controller shows
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Figure 18 – Input evolution of controllers computed via Pa (×) and Pc (×) with operating
regions computed via Pa ( ) and Pc ( )

constraint violation as it takes input moves larger than allowed. This is due to operation outside
its constrained operating region, not shown here but it is known by way of Figures 13 and 12
that its operating region is much smaller. As a result, this controller will violate the input move
constraints. Input evolution over time can be seen in Figure 17.

All input and input move constraints are satisfied in this simulation for the LMI-based
controller Problem Pc. The SDP-based controller does violate the input move constraints at the
start of the simulation, due to its significantly larger gain.

Finally, ∆∆∆QQQ matrices for both formulations that indicate the existence of the nonlinearity
bound, computed as per algorithm of Figure 10, are

∆∆∆QQQd,a =



10.1583 0.0004 0.0013 −0.0010 0.0266 −0.0365
0.0004 10.1578 −0.0024 0.0018 −0.0493 0.0674
0.0013 −0.0024 10.1502 0.0062 −0.1717 0.2346
−0.0010 0.0018 0.0062 10.1539 0.1276 −0.1751
0.0266 −0.0493 −0.1717 0.1276 6.6272 4.8258
−0.0365 0.0674 0.2346 −0.1751 4.8258 3.5359


,
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∆∆∆QQQd,c =



10.5397 0.0001 0.0007 −0.0011 0.0201 −0.0308
0.0001 10.5397 −0.0008 0.0010 −0.0231 0.0289
0.0007 −0.0008 10.5350 0.0058 −0.1350 0.1686
−0.0011 0.0010 0.0058 10.5314 0.1615 −0.2472
0.0201 −0.0231 −0.1350 0.1615 6.7592 4.7199
−0.0308 0.0289 0.1686 −0.2472 4.7199 3.3152


.

When these matrices exist and are determined, it can be affirmed that the nonlinear
system is closed-loop asymptotically stable when inside the operating region Ω. These matrices
were determined without any further reductions of the operating region from their respective
constrained operating region radii.



Part III

Nonlinear model predictive control
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4 Nonlinear model predictive control formu-
lations

Nonlinear model predictive control consists of computing a control policy for a plant
through online solution of an optimal control problem. These controllers are formulated via
an optimal control problem. This optimal control problem consists of predicting states through
a nonlinear model of said plant in order to achieve an objective such as tracking a set point,
minimizing input use or other objective.

First, an optimal control problem is shown. Then, it is shown how it is used in representing
the nonlinear model predictive controller. Then, some strategies regarding stability of nonlinear
model predictive controllers will be exposed and finally results regarding implementation of
nonlinear model predictive controllers.

4.1 Optimal control theory

An optimal control problem consists of computing control actions to be injected into a
process in order to obtain an optimal trajectory regarding the objective of the controller. These
objectives are used to classify the optimal control problems into categories regarding the fixed or
free end points and final times.

The optimization problem P1 represents an optimal control problem with fixed end
point and fixed final time. Its objective is to compute an input profile that brings system states xxx0

reach a desired state xxx1 in t1 time units:

The cost functional J consists of the controller objective, which could be tracking
of the output xxx related to a desired set point, minimal usage of control actions uuu, among
other possibilities. This cost functional consists of stage functional l(xxx(t),uuu(t)) and a possible
additional term called terminal functional fff terminal(t1,xxx(t1),uuu(t1)). This optimization problem
minimizes the cost functional J while the dynamics of the system to be controlled are represented
by a nonlinear model, as per constraint (4.1b). Constraints on the states (4.1e) and inputs (4.1f)
can also apply.

The solution to Problem P1 consists of the optimal control policy uuu∗(t) which results in
the optimal trajectory xxx∗(t).
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Problem P1:

min
uuu(t)

J(xxx,uuu) (4.1)

where

J(xxx,uuu) =
∫ t1

0
l(xxx(t),uuu(t))dt + fff terminal(t1,xxx(t1),uuu(t1)), (4.1a)

subject to
xxx(0) = xxx0, (4.1b)
uuu(0) = uuu0, (4.1c)
ẋxx(t) = fff (xxx(t),uuu(t)), (4.1d)
xxx(t) ∈X , (4.1e)
uuu(t) ∈U , (4.1f)
xxx(t1) = xxx1. (4.1g)

4.2 Finite horizon optimal control problems

The controller is represented by a finite horizon optimal control problem (FHOCP) that
is solved at every sampling interval. A not necessarily optimal sequence of control actions is
computed. The first control action calculated is then implemented. The optimization problem is
solved again at the next sampling time, while inputs and states (or outputs) are measured, which
is why this control strategy may be referred to, in the literature, as moving horizon controller.
The optimization problem is as follows:

Unlike in Problem P1, the optimal control problem that represents this controller is in
discrete-time. This change happens due to most of the optimal control theory being presented
in continuous time while the model predictive control literature handles sampled systems. The
representation of states and inputs with a counter j as its argument, instead of a time variable t,
is commonly used in the literature. All of the formulations in this work are in discrete-time.

In this optimization, the prediction horizon Np and the control horizon Nc, seen in the
objective function (4.2a), represent respectively how many sampling intervals there will be
penalization of state error and control moves.

The stage cost, earlier represented by l(xxx,uuu), consists now of penalization of state
error with respect to a set point, xxx(k + j|k)− xxxsp, as well as penalization of control moves,
∆uuu(k+ j|k), in order penalize more drastic input moves, increasing longevity of plant actuators.
This penalization relative to a set point is not often found in the control theory literature, where
it is assumed that the reference is the origin. However, there are no losses when one changes the
reference from the origin to another point in the state space. Terminal penalty terms can also
apply. This kind of controller is often referred to as a tracking controller, as it penalizes distance
between state and a set-point xxxsp.
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Problem P2:

min
uuuk

J(xxx,uuu), (4.2)

where

J(xxx,uuu) =
Np−1

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

Nc−1

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR, (4.2a)

subject to
xxx(k|k) = xxx0, (4.2b)
uuu(k−1|k) = uuu0, (4.2c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.2d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.2e)
xxx(k+ j|k) ∈X , (4.2f)
uuu(k+ j|k) ∈U , (4.2g)
∆∆∆uuu(k+ j|k) ∈U∆, (4.2h)
∆∆∆uuu(k+ j|k) = 000, j ≥ Nc, (4.2i)
j ∈ [0,Np−1] ∈ N. (4.2j)

The current values of state and input are represented respectively by constraints (4.2b)
and (4.2c). Computation of input moves is handled by constraint (4.2e).

Admissible state, input, and input moves are represented by hard constraints (4.2f),
(4.2g), and (4.2h). Constraint (4.2i) limits the number of control moves to compose the optimal
input profile uuuk to the number of control moves one can fit inside the control horizon. The
final constraint (4.2j) indicates that the discrete-time counter j can only admit values inside the
prediction horizon of length Np.

The quadratic form of the stage cost observed in most of the stability theory literature is
justified in Hahn (1967). In Chapter IV, prior to the direct Lyapunov method studies, he shows
that the weighted Euclidean norm, named form in the mentioned work, is a convenient function
to work with in stability studies since one can affirm the norm’s positive definiteness or its radial
unboundedness (relevant to global stability studies).

For illustrative purposes, Figure 19 demonstrates an open-loop trajectory predicted by
the NMPC, along with its input profile.

The open-loop system is at an equilibrium point (xxx0,uuu0). The closed-loop trajectory
consists of five control actions, the decision variable uuuk = [uuu(k+1|k) . . . uuu(k+5|k)]T of Problem
P2 , and nine state predictions (therefore, Nc = 5 and Np = 9), the state trajectory [xxx(k +

1|k) . . . xxx(k+9|k)]T . This open-loop trajectory tracks a reference value xxxsp as the optimization
problem penalizes state error with respect to said reference.
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Figure 19 – State and input profiles predicted and computed by NMPC in an iteration
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Figure 20 – State prediction over time and computed inputs over time, computed via NMPC at
previous ( ) and current ( ) iteration.
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However, suppose there was a disturbance which brought state to xxx(k+1) instead of its
predicted value at the previous sampling interval. Figure 20 illustrates this situation. Notice that
there is a difference between the predicted states at the previous and the latter sampling intervals
due to the disturbance, and that the computed control actions are different because the controller
accounts for said disturbance. A different control profile is computed as the controller attempts



4.2. Finite horizon optimal control problems 75

to compensate for the state disturbance.

NMPC is a convenient control strategy for its capability of adapting to the current
measurements of the plant. However, without any guarantee that it will stabilize the plant, the
controller is not safe nor advantageous for its practical implementation.

The controller just exposed, in Problem P2, has no proven stability as is. Studies in
this regard revolve around finding conditions where this formulation is stabilizing, either via
stabilizing constraints (by adding a constraint to the optimization problem, or manipulating the
weighting of the objective function) or control system characteristics (meaning no modifications
are necessary in order to achieve closed-loop stability, instead stability is achieved through
controller tuning alone).

4.2.1 Stability granting methods

Stabilizing formulations found in the literature will be presented, followed by examples -
when possible.

For linear systems, infinite horizon model predictive controllers are nominally stable
(MUSKE; RAWLINGS, 1993). An optimization problem that may represent such controller for
a nonlinear system is:

Problem P3:

min
uuuk

J(xxx,uuu) (4.3)

where

J(xxx,uuu) =
∞

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

∞

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR, (4.3a)

subject to
xxx(k|k) = xxx0, (4.3b)
uuu(k−1|k) = uuu0, (4.3c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.3d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.3e)
xxx(k+ j|k) ∈X , (4.3f)
uuu(k+ j|k) ∈U , (4.3g)
∆∆∆uuu(k+ j|k) ∈U∆, (4.3h)
j ∈ N. (4.3i)

The infinite dimension of the decision variable, the input trajectory uuuk, makes the problem
intractable. Also, the infinite summations in the cost function are unbounded. The optimization
problem’s intractability makes it impossible to implement such controller. Attempts to handle
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this intractability of infinite horizon controllers first came from the use of equality constraints
(KEERTHI; GILBERT, 1988).

4.2.1.1 Terminal state equality constraints

Restrictions can be added to the optimization problem in order to limit the summations,
as well turning the decision variable into a finite sequence of control actions. Two restrictions
are necessary, one for each infinite summation, resulting in Problem P4.

Problem P4:

min
uuuk

J(xxx,uuu), (4.4)

where

J(xxx,uuu) =
∞

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

∞

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR, (4.4a)

subject to
xxx(k|k) = xxx0, (4.4b)
uuu(k−1|k) = uuu0, (4.4c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.4d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.4e)
xxx(k+ j|k) ∈X , (4.4f)
uuu(k+ j|k) ∈U , (4.4g)
∆∆∆uuu(k+ j|k) ∈U∆, (4.4h)
xxx(k+Np−1|k)− xxxsp = 000, (4.4i)
∆∆∆uuu(k+ j|k) = 000, j ≥ Nc, (4.4j)
fff (xxx(k+Np−1|k),uuu(k+Nc−1|k)) = xxx(k+Np−1|k), (4.4k)
j ∈ [0,Np−1] ∈ N. (4.4l)

With (4.4i) and (4.4j), it can be shown that the infinite summations become limited. We
split the infinite summation in two, referring to the summation inside the controller’s horizon
and outside said horizon.

∞

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

∞

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR =

Np−1

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

Nc−1

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR

+
∞

∑
j=0

∥∥xxx(k+Np + j|k)− xxxsp
∥∥2

QQQx
+

∞

∑
j=0
∥∆∆∆uuu(k+Nc + j|k)∥2

RRR
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When the controller satisfies constraints (4.4i) and (4.4j), we have that the infinite
summations on the right hand side of the equality above are equal to zero, making the infinite
summation bounded. This method of eliminating the intractability of infinite summations has
been done first by Keerthi & Gilbert (1988). Constraint (4.4k) guarantees that only trajectories
that reach steady state at the end of the prediction horizon are considered.

The formulation was implemented for a quadruple tank system. Tuning parameters
consist of QQQx = 1× Inx , QQQu = 1× Inu , RRR = 1× Inu , NP = NC = 27, with sampling time of 2
seconds. The closed-loop states can be seen in Figure 21. The inputs computed can be seen in
Figure 22. The controller cost is seen in Figure 23. On the optimization side of the simulation,
the output flag and the computer time spent per sampling interval can be seen in Figure 24.

The formulation represented by Problem P4 tracks different set points properly. More
drastic input moves can be seen in the latter third part of the simulation. However, the input move
constraints are not yet violated. The controller cost function shows non-increasing behavior. The
optimization was completed successfully throughout the entire simulation. A slight increase
in computational effort can be seen at the start of the third part of the simulation, where the
controller exerts the largest control effort in order to satisfy the terminal equality constraints.
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Figure 21 – Tracking case of P4: states ( ) and reference ( )

0 100 200 300 400 500 600 700
5

10

15

x
1
 [

c
m

]

0 100 200 300 400 500 600 700
5

10

15

x
2
 [

c
m

]

0 100 200 300 400 500 600 700
5

10

15

x
3
 [

c
m

]

0 100 200 300 400 500 600 700

Time [s]

10

15

20

25

x
4
 [

c
m

]



4.2. Finite horizon optimal control problems 79

Figure 22 – Tracking case of P4: inputs
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Figure 23 – Tracking case of P4: cost
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Figure 24 – Tracking case of P4: flag and computer times

The terminal equality constraint will be implemented in this work along with zone control
with optimizing targets. (GONZÁLEZ; ODLOAK, 2009) Zone control has as objective bringing
states to a range of operation instead of a set point. With this artificial reference free to be chosen
by the controller, one can then impose a penalization of inputs with respect to an optimal input
target. A finite horizon optimal control problem (FHOCP) that represents this formulation is
Problem P5.

Changes from the original FHOCP P2, that represents the traditional NMPC, are in-
troduction of the set point and its corresponding input as decision variables, that must satisfy
an additional constraint (4.5i), representing control zone. The constraints (4.5j) and (4.5k) are
added in order to have an equilibrium point as a reference value with feasible corresponding
input.

Penalization of this input with respect to a desired input is an economic term that can be
added to the cost function, as done in (4.5a). This can be used to either minimize or maximize
input values, or to keep inputs closest to an optimal target.

Integration of terminal equality constraints and zone control has their recursive feasibility
and asymptotic stability demonstrated, respectively, in Lemma 1 and Theorem 1 of Sencio et al.
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(2020). The optimization problem that integrates a terminal equality constraint formulation and
zone control with optimizing targets is given by Problem P6.

Problem P5:

min
uuuk,xxxsp,uuusp

J(xxx,uuu), (4.5)

where

J(xxx,uuu) =
Np−1

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

Nc−1

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR

+
∥∥uuusp−uuudes

∥∥2
QQQu

, (4.5a)

subject to
xxx(k|k) = xxx0, (4.5b)
uuu(k−1|k) = uuu0, (4.5c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.5d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.5e)
xxx(k+ j|k) ∈X , (4.5f)
uuu(k+ j|k) ∈U , (4.5g)
∆∆∆uuu(k+ j|k) ∈U∆, (4.5h)
xxxsp ∈XZ, (4.5i)
xxxsp ∈Xω , (4.5j)
uuusp ∈U , (4.5k)
xxxsp = fff (xxxsp,uuusp), (4.5l)
j ∈ [0,Np−1] ∈ N. (4.5m)

Here, we prove the recursive feasibility of the formulation in Problem P6:

Lemma 2 For an undisturbed nominal system, if Problem P6 is feasible at time step k, it will

remain feasible for any subsequent time step.

With the assumption that Problem P6 is feasible at k, there is an optimal control sequence

uuu∗k = [uuu∗(k|k)T . . . uuu∗(k+Nc−2|k)T uuu∗(k+Nc−1|k)T ]T .

With it, one can build a candidate solution for the next sampling time k+1 which is

ũuuk+1 = [uuu∗(k+1|k)T . . . uuu∗(k+Nc−1|k)T uuu∗(k+Nc−1|k)T ]T .

Input constraints (4.6g) and (4.6h) are not violated by this candidate solution. Also, as
the candidate solution shifts the optimal input trajectory uuu∗k with repeated control action - no
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Problem P6:

min
uuuk,xxxsp,uuusp

J(xxx,uuu), (4.6)

where

J(xxx,uuu) =
Np−1

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

Nc−1

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR

+
∥∥uuusp−uuudes

∥∥2
QQQu

, (4.6a)

subject to
xxx(k|k) = xxx0, (4.6b)
uuu(k−1|k) = uuu0, (4.6c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.6d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.6e)
xxx(k+ j|k) ∈X , (4.6f)
uuu(k+ j|k) ∈U , (4.6g)
∆∆∆uuu(k+ j|k) ∈U∆, (4.6h)
xxxsp ∈XZ, (4.6i)
xxxsp ∈Xω , (4.6j)
uuusp ∈U , (4.6k)
xxx(k+Np−1|k)− xxxsp = 000, (4.6l)
∆∆∆uuu(k+ j|k) = 000, j ≥ Nc (4.6m)
fff (xxxsp,uuu(k+Nc−1|k)) = xxxsp (4.6n)
j ∈ [0,Np] ∈ N. (4.6o)

control move is done - taken at its final element, the candidate solution for the reference value
is the previously computed optimal reference value, x̃xxsp = xxx∗sp . Also due to no control action
taken at the end of the candidate input trajectory ũuuk, the terminal equality constraint (4.6l) and
the steady-state constraint (4.6n) are also satisfied. With the terminal equality constraint (4.6l)
satisfied at k, this means that the final state xxx(k+Np− 1|k) is a steady state. As no control
action is taken after k+Nc−1, the candidate solution yields another steady state at the end of its
prediction, xxx(k+Nc−1|k+1) = xxx(k+Nc−1|k), satisfying (4.6l) at k+1. ■

With recursive feasibility proven, we guarantee stability as follows:

Theorem 2 Consider the nominal system in the absence of disturbances and let the intersection

between the set of equilibrium points and the control zone Xω ∩XZ be non empty. Also, suppose

that Problem P6 has a feasible solution at time step k and that uuudes is an admissible input target.

The controller drives the system into the control zone in which the pair (xxxsp,uuudes), xxxsp ∈Xω ,

uuudes ∈U is an asymptotically stable solution to Problem P6.
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The stability proof once again makes use of an optimal solution uuu∗k and xxx∗sp and an
inherited solution ũuuk+1 and x̃xxsp. The optimal solution produces an optimal cost J∗ at sampling
time k. At sampling time k+1, a sub-optimal solution which consists of the inherited solution
ũuuk+1 produces a sub-optimal cost J̃ at sampling time k+ 1. If one were to compare the costs
J∗(k) and J̃(k+1), the difference between these would be:

J∗(k)− J̃(k+1) =
∥∥xxx(k|k)− xxxsp

∥∥2
QQQx

+∥∆∆∆uuu∗(k|k)∥2
RRR

With positive-definite matrices QQQx and RRR, we have that this difference is non-negative,
which implies that J̃(k+1)≤ J∗(k). Since the inherited solution may be sub-optimal, this also
implies that J∗(k+1)≤ J∗(k). Consequently, future controller cost values will always be non-
increasing. Built by norms, the future controller costs are also bounded below by zero. When the
input target uuudes is reachable, the cost converges to zero. With cost convergence to zero, there is
convergence of state and input, respectively xxx(k)→ xxxsp and uuu(k)→ uuusp = uuudes as k→ ∞. ■

Closed-loop simulations of a quadruple tank system controlled by Problem P6 were
performed. Tuning parameters consist of QQQx = 1× Inx , QQQu = 1× Inu , RRR = 1× Inu , NP = NC = 27,
with sampling time of 2 seconds. The resulting states can be seen in Figure 25, whereas the
computed control policies are seen in Figure 26, Figure 27 shows the controller cost and finally
Figure 28 shows the optimization flags and computer time spent per iteration for this formulation.

With the set point as a decision variable, it can be seen that the controller moves the
system states inside the control zone. As the states enter the control zone, the next priority is
to attain the input target. This is entirely due to the tuning parameters related to state error and
input target error.

When the controller brings the states to the control zone, its next objective is to minimize
the distance between input and its economic target. When the input target is not related to an
equilibrium point inside the control zone, the controller then brings the state to the border of the
control zone while minimizing the distance between input and its economic target. As per the
objective function (4.6a), this results in non-zero cost while the closed-loop is stable.

As mentioned, the second part of the simulation has a non-zero cost due to the offset
between input and its economic target. Overall, the controller cost shows non-increasing behavior
as well.

The optimization was solved successfully at every sampling time. The computational
effort in this case is higher than for the tracking case because the controller computes not only
control actions but a set point and a corresponding input at every iteration. If one were to apply
the rule of thumb of 10% of the sampling time for computer times, this controller would be
considered inapplicable for the quadruple tank system due to multiple violations of said rule.
Strategies that accelerate computer times will be discussed later.
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Figure 25 – Zone control with input targets of P6: states ( ), control zones ( ) and computed
setpoints ( )
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Constraints (4.4i) and (4.4k) of Problem P4 - (4.6l) and (4.6n) for Problem P6 - are very
restrictive and usually make the problem inapplicable due to longer horizon demands. Adaptive
horizon methods can be employed, in order to compute the length of the horizon necessary in
order to make these constraints feasible. Adaptive methods extend and diminish the control and
prediction horizons depending on how far the controller predictions are from satisfying (4.4i)
and (4.6l). One could preemptively compute the control and prediction horizons in order to
always satisfy the equality constraints. This horizon tuning can be done through optimization, as
was done by Giraldo, Melo & Secchi (2019). Another approach, based on multiple open-loop
simulations can be used in order to determine a first guess to these horizon lengths. By the
bang-bang principle - which states that the boundary of the attainable set is obtained through
maximal control actions - along with a near steady-state condition, which is how optimization
solvers handle equality constraints, one can evaluate if the system has reached the operating zone
and is close to steady-state. The near steady-state condition would be of the form
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Figure 26 – Zone control with input targets of P6: inputs ( ) and input targets ( )
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Figure 27 – Zone control with input targets of P6: cost
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−ε

[
1 1 1

]T
≤ ẋxx(k+Np−1|k)≤ ε

[
1 1 1

]T
(4.7)

with ε as the steady-state tolerance. Considering once again the CSTR reactor (2.14),
different values of tolerances were used in order to check how many different trajectories reach a
specified zone and steady-state. The system in question was simulated in open-loop with control
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Figure 28 – Zone control with input targets of P6: flag and computer times

actions at the border of the admissible input set and considering input moves at the border of
the input move set as well. For the same initial state, over 6000 open-loop simulations were
performed in order to detect which control actions would result in trajectories that reach the
control zone while attending the steady-state tolerance. The results are available in Figure 29.
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Figure 29 – Trajectory count that reach control zone by prediction horizon length for multiple
steady-state tolerances

Source: Own author.

With Figure 29, one can appropriately choose the prediction horizon Np according to
the desired steady-state tolerance ε . Not every trajectory reaches the desired control zone, but
that is expected since not every control move will reach the control zone. As one decreases the
steady-state tolerance, less trajectories are available. With longer horizons, more trajectories are
capable of satisfying the steady-state tolerance.

One can make use of unbound slack variables on said constraints in order to make
these constraints always feasible. One must penalize these slacks as well in the cost functional,
otherwise a static state trajectory may be taken rather than a trajectory that goes towards a
set point or zone. This strategy, as is, has not yet been proven to have guaranteed stability or
recursive feasibility. The work of Fagiano & Teel (2012) has circumvented the need of a terminal
state equality constraint by means of a terminal state penalization that is tuned by the operator
and is made to contract at every sampling interval. Later in this work a strategy that makes
use of slack variables will be implemented and its guaranteed stability and recursive feasibility
demonstrated.

More strategies have been developed in the literature, to approximate infinite horizon
controllers. The most relevant ones are the cost-contracting constraint, state-contracting constraint
and terminal inequality constraints.
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4.2.1.2 Terminal state inequality constraints

The use of a linear quadratic regulator (LQR) was proposed by Michalska & Mayne
(1993). A dual-mode controller that consists of a model predictive controller that drives the
system to a region about the desired value where a stabilizing linear quadratic regulator operates.

Chen & Allgöwer (1998) introduce a quasi-infinite horizon NMPC. The objective func-
tional consists of a finite horizon cost which penalizes the states through the finite horizon
and a terminal cost which represents the controller cost after the control horizon. The terminal
cost is computed via cost of a LQR which is never active, like the classic dual-mode MPC
(MICHALSKA; MAYNE, 1993). The terminal inequality constraint represents the restriction of
the terminal state to a region where such LQR is stabilizing. A discussion of the rationale behind
the terminal region and corresponding control law follows, before advancing to the controller
itself.

An alternative terminal region MPC application involving polytopic invariant sets (CAN-
NON; DESHMUKH; KOUVARITAKIS, 2003), instead of ellipsoidal invariant sets, must be
mentioned, although it was not implemented in this work.

As continuous-time formulations are difficult to implement online due to its fast sam-
pling requirements, we proceed to a formulation for discrete-time nonlinear systems. The final
QIH-NMPC to be shown here consists of determining the discrete LQR for the terminal re-
gion and working with the nonlinear system in discrete-time. Depending on sampling rates,
continuous-time formulations are not viable since the computed inputs injected to the plant
cannot approximate properly a continuous-time optimal input profile.

Rajhans et al. (2019) extended the work of Chen & Allgöwer (1998) to discrete-time sys-
tems. Its workflow is very similar: compute the regulator and terminal penalty matrix through the
discrete algebraic Ricatti equation (DARE), identify the terminal region where input constraints
are satisfied then finally identify the region inside this terminal region where the nonlinearity is
bounded, hence having the nonlinear system stabililized by the linear state feedback control law
computed by DARE. The terminal penalty matrix and terminal region are used as stabilizing
constraints in the NMPC, which has its closed-loop stability given by recursive feasibility and
guaranteed convergence proven in a similar fashion as the original QIH-NMPC.

Consider the discrete-time nonlinear system:

xxx(k+1) = fff (xxx(k),uuu(k)), xxx(0) = xxx0 (4.8)

and a different set of assumptions:

Assumption 1 fff : X ×U →X is continuously differentiable over the set of admissible states

X .
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Assumption 2 U is compact and contains the reference value in its interior.

Assumption 3 The set of admissible states X is control positive invariant for fff (·, ·), is compact

and contains the reference value in its interior.

This is a new class of assumptions, prevalent in more recent predictive control literature.
Control positive invariance means that any admissible state cannot evolve outside the set through
any admissible inputs, i.e. fff (xxx(k),uuu(k) ∈X for all xxx(k) ∈X and all uuu(k) ∈U and k > 0.

Assumption 4 The reference value (xxxsp,uuusp) is an equilibrium point of the system.

That is, fff (xxxsp,uuusp) = xxxsp.

Assumption 5 States xxx(k), k ≥ 0, are perfectly measured and the system has no disturbances.

Representing the standard undisturbed nominal case.

Assumption 6 The Jacobian linearization of the nonlinear system is controllable.

Necessary assumption since the virtual regulator needs for asymptotic stability guarantee.

We proceed to show the optimization problem for the QIH-NMPC for the discrete-time
system:

Recursive feasibility is stated by the following Lemma.

Lemma 3 (adapted from Lemma 13 of Rajhans et al. (2019)) For the nominal undisturbed

system with perfect measurement, when the QIH-NMPC formulation represented by Problem

P7 is feasible for k = 0, it is feasible for any k > 0.

The proof begins with the optimal solution obtained at time k = 0:

uuu∗k = [uuu∗(k|k)T . . . uuu∗(k+Np−2|k)T uuu∗(k+Np−1|k)T ]T

With the injection of the first control action computed, uuu∗(k)T , the next state will match
the predicted state at time k+1 since this is the nominal undisturbed case, xxx(k+1). We show a
inherited solution, consisting of the previous optimal solution shifted in one sampling interval
and with the state feedback control law delivering the last control action:

ũuuk+1 = [uuu∗(k+1|k)T . . . uuu∗(k+Np−1|k)T [uuu∗(k+Np−1|k)−KKK(zzz(k+Np|k)− zzzsp)]
T ]T
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Problem P7:

min
uuuk

J(xxx,uuu), (4.9)

where

J(xxx,uuu) =
∥∥zzz(k+Np|k)− zzzsp

∥∥2
PPP

+
Np−1

∑
j=0

∥∥zzz(k+ j|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu(k+ j|k)∥2
RRR, (4.9a)

∆∆∆uuu(k+ j) = uuu(k+ j|k)−uuu(k+ j−1|k), j ∈ [0,Np−1], (4.9b)

zzz(k+ j|k)− zzzsp =

[
xxx(k+ j|k)

uuu(k+ j−1|k)

]
−
[

xxxsp
uuusp

]
, j ∈ [0,Np−1] (4.9c)

subject to
xxx(k) = xxx0, (4.9d)
uuu(k−1) = uuu0, (4.9e)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), j ∈ [0,Np], (4.9f)
xxx(k+ j|k) ∈X , j ∈ [0,Np] (4.9g)
uuu(k+ j|k) ∈U , j ∈ [0,Np−1] (4.9h)
∆∆∆uuu(k+ j|k) ∈U∆, j ∈ [0,Np−1] (4.9i)∥∥zzz(k+Np|k)− zzzsp

∥∥2
PPP ≤ ρ, (4.9j)

Which is also feasible: the inherited solution up to k +Np− 1 was feasible, and by
construction the state feedback control law was computed while accounting for state and input
constraints. ■

The exponential stability of the closed-loop is given by the following Theorem.

Theorem 3 (Adapted from Theorem 16 of Rajhans et al. (2019)) Let Assumptions 1-6 hold

and Problem P8 be feasible at k. Then, the nominal undisturbed system with the controller

defined in Problem P7 exponentially stable at the reference value.

Like most stability proofs, starting point is the optimal solution at time k and its corre-
sponding optimal objective function value.

uuu∗k = [uuu∗(k|k)T . . . uuu∗(k+Np−2|k)T uuu∗(k+Np−1|k)T ]T

J∗(xxx(k),uuu∗(k)) =
∥∥zzz∗(k+Np|k)− zzzsp

∥∥2
PPP +

Np−1

∑
j=0

∥∥zzz∗(k+ j|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu∗(k+ j|k)∥2
RRR

as well as the inherited solution mentioned in Lemma 3, now accompanied by the corresponding
objective function value:
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ũuuk+1 =[uuu∗(k+1|k)T . . . uuu∗(k+Np−1|k)T [uuu∗(k+Np−1|k)−KKK(zzz(k+Np|k)− zzzsp)]
T ]T

J̃(xxx, ũuu) =
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP +

Np

∑
j=1

∥∥zzz(k+ j|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu(k+ j|k)∥2
RRR

=
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP +

∥∥zzz(k+Np|k)− zzzsp
∥∥2

QQQ +
∥∥∆∆∆uuu(k+Np|k)

∥∥2
RRR

+
Np−1

∑
j=1

∥∥zzz∗(k+ j|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu∗(k+ j|k)∥2
RRR

We first make use Lemma 1 which states conditions when the discrete-time LQR stabi-
lizes a nonlinear system. Its condition is that the induced norm βΨΨΨ along with its upper bound β ∗

ΨΨΨ

can be used to determine where in the terminal region Ω the inequality ϕ(zzz(k))≥ 0 is satisfied,
indicating asymptotic stability of the nonlinear system when controlled by the linear quadratic
regulator computed by DAREs (3.4) and (3.5). When the induced norm does not violate the
upper bound, βΨΨΨ ≤ β ∗

ΨΨΨ
, the regulator renders the nonlinear system asymptotically stable. We

also have the very convenient inequality

Vt(zzz(k+1))−Vt(zzz(k))≤−
∥∥zzz(k|k)− zzzsp

∥∥2
QQQd

=
∥∥zzz(k|k)− zzzsp

∥∥2
QQQ +

∥∥−KKK(zzz(k|k)− zzzsp)
∥∥2

RRR
(4.10)

which states that the terminal cost is bounded from above by the stage cost of the
nonlinear system controlled by the LQR. This inequality can be summed over the time interval
[k,∞), yielding:

∥∥zzz(k|k)− zzzsp
∥∥2

PPP ≥
∞

∑
i=k

∥∥zzz(i)− zzzsp
∥∥2

QQQd
.

The callback to the feedback stabilization of a nonlinear system is relevant due to
the relation it guarantees for the comparison of the objective functions J∗(xxx(k),uuu∗(k)) and
J̃(xxx(k), ũuu(k)). We can write the latter in terms of the former:



92 Chapter 4. Nonlinear model predictive control formulations

J̃(xxx, ũuu) =
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP +

∥∥zzz(k+Np|k)− zzzsp
∥∥2

QQQ +
∥∥∆∆∆uuu(k+Np|k)

∥∥2
RRR

+
Np−1

∑
j=1

∥∥zzz∗(k+ j|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu∗(k+ j|k)∥2
RRR

= J∗(xxx(k),uuu∗(k))−
∥∥zzz∗(k|k)− zzzsp

∥∥2
QQQ−∥∆∆∆uuu∗(k|k)∥2

RRR

+
∥∥zzz∗(k+Np|k)− zzzsp

∥∥2
QQQ +

∥∥−KKK(zzz(k+Np|k)− zzzsp)
∥∥2

RRR︸ ︷︷ ︸
=∥zzz(k+Np|k)−zzzsp∥2

QQQd

+
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP−

∥∥zzz(k+Np|k)− zzzsp
∥∥2

PPP

= J∗(xxx(k),uuu∗(k))−
∥∥zzz∗(k|k)− zzzsp

∥∥2
QQQ−∥∆∆∆uuu∗(k|k)∥2

RRR

+
∥∥zzz(k+Np|k)− zzzsp

∥∥2
QQQd

+
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP−

∥∥zzz(k+Np|k)− zzzsp
∥∥2

PPP

From inequality (4.10), we have that the difference between terminal penalty costs shows
an upper bound for the comparison:

J̃(xxx, ũuu) =J∗(xxx(k),uuu∗(k))−
∥∥zzz∗(k)− zzzsp

∥∥2
QQQ−∥∆∆∆uuu∗(k)∥2

RRR

+
∥∥zzz(k+Np|k)− zzzsp

∥∥2
QQQd

+
∥∥zzz(k+Np +1|k)− zzzsp

∥∥2
PPP−

∥∥zzz(k+Np|k)− zzzsp
∥∥2

PPP︸ ︷︷ ︸
≤0, as per manipulation of expression (4.10)

≤ J∗(xxx(k),uuu∗(k))−
∥∥zzz∗(k|k)− zzzsp

∥∥2
QQQ−∥∆∆∆uuu∗(k|k)∥2

RRR (4.11)

If the optimal solution were to be computed at time k+1, the objective function value
would be J∗(xxx(k+1),uuu∗(k+1)) and it can be implied by this optimal objective function value
that:

J∗(xxx(k+1),uuu∗(k+1))≤ J̃(xxx(k+1), ũuu(k+1))

Which in turn attends to the inequality (4.11), so that

J∗(xxx(k+1),uuu∗(k+1))− J∗(xxx(k),uuu∗(k))≤−
∥∥zzz∗(k|k)− zzzsp

∥∥2
QQQ−∥∆∆∆uuu∗(k|k)∥2

RRR (4.12)

With proper selection of QQQ and RRR one has that the RHS of the inequality above is negative
except when the extended state matches the reference, showing that the optimal objective function
value is non-increasing. We now proceed to show exponential stability of the optimal objective
function value J∗(xxx(k),uuu∗(k)). We establish this function as a candidate Lyapunov function

V (xxx) = J∗(xxx(k),uuu∗(k))
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which is bounded from below according to the following inequality:

J∗(xxx(k),uuu∗(k))≥ λmin(QQQ)
∥∥zzz(k)− zzzsp

∥∥
for all states where the optimization problem is feasible. When the terminal state is in a

control invariant set (which the terminal region is, by construction), and

min
uuuk∈U

{
Vt(xxx(k+1))+

∥∥zzz(k|k)− zzzsp
∥∥2

QQQ +∥∆∆∆uuu(k|k)∥2
RRR

}
≤Vt(xxx(k)),

then

J(xxx(k),uuu(k))≤Vt(xxx(k))

for every extended state zzz(k) ∈Ω. Then for the objective function value J, we have

J(xxx(k),uuu(k))≤Vt(xxx(k))≤ λmax(PPP)
∥∥zzz(k)− zzzsp

∥∥2

for extended states in the terminal region Ω. With Proposition 15 of Rajhans et al. (2019),
it is stated that if there exists a class K∞ function α(·) such that

J(xxx(k),uuu(k))≤ α(
∥∥zzz(k)− zzzsp

∥∥),∀zzz(k) ∈Ω

then there is another class K∞ function β (·) such that

J(xxx(k),uuu(k))≤ β (
∥∥zzz(k)− zzzsp

∥∥),∀zzz(k) ∈X ×U ,

with Ω ⋐ X and X a compact set. Then we have a class K∞ function β (·) that bounds
J(xxx(k),uuu(k)) from above. Inequality (4.12) implies that

V (xxx(k+1))−V (xxx(k))<−η(
∥∥zzz(k)− zzzsp

∥∥)
and for any 0≤ l ≤ k we have

V (xxx(k))−V (xxx(l))<−
k

∑
i=l

η(
∥∥zzz(i)− zzzsp

∥∥).
By consequence, we have that

0 <
∞

∑
i=0

η(
∥∥zzz(i)− zzzsp

∥∥)<V (xxx(0))−V (xxx(∞))≤V (xxx(0)).
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Finally, upper and lower bounds have been established for the candidate Lyapunov
function V (xxx(k)). We also have that the candidate Lyapunov function is zero only when the
extended state matches the reference, and that it is strictly positive when not. With the upper and
lower bounds for the candidate Lyapunov function class K∞ functions, the candidate Lyapunov
function is in fact a Lyapunov function, pointing to the fact that the closed-loop system with the
proposed optimization problem P7 as its controller asymptotically stable. A further statement
can be done regarding exponential stability, when the class K∞ function β (·) is investigated
further:

β (
∥∥zzz(k)− zzzsp

∥∥) = c
e

α(
∥∥zzz(k)− zzzsp

∥∥) = c
e

λmax(PPP)
∥∥zzz(k)− zzzsp

∥∥2
,

with c and e constants that depend on the terminal set Ω and admissible extended states set
X ×U . Then, we have

λmin(QQQ)
∥∥zzz(k)− zzzsp

∥∥2 ≤V (xxx(k))≤ c
e

λmax(PPP)
∥∥zzz(k)− zzzsp

∥∥2 (4.13)

and

V (xxx(k+1))−V (xxx)<−λmin(QQQ)∥xxx(k)∥2 (4.14)

showing that in fact, the Lyapunov function obeys the exponential stability criteria. ■

Both the continuous-time and discrete-time cases have drawbacks when it comes to
the terminal region calculation since they rely on a solution to the Lyapunov equation, in the
work of Chen & Allgöwer (1998), or the DARE equation, in the work of Rajhans et al. (2019).
No suggestions as to how to obtain the regulator are made in the former aside from solving
the equation for a linearization around the reference, while the latter suggests obtaining the
regulator through the dlqr function in Matlab for a linearization around the reference. Then
both methods proceed to compute the terminal region radius in order to satisfy input constraints
and nonlinearity bound constraints through successive optimization problems. Methods for
determining these regions were proposed in the previous part, where feedback stabilization is
studied for the discrete-time case.

Computation of terminal region and penalty matrix is required at every set point change,
since the LQR is stabilizing at the corresponding region computed around an equilibrium point.
An offset between the LQR’s reference and a set point renders all the theoretical results just
shown to be pointless. The LQR cost function used as a terminal weight would no longer be
bounded, making it useless as an upper bound of the actual cost function (which is unknown, but
known to be bound by the LQR cost function). Also, changes to the LQR’s reference would lead
to input and/or state constraint violation by the terminal control law. This complicates the use of
this formulation with zone control (GONZÁLEZ; ODLOAK, 2009).
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In order to improve compatibility between quasi-infinite horizon NMPC and zone control,
an additional target calculation layer is proposed. It computes a reference value that yields
an equilibrium point that also minimizes an economic term - enabled by zone control. It is
represented by the following optimization problem.

Problem Pd:
min

xxxsp,uuusp

∥∥uuusp−uuutar
∥∥2

QQQu
, (4.15)

subject to fff (xxxsp,uuusp) = xxxsp, (4.15a)

xxxsp ∈XZ, (4.15b)

uuusp ∈U , (4.15c)

−N∆∆∆uuumax ≤ uuusp−uuu(k−1|k)≤ N∆∆∆uuumax. (4.15d)

This optimization is to be executed at every control zone XZ change and/or economic
target uuutar change. Constraint (4.15d) is unnecessary if control move saturation is not considered.
This layer computes new reference values (xxxsp,uuudes). These are required to compute a new
Jacobian linearization, in order to compute a new terminal region and weight matrix with
Problem Pa or Pc. With zone control, Problem P5 would only require the solution of either
Problems Pa or Pc, which would send new reference values (xxxsp,uuusp) to Problem Pa or Pc,
which update PPP and γ . These values are sent to the NMPC layer, represented by Problem P7,
which computes control actions for the system. This procedure is illustrated by Figure 30.

Figure 30 – Block diagram of proposed integration between quasi-infinite horizon NMPC (QIH-
NMPC) and zone control

Target calculation Problem Pd

LMI or SDP Problems Pa or Pc

QIH-NMPC Problem P7

Plant

XZ , uuutar

xxxsp, uuusp

PPP, ρ

uuuk xxxk

Source: Own author.

We have Figure 31 for the closed-loop states of a simulation performed as per the block
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diagram of Figure 30. Tuning parameters consist of QQQ = 1× Inx , RRR = 1× Inu , NP = NC = 12,
with sampling time of 2 seconds.

Figure 31 – Zone control with optimizing targets of P7: states ( ), control zones ( ) and
computed setpoints ( )
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This formulation tracks the set point computed by the target calculation layer properly.
Figure 32, with the inputs and input targets, shows the closed-loop behavior regarding optimizing
targets and input move bounds.

Once again, the formulation is capable of bringing inputs to their desired values when
said values match the control zones. Also, the input moves were bounded properly as well. The
controller cost can be seen in Figure 33.

Once again, as the objective function does not account for the offset between inputs and
input targets, the cost converges asymptotically to zero. The computer times and optimization
flags can be visualized in Figure 34.

The optimization problem was solved at every sampling interval. The computer times
show an interesting behavior: the computational effort increases as the closed-loop system
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Figure 32 – Zone control with optimizing targets of P7: inputs ( ) and input targets ( )
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Figure 33 – Zone control with optimizing targets of P7: cost
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converges to the reference. It seems that the inequality constraint causes an increase of the
computational effort as the state converges to the reference value.

Regarding computational effort of the computation of the upper layers of target calcula-
tion and terminal regions computation in this simulation, computer times for each reference and
terminal region determined were respectively 0.4034s, 0.4692s, and 0.4231s. These times are
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Figure 34 – Zone control with optimizing targets of P7: flags and computer times

considerably larger than the computer times used to solve the optimization problem, indicating
that the terminal region computation should be performed carefully, and that the choice of com-
puting terminal regions at each change in control zone and/or optimizing target was appropriate.
If this computation were to be executed at every sampling interval, it would drastically increase
the computational effort required by this formulation.

At the time of this writing, the most recent iteration on the continuous-time case of
QIH-NMPC (GRIFFITH; BIEGLER; PATWARDHAN, 2018) proposes changes to the regulator,
similar to how it is done by Rajhans et al. (2019), as well as usage of adaptive horizon techniques.
Its contribution to the method consists of using multiple open-loop simulations in order to
estimate a regulator with a larger domain of attraction than a LQR would have. Although the
terminal region is improved, its integration with zone control is not viable since the computational
demand to perform these simulations is further increased, which may inviabilize applicability
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of the controller depending on its sampling time. Also, as has been pointed out in Remark 4
of Chen & Allgöwer (1998), terminal regions for open-loop asymptotically stable systems are
unnecessary since the terminal inequality constraint can be removed without loss of stability.
However, this has not yet been verified for discrete-time systems, since Chen & Allgöwer (1998)
propose a formulation for continous-time systems. This makes the enlargement of the terminal
region useful only for cases where this constraint cannot be removed.

4.2.1.3 State contracting constraints

Kothare & Morari (2000) implement a contracting constraint. It enforces contraction of
the last state of the prediction horizon with respect to the first state of the prediction horizon. The
control policy computed for the whole prediction horizon is then injected into the system, instead
of the traditional receding horizon control that injects one control move and computations are
performed at the next sampling time. Xie & Fierro (2008) implement a first-state contracting
constraint which enforces contraction of the first state of the prediction horizon, yielding a
much stricter controller. Sencio et al. (2020) propose a contraction of the error of the last state
prediction with respect to the last final state prediction of the previous sampling time. The latter
formulation is represented by Problem P9.

The error of the final state prediction at a sampling time k is represented by δδδ k. Terminal
state contracting constraint (4.16g) grants Lyapunov stability once δδδ k reaches zero - note that
(4.16f) becomes (4.4i) in this situation. Otherwise, an upper bound represented by an exponential
decay function has been proven to exist for state trajectories, as is done for other works handling
state contracting constraints. This formulation has tuning capabilities due to parameters αmin

and WWW . Constraining the contracting factor α to values closer to one or small penalization of the
distance between α and αmin yield to less contracting state trajectories, that is, slower closed-loop
dynamics. The stability claim of this formulation is done the following Theorem:

Theorem 4 Let:

1. XZ ∩Xω be nonempty;

2. X be an U -controlled invariant set that contains a neighborhood of xxxsp ∈Xω ;

3. there exist a constant κ ∈ (0,∞) such that
∥∥xxx(k+ j)− xxxsp

∥∥ ≤ κ
∥∥xxx(k)− xxxsp

∥∥ for any

positive integer j.

Assume Problem P9 is feasible at time step k, then δδδ k+ j converges exponentially to the origin

as j→ ∞.

Item 1 assures that there is a steady state that satisfies constraints (4.16h), (4.16l), and
(4.16n). Item 2 further contributes for recursive feasibility of this formulation since it enforces
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Problem P8:

min
uuuk,xxxsp,uuusp,δδδ k,αk

J(xxx,uuu), (4.16)

where

J(xxx,uuu) =
Np−1

∑
j=0

∥∥xxx(k+ j|k)− xxxsp
∥∥2

QQQx
+

Nc−1

∑
j=0
∥∆∆∆uuu(k+ j|k)∥2

RRR

+
∥∥uuusp−uuudes

∥∥2
QQQu

+∥αk−αmin∥2
WWW , (4.16a)

subject to
xxx(k|k) = xxx0, (4.16b)
uuu(k−1|k) = uuu0, (4.16c)
xxx(k+ j+1|k) = fff (xxx(k+ j|k),uuu(k+ j|k)), (4.16d)
∆∆∆uuu(k+ j|k) = uuu(k+ j|k)−uuu(k+ j−1|k), (4.16e)
δδδ k = xxx(k+Np−1|k)− xxxsp, (4.16f)

∥δδδ k∥2
S ≤ αk ∥δδδ k−1∥2

S , (4.16g)
xxxsp = fff (xxxsp,uuusp), (4.16h)
xxx(k+ j|k) ∈X , (4.16i)
uuu(k+ j|k) ∈U , (4.16j)
∆∆∆uuu(k+ j|k) ∈U∆, (4.16k)
xxxsp ∈Xω , (4.16l)
xxxsp ∈XZ, (4.16m)
uuusp ∈U , (4.16n)
αk ∈ [αmin,1), (4.16o)
j ∈ [0,Np−1] ∈ N. (4.16p)

the set X , which is not necessarily the state space, be a U -controlled invariant set - in simple
terms: the set U contains all control policies required in order for any state trajectory be set
invariant. Item 3 rules out finite escape time systems of the scope of this formulation.

With recursive feasibility, the following relationship between sequential solutions is
established:

∥∥δδδ k+ j
∥∥2

SSS ≤ α
∥∥δδδ k+ j−1

∥∥2
SSS ≤ ·· · ≤

j

∏
i=1

αk+i ∥δδδ k∥2
SSS .

A maximum value for the contracting factor α is defined as

ᾱ := max{αk+i : i ∈ [1, j], j ∈ Z+}.
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The product of all j contracting factors is smaller than the j-th power of the maximum
contracting factors, ᾱ ,∏ j

i=1 αk+i ≤ ᾱ j. The following inequality that relates the j-th terminal
state penalization and the current terminal state penalization:

∥∥δδδ k+ j
∥∥2

SSS ≤ ᾱ
j ∥δδδ k∥2

SSS .

With Item 3, there exists a finite number κ > 0 such that

∥∥xxx(k+Np−1|k)− xxxsp
∥∥2

SSS ≤ κ
∥∥xxx(k)− xxxsp

∥∥2
SSS .

With the terminal penalty δδδ k = xxx(k+Np−1|k)− xxxsp, the expression above multiplied
by ᾱ j results in

ᾱ
j ∥∥δδδ k+ j

∥∥2
SSS ≤ ᾱ

j
κ
∥∥xxx(k)− xxxsp

∥∥2
SSS .

Replacing ᾱ j
∥∥δδδ k+ j

∥∥2
SSS with

∥∥δδδ k+ j
∥∥2

SSS, the inequality above becomes

∥∥δδδ k+ j
∥∥2

SSS ≤ ᾱ
j
κ
∥∥xxx(k)− xxxsp

∥∥2
SSS .

With the knowledge that ᾱ ≤ eᾱ−1, for the j-th power of ᾱ we have ᾱ j ≤ e−(1−ᾱ) j and∥∥δδδ k+ j
∥∥2

SSS ≤ κe−(1−ᾱ) j ∥∥xxx(k)− xxxsp
∥∥2

SSS ,

which means that the norm
∥∥δδδ k+ j

∥∥2
SSS has an upper exponential bound, converging exponentially

to zero as k→ ∞, meaning the terminal state penalty δδδ k+ j converges to zero as well. ■

As the terminal state penalty converges to zero, the optimization problem becomes the
terminal equality constrained formulation, which has had its recursive feasibility and guaranteed
stability proven after the optimization problem P6 was exposed.

Yet, the previous value of the slack variable is not always available, or makes the problem
infeasible when there is a control zone change or input target change. The optimization problem
Pd can be used in order to recalculate a new set point and related input to be used in the
computation of the previous slack variable that the controller is supposed to contract with the
present terminal state prediction xxx(k+Np−1|k), as per constraint (4.16g).

This formulation was implemented with the quadruple tank system. Tuning parameters
consist of QQQx = 1× Inx , QQQu = 1× Inu , RRR = 1× Inu , SSS = 1× Inx , WWW = 5, NP = 6, NC = 3, with
sampling time of 2 seconds. and the resulting states can be seen in Figure 35.

The controller brings the states to the control zones, computing set points at the border
of the zones when input targets are not compatible with control zones. This incompatibility can
be confirmed in Figure 36.
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Figure 35 – Problem P8: states ( ), control zones ( ) and computed setpoints ( )
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Figure 36 – Problem P8: inputs ( ) and input targets ( )
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The inputs are brought towards their targets when these are compatible with the control
zones, otherwise showing offset. The input move bound is also satisfied. The controller cost and
terminal penalty can be seen in Figure 37.

Figure 37 – Problem P8: cost and terminal penalty
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The controller cost should only display non-increasing behavior when the terminal
penalty δ is zero. The terminal penalty itself shows non-increasing behavior as it is constrained
to do so by the contracting constraint. This is confirmed by Figure 38, which displays the
optimization flags as well as the computer times.

The optimization was solved successfully at every sampling interval, and its computer
times show an unique behavior, which is related to the contracting parameter α . This is evident
in Figure 39.

The optimization has lower solution times when the contraction parameter is not at the
bound of its admissible range, which indicates that there might be some solution speed gain if
the contraction parameter is less constrained. It is also observed a spike in computational effort
in some parts of the simulation, possibly due to the difficulty of computing control actions that
contract the terminal cost when the terminal cost is close to zero. Further investigation on this
hypothesis is done by simulating once again this closed-loop with an extended admissible range
of the contraction parameter. Figure 40 shows such simulation.

This further strengthens the hypothesis that as long as the contracting parameter is not at
its admissible bound, obtaining solutions requires less computational effort. This formulation
calls for careful penalization of the contracting factor as it might increase the computational
effort required to run this formulation online.
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Figure 38 – Problem P8: optimization flags and computer times

4.2.1.4 Other methods

Mejía & Stipanović (2009) propose a cost function contracting constraint. Enforcing
controller cost to contract at every sampling interval w.r.t the previous cost forces the controller
cost function to be a Lyapunov function. Alamir (2017) proposes a penalty weighting profile on
the stage cost instead, also guaranteeing stability as long as such profile exists.

4.3 Computer time improvements

Stability-granting methods have advanced over the years due to continuous search for
applicable methods online - stabilizing methods that do not have prohibitive computational
effort requirements. But with digitization of industries as a whole, along with evermore powerful
and accessible computing power, early and more restrictive methods are accessible once again
with the use of advances in optimization algorithms, hardware processing power and numerical
methods. Some strategies that may enable earlier stabilizing methods will be discussed briefly in
this work as they will be used later.



4.3. Computer time improvements 105

Figure 39 – Problem P8: computer times and contracting parameter
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Figure 40 – Problem P8: computer times and a less constrained contracting parameter
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4.3.1 Shooting methods

Different shooting methods consist of how state trajectories are to be handled by the
optimization algorithm.

Single shooting method consists of having the state trajectory prediction as a constraint
while input is a degree of freedom for each sampling interval. A numerical integrator is the
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relation between the degree of freedom (input) with the constraint (state prediction). This yields
one constraint and one degree of freedom for every sampling interval over the controller horizon.
This can be visualized in Figure 41.

Figure 41 – Exemplary single shooting optimization with degrees of freedom ( ) and a single,
fixed shooting point ( )
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Source: Own author

Figure 41 shows in detail how the single shooting point is the starting point where the
optimization algorithm will seek for an optimal control policy by optimizing the input values
that are degrees of freedom.

Multiple shooting method differs in how the state trajectory prediction is handled. Inputs
over the control horizon are degrees of freedom along with state appending points for every
sampling interval. Constraint-wise, there are two, one that represents the integrator and another
that appends the state at the end of one sampling interval with the state at the start of the next
sampling interval. This is illustrated in Figure 42.
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Figure 42 – Exemplary multiple shooting optimization with degrees of freedom ( ) and multiple
shooting points ( )
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Figure 42 shows multiple shooting points - the first, fixed as in single shooting, and
the others, degrees of freedom. The optimization is implemented with an additional constraint
for every sampling interval which appends the state at the end of one sampling interval with
the state at the start of the next sampling interval. The additional degrees of freedom help
with convergence speed since there are multiple less constrained state trajectories instead of a
single trajectory. In the literature, multiple shooting is referred as the transformation of a single
boundary value problem into multiple, smaller initial value problems.

4.3.2 Numerical integration

Orthogonal polynomial collocation replaces the numerical integration step with collo-
cation of an orthogonal polynomial over specific appending points, determined via Lagrange
interpolation polynomials - the number of appending points is the order of the Lagrange polyno-
mial. The quadrature, as this procedure is commonly referred to in the literature, is significantly
faster than a numerical integrator. The number of appending points determines the method’s
numeric precision in representing the state trajectory. Furthermore, the selection of the quadrature
weights also increases the quadrature’s accuracy. There are several methods of weight calcula-
tion, with the most traditional being Gauss-Jacobi, Gauss-Radau and Gauss-Lobatto (RICE; DO,
2012). Figure 43 illustrates how a collocation orthogonal polynomial would behave along with a
state trajectory calculated by a numerical integrator.
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Figure 43 – Orthogonal polynomial ( ) collocated over N = 3 appending points ( ) and
numerical integration step of a state trajectory ( )

Source: Own author.

It is evident that the method is most precise at the appending points. For the purpose of
NMPC, any quadrature method with appropriate accuracy should yield faster computer times and
appropriate state predictions when compared to an optimization problem that relies on numerical
integrators in order to make state predictions.
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5 Closed-loop simulations

In this chapter, there are two systems that were simulated in closed-loop, the jacketed
CSTR - already exposed in the case study in Subsection 2.2.1 - and the traditional quadruple-tank
system benchmark, which will be exposed later in this subsection.

5.1 Jacketed CSTR with finite horizon nonlinear model predictive

controller

A closed-loop simulation of the jacketed CSTR system from the case study in Subsection
2.2.1 was performed with a nominal finite horizon nonlinear model predictive controller designed
for zone tracking (GONZÁLEZ; ODLOAK, 2009), represented by Problem P5.

Controller parameters selected have followed no previous criteria and were mostly
selected as identity matrices. They are

QQQx = diag(1 1 1), RRR = diag(1 1), QQQu = diag(1 1),

Np = Nc = N = 10, tsampling = 10min.

The closed-loop simulation is divided in four parts. It starts with the reactor states at a
start-up condition, xxx0, with starting input uuu0. The control zones the closed-loop is to traverse
consist of a high conversion state named ignition zone Xignition, a low conversion state called
extinction zone Xextinction, and an intermediary conversion named unstable zone Xunstable. All
of these zones have the same economic target uuutarget,1 until the fourth part where the economic
target becomes uuutarget,2.
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xxx0 =
[
1 0 −1

]T
, uuu0 =

[
0.9 0.75

]T
,

X =

{
xxx ∈ Rnx

∣∣∣∣[0 −1 −1
]T
≤ xxx≤

[
1 8 8

]T
}
,

U =

{
uuu ∈ Rnu

∣∣∣∣[0 0
]T
≤ xxx≤

[
5 10

]T
}
,

U∆ =

{
∆∆∆uuu ∈ Rnu

∣∣∣∣[−0.4 −0.8
]T
≤ ∆∆∆uuu≤

[
0.4 0.8

]T
}
,

Xignition =

{
xxx ∈ Rnx

∣∣∣∣[0 4 −1
]T
≤ xxx≤

[
0.4 8 8

]T
}
,

Xextinction =

{
xxx ∈ Rnx

∣∣∣∣[0.8 −1 −1
]T
≤ xxx≤

[
1 1 8

]T
}
,

Xunstable =

{
xxx ∈ Rnx

∣∣∣∣[0.5 2 −1
]T
≤ xxx≤

[
0.6 4 8

]T
}
,

uuutarget,1 =
[
1 1

]T
, uuutarget,2 =

[
1 0

]T
.

The controller must navigate the states from zone to zone while maintaining nominal
inputs represented by the first input target. The economic target change was deployed at the
unstable zone to evaluate its stabilizing properties in the unstable zone. The resulting closed-loop
states can be seen in Figure 44.

The controller is capable of tracking these zones satisfactorily, with the additional
information that the change in input target brings the closed-loop states to the zone frontier,
but not violating the zone control condition. The third state was specifically left unconstrained
zone-wise in order to have a safer operating reactor. The computed inputs are observed in Figure
45.

The inputs are computed in such a manner that both the actuator saturation as well as the
input saturation constraints are not violated. Also, as the states are at the zone frontier, inputs
show offset w.r.t. input target. However, the inputs show rather drastic overshoot and sluggish
responses overall, which is not necessarily connected to penalty weight tuning. The controller
cost can be visualized in Figure 46.

The cost function shows a non-increasing behavior, which may indicate closed-loop
stability without any stability-granting element. There are no constraints that grant this controller
stability in the sense of Lyapunov, but this formulation’s closed-loop asymptotic stability is
related to how close the FHOCP is from representing an IHOCP. Although the cost function
seems to be a Lyapunov function, the closed-loop performance is yet to be evaluated.

Grüne (2012) relates the length of the FHOCP horizon with a suboptimality index αO,
which is a metric of how far the FHOCP is from representing the full IHOCP. Grüne & Pannek
(2011) go in detail how to compute this index online (a posteriori) or offline (a priori), with the
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Figure 44 – Jacketed CSTR controlled by Problem P5: states ( ), control zones ( ) and
computed setpoints ( )

Source: Own author.

latter being a better estimate although it has a larger computational effort than the former. The
online estimate is done through the following equation:

αO,k =
Vk−1−Vk

l(k−1)
. (5.1)

The suboptimality index is a real number in the [0,1] interval is useful in online diag-
nostics of closed-loop systems. It is a measure of how close the closed-loop is from an IHOCP
by comparing the stage cost from the previous sampling, l(k−1) with the difference between
the previous controller cost, Vk−1, and the current controller cost, Vk. This ratio is based on the
Dynamic Programming principle, which states that an optimal problem can be partitioned into
multiple optimal sub problems. This applies to NMPC by comparison of the current FHOCP



112 Chapter 5. Closed-loop simulations

Figure 45 – Jacketed CSTR controlled by Problem P5: inputs ( ) and input targets ( )

Source: Own author.

solution w.r.t. the FHOCP solution from the previous sampling time.

This index is not applicable to controllers with a terminal penalty term. Transforming the
economic term of the objective function into a stage cost component does not resolve this issue
alone. Consider a closed-loop in equilibrium. The change in controller cost from the last to the
current sampling time would be:

Vk−1−Vk = 0,

where the stage cost would be

l(k−1) =
∥∥xxx(k−1|k−1)− xxxsp,k−1

∥∥2
QQQx

+∥∆∆∆uuu(k−1|k−1)∥2
RRR +∥uuu(k−1|k−1)−uuudes∥2

QQQu
.

The online suboptimality index αO,k would then be the ratio of a nominator which tends
to zero and a denominator which is not null unless the input target uuudes is the corresponding
input of the set point xxxsp,k−1.

However, the approximation of a IHOCP by extension of a FHOCP’s horizon could
yield similar performance, if not better, to a controller with stabilizing elements such as the
formulations discussed in Section 4.2.1. Multiple closed-loop simulations were performed with
different horizon lengths in order to evaluate what performance can be expected from the closed-
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Figure 46 – Jacketed CSTR controller cost

Source: Own author.

loop system. The resulting closed-loop states of various controller horizon lengths can be seen in
Figure 47.

From the states perspective, the closed-loop seems to have a substantial performance
gain up until N = 8. Gradual increases to controller horizon show that a FHOCP can have very
similar performances even with drastically larger horizons. Tuning this FHOCP horizon can
yield an optimization with smaller scale but near-optimal performance. The computed inputs for
the same varied controller horizon lengths can be seen in Figure 48.

For computed inputs, once again the closed-loop shows substantial performance gains up
until N=8. It can also be seen that the sluggish response seen in the first closed-loop simulations
has been resolved with the controller horizon extension. Finally, the controller cost for multiple
controller horizon lengths can be seen in Figure 49.

The controller cost increase is to be expected as one increases the controller horizon, but
it can be seen that there is a limit to how much the cost increases. This upper bound is the optimal
cost of an IHOCP, the optimization problem that encompasses all of the system dynamics over
time. There is a diminishing return to horizon length increases, especially for systems with short
sampling time. This is better seen in Figure 50.

In detail, the cost function converges to the optimal cost at horizon length N=25. Be-
yond this length, the controller cost is the same throughout the entire simulation, showing the
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Figure 47 – Jacketed CSTR state trajectory under controller P6 with multiple horizon lengths:
N=3 ( ), N=5 ( ), N=8 ( ), N=10 ( ), N=25 ( ), N=50 ( )

Source: Own author.

diminishing return in excessively enlarging the horizon length.

Horizon tuning for this type of controller should take into account both the performance
losses a short horizon would bring to the controller and the increased computational effort related
to a longer horizon controller. With this in mind, the practitioner should consider the sum of the
controller cost as indicative of convergence of the controller cost to the IHOCP cost, or variations
of said sum when compared to sums produced by the same controller but with different horizon
lengths.

Now that the tuning process of a controller without guaranteed stability has been exposed,
the controllers with stabilizing elements and their corresponding simulations can be shown.
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Figure 48 – Jacketed CSTR inputs computed by controller P6 with multiple horizon lengths:
N=3 ( ), N=5 ( ), N=8 ( ), N=10 ( ), N=25 ( ), N=50 ( )

Source: Own author.

5.2 Quadruple-tank system with nonlinear model predictive con-

trollers

In this subsection, the stabilizing formulations described in Section 4.2.1 will be deployed
in closed-loop with a plant. As is known, the quasi-infinite horizon NMPC depends on a
stabilizable Jacobian linearization of the plant around the desired reference value, the unstable
reactor would be an unfair benchmark to evaluate these different stabilizing elements.

For this system, the closed-loop simulation is divided in three parts.The starting state
xxx0 and input uuu0 are then to traverse three control zones (Xz,1, Xz,2, Xz,3) with an input target
change (uuutarget,1 to uuutarget,2) in the third part. Of course, the states, inputs and input moves are
constrained as well by their respective sets X , U , and U∆. The starting state and input values,
control zones the formulations are to traverse, and the input targets the formulations must attend
are as follows:
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Figure 49 – Cost function of controller P6 with multiple horizon lengths: N=3 ( ), N=5 ( ),
N=8 ( ), N=10 ( ), N=25 ( ), N=50 ( )

Source: Own author.

xxx0 =
[
15 15 15 15

]T
, uuu0 =

[
30 30

]T
,

X =

{
xxx ∈ Rnx

∣∣∣∣[7.5 7.5 3.5 4.5
]T
≤ xxx≤

[
28 28 28 28

]T
}
,

U =

{
uuu ∈ Rnu

∣∣∣∣[0 0
]T
≤ xxx≤

[
60 60

]T
}
,

U∆ =

{
∆∆∆uuu ∈ Rnu

∣∣∣∣[−5 −5
]T
≤ ∆∆∆uuu≤

[
5 5

]T
}
,

Xz,1 =

{
xxx ∈ Rnx

∣∣∣∣[12.3 11.8 13.9 16.4
]T
≤ xxx≤

[
14.4 13.8 16.4 19.1

]T
}
,

Xz,2 =

{
xxx ∈ Rnx

∣∣∣∣[9.4 9.1 10.2 13.2
]T
≤ xxx≤

[
11.0 10.5 12.4 14.7

]T
}
,

Xz,3 =

{
xxx ∈ Rnx

∣∣∣∣[10.2 11.3 8.3 20.1
]T
≤ xxx≤

[
12.2 13.2 10.2 23.0

]T
}
,

uuutarget,1 =
[
39 36

]T
, uuutarget,2 =

[
43.5 28.5

]T
.

As multiple controllers were deployed, their parameters are:
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Figure 50 – Zoom of cost function of controller P6 with multiple horizon lengths: N=3 ( ),
N=5 ( ), N=8 ( ), N=10 ( ), N=25 ( ), N=50 ( )

Source: Own author.

QQQx = diag(1 1 1 1), RRR = diag(1 1), QQQu = diag(1 1),

tsampling = 2s, tsim = 360tsampling,

αmin = 0.5, SSS = diag(1 1 1 1), W = 100.

Their prediction and control horizons can be visualized in Table 1.

Table 1 – Table of prediciton (Np) and control (Nc) horizons of NMPC formulations

Terminal constraint Np Nc

Equality (TEC) 27 27
Inequality (TIC) 12 12
Contracting (TCC) 8 4
None (NC) 18 18

Source: Own author.

Terminal equality constraints require larger horizons since the equality constraint is to
be satisfied. Since terminal inequality and contracting constraints are more relaxed, they are
feasible with shorter horizons. As has been shown for the unstable reactor, short horizons lead to
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poor performance of NMPCs without guaranteed stability. By trial and error, the no guaranteed
stability formulation horizon was increased up until the objective function did not show any
significant change in its value over simulations while increasing horizon lengths. The resulting
closed-loop state trajectories is seen in Figure 51.

Figure 51 – Quadruple-tank system state trajectory for different controllers: NC ( ), TCC
( ), TEC ( ), and TIC ( ) formulations for control zones ( )

Source: Own author.

The controllers perform adequately in closed-loop regarding state trajectories. The first
third of the simulation shows every controller bringing system states to the control zone, although
the terminal contracting constraint controller shows overshoot from the start-up state, as it must
contract the final stage cost w.r.t. the previous final stage cost. The second part shows similar
behavior for every closed-loop state trajectory, but now the terminal equality constraint controller
shows slight overshoot when compared to others. The third part of the simulation shows different
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behaviors for the first and last two states. The first two states show distinct overshoot for every
formulation while the last two states show two distinct trends: quickly reaching steady states - as
is done by the terminal inequality constraint controller - or a slow convergence to steady state,
shown by the no guaranteed stability controller and terminal contracting constraint controller. For
these last two states, the terminal equality constraint controller shows an intermediary behavior
by abiding by the former then showing the latter behavior. Although these results show some of
the closed-loop results of the formulations, further scrutiny by other means is necessary. Later in
this work a sensitivity analysis regarding controller tuning is performed for every formulation
deployed.

The computed closed-loop control policies are in Figure 52.

Figure 52 – Quadruple-tank system computed inputs for different controllers: NC ( ), TCC
( ), TEC ( ), and TIC ( ) formulations and input targets ( )

Source: Own author.

The formulations show similar behavior input-wise for all three parts of the simulation:
no guaranteed stability formulation and terminal inequality constrained show the least overshoot,
while terminal inequality constrained formulation is the quickest to converge its input. Terminal
contracting constrained formulation shows the most overshoot, followed by the terminal equality
constrained formulation.

New metrics are introduced in order to evaluate closed-loop performance by means other
than visualizing closed-loop states or computed inputs. Since the formulations contain varied
forms of objective functions, they cannot be compared via controller cost.
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A proposed comparison is done by comparing the capability of bringing and keeping
system states inside their control zones with the distance-to-zone performance index D(xxx,Xz):

D(xxx,Xz) =
√

d(xxx,Xz)T IIInxd(xxx,Xz) (5.2)

d(xxx,Xz) =

0, for xxx ∈Xz

min(|xxxi−X i
z,min|, |xxxi−X i

z,max|), for xxx /∈Xz,
(5.3)

which is zero when the state is in the control zone or the shortest distance to the control zone
coordinate-wise, as indicated by expression (5.3). The weighted norm of this distance is then
taken, as described by (5.2).

The closed-loop performance of different formulations is done as well by comparing
their exerted control effort via the performance index ∥∆∆∆uuu∥:

∥∆∆∆uuu∥=
√

∆∆∆uuuT IIInu∆∆∆uuu (5.4)

Basically, the control effort is defined by the norm of the control moves taken by the
controller, as depicted in (5.4). It is a metric to compare different control effort that different
formulations show.

Finally, another comparison is drawn by measuring the deviation between computed
inputs and the input target. The economic performance index:

∥uuu−uuudes∥=
√
(uuu−uuudes)T IIInu(uuu−uuudes) (5.5)

which is the norm of the distance between input uuu and economic target uuudes, intends on measuring
how far the closed-loop is from the desired economic target.

First, distance-to-zone performance index for the multiple formulations deployed can be
seen in Figure 53.
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Figure 53 – Closed-loop distance-to-zone performance for different controllers: NC ( ), TCC
( ), TEC ( ), and TIC ( ) formulations

Source: Own author.

No guaranteed stability formulation shows the slowest dynamics of states towards the
control zones in every condition, with the exception of start-up condition, being the last to bring
the distance to zero. This formulation is heavily dependant on approaching an optimal control
via extension of optimization horizon. The proposed 36 seconds of optimization horizon are
smaller than the 54 seconds the terminal equality constraint formulation requires to be feasible,
and lower than the reported 60 seconds required in order to avoid state drifting, as reported by
Raff et al. (2006). Hence, due to its short optimization horizon, trajectories computed by this
formulation are suboptimal trajectories and have no compensation for their suboptimality, unlike
terminal inequality constraints that have terminal penalty as well the constraint itself. We have
the sum of this distance over the entire simulation for each simulation in Table 2.

Table 2 – Zone tracking performance for different controller formulations

Terminal constraint ∑D(xxx,XZ)

Equality (TEC) 98.5
Inequality (TIC) 87.1
Contracting (TCC) 109.2
None (NC) 118.8

Source: Own author.
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These sums show what is seen in Figure 53, that is, the no guaranteed stability formulation
performs the worst when comparing state distance to control zone. As the terminal contracting
constraint must be satisfied, speed of state towards control zone suffers, yielding the worse
performance of all the constrained formulations. The terminal inequality constrained formulation
performs the best in this metric, followed by the terminal equality constrained formulation. Next,
control effort performance in Figure 54.

Figure 54 – Closed-loop control effort performance for different controllers: NC ( ), TCC
( ), TEC ( ), and TIC ( ) formulations

Source: Own author.

Regarding control effort, terminal contracting constrained formulation shows the high-
est control effort out of all of the formulations at the start of every zone or economic target
change, which may be effect of terminal contracting constraint. The no guaranteed stability
formulation shows the lowest control effort since there are no constraints to satisfy and due
to its suboptimality, its control effort would not match an optimal control policy. Terminal
equality constrained formulation would be one to have large control effort, but that is not the case.
Since equilibrium must be achieved at the end of every optimization horizon, this formulation
shows conservative control policies when compared to controllers with other constraints. With
an additional comparison, Table 3 shows the sum of the control move norms for the different
controller formulations.
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Table 3 – Actuator preservation performance for different formulations

Terminal constraint ∑∥∆uuu∥

Equality (TEC) 87.7
Inequality (TIC) 90.7
Contracting (TCC) 99.2
None (NC) 59.6

Source: Own author.

Sum of control move norm reinforces what was visualized in Figure 54. Out of all the
constrained formulations, terminal equality constraint formulation is more conservative regarding
control effort, while the terminal contracting constraint exerts the most control effort out of all
formulations. Regarding all formulations, the one with the best performance in this regard is the
no guaranteed stability formulation. Now, onto economic performance of these formulations, in
Figure 55.

Figure 55 – Economic performance for different controllers: NC ( ), TCC ( ), TEC ( ),
and TIC ( ) formulations

Source: Own author.

On economic performance, both terminal equality constrained and no guaranteed stability
formulations show the slowest progress towards the economic target (when attainable), posing
an interesting question regarding terminal equality constraints hindering economic performance
when deployed along with control zones. The no guaranteed stability formulation’s behavior
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could be explained by how sub-optimal trajectories yield poor performance, but for the terminal
equality constraint formulation behavior, poor economic performance seems to depend on how
distant the final closed-loop equilibrium point is from the control zone boundary. Terminal
equality constrained formulation behaves differently when the economic target is not compatible
with the control zone, showing considerable overshoot but converging faster to the economic
target when compared to its convergence when the economic target is compatible with the zone.
As the constraint must be satisfied at every sampling interval and reaching the reference value
is a higher priority than achieving the economic target - which is only a penalty, its economic
performance is affected negatively. Table 4 shows the sum of the distance-to-target performance
index.

Table 4 – Sum of distance-to-target for different controller formulations

Terminal constraint ∑∥uuu−uuudes∥

Equality (TEC) 1064.10
Inequality (TIC) 788.52
Contracting (TCC) 880.92
None (NC) 896.20

Source: Own author.

Terminal contracting constrained formulation shows intermediary economic performance
out of all of the implementations, close to the no guaranteed stability formulation. Terminal
inequality constrained formulation, after the proposed adaptations, shows the best economic
performance out of all the formulations and the terminal equality constrained formulation has
the worst economic performance.

Another comparison between formulations is done, regarding computational effort each
formulation demands. The closed-loop simulations were performed three times, with collection
of used computer time by the optimizations. Then, the average time spent per iteration over the
three simulations was computed. Finally, the average time spent per iteration over the entire
simulation was computed from the average time spent per each iteration just computed. The
average computer time spent per iteration can be seen in Table 5.

Table 5 – Average computer time spent per iteration over a simulation with standard deviation
for different controller formulations

Terminal constraint t̄± ς

Equality (TEC) 0.1289 ± 0.0190
Inequality (TIC) 0.0796 ± 0.0199
Contracting (TCC) 0.0810 ± 0.0130
None (NC) 0.0820 ± 0.0084

Source: Own author.
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As expected, the terminal equality constraint formulation was more computationally
demanding, with the largest mean time. All other formulations, with or without stabilizing
constraints, show similar computer times. The mean computer time histogram for these controller
formulations mean computer times, classified in intervals of 0.01s up to 0.3 seconds, can be seen
in Figure 56.

Figure 56 – Mean computer time spent per iteration over three simulations histogram for different
controllers: NC ( ), TCC ( ), TEC ( ), and TIC ( ) formulations

Source: Own author.

Terminal equality constraint shows more violations of 10% of the sampling time thresh-
old. It is followed by the terminal contracting constraint, with one violation at the first sampling
interval. The equality constrained formulation’s computational demand becomes more evident
as its computer times distribution is almost entirely separated from other formulations. For appli-
cability of this terminal equality constrained controller, this formulation was implemented with
multiple shooting with numerical integration, and multiple shooting with orthogonal collocation
over finite elements. The method of computer time collection and subsequent mean computer
time calculation was the same: three simulations per different optimization implementation.
Mean computer times with standard deviation can be seen in Table 6.
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Table 6 – Mean computer times with standard deviation of TEC formulation for different shooting
methods

Approach t̄± ς

Single shooting 0.1440 ± 0.0124
Multiple shooting 0.0926 ± 0.0133
Orthogonal collocation 0.0324 ± 0.0024

Source: Own author.

Without change in shooting method, this formulation would be impractical (with its
computer time threshold violations). With multiple shooting, there is a significant reduction
in mean computer times as well as variance, matching all other formulations implemented
with single shooting method. Further reduction was observed as the numerical integrator was
substituted by a quadrature method. The discrepancies between these cases is evident in Figure
57.

Figure 57 – Overall performance for single shooting ( ), multiple shooting ( ) and orthogonal
collocation ( )

Source: Own author.

Multiple shooting, in this situation, already shows satisfying results regarding computer
times, with the startup as the only violation of the computer time threshold previously established.
Quadrature method shows consistent, and even lower computer times. It is evident how almost



5.2. Quadruple-tank system with nonlinear model predictive controllers 127

third of the sampling times are higher due to how the control zones and input targets were
selected: in the second part, the control zone is incompatible with the economic target.

5.2.1 Controller selection

This section will present the methodology developed for controller selection. It is based
on the performance indexes exposed earlier. This work will then compare the formulations based
on their zone tracking performance, actuator preservation and economic performance based on
the distance-to-zone, control effort and distance-to-target indexes.

In order to compare the formulations, they were simulated in a different setting of the

quadruple-tank system. The starting state was changed to xxx0 =
[
20 20 20 20

]T
and the

length of this simulation was shortened to 120tsampling. The zone and input targets still happen in
the same manner as the one in the previous subsection.

The penalty matrices and/or prediction and control horizons of each controller was varied
in different manners for each formulation.

The TEC formulation have had its state penalty matrix QQQx multiplied by 1, 5 and 10, input
move penalty matrix RRR multiplied by 1, 3 and 9, and input target penalty matrix QQQu multiplied
by 1, 2 and 3, in order to show cases where zone tracking, control effort or input target tracking
were prioritized by the practitioner. Control and prediction horizon lengths of 30, 40, and 50
were also considered.

The TIC formulation have had its state penalty matrix QQQx multiplied by 1, 5 and 10, input
move penalty matrix RRR multiplied by 1, 4 and 9, and input target penalty matrix QQQu multiplied by
1, 2 and 3, with equal control and prediction horizon lengths of 10, 15, and 20 sampling intervals.
Its terminal region radius was 0.8, 0.9, and 1.

As for the TCC formulation have had state penalty matrix QQQx multiplied by 1, 5 and
10, input move penalty matrix RRR multiplied by 1, 4 and 9, and input target penalty matrix QQQu

multiplied by 1, 2 and 3. Its control horizon and prediction horizon were increased to 9 and 18,
respectively, since there was a change in the starting state and the previous horizon lengths were
infeasible.

Finally, the NC formulation have had horizon length N of 10, 20, and 30. State error
penalty matrix QQQx was multiplied by 1, 5, and 10, input move penalty matrix RRR multiplied by 1,
4, and 9, and input target penalty matrix QQQu multiplied by 1, 2 and 3.

These formulations with varied tuning parameters were simulated five times and have
had their computer time spent per iteration measured as well, with the mean value taken to
account for run-to-run variations. Terminal inequality constrained formulation did not account
for terminal region computation nor target calculation times. The results can be seen in Figures
58 to 61.
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Figure 58 – Distance-to-zone and control effort of different controllers: NC ( ), TCC ( ), TEC
( ), and TIC ( ) formulations. Marker size scales with computer times.
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Source: Own author.

The TIC formulation is capable of a wide range of performance regarding zone tracking,
as can be seen with the spread of distance-to-zone. The NC formulation and the TEC formulations
show similar ranges of zone tracking performance, although the NC formulation cannot reach
distance-to-zone values as low as the TEC formulation. The TCC formulation is not as versatile as
other formulations in this regard, showing a very narrow range of distance-to-zone performance.

Regarding the control effort, the TCC formulation has shown to be not conservative with
its actuators (indicated by its higher control effort values observed in the simulations), whereas
the TIC formulation shows the least control effort values, with the narrowest range of possible
control effort values out of all the formulations. Both the NC and the TEC formulation have
shown its capacity of a wide range of control effort performance.

Regarding the trade-off between control effort and zone tracking performance, the TIC
formulation shows a behavior similar to an asymptotic curve. The TEC formulation and the NC
formulation show a spread of trade-off in this regard, warranting care from the practitioner as to
consider that there might be considerable losses when considering only a single aspect of the
controller.

As for computer times, all of the formulations show regions where the zone tracking and
control effort performance is similar while there is a difference in computer times, which also
indicates caution is advised when tuning all of the formulations exposed. This is best seen in
Figure 59.
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Figure 59 – Distance-to-zone and computer times of different controllers: NC ( ), TCC ( ), TEC
( ), and TIC ( ) formulations.
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While the TCC formulation does not show this split behavior (due to the single horizon
length chosen), the other formulations have its sets of data split into three parts. This is due to
the multiple horizon lengths chosen. The TIC formulation shows this behavior regardless of
magnitude of terminal ellipsoid radius given to the controller. The NC formulation is capable
of delivering the fastest zone tracking control with average performance. The terminal equality
constraint improves zone tracking performance at the expense of computer times, yielding similar
performance to the TIC formulation with higher computational effort. Increasing horizons might
detract from zone tracking performance for the TIC formulation, TEC formulation and NC
formulation, with a significant increase in computational effort. If one were to consider only the
simulations with the shortest horizon lengths for all formulations, these would be ordered simply
by their computational demands. This is seen in Figure 60.

Considering the previously observed results for the TCC formulation, it is clear that this
formulation is sensitive to start-up. The change in starting state has required increased control
and prediction horizons, yielding larger computer times than observed at the previous simulation.
The TEC formulation has been implemented with a multiple-shooting method, in order to lower
its computer times - which could be even lower if the practitioner would consider orthogonal
collocation over finite elements instead of a numerical integrator in the state prediction step
of the optimization problem. TIC and NC formulations show the shortest computer times with
similar performance, although the former seems to be more flexible regarding multiple objectives
(due to its range of zone tracking performance). This is further investigated by comparing the
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Figure 60 – Distance-to-zone and computer times of different controllers: NC ( ), TCC ( ), TEC
( ), and TIC ( ) formulations. Shortest horizon lengths only.
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Source: Own author.

zone tracking performance with the input target tracking performance in Figure 61.

Considering economic performance alone, every formulation has shown some flexibility
in its multi-objective aspect, given how they are able to prioritize zone tracking performance
or economic performance when proper weights are applied. However, the TIC formulation is
capable of delivering better economic performance, considering it is the only capable of obtaining
economic performance indexes under the range of 400.

For the trade-off aspect, every formulation shows a trend of declining economic per-
formance as zone tracking performance improves. The formulation which shows this behavior
the best is the TIC formulation. The worst possible economic performance is delivered by the
TEC formulation, closely followed by the NC formulation. These results put into question the
necessity of optimizing targets as one of the objectives the controllers must follow.

The TIC formulation is the only one completely incapable of accepting an input target,
given the adaptation shown in this work that consists of an additional target calculation layer
which delivers a set point that belongs to the current control zone and minimizes the distance
between steady-state input value and the desired input target, as per Problem Pd . Since this
formulation has a fixed set point - computed at every control zone change and/or input target
change - the overall economic performance of all formulations point to the possibility that the
set point as a decision variable might not be economically beneficial in general.
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Figure 61 – Distance-to-zone and input target tracking of different controllers: NC ( ), TCC ( ),
TEC ( ), and TIC ( ) formulations. Marker size scales with computer times.
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6 Conclusion

This work concluding remarks will go over the approached topics and their demonstrated
contribution to the proposed theme.

Knowledge about the system being worked on is as important for a nonlinear mathemati-
cal model as it is for a linear mathematical model. Even more so as nonlinear models cannot
have infinite horizon predictions computed easily, or have the same behavior over the entire state
space. Usage of functional analysis is mostly limited to identifying candidate Lyapunov functions
for controller cost or evaluating eigenvalues point-wise, leading to rather poor understanding of
the studied system. It has been shown in this work the conjoint use of Lie algebra and parametric
continuation in determining equilibrium points. The NMPC formulations implemented in this
work rely on some overlap between the limit set and the control zone, so enabling determina-
tion of equilibria in situations when open-loop simulations are incapable and enables the use
of NMPCs in systems with unstable regions without violating any conditions for closed-loop
stability.

Better understanding of invariant sets was required for NMPC formulations associated
with terminal regions, so a through exploration of feedback stabilization via LQR was also done,
considering the discrete-time case. Methods from the literature were extended to the case where
input moves are bounded. The trade-off between using SDP and LMI methods was shown. The
former has better closed-loop performance due to its larger gains, while the latter yields larger
operating legions - an interesting trade considering cases where one focuses on closed-loop
performance or applicability in cases where the regulator itself is virtual.

Regarding NMPC formulations, their characteristics were explored regarding their com-
puter times and a preview of their performance by visual comparison of state and input profiles
over time. Regarding their computational effort, both the terminal inequality constrained and
the terminal contracting constrained formulations show growing computational requirements as
the states approach reference value. This behavior can be explained by how both optimization
problems approach a terminal equality constrained formulation as the state trajectories converge
to the reference. Meanwhile, the terminal equality constrained formulation has the largest overall
computer times - with possible competitiveness in this regard if one were to further alter shooting
methods and integration methods, and the no guaranteed stability formulation has the smallest
computational demand.

The multiple formulations used in this work are closed-loop stabilizing and recursively
feasible, they can have their closed-loop performance compared not directly by controller cost,
but through the proposed metrics. Different constraints lead to varying performance regarding
different metrics. Terminal contracting constraints were less conservative when it comes to
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control effort, while terminal equality constraints were more conservative in this regard. The
formulation without guaranteed stability was the worst when it comes to bringing state to the
control zone, related to how it exerts the least control effort. The best formulation to bring states
to control zones was between the terminal inequality constrained formulation (for references
far from the control zone frontier) and the terminal equality constrained one (for references
near the control zone frontier). Finally, economic performance was intermediary with the
terminal contracting constraint formulation, with the best economic performance coming from
terminal inequality constraint formulation and the worst varying between the no guaranteed
stability and the terminal equality constrained formulations. The implementation of terminal
equality constrained formulations with economic term is questionable, given the poor economic
performance of the terminal equality constrained formulation shown. The dominance of the
terminal inequality constrained formulation, the only two-layer formulation in the comparison,
puts into question the necessity of one-layer controllers with the intention of improving economic
performance.

With the effects of different formulations on different performance indexes in mind,
a judicious choice of formulation can lead to less complex solutions with less computational
effort and acceptable performance. Regarding computational effort, switching shooting method
has shown considerable computational effort reductions, with further reductions accompanying
change of a numerical integrator into a quadrature method. Advancements in computational
power and optimization algorithms will eventually lead to IHOCPs being solved online. As this
is not the current situation, discussions of near-optimal, feasible and stabilizing formulations and
their applicability are still pertinent.

There is room for more studies regarding differential geometry’s applications in nonlinear
system analysis and, by consequence, NMPC. Assessment of how necessary some concepts
of functional analysis are to NMPC, such as dual vector spaces, as these concepts are already
integrated with the field of optimization itself.

The formulations presented in this work should be able to function along with nonlinear
models generated through means other than first-principle. Mathematical models generated
through artificial intelligence, as an example, should be able to work as a state prediction method
while these models represent the plant properly as well as satisfy some assumption required
by the formulation itself - for example, a continuously differentiable nonlinear model or the
existence of a stabilizable Jacobian linearization of the nonlinear model.

This work handled nominal controllers only. Although some of the formulations’ con-
straints were designed in order to be not as restrictive as an equality constraint, no cases with
persistent disturbance - be it noise or model mismatch - were considered. As future work,
comparisons between robust controllers can be done.
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APPENDIX A – Differential geometry

This appendix was written with intent of clarifying the origin of the expression (2.15),
used to compute the limit set. The theoretical background is considerably different from the
overall theoretical results presented in this work, so in order to preserve the flow of this work,
the theoretical background involving differential geometry was moved to an appendix. In this
appendix, there are many definitions from differential geometry which were used in order to
arrive at the expression (2.15), such as manifolds (geometric object that represents the state
space), Lie groups (geometric object which represents the evolution of the state in the manifold,
which is a manifold in itself) and Lie algebras (geometric object which generates Lie groups,
where the generators come from the dynamic system itself).

A.1 Manifolds

A convenient geometric object to perform nonlinear system studies is the manifold. In
control systems literature, it is often replaced by a locally Euclidean space (SONTAG, 1998), and
this substitution is often successful since very few analyses are done to account for the global
behavior of a system. The advantage of working with a manifold comes from detaching the
system of local coordinates xxx = (x1,x2, . . . ,xnx) for a system in a space Rnx . Several structure
characteristics of a manifold can be obtained. The manifolds used in this work are considered
smooth (infinitely differentiable) and connected (cannot be represented by disjointed open sets).

A.2 Curves and tangent vectors

The evolution of a control system over time can be represented by curves. A curve C

in a smooth manifold M is parametrized by a map φ : I → M, where I is a subinterval of R.
For dynamic systems, this interval usually represents a time interval. In local coordinates, this
curve is represented by nx functions xxx = φ(t) = (φ 1(t), . . . ,φ nx(t)). A curve is closed when
its endpoints coincide: φ(t1) = φ(t2), with the closed time interval [t1, t2]. This definition is
important when it comes to define if a system is in equilibrium in a different manner as done by
Definition 1. An illustration of these objects can be seen in Figure 62.
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Figure 62 – Smooth manifold M with a curve C and a vector vvv tangent to C at a point φ(t0)
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Source: Own author.

As the definition of a dynamic system given in Equation (2.10) is rather generic, we will
now consider control-affine systems such as:

ẋxx = fff (xxx)+ggg(xxx)uuu = fff (xxx)+
nu

∑
i=1

gi(xxx)ui (A.1)

Say the dynamics of the system (A.1) are represented by the curve C on a manifold M,
parametrized by the map φ = (φ 1(t), . . . ,φ nx(t)). We have that at each point x ∈M there is a
tangent vector to C, given by the derivative φ̇ = (φ̇ 1(t), . . . , φ̇ nx(t)). In local coordinates, the
tangent vector vvv|x to C = φφφ(t) at point x ∈M would be

vvv|x = φ̇φφ(t) = φ̇
1(t)

∂

∂x1 + · · ·+ φ̇
nx(t)

∂

∂xnx
. (A.2)

Note that usually, vector fields are not represented with their respective differentials, i.e.,
in vertical form and ommiting the differential

vvv|xxx = φ̇φφ(t) = [φ̇ 1(t), . . . , φ̇
nx(t)]T . (A.3)

This is a common notation abuse in local coordinates, as pointed out in Park (1995), and
may conflict with the concept of Lie bracket, or commutator, to be exposed later.

The collection of all tangent vectors to all possible curves that go through a point xxx ∈M

is called tangent space, T M|xxx, with same dimension as the manifold it is tangent to. The set of
all tangent spaces to all points xxx ∈M is called a tangent bundle. Finally, a vector field vvv in M

determines a tangent vector vvv|xxx at every xxx ∈M.

A.3 Integral curves and flows

An integral curve φ of a vector field vvv is a smooth curve parametrized by t which has
tangent vectors that coincide with the tangent vectors vvv|xxx determined by the vector field at the
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same point, that is,

φ̇φφ(t) = vvvφφφ(t). (A.4)

In local coordinates, xxx = φ(t) = (φ 1(t), . . . ,φ nx(t)) is a solution to the ordinary differen-
tial equation (ODE) system

dxi

dt
= vi(xxx), i = 1, . . . ,nx, (A.5)

where vi(xxx) represents the i-th component of the vector field vvv|xxx.

The functions fff (xxx) and gggi(xxx), i = 1, . . . ,nu, will be referred to as vector fields in the same
manner. These vector fields determine an integral curve of the dynamic system, parametrized by
time t, that represents the dynamic system states over time.

The existence of an integral curve implies that there is a maximal integral curve, which
contains all other integral curves. This maximal integral curve is referred to as a flow, ψ :
R×Rnx→ Rnx. The flow has the following properties:

ψ(t2,ψ(t1,xxx)) = ψ(t1 + t2,xxx), (A.6)

ψ(0,xxx) = xxx, (A.7)

and

d
dt

ψ(t,xxx) = vvv|ψ(t,xxx) (A.8)

for all t where defined.

A.4 Lie groups and flows

Lie theory is necessary since it allows the same approach that is done in linear system
theory regarding controllability and observability, by transforming a nonlinear system into a
linear system locally. With concepts such as groups and algebras, Lie theory has been used across
many fields of study and has been groundwork for many other lines of work such as differential
equation solving (OLVER, 1993) and classical mechanics (AGRACHEV; SACHKOV, 2004).

Although foreign to process systems engineering, the concept of groups are the base
for theoretical work in Lie group theory. A group G can be defined as a set of elements joined
with a group multiplication m(·, ·), such that for any two of its elements the result of the group
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multiplication is another element of the group G. The multiplication must satisfy the axioms of
associativity:

m(n,m(o, p)) = m(m(n,o), p), n,o, p ∈ G, (A.9)

identity element (which will be referred to as Id):

m(Id,n) = n = m(n, Id), n, Id ∈ G, (A.10)

and inverses (and when there are no inverses, the set of elements is named a semi-group):

m(n,n−1) = Id = m(n−1,n), n,n−1, Id ∈ G, (A.11)

One approachable example of group is the set of real numbers R with addition as its
group multiplication and the scalar 0 as its identity element.

The flow generated by a vector field is identical to the flow generated by a local action of
a Lie group G of one parameter t in a manifold M. This group is also a manifold in itself, and
is commonly referred to as one-parameter group of transformations while the vector fields are
referred to as the infinitesimal generators of this group. These infinitesimal generators can be
obtained by:

vvv|xxx =
d
dt

∣∣∣∣
t=0

ψ(t,xxx) (A.12)

The action of the one-parameter Lie group can be represented by the matrix exponential
function. The resulting flow ψ of the vector field vvv is represented by

ψ(t,xxx)≡ exp(tvvv)xxx. (A.13)

With this notation, the flow properties are rewritten.

exp[(t1 + t2)vvv]xxx = exp(t1vvv)exp(t2vvv)xxx (A.14)

when defined,

exp(000vvv)xxx = xxx, (A.15)

and

d
dt
[exp(tvvv)xxx] = vvv|exp(tvvv)xxx (A.16)
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for all xxx ∈M.

A.5 Lie bracket

The Lie group operation is known as Lie bracket or commutator. If vvv and www are vector
fields in M, its Lie bracket [vvv,www] is the unique vector field which satisfies:

[vvv,www]( f ) = vvv[www( f )]−www[vvv( f )] = vvv◦www( fff )−www◦ vvv( fff ) (A.17)

for every smooth function f : M→ R. The bracket has the properties of bilinearity:

[cvvv+ c′vvv′,www] = c[vvv,www]+ c′[vvv′,www] (A.18)

[vvv,cwww+ c′www′] = c[vvv,www]+ c′[vvv,www′], (A.19)

skew-symmetry:

[vvv,www] =−[www,vvv], (A.20)

and Jacobi identity:

[uuu, [vvv,www]]+ [www, [uuu,vvv]]+ [vvv, [www,uuu]] = 0. (A.21)

The Lie bracket can be interpreted geometrically as the "infinitesimal commutator" of
two one-parameter Lie group elements exp(tvvv) and exp(twww). When vvv and www are two vector fields
in M and for each x ∈M, the commuter:

ψ(t,xxx) = exp(−
√

twww)exp(−
√

tvvv)exp(
√

twww)exp(
√

tvvv)xxx (A.22)

defines a curve for t ≥ 0 sufficiently small. The vector defined by the Lie bracket [vvv,www]|xxx
is the tangent vector to this curve at ψ(0,xxx):

[vvv,www] =
d
dt

∣∣∣∣
t=0+

ψ(t,xxx). (A.23)

It can be shown that these vector fields commute, that is, the order of the composition of
their group actions does not matter:

exp(twww)exp(tvvv)x = exp(tvvv)exp(twww)x (A.24)
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if and only if

[vvv,www] = 0. (A.25)

In local coordinates xxx = (x1, . . . ,xnx), the Lie bracket operation commutes vector fields
of the form (A.2), resulting in the following expression:

[vvv,www] = www
∂vvv
∂xxx
− vvv

∂www
∂xxx

where the derivatives of the vector fields are represented by the Jacobian matrix of the
vector fields vvv and www.

In practical terms, commuting vector fields result in endpoints of a flow that are equal.
This is desired in most applications where any kind of dynamics is to be rejected, which is not
the case in process control. If one desires a stabilizing controller, commuting vector fields should
be an objective secondary to reaching the tracking point or tracking zone, not a requirement.

A.6 Frobenius theorem and Lie algebras

Now that all the geometric objects have been approached, we seek ways to use them in
process control. Frobenius’ theorem establishes integrability conditions of a dynamic system
composed of set of vector fields {vvv1, . . . ,vvvr} on a smooth manifold M.

Theorem 5 (Frobenius) The two following statements are equivalent:

• the system is in involution, or involutive;

• the system is integrable.

The first statement can be proven if the following smooth real functions hk
i j(xxx), xxx ∈M,

i, j,k = 1, . . . ,r, such that for each i, j = 1, . . . ,r, exist:

[vvvi,vvv j] =
r

∑
k=1

hk
i jvvvk (A.26)

which means that every vector field generated by a bracket of two vector fields that
belong to the manifold is also a vector field which belongs to the manifold. When this is true, the
system is said to be involutive or in involution.

This condition is similar to the controllability matrix column rank condition for linear
systems. As the system is proven integrable in a region, this region can be accessed by a specific
configuration of the dynamic system vector fields.
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Although this is a powerful theorem, it is computationally expensive to check if every
vector field of a set can be generated by commuting two other vector fields. This is where the
concept of Lie algebra is introduced.

Definition 4 A Lie algebra is a vector space g joined with the Lie bracket operation that satisfies

the following axioms:

• Bilinearity:

[cvvv+ c′vvv′,www] = c[vvv,www]+ c′[vvv′,www]

[vvv,cwww+ c′www′, ] = c[vvv,www]+ c′[vvv,www′]

• Skew-symmetry:

[vvv,www] =−[www,vvv]

• Jacobi identity:

[uuu, [vvv,www]]+ [www, [uuu,vvv]]+ [vvv, [www,uuu] = 0

for all uuu, vvv, vvv′, www, www′ in g.

According to Olver (1993), it can be shown that the proof of integrability through
evaluating if every bracket generated by two vector fields of the Lie group G can be reduced to
evaluating the generators of the Lie algebra g.

If the generators are proven involutive in a manifold M then the dynamic system is
completely integrable, according to Frobenius Theorem, and every point of the manifold is
accessible by that dynamic system. The generators are, by definition, the smallest set of vector
fields that belong to the algebra and are capable of generating the vector space g.

In process control it is not often that global properties of a dynamic system are required,
since the process system itself shows several physical limitations, which limit the operational
scope to a local set of states and inputs. With that in mind, the scope of analysis can be reduced
to a local approach, resulting in a submanifold N ∈M with a local Lie group H and a local Lie
algebra h as well. In this case, the system is to be evaluated whether this submanifold where the
states evolve is compatible with possible operating conditions.
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