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Resumo

PACHECO, K. A. Avaliação dos Processos de Conversão de CO2 em Produtos de Alto
Valor Agregado. Tese (Doutorado em Engenharia Química) - Escola Politécnica, Universidade
de São Paulo, 2023

A perspectiva do dióxido de carbono (CO2) de ser considerado um resíduo para se tornar um
recurso valioso com potencial como fonte de carbono e alternativa aos combustíveis fósseis é
explorada nesse trabalho. A Utilização do Dióxido de Carbono (UDC) concentra-se em avançar
além das tecnologias de captura e armazenamento de carbono, as estratégias para reciclar o CO2
em vetores de energia e intermediários químicos, e avaliar o potencial de produtos derivados do
CO2. Ao utilizar o CO2 como base de carbono, produtos químicos podem ser produzidos com
custos competitivos e impacto ambiental reduzido. A adoção de matérias-primas alternativas,
como CO2, pode trazer mudanças disruptivas para a indústria. O CO2 pode ser integrado à
indústria química existente por meio de produtos químicos fundamentais, como metanol, ou como
uma possível base de carbono C1. Ao avaliar uma tecnologia de UDC, fatores como potencial de
redução de emissões, restrições termodinâmicas e viabilidade comercial devem ser considerados.
Para enfrentar o desafio de avaliar tecnologias de utilização de CO2 e identificar produtos
promissores, uma abordagem sistemática utilizando uma análise de decisão multicritério foi
desenvolvida. Critérios específicos para a conversão do dióxido de carbono são estabelecidos, e
uma avaliação em três níveis é aplicada para selecionar os produtos mais adequados com base
na viabilidade econômica, maturidade tecnológica e relevância científica. Carbonato de dimetila,
éter dimetílico e ácido acético são identificados como produtos favoráveis, com recomendação
de estudos de projeto de processo. Um processo inovador para a produção de ácido acético a
partir do CO2 usando a rota de hidrocarboxilação do metanol foi desenvolvida, incorporando
ajustes nas matérias-primas, faixas de temperatura, pressão e unidades de separação eficientes.
O estudo contribui para o campo de síntese de processo para a conversão do CO2 em produtos
de alto valor agregado, abordando a escassez de dados literários sobre os processos de produção
de ácido acético. Além disso, uma avaliação da conversão de CO2 em metanol e éter dimetílico
foi conduzida. É proposto um framework para otimizar as plantas químicas, considerando tanto
o custo anualizado total quanto as emissões de CO2 resultantes do uso de utilidades. Modelos
simplificados, como redes neurais, representaram com precisão o comportamento da planta,
possibilitando uma otimização eficiente. Os esforços de otimização de processos têm produzido
resultados positivos tanto do ponto de vista econômico quanto ambiental. A redução no custo
total anualizado demonstra maior eficiência financeira, enquanto a diminuição nas emissões
de CO2,eq significa um passo em direção à sustentabilidade. No geral, este trabalho apresenta
avaliações importantes sobre a utilização de CO2 como um recurso, otimizando a planta química
e direcionando a indústria para práticas mais sustentáveis e eficientes. Mais pesquisas nessas
áreas contribuirão para uma economia mais sustentável e circular.

Palavras-Chaves: Utilização de Dióxido de Carbono; Conversão Química de CO2; Análise de
Decisão Multicritério; Redes Neurais Artificiais; Otimização de Processos



Abstract

PACHECO, K. A. Assessment of CO2 Conversion Processes to Value-Added Products.
Thesis (PhD in Chemical Engineering) - Escola Politécnica, Universidade de São Paulo, 2023

The perspective on carbon dioxide (CO2) from being considered a waste product to a valuable
resource with potential as a carbon source and alternative to fossil fuels is explored. Carbon
Dioxide Utilization (CDU) focuses on advancing carbon capture and storage technologies,
developing strategies for recycling CO2 into energy vectors and chemical intermediates, and
evaluating the potential of CO2-derived products. By using CO2 as a carbon building block,
chemicals can be produced with competitive costs and reduced environmental impact. Adopting
alternative feedstocks, such as CO2, can bring disruptive changes to the industry. CO2 can be
integrated into the existing chemical industry through fundamental chemicals like methanol
or as a potential C1 building block. When evaluating a CDU technology, factors such as
emission reduction potential, thermodynamic restrictions, and commercial viability should be
considered. To address the challenge of evaluating CO2 utilization technologies and identifying
promising products, a systematic approach is developed using a Multi-criteria decision analysis.
Specific criteria for carbon dioxide conversion are established, and a three-level assessment
is applied to select the most suitable products based on economic viability, technological
maturity, and scientific significance. Dimethyl carbonate, dimethyl ether, and acetic acid
are identified as favorable products, with further process design studies recommended. An
innovative process for acetic acid production from CO2 using the methanol hydrocarboxylation
route is developed, incorporating adjustments in feedstock, temperature, pressure ranges,
and efficient separation units. The study contributes to the field of process synthesis for
converting CO2 into high-value products, addressing the scarcity of literature data on acetic
acid production processes. Additionally, a comprehensive evaluation of CO2 conversion into
methanol and dimethyl ether is conducted. A framework for optimizing chemical plants is
proposed, considering both the total annualized cost and resulting CO2 emissions from utility
usage. Simplified models, particularly neural networks, accurately represented plant behavior,
enabling efficient optimization. Optimization efforts in the processes have yielded positive
outcomes in terms of both economic and environmental perspectives. The reduction in total
annualized cost demonstrates improved financial efficiency, while the decrease in CO2 equivalent
emissions signifies a commendable step towards environmental sustainability. Overall, this thesis
provides valuable insights into utilizing CO2 as a valuable resource, optimizing chemical plant
operations, and driving the industry towards more sustainable and efficient practices. Further
research and development in these areas will contribute to a more sustainable and circular
economy.

Keywords: Carbon Dioxide Utilization; CO2 Chemical Conversion; Multi-Criteria Decision
Analysis; Artificial Neural Network; Flowsheet Optimization
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Chapter 1

Introduction

Inside the history involving civilizations, the particular 20th century is recognized beyond
expectations growth in energy utilization and fast increase in the human population. According
to the projections of World Energy Outlook 2016 [1], the world population is expected to grow
from 7.3 billion in 2014 to 9.2 billion in 2040, representing an average growth of 0.9% per year.
The population is one of the fundamental determinants of energy use, along with remarkable
progress in technology creation and the intensifying business expansion of man-made materials.

Not only the population will increase but also the gross domestic product, which is assumed
to grow at a compound average rate of 3.4% per year for the period to 2040, implies that the
whole economy is considerably larger than double compared with the current year [1].

Over the decades, the use of fossil fuels, such as coal, oil and natural gas introduced an era of
prosperity and progress. The transport revolution of the last century with the creation of cars,
truck and engines generate a world susceptible to hydrocarbon fuels such as gasoline and diesel
[2]. Additionally, the electrification of our daily basis boosts the use of carbon-based resources
in power plants.

Figure 1.1 stratifies the energy consumption by fuel or by end-use. For the energy consumption
by fuel (Figure 1.1a), the term oil comprehends crude, Natural Gas Liquids (NGL), Gas-To-
Liquid (GTL), Coal-To-Liquid (CTL), condensate and refinery gains. The term "renewable"
embodies a multitude of concepts. In the context of the report of World Energy Outlook 2016
[1], it includes wind, solar, geothermal, biomass, and biofuels and excludes large-scale hydro.

The contribution of renewable energy will increase up to 14% by the year 2040, although oil
and natural gas still play important roles in energy consumption with a participation of 27%
and 26%, respectively.

Regarding the primary energy consumption by end use, the industry will remain the main
consumer, it is projected a consumption of 7207 Mtoe by the year 2030, with an increase of
8.45% by the year 2040 reaching 7843 Mtoe consumption.
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(a) by fuel (b) by end-use
Figure 1.1: Energy consumption stratified by fuel or end use. Data source obtain from ExxonMobil
Report [3] and Evolving Transition - British Petroleum [3].

Given the carbon-based biology and environment, it is unsurprising a consumer culture has been
developed, which is heavily reliant on carbon-based sources of energy and products. Coal, oil
and natural gas are the primary sources of energy, while plastic, fabric and materials, personal
care items, cleaning products, dyes and coatings are all derived from carbon-based organic
chemicals [4].

Large-scale industries, such as those involving the production of inorganic chemicals and
fertilizers, as well as construction materials, depend on the utilization of carbon, mainly in the
form of an abundance of energy as presented in Figure 1.2.

Figure 1.2: Industry undergirds global economic expansion (Source: ExxonMobil [5]).
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Addressing the grand challenges of energy, water, environment, and food currently faced by
modern society requires novel and more sustainable production systems [6].

It is important to develop significantly improved and/or novel processing techniques in order
to convert available resources into useful products, recycle unused material, and reutilize used
material without adversely affecting the sustainability of modern society.

In this context, CO2 utilization technologies seek to mitigate carbon emissions and expand the
energy supply while using CO2 as a useful commodity [7, 8]. CO2 can be used as a carbon
building block to manufacture chemicals, which represents defiance to manufacture materials at
a competitive cost with less environmental impact. The contribution of CO2 conversion goes
beyond lowering global warming, by means of reducing fossil resource depletion or even yielding
more benign production pathways [9].

1.1 Carbon Dioxide Utilization

Since CO2 is emitted from a generating source (power plants, industries) and therefore refueled
at a rate faster than the current one is being used. CO2 for utilization can be considered as
a renewable alternative source of carbon, leading ideally to carbon neutral cycles in processes
with sources of large amounts of CO2 (such as a power plant) [10].

The Carbon Dioxide Utilization (CDU) introduces a new economic approach for CO2, where
captured CO2 can be utilized as a raw material for various processes. These processes include the
creation of chemicals and materials (like methanol, formic acid, polyols for polyurethanes, and
carbonates), fuels (such as gasoline, diesel, and sustainable aviation kerosene), as well as direct
applications based on the physicochemical properties of CO2 (like solvents and refrigeration) as
depicted in Figure 1.3 [11].

In some cases, the capture of CO2 is included in the definition, and it is referred to as Carbon
Capture and Utilization (CCU) in analogy to the term often used Carbon Capture and Storage
(CCS). The difference between the two concepts is that in CCS, carbon dioxide is stored
(underground/marine reservoirs), while in the CDU/CCU is utilized within the economy through
carbon dioxide valorization [12].

According to Aresta, Dibenedetto and Angelini [13] CDU technologies can be complementary to
the CCS techniques. Currently, the existing CO2 reuse represents 0.4% of the carbon emitted.
The growth potential however can reach 10% of the carbon emitted today. The estimate is that
164 million tons of CO2 are directly consumed in industrial processes per year, mainly for the
production of urea. However, the total potential is estimated to be 23 times higher, totaling 3.7
billion tons per year. Worldwide, about 37 billion tons of CO2 were issued in 2010 [14, 15].
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Figure 1.3: Potential uses of carbon dioxide.

The technological use (no chemical conversion) is related to its physical nature, including
compression, recycling, phase transition, etc. Among practical uses are the Enhanced Oil
Recovery (EOR) and Enhanced Gas or Condensate Recovery (EGR), the Enhanced Coalbed
Methane (ECBM), the preservation of cereals (bactericidal), beverage additives, food packaging,
dry cleaning, extraction, mechanical industries, fire extinguishers, air conditioning as well as
water treatment [16].

The chemical conversion includes photocatalysis and chemical photocatalysis [17] as well as
thermochemical processes [18], electrochemistry [19] and mineralization [20].

It’s worth highlighting that the conversion of CO2 can be classified into two reaction categories.
The first category involves lower energy consumption and aims to convert CO2 into organic
compounds with a high carbon content (with oxidation states of +4 or +3). These reactions
typically occur at lower temperatures (below 273 K). On the other hand, the second category
requires higher energy input and aims to reduce CO2 into fuel or chemical compounds with a
low carbon content (reduced states of +2 or less) [21].

According to Zheng et al. [22] in terms of global market demand, fuels are larger than chemicals
(12-14 times), and the production of fuels converts larger volumes of CO2 (Gt/year) than
chemicals (> 300 Mt/year). Technologies can be summarized based on the application based
on a limit of 5 Mt/year of potential CO2 use, where this threshold focuses on the study of
technologies that will likely require the use of CO2 on a scale compatible with the emissions
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generated by thermal power plants [14].

In a short-to-medium-term, the chemical conversion of CO2 will expand notably in more
developed fields, for example, CO2 hydrogenation, carboxylation and CO2-containing poly-
mers. Therefore, there is a need for research on catalysts, reactors, separations, processes,
unconventional energy sources, and combinations of processes [23].

1.2 Framework for Flowsheet Optimization

Usually, CDU technologies are treated as single-end product, whereby the principal drawback is
an economic unfeasibility (in some circumstances). Nevertheless, multiple fuels and chemicals
integrated facilities contribute to synergies (more efficient energy and resource use), in analogy
to the refinery concept [24].

Therefore, a configuration of a multi-product CDU can be advantageous in terms of economic
feasibility besides being environmentally friendly. To guarantee that the configuration or
structure is designed as efficiently as possible, process synthesis and process integration, among
other techniques, are used.

Chemical process design and optimization is a complex scheme, which comprises process modeling
and design and combinatorial defiance. There are two major approaches: the traditional
sequential form and the optimization-based synthesis using superstructure models. In the former
category, the problem is solved in sequential scheme, by decomposition where there is a hierarchy
of elements that can be depicted by an Onion Diagram (reactor, separation, heat recovery and
utility).

The latter category considers the full integration between decisions at the single step, i.e.
determining the optimal structure and operating conditions simultaneously. Therefore, this
approach contemplates all possible complex interactions between the engineering choices, in-
cluding equipment (potentially selected in the optimized flowsheet), the interconnection and
operating conditions formulated as an optimization problem in different fields as water network
design [25], bio-separation networks [26] and process synthesis [27].

There is a diversity of proposed methodologies to represent a general process superstructure
[28]. However, due to the inner complexity of the superstructure, the large-scale non-convex
Mixed-Integer Non-Linear Programs (MINLP) suffer from effective approaches to solve them
[29].

In order to circumvent the solution problem of a superstructure, Henao and Maravelias (2010)
[30] proposed a framework to replace complex unit models (based on first principles) by surrogate
models, developed through artificial neural networks.
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The use of simplified models or surrogates at the unit operation level is advantageous because
they are present in any process simulator. Additionally, surrogates can be used to represent an
entire subsystem consisting of a definite number of units. Artificial Neural Network (ANN) may
be used to generate the surrogate models, due to their fitting characteristics [31].

Subsequently, a reformulation of the superstructure model is introduced to keep the activation
or deactivation through a function (for example the Hyperbolic Tangent Function) as the only
source of non-linearity, contributing to the tractability of the problem.

The innovative research will propose a framework for process simulation and optimization.
This work will adopt the combination of some techniques to solve the environmental impact
of greenhouse gas emissions, among them integration of CO2 conversion processes, rigorous
modeling/simulation and optimization of certain parameters.

Research and development are crucial to move towards a competitive CDU technology, from
the most fundamental level of research (e.g. Haunschild [32], focusing on catalyst research) to
integrated studies at the conceptual design level as a complete plant in the work by Milani et
al. [33]. Thus, there is a need for a detailed analysis regarding the impact that different CDU
options/processes have on the energy of the system and under which conditions the obtained
products can achieve a sustainable market [34].

In summary, the current CO2 market has great potential for expansion with new CO2 applications
in different sectors. The optimization of CO2 conversion processes, from the use of streams
(steam/energy) to a conceptual configuration that can potentially reduce the CO2 emitted into
the atmosphere is crucial for CDU. In this way, the processes developed should help to face the
problems related to the use of CO2 as raw material to an optimized chemical plant.

1.3 Objectives

1.3.1 General Objective

The objective of the thesis is to present a framework that combines the exploration of the most
attractive products derived from CO2 with the optimization of a theoretical chemical plant, all
while considering emissions and cost reductions.

1.3.2 Specific Objectives

The specific objectives are described as:

• To propose a multi criteria decision analysis framework to select potential products that
use CO2 (directly or indirectly) as raw material;
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• To select the most promising process for the selected products from CO2;

• To generate an appropriate surrogate model for the subsystem of the chemical plant, which
contains processes for the production of high value-added products;

• To incorporate the surrogate in an optimization problem to reduce costs and CO2 emissions
due to utilities usage.

• To assess different scenarios, for example, cost of hydrogen and carbon tax, for understand
the influence of these variables on economics and carbon emission.

1.4 Thesis Organization

The Chapter 1 situates the reader about the topic, introduces the justification of the work and
presents the objectives of the study.

In an effort to enhance and further complete the database of the products obtained from
CO2, Chapter 2 deals with the investigation of different procedures to estimate the ba-
sic thermodynamic properties of the reactants and products of these reactions. To further
develop and improve the database of products generated from CO2 for the purpose of un-
derstanding and modeling the formation of species, basic thermodynamic data is necessary.
The development of detailed reaction schemes in the field is also scarce. The chapter was
published as an article entitled ’Assessment of property estimation methods for the thermody-
namics of carbon dioxide-based products’ in the Energy Conversion and Management journal,
doi:10.1016/j.enconman.2020.112756 (see [35]).

The Chapter 3 proposes a method to perform a local market analysis for potential products
from CO2 chemical conversion. The analysis was carried out for the Brazilian scenario. The
forecast behavior of this market for 2030 was also calculated. The chapter was published as an
article entitled ’Assessment of the Brazilian Market for Products by Carbon Dioxide Conversion’
in the Frontiers in Energy Research journal, doi:10.3389/fenrg.2019.00075 (see [36]).

A multi-criteria decision analysis to select the most promising products derived from CO2

conversion in a broader overview is discussed in Chapter 4. The findings and insights from
Chapter 2 were utilized as crucial input for these assessments. The outcomes of this analysis
subsequently guided the development of simulations in the subsequent chapters. This chapter
was published as an article entitled ’Multi criteria decision analysis for screening carbon dioxide
conversion products’ in Journal of CO2 utilization, doi:10.1016/j.jcou.2020.101391 (see [37]).

In Chapter 5, an assessment of acetic acid production routes is presented. The comparison of
CO2 innovative routes was performed and a multi-criteria decision analysis of CO2 innovative

https://doi.org/10.1016/j.enconman.2020.112756
https://doi.org/10.3389/fenrg.2019.00075
https://doi.org/10.1016/j.jcou.2020.101391
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routes was carried out. The simulation of the acetic acid was performed with exergy analysis.
A minor part of this chapter was published as a conference proceedings entitled ’CO2-based
Acetic Acid Production Assessment’ in the proceeding of the 31st European Symposium on
Computer Aided Process Engineering, doi:10.1016/B978-0-12-823377-1.50172-5 (see [38]). The
entire chapter is being prepared for submission to a publication.

Chapter 6 of the thesis focuses on the simulation of methanol and dimethyl ether production.
The selected routes for these processes were hydrogenation of CO2 for methanol and methanol
dehydration for dimethyl ether. The chapter evaluates the technical feasibility of these production
pathways and offers valuable insights into the behavior of the processes. It also identifies areas
that can be optimized.

Chapter 7 proposes a framework for flowsheet optimization based on surrogate models. The
artificial neural networks were selected as the algorithm to produce the surrogates, and the two
chemical plants: (i) acetic acid (as described in Chapter 5) and (ii) methanol and dimethyl
ether (as described in Chapter 6) were used as a case study. The chapter is being prepared for
submission to a publication.

Finally, Chapter 8 presents the conclusions, key insights and highlight the major findings
of the study. They provide a concise summary of the research outcomes, emphasizing the
significance and relevance of the conducted research. Additionally, suggestions for future works
are presented, from the identified research gaps, limitations encountered during the study, and
areas that require further exploration.

https://doi.org/10.1016/B978-0-12-823377-1.50172-5


Chapter 2

Assessment of property estimation
methods for the thermodynamics of
carbon dioxide-based products

Carbon dioxide can be used as feedstock to produce chemicals. Albeit promising,
the literature data regarding the quantity of energy needed to convert carbon dioxide
into chemicals is limited and narrowed to the most studied processes and products.
In order to understand and model the formation of species using carbon dioxide as
raw material, some basic thermodynamic data are needed. To enhance and further
complete the database of the products obtained from CO2, this chapter investigates
different procedures to estimate the basic thermodynamic properties. The results
showed that semi empirical quantum-chemistry methods revealed to be more accurate
and robust for the studied species. These results provide important insights into the
thermodynamics of CO2 related products.
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2.1 Introduction

CDU technologies seek to mitigate carbon emissions and expand energy supply while using
CO2, considered a waste, as a useful commodity, diverging from conventional technologies of
abatement [8]. The closed carbon cycle concept, then, arises, concerning processes to produce
hydrogen (without the use of fossil fuels) and the CO2 capture from a variety of sources, such
as cement or steel industries, power plants or fermentation process [39].

A novel CO2 based process is, usually, more material and energy intense than the traditional
route, in which a better integration and process synthesis to minimize these issues are needed.
Wiesberg, de Medeiros, Alves, Coutinho and Araújo [40] investigated two different routes to
produce methanol from CO2. Blumberg, Morosuk and Tsatsaronis [41] performed an exergy
study to analyze the CO2-integration potential and the constraints within the reforming and
synthesis. Dabral and Schaub [42] reported a review of new CO2-based compounds for industrial
scale. Chauvy, Meunier, Thomas and Weireld [43] ranked emerging CO2-based products for
short- to mid-term deployment. Koytsoumpa, Bergins and Kakaras [44] assessed the potential
of CO2 for fuel and for combined heat and power production. Accordingly, CO2 is a critical
enabling element for the sustainable future of chemical production [7].

In a short-to-medium-term, the chemical conversion of CO2 will expand, notably in more
developed fields, for example CO2 hydrogenation, carboxylation and CO2-containing polymers.
According to the projection of Exxon Mobil report [5], the energy for the industry will increase
20% from 2016 to 2040, whilst the growth of chemicals will be 40% at the same period. Similar
behavior is predicted by the Shell report [45], in which a demand growth for chemicals in the
medium term is due to economic growth.

In this context, Chemical Product Design (CPD) is an alternative for important changes in
the chemical industry, including a split in the industry between manufacturers of commodity
chemicals and developers of special chemicals. However, it is an expensive laborious routine
restricted to a specified quantity of resources (budget, raw material, products and time) [46].
Other methodologies must be explored to solve the issue of produce new chemicals or new routes
faced the growing demand.

Novel advances in the field of computational approaches, mainly on computer-aided molecular
design, are one of the pillars for the study.

To perform CPD studies, several parameters and properties of the chemicals are necessary. One
of the most fundamental thermodynamic property needed is the enthalpy of formation, which is



32

critical in many engineering areas, since energy balances depends on their accurate values [47].

In some cases, the properties must be estimated. One can relate chemical structures to properties
at several levels of accuracy (group contribution, molecular mechanics, semi-empirical, ab initio).
The most used methods are group contribution, which assumes the property of a molecule can
be predicted by the number of molecular sub-structures appearances [48]. The Joback and Reid
method [49] is the most popular. The Benson method is even more complex and considers the
interaction of a group with its neighborhood [50].

However, group contribution methods cannot distinguish isomers and there is a lack of consistency
in groups used to predict various properties [51]. In order to increase accuracy and avoid costly
methods such as Hartree-Fock ab initio methods or Density Functional Theory (DFT), the
quantum–chemical semiempirical methods, which are a variant of electronic structure theory,
can be used [52].

The semiempirical methods depart from ab initio or first principles formalism, and after consider
assumptions to accelerate the calculations, usually neglecting terms in the equations. To
balance the errors, empirical parameters are taken into consideration and calibrated against
experimental reference data. If the model is able to describe the properties, the parameterization
may consider all other effects in an average sense [52]. Different approaches for the integral
approximation or parameterization have been proposed, among them the Austin Method 1
(AM1) [53], Parameterization Method 6 (PM6) [54] and the Parameterization Method 7 (PM7)
[55] are widely used. The last two cover almost the full periodic table and can compute molecular
and solid-state properties.

In this work, the ability of five different methods of property estimation was evaluated to
calculate the theoretical gas-phase enthalpy of formation (∆fHo

298,g). The methods encompass
(i) two group contributions: Joback method and Property Constant Estimation System (PCES)
built in Aspen Plus and (ii) three semi-empirical: AM1, PM6 and PM7 calculated in MOPAC
Software. The main objectives of this research is to determine which is the best method for
estimation the properties of selected compounds. The reason for testing various methods is
to study the products from CO2 conversions using a less demanding method than ab initio
methods resulting in important properties to perform CPD studies.

2.2 Methods

The steps for the estimation of thermodynamic properties employed in this work are depicted in
Figure 2.1. A database of 122 compounds is selected from the literature as products from CO2

conversion [56]. Complete details of the compounds are presented in the Appendix A. A test
dataset is a subgroup of the complete dataset and is composed of 30 chemical species, since was
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possible to retrieve their values of enthalpy of formation values from the literature.

Enthalpy of formation calculations were carried out for every species on the test database using
one of the methods group contributions (Joback and PCES) or semi-empirical (AM1, PM6 and
PM7) methods. The routine for the group contribution methods is introduced in Section 2.2.1,
while for semi-empirical in Section 2.2.2.

A statistical analysis was performed in order to select the best method (for the group of chemical
species in study) and, then, the selected method was used to estimate the thermodynamic
properties (enthalpy of formation, Gibbs free energy) for the remaining 92 chemical species.
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Figure 2.1: Methodology used in this study for the estimation of thermodynamic properties.

2.2.1 Group Contribution

The first order group contribution method of Joback and Reid [49] was used. The Equation
2.2.1 was used to calculate the enthalpy of formation and was implemented in spreadsheets
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using the values of energy for the group hfk reported in Joback et al. [49].

∆fHo
298,g = 68.29 +

∑
k

Nk · hfk (2.2.1)

where Nk stands for the number of groups k existing in a specific molecule and hfk is the energy
contribution of the group.

In order to generalize and avoid the limitations of the original Joback and Reid method, a
second-order group contribution method (Benson Method) presented in the commercial software
Aspen Plus was also used through Property Constant Estimation System [57].

In this method there are two types of functional groups:

• Group increments: for example −CH3 or −COO−

• Corrections: for example the correction for the presence of a benzene ring

The molecular 2D structure is supplied and, subsequently, the PCES automatically generates
the functional groups, provided the selected method is able to model that molecule. In case
there are missing groups, e.g. a correction for a specific second order group contribution, the
PCES will use the Joback and Reid method instead.

2.2.2 Semi-Empirical Quantum Chemistry

The methods of Semi-Empirical Quantum Chemistry (SEQC) theory have been employed. They
neglect or approximate in an empirical way the integrals used for solving the time-independent
electronic Schrödinger equation.

The first step is to obtain a stable structure and for the geometry optimization, a minimization
of the binding energy of the molecule was performed. Energy minimization alters the molecular
geometry (bonds, angles, dihedrals) to lower energy levels, and yields a more stable conformation.
As the minimization progresses, it searches for a molecular structure in which the energy does
not change with infinitesimal changes in geometry.

Initial geometries were supplied in internal coordinates, placing symmetry constraints on the
appropriate bond lengths, bond angles and dihedrals in Avogadro software, version 1.2.0 [58].

The 3D representation of a molecule was exported and a routine employing an openbabel python
binding (pybel version 1.7 [59]) was used, following the steps:

1. Steepest descent geometry optimization with the Merck Molecular Force Field 94 (MMFF94)
[60, 61]. The method provides good accuracy across a range of organic and drug-like
molecules;
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2. Weighted Rotor conformational search. It uses an iterative procedure to find a more stable
conformation, choosing from the allowed torsion angles, but the choice is re-weighted
based on the energy of the generated conformer;

3. Conjugate gradient geometry optimization

A second geometry optimization without restriction of any symmetry of the molecules in its
ground state was performed using AM1, PM6 or PM7 level with the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm as energy minimization routine as incorporated in Molecular Orbital
PACkage 2016 (MOPAC2016) [62]. All semi-empirical calculations (AM1, PM6 and PM7) were
performed using the original parameter set of the MOPAC2016 [62].

2.2.3 Statistical Analysis

Statistical analysis was carried out for a test subset due to the literature data available to
compare experimental heats of formation with the estimation of the methods under evaluation.

The performance of a model can be measured using a number of statistics, such as: the Pearson’s
product-moment correlation coefficient (r) and its square, the coefficient of determination (r2),
which describes the degree of collinearity between the observed and model-simulated variates.
They are essentially by determining the error sum of squares (∑(y − ŷb)2). However, the
coefficient of determination is limited, because it standardizes for differences between observed
and calculated means and variances, being insensitive to additive and proportional differences
between datasets [63].

To compare and further evaluate the ability of the methods, other statistics were also calculated.
Chai et al. [64] stated that multiple metrics are required to provide a complete picture of error
distribution.

Root Mean Square Error (RMSE) (Equation 2.2.2) is more suitable than Mean Absolute Error
(MAE) (Equation 2.2.3), when the type of error is normal distributed and unbiased [64].

RMSE =

√∑n
1 (yi − ŷi)2

n
(2.2.2)

MAE =
∑n

1 |yi − ŷi|
n

(2.2.3)

Relative RMSE (RRMSE) (Equation 2.2.4) and Relative MAE (RMAE) (Equation 2.2.5) are
independent of unit/scale and not sensitive to data means according to their definitions. Even
though they enable comparison of different datasets with different data means, they are linearly
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correlated with data variance [65].

RRMSE = RMSE
y

· 100 (2.2.4)

RMAE = MAE
y

· 100 (2.2.5)

In order to avoid such problems two other statistics were calculated. Variance explained
by predictive models based on cross-validation (VEcv) (Equation 2.2.6) does not show the
limitations and it is an accuracy measure. Moreover VEcv avoids the problems associated with
Nash and Sutcliffe’s efficiency [66].

VEcv =
(

1 −
∑n

i (yi − ŷi)2∑n
i (yi − y)2

)
· 100 (2.2.6)

Legates and McCabe’s efficiency (E1) (Equation 2.2.7) is also an alternative accuracy measure
[67].

E1 =
(

1 −
∑n

i |yi − ŷi|∑n
i |yi − y|

)
· 100 (2.2.7)

A combination of the aforementioned metrics was used to define the most suitable method
to predict the enthalpy of formation. The calculations of normality and homogeneity were
performed using PASW Statistics 17.0.2.

2.2.4 Generation of Properties

After the selection of the most suitable method for property estimation, considering the statistical
analysis, the thermodynamic properties calculations of the remaining species in database were
carried out.

With the enthalpies of formation available, one can calculate the enthalpy of reaction executing
basic algebraic operations according to Equation 2.2.8 [68].

∆Ho
rxn =

∑
products

ν
(
∆fHo

298,g

)
−

∑
reactants

ν
(
∆fHo

298,g

)
(2.2.8)

The enthalpy of reaction can be determined by scaling each species enthalpy of formation by
its stoichiometric coefficient. In this study only direct conversion routes to the products were
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considered, i.e. the CO2 reacts with one or more reactants to form directly in one step the
products under assessment.

2.3 Results and Discussion

The first part of this section introduces the statistical analysis and error distribution, which
lead to the selection of the most applicable method for property estimation. Comparison with
other studies from the literature and lastly the evaluation of CO2-based products and reactions
are shown.

2.3.1 Statistical Results

For the statistical analysis, the requirements for parametric tests were tested. The ensemble of
indicators was also computed (literature vs. estimated values.

The first set of analyses examined the hypotheses of normality of data (H0 - null hypothesis,
indicating that data is normal, H1 - alternative hypothesis, rejecting the normality of data). H0

is required for parametric tests.

A Shapiro-Wilk’s test (p>0.05) [69] performed on the datasets is presented in 2.1. The test
demonstrates the normal distribution with a significance level greater than 5% (p-value > 0.05).

Table 2.1: Shapiro-Wilk’s Test for the test dataset.
Dataset p-value

Literature 0.885
Joback 0.358

PCES Aspen 0.734
PM7 0.938
PM6 0.866
AM1 0.930

The evaluation of the symmetry and kurtosis estimators, which represent aspects related to the
shape of the histogram, were also calculated. The value for the skewness or kurtosis divided by
its standard error must lie between -1.96 and 1.96 to be considered a normal distribution. A
skewness of 0.151, 0.088, 0.135, 0.173, 0.154 and 0.196 (std error = 0.427) was obtained for the
Literature, Joback, PCES, PM7, PM6 and AM1 dataset, respectively. In respect of kurtosis [70]
the values of -0.471, 0451, -0.212, -0.290, -0.363 and -0.324 (std error = 0.833) were obtained
for for the Literature, Joback, PCES, PM7, PM6 and AM1 dataset, respectively. Therefore,
the data corroborate the normality of the test dataset, which ratifies the possibility of using
parametric analysis.
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Additionally to the normality tests, the test of levene (p-value = 0.988) validated the homogeneity
of the data.

2.3.2 Test Subset Values

Estimation of enthalpy of formation by the different methods (group contribution or semi-
empirical quantum chemistry) were carried out for the test dataset. This data was used in
Section 2.3.1 to perform the statistical analysis. Table 2.2 presents the results obtained and
their comparison with available literature data.
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Table 2.2: Comparison of the results for the test dataset with literature data. The values represent
entalphy of formation (kcal/mol).

Group Contrib. SEQC

ID Name CAS
Lit.

Ref.
Joback PCES PM7 PM6 AM1

kcal/mol kcal/mol kcal/mol

1 Formic acid 64-18-6 -90.49 [71] -85.67 -90.26a -80.80 -79.51 -89.99
2 Acetic acid 64-19-7 -103.35 [72] -103.94 -103.37a -95.44 -95.31 -97.19
3 Propionic Acid 79-09-4 -109.92 [72] -108.87 -108.55a -99.81 -99.08 -103.57
4 Acrylic acid 79-10-7 -77.61 [73] -78.89 -75.39a -75.17 -73.67 -76.36
6 Methacrylic Acid 79-41-4 -87.21 [74] -86.17 -84.57a -84.38 -82.72 -83.33
7 Oxalic Acid 144-62-7 -170.86 [73] -187.66 -180.32a -159.55 -156.25 -169.78
8 Benzoic Acid 65-85-0 -70.17 [73] -72.07 -70.44a -59.26 -58.46 -62.55
9 p-Salicylic acid 99-96-7 -114.16 [75] -114.45 -112.57a -105.17 -104.48 -107.16

10 Salicylic acid 69-72-7 -116.87 [73] -114.45 -112.00a -106.62 -105.35 -109.84
12 9H-Fluorene-9-carboxylic acid 1989-33-9 -43.25 [73] -35.21 -35.21b -36.21 -36.94 -30.46
36 Acetaldehyde 75-07-0 -40.01 [72] -40.68 -39.23a -41.13 -38.19 -41.60
37 Formaldehyde 50-00-0 -25.98 [73] -22.40 -26.02a -25.54 -20.70 -31.51
38 Methanol 67-56-1 -48.10 [73] -51.67 -48.03a -48.94 -48.35 -57.05
39 Propanol 71-23-8 -60.95 [72] -61.54 -60.88a -62.74 -62.02 -71.19
41 Styrol 100-42-5 35.35 [72] 36.69 35.25a 36.65 37.91 38.63
42 Dimethyl ether 115-10-6 -43.99 [73] -51.82 -43.43a -45.00 -45.78 -53.21
43 Ethylene Oxide 75-21-8 -12.57 [72] -29.51 -12.51a -11.26 -10.06 -8.99
44 Acetone 67-64-1 -51.82 [72] -52.06 -51.64a -54.99 -53.83 -48.50
45 Ethylene carbonate 96-49-1 -121.74 [73] -101.85 -110.27a -118.03 -123.36 -127.64
46 Propylene carbonate 108-32-7 -132.68 [73] -111.64 -120.07a -127.10 -132.57 -132.76
47 Dimethyl Carbonate 616-38-6 -136.55 [73] -115.27 -132.59a -135.00 -128.97 -137.10
48 Diethyl Carbonate 105-58-8 -152.43 [73] -125.13 -142.45a -142.57 -146.20 -149.65
49 Methyl Carbamate 598-55-0 -101.65 [76] -70.65 -87.98a -92.27 -92.21 -91.29
50 Urethane 51-79-6 -107.24 [76] -75.59 -92.91a -100.74 -100.74 -97.24
68 4-Ethyl-1,3-dioxolan-2-one 4437-85-8 -137.70 [73] -116.58 -125.00a -132.25 -137.48 -139.24
83 Methyl isocyanate 624-83-9 -14.36 [74] -21.52 -21.52b -24.32 -22.17 -14.02

105 Urea 57-13-6 -56.29 [77] -26.04 -26.04b -51.27 -48.82 -44.52
115 1,3-Diphenylurea 102-07-8 7.62 [73] 37.23 37.23b 7.68 6.50 28.52
118 Tetrahydro-2-pyrimidone 1852-17-1 -48.06 [78] -27.08 -27.08b -46.85 -48.89 -40.14
120 2-Imidazolidinone 120-93-4 -42.86 [73] -20.68 -20.68b -38.62 -39.68 -25.21

aAspen Plus PCES selected automatically the Benson Method.
bAspen Plus PCES selected automatically the Joback Method.

The ultimate objective of such computational strategy designed to estimate values for ∆fHo
298,g

is to reduce deviations from calculated (estimated) to experimental (literature) values. A
reason is that small errors in ∆fHo

298,g growth, in some cases exponentially, when generate other
values dependent of such variable, for example Gibbs energy of reaction or even the equilibrium
constant.

The group contribution method of Joback and PCES Aspen yielded calculated results in
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which 47% (14/30) and 57% (17/30) of the predicted values, respectively, were within ± 5.0
kcal/mol of values in the reference literature set. Once the tolerance are setted within ± 15.0
kcal/mol the method Joback yielded 57% (17/30) while PCES Aspen yielded 87% (26/30).
The maximum deviation of 31.7 kcal/mol and 30.2 kcal/mol for the Joback and PCES Aspen
methods, respectively.

In reference to semi empirical quantum chemistry, the PM7, PM6 and AM1 method generated
results whereby 50% (15/30), 50% (15/30) and 43% (13/30), respectively, are within ± 5.0
kcal/mol compared with literature reported data. By increasing the amplitude to ± 15.0
kcal/mol, the results were 100% (30/30), 100% (30/30) and 93% (28/30) enclosed in the selected
range for PM7, PM6 and AM1. The deviation, in this case, was smaller for all the methods
(PM7 = 11.3, PM6 = 14.6 and AM1 20.9 kcal/mol maximum deviation) when compared to
group additivity methods.

The uncertainty associated with each estimation method has been published by the authors.
The absolute average error for the heat of formation claimed for the Joback Method [49], Benson
Method [50], PM7 [62], PM6 [62] and AM1 [62] are, respectively, 8.4 kJ/mol (std = 18 kJ/mol),
8.36 to 16.73 kJ/mol (according to the chemical class), 18.69 kJ/mol (std = 19.68 kJ/mol),
19.27 kJ/mol (std = 20.38 kJ/mol) and 52.14 kJ/mol (std = 41.53 kJ/mol).

Elioff et al. [79] compared different methods to estimate ∆fHo
298,g for a test set and their results

were similar with the current study. The semi-empirical models (RM1 and PM7) displayed
deviation ca. 14 kcal/mol, however, they were very rapid and with an acceptable accuracy
compared with the ab initio methods tested in their study.

A fault of group additivity theory is that ∆fHo
298,g or other thermodynamic property is oc-

casionally affected by structural features not properly addressed by the theory. Albeit more
complex and with more corrections, one disadvantage of Benson method, implemented inside
PCES Aspen Plus, is that group contribution value is missing for some of the substructures of
several compounds in the test set.

Figure 2.2 presents the scatter plot comparing literature values with the values obtained for
each method.

The scatter plot for Joback method showed the most disperse behavior, representing that the
calculated value can diverge from the actual value. If the complexity of the method is considered,
for example in the Benson method, the calculated values lie more on a diagonal line in the
scatter plot.

The good representation of some molecules is due the fact that many of the compounds in the
original experimental reference set were used to parameterize and develop the group additivity
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Figure 2.2: Scatter plot of calculated gas-phase enthalpy of formation vs. literature values. *According
to data in Table 2.2.

computational approach/method. Pertinent methods such as Benson are often accurate, but
one must carefully evaluate their application.

Semi empirical methods behaved similarly, although AM1 method was sufficient accurate, PM7
data were distributed closer to the literature values (diagonal).

2.3.3 Statistical Indicators of Performace Results

Predictive accuracy should be measured based on the difference between the observed values and
predicted values. Assessing the accuracy of the methodologies is critical because it determines
the quality of resultant predictions [80].

In order to compare pearson product-moment correlation coefficient (r) and the coefficient of
determination (r2) six other indicators were used to determine the most suitable method to
calculate the enthalpy of formation of the full set of compounds.

Table2.3 shows the statistical indicators used to compare literature and calculated values for
the enthalpy of formation.

Among all methods tested, PM7 showed the best result (closer to 1), with values of 0.996 and
0.993 for r and r2, respectively.

To complement the assessment another six indicators were used. Relative MAE (RMAE),
Relative RMSE (RRMSE), variance explained by predictive models based on cross-validation



42

Table 2.3: Statistical indicators used as comparison of literature and calculated values for gas-phase
enthalpy of formation.

Estimation
Method

Indicator
r r2 RMSE MAE RMAE RRMSE VEcv E1

Joback 0.957 0.916 16.310 11.883 -15.663 -21.500 88.856 71.367
PCES Aspen 0.982 0.964 11.445 7.382 -9.730 -15.086 94.513 82.213
PM7 0.996 0.993 6.384 5.166 -6.809 -8.415 98.293 87.553
PM6 0.995 0.991 6.750 5.384 -7.097 -8.897 98.092 87.026
AM1 0.990 0.979 8.075 6.305 -8.311 -10.644 97.268 84.808

(VEcv) and Legates and McCabe’s (E1) [67, 81]. Regarding the results for RMSE and MAE,
the best situation is to reduce the errors, then the smaller the value the better. In this case,
Joback exhibited the highest errors (16.310 and 11.883 for RMSE and MAE, respectively). The
method with the smallest error indicator was PM7.

In this situation, the method with the value closest to zero, shows the smallest relative error.
PM7 demonstrates the best case scenario (RRMSE of -8.415 and RMAE of -6.809).

VEcv and E1 were presented in percentage to make their resultant values comparable. The
higher the value the better the method/model is. In this case, the semi empirical methods
achieved high scores (> 97% for VEcv and > 84% for E1). Group contribution methods attained
high scores, however lower than SEQC methods. Comparing the values for VEcv and E1, the
best method was PM7, with values of 98.293 and 87.553, respectively.

According to Li et al. [81] the VEcv and E1 should be used as complementary measures, they
may be able to represent the difference between methods/models.

Overall, these results of the statistical analysis indicate that the most suitable method for this
study is the semi-empirical PM7. Therefore, this method was used to calculate the enthalpy of
formation for the whole dataset.

2.3.4 Ab Initio Comparison

The results obtained in this study using the PM7 level of theory were compared with values
obtained using a more complex quantum chemistry level of theory calculations reported in the
work of Ghahremanpour et al. [82].

Ghahremanpour et al. [82] used the standard G2 [83], G3 [84], G4 [85] and CBS-QB3 [86]
methods for about 2000 molecules up to 47 atoms, and W1U and W1BD [87] were used for
about 650 molecules up to 16 atoms. Computational cost is an important issue in evaluating
computational methods apart from accuracy and reliability, G4 method is 8 and 24 times slower
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than the G3 and CBS-QB3 methods, respectively, for calculations of ∆fHo
298,g and it is 28 times

faster than the W1BD method.

Table 2.4 presents the enthalpy of formation for ten different chemical species using ab initio
calculation (retrieved from [82]) or semi empirical calculation (results of the current study).

Table 2.4: Enthalpy of formation (kcal/mol) calculated using ab initio and semi-empirical quantum
chemistry methods.

ID Name Ab initio Calculationsa SEQC
CBS-QB3 G2 G3 G4 W1BD W1U PM7

6 Methacrylic Acid -86.69 -87.36 -86.66 -85.97 -87.83 -88.15 -84.38
36 Acetaldehyde -39.65 -41.63 -40.46 -39.29 -40.08 -40.32 -41.13
37 Formaldehyde -27.34 -28.01 -26.60 -26.79 -26.65 -26.89 -25.54
38 Methanol -48.90 -49.47 -48.18 -48.09 -49.24 -49.35 -48.94
39 Propanol -61.16 -62.14 -61.33 -60.76 -63.12 -63.26 -62.74
41 Styrol 37.36 39.58 35.49 35.18 – – 36.65
42 Dimethyl ether -45.39 -46.18 -44.55 -44.29 -45.46 -45.60 -45.00
43 Ethylene Oxide -13.55 -13.98 -12.67 -13.00 -13.67 -13.86 -11.26
44 Acetone -51.91 -53.20 -52.15 -51.77 -53.30 -53.54 -54.99
83 Methyl isocyanate -26.48 -27.01 -26.20 -25.93 -26.12 -26.39 -24.32

aThe results presented are retrieved from Ghahremanpour et al. [82].

One can see the small deviation from the ab initio calculations, considering all levels of theory
the maximum deviation was less than 4 kcal/mol (3.77 kcal/mol for methacrylic acid using
W1U compared with PM7).

The percentual difference remained limited to 10% (exception of ethylene oxide), the PM7 value
from methanol was within 0.01% difference from CBS-QB3.

These results are consistent with those reported in Ghahremanpour et al. [82] and suggest
that semi-empirical methods can be used to estimate enthalpy of formation with a reasonable
accuracy and reliability with less computational effort. It is important to bear in mind a possible
bias in these responses for different chemical species not in the studied group.

Table 2.5 displays the standard entropy for ten different chemical species using ab initio
calculation (retrieved from [82]) or semi empirical calculation (results of the current study). The
values were compared with literature/ experimental data.

The results, as shown in Table 2.5, indicate that the entropy is well estimated using either ab initio
or semi-empirical methods for the compounds studied. The values of formaldehyde and ethylene
oxide are within 0.48 cal/(mol.K), when compared calculated and literature/experimental data,
which represents less than 1% of difference for all the methods.

Formaldehyde is a very small molecule, therefore is expected a considerable accuracy in the
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Table 2.5: Standard Entropy - So - (cal/(mol·K)) - experimental and calculated by ab initio and semi
empirical methods.

ID Name Ab initio Calculationc SEQC Lit.
CBS-QB3 G2 G3 G4 W1BD W1U PM7

6 Methacrylic Acid 79.11 77.68 77.68 79.11 79.11 79.11 82.91 83.89a

36 Acetaldehyde 60.23 59.75 59.75 60.23 59.99 59.99 63.80 63.10a

37 Formaldehyde 52.10 52.10 52.10 52.10 52.10 52.10 52.26 52.34a

38 Methanol 56.88 56.64 56.64 56.88 56.88 56.88 57.46 57.36a

39 Propanol 72.18 71.22 71.22 72.42 72.42 72.42 73.89 77.20a

41 Styrol 83.17 80.54 80.54 82.70 – – 82.75 82.46b

42 Dimethyl ether 63.10 62.62 62.62 63.10 63.34 63.34 64.32 63.81a

43 Ethylene Oxide 57.84 57.60 57.60 57.84 57.84 57.84 57.99 58.08a

44 Acetone 74.09 70.98 70.98 71.22 71.94 71.94 72.58 70.51a

83 Methyl isocyanate 69.31 70.27 70.27 70.03 69.79 69.79 68.33 64.77b

aThe results presented are retrieved from [72].
bThe results presented are retrieved from [74] .

cThe results presented are retrieved from Ghahremanpour et al. [82].

estimation, probably due to the use of this chemical specie in the parameterization of PM7
method. The deviation was 0.087 cal/(mol.K) (-0.17%). Some other small molecules behaved
similarly (e.g. methanol, styrene and dimethyl ether).

Propanol and methyl isocyanate showed the highest deviations from literature reported values.
The latter exhibited a deviation c.a. 3.5 cal/(mol.K) (5.5%) using PM7 level of theory, while
the former deviated 3.3 cal/(mol.K) (-4.3%), however it is still an adequate estimate for this
thermodynamic property.

Regarding the differences between the two calculation using ab initio and semi-empirical methods,
the deviation are within 5.23 cal/(mol.K). Maximum deviation was observed from methacrylic
acid values of G2 and G3 level of theory (6.7%), while the minimum value deviation was observed
from styrene, 0.05 cal/(mol.K) (0.06%).

Therefore, it can be assumed, when compared this study results with previous works, that
the semi-empirical method could be used to estimate with a reasonable level of accuracy and
reliability the enthalpy of formation and entropy for the studied group of chemical species.

2.3.5 Thermodynamic Properties Results

Once PM7 was selected as the most suitable method for estimating the studied thermodynamic
properties, it was used for the whole dataset calculation, containing 122 chemical species.

The results for enthalpy of formation (∆fHo
298,g - kcal/mol), entropy (So

298,g - cal/(mol.K)) and
Gibbs energy of formation (∆fGo

298,g - kcal/mol) are described in the Supplementary Material.
The latter thermodynamic property can be calculated using the Equation 2.3.1.
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∆fGo
298,g = ∆fHo

298,g − T · So
298,g (2.3.1)

One of the reasons to accurately estimate properties like enthalpy of formation and entropy is
owing to error propagation when calculating other properties dependent on them. For example,
for the purpose of calculating the equilibrium constant (Keq) of a reaction, which depends
exponentially upon Gibbs energy of reaction, small errors in the enthalpy of reaction and,
consequently, in the enthalpy of formation can result in greatly different values of Keq.

2.3.5.1 Energy of Reaction - Direct Route

For the characterization of CO2 utilization reactions, the work of Otto et al. [56] was used as
database of all reactions because they considered the possible synthesis products as a basic
requirement, and gave an overview of important substance groups that can be synthesized with
CO2 as a feedstock, depending on the nature of the reactants.

The reactions were presented considering that a particular reactant when combined with CO2

lead to the chemical species described in the database (see Supplementary Material for the full
description of molecules).

Reaction enthalpies can be calculated as described in Section 2.2.4. It can also evaluate heat
release, if the enthalpy change is negative (∆Ho

rxn < 0), the reaction is exothermic, while positive
values (∆Ho

rxn > 0) indicate endothermic reactions. The values of enthalpy of formation for all
the species studied are computed using PM7 level of theory, unless literature or experimental
data are available.

Taking the reaction of the formation of dimethyl carbonate from CO2 and methanol, the results
showed a value of -4.10 kcal/mol. This value indicates that the gas phase reaction is exothermic
at 298 K. Similar results were obtained by Bustamante et al. [88], who performed a study of
dimethyl carbonate production from CO2 and methanol, nevertheless the enthalpy of formation
for chemical species were calculated using group additivity. The complete set of enthalpy of
reaction is described in the Supplementary Material.

Figure 2.3 stratifies the reactions according to their chemical classification (see Supplementary
Material).

The results indicate that 59% of the reactions are endothermic and 41% are exothermic. As
Figure 2.3 shows, there is a significant difference among the chemical groups, for example all
alcohol and ether reactions studied were exothermic, while all aldehyde and epoxides were
endothermic.
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Figure 2.3: Stratification of reaction according to their chemical class.

2.4 Conclusion

In this chapter, different thermodynamic property estimation methods for chemicals produced
from CO2 were assessed. The estimations of enthalpy of formation for CO2 products were
evaluated and the most suitable method to perform the task was PM7, since it demonstrated
to be statistically the most applicable within the chemical species studied. The method also
showed good accuracy, robustness and efficiency compared with the other methods tested. PM7
was used to calculate properties such as entropy and Gibbs energy for all the chemical species
under study.

Experimental thermochemistry data are limited, primarily because the measurements (calorime-
try) usually require and destroy significant amounts of material. In this sense, computational
chemistry methods are promising for the modelling of physiochemical properties and accessing
the optimal structure of molecules. Most studies in CO2 utilization have only been carried out in
a small number of compounds, so, this work fills the gap of energy related content regarding CO2

products, helping to address chemical product design study issues. The study also categorized
the carbon dioxide derived products in sixteen chemical classes and the reaction enthalpy for the
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direct route to manufacture the products were assessed and indicate a large difference among
the classes.

This study can also lead to a more robust approach to not only characterize the chemical but
also select, within the chemicals studied, the most promising for a detailed process synthesis
design, as presented in Chapter 4.



Chapter 3

Assessment of the Brazilian Market for
Products by CO2 Conversion

The carbon dioxide (CO2) emissions account for more than 70% of the total greenhouse
gases emissions; among the CO2 emitting sectors, electricity generation accounts for
25% of the global emissions. CO2 emissions from Brazilian power plants motivated
their mapping, a method was proposed to performance a local market analysis for
potential products from CO2 chemical conversion. The forecast behavior of this market
for 2030 was also calculated. Among the studied products, methanol, polycarbonates,
formic acid and acetaldehyde are the most promising for local manufacture. The
States of São Paulo, Paraná, Amazonas, Bahia, Rio Grande do Sul and Santa
Catarina are the most promising regions in terms of potential of CO2 utilization.
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3.1 Introduction

The increasing concern about the environmental impact generated by global warming has stimu-
lated a series of international agreements aimed at regulating greenhouse gases (GHG) emissions
in the atmosphere. The UNCHE (United Nations Conference on the Human Environment) in
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Stockholm (1972) is considered the first discussion about the global human influence on the
environment. More recently, in 2005, the Kyoto Protocol entered into force, committing its
Parties by setting internationally binding GHG emission reduction targets at least 18% below
1990 levels until 2020 [89, 90]. The Paris Agreement (the last one signed) goal is to enhance
the global response to the threat of climate change by ensuring the average global temperature
increase, in this century, below 2◦C above pre-industrial levels and to continue efforts to limit
temperature rise to up to 1.5◦C above pre-industrial levels [90].

In 2016, total global GHG emissions continued to increase steadly by about 0.5% (±1%), to
about 53.4 Gt CO2-eq (including land use, land-use change and forestry emissions, estimated at
about 4.1 Gt), the slowest since the early 1990s, except for global recession years, according
to Olivier et al. [91]. This result is justified by the partial replacement of coal consumption
from fuel to natural gas and the increasing renewable power generation (wind and solar power,
mostly).

GHG are basically composed of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O)
and fluorinated gases (F-gases). Although CO2 is not the worse gas, its emissions account for
more than 70% of the total GHG emissions, according with Figure 3.1a. Emphasizing CO2,
Figure 3.1b shows the CO2 emitting sectors. Among them, electricity generation stands out,
accounting for 25% of the global emissions [92].

Figure 3.1: GHG and CO2 emissions: (a) GHG emission composition [91] and (b) CO2 emissions (%)
per sector [92].

Since thermoelectric plants represent large, capital-intensive facilities with a 40-year technical
(and economic) lifetime, there must be a link between profit maximization and concern for the
environment and GHG emissions [93].

According to Azevedo and Angelo[94], in 2016, Brazil emitted about 1.7 billion tons of carbon
dioxide equivalent (GtCO2). This represents nearly 3% of global emissions (around 56 GtCO2),
placing Brazil as the sixth largest emitter of the globe. Natural gas has increased its share in
electricity generation since 2000, with the third source in the matrix accounting for 8% of total
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capacity. In 2014, 81 TWh of electricity from natural gas were produced, representing a growth
of twenty times compared to the year 2000 [95]. According to the Energy Research Company
[95], installed capacity in the 2016-2026 expansion program forecasts an increase of more than
38%, from 12,532 MW in 2016 to 17,339 MW in 2026 for natural gas. Due in part to the increase
in the supply of natural gas being estimated with pre-salt production and unconventional gas
sources expanding from 55 million m3 in 2014 to 180 million m3 in 2050 [96]. These data show
the importance and necessity of the country adopting low carbon policies.

In 2015, at COP-21, the Paris Agreement was drafted, involving commitments to reduce GHG
emissions. Brazil proposed to reduce its emissions by 37% in 2025, based on the 2005 emissions
[95].

To this end, several treatment systems to reduce CO2 have been proposed by researchers and
industries. Among them are : (i) more efficient energy production, (ii) changing the fuel matrix,
(iii) Carbon Capture, Use and Storage (CCUS) [97].

The term Carbon Dioxide Utilization (CDU), a subcategory of CCUS, describes a number of
technologies that consume CO2 to provide services or to manufacture products aiming at an
economic benefit. In some cases, the capture of CO2 is included in the definition, and the
term is also referred to as Carbon Capture and Utilization (CCU) in an analogy to the term
often used, CCS. The difference between the two concepts is that in CCS, carbon dioxide is
stored (underground/marine reservoirs), while in the CDU/CCU, it is used in the economy
[12]. According to Aresta et al. [13], CDU technologies, due to their inherent potential, can be
complementary to the CCS techniques.

Research and development is, therefore, crucial to move towards a competitive CCUS technology,
from the most fundamental level of research (e.g. Haunschild [32], focusing on catalyst research)
to integrated studies at the conceptual design level as a complete plant in the work by Milani et
al. [33]. Thus, there is a need for a detailed analysis regarding the impact that different CDU
options / processes have on the energy of the system and under which conditions the products
obtained can have a sustainable market [34].

The CDU represents a new economy for CO2, since captured CO2 could be used as a feedstock
for other processes, including the synthesis of chemicals and materials (such as methanol, formic
acid, polyols for polyurethanes, carbonates), fuels (such as methane or kerosene) and direct use
in applications based on the physicochemical properties of CO2 (as the supercritical state) [11].

Since CO2 is emitted from a source and, therefore, supplied at a rate faster than its current
consumption, CO2 for utilization can be considered a renewable alternative source of carbon,
ideally leading to carbon neutral cycles in processes with sources of large amounts of CO2 (such
as power plants) [10].
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The use of CO2 can reduce emissions through two main effects: first, -directly, - through CO2

consumption, thus preventing its release into the atmosphere and second, - indirectly, - by
replacing inputs in intensive emission of GHG. According to von der Assen, Jung and Bardow
[98], the indirect effect may have a greater impact than the direct effect, but its quantification
requires substantial simulation efforts and is the object of future research studies.

Worldwide, about 37 billion tons of CO2 were issued in 2010 [14, 15]. According to Pérez-Fortes
et al. [99] and Inagendo [100], 0.4 - 0.5% of the emitted carbon is used, it represents 144 -
185 Mton of CO2 used in the industry. According to Aresta,Dibenedetto and Angelini [13]
the estimate is that 172 million tons of CO2 are directly consumed in industrial processes per
year (2013 base year):, urea accounts for 114 Mton/year, methanol 8 Mton/year, inorganic
carbonates ca 50 Mton/year and the group of organic carbonates and salicylic acid together
represent less than 1 Mton/year. The growth potential, however, can reach 10% of the carbon
emitted today, totalling 3.7 billion tons per year [14, 15].

CDU technologies can be divided into two main categories: technological use (physical processes)
and chemical/catalytic conversion (chemical processes or biological/biochemical processes).
Figure 3.2a displays CO2 utilization alternatives.

Figure 3.2: (a) CO2 utilization alternatives. (b) Synthetic processes for some products obtained from
CO2 , divided into categories.

The technological use is related to the physical nature, including compression, recycle, phase
transition, etc. Among practical uses are the preservation of cereals (bactericidal), beverage
additives, food packaging, dry cleaning, extraction, mechanical industries, fire extinguishers, air
conditioning, as well as water treatment [16].

Concerning CO2 conversion, three main groups may be considered: chemical, mineralization, and
bio-based routes [43]. The first category is focused on organic synthesis (including photocatalysis
and chemical photocatalysis [101], thermochemical processes [18] and electrochemistry [19]).
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The second category is inorganic mineralization (building materials [20]) and the last category
uses microorganism to consume CO2 and produce high added-value products [16].

So, based on important factors, such as distribution cost of energy, resources and implementation
time, conversion of CO2 into fuels or chemicals is an attractive solution, which, in addition to
reducing greenhouse gases, provides alternative sources of profit from the sale of manufactured
products. In the manuscript, the focus was on organic synthesis of chemicals from CO2, a more
embracing study is important, however is out of the scope of this study.

Many products and processes can use CO2 as raw material to synthesize different chemicals
(Figure 3.2b). Each product or production process brings some advantages and some penalties,
making important to define some criteria to evaluate and to choose the most attractive products
and processes.

Markewitz et al. [102] show two environmental criteria and one commercial criterion. The
amount of CO2 is computed by energy and carbon balances and represents how much carbon is
fixed and the weight of the contribution to minimize global warming. The duration of fixation
is evaluated by life-cycle assessment and represents how long this carbon will be out of the
atmosphere. Value generation represents the commercial attractiveness and how the product or
process is self-sustainable.

Dairanieh et al. [103] shows two environmental and three commercial criteria. CO2 potential and
permanence of capture are similar to the first two criteria of Markewitz et al. [102]. Willingness
to pay is a criterion based on the product market price and represents how much the CO2

is valued. Ease of implementation is a commercial criterion and represents the difficulties in
entering in a market. Side effects and co-benefits evaluates other effects as either positives (or
negatives), such as reduced air pollution or increase in fossil fuels consumption. This study
recommends investments in eight products of four clusters: (i) Building materials (concrete and
carbonate aggregates), (ii) Chemical intermediates (methanol, syngas and formic acid), (iii)
Fuels (liquid fuels, methane) and (iv) Polymers (polyols and polycarbonates).

Otto et al. [56] studied 123 CO2 utilization reactions, 23 to produce bulk chemicals (more than
10 kt/y) and 100 to produce fine chemicals (less than 10 kt/y). For bulk chemicals, the criteria
were: specific mass of CO2 as a feedstock (mass of CO2 necessary to produce one kg of a product),
CO2 avoidance potential (mass of CO2 necessary to produce one kg of a product multiplied
by the global production), relative added value (difference between the value of the product
and the prices of the reagents), independence from fossil reactants (if no carbon from fossil is
used). Using these criteria, 6 bulk chemicals were chosen (formic acid, oxalic acid, formaldehyde,
methanol, urea and DME). For fine chemicals, with similar criteria, the products selected were
methylurethane, 3-oxo-pentanedioic acid, 2-imidazolidinone, ethylurethane, 2-oxazolidone and
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isopropyl isocyanate.

This work propose a method that aims to analyze the Brazilian market for potential products
from CO2 chemical conversion, as well as to predict the behavior of this market in 2030. The
selected products are used in a methodological framework for a region prioritization at a national
level. This method may be easily applied for other countries through market analysis.

3.2 Methods

The proposed method comprises four steps. 1- Defining criteria to evaluate the products,
grouped into technological, environmental and economical criteria; 2- Collecting data for each
product; 3- Generating the decision matrix and carrying out a sensitivity analysis; 4- Carring
out a top-down approach methodology including opportunity identification, resulting in cluster
identification and region prioritization for Brazil.

3.2.1 Multiple criteria decision analysis assessment

Multiple criteria decision analysis (MCDA) refers to making preference decisions (e.g. evaluation
and selection) over the available alternatives characterized by multiple, usually conflicting,
attributes.

MCDA is a branch of operations research and deals with planning scientific and computational
apparatuses to address a limited number of choices under a limited number of criteria by a
unique or a group of decision makers.

There is a wide variety of approaches, for example analytic hierarchy process (AHP) [104],
Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) [105],
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [106, 107] and the
simple additive weighted (SAW) method [108] which have been successfully utilized in dealing
with MCDA problems.

The latter two approaches were used in different case studies to select the most promising products
for further/deeper study. The TOPSIS method designates alternatives that simultaneously have
the shortest distance from the positive ideal solution (maximization of benefit criteria) and the
farthest distance from the negative-ideal solution (maximization of cost criteria). More details
about the method can be found in the work by Hwang and Yoon [107]. The SAW method is
simpler as compared to TOPSIS, performing only the summation of the products of weight and
the normalized value of each alternative.

The calculations of the TOPSIS method was performed using the python module Scikit-Criteria
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(Scikit-Criteria, RRID:SCR_017084) v0.2.10 [109] running on python v2.7.15; for the SAW
method, simple spreadsheets and MATLAB R2015a were used.

3.2.2 Criteria Description

The option of using CO2 for chemical conversion has thermodynamic and intrinsic kinetic
restrictions. Estimating their real potential will require a thorough comparative analysis of
proposed and existing processes to determine whether or not the proposed conceptual plant
reduces CO2 emissions (directly or indirectly), and whether there is a sale of the obtained
chemicals [11].

The evaluation of rejection or acceptance of the proposal will produce reliable results only if
significant number of parameters is used; for this situation, ten criteria were employed. The
criteria were grouped into technical, environmental and economic.

3.2.2.1 Technical Group

For the technical group, the standard enthalpy of reaction (∆Ho
rxn) and the Technical Readiness

Level (TRL) were evaluated.

Equation 3.2.1 was used to calculate the enthalpy of reaction. This was done by executing basic
algebraic operations based on chemical equations of reactions taking into account the values of
enthalpies of formation of the gas phase

∆Ho
rxn =

∑
products

νi

(
∆fHo

298,g

)
i
−

∑
reactants

νi

(
∆fHo

298,g

)
i

(3.2.1)

The enthalpy of reaction can be determined by scaling each species enthalpy of formation
(obtained from the literature - [73] or NIST-TDE inside Aspen Plus commercial simulator) by
its stoichiometric coefficient νi. In this study, only direct conversion routes to the products were
considered, i.e. the CO2 reacts with one or more reactants to directly form the products under
assessment.

TRL is a systematic metric/measurement system that determines the maturity of a specific
technology. The methodology was proposed by NASA and, due to its simplicity and versatility,
it expanded to other domains as well [110].

In this case, the TRL scale measures the development of technology from its basic concept
(TRL 1) to being available at commercial/industrial scale (TRL 9), reaching the physical scale
of deployment or its maximum technical maturity. Each step in between represents the increase
in the level of maturity of the technology.
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The TRL assessment refers to the innovative route for each product, not the conventional one.
The TRL applied to this study ranges from basic and applied research, proof of concept and
laboratory testing (stages 1-5), to prototyping, piloting and final development (stages 6-8), to
full- scale deployment/market introduction (9).

Several products manufactured using CO2 as a feedstock have been studied and produced. An
overview of the set of compounds and their technological path can be found in international
reports [14, 111–114], which are used to assign TRL to the chemicals described in Section 3.2.3.

3.2.2.2 Environmental Group

For the environmental group, the willingness to pay (WP), scientific relevance, side effects and
benefits and utilization ratio were evaluated.

The side effects and benefits and WP were proposed by [103] to evaluate CO2 products. The
first criterion of this group (side effects and benefits) is related to the increased production of
fossil fuels and the avoidance of a hazard route. The second criterion, despite being based on the
economics of the target market, it is set in the environmental group because it represents the
unit cost/price point of CO2 supply at which the product is competitive for that use ($/tonne
of CO2).

The scientific relevance is a criterion proposed by Otto et al. [56], defined as the number of
related references of a certain chemical (SCI-Finder database). According to the author, this
criterion discerns rare application chemicals from diverse application chemicals. The former
belong either to basic research or speciality chemicals; the latter can be use of a wide variety of
applications as a feedstock, which are more attractive from an ecological and economic point of
view. The number of citations was gathered in October and November 2018.

The utilization ratio is the amount fixed, which takes into consideration the mass of carbon
dioxide, the mass of product and their respective stoichiometric coefficient (CO2 and reference
product) as shown in Eq. 3.2.2.

mCO2

mp

= |νCO2| · MCO2

|νp| · Mp

(3.2.2)

Where mCO2 is the mass of CO2, mP is the mass of product, νCO2 is the stoichiometric coefficient
for CO2, while νp is for product, MCO2 is the molecular weight of CO2 and Mp is the molecular
weight of the product.
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3.2.2.3 Economic Group

The economic group represents the market-related criteria (demand and price). The imports
and exports (amount and price) of the compounds were taken into account. The data for the
value (in millions of US$) were stated in Free On Board (FOB) value, which means that the
exporter is responsible for the merchandise until it is inside the ship, for transportation, at the
port indicated by the buyer.

The values of imports and exports for 2030 were forecast and the harmonized mean of values
from 2015 - 2018 and 2030 for each chemical were used in the decision matrix.

The annual data were collected from the official website of foreign trade statistics of the Brazilian
government [115].

3.2.2.4 Forecast Method

Time series analysis is a tool for forecasting future values, based on past and present events [116].
There are several forecasting alternative methodologies classified in automatic and non-automatic
approach. While the latter required prior exploratory data analysis for each case, the former
does it automatically.

Papacharalampous, Tyralis and Koutsoyiannis [117] explore the capability of seven different
forecast methods used to predict monthly temperature and precipitation. The methods are
a naïve, random walk (with drift), ARFIMA (AutoRegressive Fractionally Integrated Moving
Average), BATS (Box–Cox transform, ARMA errors, Trend, and Seasonal components), simple
exponential smoothing, Theta and Prophet. Their results indicate that the last five models
performed better than the first two and the Prophet method is competitive.

In this work, the facebook prophet model [118] was used. It was introduced in 2017, inspired
by a nature of time series forecast by the company. The package is available at an R library
named ‘prophet’ [119]. The procedure used by prophet is additive regression model with the
main components: a linear growth curve trend, yearly seasonal components modelled using the
Fourier series.

The 2030 values were forecast for each product using the data available from 2000 to 2018. The
time series analysis was based on its past values using prophet package (Prophet, RRID : SCR
_017083) version 0.5 on R (version 3.6.0 (2019-04-26)).

3.2.3 Data Collection

A database of 13 chemicals was selected from the open literature as products from CO2 conversion
[2, 7, 13, 56, 120–123], for which was possible to retrieve their data related to Brazilian Statistics.
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The chemical compounds used in this assessment are listed: 1- Acetaldehyde; 2- Acetic Acid; 3-
Acetone; 4- Benzoic Acid; 5- Formaldehyde; 6- Formic Acid; 7- Methacrylic Acid; 8- Methanol;
9- Oxalic Acid; 10- Polycarbonates; 11- Propanol; 12- Salicylic Acid; and 13- Urea.

3.2.4 Weighting Method

The weight for each criterion can be assigned to two group categories: subjective and objective
weights. Subjective weights are determined based on the preference of the decision maker (e.g.
AHP method [104], weighted least squares method [124], Delphi method [125] and equal weights).
Objective methods determine weights by solving mathematical models and do not account for
the decision maker preference (e.g. Shannon entropy method [126, 127] and multiple objective
programming [128]).

For solving problems, the expertise of a decision maker ought to be calculated; in this case,
subjective weighting is preferable. However, when reliable subjective weights are difficult,
objective weighting must be selected.

The Shannon information entropy measures the predicted value of the information contained in
a message, usually in units of bits, nats or bans. The value is the average unpredictability in
a random variable, equivalent to its information essence. In the MCDA context, the entropy
method is an objective method to assign weights depending on the decision matrix [126, 127].
The relative weight of criterion j is calculated in relation to the amount of information supplied
by the intrinsic set of alternatives.

The concept of entropy in an information channel was proposed by [126] and the procedure
defines a series of steps:

1. Normalization of data.

In order to remove anomalies with different measurements units and scales, the normal-
ization procedure is carried out. Considering pij = xij∑m

j=1 xij
, j = 1, · · · , m, i = 1, · · · , n,

where pij is the normalized data and xij is the raw data (i alternative on j criterion).

2. Calculation of the entropy

Entropy Ej for criterion j is calculated according to Eq. 3.2.3

Ei = −E0 ·
∑
j=1

(pij · ln(pij)) i = 1, ·, n (3.2.3)
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The entropy constant E0 was calculated as ln(m)−1.

3. Calculation of Diversity Criterion

The diversity criterion is then calculated using Eq. 3.2.4, which represents the degree of
diversification.

Dj = 1 − Ej (3.2.4)

4. Computation of normalized weight

Finally, the degree of importance is calculated according to Eq. 3.2.5

wj = Dj∑
Dj

(3.2.5)

The closer the entropy of a criterion is to 1, the less important the criterion is. Shannon entropy
measures the amount of uncertainty with a probability distribution in terms of entropy taking
into account the complete set of information available.

Along with Shannon entropy, subjective weighting was also employed in the case studies described
in Section 3.2.5.

3.2.5 Sensitivity Analysis

In order to evaluate the use of a MCDA method (either TOPSIS or SAW) and the weighting
system (either objective or subjective), a sensitivity analysis was carried out.

Table 3.1 shows the case studies involved in the sensitivity analysis.

Table 3.1: Different case studies involved in the sensitivity analysis.
Case Weight Method

Case 1 Shannon Entropy TOPSIS
Case 2 Equal Weighta TOPSIS
Case 3 Technical Criteriab TOPSIS
Case 4 Economical Criteriab TOPSIS
Case 5 Environmental Criteriab TOPSIS
Case 6 Shannon Entropy SAW
Case 7 Equal Weighta SAW
Case 8 Technical Criteriab SAW
Case 9 Economical Criteriab SAW
Case 10 Environmental Criteriab SAW

aAll criteria received the same weight.
bWeights for the criterion that belongs to this group were the double when compared to the other groups
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As a result, the most promising products will appear more often in the first places.

3.2.6 Opportunity Identification Approach

A top-down methodology approach developed by [129, 130] consisting of three consecutive steps
was adapted and used to identify opportunities for CCU at national level. In the first step,
technologies that use CO2 in Brazil were identified. The second step is the geographical location
of thermoelectric power plant (Natural Gas-based). The third step is matching the sources with
the potential receiver, based only on geographic parameters.

3.2.6.1 Emission Calculations

In order to evaluate the CO2 emissions of a Power Plant, the net capacity factor and the power
capacity are used to calculate the energy generated in a year, according to Eq. 3.2.6 [131, 132].

Ea = Fc · C · 8760 (3.2.6)

Where Ea is the annually produced energy, Fc is the capacity factor and C is the power plant
installed capacity.

The capacity factor is the ratio of the actual output over a period. The data used in these
calculations was based on a statistics of the Brazilian Government [133] for the year 2016, for
the public generation of energy based on natural gas. The average FC of 2016 was 0.43, a
much lower indicator than in 2015 (0.72), but still higher than in 2011 (0.26). According to
[134], the installed capacity of a power plant is directly proportional to its CO2 emission (517 g
CO2/kWe-h), these values are then used.

3.3 Results and Discussions

3.3.1 Forecast Results

A time series forecasting model is designed to handle the common features of the business time
series of imports and exports. The investigation of the predictability of imports and exports of
13 chemical products was performed from 2000 to 2018 to forecast 2030 values.

Figure 3.3a and Figure 3.3b present statistical data on the Brazilian trade balance of the last
4 years, in terms of imports absolute volume and value in US dollars, respectively, as well as
the projection of these values for 2030. It is worth mentioning that no more CO2 conversion
products were analyzed, due to the difficulty in finding theirs NCM in the Brazilian trade
system.
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Figure 3.3: Brazilian importation data (a) absolute volume and (b) FOB value.
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The annual absolute quantity imported (kton) is highlighted by the large average amount of
urea, methanol and acetic acid imported (8574, 4168.7, 1383.4 kton, respectively for 2030) in
this period, with tendency to increase in the evaluated period.

Next, come acetone and formic acid, showing forecast tendency to increase. Acetone was forecast
to increase the imported absolute amount (from 45.9 kton in 2018 to 50.9 kton in 2030) and
formic acid was forecast to increase 23.93% from 2018 to 2030. The other products exhibited
imports smaller than 5 kton/year each (except for propanol in 2018 with 13.5 kton).

Regarding the value generated in the transactions, Figure 3b depicts the imports in millions of
US$. Urea, methanol and acetic acid were the products with the highest value. However, the
values for acetic acid are followed more closely by acetone, formic acid and acrylic acid, which
have higher added value. Comparing 2030 to 2018, there is an increasing trend of import costs
for methanol, acetic acid and urea, while a decrease for acetone.

It is possible to calculate the prices for imports and exports, taking into account the FOB value
divided by the absolute amount for each chemical product (see Table 3.2 for details).

The situation changes when the prices are taken into account; the most expensive imported
product is acetaldehyde, followed by methacrylic acid. Formaldehyde presented an oscillation
during the evaluated period from 7.03 US$/kg in 2015 to 5.83 US$/kg in 2018. Polycarbonates
were imported for an average price of 2.60 US$/kg, similar to salicylic acid (2.51 US$/kg).

Figure 3.4a reveals the annual absolute exported quantity (kton), while Figure 3.4b shows the
involved costs.

Figure 3.4a points out the high average amount of methacrylic acid, salycilic acid and urea
exported, followed by acetone, acetic acid and formaldehyde, all tending to increase exports in
2030, as compared with 2018, except for methacrylic acid.

Figure 3.4b displays the expected behavior of the exportation costs involved for products. Due
to the higher market value, the export profit of methacrylic acid exceed that of urea. In 2030,
as compared with 2018, profits appear to be higher for methacrylic acid and urea, and smaller
for salicylic acid and acetone.

Anomalous data did not have a great impact on the forecast, due to the robustness of the
time series analysis method. According to Papacharalampous, Tyralis and Koutsoyiannis [117],
comparing different forecast methods, prophet exhibited the smallest median RMSE for the
temperature forecasts, while offering 13-32% (depending on the examined set of time series)
more accurate results than naive. In their case, the model is competitive to the ARFIMA,
BATS, simple exponential smoothing and Theta models.
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3.3.2 Multi-Criteria Performance Matrix

Estimating the use of CO2 for chemical conversion by their real potential will require a full
comparative analysis of the proposed processes to determine whether or not the process is feasible,
and whether there is a market for the given products. In order to select the most promising
products for further study, a multi-criteria performance table (Table 3.2) was constructed
encompassing the criteria and alternatives.

Table 3.2 presents the performance of the alternatives (chemical compounds) in each criterion.
Regarding the technical criteria, enthalpy of the direct reaction, acetone and formaldehyde are
the most endothermic, while propanol and methanol the most exothermic. The maturity of urea
and salicylic acid reflect the commercial production of this chemicals, on the other hand oxalic
acid, methacrylic acid and acetic acid are in the early stages of research and development.

In the environmental group, the utilization ratio criteria that represents the amount of CO2

fixed in the molecule, showed higher values for formaldehyde and methanol and lower values
for salicylic acid and benzoic acid. There is no wide amplitude in scientific relevance and in
effects, and two broad group of chemicals were identified through the criterion willingness to
pay (represented by the numbers 225 or 28).

The economic group (imports and exports) showed a similar behavior compared with described
in the forecast predictions.

3.3.3 Sensitivity Results

The 10 cases described in Section 3.2.5 used either the TOPSIS or SAW method for evaluation.
Regarding the weighting method, either a subjective method or an objective method was
employed.

The Shannon Entropy equation was used for the objective weighting method in order to express
the relative intensities of criterion importance and to determine the objective weights. Table 3.3
presents the results of the proposed approach for weight elicitation.

Table 3.3 describes the criteria used and their relative importance. The exports amount, exports
price and enthalpy of the reaction are cost-type criteria, indicating that the performance of
every alternative must be as minimum as possible.

The enthalpy of a reaction and the willingness to pay showed the highest values for entropy
indicating a minor importance when compared with other criterion. Scientific relevance and
imports price showed higher relative importance.

Figure 3.5 presents the results of the sensitivity analysis. The classification in every case is
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Table 3.3: Shannon Entropy Weights (used in cases 1 and 6).
Criteria Type Min/Max Entropy Diversity Normalized Weight

(i) (Ei) (Di) (wi)

Imports (kg/y) Benefit max 0.875 0.125 0.066
Imports Price (US$/kg) Benefit max 0.613 0.387 0.203
Exports (kg/y) Cost min 0.875 0.125 0.065
Exports Price (US$/kg) Cost min 0.872 0.128 0.067
∆Ho

rxn (kcal/mol) Cost min 0.960 0.040 0.021
TRL (–) Benefit max 0.761 0.239 0.125
WP (US$/tonneCO2) Benefit max 0.935 0.065 0.034
Sci. Relevance (Benefits (–) Benefit max 0.681 0.319 0.167
Utilization ratio (kgCO2/kgprod.) Benefit max 0.891 0.109 0.057

assigned in the horizontal axis. The weighting method affects the final classification, and a
sensitivity analysis could thus potentially incorporate this influence.
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Figure 3.5: Sensitivity Study Results.

Methanol, polycarbonates, formic acid and acetaldehyde appear more often in the top positions.
Therefore, their further study and implementation in Brazil is recommended, considering the
evaluated criteria and the range of chemical products assessed.

The method proposed was robust for selecting the most promising products; the weights assigned
or calculated were taken into consideration, however it was specific designed for the Brazilian
context. The implementation of the method in other countries can assessed easly, it only required
a detailed study of the local market and appropriate weight elicitation.
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3.3.4 Opportunity Identification Results

Based on Eq. 3.2.6, the CO2 amount emitted annually by the 20 Brazilian Power Plants with
the highest installed capacity was calculated. Figure 3.6 shows the more emitters power plants
in Brazil, as well as their respective locations.

Figure 3.6: Annual emissions of 20 Brazilian Power Plant (natural gas) with higher installed capacity
(RJ - Rio de Janeiro, RS - Rio Grande do Sul, AM - Amazonas, PE - Pernambuco, MT - Mato Grosso,
MA - Maranhão, PR - Paraná, RO - Rondônia, SP - São Paulo, MS - Mato Grosso do Sul, BA - Bahia,
CE - Ceará, RN - Rio Grande do Norte).

The power plants with the highest CO2 emissions are present in the southeast region. Therefore,
there is a greater supply of CO2 in this region, which could support the installation of new
plants of CO2 conversion processes

Figure 3.7 presents the location and capacity of the Brazilian Natural gas based Power Plants.

São Paulo and Rio de Janeiro are the most promising regions in terms of CO2 availability and
infrastructure identified as clusters in Figure 3.7 were the most interesting spots. However, the
third step of the methodology is the match with the local needs.

The final step is to identify the need in a specific State for a specific product. According to the
sensitivity analysis, the most promising products were considered.

The stratification based on States rather than cities is due to the fiscal confidentiality, therefore
it is not possible to access individual company data. It is important to emphasize that the
exportation by State definition consider the producer of the chemical, independently the
headquarters cities of the producer. The data can be also related to the entry port.
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Country of
Production

Brazilian State
Consumption

Figure 3.7: Location and capacity of Power Plant (Natural Gas-based).

The data contained in Figures 8b - 11b concern about the imports, separated by country of
production and Brazilian state of consumption. The country refers to the location of the
last registry of the product before enter in Brazil, not necessarily the producer location. The
State refers to the Brazil entry location, not necessarily the final destination of the chemical’s
consumption. The valuation of the potential utilization per State is helpful for guiding decision
makers and policy makers to invest in CDU. Figure 3.8 to Figure 3.11 depict the imports in
2017 for methanol, polycarbonates, formic acid and acetaldehyde, respectively.

From Figure 3.8 Paraná is the State that most imported methanol in 2017, followed by São
Paulo, Rio Grande do Sul and Bahia. Paraná imported almost 40% more than São Paulo;
moreover, Rio Grande do Sul and Bahia imported similar values of methanol (48.7 and 42.3
million US$, respectively).

According to Figure 3.9 São Paulo and Amazonas are the States with the highest imports, 1.73
and 1.03 million US$, respectively. Polycarbonates were imported mainly from the United
States and Germany.

Regarding formic acid, São Paulo leads the importation with 3.57 million US$, followed by Rio
Grande do Sul (1.64 million US$), Santa Catarina (1.44 million US$) and Paraná (1.03 million
US$) (Figure 3.10).

For acetaldehyde, São Paulo heads the imports followed by Amazonas. Paraná, Goiás, Rio
Grande do Sul and Santa Catarina also import the product, yet less than 0.003 million US$
(2800 US$) in 2017 (Figure 3.11).
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Country of
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Figure 3.8: Methanol imports. (a) Local needs considering 2017; (b) Stratification for 2017, countries on
the left represent the origin of the product studied and the states on the right represent the destination
(AL - Alagoas, AM - Amazonas, BA - Bahia, GO - Goiás, MT - Mato Grosso, MS - Mato Grosso do
Sul, MG - Minas Gerais, PR - Paraná, RJ - Rio de Janeiro, RS - Rio Grande do Sul, SP - São Paulo,
TO - Tocantins).

Country of
Production

Brazilian State
Consumption

Figure 3.9: Polycarbonate imports. (a) Local needs considering 2017; (b) Stratification for 2017,
countries on the left represent the origin of the product studied and the states on the right represent
the destination (AM - Amazonas, BA - Bahia, MG - Minas Gerais, SP - São Paulo).
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Figure 3.10: Formic Acid imports. (a) Local needs considering 2017; (b) Stratification for 2017,
countries on the left represent the origin of the product studied and the states on the right represent
the destination (BA - Bahia, CE - Ceará, GO - Goiás, MT - Mato Grosso, MS - Mato Grosso do Sul,
MG - Minas Gerais, PA - Pará, PB - Paraíba, PR - Paraná, PE - Pernambuco, RJ - Rio de Janeiro,
RS - Rio Grande do Sul, RO - Rondônia, SC - Santa Catarina, SP - São Paulo, TO - Tocantins).

Country of
Production

Brazilian State
Consumption

Figure 3.11: Acetaldehyde imports. (a) Local needs considering 2017; (b) Stratification for 2017,
countries on the left represent the origin of the product studied and the states on the right represent
the destination (AM - Amazonas, GO - Goiás, PR - Paraná, RS - Rio Grande do Sul, SC - Santa
Catarina, SP - São Paulo).
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Lastly, potential technologies can be assessed in São Paulo, Paraná, Rio Grande do Sul, Bahia
and Santa Catarina States, where the demand is high and they are identified as favorable regions
for developing CCU schemes. It also portrays and evaluates the commercial movement of Brazil
with the other nations of the world, encompassing sales and purchases made externally

São Paulo showed high availability and demand, therefore it is indicated as location for imple-
mentation of CDU schemes.

3.4 Conclusion

The proposed method was robust for selecting the most promising products for CO2 conversion.
The concern regarding CO2 emissions from Brazilian power plants motivated their mapping,
as well the performance of a local market analysis for potential products from CO2 chemical
conversion.

Methanol, polycarbonates, formic acid and acetaldehyde were the most promising products for
implementation in Brazil. The research pointed out that the power plants of higher capacity
and, consequently, the greatest CO2 emitters, are present in São Paulo and Rio de Janeiro. São
Paulo showed higher demand of the assessed products and also CO2 availability, indicating the
location where a new CDU plant could potentially be installed.

Most of the current CO2 technologies are in the research and development phase and there are
already several collaborative works among researchers, startups and corporations in Europe
and North America indicating a great potential for similar activities in Brazil. This work will
contribute to this development.



Chapter 4

Selection of Carbon Dioxide Utilization
Technologies

The production of chemicals and fuels from carbon dioxide can lead to a sustainable
low carbon pathway for the chemical industry. The use of carbon dioxide as feedstock
poses a commercially challenge, which is to develop alternative raw materials at
lower cost and also to lower manufacturing impacts. Many products can be developed
from carbon dioxide as raw material through carboxylation or hydrogenation reactions.
In CCU, a particular carbon dioxide utilization technology shows specific aspects for
emission reduction potential, intrinsic thermodynamic restrictions and commercial
maturity level. Each product brings some advantages and penalties, making it therefore
important to define some criteria to evaluate and to choose the most attractive
products. This chapter proposes an exploratory screening procedure to identify
promising chemical targets to be produced from carbon dioxide conversion among a
large number of candidates. The results of the evaluation demonstrate that dimethyl
carbonate, acetic acid and dimethyl ether are promising products for further study.
Such a procedure would accelerate the development into the chemical design process
of novel CCU technologies.
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4.1 Introduction

The 20th century has witnessed growth beyond expectations in energy use along with remarkable
progress in technology creation, besides intensifying business expansion of man-made materials.
Figure 4.1 shows the world primary energy consumption (in Mtoe) during the period between
1965-2017 (historical data gathered from BP [136]). Furthermore, projections of energy con-
sumption of five different studies were incorporated for the comparison level; all the projection
trends demonstrate an increase in the primary consumption worldwide. However, due to the
recent health and economic crisis, the consumption behavior can be severely affected, taking
years to return to the previous numbers.

According to Bertran et al. [6], the issues of energy, environment, food and water can be
faced with novel and more sustainable production systems. In this context, CO2 utilization
technologies seek to mitigate carbon emissions and to expand energy supply while using CO2

as a useful commodity [7, 8]. In this way, CO2 can be used as a carbon building block to
manufacture chemicals, which represents a challenge to manufacture materials at a competitive
cost with lower environmental impact.
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Figure 4.1: World primary energy consumption in 1965–2017; projected energy consumption up to
2040 (Source: Sections of [3, 5, 136–139]) EIA represents the Administration [137], IEEJ represents
of Energy Economics Japan [139] where AT - IEEJ stands for Advanced Technologies Scenario, while
Reference - IEEJ is the reference case, ET - BP is the abbreviation for Evolving Transition - British
Petroleum from Economics [3], IEA represents the Agency [138] and ExxonMobil represents the report
of ExxonMobil [5].

Groundbreaking changes will arise when using alternative feedstocks, for example, CO2 or
biomass. In the case of CO2, it can be transferred to the existing chemical industry by means of
basic chemicals (methanol, methane, carboxylic acids, etc.) or even as a potential C1 building
block. The contribution of CO2 conversion goes beyond lowering global warming, since it also
reduces fossil resource depletion, even yielding more benign production pathways [9].

A carbon-neutral chemical industry case analysis was conducted by Gabrielli et al. [140]. The
authors found that the defossilization of the chemical industry can be achieved in a net-zero-CO2

emission worldwide.

In a short-to-medium-term, the chemical conversion of CO2 will expand notably in more
developed fields, for example CO2 hydrogenation, carboxylation and CO2-containing polymers.
Therefore, there is a need of researches on catalysts (carbon nanotubes based catalyst for tri-
reforming [141] and dry reforming [142]), reactors (membrane reactors for tri-reforming [143]),
separation processes (use of carbon nanoscrolls for CO2 filtering [144, 145]), unconventional
energy sources (impacts of unconventional energy resources on the LNG sector [146]), and
combinations of processes (resource- and energy-efficient chemical and fuel production [23]).

Moreover, the current CO2 market has great potential for expansion with new CO2 applications
in different sectors. One set of the alternatives for CO2 conversion was studied by Chauvy et al.
[43], who ranked CO2 conversion products using a multistep method to select products from
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mid-term deployment.

In this context, the problem of selecting alternatives emerges. Ranking, choice or sorting
problems are convoluted decision problems that, associate with a large set of criteria, make the
decision process more assertive. Frequently, there is a need of multiple criteria consideration
[147].

According to Ishizaka and Nemery [148] the perfect or ideal option which fits the whole set
of criteria usually does not occur. It is important, then, to compromise, where the Multiple
Criteria Decision Analysis (MCDA) can potentially provide guidance and techniques for reaching
a compromise solution.

MCDA deals with decision-making (e.g. evaluation and selection) over a range of alternatives
and attributes. The broad application of MCDA, in areas such as economics, management,
engineering and information technology, presents robustness (even when applied to different
conditions or scenarios it is able to produce good quality and assertive results) [149].

In the environmental field, Taylan, Kaya and Demirbas [150] used MCDA to select a compressor,
taking into account the type of compressor, carbon emission, waste heat recovery and their
capacities. Zhang, Peng, Tian, Wang and Xie [151] selected the optimal green material for
sustainability using MCDA techniques.

The evaluation of clean power generation in the Pacific Northwest was performed by Daim,
Yates, Peng and Jimenez [152]. Wind and clean burning coal are the two technologies assessed.
Akber, Thaheem and Arshad [153] conducted a life cycle sustainability assessment for electricity
generation, including 20 sustainability indicators of seven electricity generation sources.

In the carbon dioxide utilization field, Dairanieh [103] proposed a method to assess CO2-based
products, with both economic and environmental criteria. Otto et al. [56] performed an initial
assessment of 123 CO2 conversion reactions identifying potential products for future technical
exploration. Pacheco, Bresciani, Nascimento and Alves [154] employed two different MCDA
methods for assessing CO2-derived chemicals. In the study 10 indicators of 13 chemicals were
evaluated specifically for the Brazilian market scenario.

Resting on the powerful aspects of the MCDA, this work aims to propose a methodological
framework procedure for selecting the most promising CO2-derived products, expanding the
scope of previous articles [154], including more chemicals and more indicators or criteria for a
more robust and assertive assessment.
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4.2 Methods

The proposed procedure structure, as depicted in Figure 4.2, involves three major parts for
selecting the most promising products for CO2 chemical conversion. Part I is related to criteria
availability and definitions (Section 4.2.1), Part II refers to the multi-criteria decision analysis
tools (Section 4.2.2) and Part III is the application of the three-level assessment for CO2-derived
products selection (Section 4.2.3).

4.2.1 Part I - Definition of Criteria

The set of criteria to evaluate chemical products, which could be potentially produced from
CO2, were built after a systematic search in the literature, mainly in the Web of Science [155]
and Scopus [156] databases.

The procedure was based on the approach proposed by Zimmermann et al. [113], which was
used as a chronological baseline for the current study. The authors focused on techno-economic
assessments, seeing that they are indicators treated as a starting point for industrial scale
implementation. Additionally, environmental and social indicators were also covered.The
investigation reported herein was carried out in September 2018, including all the records by
that date.

Thus, the search was split into two periods, in order to better evaluate the evolution of studies
concerning CO2 utilization. They were refered to before November 2015 (1997 - 2015), which
takes into account the chronological baseline paper [113], and after November 2015.

The investigation was carried out in September 2018, including all the records showed by that
date. The search was split into periods, refered to before November 2015 (1997 - 2015) and after
November 2015 (2015 - 2018).

All the articles were screened using the R package metagear ver. 0.4 (metagear, RRID:
SCR_017085) [157]. Based on the definition of CO2 utilization presented by Zimmermann et al.
[113]:

”A range of technologies that consume CO2 chemically or non-chemically to provide
products or services with the main objective of an economic benefit, ideally with
additional environmental and social benefits.”

4.2.2 Part II - Multi-Criteria Decision Analysis Tools

To make decisions (evaluation or selection) over a list of alternatives characterized by multiple,
usually conflicting, attributes one can use MCDA techniques. The literature concerning MCDA
contemplates an extensive number of methods with different schools of thought [158]. In



76

Estabilish Goal

Begin

Definition of Criteria
Systematic Review of 
Literature for Criteria

Select MCDA 
Method

Methodology for 
Selection of MCDA 

Method

Weighting Method

Aggregation 
Procedure

Three Level Screening 
Finished?

Sensitivity Analysis

NO

Results

End

YES

Performance Matrix

Shannon 
Entropy

TOPSIS

(I)

(II)

(III)

Figure 4.2: Methodology Structure used in the study. Part I is related with the available criteria, Part
II refers to the MCDA tools and Part III is the three-level assessment for CO2 derived products.
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accordance with Saaty [159], there are more than 100 methods, among which the most commonly
implemented are Analytic Hierarchy Process (AHP) [104], Preference Ranking Organization
Method for Enrichment Evaluations (PROMETHEE)) [105], Technique for Order Preference by
Similarity to an Ideal Solution (TOPSIS) [106], ELimination Et Choix Traduisant la REalité
(ELECTRE) [160], Multi-Attribute Utility Theory (MAUT) [161], Analytic Network Process
(ANP) [159].

Guarini, Battisti and Chiovitti [162] pointed out that no multi-criteria decision analysis method
or tool can be considered perfect or applied to every situation. Thus, they proposed a theoretical-
methodological approach to select the most appropriate MCDA method.

The approach formulates a taxonomy of the exogenous and endogenous variables, the exogenous
variables are strictly related to the decision problem and the context from which they arise
named: the number of evaluation alternatives, the typology of the criteria and expected solution,
and the presence of technical support for computer aided tool implementation. The endogenous
variables are related to the properties of MCDA methods, named: the type of decision-making
problem, the solution approach and the implementation procedure.

The use of the theoretical-methodological approach from Guarini et al. [162] results in the
indication of the MCDA method that best corresponds to the issues of the decision-making
problem under assessment (i.e. in this case the screening carbon dioxide conversion products).
Therefore, the theoretical-methodological approach was used.

4.2.3 Part III - Three-level screening

The MCDA method selected in Part II was used throughout the study in Part III. Typically, the
MCDA method itself is divided into two phases. The first is the performance matrix construction,
containing alternatives and criteria, accompanied by their weightings. In the second phase
process, data, based on the objective previously defined, is aggregated. The procedure for
aggregation depends on which method is under use [163].

4.2.3.1 Weighting Measure

To select an appropriate weighting method, the characteristics and the type of problem must be
taken into account. The variance degree and the Independence of criteria and the preference of
the decision maker are the factors considered to attain the weights [164].

The importance of the criteria is a major concept in MCDA. There are many methods for
eliciting weights, which can be bisected into two group categories: subjective and objective
weights. Subjective weights are determined based on the preference of the decision-maker or
experts in the field (e.g. AHP method [104], weighted least squares method [124], Delphi
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method [125] and equal weights). Objective methods, on the other hand, determine weights
by solving mathematical models and do not account for the decision-maker preference (e.g.
Shannon entropy method [126, 127] and multiple objective programming [128]).

In this work, the elicitation of criteria weights were obtained by objective weighting of Shannon
entropy. It measures the predicted value of the information contained in a message, usually
in units of bits, nats or bans. The value is the average unpredictability in a random variable,
equivalent to its information essence. In the MCDA context, the entropy method is an objective
method to assign weights depending on the decision matrix [127]. The relative weight of
criterion j is calculated in relation to the amount of information supplied by the intrinsic set of
alternatives.

The closer the entropy of a criterion is to 1, the less important the criterion is. Shannon entropy
measures the amount of uncertainty with a probability distribution in terms of entropy taking
into account the complete set of information available.

4.2.3.2 Sensitivity Analysis

The complex nature of the decision making, specially for the selection of carbon dioxide
conversion products, is inevitably associated with a variety of uncertainties. They can be,
mainly, caused by the criteria, the weights and priorities. These uncertainties can be evaluated
through a sensitivity analysis

According to Broekhuizen et al. [165], evaluating the sources of uncertainty, their magnitude
and how they eventually lead to a different result is needed to account for the uncertainty.

Chen et al. [166] reported that several factors affect the output of a MCDA, being the weights
of criteria a notable one. Multiple weighting schemes can be exploited to verify if changes in
weight vector lead to distinctive results. Moreover, the number of criteria and alternatives could
influence the stability of the analysis; the Monte Carlo procedure was hence used to test the
robustness of the MCDA. It was assumed that criteria weights aggregates are obtained from
variables randomly drawn from a uniform distribution.

The sensitivity analysis was carried out using Monte Carlo Simulation to simulate a 15%
variability in weights. The base value of a given criterion (calculated from Shannon Entropy)
was, then, aggregate (using the Equation 4.2.1) with an aggregator, λ, whose value was obtained
from a random uniform distribution sampling).

w
′

i = λi · wi∑N
i λi · wi

(4.2.1)

This procedure is applied to each criterion and the aggregate weights were used in the TOPSIS
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calculation. The results for 5000 runs were displayed as a score distribution for every chemical
product. For the Monte Carlo Sensitivity Analysis, the software MATLAB R2015a was used.

4.3 Results and Discussion

4.3.1 Systematic Search and Criteria Selection

The search was split into periods, refered as before November 2015 (1997 - 2015) and after
November 2015 (2015 - 2018). The former resulted in 140 unique publications (excluding 39
duplicates), while the latter resulted in 139 unique publications (excluding 52 duplicates) from
the Web of Science database. The Scopus database showed 153 unique publications (excluding
9 duplicates) for the whole period (from 1978, the first publication, to 2018).

After a thorough scanning of the publication, 27 articles were selected (14 from the Web of
Science, 4 from Scopus, non-duplicated, and 9 other publications included due to their similarity
with the topic, which fulfilled the definition). Table 4.1 presents the final literature set used for
selecting the criteria for further study.

Table 4.1: Literature set of publications under assessment (search from November 2018).

Nr. Ref. WoS Scopus Other Nr. Ref. WoS Scopus Other

1 [167] x 15 [168] x
2 [169] x 17 [170] x
3 [24] x x 16 [171] x
4 [172] x 18 [173] x x
5 [174] x 19 [175] x
6 [176] x x 20 [177] x
7 [178] x 21 [103] x
8 [179] x 22 [180] x x
9 [181] x x 23 [99] x x
10 [182] x 24 [34] x
11 [183] x 25 [184] x
12 [185] x 26 [186] x
13 [187] x x 27 [188] x
14 [189] x

In order to compare the development of the studies concerning CO2 utilization, the results were
compared with the literature selected by Zimmermann et al. [113].

The authors selected 29 different articles to study which criteria to include. Figure 4.3 depicts
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the evolution of criteria in literature, comparing the criteria found in articles from Table 4.1
(2015-2018) with criteria found in articles from Zimmermann et al. [113] (1997-2015). Four
broad themes emerged from the analysis: technical, economic,environmental and social.
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Figure 4.3: Evolution of Criteria in Literature.

Just over half the sample criteria (55%) fit in the economic criteria in the period from 2015 to
2018, compared with 29% from 1997 - 2015. The social criteria remained at low levels (below
3%).

A variety of perspectives were expressed within the articles published, many of the articles study
the conversion process in detail; however, for early stage selections this approach was not suitable
due to the lack of information. A number of issues were identified, among which ambiguous
criteria, which could potentially be allocated in the economic or environmental research field,
leading to a reduction or increment in the importance of the economic or environmental aspects.

These data must be interpreted with caution because the evaluation performed herein may differ
from the study by Zimmermann et al. [113].

Reliability, appropriateness, practicality and limitations of measurement are parameters used to
select the criteria, according to Wang et al. [164].

Usually, there are principles that must be met to select the ’major’ criteria [164]. Systemic,
consistency, independency, measurability and comparability principles guide the criteria selection.
The authors pointed out that some ’minor’ criteria could be chosen to construct a reasonable
criteria system. The eligibility criteria required criterion candidates that met the aforementioned
principles. After the application of the principles, the final criteria system contains seven major
topics, as presented in Table 4.2.
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Table 4.2: Final criteria system for CO2 conversion selection based on the methodological framework.

Major Topic Description

Thermodynamic-related Basic thermodynamic properties of the reactants and
products, Gibbs energy of formation and enthalpy of
reaction. They can estimate the amount of energy
inputs required

Scientific Relevance It can differentiate rare application chemicals from
diverse application chemicals

Economic-related Product market (price, demand, value, growth). Price
of the reactants can also be taken into account

Technical Readiness Level It is a measurement system that determines the ma-
turity of a specific technology

Utilization of CO2 or
CO2 Ratio

It measures the amount of CO2 fixed in a molecule
on mass basis.

Affordability to produce
a unique chemical

It represents the unit cost/price point of CO2 supply
at which the product is competitive

Innovation and novelty It takes into account the novelty of process and prod-
ucts

The thermodynamic-related criteria were described in detail in Chapter 2. Scientific relevance
was introduced by Otto et al. [56], defined as the number of related references of a certain
chemical (SCI-Finder database). In the economic-related criteria, the estimation of price (either
for product or reactant) is described in detail in the Appendix. The method used for the
estimation was proposed by Hart and Sommerfeld [190]. The compound annual growth rate
and the market size data were collected from the literature (see Appendix).

Technical Readiness Level (TRL) (proposed by NASA [110]) assessment refers to the innovative
route for each product, not the conventional one, ranges from basic and applied research, proof
of concept and laboratory testing (stages 1-3, receiving score 1), to prototyping, piloting and
final development (stages 4-7, receiving score 2), to full- scale deployment/market introduction
(stages 8-9, receiving score 3). An overview of the set of compounds and their technological path
can be found in international reports [14, 111], which are used to assign TRL to each chemical.

Utilization of CO2 or CO2 ratio takes into consideration the mass of carbon dioxide, the mass of
product and their respective stoichiometric coefficient (CO2 and reference product). Affordability
to produce a unique chemical or the willingness to pay was proposed by Dairanieh [103] to
evaluate CO2 products. Despite based on the economics of the target market, willingness to pay
is set in the environmental group because it represents the unit cost/price point of CO2 supply
at which the product is competitive for that use ($/tonne of CO2).
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Lastly, the innovation and novelty criteria contemplate literature, patent and reaction-related
aspects. A Boolean search was executed in the online Web of Science database [155] for the first
criterion. The investigation was carried out in March 2019, including all the records shown by
that date.

The criteria system was accordingly used in the three-level assessment to screen the most
promising products. Data availability was used to set which criteria could be used in each level.

4.3.2 Electing the MCDA method

The theoretical-methodological approach by Guarini et al. [162] was used to select the MCDA
Tool as described in Part II of the methodological framework proposed herein. The approach
takes into consideration the endogenous and exogenous variables, which sum up to 38 variables.
The procedure was applied in the three-level assessment and the results are shown in Figure 4.4.

TOPSIS
AHP

ANP

MACBETH
MAUT

PROMETHEE

ELECTRE

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

 S
u

it
ab

il
it

y 
In

de
x 

(I
S

)

MCDA Method

First Screening Second ScreeningSecond Screening

TOPSIS
AHP

MACBETH
ANP

MAUT

PROMETHEE

ELECTRE

0.0

0.2

0.4

0.6

0.8

1.0

TOPSIS
AHP

ANP

MACBETH
MAUT

PROMETHEE

ELECTRE

0.0

0.2

0.4

0.6

0.8

1.0

Third Screening

Figure 4.4: The order of potential MCDA methods to select the most promising chemical products
from CO2 conversion.

After the application of the procedure, TOPSIS was identified as the best adapted to the
selection of chemicals from CO2 conversion.

The order for the overall suitability index obtained for each MCDA identifies TOPSIS as best
performing tool. For the first screening, TOPSIS obtained 0.818 for overall suitability index,
AHP, the value of 0.727 and ANP, the value of 0.636. This represents 8 out of 10 properties
consistent with the expected qualification. For the second screening and third screening, TOPSIS
achieved a value of 0.909 and 0.818, respectively.
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The result can be partially explained by the selection of qualifications for the exogenous variables
(e.g. mixed indicators, no technical support for a specialist and the number of evaluation
elements) and for the endogenous variables (e.g. the type of decision-making problem is a rank
and implementation procedure).

The TOPSIS method designates alternatives that simultaneously have the shortest distance
from the positive ideal solution (maximization of benefit criteria) and the farthest distance from
the negative-ideal solution (maximization of cost criteria). More details about the method can
be found in the work by Hwang et al. [107].

4.3.3 Three Level Assessment

In the context of selecting the most promising products for CO2, the three-level assessment has
been proposed. The first screening evaluates only thermodynamic properties and, consequently,
the economic aspect of such reactions, along with their respective scientific relevance. The
second screening evaluates economic, technical and environmental aspects. Lastly, the third
screening takes into account the innovation and novelty of the products and processes. The
distribution of these specific criteria at each level takes into account the data available for the
chemical compounds under evaluation.

The option of using CO2 for chemical conversion has thermodynamic and intrinsic kinetic
restrictions. Estimating their real potential will require a thorough comparative analysis of
proposed and existing processes to determine whether or not the proposed conceptual plant
reduces CO2 emissions (directly or indirectly), and whether the chemicals obtained are tradable
[11].

4.3.3.1 First Screening Results

A dataset of 122 chemical compounds was selected based on the work by Otto et al. [56]. The
criteria evaluated in the first screening include the Gibbs energy of formation, the enthalpy of
reaction and scientific relevance (gathered in October and November 2018).

The results from the preliminary analysis of the scientific relevance raw data showed several
outliers, with a median value of 392 and an amplitude of 421305. A clear benefit of normalizing
the values is avoiding the influence of extreme values in the final result of MCDA. Therefore,
the data were normalized, the median was 50 and an amplitude of 90 was obtained. The
normalization procedure also correct kurtosis (value of -1.041, std error = 0.435) and skewness
(value of 0.173, std error = 0.219).

A standard feature of multi-criteria analysis is a performance matrix, in which each row describes
an alternative and each column describes one criterion. The performance matrix for the first
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assessment is presented in the Supplementary Material. Table 4.3 presents the results of the
Shannon Entropy applied to the first screening performance matrix.

Table 4.3: Shannon Entropy Weights results for the First Screening.
Criteria Type Min/Max Entropy Weight

(i) (Ei) (wi)

∆Go
f (kcal/mol) cost MIN 0.993 0.087

∆Ho
rxn (kcal/mol) cost MIN 0.985 0.179

Scientific Rel. (–) benefit MAX 0.940 0.733

The results values for Entropy (E) closer to 1 for the ∆Go
f and ∆Ho

rxn indicate minor importance
compared with Scientific Relevance. The weights for the three criteria are also indicated in
Table 4.3; the first two criteria showed similar weights, while the last presented significant
importance.

The TOPSIS method was employed to evaluate the alternatives, Shannon Entropy was used
as a weighting method. The results are introduced in Figure 4.5a, which depicts the 30 first
places. In order to assess the influence of weights in the final outcome, a Monte Carlo analysis
was performed (Figure 4.5b).

With respect to the first screening, it was found that methane, propanol and propionic acid
achieved the highest scores, followed by propylene carbonate, ethylene carbonate and methanol.
These results may partly be explained by the favorable products in terms of thermodynamics
and also a sufficient amount of related scientific research.

(a) (b)
Figure 4.5: Results for the first screening (30 first places). (a) Score and (b) Distribution.
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The first block of 22 chemicals was selected for the second screening since the mean of the
groups are significantly different (ANOVA test F=36553.7 and p-value=0). Additionally, there
is a 8.10% difference between the mean of acetaldehyde compared with 2-Imidazolidinone.

4.3.3.2 Second Screening Results

The chemical compounds selected in the first screening were further assessed based on technical,
economic and environmental aspects as presented in Figure 4.6. They represent investment for
decision-makers (e.g. government, investors), but they can also be used as a base for innovative
research.

For the economic group, four criteria were selected: Product Price, Reactant Price, Market Size
and Compound Average Growth Rate (CAGR). For the technical group, the TRL was selected.
The environmental group contains the utilization ratio and the willingness to pay criteria.

Overall 
Goal

Economic Technical Environmental

Price of 
Product

Price of 
Reactant

Market 
Size/Value

CAGR

TRL
Utilization 

Ratio

Willingness 
to pay

Figure 4.6: Criteria evaluated for the second screening analysis.

The final performance matrix for the second screening is presented in Table 4.4. The results
indicate that dimethyl carbonate, dimethyl ether and p-salycilic acid are the most expensive
products, whereas urea, methane and methanol are the cheapest products. However, methanol,
urea and acetic acid showed the highest values for market value. The CAGR for methanol,
dimethyl ether and acetic acid are the most expressive in the evaluated period.

The maturity level of most of CO2 products are low, due to the early stages of research and
development. Some products reached higher levels (for example, methanol and urea). Regarding
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the utilization ratio, methane, dimethyl ether and formaldehyde presented the highest values.
Lastly, in the criterion Willingness to Pay (WP), it is possible to identify two groups of chemicals.
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Table 4.4: Decision matrix for the second assessment for CO2 products.

Products
Economic Criteria Technical Criteria Environmental Criteria

Product Price Reactant Price Market Value CAGR TRL Utilization Ratio WP
(US$/kg) (US$/kg) (0-100) (%) (–) (kgCO2/kgprod.) (US$/tonneCO2)

Propionic Acid 3.51 6.65 60 3.0 1 0.594 225
Propanol 1.45 6.65 60 2.2 1 0.732 225
Methane 0.34 6.00 80 1.6 2 2.743 10
Propylene carbonate 0.68 1.02 70 6.2 1 0.431 225
Ethylene carbonate 4.76 0.80 30 5.2 1 0.500 225
Methanol 0.48 6.00 100 11.0 3 1.374 28
Dimethyl Carbonate 6.52 0.48 40 6.6 3 0.489 225
Dimethyl ether 6.43 6.00 30 9.9 1 1.911 225
Salicylic acid 4.69 3.04 30 5.5 2 0.319 225
Urea 0.30 0.33 90 2.0 3 0.733 10
Acetic acid 0.95 0.34 80 9.0 1 0.733 225
p-Salicylic acid 5.99 2.68 1 5.2 1 0.319 225
Methacrylic Acid 1.77 0.71 1 3.4 1 0.511 225
Diethyl Carbonate 2.80 0.67 20 2.4 1 0.373 225
Formic acid 0.74 6.00 30 2.5 2 0.956 225
Acrylic acid 2.25 0.65 80 7.6 1 0.611 225
Benzoic Acid 3.48 0.76 60 3.6 1 0.360 225
Formaldehyde 1.35 6.00 80 4.8 1 1.466 225
Urethane 5.71 1.00 1 2.0 1 0.494 225
Oxalic Acid 2.67 6.00 50 4.6 1 0.978 225
Acetone 1.23 0.34 70 3.6 1 0.758 225
Acetaldehyde 2.70 6.34 60 6.0 1 0.999 225
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The calculation of weights for the criteria using Shannon Entropy was performed and the results
are presented in Table 4.5.

Table 4.5: Shannon Entropy Weights results for the Second Screening.
Criteria Type Min/Max Entropy Weight

(i) (Ei) (wi)

Price Product (US$/kg) benefit MAX 0.879 0.113
Price Reactant (US$/kg) cost MIN 0.883 0.110
Market Value (–) benefit MAX 0.925 0.070
CAGR (%) benefit MAX 0.896 0.098
TRL benefit MAX 0.561 0.413
Utilization Ratio benefit MAX 0.834 0.156
WP benefit MAX 0.958 0.040

The relative importance of a criterion is defined by its entropy and, consequently, its weight.
The criterion with less relative importance was WP (E = 0.958, w = 0.04), followed by Market
value and CAGR. The TRL achieved the highest importance (E = 0.561, w = 0.413). These
differences can partly be explained by the diversity of the data, which is inherently considered in
the weighting method used. The only criterion that must be minimized is the price of reactants.

Price of product, price of reactant market size and CAGR showed similar ranges. TRL showed
a broad distribution, due to the possible values for this criterion (1, 2 or 3). Most of the
technologies are in their early stage of development (1) and just a few are commercially mature
(3).

The weights calculated in Table 4.5, together with the data in Table 4.4, were used to assess the
products. The TOPSIS method was used and the results are displayed in Figure 4.7a. To test
how the weights could potentially influence the results, a sensitivity analysis was performed
(Figure 4.7b).
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(a) (b)
Figure 4.7: Results for the second screening. (a) Score and (b) Distribution.

The TOPSIS method was applied to determine the rank of the most promising products for
CO2 conversion. It calculates the ’alternative’ relative closeness to the ideal solution, ending
with the Rank Preference Order for the alternative.

As can be seen from Figure 4.7a, the evaluation ranks methanol (score = 0.6386), dimethyl
carbonate (score = 0.6212) and urea (score = 0.5807) in the first three positions. Followed by
methane, salicylic acid, dimethyl ether, formic acid and acetic acid.

The comparison of these findings with those from of other studies [56, 184, 191] confirms
methanol, urea and dimethyl ether as promising products.

The ANOVA-one way was carried out to evaluate the score distribution and to select the
products included in the next screening. At the moment, a chemical product presents a score
distribution with no difference in means, that is, the cut-off.

Using the data from Figure 4.7b, the chemicals in the positions 1 to 8 presented significant
different means and the chemical in position 8 is included. Comparing the chemicals in positions
8 and 9, they are significantly different (F=1497.08, 380 p-value=0); however, the chemical
in position 9 compared to 10 presents significant equal means (F=3.0823, p-value=0.0792).
Therefore, the cut-off is the chemical in position 8 and, the chemicals from positions 9 to 22 are
out of the third screening.
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4.3.3.3 Third Screening Results

The final screening takes into account the novelty of the processes and products. It comprises
eight chemicals, selected in the second screening, namely methanol, dimethyl carbonate, urea,
methane, salicylic acid, dimethyl ether, formic acid and acetic acid.

The innovation and novelty topic (see Table 4.2) is investigated in the third screening. To
contemplate different aspects, three criteria were analyzed: (i) Web of Science (WoS) Boolean
Search (Literature-related), (ii) Derwent Innovations Index (DII) Boolean Search (Patent-related)
and (iii) SciFinder Reaction Search.

The results for the WoS were normalized, using the natural logarithm function. The SciFinder
web application allows the user to create a reaction and search for entries. Therefore, the number
of entries for the reaction (not the CAS number) was retrieved and normalized using the natural
logarithm function. The results are in the performance matrix presented in Table 4.6.

Table 4.6: Decision Matrix for the Third Assessment for CO2 products.
Literature - Patent - Reaction -

Chemical Name WoS DII Scifinder
Methane 9.21 781 6.54
Dimethyl Carbonate 6.72 19 6.35
Methanol 8.85 683 7.18
Salicylic acid 6.48 31 8.19
Acetic acid 7.19 75 5.89
Urea 7.82 236 5.05
Dimethyl ether 6.75 117 5.27
Formic acid 7.13 46 11.19

It is possible to verify that concerning the literature, methane leads by number of related
publications. The second place belongs to methanol, with more than 3000 publications, fewer
than the first position, representing almost 45%. Following the list, urea comes up with 2490
publications.

Nonetheless, the smaller the number of publications, the better, because more room for innovation
and novelty is possible. In this sense, salicylic acid and dimethyl carbonate showed the smallest
number.

Regarding patents, dimethyl carbonate, salicylic acid, formic acid and acetic acid represent the
alternatives with the fewest patents. Finally, the reaction database criterion is favorable for
urea, dimethyl ether, acetic acid and dimethyl carbonate.

The relative weights for all the three criteria were calculated using the Shannon Entropy,
presented in Table 4.7.
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Table 4.7: Shannon Entropy Weights results for the Third Screening.
Criteria Type Min/Max Entropy Weight

(i) (Ei) (wi)

ln(WoSA) cost MIN 0.888 0.378
DII cost MIN 0.892 0.367
ln(Scifinder) cost MIN 0.925 0.255

The normalized weight for literature-related (WoS) was the highest; consequently, entropy is the
smallest. Moreover, the relative importance of patent-related (DII) is similar to literature-related.
The range of distribution regarding the literature-related and reaction-related are similar, while
the patent-related showed a broader range of distribution.

TOPSIS was used to calculate the rank preference for the ideal solution. The results are
presented in Figure 4.8a. To address the influence of weights in the final result, a sensitivity
analysis was carried out. Figure 4.8b demonstrates the results.

(a) (b)
Figure 4.8: Results for the third screening. (a) Score and (b) Distribution.

The first three products were dimethyl carbonate, acetic acid and dimethyl ether, which are the
most promising products for further studies on chemical process synthesis and design.

Salicylic acid and formic acid showed the broader distribution compared with the other chemicals.
Note that the final products ranking were the same, compared with the single value score.
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One point must be highlighted; different multi-criteria methods, when applied to the same
problem, can lead to different scenario results, even using similar data for analysis. The CO2

conversion schemes require great investment and they are also attached with uncertainties (e.g.
scaled up for commercialization), therefore, these results should be taken with caution.

4.4 Conclusion

The evaluation of CCU technologies to identify promising products among a broad number of
candidates is a recurrent issue. In this sense, this study performed a systematic search to define
suitable criteria in the context of carbon dioxide conversion and applied them to a three-level
assessment for selecting CO2 conversion products. The TOPSIS method was selected as the
most adequate MCDA tool based on the objective.

The proposed methodological framework is an important tool for selecting the most promising
products for CO2 conversion by the three-level assessment. A multi-criteria decision analysis
method was used jointly with an objective elicitation of weights. Dimethyl carbonate, dimethyl
ether and acetic acid were the most favorable products for rigorous process design studies. This
study can also accommodate variation in prices, maturity level or scientific relevance of the
evaluated products.

This study may serve as guidance for further researches in chemicals synthesis, from the catalyst
development point of view, new products should be created in order to overcome the limitations
imposed by the CO2 system. From the process modeling (see Chapter 5) and reactor calculation
perspective, new design configurations studies can be proposed based on the current study.



Chapter 5

Process Design and Simulation of Acetic
Acid Production from Carbon Dioxide

The outcomes of Chapter 4 pointed out several products for further investigation and
studies. This chapter presents an assessment of one of that products, the acetic acid
process. Efforts have been focused on exploring new methods to produce acetic acid
using carbon dioxide as a raw material, aiming is to replace fossil-based raw materials
with CO2, offering a sustainable and low-carbon pathway for the chemical industry.
The objective is to assess routes using MCDA. Viable CO2 routes was identified,
compared based on criteria like chemical utilization, energy consumption, and Gibbs
energy, and a conceptual plant design was proposed. The methanol hydrocarboxylation
route was found to be the most suitable option, and a hierarchical approach was
employed in designing the process, demonstrating its feasibility and similarities to
conventional production.
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5.1 Introduction

Acetic acid is an important industrial chemical used in a wide range of applications, including
food production, pharmaceuticals, and biorefining. In glacial form (less than 1.0% of water
content), it can be used to manufacture vinyl acetate, with a market share of 34% in 2016, as
well as acetic anhydride (13%) and chloroacetic acid, and be applied as a solvent for terephthalic
acid (24%) [192]. The main producers, responsible for over 70% of the world’s production
capacity, are installed in Asia, where China accounts for 54% of this total, and North America,
mainly the United States, with 18%. This economic performance projects a future revenue for
this commodity of USD 12.8 billion [193].

Vinyl acetate has been employed in latex emulsion resins in a variety of applications (e.g. paper
coating, adhesives, textile treatment and paints), accounting for more than 30% of the total
market in terms of volume [194]. Acetic anhydride is a acetylation agent, which is used to
synthesize cellulose acetate and cellulose plastics [195]. Acetic acid is, therefore, an important
industrial chemical.

According to the Mordor Intelligence Report [196], the global market is expected to reach 18.29
Mton by 2023. Figure 5.1 presents the global demand for acetic acid and the projections for
this market.

Figure 5.1: Global demand for Acetic Acid. Historical data from [197–199] . Projections: (open
triangle) from Mordor Intelligence Report [196], (open circle) from Statista [199].
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There are multiple routes to producing acetic acid. The most common and commercially
significant route is methanol carbonylation. In this process, acetic acid is produced by the
reaction of methanol with carbon monoxide in the presence of a catalyst, typically rhodium
or iodide compounds. Another method is acetaldehyde oxidation, which involves oxidizing
acetaldehyde with oxygen. A third route is the liquid-phase oxidation of hydrocarbons, where
acetic acid is produced by partially oxidizing hydrocarbons like butane or naphtha in the
presence of a catalyst and air [200].

Recent researches have focused on new synthetic routes for acetic acid production using CO2.
These alternative routes include the reaction of methane with CO2 [201], hydrocarboxylation
of methanol [202], lignin with CO2 [203], and the hydrogenation of CO2 [204]. However, the
manufacture of acetic acid from CO2 presents commercial and innovative challenges, such
as reducing production impact, utilizing cost-effective raw materials, and designing efficient
industrial processes.

Although there are other published articles discussing acetic acid production processes, such
as the Cativa process [205, 206] and the Monsanto process [207, 208], no published articles
specifically address the assessment of CO2 routes and the design of a conceptual plant.

The assessment of innovative routes using CO2 can be conducted using Multi-criteria decision
analysis (MCDA) techniques. MCDA is employed as a structured approach to evaluate and
compare multiple alternatives based on a set of criteria or factors. The primary objective of
MCDA is to provide a systematic framework for evaluating alternatives and ranking them based
on their performance against multiple criteria [159].

The evaluation of chemical process routes for acetic acid production involves several metrics and
criteria. One of the criteria can be defined by the assessment of a chemical utilization scheme’s
suitability, which considers available information and builds upon previous work by Audus and
Oonk [209]. Another criterion is focused on comparing energy consumption, as proposed by
Muller and Arlt [210], which takes into account the exergy demand of the chemical reaction,
resembling Gibbs energy. Since the use of CO2 for chemical conversion faces thermodynamic
and kinetic limitations, the final criterion is the Gibbs energy of the reaction. These criteria
play a vital role in evaluating and selecting the most efficient and feasible process routes for
acetic acid production from CO2.

When it comes to process design, there are multiple approaches available, each with its own
advantages and considerations. One notable approach is the hierarchical approach, which offers
a systematic and structured framework for designing chemical processes. The hierarchical
approach involves breaking down the overall process into smaller, interconnected stages or
units. This hierarchical structure allows for better understanding and control of the process and
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improved efficiency [211].

The objective of this study is to assess and evaluate innovative routes for acetic acid production
using carbon dioxide through MCDA analysis. The study aims to identify the best CO2 route,
compare them based on criteria such chemical utilization, energy consumption, and Gibbs
energy, and propose a conceptual plant design. By achieving these objectives, the research aims
to contribute to the development of sustainable and efficient processes for acetic acid production
from CO2, offering insights for industrial aspects in chemical process design and green chemistry.

5.2 Production Routes

The industrial production of acetic acid is by bacterial fermentation and via synthetic route.
The former accounts for only 10%, but is important for the production of vinegar, due to
law regulations (food grade vinegar must be from biological origin) [212]. The latter is the
preferential route for the glacial acetic acid production, includes traditional production routes,
such as methanol carbonylation, acetaldehyde process, Liquid-Phase Oxidation (LPO), ethylene
and ethane gas-phase, isomerization of methyl formate and methane carbonylation, and CO2

innovative route, such as CO2 and methane reaction, methanol hydrocarboxylation, lignin
oxidation and CO2 hydrogenation as depicted in Figure 5.2.

Figure 5.2: Synthetic acetic acid production routes, divided into traditional and CO2 innovative.
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The major producers of acetic acid include BP Chemicals, Celanese, Eastman Chemical,
PetroChina, Daicel, LyondellBasell, SABIC, Jiangsu Sopo [213] as shown in Table 5.1.

Table 5.1: Acetic Acid Plant and location.

Company Location Capacity
ton/year Technology

Celanese Pampa, Texas, USA 250,000 Butane LPO
Edmonton, Alberta, Canada 75,000 Butane LPO

BP Hull, UK 210,000 Butane LPO
Akzo Zout Chemie Europoort, Netherlands 110,000 Butane LPO
Celanese Clear Lake, Texas 1,350,000 Methanol Carbonylation
DuPont de Nemours La Porte, Texas, USA 80,000 Methanol Carbonylation

Eastman Chamical Co Kingsport, Tenn, USA 277,000 Methanol Carbonylation
Texas City, Texas, USA 590,000 Methanol Carbonylation

LyondellBasell La Porte, Texas, USA 544,000 Methanol Carbonylation

5.2.1 Traditional Production Routes

The large-scale production route to acetic acid is the methanol carbonylation, which represents
over 65% of global capacity [214]. The liquid-phase oxidation of alkanes plants have been
reduced their production gradually because of the competition with the methanol carbonylation
route. Other technologies are in commercialization stage of maturity, among them the gas-phase
reaction of ethylene and ethane, direct ethanol oxidation or synthesis gas [215].

5.2.1.1 Carbonylation of Methanol

The production of acetic acid by the carbonylation of methanol typically involves a catalytic
reaction. This process involves several steps and requires specific conditions and catalysts. The
overall chemical equation for the carbonylation of methanol to produce acetic acid is described
in Eq. 5.2.1 [193].

CH3OH + CO −−→ CH3COOH (5.2.1)

In mid-1960s BASF commercialized the first industrial process to produce acetic acid using
a cobalt catalyst methanol carbonylation reaction (in Ludwigshafen, Germany, with initial
capacity of 3.6 kt/k). The high-pressure, high-temperature process (700 bar, 250 ◦C) with a
cobalt iodide catalyst presented several advantages, such as the favorable raw material and
energy costs [216].

In 1968, a rhodium based system under mild conditions was published by Monsanto [217]. The
industrial utilization of the cobalt-catalysed technology was rapidly replaced by the Monsanto
process, due to higher selectivity, less severe conditions and a faster reaction.
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In the Monsanto process, methanol is carbonylated under pressures from 1 to 3 MPa, yielding
99% of acetic acid [217]. The technology was used at Texas City, Texas, with a initial capacity
of 135,000 ton per year (expanded to 270,000 ton per year in 1975) [200].

Later modifications at the catalyst system level improved the capacity of a plant at Clear Lake,
Texas, more than three times the initial capacity, reaching 900,000 tons per year [200].

Additional investigations into the process revealed that the use of an iridium catalyst is also
successful in the conversion of methanol and carbon monoxide into acetic acid. In the mid-
1990s, BP introduced a commercially viable iridium-catalyzed technology, known as the Cativa
Process. This innovative approach offers improved economic efficiency by minimizing water
usage, achieving an approximate 85% yield of acetic acid, enhancing catalyst durability, and
reducing the formation of liquid byproducts. [218, 219].

According to Berre et al. [200] the low-reaction-water rhodium and iridium-based methanol
carbonylation processes are economic competitive over all other acetic acid production processes.

The process comprises four-stages: (i) steam reforming to produce syngas, (ii) syngas into
methanol, (iii) carbonylation of the methanol into acetic acid, where carbon monoxide and
methanol are feed the reactor and (iv) acetic acid purification. The purification involves
venting noncondensable byproducts (CO2, H2, and CH4) from the reactor to regulate the carbon
monoxide partial pressure. The light ends are recycled back to the reactor. The reactor solution
is separated in a flash, with the catalyst recycled and crude acetic acid sent to a light-ends
column. Methyl iodide, methyl acetate, and water are recycled as a two-phase stream, while
wet acetic acid goes to a dehydration column. Aqueous acetic acid is recycled, and dry acetic
acid is obtained as the final product. Propionic acid and other higher boiling carboxylic acids
are removed as residue, and product acetic acid is recycled for purification [200].

Table 5.2 provides comprehensive information regarding the reaction conditions, catalysts, and
by-products associated with the primary conventional routes for acetic acid production by
methanol carbonylation. The data was retrieved from Martín-Espejo et al. [220].

Table 5.2: Characteristics of Methanol Carbonylation routes. The data was retrieved from Martín-
Espejo et al. [220].

Process Catalyst T (oC) P (bar) Yield (%)

BASF Homogeneous Co-based iodide promoted 230-250 60-80 90
Monsanto Homogeneous Rh-based iodide promoted 150-200 30-60 99
Cativa Homogeneous Ir-based iodide promoted 190 28 >99
Acetica Heterogenized homogeneous Rh-based 160-200 30-60 99
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5.2.1.2 Acetaldehyde oxidation

Acetic acid production by acetaldehyde oxidation, which originally used petroleum feedstock, was
the dominant method, accounting for over 45% of production [221]. However, due to economic
considerations, the methanol carbonylation and LPO routes have replaced acetaldehyde oxidation.
Acetaldehyde still accounts for 18% of global acetic acid capacity, as reported by Kent [222].

The commercial production of acetic acid via batch processes began in Germany in 1911, followed
by the United States nine years later. In this method, oxygen is introduced into an acetaldehyde
and manganese catalyst solution. The resulting mixture is separated in a distillation column,
yielding 88-95% acetic acid [221].

Newer plants have adopted continuous processes to enhance safety. These processes involve the
oxidation of acetaldehyde with oxygen by a radical mechanism, with peracetic acid serving as
an intermediate. Notably, companies like UCC (US), Daicel (Japan), and British Celanese (UK)
employ this technology in their commercial plants [223].

5.2.1.3 LPO of hydrocarbons

The worldwide usage of the LPO process for acetic acid production has decreased due to
competition from the methanol carboxylation process. The choice of raw materials varies
depending on availability. For example, butane is used in the US and Canada, while light
naphtha is used in the UK [200].

Celanese was the first company to produce acetic acid from LPO using butane at their Pampa,
Texas plant in 1952. Union Carbide Chemische Huls and Russian Refinery started production a
decade later. By 1973, LPO technology accounted for 40% of the global acetic acid capacity.
However, according to Weissermel et al. [223], the US participation decreased to 31% by 1982,
with UCC and Celanese as the main players. In 2010, LPO-based production of acetic acid
accounted for approximately 8% [222].

The LPO process utilizes cobalt catalysts, although other catalysts such as manganese, chromium,
bismuth, and nickel are also employed. The choice of operating conditions and catalysts affects
the product distribution. For instance, bismuth catalysts exhibit 97% selectivity for acetic acid
with low formic acid production, while cobalt catalysts show 79% selectivity for acetic acid.

The separation of the product mixture, which includes acetic acid, formic acid, propionic acid,
acrylic acid, methyl ethyl ketone, ethyl acetate, methyl vinyl ketone, and gammabutyrolactone,
is an expensive process. It involves a combination of extraction, distillation, and extractive
distillation techniques [221].
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5.2.1.4 Other minor contribution routes

The conversion of ethylene directly to acetic acid was developed by Showa Denko [224], where a
reaction of ethylene and oxygen over a palladium catalyst and a heteropolyacid or salt takes
place in gas-phase. Commercial operation started in 1997, however is idle since 2008 [200].

The conversion of ethane to acetic acid has been investigated by several groups. Union Carbide
developed the coproduction of ethylene and acetic acid with a catalyst (molybdenum, vanadium,
niobium, calcium, and antimony) enhanced by water addition [225]. Hoechst Research and
Technology [226, 227] employed molybdenum, palladium, and rhenium catalyst in a process to
oxidize ethane to acetic acid, claiming selectivity of 90% and conversion of ethane of 10%.

The isomerization of methyl formate under heterogeneous catalyst to produce acetic acid was
studied by Kawako and co-workers [228]. The authors claimed a 90% conversion and 99% acetic
acid selectivity.

The methane can be carbonylated to acetic acid under strong acid conditions or high pressures
to overcome thermodynamics. The raw materials include methane, carbon monoxide and oxygen.
Volkov et al. [229] used molecular oxygen over silica materials (including rhodium chlorides) to
produce acetic acid. The productivity depend on rhodium composition and the type of silica
used for catalyst the preparation.

5.2.2 CO2 Innovative Production Routes

New synthetic routes for acetic acid production using CO2 have been studied. Alternative routes
are reaction of methane with CO2 [201], hydrocarboxylation of methanol [202, 230], ligning with
CO2 [203] and the hydrogenation of CO2 [204].

However, manufacture of C2+ carboxylic acids, among them acetic acid, from CO2 poses a
commercial and innovative challenge: to reduce the production impact, raw materials with lower
cost and industrial design and engineering are some of the defiance [231].

5.2.2.1 Methane and CO2

The conversion of methane and CO2 to acetic acid received much attention recently, because of
the improvement potential (atom economy and avoid CO production step) [232]. The patent
US6960682 [233] describes the production of acetyl anhydrides and acetic acid from CO2 and
methane using a catalyst based on VO(acac)2 and K2S2O8 as initiator dissolved in anhydrous
acid and corresponding anhydride. The patent WO9605163 [234] claimed high selectivities
(70-95%) when the catalyst used contained metals from VIA, VIIA, and/or VIIIA group.

The direct conversion, however, presents thermodynamic restrictions. According to Aresta et al.
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[7], the carboxylation of CH4 is considered a formal insertion of CO2 into C-H bond. While
the enthalpy change is favourable, the entropy change demonstrate severe influence on the free
energy change. A decisive process is the C-H splitting with high kinetic barrier (either homolytic
(R+H) or heterolytic (R− + H+)).

Wilcox et al. [235] synthesized acetic acid using heterogeneous catalyst (Pd/carbon and
Pt/alumina). The authors used temperature programmed reaction and the formation of acetic
acid occured above 623 K (Pd/carbon) and 473 K (Pt/alumina) reaching low yields.

To overcome thermodynamics, a periodic operation or a coupling reaction is required [236].
Ding, Huang and Wang [237] used Pd/SiO2 and Rh/SiO2 catalysts for carboxylation of methane
in a step-wise isothermal process. The limiting steps are the methyl radical formation and CO2

inserting on the intermediate.

A different approach to overcome thermodynamics is to use an additional reactant. Huang et al.
[238] introduced oxygen as a oxidant through V2O5-PdCl2/Al2O3-2 as a catalyst. The results
showed low formation rates, with maximum of 30.79 µg/(g·h) at 723 K.

The shift of the equilibrium to the product, acetic acid, can be achieved by coupling with a
second reaction. Spivey, Wilcox and Roberts [239] added acetylene as a reactant, favouring the
production of vinyl acetate.

More efforts on a catalyst system to simultaneously activate both methane and CO2 have been
done. Rabie, Betiha and Park [240] employed a zeolite catalytic system (Cu−M+ZSM-5) to
synthesize acetic acid and the results pointed out the Cu nanoparticles over ZSM-5 activate
both methane and CO2, yielding 395 umol(gcat)h for 10 h.

The mechanism over MFI zeolite exchanged with Cu was studied using density functional theory
by Montejo-Valencia et al. [241]. The first step is the formation of (-Cu-CH3), followed by CO2

insertion producing surface acetate (-Cu- OOCCH3), which abstracted the proton to form acetic
acid.

So far, however, there has not been an efficient catalyst for acetic acid production from CH4

and CO2 [241].

5.2.2.2 Hydrocarboxylation of Methanol

The second route to produce acetic acid from CO2 is the hydrocarboxylation of methanol
proposed by [202, 230].

Qian et al. [230] proposed the reaction of methanol, carbon dioxide and hydrogen over bimetallic
Ru-Rh homogeneous catalyst,using imidazole as ligant, LiI as promoter and 1,3 dimethyl-2-
imidazolidinoe as solvent. The reported yield was 77%, and the TON exceeded 1000 after five
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cycles.

A further study on the system, Cui et al. [202] used Rh2(CO)4Cl2 as catalyst with 4-methylimidazole
(4-MI) as ligand, LiCl as cocatalyst and LiI was used as promoter. The reported yield was
81.8% with a TOF of 26.2 h−1.

A recent pre print study of Ahmad et al. [242] presents a Fe-based thermally transformed metal
organic framework catalyst (MIL-88B) for hydrocarboxylation of methanol to produced acetic
acid, and the results indicated a yield of 590.1 mmol/gcat.L, with 81.7% of selectivity for acetic
acid.

The proposed mechanism indicates that the reaction did not proceed via the CO route (as
compared with carboxylation of methanol). CH3I is formed when LiI reacts with methanol,
then the oxidative addition, in the Rh active sites, takes place. The CO2 is inserted into the
adsorbed specie to form CH3COORh*I, which form acetic acid by reductive elimination with
H2. LiI and H2O were formed by the reaction of LiOH and HI.

Cheap and easily available feedstock are used in this promising route. It is composed by a
simple catalytic system, less corrosive and more efficient than the previous one reported.

5.2.2.3 Other Routes

Within the context of biomass conversion and to valorize lignin as a renewable source of aromatics
[243], Wang et al. [203] proposed a synthesis of acetic acid from ligning, CO2 and H2 over ionic
liquid (e.g., [BMIm][Cl])-based catalytic system containing Ru–Rh bimetal catalyst (Ru3(CO)12

and RhI3) and LiI. The achieved yield was 94% at relative mild conditions (180oC and 6 MPa).

The hydrogenation of CO2 to yield acetic acid was studied by Ikehara et al. [204] using Ag-
modified Rh/SiO2 catalyst. The major formed product was CO (selectivity was more than 90%),
while the hydrogenated compounds, acetic acid is the most abundant one at 463 K, however
with low yields. Jia et al. [244] studied the thermodynamics of CO2 hydrogenation to carboxylic
acids, the results showed a favourable production of higher-carbon acids (acetic acid, propionic
acid) over formic acid, nonetheless kinetic constraints in C-C coupling is difficult in practice.

5.3 Problem Definition

CO2 is revealed as a valuable environmental-friendly input for carbon dioxide utilization
technology in the chemical industry [245]. Although recent studies have presented innovative
routes and catalysts with more efficient kinetics, such as plasma catalysis [246] or MOF catalyst
[242], the process route assessment and flowsheet design is still scarce.
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In this scenario the current study aims to assess different CO2-based routes to produce acetic
acid in terms of energy and process requirements using multicriteria analysis.

The selected production route was further evaluated. In order to design and synthesize a given
process, a process synthesis by hierarchical approach leads to a detailed flowsheet.

Additionally an exergy analysis was performed in the final flowsheet to reveal the exergy
inefficiencies locations.

5.4 Methods

This section presents the criteria for multicriteria analysis and the definitions for the flowsheet
design and exergy analysis.

The proposed procedure involves selecting the most promising route for CO2 chemical conversion
to acetic acid (Section 5.4.1), definitions for the flowsheet design of the selected route (Section
5.4.2) and simplified exergy analysis to address some inefficiencies of the final production process
simulation (Section 5.4.3).

5.4.1 Route Selection through multi-criteria decision analysis

Table 5.3 shows the reactions involved in each system for acetic acid production. Although other
chemicals can also be produced (e.g. formic acid in hydrogenation) they are not considered
here due to the sake of simplicity to compare the systems.

Table 5.3: Reactions involved in acetic acid manufacture.
Process Reaction Nr

CO2 and Methane CH4 + CO2 −−→ CH3COOH R1

Methanol Hydrocarboxylation CH3OH + CO2 + H2 −−→ CH3COOH + H2O R2

Lignin Oxidation C7H8O + CO2 + H2 −−→ CH3COOH + C6H5OH R3

CO2 Hydrogenation CO2 + 2 H2 −−→ 1
2 CH3COOH + H2O R4

To compare the different routes to produce acetic acid (CO2 innovative) a multi-criteria decision
analysis using TOPSIS method was performed [106]. Details of the technique can be found on
previous studies [36, 37].

The elicitation of criteria weights was obtained by Shannon Entropy method [126]. The sensitivity
analysis was carried out using Monte Carlo Simulation to simulate a 20% variability in weights
[166]. The base value was the one calculated from Shannon Entropy.
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Three criteria were used: (i) the procedure proposed by Audus and Oonk (1997) [209]; (ii)
short-cut exergy demand of the chemical reaction proposed by Müller and Arlt (2014)[210]; and
(iii) Gibbs energy of the reaction.

The first criterion is a preliminary evaluation of processing routes for acetic acid manufacture
from CO2 based on the work of Audus and Oonk [209] with additional characteristics. The
procedure is claimed to assess the suitability of a chemical utilisation scheme, by the use of
simple information.

Table 5.4 introduces the process characteristics used in this work (from Audus and Oonk [209]),
with additional information about the catalytic system.

Table 5.4: Process characteristics definitions of general processes and their respective values. Adapted
from Audus and Oonk [209].

Characteristic
Value

1 2

Number of processes React/Sep React/H2/Sep
Operating Conditions Mild Mild/Medium
Disontinuities in the process No Yes
Change of phase No Yes
Possibility for process integration Yes No
Catalytic System Adequate Limited

The second indicator is based on a comparison of energy consumption. Müller et al. [210]
proposed a criterion based on the the exergy demand of the chemical reaction, where the loss of
chemical exergy is similar to Gibbs energy. The process exergy is usually assigned in terms of
heat (Eq. 5.4.1) and depends on temperature T and the surrounding temperature T ∞.

Ex = Q
(

1 − T ∞

T

)
(5.4.1)

According to Müller et al. [210], the heating demand Q can be approximated by the enthalpy of
reaction ∆rH, for in-advance evaluation.

The option of using CO2 for chemical conversion has thermodynamic and intrinsic kinetic
restrictions, therefore the final criterion is the Gibbs energy of the reaction. The equilibrium
composition of a reaction system was calculated using equilibrium constants, and the calculation
was conducted based on the gaseous phase. A complete and detailed study of thermodynamics
of those reactions can be found on previous article of the group [247].

The most promising production route was then selected for further study.
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5.4.2 Process Synthesis by Hierarchical Approach

Chemical process synthesis is a complex scheme, which comprises process modeling and design
and combinatorial defiance. There are two major approaches: the traditional sequential form
and the optimization-based synthesis using superstructure models. In the former category, the
problem is solved in sequential scheme, by decomposition where there is a hierarchy of elements
that can be depicted by an Onion Diagram (reactor, separation, heat recovery and utility) as
illustrated in Figure 5.3. The use of heuristic rules defines adjustments in the flowsheet leading
to an enhanced solution, but eventually sub-optimal solutions are found [248, 249].

R

S 

H

U

Reaction
Separation
Heat
Utilities

Figure 5.3: Process design approach.

The latter category considers the full integration between decisions at the single step, i.e.
determine the optimal structure and operating conditions simultaneously. Therefore, this ap-
proach contemplates all possible complex interactions between the engineering choices, including
equipment (potentially selected in the optimized flowsheet), the interconnection and operating
conditions formulated as an optimization problem [25, 27, 250].

Dimian et al. [211] proposed an improved hierarchical approach, the reduced interactions between
levels leads to a more efficient design methodology. The essential feature of the approach is
the reactor/separation/recycle emphasis. The methodology can be employed in any chemical
process industry, not only for new processes but also for revamping and retrofitting of existing
processes.

The improved hierarchical approach proposed by Dimian et al. [211] was used to the process
synthesis of the acetic acid manufacture from CO2. The levels of the approach are depicted in
Figure 5.4.

At level 0, known as Basis of Design, data encompassing technical and economical aspects is
gathered to facilitate the conceptual design. Moving on to level 1, Chemistry and Thermo-
dynamics, an intricate description of the chemical reactions occurring in the chemical reactor
is provided, alongside an analysis of key mixtures regarding their nonideal behavior during
separation. Level 2, titled Input/Output Analysis, establishes the foundation for the material
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Figure 5.4: Process Synthesis by Hierarchical Approach for the acetic acid case study. Adapted from:
Dimian et al. [211].

balance, where raw materials serve as inputs and products, byproducts, and waste form the
outputs. Level 3, Reactor/Separation/Recycle, plays a crucial role in defining the process archi-
tecture by elucidating the interactions, particularly recycles, between the reactor and separation
units. Finally, level 4 centers around the separation system, which employs a task-oriented
methodology to address the treatment of homogeneous fluids by breaking down the problem
into manageable subproblems.

5.4.3 Exergy Analysis

An exergy analysis based on the simulation results was carried out. Exergy refers to the
maximum capacity of a system to produce useful work when balanced with its surroundings
[251]. The standard chemical exergy table defined by Szargut, Morris and Steward (1987) [251]
was used, and for non-reference components the method proposed by Haghbakhsh and Raeissi
(2019) [251] was used.

The methodology described in Szargut, Morris and Steward (1987) [251] was used to calculate
the chemical exergy, work and heat for a given unit operation.
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5.5 Results and Discussion

This section presents the results of the multi-criteria decision analysis results for route selection,
the proposed flowsheet and the exergy anaylsis.

5.5.1 Multi-Criteria Decision Analysis Results

In the context of selecting the most favourable route for producing acetic acid from CO2, the
current assessment has been proposed. The screening evaluates the suitability of a chemical
utilisation scheme and a simplified energy consumption estimate.

5.5.1.1 Suitability of a Chemical Utilisation Scheme Results

The shortcut evaluation of utilisation schemes of CO2 proposed by Audus et al. [209] was
employed in this work. Table 5.5 present the results for the process production routes studied.

Table 5.5: Process Characteristics for Selected Process Production Routes.

Characteristic
Production Process

R1 R2

Number of processes React/Sep React/H2/Sep
Operating Conditions Mild (1 atm) Mild/ Medium (10 Mpa)
Discontinuities in the process Yes (stepwise reaction process) No
Change of phase No Yes
Possibility for process integration Yes Yes
Catalytic System Limited Adequate

Characteristic
Production Process

R3 R4

Number of processes React/H2/Sep React/H2/Sep
Operating Conditions Mild/Medium (6 MPa) Mild/Medium (2 Mpa)
Discontinuities in the process No No
Change of phase Yes No
Possibility for process integration Yes Yes
Catalytic System Adequate Limited

The process characteristics criterion demonstrated similar values for all the production processes
evaluated (to be in mind that the small the value the better). Reaction R1 achieved a sum of 8,
while Reaction R2, R3 and R4 achieved a sum of 9.

The attractiveness of converting two greenhouse gases (CH4 and CO2) into CH3COOH, from
a practical perspective, faces the low process efficiencies and no clear path for the process
intensification was apparent.
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5.5.1.2 Simplified Energy Consumption Estimate

Another shortcut method to evaluate different process proposed by Müller et al. [210] was used
in this work. The exergy demand for the CO2 innovative routes to acetic acid production are
depicted in Figure 5.5.

The reaction temperature as function of the heating demand is represented in Figure 5.5, and
for in-advance evaluation the heating demand was approximated by the enthalpy of reaction
[210].
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Figure 5.5: Reaction temperature as a function of the enthalpy of reaction. Lines of constant exergy are
shown as solid lines for T∞=293 K. Square represents CO2 and Methane, triangle represents methanol
hydrocarboxylation, circle represents lignin oxidation and star represents CO2 hydrogenation.

The isoexergetic lines are shown for comparison, the values in the left upper corner represent
low exergy, while right upper corner represent high exergy content. The thermal exergy demand
can be compared, methanol hydrocarboxylation and CO2 hydrogenation shown similar exergy,
with a difference of 7.3%, and both reactions exhibited negative values in addition of the lignin
reaction. On the other side, the reaction of CO2 and methane has a positive exergy value (10.77
kJ/mol).

5.5.1.3 Gibbs Energy of Reaction

Table 5.6 presents the results from the equilibrium calculations for the selected reaction systems.
The properties enthalpy of reaction and Gibbs energy of reaction from the literature are also
shown.
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Table 5.6: Thermodynamic Properties of Selected Reactions.

Reaction Nr
∆rHo (kJ/mol) ∆rGo (kJ/mol)

This Work Lit. Ref. This Work Lit. Ref.

R1 35.04 36.07 [252] 70.19 71.04 [252]
R2 -80,10 (-171.1) -137.60 [230] -46,54 (-65.7) -66.40 [230]
R3 -66.29 -35.92
R4 -64.94 -64.80 [244] -21.54 -21.60 [244]

The results from this study are in agreement with the available literature data. The results for
reaction R1, for example, are within 3% of error.

The value in parenthesis for R2 represent the calculations for liquid product rather than in
gaseous phase.

All reactions are exothermic, except from R1, which exhibited a enthalpy of reaction of 35.04
kJ/mol, classified as endothermic. Regarding the spontaneity of the reactions, there is the
same pattern, only R1 is non spontaneous (∆rG

o > 0). It is important to highlight that the
calculations were performed at a specified pressure of 1 atm.

It is important to mind that a spontaneous process may take place quickly or slowly, because
this property is not related to kinetics or reaction rate.

5.5.1.4 Route Selection Results

The four CO2 innovative routes were compared through a MCDA based on the results from
Section 5.5.1.1 to 5.5.1.3.

The three criterion assessed were organized and summarized in the performance matrix, Table 5.7.

Table 5.7: Performance matrix for the acetic acid production route.
Production Process Exergy ∆rGo

Process Characteristics (kJ/mol) (kJ/mol)

CO2 and Methane 8 10.77 70.19
Methanol Hydrocarboxylation 9 -28.31 -46.54
Lignin Oxidation 9 -23.43 -35.92
CO2 Hydrogenation 9 -30.53 -21.54

The criterion Gibbs energy of reaction exhibited negative values for three out of four of the
production processes alternatives evaluated. The same behaviour was observed for exergy
demand, and only the production process using methane and CO2 displayed positive value.

The Shannon Entropy method was used to obtain the relative weights. It is capable to express
the relative intensities of criterion importance and to determine the weights using the data from
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the performance matrix. Table 5.8 presents the results of the approach.

Table 5.8: Shannon Entropy Weights results for the acetic acid production process.
Criteria Max/Min Entropy Diversity Normalized Weight

Process Characteristics min 0.000 1.000 0.704
Exergy (kJ/mol) min 0.790 0.210 0.148
∆rGo (kJ/mol) min 0.789 0.211 0.149

The criterion with highest relative importance was Process Characteristics (E = 0.00, w =
0.704). Gibbs energy and exergy displayed comparable values for normalized weight.

The weight calculated in Table 5.8 together with data in Table 5.7 were used to assess the
production process. TOPSIS method was used, the results are displayed in Figure 5.6a.

(a) Score (b) Distribution
Figure 5.6: Final Results for the acetic acid production process. (a) Score and (b) Distribution.

The most promising production route is methanol hydrocarboxylation (score = 0.843, std
deviation = 0.007), followed by lignin oxidation (score = 0.802, std deviation = 0.008), CO2

hydrogenation (score = 0.772, std deviation = 0.009) and lastly CO2 and methane (score =
0.153, std deviation = 0.009). The selected route (methanol Hydrocarboxylation) is then used
throughout the study.

5.5.2 Process Design

The methodology proposed by Dimian [211] was used to design the process and generate a
close-to-optimal flowsheet. It is important to note that the route selected from the literature is
still in consolidation phase and it does not achieve high technological maturity level.
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The thermodynamic analysis in detail for this reaction was deeply studied by Alcantara et al.
[247]. The study explores different inlet composition, temperature in the conversion of CO2 and
the results were used as basis for the flowsheet design.

5.5.2.1 Basis of Design

Considering the chemical plants in operation (Table 5.1), the proposed plant considers 200
kton/year as target production. For most chemical and petrochemical processes, the plant
attainment will typically be between 90 to 95% of the total hours in a year (8760). Unless the
process is known to require longer shut-down periods, a value of 8000 hours per year can be
used for flowsheet preparation [253].

Methanol hydrocarboxylation route was studied in terms of catalyst availability and literature
data. The chosen route is still undergoing studies and has not yet reached an advanced stage of
technological development. Two studies reported experimental data (Table 5.9): the first study
employed Ru-Rh bimetallic catalyst, while the second used Rh-based catalyst, both using the
solvent 1,3-dimethyl- 2-imidazolidinone (DMI). The catalyst reported in Cui et al. [202] was
selected for use in simulation because the amount of corrosive LiI used was reduced by 1/3. The
noble Ru compound was removed and effectively yield acetic acid under mild conditions was
achieved.

Table 5.9: Catalytic performance of selected experimental studies.
1 2

Catalyst Ru3(CO)12/Rh2(OAc)4 Rh2(CO)4Cl2
Ligand imidazole 4-methylimidazole (4-MI)
Cocatalyst – LiCl
Promoter LiI LiI
Solvent DMI DMI
TOF (h−1) 30.8 26.2
Yield (%) 70.3 81.8
Ref. Qian et al. [230] Cui et al. [202]

The proposed mechanism developed by Cui et al. [202] is introduced in Figure 5.7.

In order to simulate the process in a commercial simulator, e.g. Aspen Plus, there are some
approaches for the reactor system: (i) using of Gibbs energy minimization based reactor, (ii)
using conversion/ stoichiometric reactor or (iii) using of rigorous kinetic equations. Due to the
lack of kinetic data available in the literature for this new reaction system, a stoichiometric
reactor approach was used. It is important to highlight that this approach produce an estimate
result for the reactor. This level of detail is in accordance with the prospective analysis considered
in this study for a conceptual plant purpose. In order to define a robust and technologically
consistent production scheme for this option, the plant was simulated using the Aspen Plus
software.
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Figure 5.7: Mechanism of the reaction over the Rh-based catalytic system proposed by Cui et al. [202].

The conversion/stoichiometric reactor approach was used once there are literature data available
to validate the set of independent reaction proposed.

5.5.2.2 Chemical Reaction Stoichiometry

Chemical Reaction Stoichiometry deals with constraints placed on changes in compositions of
a closed system. It corresponds to the Law of Conservation of Mass (LCM) in the context of
chemical reactions. It can be expressed as a set of linear equations, taking the conservation of
atom types into account.

In the multi-reaction systems the matrix-method [254] can be applied to determine the appro-
priate number of independent chemical equations (R), a critical aspect of chemical equilibrium
problems.

The constraints on chemical potentials at equilibrium can be imposed by a priori specifications,
which reflects in the elemental abundances.

The algorithm proposed by Smith and Missen (1982) [254] was used to simultaneously determines
the number of independent equations (rank (A)) and a complete set of chemical equations. The
first step is the reduction of the formula matrix A (Eq. 5.5.1) to unit matrix form. The task
can be performed by Gauss-Jordan reduction [255].
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A* =
Ic Z

0 0

 (5.5.1)

where Ic represents the (C x C ) identity matrix and Z represents the (C x R) matrix. C is the
rank of A. The complete stoichiometry matrix is obtained in the canonical form using Eq. 5.5.2

N =
−Z

Ic

 (5.5.2)

The stoichiometry procedure was implemented in Matlab and used to generate a set of reactions
that represents the system.

Consider the hydrocarboxylation of methanol with carbon dioxide and hydrogen as introduced by
Cui et al. [202], the system can be represented by the major components: methanol (CH3OH),
carbon dioxide (CO2), hydrogen (H2), water (H2O), acetic acid (CH3COOH), methane (CH4),
and minor by-products components: ethanol (C2H5OH), methyl-acetate (C3H6O2), ethyl-
acetate (C4H8O2). One should refers to the original article for the details on the components.
The Eq. 5.5.3 represent the system:

{(CH3OH, CO2, H2, H2O, CH3COOH, CH4, C2H5OH, C3H6O2, C4H8O2) ,

(C, H, O)}
(5.5.3)

Moreover, an additional restriction was imposed to the system. From the experiments, it is
known that CO2 and H2 do react, under certain conditions, in an equal amount [202]. This
restriction was incorporated into the general description explicitly. Details are shown in Missen
and Smith [256].

The formula matrix A for the given system is written including the chemical species and the
restriction (Eq. 5.5.4).

A =



(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 1 0 0 2 1 2 3 4
4 0 2 2 4 4 6 6 8
1 2 0 1 2 0 1 2 2
0 −1 1 0 0 0 0 0 0

 (5.5.4)

The numbers at the top stand for the species in the system (CH3OH, CO2, H2, H2O, CH3COOH,
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CH4, C2H5OH, C3H6O2, C4H8O2) and the rows are in the order of the elements (C, H, O
and restriction) given in Eq. 5.5.3. The number of species, N = 9 and M, that is the elements
and the restriction of CO2 and H2 reacting in equal amount, therefore, resulting in 4. The
formula matrix is transformed using Eq. 5.5.1 into A*.

A* =


1 0 0 0 1 1.5 2 2 3
0 1 0 0 1 −0.5 0 1 1
0 0 1 0 1 −0.5 0 1 1
0 0 0 1 −1 −0.5 −1 −2 −3

 (5.5.5)

The rank (A) is then defined, and the maximum number of linearly independent stoichiometric
equations is calculated as R = N − M ∴ 9 − 4 = 5. A complete stoichiometric matrix N in
canonical form is presented in Eq. 5.5.6.

N =



−1 −1.5 −2 −2 −3
−1 0.5 0 −1 −1
−1 0.5 0 −1 −1
1 0.5 1 2 3
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(5.5.6)

Each equation in a permissible set of chemical equations is retrieved from a column of N and
rearranging, resulting in the six chemical equations described in Eq. 5.5.7

CH3OH + CO2 + H2 = CH3COOH + H2O (5.5.7a)

3CH3OH = 2CH4 + CO2 + H2 + H2O (5.5.7b)

2CH3OH = C2H5OH + H2O (5.5.7c)

2CH3OH + CO2 + H2 = C3H6O2 + 2H2O (5.5.7d)

3CH3OH + CO2 + H2 = C4H8O2 + 3H2O (5.5.7e)

The reactor plays a key role in the process and to study extreme conditions, where these data
are critical for the flowhseet design assessment. The reactor was simulated using RStoic module
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(in Aspen Plus) and the reactions in Eq. 5.5.7 were used.

The reactor conditions were changed and the impact on the global environmental performance
of the system were estimated.

For the sensitivity analysis, the literature data (yield of acetic acid for different temperatures)
for the methanol hydrocarboxylation reaction [202] were fitted to a logistic regression curve.

The final expression was embedded into the Aspen Plus simulation as a Fortran code [257] and
the yield of acetic acid in the reactor was retrieved based on the temperature of the reactor.
According to the literature article from Cui et al. [202], the main side reaction is the production
of methane (Eq. 5.5.7b), which is also adjusted to experimental results.

Figure 5.8 presents the results obtained for the analysis and the experimental data available in
the literature.

Figure 5.8: Yield of products based on reactor temperature.

The range of temperature of 190-200 ◦C presents a small increase in yield (1.28% and 1.35%,
respectively) compared with 180 ◦C, while the energy required to increase the additional 10-20 ◦C
is not environmental neither economical feasible. The curve at this region behaves asymptotically,
and accordingly the temperature of 180 ◦C can be used as the extreme value.

On the other hand, the lower temperatures, for instance 170 ◦C reduces the required thermal
energy (consequently the operation cost in the area and environmental metrics), however there is
a decrease of 21% in the acetic acid yield, which can impact in the separation train (distillation
columns) and also in the recycled streams (pumps and heat exchangers).

Thermodynamic analysis of the complete set of reactions (see Eq. 5.5.7) was carried out for
understanding the behaviour of the system. The Gibbs free energy minimization method was
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used [258, 259] (Eq. 5.5.8) and implemented in Aspen Plus software. The Peng-Robinson
equation of state was employed to determine the fugacity in the calculation.

G =
NC∑
i=1

NF∑
k=1

µk
i nk

i (5.5.8)

where NC stands for number of components (i), NF the number of phases (k), G the Gibbs
energy, nk

i and µk
i the number of moles and chemical potential of component i in the phase k.

Table 5.10 presents the outcomes of the thermodynamic study carried out at 180 ◦C and 100
bars, which correspond to the conditions yielding the maximal acetic acid output according to
the experimental data from Cui et al. [202]. To establish the thermodynamic boundary for
the reaction under comparable circumstances as described in the referenced literature [202], an
input of 12 mmol/h of methanol and equivalent amounts of hydrogen and carbon dioxide for
the Gibbs reactor was assumed.

Table 5.10: Thermodynamic analysis results for the system.
Variable Molar Flow (mmol/h)

CO2,reacted 11.546
H2,reacted 15.363
MeOHin 12.000
MeOHout 4.40 × 10−5

Acetic Acidout 10.705
Waterout 13.682
Methaneout 2.136
Ethanolout 3.96 × 10−8

Methyl Acetateout 5.64 × 10−7

Ethyl Acetateout 2.17 × 10−8

The results are the thermodynamic limit for the system under evaluation, i.e. the maximum
amount of acetic acid that could be produced is 10.705 mmol, which corroborates the experimental
results of Cui et al. [202] that obtained the value of 8.18 mmol in a batch mode.

Figure 5.9 presents the sensitivity analysis for the variation in temperature in the production of
ethanol, methyl acetate and ethyl acetate.

The temperature range explored was between 150 to 200 ◦C for the three components, with the
highest value observed at 200 ◦C. In the modeling of the reactor, the conversion of reactions in
Eq. 5.5.7c-5.5.7e assumed fixed maximum values for each component (Ethanol, Methyl Acetate,
and Ethyl Acetate). This was due to the thermodynamic limitation in achieving the production
of those components.

The solvent 1,3-dimethyl-2-imidazolidinone (DMI) was also included in the simulation. The
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Figure 5.9: Molar flow of ethanol, methyl acetate and ethyl acetate.

temperature of the reactor was set to 180 ◦C and the pressure at 100 bar.

5.5.2.3 Reactor/Separator/Recycle

The input/output structure defines the material balance boundary of the flowsheet, which is
often referred as the Inside Battery Limit Envelope (ISBL). The first decision regards the feed
purification. In this case CO2, H2 (provided by alkaline water electrolysis [260]) and methanol
enter in the reactor without previous purification and at the pressure and temperature specified.

The second key decision regards the recycling of reactants and auxiliary materials. In the
proposed flowsheet, CO2 and H2 must be recycled to maintain the partial pressure in the reactor,
and additionally the solvent and homogeneous catalyst must be recycled. Figure 5.10 presents
the inside battery limit for the studied process flowsheet.

The third key decision is concerned the post-treatment of emissions and waste. In this process,
the methane generated in the reactor is separated and directed to a flare system, where it
is burned to produce energy for the plant. Simultaneously, the water produced undergoes
purification and separation in the dehydration column.

H2H2

CO2CO2

WastewaterWastewater

Emissions?Emissions?

Product (AA)Product (AA)

MetOHMetOH

REACTION SEPARATION

Catalyst & Solvent recycle

Non Converted Reactants
Inside Battery Limit

Lights/Heavies?Lights/Heavies?

Figure 5.10: Input/Output structure of the acetic acid manufacturing.
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5.5.2.4 Separation System

For the separation configuration, the formalism of task-oriented approach proposed by Barnicki
and Fair [261, 262] was adopted. This methodology involves decomposing the separation synthesis
problem into two main components: a gas/vapor recovery system and a liquid separation system.
The reactor outlet is subjected to phase splitting before initiating the separation process.

The list-splitting technique, in which the components to be separated and their physical
properties (e.g., boiling points, melting points) are listed, and the list of techniques and the
sequencing of these operations are obtained [263].

The main objective of the aforementioned scheme is to determine the alternatives for the
separation system for further consideration, if coupled with short-cut screening techniques.
The best alternative depends strongly on the Heat Exchanger Network (HEN) and design
optimization for the complete process.

In the methodology of Dimian et al. [211], the Level 4 is the separation system. The first
separation step (Level 4a) (see details in Section 5.4.2) is the split of the initial mixture in
monophase submixtures (gas and liquid). According to Dimian et al. [211], simple flash or a
sequence of flashes, adsorption/desorption and reboiled stripping, or the combination of these
techniques can be employed. The reactor effluent is a heterogeneous gas/liquid stream, whose
composition is shown in Table 5.11.

Table 5.11: Composition of the reactor effluent.
Component Mole Fraction (mol%) Mole Flow (kmol/h)

Methanol 1.46 × 10−6 6.50 × 10−3

CO2 0.294 1309.897
H2 0.323 1441.769
Acetic Acid 0.094 417.517
Methane 0.014 61.219
Methyl Acetate 1.36 × 10−6 6.00 × 10−3

Ehtyl Acetate 4.43 × 10−7 1.98 × 10−3

Ethanol 1.03 × 10−7 4.58 × 10−4

Solvent 0.175 781.725
Water 0.101 448.146

A first evaluation of phase separation may be obtained by performing a flash at 33 ◦C, where K-
values larger than 10 are gas-phase components and smaller than 0.1 are condensing components.
The K-values and the normal boiling points of the components are indicated in Table 5.12.
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Table 5.12: Component ordered by boiling point.
Component Boiling Point (K) K-value Group

H2 20.39 4.75 × 108 Gas
Methane 111.66 87.37 Gas
CO2 194.70 47.64 Gas
Methyl Acetate 330.09 1.09 Gas-Liquid
Methanol 337.85 4.42 × 10−1 Gas-Liquid
Ehtyl Acetate 350.21 5.83 × 10−1 Gas-Liquid
Ethanol 351.44 2.50 × 10−1 Gas-Liquid
Water 373.15 1.03 × 10−1 Gas-Liquid
Acetic Acid 391.05 6.77 × 10−2 Liquid
Solvent 498.17 6.06 × 10−4 Liquid

Pressure and temperature are optimisation variables against recovery of components in the
corresponding vapour and liquid phases. In the study, two distinctive approaches were used:
(A) one flash and (B) two flashes. The results are presented in Table 5.13.

Table 5.13: Molar flow in the vapor stream of flashes (kmol/h).

Component

1 Flash 2 Flashes

CO2 Recovery in vapor stream

98% 98% 97% 96% 95% 94%

H2 1441.8 1441.8 1441.8 1441.8 1441.8 1441.8
CO2 1231.6 1283.8 1270.6 1257.5 1244.4 1231.3
Methane 58.2 60.5 60.0 59.5 58.8 58.2
Water 16.8 49.3 33.7 25.4 20.3 16.8
Acetic Acid 10.7 30.7 21.0 15.9 12.7 10.6
Solvent 0.2 0.6 0.4 0.3 0.2 0.2
Methyl Acetate 1.73E-03 3.31E-03 2.71E-03 2.28E-03 1.97E-03 1.72E-03
Methanol 9.53E-04 2.20E-03 1.65E-03 1.33E-03 1.11E-03 9.50E-04
Ehtyl Acetate 3.54E-04 7.79E-04 6.02E-04 4.89E-04 4.10E-04 3.53E-04
Ethanol 4.13E-05 1.05E-04 7.57E-05 5.93E-05 4.86E-05 4.12E-05

The heuristic stated by Douglas [249] indicated that phase splits are the cheapest method of
separation, therefore simple flash was used. A sensitivity analsys was carried out to pre-optimize
the temperature and pressure of the flash (Figure 5.11).

The pre-optimized temperature of the flash was 38 ◦C, because of the restriction imposed by
the lowest temperature available with cooling water (the cooling water approach ∆T is 5 ◦C),
and pressure of 3.172 bar, selected as threshold between acetic acid recovery and CO2 recovery.
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(a) (b)
Figure 5.11: Sensitivity analysis of pressure and temperature effect on recovery. (a) acetic acid recovery
in liquid outlet stream and (b) CO2 recovery in vapor outlet stream.

The pressure of the valve and the temperature of the cooler was adjusted to minimize the
utility cooling requirements in the flash tank. Figure 5.12a depicts the schematic drawing and
Figure 5.12b the results.

(a) (b)
Figure 5.12: Sensitivity analysis of temperature of the Cooler on the valve outlet stream. (a) schematic
drawing and (b) cooler temperature.

Therefore, the most suitable temperature for the cooler before the valve is 70 ◦C, in order to
achieve a temperature of the outlet of the valve around 38 ◦C.
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5.5.2.5 Gas Separation System

The purpose of the gas recovery system is to remove or to recover valuable components from
an exit gas stream or to prevent toxic components from leaving with a gas stream. According
to [264] the most common techniques are a gas absorber, a refrigerated condenser with a flash
drum, an adsorption bed, or a membrane.

For the generation of gas separation (Level 4b) (see details in [264]), an enrichment was coupled
with purification to obtain a recycle stream with CO2 and H2 from the vapor split outlet.

The first part of the gas separation system is the removal of condensables and send them to the
liquid separation system, while the non-condensable stream enters in the membrane module.

According to Ghasem et al. [265] the membrane technology offer a larger interfacial area while
being significantly smaller and lighter than traditional CO2 absorption towers, resulting in cost
savings. Furthermore, their design promotes straightforward, linear scaling-up. Therefore, the
membrane was selected as separation technology for this study.

A sensitivity analysis was carried out to select the best temperature and pressure of the condenser
to remove the condensable components. The results are presented in Figure 5.13.

Figure 5.13: Sensitivity analysis of the vapor outlet stream of the condenser.

Higher pressures and lower temperatures favour the removal of acetic acid in the liquid flow of
the condenser. The pre-optimized temperature and pressure were setted as 20 ◦C and 20 bar.
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To simulate the membrane module, a model proposed by Pettersen and Lien (1994) [266] was
used. It uses an analogy with the fundamental equation of heat exchangers as a shortcut design
model for a hollow fiber module in counter-current operation. Several authors used the same
model to simulate the membrane module [267–269]. The permeability and selectivity values for
the polyimide membrane were obtained from Abetz et al. (2006) [270] and a connection with
Aspen Plus and Excel was developed in the modeling. The outlet stream from the membrane
module is recompressed and feeds the reactor.

Figure 5.14 depicts the sensitivity analysis for the membrane area on the outlet conditions. The
selected area is 6000 m2 to keep the impurities (methane, ethanol, ethyl-acetate and methyl-
acetate), at least, below 2500 ppm, in order to have a cleaner recycle stream to the reaction
system.

Figure 5.14: Sensitivity analysis of the conditions at oultet of the membrane module.

5.5.2.6 Liquid Separation System

The physical properties of acetic acid are well documented. In the design of distillation processes,
accurate data is needed. Therefore, a thermodynamic analysis of the most important binary
mixture in the system was performed.

Figure 5.15 depicts the prediction of the vapor liquid equilibria of the binary system acetic acid
and water by three different thermodynamic models.

Some carboxylic acids can dimerize in the vapor phase due to the association between molecules
and the association between different molecules. Acetic acid is one example and shows a high
degree of non-ideality for the gas phase.
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Figure 5.15: Vapor-liquid equilibria for the binary mixture acetic acid-water.

Hayden-O’Connell equation (HOC) applies to the fugacity calculation of gas mixture affected
by association [271] and better predict the Vapor-Liquid Equilibrium (VLE) experimental
data. Thus, the thermodynamic model NRTL-HOC was selected, where the Hayden-O’Connell
equation correct the non-ideality of gas phase and the NRTL equation the liquid phase.

A Shortcut Distillation Column Model - Aspen Plus (DSTWU) was firstly used to estimate the
parameters for a more Rigorous Distillation Column Model - Aspen Plus (RadFrac).

The solvent recovery column results for the shortcut column are present in Figure 5.16

(a) (b)
Figure 5.16: Results for DSTWU column for solvent recovery. (a) reflux ratio and (b) cost estimation.

There is a relationship between the number of stages and reflux ratio in a separation process.
At the extremes, a minimum number of stages would need infinite reflux, while a minimum
reflux ratio would require an infinite number of stages. Between these extremes, there is an
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approximately exponential decrease in reflux ratio with increasing stages. By plotting N · RR

(number of stages times reflux ratio) on the y-axis, a curve with a minimum can be observed.

Increasing the number of stages results in higher capital costs for the column, while increasing
the reflux ratio leads to higher operating costs due to increased material recycling and energy
consumption. Hence, there is a tradeoff where larger columns have higher upfront costs but
lower operating costs, while smaller columns have lower capital costs but are costlier to operate.
The economic optimum typically lies around the minimum point of the N · RR vs. N curve,
giving equal weight to both the number of stages and reflux ratio.

To account for real-world inefficiencies compared to the DSTWU model (which assumes complete
equilibrium in each stage), a point slightly to the right of the minimum is chosen, signifying
that additional stages may be needed in a real column to achieve the same separation efficiency
as modeled in DSTWU.

The minimum value in the Figure 5.16b represents the lower cost for the operation and can be
used as estimate in the RadFrac module. The parameters of purity were also optimized to meet
the purity for the processing.

The dehydration column parameters were optimized based on the requirements for the final
product [272]. The glacial acetic acid liquid is usually available as glacial acetic acid with 1 - 5
wt% water and over 95-99% purity [200, 272, 273].

The final stream meet the requirements (99.5%mol) and the lights contains ethanol, methyl
acetate and ethyl acetate.

5.5.2.7 Process Flowsheet Analysis

Figure 5.17 introduces the proposed flowsheet. There are five distinct areas: (i) the feed
conditioning and recompression, where the gases unreacted were recompressed, the solvent is
mixed with the solvent make-up stream and the fresh reactants are introduced; (ii) the reaction
system, where the reaction takes place; (iii) the liquid vapor split, to separate the effluent of the
reactor into monophasic streams; (iv) the gas separation system and(v) the liquid separation
system.

In the proposed flowsheet design methanol, (16.3 t/h), carbon dioxide (28.9 t/h) and hydrogen
(0.8 t/h) react in a solvent media yielding acetic acid (25.1 t/h).

The gas separation system removes condensables, using compressors (6.5 MW), coolers (7.4
MW) and a membrane module (pressure drop of 23.9 bar), yielding a stream of 57.5 %mol of
hydrogen and 42.4 %mol of carbon dioxide, requiring 14.8 MW of power for the recompression
system.



125

Feed Conditioning & Recompression
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Figure 5.17: Proposed flowsheet for acetic acid production.

In the liquid separation system, the solvent recovery column (17 stages and the reflux ratio of
0.09) is followed by the second column (10 stages with a reflux ratio of 2.46) to remove the
lights. The dehydration column is 40 stages with reflux ratio of 5.71. Similar results were found
by Feyzi and Beheshti (2017) [274].

In comparison to the conventional method of methanol carbonylation, this innovative route from
CO2 exhibits a configuration that shares similarities with its conventional counterpart. Industrial
applications of the methanol carbonylation process have employed various homogeneous metal-
organic complexes as catalyst, based on cobalt, rhodium, ruthenium, or iridium. These catalysts
operate at temperatures ranging from 150 to 300°C and pressures around 60 bar [275]. In this
study, a catalyst and solvent are also utilized, with the temperature range between 170 and
190°C and a pressure of 100 bar, thus exhibiting similarities to the proposed process.

Commercialized methanol carbonylation processes by BASF, Monsanto, Cativa, and Acetica
can be represented by a simplified flowsheet. These processes typically involve a liquid phase
slurry reaction, a flash separation tank for catalyst separation, and a separation unit to obtain
pure acetic acid. The catalyst remains in the liquid phase and is recycled back to the reactor.
However, the separation of the homogeneous catalyst presents challenges [276]. Similarly, the
proposed process incorporates a separation unit to separate and recycle the solvent and catalyst.
Additionally, the inclusion of a final column in the proposed process aligns closely with the
traditional route, primarily for water separation purposes and acetic acid purification.
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5.5.3 Exergetic Results

In order to perform exergy analysis, an exergetic balance was performed for each subsystem
of the flowsheet (feed conditioning and recompression, reaction system, liquid-vapor split, gas
separation system and liquid separation system), according to Figure 5.17.

For identification of the magnitude and location of the inefficiencies, a Grassmann chart is useful
as depicted in Figure 5.18.
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Figure 5.18: True to scale exergy flow diagram (Grassmann chart) for acetic acid production. The
main flows are shown.

Blumberg et al. [41] performed an exergetic analysis for the synthesis of methanol from CO2 and
the integration with three different reforming processes. The author pointed out the locations
of the main inefficiencies in the process.

Exergy destruction (also known as exergy loss or Bdest) refers to the irreversibilities and
inefficiencies within a system that lead to a decrease in the potential of the energy to perform
useful work. When energy undergoes transformations and interactions in a real-world system, it
tends to degrade and disperse, resulting in a decrease in its ability to do work.

Common sources of exergy destruction include:
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• Heat transfer across finite temperature differences: When heat is transferred from a
high-temperature source to a low-temperature sink, there is an irreversibility that results
in exergy destruction.

• Friction and mechanical losses: In mechanical systems, frictional forces and mechanical
inefficiencies cause exergy destruction.

• Mixing of different substances: Mixing two substances at different states can lead to exergy
destruction due to the non-recoverable nature of mixing.

• Chemical reactions: In chemical processes, irreversible reactions can lead to exergy
destruction.

Similarly, in this work the areas with more inefficiencies can be mapped. The thermodynamic
inefficiencies occur mainly within the gas separation system, the gas recompression and in the
liquid separation system, indicating units or areas to be optimized, based on the values of Bdest.

Other methods of separation can also be used, for example: reactive distillation [277], azeotropic
distillation [278, 279], membrane pervaporation ,liquid-liquid extraction [280] or hybrid extraction-
distillation [281, 282]. The drawback of simulate such processes is the lack of experimental data
regarding the specific system under assessment.

5.6 Conclusions

This study presented an assessment of acetic acid production routes from CO2 through a
multicriteria decision analysis, in order to select the most advantageous route in terms of process
characteristic and energy demand.

The attributes of different routes were compared, and the methanol hydrocarboxylation route
demonstrated to be the most promising and it was deeper studied. The exploration of al-
ternative routes for acetic acid production within the field of chemical engineering has led
to the development of an innovative process. While sharing a similar configuration with the
traditional methanol carbonylation method, this process introduces adjustments in temperature
and pressure ranges. By addressing the separation challenges associated with homogeneous
catalysts and incorporating efficient separation units, the proposed process aims to enhance
the overall sustainability and efficiency of acetic acid production. To the best of our knowledge
the literature data regarding the process design of acetic acid production from CO2 is scarce.
Therefore, this work contributes to the field of process synthesis of CO2 conversion to high
added value products.

The flowsheet of the production process was designed based on process synthesis and demon-
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strated to be feasible. The exergy analysis pointed out the locations and magnitude of thermo-
dynamic inefficiencies that can be improved for better design.



Chapter 6

Process Flowsheet of CO2 based
Methanol and Dimethyl Ether

Drawing on the findings of Chapter 4, this chapter offers an evaluation of the
processes related to Methanol and Dimethyl Ether (DME), recognizing the inherent
synergies between them, they will be jointly examined. Following the analysis of
acetic acid production in the previous chapter, this section completes the appraisal of
potential products. The chosen flowsheets for these products were based on the current
state of the art in carbon dioxide utilization. For methanol production, the CO2

hydrogenation route was selected, while for DME production, the methanol dehydration
route was chosen. The study’s findings demonstrate the technical feasibility of these
processes, resulting in the production of 170 kt/y of methanol (99%wt) and 150 kt/y
of DME (99%wt). Process engineering and modeling play a crucial role in chemical
engineering. By employing mathematical models and simulations, valuable insights
into the behavior of the selected chemical processes can be gained. Furthermore, these
tools help identify areas that can be optimized to enhance overall process efficiency.
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6.1 Methanol Production Processes

Methanol (CH3OH) is a chemical compound with numerous industrial applications, including
the production of formaldehyde, acetic acid, and gasoline additives. Also, it is currently used
in the chemical industry as an intermediate to formaldehyde, methyl tert-butyl ether, acetic
acid, dimethyl ether, among others, and an emerging market for olefins. Methanol derived from
renewable sources offers a major promise as the demand keeps growing [112].

Figure 6.1 describes a general process flow diagram for producing methanol either from syngas
or by CO2 hydrogenation. Initially, a mixture of COX and hydrogen undergoes a reaction
in a heterogeneous reactor, resulting in the production of methanol. The effluent stream is
subsequently cooled and separated in a flash. In this flash, methanol is separated as a liquid
stream, while the unreacted gases are recycled back to the reactor. The liquid stream is then
directed to a sequence of distillation columns to obtain high-purity methanol. Kiss et al. [283]
provides further details on this process.

Figure 6.1: Generic process flow diagram used to produce methanol from syngas or CO2 hydrogenation.
Source: Kiss et al. [283].

6.1.1 Conventional Technological Route

The conventional technology for methanol production is the synthesis gas process developed
during the 1920s. It involves the conversion of natural gas, coal, or biomass into synthesis gas
(syngas), a mixture of carbon monoxide, carbon dioxide, and hydrogen. This syngas is then
converted into methanol in a catalytic synthesis.

The technological aspects of the traditional methanol production process can be divided into
three main stages: syngas production, syngas purification, and methanol synthesis.

In the first stage, syngas can be produced by natural gas reforming or biomass (or coal)
gasification. In the case of natural gas, the gas is first desulfurized and then mixed with steam
before being heated to high temperatures in a reformer. The resulting syngas contains varying
amounts of carbon monoxide, carbon dioxide, and hydrogen, depending on the feedstock used.
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The second stage involves the purification of the syngas to remove impurities such as sulfur
compounds, ammonia, and particulates. This is accomplished through a series of processes,
including cooling, compression, and scrubbing with chemicals such as amine and potassium
carbonate. The resulting purified syngas is then ready for the methanol synthesis.

The final stage is the methanol synthesis, which involves the conversion of the purified syngas
into methanol using a catalyst, typically copper or iron oxide. The syngas is first compressed
to high pressures and then heated to around 250-300oC in the presence of the catalyst. The
resulting methanol vapors are cooled and condensed, resulting in a liquid product that is
typically 99.5% pure. Overall, the traditional methanol production process is a complex and
energy-intensive process that requires careful control and optimization of each stage to ensure
maximum efficiency and product quality.

There are some specific technologies for process using syngas route, the Linde Process, Toyo
Process and other minor contributing routes.

In the Linde process, methanol is produced from synthesis gas, using steam reforming or partial
oxidation of hydrocarbons or a combination of both processes. The methanol synthesis occurs
in an isothermal reactor. It is a fixed bed reactor cooled and maintained at optimum operating
temperature through steam production in the pipe interiors [284].

In the Toyo process, syngas is generated in a top-fired steam-methane reformer at temperatures
in the range of 750 - 875 oC and pressures of 15 - 30 atm. Prior steam reforming, the natural
gas passes through an adiabatic pre-reforming step at 500 - 650 oC. The syngas generated is
compressed at about 100 atm and feeds the Toyo’s reactor (MRF-Z reactor). The reaction
temperature is 464-500 oC and the catalyst is a cooper-based compound promoted by ZnO [285].

There are other technological processes, such as ICI Low Pressure Methanol Synthesis Process,
Haldor Topsoe, DAVY technology. All these technologies use low pressure and combined
reforming processes to obtain the best H2/CO2 molar ratio for increasing methanol synthesis
yield and decrease the energy consumption and operational costs.

6.1.2 Innovative Technological Route

The production of methanol, like many other industrial processes, has significant environmental
impacts. The traditional methanol production process, which relies on fossil fuels, can generate
large amounts of greenhouse gas emissions, contribute to air pollution, and lead to water
contamination. However, there are also opportunities to mitigate these environmental impacts
through technological advancements, process improvements and alternative sources as raw
materials.



132

Recently, the use of CO2 has received attention as an alternative to replace the syngas in
the methanol production. There are different routes to produce methanol. One of them is
through direct hydrogenation of CO2 [286]. Other options include reforming processes, namely
bi-reforming [287, 288] or tri-reforming [289, 290]. In the direct hydrogenation process, carbon
dioxide and hydrogen are converted in methanol and water [291].

Carbon Recycling International (CRI), a well-known global leader in converting CO2 into
methanol, has been successfully operating on an industrial scale since 2012. In October 2022, the
world witnessed the launch of the first-ever commercial-scale CO2-to-methanol plant in Anyang,
Henan Province, China. This state-of-the-art facility is unparalleled in its ability to produce
methanol at such a large scale using captured waste carbon dioxide and hydrogen gases. The
plant’s production process relies on CRI’s innovative Emissions-to-Liquids (ETL) technology,
which was initially demonstrated in Iceland. The plant has the capacity to capture 160,000
tonnes of carbon dioxide emissions annually. These captured emissions are then combined with
recovered hydrogen in CRI’s exclusive ETL reactor system, capable of producing 110,000 tonnes
of methanol per year. CRI’s second large-scale project in China, a 100,000-tonne-per-year
methanol plant for Jiangsu Sailboat Petrochemicals, is progressing as planned and is set to
commence operations in the latter half of 2023 [292].

Wiesberg et al. [40] studied different routes to produce methanol using CO2: (i) Route A: direct
hydrogenation and (ii) Route B: bi-reforming of Natural Gas (NG). The results showed that
the utilization of CO2 in Route A (fed from an integrated bioethanol plant) is 5 times greater
than Route B (0.28 tCO2/tmethanol), for a given methanol production. Regarding the economic
aspects, Route A is more competitive, however, both cases are infeasible due to the price of
electricity and NG.

Nizami, Slamet and Purwanto [293] performed a techno-enviro-economics analysis for the
synthesis of methanol by CO2 hydrogenation using renewable hydrogen from photovoltaic-based
electrolysis, the CO2 was provided by a natural gas field processing. The results showed an
increase in overall energy efficiency when heat integration was applied to the integrated hydrogen
production and methanol synthesis.

Basini et al. [294] proposed an innovative process design for converting CO2 into methanol,
including a system for water electrolysis, an electrified reverse water gas shift reactor, and
the methanol synthesis reactor. The authors pointed out that negative CO2 emission can be
achieved if a biogas plant CO2 derived is used.

Yousaf et al. [295] studied the CO2 hydrogenation process using different hydrogen production
sources. They compared the cost of methanol production when H2 is produced via Alkaline
Water Electrolyzer (AWE) or via a high temperature Solid Oxide Electrolyzer Cell (SOEC). The
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results indicated 22.3% reduction in the cost of hydrogen for SOEC as compared to the AWE
as the source of hydrogen production when integrated with the CO2 hydrogenation process.

Cordero-Lanzac et al. [296] presented a study for the production of green methanol from
renewable H2 and CO2, including catalyst, plant and techno-economic/lifecycle analysis. The
results indicated that CO2 can be abated only if renewable energy is used to run the process
(up to 1.75 tCO2/tmethanol). A profitable methanol plant can be achieved if either a rock-bottom
H2 prices (1.5 $/kg) or CO2 taxation (300 $/ton).

Campos et al. [297] evaluated the addition of two intermediate condensation units in methanol
synthesis to increase CO2 conversion. Detailed simulations and analyses compare the proposed
process with the conventional approach. The new process achieves a significantly higher CO2

conversion of 53.9% compared to the conventional process (28.5%) and equilibrium conversion
(30.4%). This reduces the total recycle stream flow by half, resulting in lower operating costs
(4.8% reduction) and fixed investment costs (22.7% decrease). Intermediate condensation steps
are found to be beneficial, boosting CO2 conversion and reducing both investment and operating
costs in methanol synthesis.

6.2 Dimethyl Ether Production Routes

Dimethyl ether (DME) is a versatile gas that has a wide range of applications in various
industries. One of the primary applications of DME is as a fuel, for transportation and heating.
DME is a clean-burning fuel that produces very low emissions of particulate matter and sulfur
oxides, making it an attractive alternative to diesel fuel in areas with strict emissions regulations
[298, 299].

In addition to its use as a fuel, DME has several other applications in the chemical industry.
For example, it can be used as a feedstock for the production of olefins, which are used in the
production of plastics, fibers, and other materials. DME can also be used as a solvent in the
production of pharmaceuticals and other chemicals, as well as a propellant in aerosol sprays.

Dimethyl Ether world production is increasing from 3740 kt/y in 2014 to 5000 kt/y today and
the prevision of yearly growth of 19.65% between 2015 and 2020 and its global market is US$ 6
billion in 2017 [300].

Major DME manufacturers are Akzo Nobel, Royal Dutch Shell, The Chemours Company, China
Energy Limited, Mitsubishi Corporation, Ferrostal GmbH, Grillo Werke AG, Jiutai Energy
Group, Oberon fuels and Zagros Petrochemical Company. Licensors of technology are installing
a dehydration unit in high-capacity existing methanol plants, such as Toyo (6 kt/d) and Lurgi
(5 kt/d) [301].
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The traditional DME production process begins with the production of methanol, which is
typically synthesized from natural gas or coal. Methanol is then converted into DME through a
process known as dehydration. In this process, methanol is mixed with a catalyst, typically a
zeolite, and heated to a high temperature, causing the methanol molecules to loose a molecule
of water and form DME.

The conversion of methanol into DME can take place in either a fixed bed or fluidized bed
reactor. In a fixed-bed reactor, the catalyst is placed in a fixed position within the reactor and
the reactants are passed through it. In a fluidized bed reactor, the catalyst is suspended in a
fluid, typically an inert gas such as nitrogen, and the reactants are passed through the fluid,
causing the catalyst to become fluidized.

After the reaction is complete, the mixture of DME and unreacted methanol is separated from
the catalyst and purified. The separation is typically achieved by distillation, with the DME
and methanol being separated based on their boiling points. The purified DME can then be
stored or transported for use as fuel or propellant [302].

Several technological aspects of the conventional DME production process are important for
optimizing its efficiency and reducing its costs. The separation process is an important step
because it affects the purity of the DME product and the amount of energy required to achieve
the separation. Distillation is the most commonly used separation method, but it can be
energy-intensive and costly. Other separation methods, such as membrane separation, may offer
advantages in terms of energy efficiency and cost.

The manufacture of DME is currently based on fossil fuel derived syngas (indirect route or two
steps process). However, alternative eco-efficient routes have been studied, e.g. CDU based
routes, called direct route, using only one step. The indirect route involves: (i) the synthesis of
synthesis gas (a mixture of hydrogen and carbon monoxide) by gasification of biomass or natural
gas, (ii) the synthesis gas is then converted to methanol, which is subsequently dehydrated to
produce DME. On the other hand, in the direct route, the synthesis of DME is directly from
syngas or, more recently, from CO2.

Schakel et al. [303] evaluated the techno-environmental performance of CO2 utilization through
dry reforming of methane into syngas for the production of DME in a refinery. The results show
that although 94% of the captured CO2 can be utilized for DME production, only 9% of CO2 is
avoided in the entire process due to direct CO2 formation during DME synthesis and the syngas
combustion. The study suggests that this utilization route lowers the Climate Change Potential
(CCP) by 8%.

Dias et al. [304] discussed the estimation of CO2 emissions from industrial processes for the
production of dimethyl ether using two different processes. The results pointed out that the
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process using a water-cooled reactor was more eco-efficient, providing opportunities for reducing
CO2 emissions through modifications in new projects or improvements in existing plants.

A process for direct production of DME from shale gas integrated with CO2 capture has been
developed by Mevawala, Jiang and Bhattacharyya [305]. The study evaluated the pre-reforming
reactor, Autothermal Reforming (ATR) reactor, and DME synthesis reactors. The effects of
key parameters like CO2 recycle ratio and H2/CO ratio on utility consumption in the syngas
synthesis unit, Acid Gas Removal (AGR) unit, DME synthesis unit, and DME separation unit
were studied. The direct shale gas to DME production process has a higher DME yield and
overall equivalent electrical efficiency than the indirect process.

Michailos et al. [306] evaluated the technical and economic feasibility of producing DME via
captured CO2 hydrogenation within a power-to-liquid context, achieving 82.3% CO2 conversion
to DME with a 44.4% global energy efficiency. The electrolysis unit appears to be the main
factor affecting the ecomomic feasibility.

A polygeneration plant with carbon capture for combined power and DME production is
presented in the study of Farooqui et al. [307], integrating a chemical looping CO2/H2O
splitting (CL) unit producing syngas for DME synthesis using oxyfuel power cycle exhaust
gases. The process achieved 50.2% energy efficiency, 45% exergetic efficiency. The economic
analysis showed the potential of integrating chemical looping CO2/H2O splitting for syngas
production into polygeneration systems to increase overall efficiency while reducing the cost of
carbon capture.

Fernández-Dacosta et al. [308] studied the one step process, that is a single reactor with a
bifunctional catalyst that promotes the methanol synthesis and the methanol dehydration
focuses on the economic and environmental performance. They concluded that CO2-based
fuels have limited practical relevance due to the lack of a favorable combination of cost and
environmental performance, unless CO2 is of non-fossil origin (from biomass combustion or
captured from air). The study also highlights methodological challenges in carbon accounting
for CO2-based fuels, emphasizing the importance of considering the entire system (power and
CO2-fuel production) to avoid allocation issues.

The environmental performance of a CO2-enhanced gasification based bio-DME production
process was evaluated and compared to the conventional approach in terms of life cycle assessment
impacts. The results showed that the CO2-enhanced process significantly reduced the burden
on climate change, toxicity, and eco-toxicity by at least 20%, mainly due to low feedstock
consumption, high-energy recovery, and CO2 utilization [309].

The production of DME is a complex process that involves several steps, each with its own set
of challenges. One of the primary challenges faced in the production of DME is the efficient
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removal of water from the reactor. The presence of water can interfere with the catalytic process
and reduce the yield of DME.

Lastly, plant optimization is critical for improving the overall efficiency of the DME production
process. This involves identifying areas where energy consumption can be reduced, optimizing
process conditions, and minimizing waste generation. Plant optimization can lead to significant
cost savings, improve the sustainability of the production process, and increase the compet-
itiveness of the DME industry. Overall, the challenges faced in the production of DME are
significant, and addressing them requires a thorough understanding of the process.

6.3 Methods

On the basis of the most recent developments in CDU, an integrated flowsheet were proposed
to produce methanol and dimethyl ether from carbon dioxide.

6.3.1 Methanol Process Synthesis

The route of hydrogenation of CO2 was evaluated by modeling and simulation. Literature data
are available to validate the model [286].

The synthesis of methanol from CO2 over Cu/ZnO catalyst can be represented by two main
kinetic models: the work of Graaf, Stamhuis and Beenackers [310], where the authors proposed
a kinetic model based on three independent reactions; and Bussche and Froment [311] that
assumed that the main source of carbon in methanol is from CO2, while the conversion of CO is
given by the Water Gas Shift (WGS) reaction.

In this work, the kinetic model from Bussche and Froment [311] with modifications proposed by
Mignard and Pritchard [312] was implemented in Aspen Plus. The corresponding rate equations
for the kinetic model are described in Eq. 6.3.1 - 6.3.2.
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The generalized rate expression to be used in Aspen Plus is:
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r = (kinetic factor) (driving force expression)
(adsorption term) (6.3.3)

when a reference temperature T0 is not specified, the kinetic factor in Aspen Plus is expressed
by a pre-exponential factor and an Arrhenius term:

kinetic factor = kT ne
−Ea
RT (6.3.4)

To rearrange Eq. 6.3.1 for the process simulator as described in Eq. 6.3.4, the numerator must
be rearranged.

kA = k
′

5aK
′

2K3K4KH2

kA = 1.07 × 10−13 kmol/kgcat.s.Pa2
(6.3.5)

The kinetic model can not be inputted directly into the process simulator, and a rearrangement
in the equations must be performed as presented in Eq. 6.3.6.
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A similar procedure was done for Eq. 6.3.2, as described in Eq. 6.3.7.
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kF · PCO2 − kG · PH2O·PCO

PH2

1 + kC · PH2O

PH2
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√
PH2 + kE · PH2O

(6.3.7)

The original parameters for the Eq. 6.3.1 - 6.3.2 are described in Table 6.1. The rearranged
values are described in details in Appendix E.

In this study, the byproducts were not considered [313]. To describe the thermodynamic behavior
of the vapor-liquid equilibrium, the NRTL-RK model was employed. The model incorporates
thermodynamic parameters and activity coefficients to capture the non-ideal behavior of the
components and ensure a realistic representation of the system under study.

For the raw materials input, the CO2 stream is considered to be provided by a typical CO2
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Table 6.1: Original Parameters for the kinetic model from Bussche and Froment [311].
κ Value√
KH2

A 0.499
B 17,197

KH2O
A 6.62 x 10-11
B 124,119

KH2O

K8K9KH2

A 3,453.38
B -

k
′
5aK

′
2K3K4KH2

A 1.07
B 36,696

k
′
1

A 1.22 x 10-10
B -94,765

separation process with amine-based absorption-regeneration method for capturing CO2 (MDEA),
developed at industrial scale and widely considered as the benchmark for the purification of
large industrial CO2 emitters [291, 314].

The H2 feed stream is considered to be provided alkaline water electrolysis due to the main
commercialized technique producing hydrogen (purity level of 99%) [260].

6.3.2 DME Process Synthesis

The dehydration of methanol route (two steps process) was selected for this study. Methanol is
feed to the DME reactor with a mono functional catalyst where dehydration occurs as described
in Eq. 6.3.8.

2 CH3OH −−⇀↽−− CH3OCH3 + H2O (6.3.8)

The kinetics of the methanol dehydration reaction over an acidic γ-Al2O3 catalyst was proposed
by Berčič and Levec [315, 316], as presented in Eq. 6.3.9.

rMeOHdehydration =
kHK2

CH3OH ·
(
C2

CH3OH − CH2OCDME

Keq,MeOHdeh

)
(
1 + 2

√
KCH3OHCCH3OH + KH2OCH2O

)4 (6.3.9)

The original parameters from Berčič and Levec [315] were used in the simulation. The equilibrium
constants (Ki) and constant rate values (ki) used to determine the reaction rate are described
in Table 6.2. The thermodynamic equilibrium constant parameters (Keq,MeOHdeh) were obtained
from Diep [317].

The methanol dehydration reactor is modeled as a Plug Flow Reactor (PFR) with Langmuir-



139

Table 6.2: Kinetics coefficients for methanol dehydration [315].
parameter equation

kH 5.35 × 1013 exp(-17280/T)
KCH3OH 5.39 × 10−4 exp(8487/T)
KH2O 8.47 × 10−2 exp(5070/T)

Hinshelwood-Hougen-Watson (LHHW) kinetics (the detailed Aspen Plus implementation is
presented in Appendix F), operating adiabatically at 12 bar, in accordance with literature range
of pressures [304, 305]. The reaction takes place over Al2O3 catalyst with particle density of
1470 kg/m3 and bed voidage of 0.4 [305, 318]. The reactor lenght is 10 meters to meet the DME
production specified. The DME purification column and methanol-water separation column are
modeled as equilibrium-based models.

When it comes to the synthesis of DME, a specific aspect to consider is that only methanol
derived from the methanol synthesis unit is utilized in the process. This means that no other
feedstocks or reactants are introduced during the synthesis of DME.

The selectivity for the DME synthesis via methanol dehydration is close to 100%. By-products
are therefore neglected in the simulation. The mixing gap of the ternary component system
methanol/water/DME is bypassed [302].

For the separation system, a shortcut distillation column model was firstly used to estimate
the parameters for a rigorous distillation column (RadFrac), in which the parameters were
optimized to meet the purity requirement for AA grade methanol and DME, and also fulfill
the requirements for DME as a fuel according to ISO 16861 [319]. The process of purifying the
product is comparable to those described in the literature [291, 318].

6.4 Results and Discussion

In this section, the results and discussions of the simulation of the selected processes are
presented. The kinetics validation comparing the implementation in the simulator are also
presented.

6.4.1 Kinetics Validation

In order to validate the kinetics of methanol synthesis and DME synthesis, a comprehensive
simulation was carried out using Aspen Plus software. This simulation aimed to assess the
accuracy and reliability of the implemented reaction kinetics involved in these processes. The
simulation results were compared with available literature data as depicted in Figure 6.2. This
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comparison served as a means to assess the agreement between the modeled reactions kinetics
and the experimental data reported in previous studies [311, 315].

(a) (b)
Figure 6.2: Validation of kinetics equations implementation for (a) Methanol Synthesis and (b) DME
Synthesis.

It is possible to verify the good agreement between this study and the reported literature values.
The Figure 6.2a depicts the behaviour of the methanol synthesis, the results follow the pattern
of the literature, and deviations are observed in the first portions of the reactor, however all
within 10% difference.

Van-Dal and Bouallou [320] pointed out that their simulated results are comparable to the
original experimental values from Bussche et al. [311]. This comparison between the simulation
and experimental data provided a strong indication that the modeled reaction kinetics accurately
captured the behavior of the system.

The comparions of different kinetic models for methanol synthesis from CO2 was performed by
[321], indicating that an optimal temperature range of 200 to 250 oC exists for both mechanisms.
This temperature range is favorable for maximizing methanol yield in the studied process. These
results revealed valuable insights into the reaction kinetics and conversion rates of the studied
process, therefore one can analyze the influence of such variables in the final product.

The Figure 6.2b depicts the behaviour of temperature in function of the reactor lenght for the
DME synthesis. The experimental values from Berčič and Levec [315] were compared with the
simulated values from this study. One can see that the simulated values are in good agreement
with the experimental values in the first 30 cm for the lower temperature (551.15 K), while 15
cm for the higher temperature (561.15 K), that can have implications for the process, mainly in
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product yields and conversion rates.

Raoof et al. [322] conducted a sensitivity analysis for the methanol dehydration to DME, varying
the feed temperature and other parameters, and the results indicated a limit of 83% conversion
under 270 oC.

This indicates that the simulation model is reliable and can be used to predict the behavior
of the process at different conditions. The results also suggest that the temperature has a
significant impact on the DME synthesis process, and optimizing the temperature can improve
the efficiency of the process.

6.4.2 Proposed Flowsheet

Figure 6.3 introduces the proposed flowsheet for the synthesis of methanol and Figure 6.4
the DME synthesis and purification of products. There are five distinct areas: (i) the feed
conditioning and recompression, here the unreacted gases are recompressed and the fresh
reactants are introduced; (ii) the methanol reaction section, where the CO2 hydrogenation
reaction takes place; (iii) methanol separation and purification section; (iv) the DME reaction
section, where the methanol dehydration reaction takes place, (v) DME purification section.

Figure 6.3: Methanol process synthesis flowsheet.

The fresh reactants, carbon dioxide (88 t/h) and hydrogen (4.3 t/h) at 20 bar and 37 oC, are
mixed with the unreacted gases and fed into the reactor. These flowrates were chosen to garantee
the product flowrates defined for the chemical plant. The unreacted gases are separated from
the raw methanol using a flash separator and recycled back to the methanol reactor.

A column (CL-04) with 4 equilibrium stages and a reflux ratio of 0.302 is used to remove the
non-condensable gases to send to the flare. The resulting vapor stream consists of 97.45%wt of
CO2 and 2.54%wt of CO, while the liquid stream contains 38.43% water and 61.56% methanol.
The condenser and reboiler consume 0.88 MW and 5.9 MW, respectively, for the removal of
non-condensable gases.
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Figure 6.4: DME process synthesis flowsheet.

The methanol tower (CL-05) consists of 20 stages with a reflux ratio of 2.02. The condenser and
reboiler consume 29.8 MW and 41.5 MW, respectively. The top stream from the tower is AA
grade methanol, which can be sold or used as a raw material for other processes. The bottom
stream is 99.98%wt water, indicating a high degree of purification.

The pure methanol stream is fed into an adiabatic reactor, resulting in the production of raw
DME at 375oC. Subsequently, a DME purification tower (CL-06) with 12 stages and a reflux
ratio of 7.9 is used. The tower separates a top stream containing 99.9%wt DME (17 t/h) and a
bottom stream consisting of 0.566 water/0.431 methanol (11.8 t/h).

The feasibility of the proposed flowsheet is established based on the separation and purification
of the desired products (methanol and DME) and the efficient recycling of unreacted gases.
Further optimization could focus on enhancing the energy efficiency of the system, minimizing
the consumption of resources, and optimizing the separation processes to improve product
purity.

6.5 Conclusion

The study conducted a thorough evaluation of carbon dioxide conversion into methanol and
dimethyl ether. The proposed integrated flowsheet for these products was based on the latest
carbon dioxide utilization techniques, it was based on five distinct stages: feed conditioning and
recompression, the methanol reaction, methanol separation and purification, the DME reaction,
and DME purification. The system utilizes carbon dioxide and hydrogen as raw materials,
efficiently recycling the unreacted gases, while maintaining optimal conditions to achieve the
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desired product flowrates.

The combination of accurate modeling and advanced visualization tools offers a powerful
approach for studying complex chemical reactions. This study confirms the viability and
functionality of the proposed flowsheet, with all sections demonstrating proficient operational
capabilities and yielding high-purity products. However, there is room for further optimization,
specifically concerning the system’s energy efficiency and resource consumption. Future research
can be developed upon these findings to explore additional optmiziation aspects. This study
contributes to the advancement of more sustainable methods of utilizing carbon dioxide as a
resource in the chemical industry.



Chapter 7

Surrogate-based Optimization of
Chemical Plants

This chapter explores the utilization of Artificial Neural Networks (ANN) in the field
of process engineering and optimization. The use of ANNs for generating surrogate
models has proven to be advantageous in representing entire subsystems, comprising
multiple units, within an industrial plant. Surrogate models are mathematically
simple models that map, or regress, the input-output relationships of a more complex
model. The study employs a simulation-based optimization framework that combines
the capabilities of Aspen Plus, a widely used process simulator, with an external
platform housing rigorous optimization algorithms. By leveraging simulation data,
surrogate models are developed as simplified versions of the original models. The
integration of ANNs and simulation-based optimization enables the exploration
of various configurations and potential scenarios. The multi-objective included
minimizing the total annualized cost and reducing CO2,eq emissions, it was possible
to identify optimal solutions that can achieve cost-effectiveness while simultaneously
addressing environmental concerns.

Contents
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 Recommendations for Future Works . . . . . . . . . . . . . . . . . . 185

7.1 Introduction

The economic performance of individual plants and whole production sites is heavily reliant
on the modeling, simulation and optimization of their operations. Process optimization and
synthesis enhance process designs through optimization, reaching higher efficiency, lower costs
and improves plant operability [323]. The unit operations are represented by complex first
principle models, including transport, thermodynamic and kinetic relationships. The set of



145

rigorous models are accessed by the use of modern simulators, where a detailed flowsheet
can be designed. However, they are computationally expensive when included directly in the
optimization formulation [324].

In recent decades, a large number of studies using ANN in chemical engineering has been
carried out, from molecular property prediction [325], catalysis [326, 327], fault diagnosis [328],
predictive control [329] and optimization [330, 331]. The use of first-principles knowledge must
be integrated with the neural network in order to retain more physical knowledge of the system
[329].

ANN-based modeling is notable for not requiring prior, specific mathematical information
concerning the process, making it a powerful tool for nonlinear systems.

In their study, Alves and Nascimento [332] focused on producing high purity isoprene from a C5

cut derived from a pyrolysis gasoline unit. The authors utilized neural networks to replace the
operation models of the units in order to find the optimal parameters for the process through a
grid search. A set of 10 neural networks was employed to represent the entire flowsheeting, with
the number of hidden layers determined based on the minimum error in the test set. Ultimately,
this framework successfully optimized a chemical plant using neural networks and industrial
data.

Hang, Zhou and Liu [333] improved neural network models for the reactor and distillation
column, in an ethylbenzene unit, which is simulated and optimized by the proposed method
reducing 55.25% the heating utility consumption.

Khezri et al. [330] proposed a hybrid model for optimizing a large-scale gas-to-liquids process.
They constructed a dataset by simulating the GTL process and compared various topologies to
identify the most promising one. Different configurations with one and two hidden layers and
varying numbers of neurons were tested. The optimal configuration consisted of two hidden
layers with 7 and 15 hidden neurons, respectively. The ANN model was developed using input
features such as the tail gas unpurged ratio, recycled tail gas to FT ratio, H2O/C in the syngas
section, and CO2 removal percentage. The output feature was the wax production rate. The
ANN model was subsequently utilized for optimization purposes, allowing for the improvement
and fine-tuning of the GTL process.

Savage et al. [334] introduced a hybrid framework based on machine learning to optimize
a CryoMan Cascade cycle system. The authors conducted a comparison between different
surrogate models, namely ANN and Kriging Partial Least Squares. The results demonstrated
a notable reduction in the optimization time compared to the rigorous model. Furthermore,
the study revealed that a single large ANN was insufficient to capture the complex nonlinearity
inherent in the process, as indicated by the final accuracy. Consequently, the authors devised a
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strategy to divide the surrogate model into multiple parallel sub-models, which significantly
improved the overall accuracy of the optimization process.

In order to circumvent the solution problem of a superstructure, Henao and Maravelias [335]
proposed a framework to replace complex unit models, based on first-principle, by surrogate
models, developed through artificial neural networks.

Leperi et al. [336] proposed a model reduction-based approach to generate surrogate models of
a rigorous Pressure Swing Adsorption (PSA) models, by training artificial neural networks on
data collected from full partial differential algebraic equation simulation.

Zapf and Wallek [337] study a multi-objective optimization for a petrochemical production plant.
The authors used Black Box Model (BB) or Gray Box Model (GB) based process models from
process data and the results indicated the better performance when used ANN.

Wu et al. [329] proposed a hybrid machine-learning model incorporation first principles into
a Recurrent Neural Network (RNN). The authors studied two models, a partially-connected
RNN model and a weight-constrained RNN model and applied to a chemical process containing
two well-mixed, non- isothermal continuous stirred tank reactors in series. The two proposed
models outperformed a Lyapunov-based model predictive controller based on prediction accuracy,
smoother state trajectories and the economic advantages.

The development of an industrial process involves numerous steps that take into account many
different levels of detail. The more precise the scale, the more intricate and complicated the
process becomes [338, 339].

As the number of interconnected plants increases, the negative effects of these issues become
more severe. This leads to a difficult, mixed-integer nonlinear problem when trying to optimize
an entire production site. As a result, there is a wide range of research devoted to finding
solutions for this problem in order to make decisions that will help meet business objectives
through optimizing production operations across all sites.

The optimization of conceptual plants is motivated by the opportunities of this research domain
owing to environmental concerns, industrial and economic context. The objective of this study
is to propose a methodology to optimize a chemical plant related to economics and enviromental
parameters. A complete subsystem of a chemical plant (units or group of units) are modeled
as black box surrogate models, based on artificial neural networks and incorporated into the
optimiziation procedure.

Employing simplified models or surrogates at the unit operation level offers several advantages,
primarily because these surrogates can effectively represent entire subsystems composed of a
specific number of units [332]. Artificial Neural Networks (ANN) are well-suited for generating
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surrogate models due to their exceptional fitting capabilities [31].

7.2 Methods

An overview of the procedure proposed is provided in Figure 7.1. The framework incorporates
the benefits of using a process simulator, in which rigorous calculations can be performed,
including thermodynamic model, to the equation oriented environment.

Begin

Data Collection
COM -
ActiveX

Pre-Processing

ANN Generation
ONNXX

Keras Tuner
Hyperparameter optModel

End

Figure 7.1: Procedure for Surrogate artificial neural network model generation.

The connection between Aspen Plus and Matalb is estabilished by a Component Object Model
(COM) in ActiveX. The dataset is, then, ready for pre-processing. The differences in the scales
across input variables may increase the difficulty of the problem being modeled, and therefore
the input were normalized. The output were also normalized to avoid large error gradient values,
which can change the weight values dramatically, making the ANN learning process unstable.

The neural network model was developed using the TensorFlow library, while the integration
with Matlab was established through the ONNX connection. In the Python environment, the
hyperparameters were fine-tuned using the Keras Tuner library. The last step is the surrogate
model expressed as a function of weights and biases.

The simultaneous use of various software programs, such as Aspen Plus, Matlab, TensorFlow,
and GAMS, brings together the strengths of each tool, allowing for rigorous modeling, calculation,
and optimization of chemical plants. Aspen Plus simulator contains implementations for the
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rigorous modelling of unit operations, moreover it allows the use of a thermodynamic package
selected according to the system under evaluation. Matlab can connect with several other
applications and also calculate and store functions and values in an efficient way. Python open
source library tensorflow is very detailed in exploring the best of neural networks, and finally
the GAMS is a high-level modeling system for mathematical optimization.

7.2.1 Data Collection

The precise determination of the states of a system in the chemical industry is derived from
mass and energy balances rigorously modelled. The computer-aided process systems provide a
large variety of tools and packages (Aspen Plus, COCO and cantera-python).

The proposed framework incorporates the simulations performed in the Aspen Plus environment
(see Chapter 5 for acetic acid and Chapter 6 for methanol and DME). Figure 7.2 introduces
the diagram of the data collection and storage in a dataset, representing the first part of the
framework.

The Latin Hypercube Sampling (LHS) [340, 341] was selected for generation of the design
variables. The algorithm generates random values by dividing the range of given random
variables into equal probability intervals or stripes, and each stripe is sampled only once. It
ensures a homogeneous cover of the sampling space.

Once the initial design has been generated, it serves as the input for the simulation process
(Part 1). The connection between Aspen Plus and Matlab is established using a Component
Object Model (COM) in ActiveX. The simulation’s proper execution is accounted for in Part
2, wherein Aspen Plus receives all the defined input variables, resets any previous values, and
initiates the simulation run.

The framework is capable of handling various unit operations, regardless of their quantity or type.
This is achieved by implementing a loop for each unit operation within the subsystem being
evaluated. Prior to proceeding to the next step, each unit operation undergoes a convergence
evaluation (Part 3). The convergence criteria may differ depending on the specific unit. For
instance, in the case of a rigorous column (using the RadFrac module in Aspen Plus), the option
to automatically attempt different solvers for convergence is incorporated.

Part 4 is concerned with the sizing and costing aspects. Once a unit operation has converged,
a utility is assigned to it, selected from a standardized list of utilities based on the prevailing
conditions.

To determine the capacity of each unit operation, a sizing function is called. This function
calculates the unit capacity based on process data and specifications. For some equipment, such
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Figure 7.2: Diagram for data collection and storage.
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as pumps, the simulation results directly yield the unit capacity. However, for equipment like
columns, the unit capacity needs to be calculated using specific procedures and correlations.
The details of these sizing procedures can be found in the referenced literature [342, 343].

Once the unit capacity is determined, the cost can be calculated. The algorithm proposed by
Turton et al. [343] is employed to calculate the bare module cost of equipment (CBM,i). This cost
estimation takes into account factors such as the material of construction, operating pressure,
correlations based on individual pieces of equipment, and adjustment for inflation using the
Chemical Engineering Plant Cost Index (CEPCI - 2020).

Finally, the code saves all the results in a database (Part 5) for further use in the artificial
neural network generation.

7.2.2 Surrogate Model Approach

An overview of the procedure proposed for the generation of a surrogate model using neural
networks is provided in Figure 7.3.

Figure 7.3: Procedure for the generation of surrogate models based on artificial neural networks.

The framework first builds a hybrid machine learning based surrogate model to reduce the
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system dimensionality and capture the nonlinearity of the underlying the chemical process. A
mass balance analysis (Part 1) can identify possible correlation between streams. Therefore,
a phenomenological model is used together with the machine learning model to represent the
subsystem of the chemical plant, if needed.

A feature engineering can reduce correlated features or merge features. This procedure aids to
the reduction of the dimensionality of the inputs and outputs for the neural networks.

The dataset is, then, ready for pre-processing. The differences in the scales across input variables
may increase the difficulty of the problem being modeled and therefore the input were normalized.
The output were also normalized to avoid large error gradient values, which can change weight
values dramatically, making the learning process unstable.

The neural network was modeled using the tensorflow library. Tuning hyperparameters for a
neural network involves optimizing the values of parameters such as learning rate, batch size,
and activation functions to enhance the network’s performance and achieve better accuracy. The
hyperparameter has been tuned using keras tuner library in python environment as presented in
Part 4 (Figure 7.3).

7.2.3 Description and training of ANNs

The Artificial Neural Network (ANN) is a class of machine learning algorithm which its inner
function is based on the biological neural networks of human brains [344]. Simple units (or
nodes) are interconnected in an assembly structure, where the ability of processing is established
by the weights through a learning process [345].

Figure 7.4 depicts the structure of a neural network, the inputs are represented by the single
units or nodes in the input layer. The summation junction is a simple arithmetic addition of a
unit value multiplied by its weight and the bias [345].

The next step incorporates a non-linearity to the model using an activation function in a form
of ϕ(). This procedure allows the modelling of non-linear relationships between inputs, not
possible if one uses only the summation junction [345].
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Figure 7.4: Basic structure of an artificial neural network.

The architecture of a neural network can contains several hidden layers stacked, based on the
principle described, called Deep Netural Networks [346]; however, is out of the scope of the
current study.

The superior prediction capabilities of deep neural networks over shallow neural networks is
demonstrated for a wide range of applications [347, 348]. One of the disadvantage is that deep
networks require a large amount of data for training.

The training stage is defined as the stage to fit the model to the data (where an optimizer and
a loss function must be assigned). All the learnable parameters are calculated, in the training
process, through the backpropagation algorithm. Some parameters, called hyperparameters,
must be set prior training [344, 345]. These hyperparameters must be to be tuned in order
to achieve the best ANN architecture. The visualization of the data prior to training and
hyperparameters settings is essential in order to define the best choice of the activation function,
for example.

Among the major and more important hyperparameters to be tunned are: (i) number of hidden
neurons, (ii) activation function, (iii) optimizer, (iv) regularization and their dependencies
(learning rate, optimizer specific, dropout rate, etc).

Activation functions play a crucial role in the neural network architecture by introducing
non-linearity and enabling complex mapping between inputs and outputs, additionally to the
computational efficiency of training a model. Sigmoid function, Hyperbolic Tangent (TanH)
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and Rectified Linear Unit (ReLU) are some examples of activation functions. Recent studies
improve the classical activation functions, defining new functions (Leaky ReLU, Swish, H-Swish)
[349]. In the Sigmoid activation function, the output values bound between 0 and 1, normalizing
the output of each neuron, although there is a problem of vanishing gradient and outputs are
not zero centered. In the TanH, the outputs are zero centered, i.e. when the inputs contain
strongly negative, neutral, and strongly positive values the modeling is easier. The ReLU is a
computationally efficient activation function that will output the input directly if it is positive,
otherwise, it will output zero. In the Leaky ReLU, the slope is changed left of x=0 avoiding the
dying ReLU problem (some neurons can die for all inputs and remain inactive).

For the optimizer, the Stochastic Gradient Descent (SGD) is a variant of the gradient descent
algorithm. It only performs computations on a small subset or random selection of data
examples. The Adam optimizer combines the advantages of two SGD extensions — Root Mean
Square Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad) — and computes
individual adaptive learning rates for different parameters. Other optimizers like Adamax,
Adadelta, Adagrad, and Nadam offer further enhancements, such as adaptive learning rates,
momentum, and moment-based gradient adaptations.

Regularization is a technique for preventing over-fitting by penalizing a model for having
large weights. There are two main regularization parameters: L1 (lasso) and L2 (ridge). L1
regularization adds a penalty to the loss function based on the absolute value of the model’s
weights, encouraging sparsity. L2 regularization, also known as weight decay, penalizes the
sum of squared weights, discouraging large weight values. Regularization techniques promote
simplicity, reduce overfitting, and improve the model’s ability to generalize to unseen data.
They play a crucial role in neural network architecture by striking a balance between model
complexity and performance, leading to more robust and accurate models

7.2.4 Superstructure Optimization Approach

Considering environmental aspects in the design of chemical processes is important for pro-
moting sustainability, minimizing environmental impact, and complying with regulations. By
incorporating eco-friendly practices, such as emissions control and waste reduction, the design
can promote environmental-friendly practices and reduction in industrial impact. Addressing
environmental factors early in the design phase avoids costly retrofits and aligns business
interests with environmental protection.

It should be noted that economic and environmental objectives often conflict. Therefore, a
multiobjective optimization algorithm that can identify the tradeoffs between these competing
criteria must be used in order to develop chemical processes automatically. Single-objective
optimization is not enough to achieve this [350].
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The objective function for optimization problems are normally the maximization of the net
present value (NPV) [351] or the minimization of the total annualized cost (TAC) [352–356].
The initial step for both situations is to calculate the capital cost, which includes the cost of
constructing the plant and the operating costs.

The selected objective function for the current work is the total annualized cost (TAC) used to
measure the economic viability and profitability of a chemical production process and the Total
CO2,eq usage.

The total annualized cost of a chemical plant is the sum of all the costs associated with the
operation of the plant over the course of one year. This includes the cost of labor, raw materials,
energy, maintenance, and any other associated costs. To calculate the total annualized cost, one
must first identify all the costs associated with the operation of the plant and then calculate the
total cost for each of these components. The total cost for each of the components are summed
to get the total annualized cost.

The TAC must be minimized and contains two terms, one for operating costs and one capital
costs, as shown in Eq. 7.2.1 [342].

TAC (US$/year) = OPEX + i (1 + i)n

(1 + i)n − 1 · (CAPEX) (7.2.1)

where OPEX is the operating cost per year and CAPEX is the total grassroots cost for the
purchase and installation of all major equipment. The term

[
i(1+i)n

(1+i)n−1

]
is the annualization factor

(F) [357] of the capital cost, where i stands for the fractional interest rate per year, considered
10% in this study, and n is the lifespan of plant equipment, the value of 15 years was adopted
[358, 359]. The plant will run 8000 hours a year.

Cost parameters and correlations for both CAPEX and OPEX follow the methodology defined
by Turton et al. [343]. The Eq. 7.2.2 defines the CAPEX, while Eq. 7.2.3 defines the OPEX.

CAPEX = 1.18 · CBM + 0.50 · CBM,0 (7.2.2)

OPEX = 1.23 · (CRM + CW T + CUT ) + 2.73 · COL + 0.18 · CAPEX (7.2.3)

CBM stands for bare module equipment cost: direct and indirect costs for each unit and CBM,0

the bare module cost for the base conditions [343].

CRM stands for raw material cost, which is estimated based on the input streams of the raw
materials. It may be important to consider the average price of a given chemical product over
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a long period of time, as there may be significant seasonal fluctuations in pricing. Such price
variations are usually caused by changes in the supply and demand of the product, which have
a major impact on the cost at any given moment.

CW T stands for treatment of the residue. Since environmental regulations are more strict, the
issues and costs associated with the treatment of waste chemical streams also significantly
increase. Therefore, waste minimization strategies or other solutions are crucial. According to
Towler [342], the cost of wastewater treatment is typically about $1.5 per metric ton.

CUT stands for cost of utility, which is calculated using the output - utility usage - of each
neural network; and COL is the labor cost.

The emission factors for CO2 associated with utility usage were obtained from the U.S. Environ-
mental Protection Agency’s regulation E9-5711, also known as the "Mandatory Reporting of
Greenhouse Gases." [360]. This regulation encompasses all sectors of the U.S. economy, including
both fossil fuel suppliers and direct greenhouse gas emitters. The emission factors specific to
utilities can be found in Table 7.1. The utility usage is aggregated into the variable Total CO2,eq

and employed in the optimization problem.

Table 7.1: Utilities Emission Factors.

Utility CO2 emission factor (tonne/GJ)

Electricity 0.0964
Low Pressure Steam 0.0658
High Pressure Steam 0.0658

Low Temperature Refrigerant 0.0558
Very Low Temperature Refrigerant 0.2012

7.2.5 Surrogate model reimplementation

The surrogate model is expressed as a function of weights and biases and can be rewritten
directly in the optimization environment of the General Algebraic Modelling System (GAMS)
software using GDXMRW (GDX-Matlab Read/Write), a suite of utilities to exchange data
between GAMS and MATLAB.

A special case occurs when the best activation function, retrieved from the hyperparameter
tunning step, the Rectified Linear Unit (ReLU). In this case, the big-M formalism was used in
order to accommodate the non-linear nature of the equation: xk = σ(W k · xk−1 + bk), where
σ(y) := max{0, y} [361].

The final optimization model is represented in Eq. 7.2.4. The weighted sum multi-objective
approach was used [362].
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min α · TAC + (1 − α) · Total CO2,eq

s.t. auxiliary equations

TAC = OPEX + i (1 + i)n

(1 + i)n − 1 · (CAPEX)

CAPEX = 1.18 · CBM + 0.50 · CBM,0

CBM =
k∑
1

yk
CBM

∀ k ∈ K

CBM,0 =
k∑
1

yk
CBM,0

∀ k ∈ K

OPEX = 1.23 · (CRM + CW T + CUT ) + 2.73 · COL + 0.18 · CAPEX

CRM =
r∑
1

(RMusager · RMcostr) ∀ r ∈ R

CW T =
k∑
1

yk
water · WTcost

COL = AHW ·
(
6.29 + 31.7 · P 2 + 0.23 · Nnp

)0.5

CUT =
k∑
1

u∑
1

yk
u ∀ k ∈ K, u ∈ U

Total CO2,eq =
k∑
1

yk
CO2,eq

∀ k ∈ K

surrogate models
yk

p = ANNk(xk
p) ∀ k ∈ K, p ∈ P

operating region
lb ≤ xk

p, xk
q ≥ ub

purity product specifications
yk

purity producti
≥ 0.98 ∀ i ∈ [ME, AA, DME]

(7.2.4)

where K represent the list of neural networks, P the list of properties estimated from the neural
networks, U the list of utilities, R the raw materials,
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7.3 Results and Discussion

The application of the framework to two case studies is presented in this section.

7.3.1 Case Study 1 - Methanol and DME Production Process

The process assessed in the case study #1 is the methanol and DME synthesis presented in
Chapter 6. The detailed process flowsheet is depicted in Figure 7.5.

Figure 7.5: Methanol and DME Production Process Flowsheet.

7.3.1.1 Variable Selection and Data Collection

The first step of the framework is to define the variables to be evaluated as presented in
Figure 7.2.

According to Srinivasan et al. [363], developing a comprehensive model for a chemical process
poses considerable challenges owing to the sheer multitude of variables and the complex series of
steps it entails. Moreover, the process is heavily reliant on conditions that exhibit non-linearity
and transience, further exacerbating the difficulty.

The intricate nature of chemical processes needs a thorough understanding and careful con-
sideration of numerous factors. With a multitude of variables at play, ranging from reactant
concentrations and reaction rates to temperature, pressure, and catalyst properties, capturing
the interplay and interdependencies between these elements becomes an intricate task.

For the case of methanol and DME production, the main variables defined are temperature
of the heat exchangers, lenght of reactors, reflux ratio and distillate to feed molar ratio of the
columns. The variables collected after the simulation are utility CO2,equivalent usage, utility
usage, mass flows and bare module cost for capital cost calculations.

The Figure 7.6 translates the variables into a neural network. It is a feed-forward neural network
with only one hidden layer. The number of neurons is defined in the hyperparameter tuning
step.
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There are 13 input variables: T_HT-12 to T_HT-16 are temperatures in degrees Celsius (oC)
of the heat exchangers from 12 to 16. Lenght_RT-02 and Lenght_RT-03 are the length of the
reactors 2 (Methanol) and 3 (DME) in meters. RR_CL_4 to RR_CL_6 are the reflux ratio
of the columns 4 to 6, while D-F_CL-04 to D-F_CL-06 are the distillate to feed ratio of the
columns 4 to 6.

Figure 7.6: Detailed architecture for methanol and DME ANN.

After the simulation and data collection, the output are aggregated into groups, for example
the CO2eq is the sum of all CO2,equivalent from the utility usage. Reducing the number of output
features, often leads to an in increase in the overall performace of the final neural network model.
The final output features are CO2eq, cost of utilities, total flow of the main streams, purity of
the selected streams and total capital cost (bare cost module).

The final set of outputs analyzed is CO2_eq that is the CO2 equivalent for utility usage in kilo-
grams (kg). The utility cost variables are Cost_Hot_Utility, Cost_Cold_Utility, Cost_WATER,
and Cost_ELECTRIC expressed in US$. The flow_705, flow_710 and flow_704 are the flow
of the methanol, DME and wastewater stream in kg. The percentage_DME_710, percent-
age_Meoh_705 and percentage_H2O_704 represent the purity of the component in the stream.
The CBM0 and CBM represent the bare cost module used in economic calculations.
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Based on the selected variables used as inputs, a design of experiments based on latin hypercube
sampling (LHS) was used. It ensures uniform coverage of the parameter space, enhancing the
exploration of the design problem. LHS is efficient, requiring fewer experiments to achieve
a desired level of precision. It reduces bias by evenly distributing samples, enabling reliable
statistical analysis. LHS is flexible, accommodating both continuous and discrete variables, and
is scalable to higher dimensions.

The data distribution of the input variables used for the phenomenological model are presented
in Figure 7.7 using a pair plot. This visualization technique is used to examine the relationships
between pairs of variables in a dataset and to explore the correlation between multiple variables
in a single plot, making it easy to identify patterns and relationships that might not be apparent
in a single scatter plot.

A uniform distribution was successfully attained, using the lhs sampling technique. The data
points are evenly distributed throughout the parameter space, resulting in a more comprehensive
and representative sample. It is worth noting that the same pattern and distribution were
observed across all assessed variables.

The collected data from the simulation are depicted in Figure 7.8. It is important to note that
the raw output from the simulations were aggragated through feature engineering, helping to
reduce the complexity of the input data by removing irrelevant or redundant features.
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Figure 7.7: Input data distribution for Methanol and DME Neural Network.

From Figure 7.8, it is possible to identify a linear relationship between some variables, for
example the purity in the methanol stream and wastewater stream, since this streams are
outputs of the same separation column in the flowsheet.
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Figure 7.8: Output data distribution for Methanol and DME Neural Network.

Based on the simulation results, it seems that there are no outliers or unusual observations.
An interesting observation is the relationship between the cost of water and the percentage of
DME in the stream 710. The results indicate that as more water is used, the percentage of
DME in the stream 710 increases linearly. However, there is a limit to the purity of the DME in
this stream, beyond which increasing the amount of water used does not result in any further
increase (or decrease) in DME purity. This observation could has important implications for
the design and operation of the chemical plant. For example, it suggests that there may be
an optimal amount of water usage that maximizes the purity of DME in the stream 710 while
minimizing the cost of water.
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7.3.1.2 Neural Network Generation

As previously describe, in this case study, only one neural network will represent the entire
process flowsheet described in Figure 7.5.

Hyperband is a powerful technique for efficient neural network hyperparameter tuning. It
combines random search with early stopping, allowing for the exploration of a wide range
of hyperparameter configurations in a time-effective manner. The process involves training
multiple configurations in parallel, progressively eliminating poor performers. This helps identify
promising hyperparameter settings and allocate more resources to them, maximizing the chances
of finding optimal solutions. By dynamically adapting the resource allocation and termination
criteria, hyperband achieves significant time savings compared to traditional grid or random
search methods [364]. Hyperband Tuner Search using the library keras-tuner was used for select
the best hyperparameters. The results are depicted in Figure 7.9.

Figure 7.9: Hyperparameter Search for Methanol and DME Neural Network.

The hyperparameters tuned are the number of hidden neurons, L1 and L2 regularization, learning
rate, optimizer and the activation function. The activation function play an important role in
the configuration of a neural network, Figure 7.9 shows the impact on the mean square error.
The sigmoid activation function usually produces models with higher errors compared with tanh
and ReLU functions.

The evaluation metric used to define the best model is the Mean Squared Error (MSE), a
commonly loss function used for regression tasks. The final model is the one that achieved the
lowest MSE (using 3 trials). For the methanol and DME neural network, the calculated MSE
value of 2.467 × 10−3.

The neural network model consists of a hidden layer with 63 neurons, responsible for performing
computations and learning representations from the input data. The dense activation function
parameter is the ReLU.
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Regularization techniques are applied to the model to prevent overfitting and control the model
complexity. The ’regularizer_1’ parameter represents the strength of L1 regularization, which
adds a penalty proportional to the absolute values of the weights. This helps to reduce the impact
of less important features in the model. The best value for this parameter was 1.354 × 10−8.
On the other hand, the ’regularizer_2’ parameter indicates the strength of L2 regularization,
which adds a penalty proportional to the squared values of the weights. This regularization
technique further reduces the model complexity and encourages the model to generalize well.
The best value for this parameter was 7.331 × 10−6.

The optimization algorithm used to train the model is specified by the ’optimizer’ parameter.
The hyperparameter search indicated ’adamax’ as the best one. Adamax is a variant of the
Adam optimizer, known for its adaptive learning rates and momentum. This optimizer helps to
efficiently update the model’s parameters during training and improve convergence.

The learning rate determines the step size taken during each iteration of the training process.
A learning rate of 3.330 × 10−2 is chosen for this model. Finding an appropriate learning rate
is crucial, since a higher learning rate can lead to faster convergence, but it may also risk
overshooting and instability during training.

The performance of the neural network results were evaluated by comparing the predicted values
with the actual observed values. Figure 7.10 shows the observed value and the value predicted
using the best model from the hyperparameter tunning.

The training dataset contains 3472 samples and the test dataset contains 613 samples. A high
degree of concordance was observed between the predicted and observed values across the
evaluated variables. The neural network consistently achieved accurate predictions. The model’s
performance was also evaluated using the coefficient of determination (R2), and the results vary
from the lowest of 0.935 (for CBM0 ) to the highest of 0.998 (for Cost_WATER).

The results demonstrated the effectiveness of the neural network in accurately predicting various
outcomes, highlighting its potential for real-world applications.

The key advantage of ANN-based modeling is that it does not rely on predetermined mathematical
information about the process steps, but rather learns from training examples. As a result,
ANN-based modeling can be employed for predicting the results of chemical processes and also
in the optimization framework.
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Figure 7.10: Predictions for the Methanol and DME Neural Network.
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7.3.1.3 Optimization Aspects

The optimization problem is classified as MINLP due to discrete variables of the neural network
and non-linear functions, such as the activation function.

Eq. 7.2.4 represents the proposed set of equations assessed. The combination of Total Annualized
Cost and Total CO2 was set as objective function to be minimized.

The neural network generated in Section 7.3.1.2 was also used in the optimization framework.
The input variables for the optimization are the same as the inputs for the neural network,
Table 7.2 present the minimum and maximum values set as restrictions for the optimization.

Table 7.2: Free variables for the optimization of case study #1.
Input Variable Minimum Maximum Base Case (no opt)

T_HT-12 205.01 220.00 210
T_HT-13 35.00 38.00 35
T_HT-14 26.00 35.99 27
T_HT-15 70.00 80.00 75
T_HT-16 40.00 50.00 45

Length_RT-02 10.00 14.00 12
Length_RT-03 8.00 12.00 10

RR_CL-04 0.05 3.00 0.302
D-F_CL-04 0.16 0.17 0.163
RR_CL-05 0.05 3.00 2.020
D-F_CL-05 0.44 0.45 0.447
RR_CL-06 0.05 10.00 7.943
D-F_CL-06 0.41 0.42 0.411

In this optimization problem, the complete model consists of 23 blocks of equations, encompassing
a total of 504 unique equations. These equations are derived from various aspects of the problem
(see Eq. 7.2.4). Additionally, the model comprises 20 blocks of variables, with a total of 328
unique variables. These variables represent the decision-making variables (Table 7.2) that are
subject to optimization and also including the internal hidden variables of the neural network.
Furthermore, the problem involves 126 discrete variables, which introduce discrete choices and
further complexity to the optimization process. The non-linear matrix, a key component of the
problem, is composed of three coefficient entries. These coefficients contribute to the non-linear
relationships within the model and influence the optimization outcomes.

Base Case from Simulation

The base case contains the original values from the simulation developed in Chapter 6, and the
free variables in the base case are presented in Table 7.2.
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The economic analysis of the proposed chemical plant reveals that the total annualized cost is
$276.58M, while the total CO2,eq emitted, represents the total amount of carbon dioxide emitted
by the chemical plant during its operation based on utilities usage. This value highlights the
plant’s environmental impact and carbon footprint and, for the base case, the calculated value
is 458.23M kg/year.

Different Solvers Comparison

Comparing different solvers in MINLP optimization is crucial for selecting the most suitable
solver. By comparing solvers, one can assess their performance in terms of solution quality,
convergence speed, and robustness. Different solvers employ diverse algorithms, heuristics, and
optimization techniques, making their performance vary. Additionally, solvers may excel at
specific problem characteristics, such as handling non-convex functions or supporting certain
constraints [365, 366].

For the sake of simplicity in this evaluation, a alpha (α) of 1 was adopted. Table 7.3 displays
the comparison results for various solvers. The software GAMS (version 25.0.3) was employed.

Table 7.3: MINLP solver comparison for optimization problem.
Solver Objective Value Resource Usage Iteration Count Version
antigone 2.727 × 108 0.188 0 1.1
baron 2.675 × 108 0.730 0 17.10.16
dicopt 2.675 × 108 0.234 453 2
lindo 2.696 × 108 0.765 58278 11.0.3802.300
scip 2.694 × 108 0.000 87 -

The differences can be due to relative optimality tolerance or due to the nature of the algorithm
used for the solver. The concept of critical optimality tolerance and its implications in solving
optimization problems meaning that the solver will stop when it finds a feasible integer solution
within a gap (tolerance) of the global optimum.

In case of nonlinear nonconvex problems, local solvers can find an optimum that is better than
neighboring points, but it may not be the global optimum. The optimal solution depends on
the starting point and the path taken by the solver, which can vary due to numerical differences
in data, initial values, and bounds.

Multi-Objective Results

The base case was compared with an optimized case, using the parameter α fixed in 1 (see
Eq. 7.2.4). The optimization process, with variables left free for adjustment, reduced the total
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annualized cost of the chemical plant from $276.58 million in the base case to to $267.55 million,
a reduction of approximately $9 million (3.26%).

The more significant improvement is observed in the total CO2,eq emissions, which decreased
from 458.23 million kilograms per year in the base case to 338.77 million kilograms per year in
the optimized scenario. This reduction in CO2,eq emissions is crucial from an environmental
standpoint as it signifies a substantial decrease in the plant’s carbon footprint and an improvement
in the plant’s environmental performance.

The environmental importance of this reduction is due the variables related to utilities usage,
including steam pressures and temperatures, cooling water flow rates, electricity consumption
targets, fuel usage, and other energy-related parameters.

Table 7.4 provides a comprehensive comparison between the variable values of the base case
and the values achieved after the optimization process. This table serves as a valuable reference
for understanding the specific changes made during the optimization and their effects on the
overall performance.

By comparing the optimized variable values with those of the base case, it becomes evident which
specific parameters have been modified to achieve the desired improvements. This comparison
helps identify the key drivers behind the cost reduction and CO2,eq equivalent emission reduction.

Table 7.4: Comaprison of variables in the base case and after optimization.
Input Variable Case Base (no opt) Optimized

T_HT-12 210 206.16
T_HT-13 35 35.00
T_HT-14 27 26.00
T_HT-15 75 77.65
T_HT-16 45 50.00

Length_RT-02 12 10.00
Length_RT-03 10 8.00

RR_CL-04 0.302 0.053
D-F_CL-04 0.163 0.161
RR_CL-05 2.020 0.968
D-F_CL-05 0.447 0.449
RR_CL-06 7.943 0.055
D-F_CL-06 0.411 0.419

The optimization process revealed that the optimal temperatures for Heater 12 and Heater 14
are slightly lower than the initial values, suggesting potential energy savings. Conversely, the
optimal temperature for Heater 15 is slightly higher, indicating improved reaction efficiency at
a slightly elevated temperature. The temperature of Heater 16 was found to be more favorable
at a higher value.
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Relating the reactor length, the optimization indicated that shorter lengths for Reactor 02 and
Reactor 03 are preferred, suggesting potential cost savings and improved productivity.

For the column variables, the optimization process resulted in significant improvements in the
reflux ratios of Columns 4, 5, and 6. Lower reflux ratios imply reduced energy consumption
and potentially enhanced separation efficiency in these columns. The distillate to feed ratios
of Columns 4 and 5 remained relatively unchanged, indicating that the optimization did not
significantly affect the separation efficiency in those columns. The distillate to feed ratio of
Column 6 showed a minor improvement after optimization.

The optimization results highlight the sensitivity of certain variables compared to others.
Variables such as reflux ratios and temperature showed more significant changes, indicating
their crucial role in process optimization. On the other hand, variables like distillate to feed
ratios exhibited smaller variations, suggesting they are already close to the optimal values or
less influential in achieving the desired optimization objectives.

The optimized variables from the surrogate model were used back into the phenomenological
simulation to assess the accuracy the model in the optimal scenario. The output variables, as
described in Section 7.3.1.1 were compared. The CO2_eq variable showed a 7.2% discrepancy,
indicating reasonable accuracy but room for improvement. Utility costs displayed mixed
accuracy with the highest discrepancy in Cost_Hot_Utility (7.28%) and Cost_Cold_Utility
(4.82%). Variables flow_705, flow_710 and flow_704 were predicted with remarkable accuracy,
particularly flow_704 with a tiny 0.0446% difference. Finally, large-scale variables CBM and
CBM0 showed minor percentage errors (1.76% and 1.48%, respectively). Notably, the results
showcased a close match, within a 7.2% error rate for the variables. Given the complex and
multifaceted nature of chemical processes and plant operations, an error within this range
suggests that the surrogate models effectively capture the dynamics of the actual chemical
process, taking into account various aspects including chemical reactions, mass transfer, heat
transfer, and equipment-specific dynamics.

The optimization efforts in the Methanol and DME process have yielded positive outcomes
from both economic and environmental perspectives. The reduction in the total annualized
cost indicates improved financial efficiency, while the decrease in CO22,eq equivalent emissions
signifies a commendable step towards environmental sustainability. These results highlight the
significance of employing optimization techniques in chemical engineering to strike a balance
between economic viability and environmental responsibility.
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Pareto Frontier Analysis

The Pareto frontier represents a set of solutions where it is not possible to improve one objective
without sacrificing another. In other words, it represents the trade-off between different objectives
that cannot be simultaneously optimized [337].

The Pareto frontier, as described in Figure 7.11, is a graphical representation that shows the
various trade-off options between the two objectives. It would depict the possible combinations
of total annualized cost and total CO2 equivalent emissions that cannot be further improved
without sacrificing one objective for the other.

Figure 7.11: Pareto Frontier for the Multi-Objective Optimization of Methanol and DME Process.

The points on the frontier represent the best compromise between economic cost and environ-
mental impact, and any point outside the frontier would represent a suboptimal solution.

When the alpha parameter (α) in the multiobjective optimization is set to 0, indicating a higher
importance placed on minimizing total CO2 equivalent emissions, the best solution achieved is
a total annualized cost of US$267.59M and a total CO2 equivalent emission of 338.77M kg/year.
This solution demonstrates a strong emphasis on environmental sustainability by significantly
reducing emissions while still maintaining a reasonable cost.

Conversely, when the alpha parameter is set to 1, meaning a higher importance is placed on
minimizing total annualized cost, the results show a total annualized cost of US$267.55M and
a total CO2 equivalent emission of 338.78M kg/year. This solution prioritizes cost reduction
while still meeting the emission targets.

These results highlight the strengths and trade-offs of the different solutions along the Pareto
frontier. Some solutions achieve significant emissions reductions while maintaining reasonable
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costs, making them favorable for environmental sustainability. On the other hand, there are
solutions that focus on achieving the lowest costs possible while still meeting emission targets.

The relevance of these solutions to the specific context of the chemical plant depends on various
factors such as industry regulations, stakeholder expectations, and long-term sustainability goals.
For instance, if the chemical plant operates in a region with strict environmental regulations or
is committed to corporate social responsibility, solutions with significant emissions reductions
may be more relevant and aligned with their objectives.

Additionally, the trade-offs between economic cost and environmental impact should be carefully
considered. While some solutions may achieve lower costs, they might have a higher environ-
mental impact. Conversely, solutions with significant emissions reductions may come with
slightly higher costs. Decision-makers must evaluate these trade-offs and consider the plant’s
financial capabilities, environmental targets, and overall sustainability strategy to select the
most appropriate solution.

Sensitivity Analysis for Raw Material Cost

Sensitivity analysis is a valuable tool used to assess the impact of changes in key variables on a
particular outcome. The sensitivity analysis was performed to evaluate the effect of fluctuations
in raw material costs on the overall profitability of the plant. One critical aspect of this analysis
is comparing only the raw material cost with the sales revenue, considering the price sensitivity
of key components such as hydrogen and carbon dioxide, the pricing information are described
in Table 7.5.

Table 7.5: Pricing information for the products.
Component Price Ref.

Methanol $0.498/kg [367]
Hydrogen $2.000/kg [368]
CO2 $0.060/kg [369]
DME $0.600/kg [370]

The cost of raw material (refer to Eq. 7.3.1) can be calculated using the pricing information
for hydrogen and carbon dioxide, as well as the specific amounts of raw material intake for
these components. In this case, the optimization case described in Section 7.3.1.3 provides the
necessary values for the amount of raw material intake, which are 8668.284 kg/h for hydrogen
and 88000 kg/h for carbon dioxide.

CRM =
r∑
1

(RMusager · RMcostr) ∀ r ∈ [H2, CO2] (7.3.1)
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Additionally, the sales revenue can be determined based on the prices of methanol and dimethyl
ether, by summing the product price and amount for each product stream, following the Eq. 7.3.2.

Revenue =
p∑
1

(
Pamountp · Ppricep

)
∀ p ∈ [Methanol, DME] (7.3.2)

It is important to consider the product streams, that were set as constraints in the optimization
process. In this scenario, the optimization case (referenced in Section 7.3.1.3) sets the specific
amounts for methanol and dimethyl ether product streams. It states that the plant produces
19,300 kg/h of methanol and 17,100 kg/h of dimethyl ether.

The results of the sensitivity analysis comparison between the prices of raw materials (hydrogen
and carbon dioxide) and the corresponding raw material costs are presented in Figure 7.12.

Figure 7.12: Sensitivity Analysis of Hydrogen and CO2 Price.

Given that the sales revenue is $19871, it is important to ensure that the cost of raw material
(CRM) remains, at least, lower than this value to maintain profitability, considering only the
cost of raw material.

Based on the optimized case, the calculated CRM is $22616 using the provided pricing informa-
tion. In this scenario, it becomes apparent that the plant would not be profitable if the prices
of hydrogen and carbon dioxide are kept at that level.

To achieve profitability, adjustments in the prices of H2 and CO2 need to be made. If the CO2

price remains at $0.06 per kg, the price of H2 must be reduced to $1.683 per kg. Conversely, if
the H2 price is maintained at $2 per kg, the price of CO2 should be reduced to $0.0288 per kg.

The sensitivity analysis also reveals a linear relationship between the prices of H2 and CO2

that yields profitability. The black line on the graph represents the exact combination of H2
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price and CO2 price where the CRM equals the sales revenue. This relationship highlights the
importance of finding the optimal balance between the prices of these raw materials.

The price of carbon dioxide is also evaluated. Carbon pricing incentivizes the reduction of
greenhouse gas emissions by applying costs to polluters. In a scenario where CO2 capture is
incentivized through economic incentives, if the price of carbon dioxide is reduced to zero (free
of charge), the price of H2 can increase up to $2.292 per kg.

By examining Figure 7.12, one can gain valuable insights into the relationship between price
fluctuations and their impact on the overall cost of raw materials. It allows the identification of
critical price ranges where the cost of raw materials may exceed the sales revenue.

It is crucial to note that there are additional costs beyond the raw material costs analyzed in
this section that can significantly impact the profitability of the chemical plant. While the
sensitivity analysis focused specifically on the relationship between raw material prices and sales
revenue, other expenses, such as operational costs, energy costs, must also be evaluated. These
factors, along with market conditions and demand fluctuations influence the profitability.
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7.3.2 Case Study 2 - Acetic Acid Production Process

In order to apply the framework proposed in Section 7.2 to the acetic acid process, the first step
involves the determination of variables and the development of simplified models using neural
networks.

In Chapter 5, the base case flowsheeting was introduced as a starting point for further analysis,
as depicted in Figure 7.13. The focus of this research is to propose a synthesis route for acetic
acid production that utilizes CO2 as a building block.

Feed Conditioning & Recompression

Reaction System Liq-Vap Split

Gas Separation System

Liquid Separation System

Gas Recycle

Solvent Recycle

H2

CO2

Methanol

Solvent

Make-up

Acetic Acid

H2O

Lights

CO2 + CH4

Figure 7.13: Acetic Acid Production Process Flowsheet.

The scales under consideration are determined based on the objectives, scope of the study,
and the hypothesis or available information. For instance, Zondervan et al. [371] adopted an
approach where they specifically examined three consecutive scales: the unit operation scale,
unit scale, and plant scale. Their main goal was to thoroughly explore various processing options
and identify the most optimal processing route among them.

These scales can be further expanded in both directions. When focusing on larger scales, there
is a current trend to surpass the process scale and broaden the perspective of process synthesis.
This involves enhancing the integration of the process within its ecosystem, thereby considering
the larger context and interconnections beyond just the immediate process.
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7.3.2.1 Definition of Neural Networks for the Subsystems

To effectively analyze and optimize the process, the flowsheet (Figure 7.13) was divided into
six distinct subsystems. These subsystems are depicted in Figure 7.14. By breaking down the
flowsheet into smaller components, it becomes easier to study and understand the individual
processes occurring within the overall system.

Figure 7.14: Acetic Acid Production Process Flowsheet.

The first subsystem (see details in Appendix G) involves the preparation and handling of the
raw materials required for acetic acid production. This includes the CO2 feedstock, which
is a crucial building block in the proposed synthesis route. The handling of other necessary
reactants, such as methanol and hydrogen, is also part of this subsystem. It is also included the
reactor design and operation. This stage involves the interaction between the reactants and the
catalysts, where chemical reactions take place to convert CO2 and methanol into acetic acid.
The optimal reactor conditions, such as temperature, need to be determined to achieve desired
conversion and selectivity.

The second subsystem (see details in Appendix H) involves the separation and purification of
the reaction products. The first separation step is the split of the initial mixture in monophase
submixtures (gas and liquid) using a simple flash. The third subsystem (see details in Appendix I)
is the mixing of liquid streams from the gas separation system and the flash.

The liquid separation subsystem plays a crucial role in the acetic acid production process. Its
primary objective is to separate and purify the desired acetic acid from the reaction mixture,
while also considering the recovery of any valuable byproducts and the recycling of unreacted
materials. Therefore, the liquid separation system was divided into two subsystems: 4a (see
details in Appendix J) and 4b (see details in Appendix K).
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The fifth subsystem (see details in Appendix L) addresses the gas separation system. This
involves the removal of impurities from gaseous stream through a membrane module. The
recycling of unreacted materials are also considered in this subsystem.

By dividing the acetic acid production flowsheet into these six subsystems, a comprehensive
framework for analysis and optimization can be established. This approach allows for a detailed
investigation of each subsystems while considering the interactions and dependencies between
them.

7.3.2.2 Surrogate Modeling Aspects - Normalization

The normalization of data before entering it into a neural network can have a significant impact
on the performance and effectiveness of the model. Normalization refers to the process of scaling
and standardizing the input data to a consistent range or distribution.

Normalizing the input data helps to ensure that the optimization algorithm converges more
effectively during the training process. When the input features have widely varying scales, it
can lead to slower convergence or even the failure of the training process. Additionally, certain
features with larger scales can dominate the learning process compared to features with smaller
scales. This can lead to biased influence and less meaningful learning. Normalizing the data
mitigates this bias by placing all features on a similar scale, allowing each feature to contribute
more equally during the training process.

To exemplify, the neural network 1 (Appendix G) was used. The normalization results are
depicted in Figure 7.15. The applied technique was min-max normalization, which rescales the
input features to a range between -1 and 1. This is achieved through a linear transformation of
the data using the minimum and maximum values of each feature.

(a) (b)
Figure 7.15: Input Distribution for ANN1. (a) Original Values and (b) After Normalization.
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Before normalization, the scales of the features differ significantly in terms of magnitude.
However, after applying min-max normalization, all the features are transformed to a consistent
range, eliminating the variations in magnitude.

By applying Min-Max Normalization, the features are scaled consistently, allowing for easier
comparison and analysis. The method is straightforward to implement and helps prevent the
dominance of certain features in neural network training, while it maintains the original range
of the data.

The same procedure of data normalization was applied to all the neural networks generated
within this study, ensuring consistency and comparability across the various subsystems. For
each subsystem, the input data used to train and test the neural networks contained multiple
features that represented different aspects of the corresponding process. These features often
exhibited different orders of magnitude and ranges, making direct comparison and analysis
challenging.

Data normalization before entering it into a neural network is crucial for ensuring better
convergence, avoiding biased influence, improving gradient descent, promoting regularization,
enhancing model interpretability, and facilitating generalization to unseen data, therefore making
more accurate predictions.

7.3.2.3 Mass balance analysis in ANN4a

To integrate phenomenological aspects, like mass balance, into the neural networks, an assessment
was performed in the neural network 4a (Appendix J), which represents the subsystem of the
liquid separation system, according to Figure 7.16.

Figure 7.16: Process flowsheet for Liquid Separation System for ANN4a.
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The molar flow rates of the components in the input stream (501) were analyzed and compared
with the corresponding output streams (503 and 504). The findings for CO2 and CH4 are
illustrated in Figure 7.17.

Figure 7.17: Distribution of data for CO2 and CH4.

The analysis of Figure 7.17 provides valuable insights into the numerical data distribution and
important statistical characteristics, including the median, quartiles, and potential outliers.
The results clearly indicate that the molar flow of CO2 and CH4 in the input stream (501) is
predominantly found in stream 503. Moreover, similarities can be observed in their central
tendencies, spreads, and skewness.

Based on these observations, we can approximate the mass balance equations as:

zin
CO2 = z503

CO2

zin
CH4 = z503

CH4

z504
CO2 ≈ 0

z504
CH4 ≈ 0

It can be assumed that the molar flow of CO2 in stream 504 is approximately negligible, and the
same applies to the molar flow of CH4 in stream 504. Similarly, the aforementioned approach
was also applied to the other components, namely hydrogen, methanol, ethanol, methyl acetate,
and ethyl acetate. The molar flow rates of these components in the input stream (501) were
carefully examined and compared to their respective output streams (503 and 504). The results
obtained from this analysis are visually presented in Figure 7.18, providing a comprehensive
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overview of the distribution and behavior of these components.

Figure 7.18: Distribution of data for minor components in liquid separation system.

Upon conducting the comparisons, it becomes evident that the molar flows of hydrogen, methanol,
ethanol, methyl acetate, and ethyl acetate from the input stream (501) are predominantly
observed in the output stream (503). Consequently, the quantity of these components remaining
in stream 504 is minimal and can be considered negligible..

The findings presented in Figure 7.18 serve to enhance our understanding of the system’s mass
balance for each component. They provide a visual representation of the distribution of the
molar flow rates and highlight any significant variations or trends that may exist between the
input and output streams. It also allow to reduce the dimensionality of the neural networks,
due to mass balance considerations.

7.3.2.4 Analysis of Neural Network Predictions

A comprehensive examination of specific parameters in the input variables was carried out.
This involved conducting a study with neural network 2, as depicted in Figure 7.19, while
systematically varying the key parameters related to a one output. This detailed analysis aimed
to assess the impact of the parameter variations on the performance and reliability of the
neural network. By investigating the specific parameters and their effects on the output, a more
thorough understanding of the neural network’s behavior and its sensitivity to input variations
was achieved.
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Figure 7.19: Process flowsheet for gas liquid split.

Figure 7.20 illustrates the examination of variations in the molar flow of acetic acid in stream 201
and the temperature of the heat exchanger (HT-05), specifically in relation to their impact on
the molar flowrate of acetic acid. The analysis provides a visual representation of the relationship
between these variables, shedding light on how changes in the molar flow and temperature
influence the molar flowrate of acetic acid.

(a) (b)
Figure 7.20: Contourn of molar flow rate of acetic acid in stream 201 from (a) phenomenological
simulation and (b) neural networks.

In Figure 7.20a, the outcomes of the phenomenological simulation are displayed, where the
molar flow rate of acetic acid and the temperature of the heat exchanger (HT-05) were varied
while keeping other variables constant. On the other hand, Figure 7.20b showcases the response
of the trained neural network to the same inputs. A notable observation is the presence of
similarities and patterns between the neural network and the phenomenological model. It is
important to note that the Figure 7.20 is an interpolation between the collected data, either for
the phenomenological data and for the neural network.
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Furthermore, these findings were consistent with a previous study conducted by Chakkingal
et al. [372], which also involved comparing different machine learning models. The similar
results obtained in both studies emphasized the reliability and potential of machine learning
approaches in accurately modeling and predicting chemical processes. They highlighted the
ability of the trained neural network to capture and replicate the behavior observed in the
phenomenological model, indicating its potential for practical application in process optimization.
The same procedure described for constructing the neural network was also employed for all
other networks utilized in the case study #2. These additional networks, which focused on
different section of the flowsheet, are thoroughly explained in the Appendices G to L. In the
appendices, detailed information regarding the network architectures, hyperparameter settings,
training methodologies, and any specific modifications or enhancements implemented can be
found.

7.3.2.5 Surface response for the optimization procedure

The initial scenario contains the original values obtained from the simulation conducted in
Chapter 5.

Combining CAPEX and OPEX, the total annualized cost amounts to $156.80M, representing
the comprehensive cost of running the plant anuallized for a year. Furthermore, the total CO2

emissions of 199.13M kg/y highlight the environmental impact and carbon footprint of the
plant. This value provides insights into the amount of carbon dioxide emitted during the plant’s
operation based on utilities usage.

To perform a sensitivity analysis on the plant’s performance, a modification of the Response
Surface Methodology (RSM) was employed. The methodology is used to model and analyze the
relationship between input variables (process variables or factors) on the output variables. RSM
is particularly useful when the relationship between the inputs and the response is complex and
nonlinear. By varying the levels of the input variables within a defined range, RSM enables
the exploration of the response surface, which is a graphical representation of the relationship
between the inputs and the output.

In the context of the analysis described, the results were obtained by varying 21 free variables,
which play a crucial role in determining the performance of the chemical plant. These variables
include the temperature of heat exchangers and reactor, pressure on the valve, reflux ratio,
distillate to feed ratio, feed stage of the columns, and membrane area.

The range of variation for these free variables is specified in the Appendices G to L, indicating
the boundaries within which they were explored during the sensitivity process. By considering
different values within these ranges, the calculated function (f = alpha · TAC + (1 − alpha) ·
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TotalCO2) aims to identify the optimal combination of these variables that leads to improved
function.

It is important to note that the molar flows in the process are calculated using neural networks,
as depicted in Figure Figure 7.14. The outputs of one neural network serve as inputs to the next
neural network in a cascaded manner. This approach allows for the integration of various process
stages and enables the modeling of complex relationships between variables and responses.

By utilizing neural networks, the optimization process can handle the nonlinear and complex
nature of the chemical plant system. These networks capture the underlying patterns and
correlations within the process data, providing insights into the relationships between the free
variables and the desired outcomes, such as reducing the total annualized cost (TAC) and
minimizing CO2 emissions.

Figure 7.21 presents the results of the evaluation of a range of conditions on the Total Annualized
Cost (TAC) and Total CO2,eq emissions. In Figure 7.21a, the scenario considers alpha=1, aiming
to evaluate the best case for TAC optimization. In Figure 7.21b, alpha=0 is considered, focusing
on Total CO2,eq emissions.

(a) (b)
Figure 7.21: Response for the acetic acid complete process (a) alpha=1 and (b) alpha=0.

The results indicate a reduction in the TAC for both scenarios. In the case where alpha=1, the
TAC is reduced from $156.80M (base case) to $144.47M, indicating a significant improvement
in cost efficiency. Similarly, when alpha=0, the TAC is reduced to $149.61M.

Moreover, the total CO2 equivalent emissions are also reduced through optimization. In the
scenario with alpha=1, the emissions decrease from 199.13M kg/y (base case) to 196.86M kg/y,
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showcasing a reduction in the environmental impact. In the scenario with alpha=0, the emissions
are further reduced to 151.09M kg/y.

The optimal variables were tested back in the simulation, the results are in good agreement in
average of 3.73% in the outputs. The results corroborate the predictions of the neural networks.
These results demonstrate the effectiveness of the data-driven optimization approach efforts
using RSM modified in achieving cost savings and environmental improvements for the chemical
plant. By identifying optimal combinations of input variables, the plant’s performance can be
enhanced, leading to reduced costs and a smaller carbon footprint.

7.4 Conclusions

This study introduces a framework for the optimization of chemical plants, considering both the
total annualized cost and the total CO2 emissions resulting from the utility usage. Addressing
economic and environmental factors simultaneously promotes sustainable practices in the
chemical engineering field.

The proposed framework leverages simplified models, particularly neural networks, to accurately
represent the plant’s behavior. Simplified models or surrogates can be used to represent an
entire subsystem consisting of a definite number of units or even an entire chemical plant.

The results obtained from the optimization process provide valuable insights into the plant’s
performance and financial implications. By considering the total annualized cost, encompassing
both capital expenditure (CAPEX) and operating expenditure (OPEX), the framework offers a
comprehensive evaluation of the plant’s financial economics. Additionally, by factoring in the
total CO2 emissions resulting from utility usage, the environmental impact and carbon footprint
of the plant are assessed.

Therefore, this study contributes to the advancement of optimization techniques in chemical
engineering, emphasizing the importance of integrating economic and environmental factors.
The proposed framework opens new avenues for future research and development, ultimately
driving the industry towards more sustainable and efficient chemical plant operations.



Chapter 8

Conclusions and Recommended Future
Works

In this chapter, the final conclusions drawn from the extensive research conducted throughout
the study are presented. These conclusions reflect the comprehensive analysis of the data
collected, the insights gained, and the patterns and trends identified. Moreover, based on these
conclusions, valuable recommendations for future works and further research will be provided.

8.1 Conclusions

In recent years, there has been a shift in the scientific community’s perspective regarding carbon
dioxide. Rather than considering it solely as an expensive waste, particularly in countries with
carbon taxes, CO2 is now seen as a potential carbon source, offering an alternative to fossil
fuels. As a result, future perspectives on reducing carbon dioxide emissions will not only focus
on the advancement of more efficient Carbon Capture and Storage technologies but will also
involve the development of new strategies for recycling CO2 into energy vectors and chemical
intermediates.

This shift in mindset opens up novel opportunities for utilizing CO2 as a valuable resource and
exploring innovative pathways for transforming it into useful products, thereby contributing
to the reduction of greenhouse gas emissions and promoting a more sustainable and circular
economy. The contribution of CO2 conversion goes beyond lowering global warming, by means
of reducing fossil resource depletion or even yielding more benign production pathways.

The literature data regarding the quantity of energy needed to convert CO2 into chemicals
is limited and narrowed to the most studied processes and products. Different procedures to
estimate the basic thermodynamic properties of the reactants and products of these reactions
were investigated. The availability of experimental thermochemistry data is often limited due
to the destructive nature and material requirements of calorimetry measurements. To overcome
this challenge, computational chemistry methods offer a promising approach for modeling
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physiochemical properties and determining optimal molecular structures. While previous studies
in CO2 utilization have focused on a limited number of compounds, this research specifically
addressed the scarcity of energy-related content related to CO2 products. Carbon dioxide-
derived products are categorized into sixteen chemical classes, providing valuable insights into
the reaction enthalpy associated with their direct production. The findings reveal significant
variations in reaction enthalpy across the different chemical classes. This knowledge contributes
to a deeper understanding of the design considerations for chemical products in CO2 utilization.
By expanding the scope of investigation and exploring a broader range of CO2 products, this
research enhances our understanding of their thermodynamic properties and their potential as
sustainable alternatives.

A Brazilian local market analysis for potential products from CO2 chemical conversion was
performed. The proposed approach demonstrated its effectiveness in selecting the most favorable
products for CO2 conversion. The concern over CO2 emissions from power plants in Brazil served
as the motivation to map these emissions and conduct a local market analysis for potential
products derived from CO2 chemical conversion. Among the assessed products, methanol,
polycarbonates, formic acid, and acetaldehyde emerged as the most promising options for
implementation in Brazil. The research highlighted that power plants with higher capacities,
and consequently, higher CO2 emissions, are primarily located in São Paulo and Rio de Janeiro.
São Paulo exhibited both a greater demand for the evaluated products and a significant
availability of CO2, suggesting it as a potential location for the installation of a new CO2

conversion plant.

The challenge of evaluating carbon dioxide utilization technologies and identifying promising
products from a wide range of candidates were addressed. A systematic search was conducted
to establish specific criteria for carbon dioxide conversion, which were then applied in a
three-level assessment to select the most suitable CO2 conversion products. The proposed
methodological framework allows decision-makers to prioritize products for further development
and commercialization, considering economic viability, technological maturity, and scientific
significance. Dimethyl carbonate, dimethyl ether, and acetic acid emerged as the most favorable
products for further rigorous process design studies. Furthermore, this study offers the flexibility
to consider variations in prices, maturity levels, and scientific relevance of the evaluated products.

The focus on assessing various routes for acetic acid production from CO2 using a multicriteria
decision analysis approach revealed the methanol hydrocarboxylation route to be the most
promising, leading to further in-depth analysis. Through exploration within the field of chemical
engineering, an innovative process was developed for acetic acid production. While sharing
similarities with the traditional methanol carbonylation method, this process incorporates
adjustments in CO2 as feedstock, temperature and pressure ranges and efficient separation units
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leading to a technically feasible process. It is worth noting that there is a scarcity of literature
data regarding the process design of acetic acid production from CO2, methanol and hydrogen.
Thus, this study contributes to the field of process synthesis for converting CO2 into high-value
products.

A comprehensive evaluation of carbon dioxide conversion into methanol and dimethyl ether,
focusing on the integration of the latest carbon dioxide utilization techniques was conducted.
The proposed integrated flowsheet considered key chemical engineering aspects, such as process
design, to ensure efficient and sustainable production of these products. The feasibility of the
proposed flowsheet has been established through the successful separation and purification of
the desired products, as well as the efficient recycling of unreacted gases. Further optimization
efforts can concentrate on enhancing the energy efficiency of the system, reducing resource
consumption, and optimizing the separation processes to enhance product purity. By addressing
these areas, the overall performance and sustainability of the process can be improved, leading
to more efficient utilization of resources and higher product quality.

A framework that optimizes chemical plants by considering both the total annualized cost and
the resulting CO2 emissions from utility usage was proposed. By leveraging simplified models,
particularly neural networks, the framework accurately represents plant behavior, enabling
efficient optimization. The comprehensive evaluation of the plant’s financial economics and
environmental impact contributes to the advancement of optimization techniques in chemical
engineering. Some solutions prioritize environmental sustainability by achieving substantial
emissions reductions, while others focus on cost reduction while meeting emission targets.
The relevance of these solutions depends on factors such as industry regulations, stakeholder
expectations, and long-term sustainability goals of the chemical plant. Aslo, the optimized
case reveals that the chemical plant would not be profitable based on the provided pricing
information. Adjustments in the prices of hydrogen and carbon dioxide are necessary to achieve
profitability. Carbon pricing and incentives for CO2 capture are considered, indicating that
if the price of CO2 is reduced to zero, the price of H2 can increase to a certain extent. The
proposed framework opens new avenues for research and development, ultimately driving the
industry towards more sustainable and efficient chemical plant operations.

8.2 Recommendations for Future Works

The recommendations for future works serve as a roadmap for researchers interested in further
advancing the knowledge and understanding in the chemical engineering aspects. These recom-
mendations are based on the identified limitations of the current study and aim to guide future
research toward addressing these limitations and exploring new avenues of investigation.
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The process of evaluating carbon dioxide utilization technologies, as well as identifying potential
products from a broad assortment of candidates, posed a considerable challenge that has now
been addressed. In the proposed methodological framework one can also incorporate information
about the energy needed for separation of each product assessed and the thermodynamics for
the reaction synthesis. This comprehensive approach provides a more realistic evaluation of the
energy consumption and associated costs involved in the production of a particular product. By
factoring in these elements, the framework aids in establishing a more effective and economical
CO2 utilization process.

To maximize the utilization of phenomenological aspects and prior knowledge, it is crucial to
integrate the understanding of physical systems into neural network frameworks. This involves
incorporating the first principles and insights gained from chemical process knowledge into
data-driven modeling, as an example of hybrid models and gray-box models.

Future research must focus on challenges that process synthesis will encounter. This entails
incorporating multi-product processes into a superstructure, enabling optimization based on
various pathways for chemical production (via route A or route B). Additionally, environmental
and economic factors must be taken into consideration throughout the decision-making process.
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Appendix A

List of Compounds Studied in the
Thermodynamic Property Estimation

Table A.1 shows the chemical species studied in this work, along with their internal identification
(ID), there are also other information as IUPAC Name, CAS Number (it is a unique numerical
identifier assigned by the Chemical Abstracts Service to every chemical substance described
in the open scientific literature), chemical class and the location of a 2D representation of the
molecule (Figures A.1 to A.10).

Table A.1: Dataset of molecules assessed.
Chemical

ID Name CAS Classa Figure

1 Formic acid 64-18-6 CRBAC A.1A
2 Acetic acid 64-19-7 CRBAC A.1B
3 Propionic Acid 79-09-4 CRBAC A.1C
4 Acrylic acid 79-10-7 CRBAC A.1D
5 Formylformic Acid 298-12-4 CRBAC A.1E
6 Methacrylic Acid 79-41-4 CRBAC A.1F
7 Oxalic Acid 144-62-7 CRBAC A.1G
8 Benzoic Acid 65-85-0 ACRBA A.1H
9 p-Salicylic acid 99-96-7 ACRBA A.1I

10 Salicylic acid 69-72-7 ACRBA A.1J
11 3-Phenylpropynoic acid 637-44-5 ACRBA A.1K
12 9H-Fluorene-9-carboxylic acid 1989-33-9 ACRBA A.1L
13 1,3-Indenedicarboxylic acid 82947-33-9 ACRBA A.1M
14 2-formylbutanoic acid 4442-98-2 CARBX A.2A
15 3-Oxo-pentanedioic acid 542-05-2 CARBX A.2B
16 5-Methyl-3-oxohexanoic acid 131991-42-9 CARBX A.2C
17 2-Hydroxybenzoylformic acid 17392-16-4 CARBX A.2D
18 2-Oxo-1,3-cyclohexanedicarboxylic acid 22775-31-1 CARBX A.2E
19 Indanone-2-carboxylic acid 6742-29-6 CARBX A.2F
20 2-Carboxy-α-tetralone 62952-26-5 CARBX A.2G
21 4-Hydroxy-4-phenyl-2-butynoic acid 62952-24-3 CARBX A.2H
22 2-Carboxycyclohexanone 18709-01-8 CARBX A.2I
23 3-Oxo-3-phenylpropanoic acid 614-20-0 CARBX A.2J
24 4-Chlorobenzoylacetic acid 17589-68-3 CARBX A.2K
25 p-Bromobenzoylacetic acid 64929-35-7 CARBX A.2L
26 p-Methylbenzoylacetic acid 13422-78-1 CARBX A.2M
27 p-Methoxybenzoylacetic acid 13422-77-0 CARBX A.2N
28 3-Ethenyl-2-methyl-cyclopentane-carboxylic acid 108451-44-1 CRBAC A.3A
29 3-Ethenyl-2-methylene-cyclopentane-carboxylic acid 108451-43-0 CRBAC A.3B

Continued on next page...
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Table A.1 (continued)

Chemical
ID Name CAS Classa Figure

30 (Z)-6-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid 134226-09-8 CRBAC A.3C
31 3-Hexenedioic acid 29311-53-3 CRBAC A.3D
32 (Z)-5-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid 134226-08-7 CRBAC A.3E
33 Bis(methallyl) carbonate 64057-79-0 CRBAC A.3F
34 Diallyl carbonate 15022-08-9 CRBAC A.3G
35 Dibenzyl carbonate 3459-92-5 CRBAC A.3H
36 Acetaldehyde 75-07-0 ALDEH A.4A
37 Formaldehyde 50-00-0 ALDEH A.4B
38 Methanol 67-56-1 ALCOH A.4C
39 Propanol 71-23-8 ALCOH A.4D
40 Methane 74-82-8 ALKAN A.4E
41 Styrol 100-42-5 BENZD A.4F
42 Dimethyl ether 115-10-6 ETHER A.4G
43 Ethylene Oxide 75-21-8 EPOXI A.4H
44 Acetone 67-64-1 KETON A.4I
45 Ethylene carbonate 96-49-1 CARBN A.4J
46 Propylene carbonate 108-32-7 CARBN A.4K
47 Dimethyl Carbonate 616-38-6 CARBN A.4L
48 Diethyl Carbonate 105-58-8 CARBN A.4M
49 Methyl Carbamate 598-55-0 AMIDS A.5A
50 Urethane 51-79-6 AMIDS A.5B
51 Butyl carbamate 592-35-8 AMIDS A.5C
52 Ethyl N-(cyclohexylmethyl)carbamate 500912-98-1 AMIDS A.5D
53 Methyl N-Phenylcarbamate 2603-10-3 AMIDS A.5E
54 O-Ethyl N-phenylcarbamate 101-99-5 AMIDS A.5F
55 Methyl benzylcarbamate 5817-70-9 AMIDS A.5G
56 Ethyl Benzylcarbamate 2621-78-5 AMIDS A.5H
57 2-Oxazolidone 497-25-6 AMIDS A.5I
58 4-Methyl-2-oxazolidone 16112-59-7 AMIDS A.5J
59 (4S)-(-)-4-Isopropyl-2-oxazolidone 17016-83-0 AMIDS A.5K
60 (4R)-4-Phenyl-1,3-oxazolidin-2-one 90319-52-1 AMIDS A.5L
61 5-Phenyl-1,3-oxazolidin-2-one 7693-77-8 AMIDS A.5M
62 (-)-4-(Phenylmethyl)-2-oxazolidinone 102029-44-7 AMIDS A.5N
63 N-Methyl-2-oxazolidone 19836-78-3 AMIDS A.5O
64 Diphenyl-5,6,7,7a-tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one 160424-29-3 AMIDS A.5P
65 2-Oxo-1,3-dioxane 2453-03-4 HETEO A.6A
66 3-Hydroxypropylene carbonate 931-40-8 HETEO A.6B
67 4,4-Dimethyl-1,3-dioxolan-2-one 4437-69-8 HETEO A.6C
68 4-Ethyl-1,3-dioxolan-2-one 4437-85-8 HETEO A.6D
69 4,4-Dimethyl-5-methylene-1,3-dioxolan-2-one 4437-80-3 HETEO A.6E
70 n-Butylethylene carbonate 66675-43-2 HETEO A.6F
71 4-Ethenyl-1,3-dioxolan-2-one 4427-96-7 HETEO A.6G
72 Hexahydro-1,3-benzodioxol-2-one 4389-22-4 HETEO A.6H
73 4-Methylene-1,3-dioxaspiro[4.5]decan-2-one 92474-80-1 HETEO A.6I
74 4-Phenyl-1,3-dioxolan-2-one 4427-92-3 HETEO A.6J
75 4-Hydroxycoumarin 1076-38-6 HETEO A.7A
76 4-Hydroxy-3-methylcoumarin 15074-17-6 HETEO A.7B
77 8-Methyl-4-hydroxycoumarin 24631-83-2 HETEO A.7C
78 3,6-Dimethyl-4-hydroxycoumarin 118157-94-1 HETEO A.7D
79 7-Methyl-4-hydroxycoumarin 18692-77-8 HETEO A.7E

Continued on next page...
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Table A.1 (continued)

Chemical
ID Name CAS Classa Figure

80 3-Ethyl-4-hydroxycoumarin 21315-28-6 HETEO A.7F
81 3-Phenyl-4-hydroxycoumarin 1786-05-6 HETEO A.7G
82 7-Methoxy-4-hydroxycoumarin 17575-15-4 HETEO A.7H
83 Methyl isocyanate 624-83-9 ISOCA A.8A
84 n-Hexyl isocyanate 2525-62-4 ISOCA A.8B
85 n-Butyl isocyanate 111-36-4 ISOCA A.8C
86 Isopropyl Isocyanate 1795-48-8 ISOCA A.8D
87 t-Butylisocyanate 1609-86-5 ISOCA A.8E
88 Cyclohexyl isocyanate 3173-53-3 ISOCA A.8F
89 Isocyanatobenzene 103-71-9 ISOCA A.8G
90 p-Tolyl isocyanate 622-58-2 ISOCA A.8H
91 4-Methyl-2(5H)-furanone 6124-79-4 LACTN A.9A
92 1(3H)-Isobenzofuranone 87-41-2 LACTN A.9B
93 7-Methoxy-3H-isobenzofuran-1-one 28281-58-5 LACTN A.9C
94 6,7-Dimethoxyphthalide 569-31-3 LACTN A.9D
95 5,7-Dimethoxyphthalide 3465-69-8 LACTN A.9E
96 Furo[3,4-e]-1,3-benzodioxol-8(6H)-one 4741-65-5 LACTN A.9F
97 4-Hydroxy-6-methyl-2H-pyran-2-one 675-10-5 LACTN A.9G
98 4-Hydroxy-5,6-dimethyl-2H-pyran-2-one 50405-45-3 LACTN A.9H
99 4,6-Dimethyl-2-pyrone 675-09-2 LACTN A.9I

100 Tetraethyl-2-pyrone 67530-99-8 LACTN A.9J
101 Tetrapropyl-2-pyranone 77664-31-4 LACTN A.9K
102 4,6-Dibutyl-2-pyrone 65095-32-1 LACTN A.9L
103 4-Hydroxy-6-phenylpyran-2-one 5526-38-5 LACTN A.9M
104 1,4-Diethyl-5,6,7,8-tetrahydro-3H-2-benzopyran-3-one 111395-92-7 LACTN A.9N
105 Urea 57-13-6 UREAD A.10A
106 N,N’-Dipropylurea 623-95-0 UREAD A.10B
107 N,N’-Dibutylurea 1792-17-2 UREAD A.10C
108 N,N’-Dihexylurea 2763-88-4 UREAD A.10D
109 1,3-Diisopropylurea 4128-37-4 UREAD A.10E
110 N,N’-Di-sec-butylurea 869-79-4 UREAD A.10F
111 N,N’-Diisobutylurea 1189-23-7 UREAD A.10G
112 1,3-Diallylurea 1801-72-5 UREAD A.10H
113 1,3-Bis(2-methoxyethyl)urea 6849-92-9 UREAD A.10I
114 N,N’-Dicyclohexylurea 2387-23-7 UREAD A.10J
115 1,3-Diphenylurea 102-07-8 UREAD A.10K
116 N,N’-Dibenzylurea 1466-67-7 UREAD A.10L
117 N,N’-Bis(benzhydryl)urea 6744-64-5 UREAD A.10M
118 Tetrahydro-2-pyrimidone 1852-17-1 UREAD A.10N
119 3,4-Dihydro-1H-quinazolin-2-one 66655-67-2 UREAD A.10O
120 2-Imidazolidinone 120-93-4 UREAD A.10P
121 4-Methyl-2-imidazolidinone 6531-31-3 UREAD A.10Q
122 Hexahydro-2-benzimidazolinone 1123-97-3 UREAD A.10R

aThe chemical class representation are described as: CRBAC - Carboxylic Acid, ACRBA - Aromatic Carboxylic Acid, ALDEH -
Aldehyde, ALCOH - Alcohol, ALKAN - Alkane, BENZD - Benzene derivative, ETHER - Ether, EPOXI - Epoxide, KETON -

Ketone, CARBN - Carbonate, AMIDS - Amides and carbamate, HETEO - Heterocycles with oxygen, ISOCA - Isocyanate, LACTN
- Lactone, UREAD - Urea Derivative and CARBX - Carboxylic acids with additional oxygen function.
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Figure A.1: Carboxylic Acid and Aromatic Carboxylic Acid chemical class.
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Figure A.2: Carboxylic acids with additional oxygen function chemical class.
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Figure A.3: Carboxylic Acid chemical class.
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Figure A.5: Amides and carbamate chemical class.
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Figure A.9: Lactone chemical class.
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Figure A.10: Urea Derivative chemical class.



Appendix B

Performance Matrix for the First
Screening

Table B.1 presents the performance matrix for the first screening.

Table B.1: Performance matrix for the First Screening.

Alternatives
Criteria

∆Go
f ∆Ho

rxn Sci. Rel.
(kcal/mol) (kcal/mol) (–)

Methanol -66.06 -11.84 100
Methane -27.66 -39.44 100
Urea -70.77 1.91 100
Ethylene carbonate -139.45 -15.11 90
Propylene carbonate -151.29 -16.44 90
Dimethyl Carbonate -150.99 -4.10 90
Dimethyl ether -64.17 -29.27 80
Salicylic acid -133.92 -0.22 90
p-Salicylic acid -132.86 2.49 90
Formic acid -98.77 3.57 90
Formaldehyde -41.12 10.28 100
Styrol 11.99 38.31 90
Oxalic Acid -182.10 17.25 90
Formylformic Acid -127.98 27.49 80
Acetaldehyde -60.14 14.14 90
Acetone -76.62 20.23 100
Acetic acid -116.34 8.60 100
Benzoic Acid -85.32 4.08 90
Propanol -84.75 -37.24 90
Acrylic acid -97.38 3.90 90
Methacrylic Acid -109.09 2.39 90
Ethylene Oxide -28.55 42.51 90
Propionic Acid -122.90 -28.42 90
Diethyl Carbonate -171.96 -4.30 80
3-Oxo-3-phenylpropanoic acid -136.83 9.40 50
p-Methylbenzoylacetic acid -148.23 10.75 30

Continued on next page...



223

Table B.1 (continued)

Alternatives
Criteria

∆Go
f ∆Ho

rxn Sci. Rel.
(kcal/mol) (kcal/mol) (–)

4-Chlorobenzoylacetic acid -144.61 10.86 30
p-Bromobenzoylacetic acid -132.95 11.78 30
p-Methoxybenzoylacetic acid -180.81 6.73 40
Indanone-2-carboxylic acid -128.70 2.73 20
2-Hydroxybenzoylformic acid -161.67 28.66 20
2-Carboxy-α-tetralone -139.66 8.85 20
5-Methyl-3-oxohexanoic acid -187.69 9.89 10
3-Oxo-pentanedioic acid -254.39 16.32 60
2-Oxo-1,3-cyclohexanedicarboxylic acid -256.76 17.88 10
2-Carboxycyclohexanone -171.43 5.14 40
4-Hydroxy-4-phenyl-2-butynoic acid -77.25 16.05 10
2-formylbutanoic acid -160.78 10.29 10
1,3-Indenedicarboxylic acid -155.63 -64.85 10
9H-Fluorene-9-carboxylic acid -68.72 7.68 50
3-Phenylpropynoic acid -30.52 19.70 60
4-Hydroxycoumarin -110.98 18.70 80
7-Methyl-4-hydroxycoumarin -124.07 24.58 40
8-Methyl-4-hydroxycoumarin -122.40 17.90 40
4-Hydroxy-3-methylcoumarin -120.40 15.81 30
3-Ethyl-4-hydroxycoumarin -130.46 12.99 20
3-Phenyl-4-hydroxycoumarin -97.12 13.76 40
7-Methoxy-4-hydroxycoumarin -156.42 19.57 40
3,6-Dimethyl-4-hydroxycoumarin -133.97 15.43 10
4,6-Dibutyl-2-pyrone -145.41 -68.19 10
Tetraethyl-2-pyrone -147.54 -63.39 10
Tetrapropyl-2-pyranone -177.91 -63.99 10
4,6-Dimethyl-2-pyrone -101.36 -68.34 40
4-Hydroxy-6-methyl-2H-pyran-2-one -137.20 17.84 60
4-Hydroxy-5,6-dimethyl-2H-pyran-2-one -146.44 10.97 20
4-Hydroxy-6-phenylpyran-2-one -107.00 19.80 40
1,4-Diethyl-5,6,7,8-tetrahydro-3H-2-benzopyran-3-one -132.73 -62.35 10
1(3H)-Isobenzofuranone -72.03 12.06 70
7-Methoxy-3H-isobenzofuran-1-one -117.33 12.90 30
6,7-Dimethoxyphthalide -156.13 14.03 40
5,7-Dimethoxyphthalide -161.98 14.18 30
Furo[3,4-e]-1,3-benzodioxol-8(6H)-one -134.99 16.25 20
4-Methyl-2(5H)-furanone -92.36 -21.75 40
3-Ethenyl-2-methyl-cyclopentane-carboxylic acid -122.55 -48.19 10
3-Ethenyl-2-methylene-cyclopentane-carboxylic acid -100.29 -25.98 10

Continued on next page...
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Table B.1 (continued)

Alternatives
Criteria

∆Go
f ∆Ho

rxn Sci. Rel.
(kcal/mol) (kcal/mol) (–)

(Z)-5-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid -120.33 -23.57 10
(Z)-6-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid -117.96 -19.97 10
Diallyl carbonate -123.37 3.90 50
Dibenzyl carbonate -113.62 8.43 50
Bis(methallyl) carbonate -147.88 11.77 20
3-Hexenedioic acid -200.32 -6.89 40
4-Ethyl-1,3-dioxolan-2-one -158.72 -18.62 60
n-Butylethylene carbonate -173.42 -12.91 50
4-Phenyl-1,3-dioxolan-2-one -122.99 -11.98 60
3-Hydroxypropylene carbonate -190.08 -10.89 60
4,4-Dimethyl-1,3-dioxolan-2-one -162.56 -12.98 40
4-Ethenyl-1,3-dioxolan-2-one -128.26 -12.51 60
Hexahydro-1,3-benzodioxol-2-one -150.65 -1.03 50
2-Oxo-1,3-dioxane -146.35 -9.34 60
4,4-Dimethyl-5-methylene-1,3-dioxolan-2-one -144.22 -17.37 40
4-Methylene-1,3-dioxaspiro[4.5]decan-2-one -150.97 -17.08 30
N,N’-Bis(benzhydryl)urea -0.78 -8.12 20
N,N’-Dicyclohexylurea -127.66 -2.65 60
1,3-Diphenylurea -27.98 2.38 60
N,N’-Dibenzylurea -37.50 -4.80 50
1,3-Diisopropylurea -114.59 -3.77 40
N,N’-Dipropylurea -109.84 -4.63 40
N,N’-Dibutylurea -124.45 -4.49 50
N,N’-Diisobutylurea -125.47 -3.48 30
N,N’-Di-sec-butylurea -128.64 -31.08 20
N,N’-Dihexylurea -153.06 22.73 40
1,3-Diallylurea -49.52 -8.81 40
1,3-Bis(2-methoxyethyl)urea -173.93 -11.71 10
2-Imidazolidinone -60.27 -2.49 70
4-Methyl-2-imidazolidinone -71.16 2.19 40
Tetrahydro-2-pyrimidone -70.84 -6.97 50
Hexahydro-2-benzimidazolinone -78.56 0.26 20
3,4-Dihydro-1H-quinazolin-2-one -45.87 3.67 20
(-)-4-(Phenylmethyl)-2-oxazolidinone -93.07 4.43 60
(4R)-4-Phenyl-1,3-oxazolidin-2-one -84.24 5.79 50
(4S)-(-)-4-Isopropyl-2-oxazolidone -126.76 2.43 60
5-Phenyl-1,3-oxazolidin-2-one -84.89 5.67 40
N-Methyl-2-oxazolidone -105.13 6.10 50
2-Oxazolidone -101.72 3.60 60

Continued on next page...
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Table B.1 (continued)

Alternatives
Criteria

∆Go
f ∆Ho

rxn Sci. Rel.
(kcal/mol) (kcal/mol) (–)

Diphenyl-5,6,7,7a-tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one -71.66 7.44 10
4-Methyl-2-oxazolidone -111.97 -19.23 40
Urethane -125.46 -4.08 80
Methyl Carbamate -114.88 -6.33 60
Butyl carbamate -140.36 2.68 50
Methyl benzylcarbamate -99.59 -3.94 40
Ethyl Benzylcarbamate -110.26 -3.97 40
Ethyl N-(cyclohexylmethyl)carbamate -159.53 -5.53 10
Methyl N-Phenylcarbamate -93.86 0.19 60
O-Ethyl N-phenylcarbamate -104.61 0.10 60
Isocyanatobenzene -20.69 78.30 80
Isopropyl Isocyanate -63.88 74.96 70
n-Butyl isocyanate -69.01 74.37 70
t-Butylisocyanate -72.51 77.38 70
Cyclohexyl isocyanate -70.91 75.15 70
n-Hexyl isocyanate -83.98 88.56 60
Methyl isocyanate -44.68 85.31 80
p-Tolyl isocyanate -33.98 76.05 70



Appendix C

Results Detailed for the First Screening

Table C.1 shows the final results for the first screening.

Table C.1: Final Results for the First Screening.

Product Score Classification
Propionic Acid 0.7845 1
Propanol 0.7841 2
Methane 0.7761 3
Propylene carbonate 0.7637 4
Ethylene carbonate 0.7553 5
Methanol 0.7402 6
Dimethyl Carbonate 0.7276 7
Dimethyl ether 0.714 8
Salicylic acid 0.7111 9
Urea 0.7089 10
Acetic acid 0.7074 11
p-Salicylic acid 0.7032 12
Methacrylic Acid 0.6956 13
Diethyl Carbonate 0.6923 14
Formic acid 0.6889 15
Acrylic acid 0.6875 16
Benzoic Acid 0.6828 17
Formaldehyde 0.6784 18
Urethane 0.6777 19
Oxalic Acid 0.6747 20
Acetone 0.6667 21
Acetaldehyde 0.6488 22
4-Hydroxycoumarin 0.6133 23
4-Ethyl-1,3-dioxolan-2-one 0.6088 24
2-Imidazolidinone 0.5998 25
3-Hydroxypropylene carbonate 0.5988 26
Formylformic Acid 0.5956 27
4-Ethenyl-1,3-dioxolan-2-one 0.5864 28
2-Oxo-1,3-dioxane 0.584 29
4-Phenyl-1,3-dioxolan-2-one 0.5837 30

Continued on next page...
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Table C.1 (continued)

Product Score Classification
Ethylene Oxide 0.5755 31
Styrol 0.5738 32
1(3H)-Isobenzofuranone 0.5682 33
Methyl Carbamate 0.568 34
4,6-Dimethyl-2-pyrone 0.5678 35
N,N’-Dicyclohexylurea 0.5628 36
(4S)-(-)-4-Isopropyl-2-oxazolidone 0.5501 37
O-Ethyl N-phenylcarbamate 0.5495 38
3-Oxo-pentanedioic acid 0.5476 39
Methyl N-Phenylcarbamate 0.5463 40
2-Oxazolidone 0.5402 41
n-Butylethylene carbonate 0.5386 42
(-)-4-(Phenylmethyl)-2-oxazolidinone 0.5358 43
1,3-Diphenylurea 0.5222 44
4-Hydroxy-6-methyl-2H-pyran-2-one 0.5151 45
N,N’-Dibutylurea 0.5062 46
Hexahydro-1,3-benzodioxol-2-one 0.5049 47
Tetrahydro-2-pyrimidone 0.4978 48
Butyl carbamate 0.4931 49
Diallyl carbonate 0.4855 50
4,4-Dimethyl-5-methylene-1,3-dioxolan-2-one 0.4847 51
N,N’-Dibenzylurea 0.484 52
3-Phenylpropynoic acid 0.4823 53
4-Methyl-2(5H)-furanone 0.4819 54
4-Methyl-2-oxazolidone 0.4809 55
4,4-Dimethyl-1,3-dioxolan-2-one 0.4794 56
3-Oxo-3-phenylpropanoic acid 0.4757 57
3-Hexenedioic acid 0.4752 58
N-Methyl-2-oxazolidone 0.4752 59
Dibenzyl carbonate 0.4717 60
(4R)-4-Phenyl-1,3-oxazolidin-2-one 0.4704 61
Isocyanatobenzene 0.4702 62
Methyl isocyanate 0.4641 63
4,6-Dibutyl-2-pyrone 0.4621 64
9H-Fluorene-9-carboxylic acid 0.4617 65
Tetrapropyl-2-pyranone 0.4608 66
1,3-Indenedicarboxylic acid 0.4586 67
Tetraethyl-2-pyrone 0.4551 68
1,4-Diethyl-5,6,7,8-tetrahydro-3H-2-benzopyran-3-one 0.4512 69
N,N’-Dipropylurea 0.4458 70
1,3-Diisopropylurea 0.4449 71
Ethyl Benzylcarbamate 0.4443 72

Continued on next page...
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Table C.1 (continued)

Product Score Classification
Methyl benzylcarbamate 0.4414 73
1,3-Diallylurea 0.4414 74
2-Carboxycyclohexanone 0.4387 75
p-Methoxybenzoylacetic acid 0.4376 76
n-Butyl isocyanate 0.4375 77
Cyclohexyl isocyanate 0.4366 78
4-Methylene-1,3-dioxaspiro[4.5]decan-2-one 0.4365 79
Isopropyl Isocyanate 0.4356 80
t-Butylisocyanate 0.4336 81
p-Tolyl isocyanate 0.4285 82
3-Ethenyl-2-methyl-cyclopentane-carboxylic acid 0.4255 83
N,N’-Di-sec-butylurea 0.4229 84
4-Methyl-2-imidazolidinone 0.4189 85
5-Phenyl-1,3-oxazolidin-2-one 0.4135 86
6,7-Dimethoxyphthalide 0.4123 87
7-Methoxy-4-hydroxycoumarin 0.3987 88
N,N’-Diisobutylurea 0.3971 89
3-Phenyl-4-hydroxycoumarin 0.3959 90
8-Methyl-4-hydroxycoumarin 0.3924 91
N,N’-Dihexylurea 0.3898 92
4-Hydroxy-6-phenylpyran-2-one 0.3831 93
3-Ethenyl-2-methylene-cyclopentane-carboxylic acid 0.377 94
7-Methyl-4-hydroxycoumarin 0.3761 95
(Z)-5-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid 0.3756 96
n-Hexyl isocyanate 0.3677 97
p-Methylbenzoylacetic acid 0.3674 98
(Z)-6-methyl-2-(propan-2-ylidene)hepta-4,6-dienoic acid 0.3672 99
4-Chlorobenzoylacetic acid 0.3659 100
5,7-Dimethoxyphthalide 0.3631 101
1,3-Bis(2-methoxyethyl)urea 0.3617 102
p-Bromobenzoylacetic acid 0.3599 103
7-Methoxy-3H-isobenzofuran-1-one 0.3522 104
4-Hydroxy-3-methylcoumarin 0.3454 105
N,N’-Bis(benzhydryl)urea 0.345 106
Ethyl N-(cyclohexylmethyl)carbamate 0.3438 107
Indanone-2-carboxylic acid 0.3424 108
Hexahydro-2-benzimidazolinone 0.3361 109
2-Carboxy-α-tetralone 0.3297 110
4-Hydroxy-5,6-dimethyl-2H-pyran-2-one 0.3262 111
Bis(methallyl) carbonate 0.3246 112
2-Oxo-1,3-cyclohexanedicarboxylic acid 0.3243 113
3,4-Dihydro-1H-quinazolin-2-one 0.32 114

Continued on next page...
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Table C.1 (continued)

Product Score Classification
5-Methyl-3-oxohexanoic acid 0.3162 115
3-Ethyl-4-hydroxycoumarin 0.3157 116
Furo[3,4-e]-1,3-benzodioxol-8(6H)-one 0.3084 117
2-formylbutanoic acid 0.3062 118
Diphenyl-5,6,7,7a-tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one 0.2889 119
2-Hydroxybenzoylformic acid 0.2857 120
3,6-Dimethyl-4-hydroxycoumarin 0.2844 121
4-Hydroxy-4-phenyl-2-butynoic acid 0.2662 122



Appendix D

Price Estimation

D.1 Introduction
Traditionally, the prices of chemicals are available through market reports, considering the
assumption that the chemical is a commodity. Even though the database is extensive, it does
not include some of the chemicals used in this assessment, hence a method to estimate the
chemical prices is needed.

Hart et al. [190] develop a technique to estimate the price of chemicals manufactured in small
quantities using data price from laboratory catalogs. This method is particularly useful because
it does not require prior knowledge of the prices or volume of production for a particular
chemical.

The prices for several chemicals can be retrieved from SciFinder Commercial Sources [373],
informations about technical grade, purity level and the producer company are included.

D.2 Methods
The price estimation was based on the conceptual framework proposed by Hart et al. [190].

Prior to undertaking the analysis, data collection for the laboratory prices was performed using
the SciFinder database [373]. Data were collected during the time window from November -
December 2018.

The first step in this process was to develop a price P-quantity Q correlation, as presented in
Equation D.2.1.

P = a · Qb (D.2.1)

rewriting in logarithmic form,

logP = loga + b · logQ (D.2.2)

where P stands for the unit price (US$/kg), Q is the quantity (g). Individual values of the
intercept a and the slope b were regressed for each of the chemicals.
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The volumetric quantities (if that was the case) was converted to mass quantities [48]. Prices
for multi-packages were not included to avoid additional packaging costs.

After the linear regression fitted for every chemical, bulk amount values (QB) were calculated, it
took into account bulk prices (PB) for the aforementioned chemical, according to Equation D.2.3.

QB = 10
logPB−loga

b (D.2.3)

A weighted-average value for the bulk amount was calculated using Equation D.2.4

QB,avg =
∑ |ri| · QB,i∑ |ri|

i = 1, 2, · · · , N (D.2.4)

where N is the number of chemicals and |ri| is the absolute value of the correlation coefficient
for the chemical i, used as weighting factor.

Commodity chemicals were excluded in the generation of the correlation, they are presented as
comparison in Table D.2.

The final stage of the method is to use the average bulk amount to estimate the price for other
chemicals, according to Equation D.2.5.

PB = a · (QB,avg)b (D.2.5)

D.3 Results and Discussions
The results of the regression fit for propionic acid are set out in Figure D.1, it illustrates the
procedure used for all the chemicals.

y = -0.8951x + 4.2198

R² = 0.9757
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Figure D.1: Regression Fit for Propionic Acid.
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The price-quantity data was plotted in log-log coordinates; moreover a least- squares regression
fit yield in a slope of -0.8951 and a intercept of 4.2198 (a = 16.5891). The correlation (r2) was
0.9757, indicating a excellent fit between data and the estimated function.

The prices per unit of product decreases monotonically with the increasing purchase amount.
Similar behaviour was observed by Hart et al. [190], emphasizing a requirement of at least four
data points are needed for the correlation.

Table D.1 presents the summary of the values of the intercept log(a) and slope b for each one of
the chemicals.

Table D.1: Price Correlations of Laboratory Prices for 6 Chemicals.
Chemical Name Intercept

[log(a)]
Slope
[b]

Abs.
Correl.
Coef.
|ri|

b · |ri| Bulk
Price
[PB ]

Ref. Bulk
Amount
[QB

(kg)]

|ri| ·
QB

Propionic Acid 4.2198 -0.8951 0.988 -0.873 3.51 [374] 12.74 12.58
Oxalic Acid 3.9523 -0.6811 0.958 -0.652 2.67 [374] 150.42 144.04
Salicylic acid 3.5477 -0.5439 0.923 -0.502 4.69 [374] 194.04 179.00
Acetic acid 3.5733 -0.6071 0.961 -0.583 0.95 [375, 376] 838.24 805.46
Acrylic acid 4.5978 -0.8776 0.955 -0.838 2.25 [377] 68.79 65.68
Propylene oxide 4.6070 -0.9443 0.974 -0.920 1.02 [378, 379] 58.83 57.30

Weighted Average -0.7587 219.55

The slope values for all the chemicals were negative, indicating a reduction of the unit purchase
price with the increase in the amount purchased. The absolute correlation coefficients are
superior than 0.92, representing good agreement.

As discussed in the Section D.2, some chemical commodities were excluded [190]. Table D.2.

Table D.2: Prices of selected chemical commodities.
Chemical Name Price

(US$/kg)
Ref.

Methane 0.34 [380]
Urea 0.30 [381]
Acetone 1.23 [374]
Methanol 0.48 [382]
Ethylene 0.65 [383]
Ethylene Oxide 0.80 [374]
Hydrogen 6.00 [384–386]
Phenol 1.95 [374]
Ethanol 0.67 [387, 388]
Ammonia 0.33 [389]
Propene 0.71 [374]
Benzene 0.76 [374]

The value of the average weighted slope was -0.7587, very close to that reported by Hart et al.
[190], that find a value of -0.7518.
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Qi, Sathre, III and Shehabi [390] also proposed a method to estimate prices of chemicals from
lab-scale prices. In their work the authors divided the group of products into categories, for the
organic compounds they obtained a value of -0.67 (in their case, the median was used rather
than the weighted average).

From Table D.1 the bulk amounts varies from 12 to 838 kg, the weighted average of bulk amount
was 219.55 kg, therefore this value was used to calulate the estimated price of chemical, using
Equation D.2.5. Table D.3 shows the results obtained for the group of 14 another chemicals.

Table D.3: Estimations of Bulk Prices of 13 Chemicals from Laboratory-scale Prices.

Chemical Name Intercept Slope Correl. b.|r| Bulk Price [PB] (US$/kg)

[log(a)] [b] |r| Estimated Published Ref.

Propylene carbonate 4.1176 -0.8021 0.947 -0.759 0.68
Propanol 4.6655 -0.8457 0.946 -0.800 1.41 1.45 [374]
Ethylene carbonate 3.5766 -0.5428 0.918 -0.498 4.76
Dimethyl Carbonate 4.1325 -0.6212 0.902 -0.560 6.52
Diethyl Carbonate 3.8679 -0.6403 0.945 -0.605 2.80
p-Salicylic acid 3.6144 -0.5311 0.983 -0.522 5.99
Methacrylic Acid 3.7563 -0.6428 0.973 -0.625 2.10 1.77 [374]
Dimethyl ether 4.5654 -0.7034 0.955 -0.672 6.43
Formic acid 4.4254 -0.8533 0.955 -0.815 0.74
Urethane 4.0074 -0.6086 0.914 -0.556 5.71
Benzoic Acid 3.7000 -0.5826 0.960 -0.559 3.87 3.48 [374]
Formaldehyde 3.8564 -0.6976 0.919 -0.641 1.35
Acetaldehyde 4.7757 -0.8134 0.951 -0.773 2.70

In order to test the correlation and the average bulk amount achieved using the method, the
estimated prices were compared with some published data. Among the chemical with published
price, propanol showed the smallest difference, 2.95%, followed by benzoic acid, 10%, while
methacrilic acid showed a absolute deviation of 0.33 US$/kg.

D.4 Conclusions
The method of linear regression of log- log relations was able to estimate the price of chemicals.
The lab-scale prices along with bulk prices were employed to calculate the weighted average bulk
amount. It was, then, used to estimate the prices of chemicals which did not present historical
data or even demand consumption.

The outcome correlation can help to address more robust techno-economic modelling of tech-
nologies. However, the interpretation and use to other systems must be evaluated case by
case.



Appendix E

Methanol Kinetic Model Rearranged
for Aspen Plus

The final values for all the parameters are described in Table E.1.

Table E.1: Methanol Kinetic Model Rearranged for Aspen Plus
Parameter Constant Value
kA A -29.894

B 4.811.162
kB A 8.147

B 0.000
kC A -6.452

B 2.068.439
kD A -34.951

B 14.928.915
kE A 4.804

B -11.797.450
kF A 17.520

B -2.248.564
kG A 0.131

B -7.024.191
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Table E.2: Aspen Plus implementation of the Methanol synthesis kinetics model.
R1 (CO2 + 3H2 -> CH3OH + H2O)

kinetic factor k= 1
E = 0

driving force expressions
term 1
conc. exponents for reactants: CO2 = 1 ; H2 = 1
conc. exponents for products: CH3OH = 0 ; H2O = 0
coefficients: A = -29.866 ; B = 4810.895
term 2
conc. exponents for reactants: CO2 = 0 ; H2 = -2
conc. exponents for products: CH3OH = 1 ; H2O = 1
coefficients: A = 17.549 ; B = -2248.831

adsorption expression
adsorption term exponent 3
concentration exponent:
term 1: CO2 = 0 ; H2 = 0 ; H2O = 0 ; CO = 0
term 2: CO2 = 0 ; H2 = -1 ; H2O = 1 ; CO = 0
term 3: CO2 = 0 ; H2 = 0.5 ; H2O = 0 ; CO = 0
term 4: CO2 = 0 ; H2 = 0 ; H2O = 1 ; CO = 0
adsorption constants:
term 1: A = 0 ; B = 0 ; C = 0 ; D = 0
term 2: A = 8.147 ; B = 0 ; C = 0 ; D = 0
term 3: A = -6.452 ; B = 2068.324 ; C = 0 ; D = 0
term 4: A = -34.951 ; B = 14928.085 ; C = 0 ; D = 0

R2 (CO2 + H2 -> CO + H2O)

kinetic factor k= 1
E = 0

driving force expressions
term 1
conc. exponents for reactants: CO2 = 1 ; H2 = 0
conc. exponents for products: CO = 0 ; H2O = 0
coefficients: A = 4,804 ; B = -11796.794
term 2
conc. exponents for reactants: CO2 = 0 ; H2 = -1
conc. exponents for products: CO = 1 ; H2O = 1
coefficients: A = 0.132 ; B = -7023.536

adsorption expression
adsorption term exponent 1
concentration exponent:
term 1: CO2 = 0 ; H2 = 0 ; H2O = 0 ; CO = 0
term 2: CO2 = 0 ; H2 = -1 ; H2O = 1 ; CO = 0
term 3: CO2 = 0 ; H2 = 0.5 ; H2O = 0 ; CO = 0
term 4: CO2 = 0 ; H2 = 0 ; H2O = 1 ; CO = 0
adsorption constants:
term 1: A = 0 ; B = 0 ; C = 0 ; D = 0
term 2: A = 8.147 ; B = 0 ; C = 0 ; D = 0
term 3: A = -6.452 ; B = 2068.324 ; C = 0 ; D = 0
term 4: A = -34.951 ; B = 14928.085 ; C = 0 ; D = 0



Appendix F

DME Kinetic Model Rearranged for
Aspen Plus

To calculate the input parameters for Aspen for the kinetic term, the original parameters from
Berčič and Levec [315] were used. Eq.F.0.1, rearrange the terms.

kDME = kHK2
CH3OH

kDME =
(
5.35 × 1013 e−17280/T

)
·
(
5.39 × 10−4 e8487/T

)2

kDME = 1.554 29 × 107 e−306/T

(F.0.1)

However, the kinetic term, in Aspen Plus, is expressed as knexp(−E/RT ). The exponential
factor is represented as (E/RT), where E is the activation energy, T is the temperature and R is
the universal gas constant. It is crucial to consider this conversion factor. In this particular
case, the value of 607.62 cal/mol or 2544 kJ/kmol is utilized for Aspen Plus calculations.

The adsorption expression is represented by Eq. F.0.2.

(
1 + 2

√
KCH3OHCCH3OH + KH2OCH2O

)4
(F.0.2)

The first term is 1, the second term can be rearranged as Eq. F.0.3 (and logarithm in Eq. F.0.4).

KTerm 2 = 2 ·
√

KCH3OH

KTerm 2 = 2 ·
√

5.39 × 10−4 e8487/T

KTerm 2 = 0.0464327 e4243.5/T

(F.0.3)

ln(KTerm 2) = −3.069751327 + 4243.5
T

(F.0.4)

The term 3 is described in logarithm form in Eq. F.0.5

ln(KTerm 3) = −2.468639677 + 5070
T

(F.0.5)
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The thermodynamic equilibrium constant parameters (Keq,MeOHdeh) were obtained from Diep
[317] as described in Eq. F.0.6.

ln(Keq,MeOHdeh) = 2835.2
T

+ 1.675 · ln(T ) − 2.39 × 10−4 · T − 0.21 × 10−6 · T 2 − 13.36 (F.0.6)

Table F.1 present the implementation in Aspen Plus.

Table F.1: Aspen Plus implementation of the DME synthesis kinetics model.
R1 (2CH3OH -> CH3OCH3 + H2O)

kinetic factor k= 15542873.5
E = 2544

driving force expressions
term 1
conc. exponents for reactants: CH3OH = 2
conc. exponents for products: DME = 0 ; H2O = 0
coefficients: A = 0 ; B = 0 ; C = 0 ; D = 0
term 2
conc. exponents for reactants: CH3OH = 0
conc. exponents for products: DME = 1 ; H2O = 1
coefficients: A = 13.36 ; B = -2835.2 ; C = -1.675 ; D = 0.000239

adsorption expression
adsorption term exponent 4
concentration exponent:
term 1: CH3OH = 0 ; H2O = 0
term 2: CH3OH = 0.5 ; H2O = 0
term 3: CH3OH = 0 ; H2O = 1
adsorption constants:
term 1: A = 0 ; B = 0 ; C = 0 ; D = 0
term 2: A = -3.06975 ; B = 4243.5 ; C = 0 ; D = 0
term 3: A = -2.46864 ; B = 5070 ; C = 0 ; D = 0



Appendix G

Detailed Information for the Neural
Networks - ANN1

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure G.1 depicts the region of
the process flowsheet from where the neural network will be generated.

Figure G.1: Feed Conditioning and Reaction System as a neural network - Acetic Acid.

The considered variables are the flows of the stream 412 (for the following chemical compounds:
hydrogen, carbon dioxide and methane), the temperature of the stream 412, the stream 504 (for
the following chemical compounds: acetic acid and solvent), the temperature of the stream 504,
the temperature of the heat exchanger HT-03 and the temperature of the reactor.

The collected output variables are the total capital cost, utility usage (water and electric), utility
CO2,equivalent usage and conversion of R1 and R2.
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Neural Network Architecture
The Figure G.2 translates the feed conditioning and reaction system section of the acetic acid
process (Figure G.1) into a neural network. There are 10 input variables and 7 output variables.

Figure G.2: Detailed architecture for acetic acid ANN1.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.

Limits of the input variables
The Table G.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

The Figure G.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Table G.1: Limits of the inout variables for acetic acid ANN1.
Variable Stream/ Unit lower upper Unit

H2_412 412 1200 1500 kmol/h
CO2_412 412 900 1200 kmol/h
CH4_412 412 2 20 kmol/h

T_412 412 15 30 kmol/h
ACETIC_504 504 0.6 0.7 kmol/h

SOLVENT_504 504 780 781.725 kmol/h
P 504 1 3 bar
T 504 215 230 oC
T HT-03 70 130 oC
T RT-01 170 190 oC

Figure G.3: Input variable distribution for the acetic acid ANN1.
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It is possible to verify that the distribution is uniform in each variable assessed.

The Figure G.4 presents the distribution of the output variables.

Figure G.4: Output variable distribution.
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Hyperparameter Tuning
The Figure G.5 presents hyperparameter tunning for the Artificial Neural Network 1.

Figure G.5: Hyperparameter Tunning for ANN1.

The hyperparameter exploration has finished, revealing that the ideal configuration consists of
a hidden densely-connected layer with 32 units, a learning rate of 0.1 for the optimizer, and
relu as the activation function. Additionally, the regularization values are l1 = 1e-07 and l2 =
3.6573e-5, with an epsilon of 0.01.
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Predicted vs. Observed
Figure G.6 depicts the comparison between the predicted values (from the best model, after the
tunning) with the observed values (from phenomenological simulation).

Figure G.6: Predicted Values vs. Observed Values for ANN1.
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Base Case Comparison
Table G.2 compares phenomenological simulation with neural network results for the base case.

Table G.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_412 1397.544062 1397.544062
CO2_412 1077.049209 1077.049209
CH4_412 3.289895384 3.289895384

T_412 20 20
ACETIC_504 0.625257141 0.625257141

SOLVENT_504 780.9928888 780.9928888
P_504 1.110316117 1.110316117
T_504 228.8005623 228.8005623

T_HT-03 90 90
T_RT 180 180

CBM_ANN1 14035977.88 13999945
CBM0_ANN1 13745911.51 13722542

water -usage_ANN1 4912361.718 4685660.5
electric-usage_ANN1 13631.03594 13652.48242
electric-CO2_ANN1 4728.648282 4740.450684

conversion_R1 0.819670146 0.818215668
conversion_R2 0.180279854 0.181538984



Appendix H

Detailed Information for the Neural
Networks - Acetic Acid ANN2

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure H.1 depicts the region of
the process flowsheet from where the neural network will be constructed.

It contains a heater (HT-05), a valve (VL-01) and a flash drum (FL-01) as unit operations, one
input stream (201) and two output streams (303 and 304).

Figure H.1: Detailed process flowsheet for gas liquid split.

The considered variables are the flows of the input stream (for the following chemical compounds:
hydrogen, carbon dioxide, acetic acid, water and methane), the temperature of the input stream,
the temperature of the heat exchanger, the pressure in the valve, and temperature and pressure
of the flash drum.

The collected output variables are the mole flows, pressure and temperature of stream 303,
pressure and temperature of stream 304, total capital cost, utility usage (water and low pressure
steam) and utility CO2,equivalent usage.
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Neural Network Architecture
The Figure H.2 translates the gas-liquid split section of the acetic acid process (Figure H.1) into
a neural network. There are 10 input variables and 29 output variables.

Figure H.2: Detailed architecture for acetic acid ANN2.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.
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Limits of the input variables
The Table H.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

Table H.1: Input variable limits for the acetic acid ANN2.
Variable Stream/ Unit lower upper Unit

H2 201 1430 1560 kmol/h
ACETIC 201 330 425 kmol/h

CO2 201 1300 1430 kmol/h
WATER 201 380 460 kmol/h

CH4 201 55 140 kmol/h
T_201B 201 170 190 oC

T_HT-05 HT-05 60 120 oC
P_VL-01 VL-01 5 20 bar
T_FL-01 FL-01 30 60 oC
P_FL-01 FL-01 0,25 1 percentage

The Figure H.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Figure H.3: Input variable distribution for the acetic acid ANN2.

It is possible to verify that the distribution is uniform in each variable assessed.
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The Figure H.4 presents the distribution of the output variables.

Figure H.4: Output variable distribution.
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Hyperparameter Tuning
The Figure H.5 presents hyperparameter tunning for the Artificial Neural Network 2.

Figure H.5: Hyperparameter Tunning for ANN2.

The hyperparameter exploration has finished, revealing that the ideal configuration consists of a
hidden densely-connected layer with 47 units, a learning rate of 1.0 for the optimizer adam, and
relu as the activation function. Additionally, the regularization values are l1 = 4.4937432101e-05
and l2 = 1.573098799380131e-08, with an mse of 0.000866918824613.
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Predicted vs. Observed
Figure H.6 and Figure H.7 depicts the comparison between the predicted values (from the best
model, after the tunning) with the observed values (from phenomenological simulation).

Figure H.6: Predicted Values vs. Observed Values for ANN2.
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Figure H.7: Predicted Values vs. Observed Values for ANN2.
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Base Case Comparison
Table H.2 compares phenomenological simulation with neural network results for the base case.

Table H.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_201 1441.769507 1441.769507
ACETIC_201 418.1641359 418.1641359

CO2_201 1309.894407 1309.894407
WATER_201 448.1578517 448.1578517

CH4_201 64.50962684 64.50962684
T_201 180 180

T_HT-05 70 70
P_VL-01 5 5
T_FL-01 38 38
P_FL-01 0.83451 0.83451
H2_303 1441.76949 1439.817261

METHANOL_303 0.000953446 0.00092953
ACETIC_303 10.6804583 9.947603226

CO2_303 1231.56207 1234.075928
WATER_303 16.8412244 15.84536839

CH4_303 61.3020035 61.57397461
METHY-01_303 0.001728819 0.001695596
ETHYL-01_303 0.000353742 0.000344966
ETHAN-01_303 4.13431E-05 4.01281E-05
SOLVENT_303 0.204986894 0.197103575

T_303 38 38.367733
P_303 3.17255 3.081218243

H2_304 1.22215E-05 1.3784E-05
METHANOL_304 0.005541053 0.005564956

ACETIC_304 407.483678 409.4006042
CO2_304 78.3323379 77.84811401

WATER_304 431.316627 433.7226563
CH4_304 3.20762338 2.835086346

METHY-01_304 0.004332714 0.004365999
ETHYL-01_304 0.001624321 0.001633096
ETHAN-01_304 0.000417092 0.000418307
SOLVENT_304 781.520013 781.5278931

T_304 38 38.36842346
P_304 3.17255 3.080977917

CBM_ANN2 230970.4081 232663.4219
CBM0_ANN2 200023.7969 201206.0156

water-usage_ANN2 2426919.9 2406522.5
lp-usage_ANN2 439.797741 203.548111
lp-CO2_ANN2 60.1742717 27.87847137



Appendix I

Detailed Information for the Neural
Networks - Acetic Acid ANN3

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure I.1 depicts the region of
the process flowsheet from where the neural network will be constructed.

It contains only a mixer (MX-04), two input stream (304 and 407) and one output streams
(501).

Figure I.1: Detailed process flowsheet for mixer.

The considered variables are the flows of the input stream with temperature and pressure.

The collected output variables are the mole flows, pressure and temperature of stream 501.
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Neural Network Architecture
The Figure I.2 translates the mizing of streams section of the acetic acid process into a neural
network. There are 24 input variables and 12 output variables.

Figure I.2: Detailed architecture for acetic acid ANN3.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.
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Limits of the input variables
The Table I.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

Table I.1: Limits of input variables for acetic acid ANN3.
Variable Stream/Unit lower upper Unit

H2 304 3.00E-06 0.0001 kmol/h
METHANOL 304 0.002 0.0065 kmol/h

ACETIC 304 300.00 418.00 kmol/h
CO2 304 10.00 280.00 kmol/h

WATER 304 290.00 460.00 kmol/h
CH4 304 0.3 35.00 kmol/h

METHY-01 304 0.001 0.0058 kmol/h
ETHYL-01 304 0.0006 0.002 kmol/h
ETHAN-01 304 0.0002 0.0005 kmol/h
SOLVENT 304 777.00 781.7 kmol/h

T 304 30.00 60.00 oC
P 304 0.7 15.00 bar

H2 407 1.00E-06 3.00E-06 kmol/h
METHANOL 407 0.001 0.003 kmol/h

ACETIC 407 8.00 20.00 kmol/h
CO2 407 20.00 40.00 kmol/h

WATER 407 10.00 25.00 kmol/h
CH4 407 2.00 15.00 kmol/h

METHY-01 407 0.001 0.0058 kmol/h
ETHYL-01 407 0.0006 0.002 kmol/h
ETHAN-01 407 0.0001 0.0004 kmol/h
SOLVENT 407 0.1 0.5 kmol/h

T 407 15.00 30.00 oC
P 407 5.00 30.00 bar

The Figure I.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Figure I.3: Distribution of inputs for acetic acid ANN3.

It is possible to verify that the distribution is uniform in each variable assessed.
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The Figure I.4 depicts the distribution of the inputs.

Figure I.4: Distribution of output for acetic acid ANN3.
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Hyperparameter Tuning
The Figure I.5 presents hyperparameter tunning for the Artificial Neural Network 3.

Figure I.5: Hyperparameter Tunning for ANN3.

The hyperparameter exploration has finished, revealing that the ideal configuration consists of a
hidden densely-connected layer with 27 units, a learning rate of 1.0 for the optimizer adam, and
relu as the activation function. Additionally, the regularization values are l1 = 2.3429131032e-06
and l2 = 1e-08, with an mse of 0.000222015165491.
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Predicted vs. Observed
Figure I.6 depicts the comparison between the predicted values (from the best model, after the
tunning) with the observed values (from phenomenological simulation).

Figure I.6: Predicted Values vs. Observed Values for ANN3.
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Base Case Comparison
Table I.2 compares phenomenological simulation with neural network results for the base case.

Table I.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_304 1.22215E-05 1.22215E-05
METHANOL_304 0.005541053 0.005541053

ACETIC_304 407.4836823 407.4836823
CO2_304 78.33235798 78.33235798

WATER_304 431.316634 431.316634
CH4_304 3.207625162 3.207625162

METHY-01_304 0.004398659 0.004398659
ETHYL-01_304 0.001624321 0.001624321
ETHAN-01_304 0.000417092 0.000417092
SOLVENT_304 781.5205867 781.5205867

T_304 38 38
P_304 3.17255 3.17255

H2_407 1.25817E-06 1.25817E-06
METHANOL_407 0.001488769 0.001488769

ACETIC_407 10.13028894 10.13028894
CO2_407 32.76892445 32.76892445

WATER_407 17.07701118 17.07701118
CH4_407 7.873478421 7.873478421

METHY-01_407 0.002469235 0.002469235
ETHYL-01_407 0.0009044 0.0009044
ETHAN-01_407 0.00011227 0.00011227
SOLVENT_407 0.204854353 0.204854353

T_407 20 20
P_407 25 25

H2_501 1.34797E-05 1.3558E-05
METHANOL_501 0.007029822 0.00703337

ACETIC_501 417.613971 417.5280762
CO2_501 111.101282 111.6036224

WATER_501 448.393645 448.4588623
CH4_501 11.0811036 11.11147308

METHY-01_501 0.006867894 0.006863201
ETHYL-01_501 0.002528721 0.002523979
ETHAN-01_501 0.000529362 0.000529013
SOLVENT_501 781.725441 781.7136841

T_501 36.3883558 36.13733673
P_501 3.17255 3.134570122
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Detailed Information for the Neural
Networks - Acetic Acid ANN4a

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure J.1 depicts the region of
the process flowsheet from where the neural network will be constructed.

It contains a heat exchanger (HT-09), one input stream (501), one column (CL-01) and two
output streams (503 and 504).

Figure J.1: Detailed process flowsheet for Liquid Separation System - CL-01.

The considered variables are the flows of the input stream with temperature and pressure, the
temperature of the heat exchanger, the reflux ratio, the distilate to feed and feed stage.

The collected output variables are the mole flows, pressure and temperature of stream 503 and
504, the utilities, total capital cost and CO2,eq.
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Neural Network Architecture
The Figure J.2 translates the mizing of streams section of the acetic acid process into a neural
network. There are 16 input variables and 11 output variables.

Figure J.2: Detailed architecture for acetic acid ANN4a.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.
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Limits of the input variables
The Table J.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

Table J.1: Limits of input variables for acetic acid ANN4a.
Variable Stream/Unit lower upper Unit

H2 501 6.7E-06 9.8E-05 kmol/h
METHANOL 501 3.0E-03 1.0E-02 kmol/h

ACETIC 501 400 430 kmol/h
CO2 501 70 308 kmol/h

WATER 501 350 480 kmol/h
CH4 501 3.5 48 kmol/h

METHY-01 501 2.1E-03 9.9E-03 kmol/h
ETHYL-01 501 1.1E-03 3.9E-03 kmol/h
ETHAN-01 501 3.0E-04 9.0E-04 kmol/h
SOLVENT 501 775.32 782.11 kmol/h

T_501 501 28.83 54.56 oC
P_501 501 1.1 3.96 bar

T_HT-09 HT-09 35 50 oC
RR CL-01 0.03 3.00
D/F CL-01 0.43 0.56

FEEDSTAGE CL-01 0.38 0.8

The Figure J.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Figure J.3: Distribution of inputs for acetic acid ANN4a.

It is possible to verify that the distribution is uniform in each variable assessed.
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The Figure J.4 depicts the distribution of the inputs.

Figure J.4: Distribution of output for acetic acid ANN4a.
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Hyperparameter Tuning
The Figure J.5 presents hyperparameter tunning for the Artificial Neural Network 4a.

Figure J.5: Hyperparameter Tunning for ANN4a.

The hyperparameter exploration has finished, revealing that the ideal configuration consists of a
hidden densely-connected layer with 15 units, a learning rate of 0.0129137565760207 for the
optimizer adam, and relu as the activation function. Additionally, the regularization values are
l1 = 5.6750051062e-06 and l2 = 2.3167246344713836e-08, with an mse of 0.0051949534099549.
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Predicted vs. Observed
Figure J.6 depicts the comparison between the predicted values (from the best model, after the
tunning) with the observed values (from phenomenological simulation).

Figure J.6: Predicted Values vs. Observed Values for ANN4a.
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Base Case Comparison
Table J.2 compares phenomenological simulation with neural network results for the base case.

Table J.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_ANN4 0.0000135 0.0000135
METHANOL_ANN4 0.007029822 0.007029822

ACETIC_ANN4 417.6139712 417.6139712
CO2_ANN4 111.1012824 111.1012824

WATER_ANN4 448.3936452 448.3936452
CH4_ANN4 11.08110358 11.08110358

METHY-01_ANN4 0.006867894 0.006867894
ETHYL-01_ANN4 0.002528721 0.002528721
ETHAN-01_ANN4 0.000529362 0.000529362
SOLVENT_ANN4 781.725441 781.725441

T_501_ANN4 36.38835597 36.38835597
P_501_ANN4 3.17255 3.17255

T_HT-09_ANN4 38 38
RR1_ANN4 0.091854716 0.091854716
D/F1_ANN4 0.558390927 0.558390927

FEEDSTAGE1_ANN4 0.411764706 0.411764706
flow_ACETIC_S1 0.625257183 0.751201153

flow_SOLVENT_S1 780.992917 781.7676392
T_S1 228.800562 227.6748962

flow_ACETIC_503 416.988714 416.0863037
flow_WATER_503 448.393608 448.0773926

T_503 12.0736217 11.22586727
CBM_total 1915561.985 2177807.5
CBM0_total 1792995.501 2002897.125
Cold_utility 126.7732076 137.1387177
Hot_utility 166.3901831 177.0614014

CO2_eq 6966.993473 7508.929199



Appendix K

Detailed Information for the Neural
Networks - Acetic Acid ANN4b

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure K.1 depicts the region of
the process flowsheet from where the neural network will be constructed.

It contains a heat exchanger (HT-10), one input stream (503), two columnd (CL-02 ans CL-03)
and three output streams (506, 508 and 509).

Figure K.1: Detailed process flowsheet for Liquid Separation System - CL-01.

The considered variables are the flows of the input stream with temperature and pressure, the
temperature of the heat exchanger, the reflux ratio, the distilate to feed and feed stage.

The collected output variables are the mole flows, and purity of stream 508 and 509, the utilities,
total capital cost and CO2,eq.
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Neural Network Architecture
The Figure K.2 translates a part of the liquid separation system section of the acetic acid process
into a neural network. There are 18 input variables and 8 output variables.

Figure K.2: Detailed architecture for acetic acid ANN4b.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.
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Limits of the input variables
The Table K.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

Table K.1: Limits of input variables for acetic acid ANN4b.
Variable Stream/Unit lower upper Unit

H2 503 7.22E-06 9.74E-05 kmol/h
METHANOL 503 0.003057 0.009951 kmol/h

ACETIC 503 385 439.5135 kmol/h
CO2 503 70.89092 305.0215 kmol/h

WATER 503 311.5689 478.8353 kmol/h
CH4 503 3.651608 48.57961 kmol/h

METHY-01 503 0.002074 0.009892 kmol/h
ETHYL-01 503 0.001068 0.003866 kmol/h
ETHAN-01 503 0.000309 0.000887 kmol/h
SOLVENT 503 0.001114 0.734 kmol/h

T_503 503 -18.5038 18.00174 oC
T_HT-10 HT-10 35 50 oC

RR CL-02 0.66 5 –
D/F CL-02 0.1 0.2 –

FEEDSTAGE CL-02 0.4 0.75 –
RR CL-03 3 15 –
D/F CL-03 0.2 0.67 –

FEEDSTAGE CL-03 0.4 0.8 –

The Figure K.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Figure K.3: Distribution of inputs for acetic acid ANN4b.

It is possible to verify that the distribution is uniform in each variable assessed.
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The Figure K.4 depicts the distribution of the inputs.

Figure K.4: Distribution of output for acetic acid ANN4b.
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Hyperparameter Tuning
The Figure K.5 presents hyperparameter tunning for the Artificial Neural Network 4a.

Figure K.5: Hyperparameter Tunning for ANN4b.

The hyperparameter exploration has finished, revealing that the ideal configuration consists of a
hidden densely-connected layer with 134 units, a learning rate of 0.485563523295023 for the
optimizer adam, and relu as the activation function. Additionally, the regularization values are
l1 = 4.993578654868367e-08 and l2 = 0.0001202674364624, with an mse of 0.0007859788602218.
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Predicted vs. Observed
Figure K.6 depicts the comparison between the predicted values (from the best model, after the
tunning) with the observed values (from phenomenological simulation).

Figure K.6: Predicted Values vs. Observed Values for ANN4b.
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Base Case Comparison
Table K.2 compares phenomenological simulation with neural network results for the base case.

Table K.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_503 1.34797E-05 1.34797E-05
METHANOL_503 0.007029822 0.007029822

ACETIC_503 416.9887141 416.9887141
CO2_503 111.1012824 111.1012824

WATER_503 448.3936077 448.3936077
CH4_503 11.08110358 11.08110358

METHY-01_503 0.006867894 0.006867894
ETHYL-01_503 0.002528721 0.002528721
ETHAN-01_503 0.000529362 0.000529362
SOLVENT_503 0.732523548 0.732523548

T_503 12.07362527 12.07362527
T_HT-10 38 38

RR_CL-02 2.38270768 2.38270768
D/F_CL-02 0.124004396 0.124004396

FEEDSTAGE_CL-02 0.666666667 0.666666667
RR_CL-03 5.81529718 5.81529718
D/F_CL-03 0.517075136 0.517075136

FEEDSTAGE_CL-03 0.575 0.575
mass_flow_508_kg 8101.49 9022.21
mass_flow_509_kg 25092.25 23522.35

acetic_percentage_509 0.996 0.984
water_percentage_508 0.994 0.914

CBM_total 6675877 6588430
CBM0_total 6136092 6115064

CO2_eq 10219 9490
Cold_hot_water 339.025 300.454



Appendix L

Detailed Information for the Neural
Networks - Acetic Acid ANN5

Detailed process flowsheet
In this section the detailed process flowsheet is described. The Figure L.1 depicts the region of
the process flowsheet from where the neural network will be constructed. It contains 3 heat
exchangers, 2 valves, a flash drum and a membrane module.

Figure L.1: Detailed process flowsheet for gas separation system.

The considered variables are the flows of the input stream, the temperature and pressure, the
temperature of the heat exchangers and the membrane area.

The collected output variables are the mole flows, pressure and temperature of streams 407 and
412, total capital cost, utility usage and utility CO2,equivalent usage.
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Neural Network Architecture
The Figure L.2 translates the gas separation system section of the acetic acid process (Figure L.1)
into a neural network. There are 16 input variables and 22 output variables.

Figure L.2: Detailed architecture for acetic acid ANN5.

It is a feed forward neural network with only one hidden layer, the number of neurons is defined
in the hyperparameter tuning.
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Limits of the input variables
The Table L.1 presents the values used as upper and lower bonds for the data collection and
neural network generation.

Table L.1: Limits of the input variables for acetic acid ANN5.
Variable Stream/Unit lower upper Unit

H2 303 1216 1815 kmol/h
METHANOL 303 1.62E-04 1.31E-03 kmol/h

ACETIC 303 1.31 12.69 kmol/h
CO2 303 868 1420 kmol/h

WATER 303 1.53 21.73 kmol/h
CH4 303 29.84 135.27 kmol/h

METHY-01 303 3.13E-04 2.15E-03 kmol/h
ETHYL-01 303 5.32E-05 4.63E-04 kmol/h
ETHAN-01 303 6.11E-06 6.16E-05 kmol/h
SOLVENT 303 2.83E-02 4.53E-01 kmol/h

T_303 303 29 60 oC
P_303 303 2 8 bar

T_HT-06 HT-06 20 48 oC
T_HT-07 HT-07 38 57 oC
T_HT-08 HT-08 16 24 oC

MEMBRANE_AREA MB-01 3000 8000 m2

The Figure L.3 presents the distribution of the input parameters using the Latin hipercube
sampling method.
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Figure L.3: Distribution of inputs for acetic acid ANN5.

It is possible to verify that the distribution is uniform in each variable assessed.
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The Figure L.4 presents the distribution of the output variables.

Figure L.4: Distribution of output for acetic acid ANN5.
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Hyperparameter Tuning
The Figure L.5 presents hyperparameter tunning for the Artificial Neural Network 5.

Figure L.5: Hyperparameter Tunning for ANN5.

The hyperparameter exploration has finished, revealing that the ideal configuration consists
of a hidden densely-connected layer with 47 units, a learning rate of 1.0 for the optimizer
adam, and relu as the activation function. Additionally, the regularization values are l1 =
0.0001896187501971 and l2 = 9.2722367699e-05, with an mse of 0.0100764269009232.
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Predicted vs. Observed
Figure L.6 and Figure L.7 depict the comparison between the predicted values (from the best
model, after the tunning) with the observed values (from phenomenological simulation).

Figure L.6: Predicted Values vs. Observed Values for ANN5.
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Figure L.7: Predicted Values vs. Observed Values for ANN5.
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Base Case Comparison
Table L.2 compares phenomenological simulation with neural network results for the base case.

Table L.2: Comparison the Phenomenological Simulation with Neural Network Results for the Base
Case.

Variables Phenomenological
Simulation

Neural
Network

H2_303 1441.769495 1441.769495
METHANOL_303 0.000953446 0.000953446

ACETIC_303 10.68045355 10.68045355
CO2_303 1231.562049 1231.562049

WATER_303 16.84121775 16.84121775
CH4_303 61.30200167 61.30200167

METHY-01_303 0.001755131 0.001755131
ETHYL-01_303 0.000353742 0.000353742
ETHAN-01_303 4.13431E-05 0.000041343
SOLVENT_303 0.204986968 0.204986968

T_303 38 38
P_303 3.17255 3.17255

T_HT-06 40 40
T_HT-07 48 48
T_HT-08 20 20

MEMBRANE_AREA 6000 6000
H2_407 1.21572E-06 1.2062E-06

METHANOL_407 0.000544152 0.000538171
ACETIC_407 9.93660152 9.751560211

CO2_407 29.364979 29.27304649
WATER_407 16.4131625 16.20596504

CH4_407 6.51549703 6.982434273
METHY-01_407 0.000750407 0.000725992
ETHYL-01_407 0.000195744 0.000181512
ETHAN-01_407 3.05454E-05 3.14296E-05
SOLVENT_407 0.204852983 0.209995553

H2_412 1400.552134 1395.817993
CO2_412 1021.123289 1009.228271
CH4_412 3.413289115 3.312969923

CBM_total 6483280.382 6757367
CBM0_total 6475647.603 6770259

Total_ELECTRIC_CO2 2343.697669 2372.252686
Total_ELECTRIC_usage 6756.05908 6799.539551

Total_FREON_CO2 560.576017 568.8803101
Total_FREON_usage 2507499.65 2547068.5

Total_LP_CO2 12.143 16.65307808
Total_LP_usage 88.7502662 117.5222626

Total_WATER_usage 887359.585 873163.125
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