• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.3.2020.tde-21012021-105517
Document
Auteur
Nom complet
Andreia Abadia Borges Carneiro
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Roux, Galo Antonio Carrillo Le (Président)
Matias, José Otávio Assumpção
Santoro, Bruno Faccini
Titre en anglais
Application of Real-time Optimization with Persistent Parameter Adaptation (ROPA) to processes using online parameter estimation.
Mots-clés en anglais
Dynamic plant
Extended Kalman Filter (EKF)
Online estimation
Real-time Optimization (RTO)
Transient data
Resumé en anglais
Recently, there has been an increasing growth in the optimization processes in the industrial area. The reduction of costs, improvement in the quality of final products and minimization of the environmental risks are important issues that companies must take into consideration. Thus, the development of optimization tools to efficiently identify problems has become suitable. In this context, real-time optimization (RTO) methodology is widely used in industrial area to optimize a plant economically. This is a well-established approach to create a link between a regulatory control and the economical optimization of a process under control. There are several RTO methods which can be used in the optimization cycle. The standard RTO method, called Model Parameter Adaptation (MPA), is one of the most applied in industry. Albeit a good method, there are some problems related to the MPA as well as other RTO methods, such as the use of steady-state (SS) data to update SS models to a dynamic plant, the delay in the detection of the SS condition in the system to start the optimization cycle, and the difficulty to model a complete unit since those methods require it. Real-time Optimization with Persistent Adaptation (ROPA) is a new methodology which tackles those issues. ROPA uses transient data to update the model aiming to optimize the plant. Thus, there is no need to wait for the SS condition because the dynamic plant is not updated with stationary information. Aiming to verify the advantages of this new method, this work presents the results of the ROPA application to two chemical processes. All simulations are performed using MATLAB, the dynamic model and the sensitivity equations are solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and deterministic disturbances are considered in the system in order to simulate a real plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to obtain the estimated parameters and states in the current time. Regarding the Williams-Otto reactor study, the state estimate results show that the filter works consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the parameter estimation shows that ROPA is able to respond to the disturbances occurrence reproducing the actual plant parameter profile. ROPA runs the economic optimization continuously independently of the plant condition. A Monte Carlo analysis of benefits in applying ROPA method in the RTO cycle shows that the method is suitable to track the plant optimum. Regarding the second case study, the Propylene Chlorination process simulated in a commercial dynamic simulator is optimized by an external ROPA implemented in MATLAB. In this case, ROPA can also reach the stationary optimum, and the filter works properly. However, the MPA and ROPA results are similar because the process is in a gas-phase with fast dynamics. Even in this situation, it can be seen that MPA still has the steady-state delay issue. .
Titre en portugais
Aplicação de otimização em tempo real com adaptação contínua de parâmetros usando estimação de parâmetros em linha.
Mots-clés en portugais
Dados transientes
Estimativa em linha
Filtros de Kalman
Otimização em Tempo Real (RTO)
Planta dinâmica
Resumé en portugais
Recentemente, houve um crescimento crescente nos processos de otimização na área industrial. A redução de custos, a melhoria na qualidade dos produtos finais e a minimização dos riscos ambientais são questões importantes que as empresas devem se preocupar. Assim, o desenvolvimento de ferramentas de otimização tornou-se adequado. Neste contexto, a metodologia de otimização em tempo real (RTO) é amplamente utilizada na indústria para otimizar uma planta economicamente. Essa é uma abordagem bem estabelecida para criar um vínculo entre um controle regulatório e a otimização econômica de um processo. O método de RTO clássico, também chamado de Model Parameter Adaptation (MPA), é um dos mais aplicados na indústria. Apesar de ser um bom método, existem alguns problemas relacionados à metodologia MPA e aos outros métodos de RTO, como o uso de dados de estado estacionário (EE) para atualizar uma planta dinâmica, a demora na detecção da condição de EE no sistema para iniciar o ciclo de otimização, e a dificuldade de modelar uma unidade completa, uma vez que estes métodos exigem isso. A otimização em tempo real com adaptação persistente (ROPA) é uma nova metodologia que aborda esses problemas. O método utiliza dados transientes para atualizar o modelo visando otimizar a planta. Assim, não há necessidade de esperar pela condição de EE, e a planta dinâmica não é atualizada com informações estacionárias. Com o objetivo de verificar as vantagens deste novo método, este trabalho apresenta os resultados da aplicação do ROPA em dois processos químicos. Todas as simulações são realizadas no software MATLAB, e o modelo dinâmico e as equações de sensibilidade são resolvidos pelo SundialsTB. No primeiro Estudo de Caso, o reator de Williams-Otto, perturbações randômicas e determinísticas são consideradas no sistema para simular uma planta real. O filtro de Kalman Estendido (EKF) é usado como o estimador online para obter os parâmetros e estados estimados no tempo atual. Em relação ao estudo do reator de Williams Otto, os resultados da estimativa dos estados mostram que o filtro funciona de forma consistente e a matriz de covariância de estado é ajustada satisfatoriamente. Além disso, a estimativa de parâmetros mostra que o método ROPA é capaz de responder à ocorrência de distúrbios reproduzindo o perfil real dos parâmetros da planta. O ROPA executa a otimização econômica continuamente independentemente da condição da planta. Uma análise Monte Carlo dos benefícios na aplicação do método ROPA no ciclo RTO mostra que o método é adequado para obter o ótimo da planta. No segundo Estudo de Caso, o processo é simulado em um simulador dinâmico comercial e é otimizado por um ROPA externo implementado no MATLAB. O ROPA também pode atingir o ótimo estacionário da planta e o filtro funciona corretamente. No entanto, os resultados MPA e ROPA são semelhantes porque o processo está na fase gasosa com uma dinâmica rápida. Mesmo nesta situação, pode-se ver que o MPA ainda lida com o problema de atraso no estado estacionário.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-02-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.