• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.3.2020.tde-20052021-113607
Documento
Autor
Nome completo
Raquel Hungaro Costa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2020
Orientador
Banca examinadora
Scarazzato, Tatiana (Presidente)
Bergerman, Maurício Guimarães
Buzzi, Daniella Cardoso
Título em inglês
Recovery of magnesium sulfate from a zinc ore flotation tailing using hydrometallurgical route.
Palavras-chave em inglês
Cementation
Leaching
Magnesium sulfate
Toxic metals
Zinc tailing
Resumo em inglês
The reuse of minerals from tailings is essential to generate less impact on the environment. The investigation of methods that aim to recover elements that can generate by-products from mining tailing has been studied, such as, for example, the zinc beneficiation tailing. The tailing acquired in the flotation step of the zinc beneficiation was initially characterized to investigate alternatives routes to obtain by-products from the gangues found in this tailing. The gangue of zinc tailing may contain dolomite, hematite, and impurities that are considered toxic elements, e.g. lead and cadmium. This work aimed to obtain MgSO4 and CaSO4 from real flotation tailing generated in zinc beneficiation. Thus, using physical processing, thermodynamic simulation (FactSage software), and hydrometallurgical route from dolomite. The following composition was identified in the characterization of zinc tailing by inductively coupled plasma optical emission spectrometry (ICP-OES): 7.96% Fe, 10.3% Mg, 17.4% Ca, 1.47% Si, 1.74% Zn, 0.2% Pb, 0.33% Al, 0.02% Cd, and 0.07% Mn. X-ray diffractometry (XRD) identified the phases of dolomite, hematite, and quartz. In the SEM-EDS analyses, it was possible to observe the disintegrated hematite, dolomite, and quartz particles, which allow the physical processing of these phases. Therefore, a dolomite concentration was investigated in the magnetic and gravity separation to eliminate mainly iron from the material understudy. The magnetic separation with the rougher cleaner route showed a better concentration of dolomite (90.3%) found in the non-magnetic fraction. The non-magnetic fraction was characterized by ICP-OES and presented a composition of 0.34% Al; 21.6% Ca; 0.04% Cd; 2.7% Fe; 11.9% Mg; 0.08% Mn; 0.2% Pb; 1.37% Si; and 1.73% Zn. Subsequently, a simulation was performed with the FactSage software to evaluate the leaching conditions varying the S:L ratio, the sulfuric acid concentration, and temperature were studied. Initially, pure dolomite was used in the simulation as a reference. Afterward, the composition was provided in the non-magnetic fraction of 90.3% and the other phases found in the zinc tailing were considered. The conditions for the pure dolomite were selected in 1.2mol.L-1 in a S:L ratio equal to 1:10, at room temperature showed 100% Mg extraction. Then, the simulation with 90.3% dolomite had 100% Mg extraction in 1.0mol.L-1 H2SO4 in a S:L ratio equal to 1:10 at room temperature. The leaching tests were performed using these conditions, varying the temperature in 25 - 50 - 75 and 90°C and the time from 5 to 180min, which a Mg and Ca extraction yield of 72% ± 5% and 2%, respectively, were obtained at 50°C in 35min. Using the cementation step, the purification method resulted in a 92.3% cadmium removal in the liquor from leaching with zinc powder in a 100:1 ratio in 5min at 25°C. The by-products obtained were MgSO4 and CaSO4, to be used in agriculture, magnesium sulfate (40% of MgSO4·7H2O for each 1kg) as a fertilizer (secondary macronutrient), and calcium sulfate as a soil conditioner (7.5% for each 1kg).
Título em português
Recuperação de sulfato de magnésio a partir de um rejeito da flotação do minério de zinco por rota hidrometalúrgica.
Palavras-chave em português
Cementação
Lixiviação
Metais tóxicos
Rejeito de zinco
Sulfato de magnésio
Resumo em português
O reaproveitamento de minerais a partir de rejeitos é fundamental para gerar menos impactos ao meio ambiente. A investigação de métodos que visam recuperar elementos que possam gerar subprodutos a partir de rejeitos de mineração vêm sendo estudada, como por exemplo, o rejeito do beneficiamento do zinco. O rejeito da etapa de flotação do beneficiamento do zinco foi caracterizado, inicialmente, para investigar novas rotas para obtenção de subprodutos a partir de gangas. A ganga do rejeito do zinco contém dolomita, hematita e impurezas, que são consideradas elementos tóxicos, ex.: chumbo e cádmio. O trabalho teve como objetivo a obtenção de sulfato de magnésio e sulfato de cálcio a partir do rejeito utilizando processamento físico, simulação termodinâmica (software FactSage) e rota hidrometalúrgica a partir da dolomita. Identificou-se na caracterização do rejeito de zinco, por espectrometria de emissão óptica por plasma acoplado indutivamente (ICP-OES) a seguinte composição: 7,96% Fe, 10,3% Mg, 17,4% Ca, 1,47% Si, 1,74% Zn, 0,2% Pb, 0,33% Al, 0,02% Cd, e 0,07% Mn. A difratometria de raios-X (DRX) identificou as fases de dolomita, hematita e quartzo. Nas análises realizadas no MEV-EDS foi possível visualizar as partículas desagregadas de hematita, dolomita e quartzo o que permitiu uma separação física dessas fases. Portanto, a concentração de dolomita foi investigada na separação magnética e gravítica para eliminar principalmente o ferro do material em estudo. A separação magnética rougher cleaner apresentou uma melhor concentração da dolomita encontrada na fração nãomagnética a qual foi caracterizada por ICP-OES e apresentou uma composição de 0,34% Al; 21,6% Ca; 0,04% Cd; 2,7% Fe; 11,9% Mg; 0,08% Mn; 0,2% Pb; 1,37% Si; e 1,73% Zn. Posteriormente, realizou-se uma simulação com o software FactSage para avaliar as melhores condições de lixiviação referente a relação S:L, variação da concentração de ácido sulfúrico e da temperatura. Inicialmente, utilizou-se na simulação, como referência, a dolomita pura e, em seguida, considerou-se a composição obtida na fração não-magnética (90,3%) e os demais elementos encontrados. As condições da dolomita pura foram selecionadas em 1,2mol.L-1, em uma relação S:L igual a 1:10, e temperatura a 25°C, obtendo-se uma extração de 100% do Mg na simulação. Em seguida, a simulação com 90,3% de dolomita obteve uma extração do Mg de 100% utilizando 1,0mol.L-1 de H2SO4 na relação S:L igual 1:10 a 25°C. Os ensaios de lixiviação foram realizados utilizando essas condições, variando-se a temperatura em 25 - 50 - 75 e 90°C e o tempo de 5 a 180min. Obteve-se um rendimento da extração de Mg de 72%± 5% a 50°C em 35min. Na etapa de purificação, utilizando o método de cementação, houve uma remoção do cádmio de 90,2% no licor da lixiviação com o pó de zinco numa relação de 100:1 em 5min a 25°C. Os subprodutos obtidos a partir da rota hidrometalúrgica foram MgSO4 e CaSO4, com o intuito de serem utilizados na agricultura, sendo o sulfato de magnésio (40% de MgSO4·7H2O para cada 1kg) como fertilizante (macronutriente secundário) e o sulfato de cálcio como condicionador do solo (7,5% para cada 1kg).
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-05-20
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.