• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.3.2021.tde-16032022-134640
Documento
Autor
Nome completo
Dielle Pierotti Procópio
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2021
Orientador
Banca examinadora
Basso, Thiago Olitta (Presidente)
Cunha, Anderson Ferreira da
Santos, Leandro Vieira dos
Silva, Adilson José da
Silva, Luiziana Ferreira da
Título em inglês
Metabolic engineering of Saccharomyces cerevisiae for second generation ethanol from Xylo-Oligosaccharides.
Palavras-chave em inglês
Acetate
Ethanol
Saccharomyces cerevisiae
Xylooligosaccharides
Xylose
Resumo em inglês
The expansion of the human population has raised important questions concerned, for example, the need for increasing demand for food, water, energy, as well climate, and environmental damage. The majority of energy sources are from petroleum and the massive production of carbon dioxide from high-energy consumption links to global climate changes. Lignocellulosic residues are attracting increasing interest worldwide as a new energy matrix to replace the usage of fossil resources. In more recent years, the development of metabolic engineering strategies for strain improvement, microbial fermentation by the widely used yeast, Saccharomyces cerevisiae, has taken on a new dimension, providing significant potential for producing advanced biofuels and biochemicals. In the light of these statements, S. cerevisiae strains have been reprogrammed to ferment sugars derived from lignocellulosic materials. However, fermentation of lignocellulosic biomass suggests many challenges, such as the generation of fermentable sugars from lignocellulosic residues requires harsh chemical and physicochemical pre-treatments which would generate various toxic compounds that inhibit the growth of microorganisms which in turn affect the yield of target products, as well as the inability of S. cerevisiae cells to ferment all available sugars from lignocellulosic biomass, which must be addressed to make feasible the industrial production of biofuels and biochemicals. Therefore, in the present Thesis, our goals were addressed to face some of these challenges, including i) to develop an evolved yeast strain which is capable of efficiently ferment xylose, when comparing with its parental strain. An evolved strain was developed, DPY06, which exhibited an increase of 70% on xylose consumption rate at 72h of cultivation in comparison to its parental strain; ii) to expand the capabilities of industrial and laboratory S. cerevisiae strain to utilize plant-derived xylo-oligosaccharides. To achieve this goal, the engineered strain, SR8A6S3-CDT2-GH432/7 was constructed. In cultivations using a hydrolyzed xylan, the ethanol yield was 84% higher for the engineered strain in comparison with its parental strain; iii) screening the best fitness of S. cerevisiae strain against toxic inhibitors in lignocellulosic hydrolysates. This screening was able to reveal the outstanding performance of one of the industrial strains (SA-1) over the strains evaluated; iv) investigating how S. cerevisiae yeast cells respond to the presence of the p-coumaric acid. The dataset obtained indicated important physiological changes in glucose-limited chemostat cultivations in the presence of 7 mM; and v) to investigate a polymer synthesis by xylose-acetate utilizing S. cerevisiae strain when fermenting glucose, xylose, and acetate.
Título em português
Engenharia metabólica de Saccharomyces cerevisiae para a produção de etanol de segunda geração a partir de xilooligossacarídeos e acetato.
Palavras-chave em português
Acetato
Etanol
Fermentação
Saccharomyces
Xilooligossacarídeos
Xilose
Resumo em português
A expansão da população humana tem levantado importantes questões relacionadas, por exemplo, à necessidade do aumento da demanda por alimentos, água, energia, bem como com os danos ao clima e ao meio ambiente. Nossa maior parte da fonte de energia provém do petróleo e a produção massiva de dióxido de carbono está ligada às mudanças climáticas globais. Os resíduos lignocelulósicos estão atraindo um interesse crescente no mundo inteiro como uma nova matriz energética para substituir o uso de recursos fósseis. Recentemente, com o desenvolvimento de estratégias de engenharia metabólica para a melhoria de linhagens microbianas, a fermentação pela levedura mais amplamente utilizada, a Saccharomyces cerevisiae, assumiu uma nova importância, proporcionando um potencial significativo para a produção de biocombustíveis e bioquímicos. Com base nessas afirmações, linhagens de S. cerevisiae tem sido modificadas para fermentar açúcares derivados de materiais lignocelulósicos. Entretanto, a fermentação da biomassa lignocelulósica apresenta uma série de desafios, posto que a geração dos açúcares fermentescíveis a partir dos resíduos lignocelulósicos requer pré-tratamentos químicos e físico-químicos severos os quais geram vários compostos tóxicos que inibem o crescimento dessa levedura que, por sua vez, afetará o rendimento dos produtos alvo. É também mencionada a incapacidade da levedura S. cerevisiae de fermentar todos os açúcares derivados da biomassa lignocelulósica, os quais devem ser abordados para viabilizar a produção industrial de biocombustíveis e bioquímicos. Portanto, na presente tese, nossos objetivos tiveram como foco alguns destes desafios, incluindo i) desenvolver uma linhagem de levedura capaz de fermentar xilose eficientemente, quando comparada com sua cepa parental. A linhagem evoluída obtida, DPY06, apresentou um aumento de 70% na taxa de consumo de xilose às 72h de cultivo em comparação com a linhagem parental; ii) expandir as capacidades da uma linhagem de S. cerevisiae para fermentar xilooligossacarídeos. Para atingir tal objetivo, foi construída a linhagem SR8A6S3-CDT2-GH432/7. Cultivos realizados em xilana hidrolisada resultaram em um rendimento de etanol 84% superior que o cultivo controle; iii) a seleção da uma linhagem de S. cerevisiae que é naturalmente mais adaptada ao crescimento na presença dos inibidores tóxicos presentes nos hidrolisados lignocelulósicos. Esse estudo reveleou o excelente desempenho da linhagem industrial SA-1; iv) investigar como uma linhagem industrial de S. cerevisiae responde ao ácido p-cumárico. Os dados obtidos indicaram importantes mudanças fisiológicas em cultivos de quimióstato na presença de 7 mM de p-cumárico e v) investigar a síntese de bio-polímeros por uma linhagem de S. cerevisiae capaz de fermentar xilose e acetato.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-03-16
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.