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RESUMO 
 

Cavalcanti, F. M. Avaliação de catalisadores suportados em nanotubos de 
carbono e modelagem cinética do processo para a reação Water-Gas Shift 
(WGS): abordagens macro e microcinéticas e uso de técnicas de machine learning 
para seleção de catalisadores. Versão Corrigida. 2024. Tese (Doutorado em 
Engenharia Química). Escola Politécnica, Universidade de São Paulo, São Paulo, 
2024. 
 
A reação Water-Gas Shift (WGS) é uma das rotas mais importantes para a produção de 

hidrogênio. Ela tem recebido grande importância devido ao uso do H2 nas principais indústrias 

químicas e como principal fonte de energia limpa no futuro. Embora já existam catalisadores 

industriais bem estabelecidos para a reação WGS, vários novos foram desenvolvidos para 

melhorar o desempenho e a estabilidade do processo com metais nobres em nanoescala 

suportados em óxidos. Para auxiliar com esses numerosos catalisadores, Redes Neurais 

Artificiais (RNAs) foram utilizadas para construir um modelo baseado em dados catalíticos da 

literatura. Neste contexto, foi desenvolvido um novo catalisador: nanopartículas de Co/CeO2-

Sr suportadas em Nanotubos de Carbono de Paredes Múltiplas. O uso do Co resultou em alta 

atividade e tolerância ao enxofre, enquanto CeO2 possui alta capacidade de armazenamento 

de oxigênio devido à sua redutibilidade, e o Sr atua como promotor. O uso de nanotubos de 

carbono como suporte tem se mostrado vantajoso devido à sua elevada área superficial, 

propriedades condutoras e baixa disponibilidade de alguns óxidos. A atividade catalítica foi 

avaliada em uma faixa de temperatura industrialmente relevante sob pressão atmosférica, 

apresentando melhores desempenhos em temperaturas mais altas (300-450oC), e 

alcançando conversões de CO próximas do equilíbrio. Além disso, dados cinéticos foram 

coletados variando-se as concentrações das espécies. Modelos de lei de potência, de etapa 

determinante de reação, e os microcinéticos foram ajustados a eles, para discriminar a melhor 

formulação para compreender completamente a reação em estudo. O mecanismo redox foi 

identificado como o mais adequado e permitiu explicar o papel do catalisador durante a reação 

WGS, proporcionando ciclos de oxidação e redução a partir da disponibilidade e mobilidade 

de espécies O* em sua superfície. Todo este trabalho é um material de consultoria robusto 

para auxiliar nos planejamentos futuros de catalisadores e otimização para projetos de 

reatores industriais. 

 

Palavras-chave: Produção de hidrogênio. Reação Water-Gas Shift. Nanotubos de 

carbono com paredes múltiplas. Redes Neurais. Estudo cinético. Modelagem 

microcinética. 

  



 

  



 

 

ABSTRACT 
 

Cavalcanti, F. M. Evaluation of catalysts supported on carbon nanotubes and 
kinetic modeling of the process for the Water-Gas Shift (WGS) reaction: macro 
and microkinetic approaches and use of machine learning techniques for catalyst 
selection. Corrected Version. 2024. Thesis (Doctorate in Chemical Engineering). 
Escola Politécnica, Universidade de São Paulo, São Paulo, 2024. 

 

The Water-Gas Shift (WGS) reaction is one of the most important routes for hydrogen 

production. It has received great importance due to the use of H2 in the main chemical 

industries and main clean energy source in the future. Although there are already well-

established industrial catalysts for the WGS reaction, several new ones have been 

developed for improving process performance and stability with noble metals at 

nanoscale supported on oxides. To assist with these numerous catalysts, Artificial 

Neural Networks (ANNs) were used to build a model based on catalytic data from the 

literature. In this context, a novel catalyst, Co/CeO2-Sr nanoparticles supported on 

Multi-Walled Carbon Nanotubes (MWCNTs), was developed. The use of Co resulted 

in a high activity and sulfur-tolerance, while CeO2 has a high oxygen storage capacity 

as a result of its reducibility, and Sr acts as a promoter. The use of carbon nanotubes 

as catalyst support has shown to be advantageous due to their high surface area, 

conductive properties, and the low availability of some oxides. The catalytic activity 

was evaluated in an industrially relevant temperature range under atmospheric 

pressure, presenting better performances at higher temperatures (300-450oC), and 

achieving near-equilibrium CO conversion. Furthermore, kinetic data was collected by 

varying the species concentrations. Conventional power-law, mechanistic rate-

determining step, and microkinetic models were adjusted to them, for discriminating 

the best formulation to fully understand the chemical reaction. The redox mechanism 

was identified as most suitable and allows explaining the catalyst role during the WGS 

reaction, providing oxidation and reduction cycles from the availability and mobility of 

O* species on its surface. All this work is a robust consultancy material to assist in 

future catalyst design and optimization for industrial reactor projects. 

 

Keywords: Hydrogen production. Water-Gas Shift reaction. Multi-walled carbon 

nanotubes. Artificial Neural Networks. Kinetic study. Microkinetic modeling. 
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1 INTRODUCTION 
 

The worldwide demand for hydrogen (H2) production has increased over the 

last years based on the prognosis of becoming the major energy source in the future, 

by its use in fuel cells for vehicles – releasing water (H2O) and few pollutants into the 

environment – and in the production of high-value synthetic liquid fuels through 

Fischer-Tropsch process from synthesis gas (a mixture of H2 and carbon monoxide, 

CO), also known as syngas or water-gas (SAEIDI et al., 2017). In Brazil, this demand 

has also increased due to the implementation of petroleum hydrorefining processes in 

order to comply with the new environmental legislation on fuels (BRASIL; ARAÚJO; 

SOUSA, 2011). 

The most common route for H2 generation in the Brazilian scenario is 

presented in  Figure 1.1. It comprehends syngas production (H2 + CO) from the steam 

reforming of natural gas – a fossil fuel resource, which has been studied in a 

sustainable way by the scientific community – followed by the water-gas shift (WGS) 

reaction for converting the remaining CO and the excess water into more H2, according 

to the following main chemical equations, respectively (LIMA et al., 2012): 

CH4(g)   +   H2O(v)   →  3 H2(g)   +   CO(g) ΔHo = + 205.9 kJ/mol 

CO(g)   +   H2O(v)   ↔   H2(g)   +   CO2(g) ΔHo = – 41.09 kJ/mol 

 

 
Figure 1.1 – Simplified process flow diagram for H2 production through steam reforming of natural gas. 

Source: Adapted from (BRASIL; ARAÚJO; SOUSA, 2011) 
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Therefore, the WGS reaction is a very relevant catalytic chemical process for 

increasing hydrogen production, besides controlling the H2/CO ratio in reforming 

reactions, which is very important in the methanol synthesis and gas-to-liquids (GTL) 

processes, thus valorizing the energetic use of natural gas over oil in a global 

panorama (PAL et al., 2018). Its importance dates back to 1913, when this reaction 

encountered its first prominent industrial application as part of the Haber-Bosch 

process of ammonia synthesis, preventing the iron catalyst deactivation by CO 

(MENDES et al., 2010). Although the WGS reaction also produces carbon dioxide 

(CO2), this greenhouse gas is at a single point and can then be separated from the 

outlet stream and sequestered (GRADISHER; DUTCHER; FAN, 2015). 

As shown in Figure 1.1, the WGS reaction is typically performed in consecutive 

stages at high (HT, 310-450ºC) and low (LT, 180-250ºC) temperatures, in which well-

established industrial catalysts of Fe2O3-Cr2O3 and Cu-ZnO-Al2O3 are generally 

employed, respectively (BRASIL; ARAÚJO; SOUSA, 2011). Due to the exothermic 

reaction reversibility, the former stage aims to promote a rapid CO consumption, being 

kinetically favorable with the final CO conversion limited by the equilibrium, achieving 

CO contents between 2-4 vol% in the effluent stream. On the other hand, the latter 

stage follows the opposite behavior, reaching CO concentrations below 0.5 vol% (LEE 

et al., 2013). 

This very low CO concentration is extremely essential for the platinum 

electrode used in hydrogen fuel cells (HFCs) since contents greater than 2 ppm can 

poison it (PAL et al., 2018). The vehicles equipped with these fuel cells can be three 

times more efficient than gasoline engines (SAEIDI et al., 2017). Hence, the 

development of new catalysts, more resistant and with suitable characteristics for this 

type of portable use (e.g. restrictions on volume and weight, tolerance to sulfur 

compounds, and absence of pyrophoricity), has received great attention in recent 

years (MENDES et al., 2010).  

In this context, the multi-walled carbon nanotubes – MWCNTs – have gained 

prominence in the catalysis field due to their high surface area and exceptional 

conductivity properties (SCHMAL, 2016). This allotropic form of carbon, composed of 

rolled graphene sheets, is generally functionalized with oxygenated organic groups, 

and it is used as support for catalysts with transition metal nanoparticles (NPs) 

deposited on its surface (MELCHIONNA et al., 2015). Despite not being yet an 

economically viable option for large industrial catalytic processes due to the high cost 
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of their synthesis, the MWCNTs seem to be a more suitable alternative for use in 

microchannel reactors and portable applications, ensuring energy efficiency, safety 

and reliability. 

In this work, the powerful features of functionalized MWCNTs were combined 

in a novel catalyst for the WGS reaction with cobalt (Co) nanoparticles as active phase, 

and promoted by ceria (CeO2) and strontium (Sr). The choice for Co is due to its 

tolerance to sulfur – a common natural gas impurity – (MENDES et al., 2010). CeO2 is 

used due to its elevated oxygen storage capacity (OSC), which promotes the oxygen 

species mobility over the catalyst surface as a result of Ce4+ ↔ Ce3+ redox process, 

and Sr is used by its virtue of altering the surface oxygen distribution and promoting 

better interactions between the metal and the support (FIGUEIRA et al., 2018). These 

catalysts were synthesized and characterized by different techniques and their 

activities were evaluated at different temperatures under atmospheric pressure. 

In addition, in order to describe the WGS reaction kinetics, Artificial Neural 

Networks (ANNs) were used to observe useful trends and to predict better catalysts 

and conditions for this process. The increasing use of Machine Learning (ML) 

techniques – a subarea of Artificial Intelligence (AI) – in Materials Science and 

Engineering aims to evaluate and improve the performance of materials in their 

applications, providing insights not easily perceived “by naked eyes” and reducing the 

number of expensive experiments in laboratory by means of a screening of potential 

and elucidative experimental conditions (BUTLER et al., 2018). The insertion of 

properties such as active phase composition, support type, surface area, calcination 

temperature and time allowed predicting the reaction performance based on intrinsic 

catalyst variables not commonly used in phenomenological kinetic models. 

By the way, a relevant aspect for determining the reaction rate is the 

formulation of phenomenological kinetic models for the WGS reaction, usually in terms 

of conventional power-law expressions, or, in the best scenario, of Langmuir-

Hinshelwood mechanisms, estimating the kinetic parameters and the reaction orders 

from experimental data. This task is of utmost importance for reactor design; however, 

it provides limited information for catalyst design (DUMESIC et al., 1993). These also 

denoted macrokinetic models are constructed starting from the collected data, usually 

obtained from a differential catalytic reactor – which works at small conversions (~ 5–

10%) – by varying temperatures, partial pressures and space velocities (SCHMAL, 

2016). 
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Although macrokinetic models have a lower computational cost to predict 

reaction rates, their applicability is limited to the catalyst and operating conditions 

employed for generating the data on which their construction was based. Such models 

do not take into account fundamental catalyst surface phenomena in terms of 

elementary steps (THYBAUT et al., 2011). Therefore, the development of the so-called 

microkinetic models allowed the scientific community to understand more deeply the 

determination of the true kinetics of a catalytic reaction, which considers catalyst 

surface properties, active sites, and elementary steps of the reaction mechanism 

(SCHMAL, 2016). In this work, this kind of model will be built to describe the WGS 

reaction kinetics in its elementary steps, considering the catalytic cycles and catalyst 

surface aspects. 

This brief exhibition clarifies the importance of this work for hydrogen 

production through the WGS reaction using a novel Co catalyst supported on carbon 

nanotubes and promoted by CeO2 and Sr. The development of an ANN model to 

observe useful trends to find an optimum catalyst composition, and the development 

of kinetic models were evaluated to provide further insights regarding the impact of 

catalytic elementary surface reactions and intermediate transport limitations on the 

overall process performance. 

This thesis consists of four chapters written in order of publication expectation. 

The first and last ones were already published, namely: 

• CHAPTER I - USE OF ARTIFICIAL NEURAL NETWORKS FOR 

CATALYST SELECTION (CAVALCANTI et al., 2019) 

• CHAPTER II – SYNTHESIS, CHARACTERIZATION AND CATALYTIC 

TESTS 

• CHAPTER III – (MACRO)KINETIC STUDY 

• CHAPTER IV – MICROKINETIC STUDY (CAVALCANTI et al., 2020) 
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2 OBJECTIVES 
 

The main objective of this study is to evaluate new catalysts supported on 

carbon nanotubes and to develop a kinetic modeling for the WGS reaction to produce 

hydrogen. The specific objectives are: 

• Develop an ANN model to describe the WGS reaction kinetics, besides 

predicting better catalysts and conditions for the process. 

• Synthesize a novel stable catalyst composed of Co as active phase 

supported on functionalized MWCNTs, and promoted by CeO2 and Sr.  

• Evaluate its catalytic activity for a conventional industrial feed 

composition at different temperatures and atmospheric pressure. 

• Discriminate (macro)kinetic models based on power-law expressions 

and Langmuir-Hinshelwood mechanisms for the catalyst under study. 

• Develop a microkinetic model to determine a more accurate reaction rate 

for the WGS reaction, considering catalyst surface properties, density of 

active sites, reaction intermediates, and reaction mechanisms. 
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3 CHAPTER I – USE OF ARTIFICIAL NEURAL NETWORKS FOR CATALYST 
SELECTION 

 

 

3.1 Introduction 
 

The environmental catalysis field has been gaining prominence in the scientific 

community due to the attempt to reduce the greenhouse gases concentrations in the 

atmosphere. In this context, hydrogen (H2) generation is an essential issue for the 

future since it is considered a non-polluting valuable energy source and the keystone 

of the new energy economy (SAEIDI et al., 2017). 

The Water-Gas Shift (WGS) Reaction (CO + H2O ↔ H2 + CO2) is a well-known 

catalytic chemical process for hydrogen production and control of the H2/CO ratio in 

methane reforming reactions. Although there are already well-established industrial 

catalysts for the WGS reaction, such as Fe2O3-Cr2O3 and Cu-ZnO-Al2O3, for high and 

low temperature stages, respectively (LIU; SONG; SUBRAMANI, 2009), several new 

ones have been developed for improving process performance and stability. They are 

usually composed of transition metal nanoparticles (active phase) – which interact with 

molecules during the reaction – supported on compounds that disperse the metals, 

such as inert oxides, alumina, silica, ceria, activated carbon, and carbon nanotubes 

(LEVALLEY; RICHARD; FAN, 2014). 

For predicting better performance in the process, a catalyst selection method 

for the WGS reaction using Artificial Neural Networks (ANNs) is presented here. This 

tool is a branch of Artificial Intelligence (AI) based on the human brain behavior that 

learns tasks from experience (data) through interconnected neurons systems, being 

considered a Machine Learning (ML) method. ANNs applications in Chemical 

Engineering have grown over the years since they can replace phenomenological 

models – which are based on conservation principles and usually exhibit nonlinearity 

– due to their ability to learn from data without the knowledge of the physical-chemical 

laws that govern the system (ALVES; NASCIMENTO, 2004). For instance, an ANN 

model was developed to simulate a silica membrane reactor for methanol steam 

reforming, presenting good agreement with experimental results and without including 

fundamental transport equations (GHASEMZADEH; AGHAEINEJAD-MEYBODI; 

BASILE, 2018). 
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It is also worth noting that ANNs can approximate complex model equations to 

perform optimization problems with high-speed processing because of their few non-

iterative algebraic calculations (NASCIMENTO; GIUDICI, 1998). This speed and high 

accuracy were verified in a work that compared the outcomes of a rigorous kinetic 

mathematical model with an ANN one for describing an industrial hydrogen plant 

(ZAMANIYAN et al., 2013). 

The article entitled “Can artificial neural networks help the experimentation in 

catalysis?” (SERRA et al., 2003) was the milestone for the application of ANNs to 

kinetics and catalysis, successfully predicting the n-octane conversion and yields from 

partial reactant pressures, reactor temperature, and contact time, during its 

isomerization reaction catalyzed by Pt-chlorinated alumina. Moreover, the trained ANN 

was used in a different system with a similar reaction network, requiring a small number 

of samples to reach good-quality estimations. The ML increasing use in the Materials 

Science and Engineering fields leads to a reduction in the number of time-consuming 

and expensive small sets of experiments in the laboratory that attempt to answer 

scientific questions for improving the material performance (BUTLER et al., 2018).  

Specifically, in the field of heterogeneous catalysis, for designing a new 

catalyst, it is important to know the past of the catalysis (SCHMAL, 2016). Therefore, 

ANNs can be used to select better possible catalysts – cheaper, less toxic and 

composed of non-precious metals – for a given reaction, thus reducing the massive 

number of needed high-throughput (HT) experiments, peculiar conjuncture of 

combinatorial catalysis (BAUMES et al., 2004). A growing number of papers have been 

published in the Big Data-Catalysis area, such as studies about composition of mixed 

metal oxides catalysts for the oxidative dehydrogenation of propane to propene 

through ANNs (HOLEŇA; BAERNS, 2003); the selection of additives for a Co/SrCO3 

catalyst by ANNs for the CO preferential oxidation (KOBAYASHI; OMATA; YAMADA, 

2010); the catalyst composition investigation for the oxidative methane coupling with 

the application of analysis of variance (ANOVA), correlation techniques, and decision 

trees (ZAVYALOVA et al., 2011); knowledge extraction using ANNs for CO oxidation 

over Cu (GÜNAY; YILDIRIM, 2011) and Au (GÜNAY; YILDIRIM, 2013) catalysts; the 

influence of catalyst preparation and operational variables on the CO conversion for 

the WGS reaction over Au and Pt catalysts (ODABAŞI; GÜNAY; YILDIRIM, 2014); the 

choice of better catalysts for producing hydrogen from biomass pyrolysis by the 

analysis of ANNs results (KARACI et al., 2016); and the development of heuristic rules 
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through decision tree analysis for the steam reforming of methane (BAYSAL; GÜNAY; 

YILDIRIM, 2017).  

This shows the great potential of using these methods to clarify issues not yet 

well understood by the simple analysis of experimental data or explained by 

phenomenological models. It is thus noteworthy that there is currently a tendency for 

review papers to become statistical review articles (ŞENER et al., 2018), aiming not 

only at reporting what has already been studied about a certain subject in the literature, 

but also at extracting useful information from the built database. In this work, a 

databank collected from a review article for the WGS reaction (LEVALLEY; RICHARD; 

FAN, 2014) was used in a three-layer feedforward neural network to build a more 

complete model to predict optimal catalyst composition, including an important variable 

not reported in previous ANNs studies – the surface area. The progress of this work 

against similar statistical studies in the catalysis area was proposing better catalysts 

and operating conditions for H2 production through the WGS reaction by means of the 

sensitivity analysis investigation of the ANN model developed. 

 

 

3.2 Methodology 
 

3.2.1 Data selection 

 

The dataset was acquired from tables and/or figures presented in articles cited 

in a review paper for the WGS reaction (LEVALLEY; RICHARD; FAN, 2014), obtaining 

283 experimental data points from bench-scale reactors. These data are available in 

APPENDIX A. Table 3.1 presents the selected variables for the ANN and their 

applicability ranges. Only articles that reported these most frequent variables were 

used to build the database, and a few others, which referred to other parameters, were 

removed. For the catalyst performance, as can be seen from Figure 3.1, the CO 

conversion was the most commonly recorded outcome variable (71%) in the review 

article against the CO consumption rate and others, which were little reported and 

whose articles were eliminated from the study. 
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 Table 3.1 – Variables selected for the ANN and their ranges 

Variable Unit Minimum value Maximum value 
Temperature ºC 200 450 

Pressure bar 0.8 27.6 

Catalyst mass g 0.02 2.86 

Gas hourly space velocity (GHSV) h–1 795 (1200000)** 

CO feed composition vol% 1.30 37.2 

H2O feed composition vol% 1.50 69.2 

CO2 feed composition vol% 0 96.0 

H2 feed composition vol% 0 62.5 

Inert feed composition (N2 or He) vol% 0 96.50 

CH4 feed composition vol% 0 0.70 

Active phase composition* wt% Co, Ni, Cu, Ru, Pd, Ag, Ir, Pt, Au, Cr, Zn 

Support type* - 
Fe2O3, AC, CNT, Mo2C, CeO2, La2O3, ZrO2, 

MgO, Al2O3, TiO2 

Promotor/dopant concentration* wt% 
Na, K, Mg, Ba, B, Al, Si, Pb, S, Hg, Y, Ti, Zr, 

La, Ce, Fe 

Surface area m²/g 1.1 (1487)*** 

Calcination temperature ºC 25 800 

Calcination time h 0 10 

CO conversion 
dimensionle

ss 
0 1 

*categorical or categorical-quantitative variables 

**This maximum value reported for GHSV of 1.2 x 106 ml gas/ml catalyst/h (RHODES et al., 2002) is 
very unusual in catalytic experiment ranges (≈ 104  h–1), leading to a rather small residence time (0.003 
s). 

***This maximum value reported for the surface area of 1487 m²/g (BUITRAGO et al., 2012) is well 
above the normally found catalyst surface area values (100–300 m²/g), since this catalyst support is a 
special industrial activated carbon prepared from olive stones by direct steam activation. 
 

Source: (CAVALCANTI et al., 2019) 
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Figure 3.1 – Distribution of  the outcome variables reported in the articles cited in the reference review 
paper (LEVALLEY; RICHARD; FAN, 2014). The sum of the percentages is greater than 100%, since 

more than one variable can be reported in one article. 

Source: (CAVALCANTI et al., 2019) 

 

The input variables for the ANN can be divided into two groups: one related to 

operating conditions (temperature, pressure, catalyst mass, gas hourly space velocity 

– GHSV, and feed composition) and other to the catalyst design and textural 

characteristics (active phase and its composition, support type, promotor/dopant 

concentration, surface area, and calcination temperature and time). Therefore, the 

insertion of the latter properties into the model allows predicting the reaction 

performance based on intrinsic catalyst variables not commonly used in 

phenomenological kinetic reactor models (PANTOLEONTOS; KIKKINIDES; 

GEORGIADIS, 2012). In addition, as discussed before, the CO conversion was the 

only output variable considered. 

All these variables are clearly important to describe the WGS reaction system. 

In particular, unlike other ANN similar works (ŞENER et al., 2018), the choice of using 

the surface area as an ANN input variable is very pertinent, since this property can 

demonstrate the interplay extension between reactants molecules and the solid 

surface. The model proposed attempts to take into account the formation of active 

catalyst centers, thereby including some variables of the catalyst preparation method, 

such as calcination temperature and time, and catalyst chemical composition. 
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3.2.2 Artificial Neural Networks 

 

We employed a three-layer feedforward neural network to model the process, 

that is, each layer connects to the next, but there is no way back from the “information”, 

causing all the connections to have the same direction, starting from the input layer 

towards the output layer. Figure 3.2 shows the ANN diagram with the variables 

considered. The only assumption of this proposed ANN model is that all the collected 

data represent the system under study. 

The input variables in red are categorical or categorical-quantitative, being 

represented by one-dimensional zero-arrays with the composition value of the 

component other than zero (BROUWER, 2004). In other words, these variables were 

introduced into the ANN through 37 input neurons, in which each neuron corresponds 

to a chemical compound or a metal composition. As a result, in the totality, 52 neurons 

were inserted in the ANN scheme with 51 inputs and 1 output. 

Although there are other related papers that used two hidden layers in the ANN 

architecture (GÜNAY; YILDIRIM, 2013), only one layer of this kind was adopted, since 

there are fewer calculation steps and it is more commonly used in Chemical 

Engineering applications, presenting good results (ALVES; NASCIMENTO, 2004). 

 
Figure 3.2 – Three-Layer Feedforward Neural Network employed in this work 

Source: (CAVALCANTI et al., 2019) 
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In this kind of ANN, the neurons of a layer are connected to all neurons of the 

next layer. In other words, each “information” xi that leaves a neuron of a layer i is 

weighted by a weight wij and it is sent to all neurons of the next layer j. Figure 3.3 

presents a neuron of a layer j of the ANN structure, and its output oj is calculated by: 
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where woj denotes the intercept, n the number of neurons of the layer i, and f a sigmoid 

activation function. 

 
Figure 3.3 – Scheme of a neuron of layer j 

Source: (CAVALCANTI et al., 2019) 

 

For the catalytic data adjustment, the neuralnet package – version 1.33 – was 

used (GÜNTHER; FRITSCH, 2010), available in the R software environment. Training 

an ANN is to estimate the weights w corresponding to the connections between two 

neurons of consecutive layers, which analogically refers to a synapse – a phenomenon 

in which information passes from one neuron to another. For this, a large enough 

dataset is compared to the ANN prediction. This training procedure is interrupted when 

all the partial derivatives of the error function with respect to weights (∂E/∂w) are 

smaller than a given tolerance, for instance, 0.01. The expression for the error function 

employed was the sum of the quadratic errors between the values observed oh and 

those predicted by the ANN yh, according to Eq. (2).  
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in which E indicates the error function, y the observed outputs, o the predicted outputs, 

L the number of observations and H the output nodes. 

 The data were pre-processed through the min-max normalization, which 

ranged their values between 0 and 1, in order to avoid the influence of a variable on 

the model prediction due to its order of magnitude. Moreover, they were randomly 

partitioned into two-subsets: 

 

• 80% for the training set, which was used to estimate the ANN weights; and 

• 20% for the test set, which was used only to verify the ANN performance. 

 

Note that the test data must belong to the training data domain to avoid 

extrapolations that frequently lead to predictions subject to uncertainties. The ANN 

used here has sigmoid activation functions with the bias neuron (zo = 1) belonging to 

the intercept. 

The algorithm used to train the network was the Resilient Backpropagation 

with Weight Backtracking (RPROP+), which, unlike the traditional Backpropagation 

algorithm, has a separate learning rate for each weight and can be changed during 

training. This solves the problem of setting a global learning rate appropriate to the 

whole network. Instead of the partial derivatives magnitudes, only their signals were 

used to update the weights, thus ensuring an equal influence of the learning rate on 

the network. Furthermore, the term Weight Backtracking refers to undoing the last 

weight iteration and adding a smaller value to it in the next step, thereby avoiding the 

jump over the minimum several times. 

To reduce the possibility of overfitting, the neuron number in the hidden layer 

(NH) was chosen using the k-fold cross validation technique. Its basic idea is to re-

perform the ANN calculations for different configurations and combinations of training 

and testing datasets, thus seeking the NH that minimizes the mean squared error 

(MSE) for the test set. This procedure confirms the applicability of the data extracted 

from different articles since they were all used for training the ANN (ROTHENBERG, 

2008). 
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3.2.3 Sensitivity analysis 

 

The sensitivity analysis of a process is one of the most important steps in 

understanding the relationship between their dependent and independent variables. It 

was carried out for evaluating tendencies, identifying the relevant model variables, and 

selecting the best catalyst configuration. Table 3.2 shows the input values used during 

this procedure, considered as a reference. 

 
Table 3.2 – Variables values for the sensitivity analysis 

Variable Unit Minimum value 
Temperature ºC 300 

Pressure bar 1 

Catalyst mass g 0.1 

Gas hourly space velocity h–1 1000 

Surface area m²/g 100 

Calcination temperature ºC 300 

Calcination time h 4 

CO feed composition vol% 2 

H2O feed composition vol% 10 

Inert feed composition (N2 or He) vol% 88 

Active phase and its composition wt% Cu , 2 

Support type - CeO2 

Source: (CAVALCANTI et al., 2019) 

 

The rate of change of the CO conversion, XCO, in relation to a considered input 

variable ξ is measured by the derivative ∂ ∂COX ξ  calculated at the reference base 

point, ξ . However, it is practical to use relative values to the reference – 

( ) ( )CO COX Xξ ξ
 and ξ ξ   – so that the result does not depend on the variable units. 

Therefore, the following equation was used to compute the CO conversion sensitivity 

analysis related to the ANN input variables (PERLINGEIRO, 2005): 
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where S is the sensitivity, and ref. and the bar refer to the reference input conditions 

for performing the analysis described in Table 3.2.  

The use of numerical approximation for the derivative in Eq. (3) leads to: 

 

 ( ) ( ) ( ) ( )
( ; )

( ) ( )
CO CO CO CO

CO
CO CO

X X X X
S X

X X

ξ ξ ξ ξ ξ ξξ ξξ
ξ ξξ ξ

+ ∆ − + ∆ −
= ⋅ = ⋅

∆ ∆  
(4) 

 

Taking a 1% increment from the reference values ( )0.01∆ =ξ ξ
, Eq. (4) 

becomes: 
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and the sensitivity value, S, can be obtained. 

 

 

3.3 Results and discussion 
 

3.3.1 ANN performance and regression 

 

For determining the number of neurons in the hidden layer, the data were 

partitioned 10 times (k = 10) in different training and testing sets for each NH value 

considered. Figure 3.4a illustrates the graph of the mean squared error for the testing 

set as a function of NH as a result of the application of the k-fold cross validation 

technique. As observed, the minimum MSE value occurs at NH = 12, and then it begins 

to rise and oscillate, indicating a possible overfitting. Therefore, 12 neurons were 

chosen for composing the ANN hidden layer, without loss of quality in the system 

representation performance, as will be seen in the prediction graphs. Also note that 

the MSE value for the training set (Figure 3.4b) always tends to decrease with the 

addition of more neurons – consequently more parameters – into the model, leading 

to a model overestimation. 
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Figure 3.4 – Mean squared error versus number of neurons in the hidden layer (a) for the testing set 

and (b) for the training set.  

Source: (CAVALCANTI et al., 2019) 

 

 The training process for estimating the ANN weights required 5304 steps to 

converge, reaching an error of 0.04368. The prediction plot of the CO conversion for 

the training set is illustrated in Figure 3.5a. The R² value was 0.996, indicating an 

excellent fit of the ANN model to the data of this group. Its mean square error (MSE) 

between the observed and predicted value was 0.000366. The satisfactory values of 

these metrics – R² and MSE – can be explained by the fact that the training set contains 

most of the data collected – 80% of the entire dataset – and these data were used to 

estimate the ANN weights. In addition, the residues histogram (Figure 3.5b) certifies 

the good prediction agreement, presenting normal behavior with an average of 

approximately zero. 
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Figure 3.5 (a) Comparison between prediction and observed CO conversion values for the training set 

(b) Histogram of residues for the training set. 

Source: (CAVALCANTI et al., 2019) 

 

As can be seen in Figure 3.6a, for validating the ANN model, the test set was 

used, obtaining a R² of 0.914 and a MSE of 0.00909 – slightly worse than the previous 

ones – which show a plausible predictivity ability of the network for the data that were 

not used to estimate its weights. The residues histogram for this validation is presented 

in Figure 3.6b, which ratifies the conclusions obtained for this series, resembling a 

wider normal distribution with a less frequent zero-centered average than the training 

set. 

 
Figure 3.6 (a) Comparison between prediction and observed CO conversion values for the testing set 

(b) Histogram of residues for the testing set. 

Source: (CAVALCANTI et al., 2019) 
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Figure 3.7 presents these results for the entire dataset. The values of R² 

(0.983) and MSE (0.00172), as well as the normal shape of the residue histogram, 

demonstrate an acceptable agreement between the predicted and observed values, 

and the lack of trend in the adjustment. These numbers lie between the ones related 

to the training and the testing sets, however closer to the former, since it contains 80% 

of the whole dataset and it was used to estimate the parameters of the neural network. 

 An important fact is that few points are not well predicted by the ANN, 

somewhat away the 45º line. This can be explained by a possible biased selection of 

the training dataset (BAUMES et al., 2004), or the poor quality of the experimental 

kinetic data. The latter can be related to reproducibility problems caused by the failure 

to carry out statistical analyses, the availability of few materials and little time at the 

laboratory (BAKER; PENNY, 2016).  

 

 
Figure 3.7 (a) Comparison between prediction and observed CO conversion values for all dataset (b) 

Histogram of residues for all dataset. 

Source: (CAVALCANTI et al., 2019) 

 

Figure 3.8 shows the ANN topology with 1 input, 1 hidden and 1 output layer, 

and the estimated weights computed during the training step. The hidden layer 

contains 12 neurons (NH =12) – calculated by the k-fold cross validation technique. 

The labels CO, H2O, CO2, H2, N2, He and CH4 refer to the feed composition in vol%; 

the labels Fe2O3, AC, CNT, Mo2C, CeO2, La2O3, ZrO2, MgO, Al2O3, and TiO2 refer to 

the support type; the labels Co, Ni, Cu, Ru, Pd, Ag, Ir, Pt, and Au refer to the active 

phase composition in wt%; and finally, the labels Cr, Zn, Na, K, Mg, Ba, B, Al, Si, Pb, 

S, Hg, Y, Ti, Zr, La, Ce, and Fe refer to the promotor/dopant concentration in wt%. In 
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total, there are 51 input neurons and 1 output neuron. Moreover, there are bias neurons 

(zo = 1, in blue) belonging to the intercept, not being directly affected by any covariate. 

This ANN scheme was generated by the neuralnet package. 

 

 
Figure 3.8 – ANN structure with 3 layers – 1 input, 1 hidden and 1 output layer – and the estimated 

weights computed during the training step (NH = 12, error = 0.04368, steps = 5304). 

Source: (CAVALCANTI et al., 2019) 

 

More detailed results related to the ANN regression analysis are shown in 

APPENDIX B. Table B.1 exhibits the estimated weight values of the developed ANN 

represented in  Figure 3.8. 
 

3.3.2 Sensitivity analysis findings 

 

The sensitivity analysis is an efficacious mechanism for predicting the behavior 

of the process and for using its results for decision-making. Therefore, this tool was 
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used with the ANN model to select suitable catalysts for the WGS reaction, besides 

providing better operating conditions for the process, and identifying crucial variables. 

Figure 3.9 shows the CO conversion behavior with the active phase 

composition in the catalyst (the cooper was the metal chosen) and keeping all the other 

conditions constant. It can be inferred that the higher the active phase composition, 

the greater the CO conversion due to the higher availability of active sites on the 

catalyst surface. However, caution must be taken in extrapolating these results since 

a greater increase in the metal concentration can lead to an agglomeration of particles, 

reducing their dispersion on the support, and thereby decreasing the catalytic activity. 

 

 
 Figure 3.9 – CO conversion versus Cu composition (NH = 12, Cu/CeO2, T = 300oC, P = 1 bar, mcat = 
0.1 g, GHSV = 1000 h-1, surface area = 100 m²/g, Tcalc = 300ºC, tcalc = 4 h, feed composition: 2% CO, 

10% H2O, 88% N2). 

Source: (CAVALCANTI et al., 2019) 

 
  

Figure 3.10 presents the CO conversion with the temperature for different 

active phases (metal composition of 2 wt%). Ru, Ni, and Cu appear as the best metals 

for improving the catalyst performance for the WGS reaction, requiring further 

experimental confirmation. Thus, this catalyst selection method took into account 
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significant information from the review article adopted as a reference (LEVALLEY; 

RICHARD; FAN, 2014), through the artificial neural network applied to the kinetic data. 

It would be interesting to compare these results with theoretical molecular models such 

as the Density Functional Theory (DFT) to support them even more. 

In addition, the behavior of the Pd and Co graphs at 300ºC suggests the 

existence of inconsistencies in the ANN model, perhaps caused by the lack of data for 

these conditions or inconsistent kinetic data. Hence, it would be relevant to have more 

catalytic data for these metals at this temperature range for a better evaluation. 

Furthermore, it is worth mentioning that there are CO conversion values 

greater than the thermodynamic limit of the WGS reaction and even greater than 100%. 

This very common occurrence may be due to the small dataset that was used to train 

the neural network, leading to an overparametrized model (more ANN weights than 

data used to estimate them). In this way, there are works that recommends performing 

Principal Component Analysis (PCA) to project the experimental data into an 

information space with identity regions that exhibit low- and high-predictability, thus 

scanning the experimental space in a more target manner (SMITH et al., 2020). 

 

 
Figure 3.10 – CO conversion versus temperature for different active phases (NH = 12, Metal/CeO2, 

Metal = 2 wt%, P = 1 bar, mcat = 0.1 g, GHSV = 1000 h-1, surface area = 100 m²/g, Tcalc = 300ºC, tcalc = 
4 h, feed composition: 2% CO, 10% H2O, 88% N2). 

Source: (CAVALCANTI et al., 2019) 
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Figure 3.11 shows the surface plot for the CO conversion as a function of 

temperature and active phase composition, demonstrating better catalyst efficiency at 

higher temperatures – explained by the Arrhenius equation – and higher metal 

composition on the catalytic surface. As can be noted from this graph, the temperature 

has a higher impact over CO conversion than the active phase composition. However, 

note that the metals particle size and shape were not considered in this ANN model. 

The higher the active phase composition, the lower the metal dispersion (larger particle 

size) and availability to molecules adsorption, leading to a saturation state (ZHANG et 

al., 2014). Thus, it is more favorable to increase the temperature than the active phase 

concentration for a better process performance. 

 

 

 
Figure 3.11 – CO conversion versus Cu composition and temperature (NH = 12, Cu/CeO2, P = 1 bar, 

mcat = 0.1 g, GHSV = 1000 h-1, surface area = 100 m²/g, Tcalc = 300ºC, tcalc = 4 h, feed composition: 2% 
CO, 10% H2O, 88% N2). 

Source: (CAVALCANTI et al., 2019) 

 

As can be observed from  Figure 3.12, the CO conversion decreases with the 

space velocity since the higher the flow through the reactor or the smaller the reactor 

size, the lower is the contact time of the reactants with the catalyst surface, leading to 

the non-occurrence of the reaction with the same frequency. However, if the catalyst 
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deactivation rate is low, high values for the space velocity are recommended 

(YAGHOBI, 2013). Stability tests need to be carried out to measure this rate. In 

addition, a decreasing linear dependence of the conversion with the GHSV can be 

verified, resulting in a constant rate of change between these variables. For this 

analysis, a consistent range of GHSV values was used, although the literature reports 

a very high unusual value of 1.2 x 106  h–1 for its extreme (RHODES et al., 2002).  
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Figure 3.12 – CO conversion versus GHSV (NH = 12, Cu/CeO2, Cu = 2wt%, T = 300oC, P = 1 bar, mcat 

= 0.1 g, surface area = 100 m²/g, Tcalc = 300ºC, tcalc = 4 h, feed composition: 2% CO, 10% H2O, 88% 
N2). 

Source: (CAVALCANTI et al., 2019) 

 

Furthermore, Figure 3.13 presents the surface plot of the CO conversion as a 

function of the temperature and GHSV, once again showing more variability with the 

temperature. Hence, this variable seems to be the most influential factor in the process, 

which will be confirmed by the sensitivity calculation at the end of this section. 

However, when the equilibrium state of the reaction is reached, one must work at lower 

temperatures to shift the reaction to the production of more hydrogen, since the WGS 

reaction is exothermic. 
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Figure 3.13 – CO conversion versus GHSV and temperature (NH = 12, Cu/CeO2, Cu = 2 wt%, P = 1 
bar, mcat = 0.1 g, surface area = 100 m²/g, Tcalc = 300ºC, tcalc = 4 h, feed composition: 2% CO, 10% 

H2O, 88% N2). 

Source: (CAVALCANTI et al., 2019) 

 

The importance of the feed composition, mainly the steam/CO ratio, was also 

investigated. In Figure 3.14, the CO conversion shows to slightly grow with the increase 

of the steam/CO ratio, and the additional amount of H2O appears to be an excess 

reagent. This small increase in the conversion can be explained there being more H2O 

available to occupy the remaining available sites on the catalyst surface for conducting 

the reaction. In addition, the presence of H2 and CO2 in the feed (reformate case) 

seems to shift the equilibrium of the reactants, thus decreasing the conversion. In this 

case, the curve behavior seems to be somewhat incoherent, suggesting that the model 

was extrapolated under these conditions, thus requiring more data in this interval for a 

better representation. 
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Figure 3.14 – CO conversion versus temperature for different feed compositions (NH = 12, Cu/CeO2, 

Cu = 2 wt%, T = 300oC, P = 1 bar, mcat = 0.1 g, GHSV = 1000 h-1, surface area = 100 m²/g, Tcalc = 
300ºC, tcalc = 4 h, feed composition: 2% CO, 10% H2O, 88% N2 – steam/CO = 5 (reference);   2% CO, 

40% H2O, 58% N2 – steam/CO = 20; 10.7% CO, 28.6% H2O, 5% CO2, 39.3% H2, 16.4% N2 – 
reformate). 

Source: (CAVALCANTI et al., 2019) 

 

 Regarding the calcination temperature, Figure 3.15 illustrates its influence on 

the CO conversion. The latter slightly rises with the former. In fact, the calcination 

process changes the catalyst textural and morphological features, altering its surface 

area, pore volumes, particle sizes, metal dispersion, and structures (SCHMAL, 2016). 

In this case, there was a catalytic activity enhancement, possibly as a result of the 

precursors removal from the material matrix (through the decomposition of nitrate or 

sulphate compounds), thus increasing the catalyst surface area, as an example. 

Nevertheless, it is of considerable importance to pay attention to the catalyst 

deactivation when working at higher temperatures owing to its sintering or to the 

agglomeration of its particles.  
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Figure 3.15 – CO conversion versus calcination temperature (NH = 12, Cu/CeO2, Cu = 2 wt%, T = 

300oC, P = 1 bar, mcat = 0.1 g, GHSV = 1000 h-1, surface area = 100 m²/g, tcalc = 4 h, feed composition: 
2% CO, 10% H2O, 88% N2). 

Source: (CAVALCANTI et al., 2019) 

 
 

 The surface area establishes the extension of the energy interaction between 

gas molecules and the solid surface through adsorption-desorption phenomena. As 

can be inferred from Figure 3.16, the higher this parameter, the greater the CO 

conversion, likely due to there being more available area for the active sites formation. 

These can be defects on the catalyst surface – holes, edges, or corners – which cause 

forces that attract reactant molecules to the surface (SCHMAL, 2016). This parameter 

seems to have a notable influence on the process efficiency due to its higher slope 

(rate of change) in relation to other studied parameters related to the catalyst design. 

In addition, it should be noted that, for this analysis, a coherent range of catalyst 

surface area values was used (100–300 m²/g), although a very high atypical value of 

1487 m²/g is reported elsewhere (BUITRAGO et al., 2012). 
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Figure 3.16 – CO conversion versus surface area (NH = 12, Cu/CeO2, Cu = 2 wt%, T = 300oC, P = 1 

bar, mcat = 0.1 g, GHSV = 1000 h-1, Tcalc = 300ºC, tcalc = 4 h, feed composition: 2% CO, 10% H2O, 88% 
N2). 

Source: (CAVALCANTI et al., 2019) 

 

The results of the sensitivity calculations by applying Eq. (5) are presented in 

Table 3.3. The positive values mean that the quantities have the same behavior in the 

process: when one of them goes up, the CO conversion also goes up. In turn, the 

negative values imply the opposite, when an input variable goes up, the CO conversion 

comes down. The higher the sensitivity value, the greater this influence on the reaction 

performance. These characteristics were observed in the previous graphs, confirming 

that the temperature and the surface area are the most influential variables in the 

process. 
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Table 3.3 - CO conversion sensitivities related to the considered input variables. 

Type of variable Variable Sensitivity 

Catalyst design and texture 

Cu composition 0.0389 

Surface area 0.424 
Calcination Temperature 0.0917 

Calcination Time 0.0197 

   

Operating conditions 

Temperature 1.14 
GHSV –0.00740 

CO feed composition 0.0365 

H2O feed composition 0.0180 

Inert feed composition –0.0777 
Source: (CAVALCANTI et al., 2019) 

 

 

3.3.3 Discussion 

 

This work provides better guidelines for improving the managed use of the 

environment in relation to the catalytic production of hydrogen – a relevant zero 

emission fuel – through the WGS reaction using ANNs. The good management of the 

catalyst and operating conditions leads not only to a higher production of this non-

polluting energy source but also to a reduction in the process energy expenditure due 

to the choice of higher conversion catalysts at lower temperatures. 

The ANN regression presented good quality of the data adjustment, being 

demonstrated by the computed R² values (0.996 for the training set and 0.914 for the 

testing set). These results are in accordance with similar statistical review studies that 

also adopted this approach for analyzing different catalytic reactions. For instance, 

values of 0.986 / 0.944 for Selective CO Oxidation over Cu-based catalysts (GÜNAY; 

YILDIRIM, 2011), 0.962 / 0.922 for CO Oxidation over Au catalysts (GÜNAY; 

YILDIRIM, 2013),  0.972 / 0.905 for Water-Gas Shift Reaction over noble metal 

catalysts (ODABAŞI; GÜNAY; YILDIRIM, 2014), and 0.97 / 0.89 for Dry Reforming of 

Methane (ŞENER et al., 2018) related to the training and testing sets were reported, 

respectively. As discussed earlier, the highest values for the training R² compared to 

the testing R² is explained by the former set containing most of the data, and it was 

used to estimate the ANN weights. 
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Unlike previous studies, a detailed sensitivity analysis using the developed 

ANN model was performed to examine the process behavior and to predict the 

dominant parameters to control it. An essential finding of this investigation is the 

proposition for future works on the WGS reaction of ceria-supported catalysts that 

exhibit larger surface areas, with Ru, Ni or Cu as active phases performed at medium 

temperatures (≈ 300ºC) and with plausible space velocities (2000–6000 h–1).  

As can be noted in Table 3.3, the variables related to the operating conditions 

have a slightly higher effect in the CO conversion than those associated to the catalyst 

design and textural characteristics, mainly because of the temperature, which exhibited 

the greatest sensitivity value (1.14). This makes sense, since all the reactions are 

strongly temperature-dependent, as demonstrated by the Arrhenius Equation. 

Nonetheless, the surface area presented the second highest value (0.424), indicating 

its importance to the development of industrial catalysts for the WGS reaction. 

The relevance of the latter variable in the catalytic performance of the WGS 

reaction is observed in the literature. For example, higher surface area catalysts of 

Pt/CeO2 (187 m²/g) presented much higher activity than those with lower surface area 

(78 m²/g) (JAIN et al., 2015) due to the presence of more defect sites, thus attracting 

more molecules of CO and H2O to the surface and favoring the reaction. Therefore, 

the novelty in including the surface area in the ANN model for the WGS reaction was 

really decisive since it was possible to verify its great influence on the process. 

The neural network developed contributes to analyzing the past of the WGS 

reaction catalysis to design new catalysts for a more efficient process. However, the 

results from this empirical model are to be compared with advanced chemical theories, 

which explain the surface and interfacial phenomena of a catalyzed chemical reaction, 

such as the Density Functional Theory (DFT). Thereby, one can obtain more solid 

conclusions that justify the formulation of these new materials. Nevertheless, the ANNs 

are a good starting point for making a decision. 

 Also, note that most of the articles reported the CO conversion as the key 

variable for their conclusions. Nonetheless, we advise and encourage researchers in 

the catalysis field to publish the “real” reaction rate expressed by the turnover 

frequency (TOF), which considers the number of available active sites – information 

that can be acquired from the determination of the catalyst surface properties, such as 

the CO chemisorption or in situ characterization techniques – DRIFTS, XPS, Raman, 

and X-ray diffraction.  
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 For developing future ANN models, it is essential to introduce more input 

variables in the network, taking into account the formation of active centers on the 

catalysts and the process mechanism. However, the conditions for creating active 

centers are not yet predictable due to the weakness of the catalyst preparation theory. 

It is based on a combination of various factors. In this work, some of these variables 

were introduced, for example, the catalyst composition (active phase, support and 

promotor), the calcination conditions, and the surface area. Nonetheless, we 

recommend that the scientific community reports more catalyst microproperties in 

papers (for being additional ANN inputs), for example, data from the X-ray 

Photoelectron Spectroscopy (XPS), such as the oxidation state, the phase dispersion 

on the surface, and the dependence of the atomic concentration with depth (SCHMAL, 

2016). In addition, the report of how the reaction occurs at molecular level through the 

Temperature-Programmed Surface Reaction (TPSR) technique coupled to a mass 

spectrometer or DRIFTS can improve the ANN results with information about adsorbed 

species on the catalyst surface, reaction intermediates, elementary steps, and the 

catalytic function of each compound (ZHU; WACHS, 2016). 

 
 
3.4 Conclusions 
 

The use of ANNs showed interesting relationships among operational and 

catalyst design variables for the WGS reaction. In this chapter, a more complete model 

for this process in the environmental field was successfully developed from a catalytic 

review paper dataset, exhibiting the powerful tool of ANNs for predicting better 

catalysts and operating conditions through a sensitivity analysis. A relevant result for 

a better process performance is the use of larger surface area ceria-supported 

catalysts for the WGS reaction with Ru, Ni or Cu as active phases carried out at 

moderate temperatures (≈ 300ºC) and with reasonable space velocities (2000–6000 h–

1). 

 Furthermore, it was possible to predict some of the most relevant variables 

that influence CO conversion, such as the temperature and the surface area. Thus, the 

novelty in relation to previous similar ANNs studies of the insertion of this latter variable 

into the model was essential for its good predictive performance. 
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4 CHAPTER II – SYNTHESIS, CHARACTERIZATION AND CATALYTIC TESTS 
 

 

4.1 Introduction 
 

The worldwide demand for hydrogen (H2) has increased over the last years 

steered by the growing number of environmental policies around the world to render it 

into the main clean energy source in the future (INTERNATIONAL ENERGY AGENCY, 

2019). Its key applications are found in vehicle fuel cells – releasing almost only water, 

rather than carbon dioxide, into the environment – and in the production of high-value 

synthetic liquid fuels through the Fischer-Tropsch Synthesis (LEVALLEY; RICHARD; 

FAN, 2014; SAEIDI et al., 2017). In this scenario, the Water-Gas Shift (WGS) Reaction 

(CO + H2O ⇌ H2 + CO2) is a very relevant catalytic process for hydrogen production. 

It occurs e.g. during methane reforming and controls the H2/CO ratio in the syngas 

(LEE et al., 2013). In addition, the WGS reaction has received great importance 

worldwide because of the use of H2 in chemical industry with application such as 

ammonia, fertilizers, methanol, oil refining, etc. (REDDY; SMIRNIOTIS, 2015). The 

WGS is typically performed in consecutive stages at high temperature (HT, 310-450oC) 

and low temperature (LT, 80-250oC), in which well-established industrial catalysts such 

as Fe2O3-Cr2O3 and Cu-ZnO-Al2O3, respectively, are generally employed. Ultimately, 

CO concentrations below 0.5 vol% in the effluent stream are achieved (BRASIL; 

ARAÚJO; SOUSA, 2011). 

An extremely low CO concentration is required for the platinum electrode used in 

hydrogen fuel cells (HFCs) as CO acts as a poison when its content exceeds 2 ppm 

(PAL et al., 2018). Also, the syngas derived from the gasification of waste, biomass, 

and coal has a higher CO content and impurities such as tar and sulfur, which can 

poison the catalyst (LEE et al., 2023). Hence, the development of new WGS catalysts, 

which are more resistant to deactivation and exhibit suitable characteristics, e.g., 

restrictions on volume and weight, tolerance to sulfur compounds and are not 

pyrophorous, have received considerable attention in recent years (MENDES et al., 

2010). Studies were mainly focused on catalysts based on noble transition metal 

nanoparticles dispersed and supported on oxides, especially on ceria (CeO2) (PAL et 

al., 2018). This high dispersion of the active phase on CeO2 reduces the content of 
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precious metals in the catalyst matrix and, consequently, their exorbitant cost, while 

maintaining their high catalytic activity (ZHOU et al., 2023). 

The extensive use of CeO2 – a reducible oxide with several oxidation states – in 

current studies as a WGS catalyst support is related to its high oxygen storage capacity 

(OSC). This promotes mobility of the oxygen species over the catalyst surface as a 

result of the Ce4+ ↔ Ce3+ redox process. This stimulates a strong interaction between 

the metal and the support, thus enhancing the catalytic activity (GRADISHER; 

DUTCHER; FAN, 2015). Currently, due to the low availability of ceria, there is a 

tendency to synthesize optimized CeO2-promoted catalysts for the WGS reaction 

supported on high surface area compounds, such as activated carbon (PASTOR-

PÉREZ; BUITRAGO-SIERRA; SEPÚLVEDA-ESCRIBANO, 2014) and carbon 

nanotubes (DONGIL et al., 2016). These carbon-based catalysts present incredibly 

high activity, reaching a CO conversion in the range of 80-100%. This high CO 

conversion is particularly high when paired with an additional dopant metal, such as 

sodium, Na (ZUGIC; BELL; FLYTZANI-STEPHANOPOULOS, 2014), or strontium, Sr 

(FIGUEIRA et al., 2018). 

In this context, the multi-walled carbon nanotubes (MWCNTs) have gained 

prominence in the catalysis field because of their high surface area and exceptional 

conductive properties related to the extended π-conjugation bonds, in which there is 

the delocalization of π-electrons across all the adjacent aligned p-orbitals (SCHMAL, 

2016). This allotropic form of carbon with sp2 hybridization, composed of rolled 

graphene sheets, is generally functionalized with oxygenated organic groups to create 

anchoring points (i.e., defects) for the deposition of metal nanoparticles on their surface 

(MELCHIONNA et al., 2015). They are considered to be a promising catalyst support 

because of their capability of dispersing these active metal particles and facilitating 

electron transfer among them. Next, they exhibit a high resistance to carbon formation, 

coke deposition, and sintering (SCHMAL; TONIOLO; KOZONOE, 2018). Furthermore, 

their mesoporous structure minimizes the limitations imposed by mass transfer, as 

seen in activated carbon (FIGUEIRA et al., 2018). 

In this work, the powerful features of these MWCNTs were combined in a novel 

catalyst with cobalt (Co) as the active phase, and promoted by reduced amounts of 

CeO2 and Sr. The choice for Co is related to its industrial relevance in alloys, batteries 

and catalysts, requiring a more competitive price in comparison to precious metals (as 
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palladium, platinum, and gold) (ECONOMICS, 2021), and its high tolerance to sulfur, 

a typical natural gas impurity (HLA et al., 2011a)  

The synthesized catalyst was characterized in detail to determine its properties 

and structure, and its catalytic activity for the WGS reaction was investigated at 

atmospheric pressure and temperatures ranging from 200 to 450oC and space times 

varying between 20 and 80 kg s mol−1.  

 

 

4.2 Literature review 
 

This section includes a review of the state-of-the-art for the WGS reaction 

catalysts, besides the gradual employment of carbon nanotubes in catalysis. The most 

recent articles involving the use of catalysts supported on MWCNTs for the WGS 

reaction are reported and discussed, finding thus the gaps in the literature and the 

suitable directions for conducting further research on this topic. 

 

4.2.1 Catalyst for the WGS reaction 

 

The choice of the catalyst for the WGS reaction is a key design issue to 

produce H2 in large-scale from syngas. (PAL et al., 2018) suggested the following 

classification of the catalysts that have been frequently employed in this process: 

• High temperature shift (HTS) catalysts. 

• Low temperature shift (LTS) catalysts. 

• Ceria and noble metal based catalysts. 

• Carbon based catalysts; and 

• Nanostructured catalysts. 

 

The first two types of catalysts are successfully used in the traditional two-

stage industrial process. As previously mentioned, the reaction is favored kinetically at 

higher temperatures and thermodynamically at lower temperatures and is unaffected 

by changes in pressure (SMITH R J; LOGANATHAN; SHANTHA, 2010). The HTS 

catalysts are composed by iron-chromium oxides (Fe2O3-Cr2O3). For activating it, 

hematite (Fe2O3) has to be reduced to magnetite (Fe3O4), which is the active phase. 
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Cr2O3 prevents the catalyst sintering and functions as a promoter; however, it is not 

environmentally friendly due to its carcinogenic nature and the toxicity of the water 

soluble Cr6+ ions. On the other hand, the LTS catalysts are usually constituted by CuO-

ZnO-Al2O3. Copper metal crystallites compose the active phase and the ZnO-Al2O3 

provides the structure for preventing its sintering. Moreover, ZnO still prevents against 

poisoning by sulfur and chlorine compounds present in the gas feed (RATNASAMY; 

WAGNER, 2009). 

Nevertheless, those aforementioned catalysts present some drawbacks for 

use in portable fuel cells because of volume and weight restrictions, pyrophoricity, need 

for activation, chromium environmental harmfulness, deactivation in presence of 

condensed water or due to coke formation, among others. For this type of application, 

catalysts based on noble metals such as gold (Au) and platinum (Pt) at nanoscale and 

supported on oxides – especially on ceria (CeO2) – have received great attention in 

recent years (POTDAR et al., 2011; RODRIGUEZ, 2011). 

Recently, Au nanoparticles supported on Zn-Al/Cr/Fe layered double 

hydroxides were evaluated for the WGS reaction, presenting an enhancement of the 

activity of these hydroxides (MENG et al., 2020). The addition of Au altered the redox 

circles on the surface of the catalysis, by significantly lowering the activation barrier of 

the kinetically relevant step of H2O dissociation. 

The very large use of CeO2 – a reducible oxide with several oxidation states – 

in current studies as a WGS catalyst support is due to the fact that this rare earth oxide 

has an oxygen storage capacity (OSC) that promotes the oxygen species mobility over 

the catalyst surface as a result of Ce4+ ↔ Ce3+ redox process, stimulating a strong 

interaction between the metal and the support, hindering the active phase 

agglomeration, and enhancing thus the catalytic activity (GRADISHER; DUTCHER; 

FAN, 2015). Moreover, the addition of transition metals, as zirconium (Zr), or rare earth 

metals, as lanthanum (La), in the ceria lattice can increase this effect (LIANG; VESER, 

2012). 

In the WGS reaction, CO adsorbed on metal site is oxidized with the lattice 

oxygen atom on the CeO2 surface to form CO2, which is accompanied by the formation 

of surface oxygen vacancy. Then, this vacancy is replenished by the O* species 

originated from the dissociation of H2O to yield H2 (CHUNG et al., 2021). For example, 

the LT-WGS activity of a Cu@CeO2 catalyst was about three times higher than that of 

a pristine Cu catalyst without CeO2 (LI et al., 2023). 
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Currently, due to the low ceria availability, there is a tendency to synthesize 

optimized CeO2-promoted catalysts for the WGS reaction supported on high surface 

area compounds, such as activated carbon (PASTOR-PÉREZ; BUITRAGO-SIERRA; 

SEPÚLVEDA-ESCRIBANO, 2014) and carbon nanotubes (DONGIL et al., 2016), 

reducing thus the ceria amount in the catalyst composite and enhancing the synergy 

between the active phase and CeO2 because of the capacity for achieving large ceria 

dispersions (BUITRAGO et al., 2012). These carbon-based catalysts present 

extremely high activity, particularly if paired with an additional dopant metal, as sodium 

(ZUGIC; BELL; FLYTZANI-STEPHANOPOULOS, 2014). Also, transition metal 

carbides, such as Co-Mo/C, exhibit high activity and sulfur resistance, but they are 

deactivated during the reaction (NAGAI et al., 2010). 

Furthermore, it is noteworthy that the activity of nanostructured catalysts is 

strongly changed by the particle shape and size. For example, in transition metal NPs, 

size reduction effects lead to differentiated changes in relation to their bulk form in its 

electronic structure, providing new reactivity features (SCHMAL, 2016). The enhanced 

performance of these kind of catalysts for the WGS reaction is reported elsewhere and 

can be attributed to the uniform distribution of metal NPs on the support surface due 

to their small size, preventing thus sintering and agglomeration (JEONG et al., 2015). 

 

4.2.2 Use of carbon nanotubes in catalysis 

 

Carbon nanotubes (CNTs) are considered one of the most significant pillars of 

Nanotechnology due to the combinations of their electronic, thermal and mechanical 

properties. The scientific community interest in potential applications of CNTs has 

grown rapidly, for example, in composites, electronics, computers, medicine efficiency, 

sensors, among others (LOOS, 2014). A CNT is an allotropic form of carbon, such as 

graphene and diamond, which is constituted by a hollow tubular structure of 

hexagonally arranged carbon atoms with sp2 hybridization, such as a rolled graphene 

sheet. This cylinder has diameters of 2-50 nm, a length of a few micrometers, and 

extremes that may be open or closed with half of a fullerene (LOOS, 2014). They can 

be constituted by an unique single wall (SWCNTs – Single-Walled Carbon Nanotubes) 

or by multiple concentric walls (MWCNTs – Multi-Walled Carbon Nanotubes), as 

shown in Figure 4.1 (RIBEIRO et al., 2017). 
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Figure 4.1 – Schematic representation of SWCNTs and MWCNTs. 

Source: Adapted from (RIBEIRO et al., 2017) 

 

Due to its high surface area and its conductivity properties related to the 

extended π-conjugation and Van der Waals forces exerted between individual tubes, 

CNTs have been employed in new branches, such as in catalytic processes and 

adsorption systems for hydrogen storage (SCHMAL, 2016). In catalysis, MWCNTs are 

generally used as supports for catalysts with transition metal NPs deposited on their 

surface, or even as crude catalysts (MELCHIONNA et al., 2015). To facilitate the 

anchoring of these NPs and their catalytic activity, the surface of the nanotubes are 

normally functionalized with oxygenated organic groups (MELCHIONNA et al., 2015). 

In addition, this functionalization enables to obtain the nanotubes as uniform as 

possible in size, besides removing various undesirable impurities such as catalyst 

particles used in their synthesis, graphite and amorphous carbon (LOOS, 2014). 

The functionalization by oxidative treatment using HNO3 is efficient in the 

removal of carbonaceous impurities, generating several functional groups on the 

surface and at the extremes of the nanotubes, such as carboxylic (–COOH), hydroxyl 

(–OH), and carbonyl (–CO) groups, according to Figure 4.2 (ZUGIC; BELL; FLYTZANI-

STEPHANOPOULOS, 2014). The oxidation occurs at the extreme of the nanotube and 

moves to the outermost layer of the bundle. In the case of MWCNTs the oxidation 

gradually moves from the outermost layer of the nanotube to its interior, resulting in 

the successive removal of graphene cylinders and thinner nanotubes (LOOS, 2014). 
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Figure 4.2 – Scheme of the oxidative treatment of CNTs with HNO3. 

Source: Adapted from (ZUGIC; BELL; FLYTZANI-STEPHANOPOULOS, 2014) 

 

Furthermore, a new distribution of defects is introduced on the surface of the 

nanotubes, which together with the functional groups, serve as a kind of anchorage for 

the active phase NPs to be impregnated, as well as for the adsorption of reactant 

molecules, increasing thus the catalytic activity (MELCHIONNA et al., 2015). This good 

performance can be explained by the transfer of electrons from the active phase metal 

NPs to the CNTs, as reported in oxidation reactions of 1-phenylethanol with 

5%Au/SWCNTs catalysts (SHANAHAN et al., 2011). Also, its high thermal 

conductivity, which can reach double that of the diamond, contributes to the dissipation 

of the heat, preventing its sintering and the coke formation. 

Although, in catalysis, the deposition of NPs on the CNT outer surface is 

preferred, there are studies on the increase of the reactant molecules adsorption when 

depositing NPs also on the CNT internal cavities. In this context, (TESSONNIER et al., 

2009) proposed a method for impregnating NPs inside and outside the nanotubes 

based on the differences between the interface energies of the organic and aqueous 

precursors solutions with the outer surface of the functionalized CNTs. 

It is important to highlight that the use of CNTs as catalyst support, despite 

presenting good performance, is not yet an economically viable option for large-scale 

processes due to the high cost of their synthesis (MELCHIONNA et al., 2015). 

Currently, the method of Chemical Vapor Deposition (CVD) produces the largest 

quantities of nanotubes at more affordable prices, but imperfections in the structure 

are common, which may negatively influence their catalytic activity. It is expected that 

in the next 5-10 years CNTs applications will increase, and demand will increase along 
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with the quality and the CNTs production rate, lowering thus their price and impacting 

the industry (LOOS, 2014). 

 

4.2.3 Catalysts supported on CNTs for the WGS reaction 

 

ZUGIC; BELL, and FLYTZANI-STEPHANOPOULOS (2014) conducted the 

WGS reaction at low temperatures using Pt catalysts supported on MWCNTs. The 

catalysts presented better performance in their activities with the addition of sodium 

ions (Na+) in the structure, which functioned as promoters. During the preparation, the 

NTCMPs were oxidized by nitric acid (HNO3) with the consequent increase of groups 

with oxygen (carboxylic, anhydride, among others) on the surface of the nanotubes. 

According to the authors, the presence of Na+ ions modifies the ordering of these 

oxygenated groups in the MWCNTs and stabilizes the partial oxidation state of Pt in a 

conceivable structure of Pt-Na-OHx, inferred through the X-ray photoelectron 

spectroscopy analysis. Thus, increasing the number of active sites, the consequent 

raise in the catalytic activity of the WGS reaction was observed. It was also concluded 

that the CNTs surface performance in carrying activated Pt sites promoted by Na+ ions 

was not affected by the decrease of the oxygen content due to the calcination of the 

catalyst, performed at 800ºC. 

BELTRAM et al. (2015) used MWCNTs as support for the synthesis of 

palladium-ceria (Pd@CeO2) catalysts in a shell-core structure. The integration of the 

carbonaceous supports improved the stability of the NPs by ordering the inorganic 

phase dispersion and increased the activity, suppressing the deactivation of the active 

phase which is commonly observed in conventional Pd@CeO2 under reducing 

conditions. The post-synthetic removal of MWCNTs resulted in Pd@CeO2 systems 

which, to a certain extent, retain the benefits introduced by the nanotubes, exhibiting 

moderate performances, although inferior to the analogs ones based on MWCNTs, 

with rapid deactivation at low temperature. 

DONGIL et al. (2016) studied the WGS reaction at low temperatures using 

nickel (Ni) catalysts supported on ceria-promoted MWCNTs. Although many previous 

studies have employed CeO2 as a support for metals, such as Pt, due to the strong 

stabilizing effect of this oxide on the metal, the authors decided to use CeO2 as a 

promoter dispersed on a support of MWCNTs because of its high surface area and  
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low availability, promoting the reaction. Comparative studies with catalysts supported 

on activated carbon and HNO3 oxidized MWCNTs (65%) were also performed. 

It was observed that there are only three works with applications of carbon 

nanotubes as catalysts support for the WGS reaction. One realizes that the use of this 

prominent material in this important catalytic process for hydrogen production lacks 

deeper and more diversified studies, for example, with cheaper and traditionally 

industry-used active phase metals deposited on the surface of these nanotubes, which 

is one of the objectives of this work. Furthermore, the development of kinetic models 

for these types of catalysts was not yet reported in the WGS reaction literature. 
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4.3 Methodology 
 

4.3.1 Catalyst synthesis 

 

The synthesis of the 5wt%Co/7wt%Ce-3wt%Sr-MWCNT catalyst was 

performed following a methodology based on that of Figueira et al. (FIGUEIRA et al., 

2018). The commercial MWCNTs (acquired from Merck/Sigma-Aldrich) were used as 

the starting material (number: 412988, assay: > 7.5% MWCNT basis, composition: 

carbon content > 99% by TGA, outer diameter: 7-15 nm, length: 0.5-10 μm). The 

functionalization step was performed on 500 mg of nanotubes by adding 25 mL of a 

1M nitric acid (HNO3) solution for 16 h, while stirring at 500 rpm, at a temperature of 

100oC (Figure 4.3). Hereby oxygenated groups are introduced on the surface of the 

carbon nanotubes and their tips are opened. Subsequently, they were cooled down to 

room temperature, filtered and washed with distilled water. 

 

 
Figure 4.3 – Experimental apparatus for the functionalization of the MWCNTs. 

 

 

The promoters, c.q. nanoparticles of Ce and Sr, were deposited on the 

MWCNT supports by wet impregnation with ethanolic solutions of the corresponding 
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amount of the precursors (purchased from Sigma-Aldrich): 130.2 mg of cerium III 

nitrate hexahydrate – Ce(NO3)3∙6H2O – and 43.5 mg of strontium nitrate – Sr(NO3)2, 

respectively. Both solutions were added dropwise to the functionalized MWCNTs, and 

then washed with distilled water. Figure 4.4 presents the MWCNTs being impregnated. 

After drying for 21 h at 50oC in a vacuum oven, the material was calcined with synthetic 

air (100 mL/min) for 2 h at 350oC, and then reduced with H2 (100 mL/min) for 2 h at 

400oC in a muffle furnace. 

 

 
Figure 4.4 - MWCNTs being impregnated with the Cu-precursor solution aqueous solution. 

 

 

Subsequently, the Co metallic active phase was deposited on the surface of 

the MWCNTs in a similar manner as the promoters. Firstly, 1.38 mL of ethylene glycol 

was added to fill the pores of the material, ensuring the deposition of Co nanoparticles 

on the external surface of the MWCNTs. Thereafter, an aqueous solution with 148.2 

mg of cobalt (II) nitrate hexahydrate – Co(NO3)2∙6H2O (purchased from Sigma-Aldrich) 

was gradually added to the paste. The aforementioned steps of drying, calcination, and 

reduction were then repeated to obtain the Co/Ce-Sr-MWCNT catalyst. 
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4.3.2 Catalyst characterization 

 

Several characterization techniques were performed to determine the 

properties, composition, and structure of the synthesized catalyst. An overview of 

these techniques, describing the equipment, the methodology, and the measured 

catalyst property are presented in this section. 

 

4.3.2.1 Nitrogen Physisorption Isotherms 

 

N2 physisorption isotherms were acquired using a NOVA 1200e Surface Area 

& Pore Size Analyzer from Quantachrome Instruments located at the Institute of 

Chemistry (IQ) at Universidade de Sao Paulo (USP). 100 mg of the crude MWCNTs 

and the prepared catalyst were used for the analysis. The samples were first degassed 

under vacuum at 150oC for 17 h prior to N2 adsorption at –196oC. The surface areas 

and pore volumes were determined following the BET (Brunauer, Emmet and Teller) 

and BJH (Barret, Jayner and Halenda) methods (BARRET; JOYNER; HALENDA, 

1951; BRUNAUER; EMMETT; TELLER, 1938). 

 

4.3.2.2 X-Ray Diffraction (XRD) 

 

The powder method was employed with 80 mg of a catalyst sample in a Rigaku 

diffractometer (Miniflex model) with Cu K-α radiation (λ = 1.54 Å) located in the 

Catalysis Nucleus (NUCAT) of the Chemical Engineering Program/COPPE at 

Universidade Federal do Rio de Janeiro (UFRJ). The incidence angle (2θ) was varied 

between 10o and 90o, with a step size of 0.05o and an acquisition speed of 2o min–1. 

The crystalline phases were identified by comparing the obtained diffractograms with 

the ICDD (International Center for Diffraction Data) data sheets using the MID JADE 

5.0 software (MATERIALS DATA, 2017). Ultimately, the crystallite sizes were 

computed by applying the Scherrer Equation (PATTERSON, 1939): 

 𝑑𝑑 =
0.89 𝜆𝜆
𝛽𝛽 cos 𝜃𝜃

 (6) 

where λ is the is the X-ray radiation wavelength Å, θ is the peak angle, and β is the 

width at half maximum (FHWM) of the respective XRD peak. 
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4.3.2.3 Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray 

Spectroscopy (EDX) 

 

The images were obtained using an electronic transmission microscope JEOL 

JEM 2100 with 200 kV of acceleration voltage, 0.23 nm resolution at a point, and a 

maximum magnification of 1,500,000 times, located at the Sao Carlos’ Institute of 

Chemistry (IQSC) at Universidade de Sao Paulo (USP). The samples (≈ 0.1 mg) were 

prepared dispersing the crude MWCNTs and the catalyst in toluene and sonicating 

them for a few minutes. Then, one drop of these suspensions was deposited on a 300-

mesh copper-based grade (from Ted Pella Inc.). In addition, an Energy Dispersive X-

Ray Spectroscopy (EDX) was performed with the characteristic X-rays emitted from 

the samples. The obtained spectrum was peaks related to the elements presented at 

the surface. 

 

4.3.2.4 Raman spectroscopy 

 

Raman spectroscopy method was used to characterize carbon structures and 

to evaluate the degree of graphitization, through the intensities of the characteristic D 

and G bands. The spectra of the samples – the crude MWCNTs and the prepared 

catalyst (≈ 5 mg) – were acquired using a Raman spectrometer HORIBA Jobin-Yvon 

LabRam HR800 UV, equipped with an Olympus microscope (BX41 model), a He-Ne 

laser (λ = 633 nm) lighting source, and a thermal conductivity detector (T = –70oC). 

This analysis was performed in the Catalysis Nucleus (NUCAT) of the Chemical 

Engineering Program/COPPE at Universidade Federal do Rio de Janeiro (UFRJ). The 

spectra were collected from 100-1800 cm–1. 

 

4.3.2.5 Thermogravimetric Analysis (TGA) 

 

The thermograms were obtained using a HITACHI STA 7300 equipment 

located in the Catalysis Nucleus (NUCAT) of the Chemical Engineering 

Program/COPPE at Universidade Federal do Rio de Janeiro (UFRJ). About 2.5 mg of 

the synthesized catalyst was heated up at a rate of 10oC/min from room temperature 
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to 1000oC under an inert atmosphere (N2, 80 mL/min). The rate of mass loss was 

registered by a derivative thermogravimetric (DTG) curve with respect to time. 

 

4.3.2.6 Hydrogen Temperature Programmed Reduction (H2-TPR) 

 

The analysis was performed with 200 mg of the synthesized catalyst in a 

Chemisorption Analyzer (Autochem II, from micromeritics®) with a U-shaped quartz 

reactor, located at the Laboratory for Chemical Technology (LCT) at Ghent University 

(Belgium). The sample was reduced under a flowing 5%H2/Ar mixture (60 mL min–1) 

from 50oC to 550oC (with a rate of 20oC/min), followed by passing He (60 mL min–1) 

through the reactor for 30 min at 550oC. Hydrogen consumption was monitored by a 

thermal conductivity detector (TCD). Before the measurements, the sample was dried 

at 200oC (at a rate of 10oC/min) for 0.5 h with 60 mL min–1 of He to eliminate moisture 

and adsorbed gases. 

 

4.3.2.7 Pulsed CO chemisorption analysis 

 

A pulsed CO chemisorption analysis was conducted in a Chemisorption 

Analyzer (Autochem II, from micromeritics®) equipped with a TCD to measure the CO 

consumption, located at the Laboratory for Chemical Technology (LCT) at Ghent 

University (Belgium). The sample (≈ 200 mg) was loaded into a U-shaped quartz 

reactor and was initially heated to 200oC (at a rate of 10oC/min) under He flow (60 mL 

min–1) for 30 min, to eliminate possible residues. Afterwards, it was reduced under a 

flowing 5%H2/Ar mixture (60 mL min–1) from 50oC to 350oC (with a rate of 20oC/min) to 

activate the catalyst, followed by passing He through the reactor for 30 min at 350oC. 

Subsequently, the sample was purged with inert gas (60 mL min–1 of He) for 1 h to 

remove the adsorbed H2, and it was cooled down to room temperature (40oC). Then, 

every 3 min, CO pulses of 500 μL were fed to the system until the gas amount in the 

outlet was constant, i.e. the same peak areas were observed in the TCD responses. 

The amount of irreversibly adsorbed gas was calculated from the difference between 

saturation and the CO pulses introduced, and the active site density was calculated 

assuming a CO:Co stoichiometry of 1:1. 
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4.3.3 Catalyst activity tests 

 

The catalytic activity tests were carried out in an automated Microactivity-Effi 

equipment (MAE18163 model) from PID ENG&TECH – a Micromeritics® company 

(Figure 4.5), located at the Laboratory for Research and Innovation in Catalytic 

Processes (LaPCat) of the Escola Politecnica (POLI) at Universidade de Sao Paulo 

(USP). The effluent was analyzed with an online gas chromatograph (Shimadzu GC-

2010 Plus) equipped with a Carboxen-1010 PLOT column and a TCD detector. The 

reactor consisted of a Hastelloy X tube with an internal diameter of 9.1 mm and a total 

length of 304.8 mm, having a porous plate in the middle for loading the catalyst bed 

(made of Hastelloy C and 20 µm in size). A type-K thermocouple was used to measure 

the temperature inside the reactor tube by touching the catalyst bed, thereby ensuring 

a more accurate measurement and a better PID control for the isothermal operation of 

the reactor. 

 

 
Figure 4.5 – Microactivity-EFFI coupled with GC. 

 

 

For the catalytic tests of the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst, the feed was introduced into the system on a controlled manner by means of 

mass flow controllers for CO and N2 (Bronkhorst) and a liquid flow meter (CORI-FLOW 

meter from Bronkhorst) for H2O. The inert gas served as carrier to transport the liquid 

water droplets as aerosol, which were then heated and evaporated by a Controlled 
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Evaporator Mixer (CEM). The molar composition of the feed gas stream was 11% CO, 

29% H2O, and 60% N2, with a total flow of 70 mL min–1. The tests were performed 

using 0.100 g of catalyst, thus resulting in a gas hourly space velocity (GHSV) of 

42,000 mL gcat–1 h–1.  

Prior to reaction, the catalyst was activated in-situ, by reduction with H2 for 1 h 

at 300oC. The catalytic activity was then evaluated under atmospheric pressure at 

several temperatures in the range of 200-450oC, which encompasses the LT and HT 

processes. The reaction at each temperature was stabilized for 1 h to reach steady-

state operation. Furthermore, additional tests were carried out varying the Wcat/FCO 

ratio (space time) from 19 to 83 kgcat s mol–1 at three distinct temperatures: 300, 350, 

and 450oC. Finally, a 15-hour time-on-stream-test was also performed at 350oC to 

evaluate the catalyst deactivation at a CO conversion of 50%. This conversion level 

was selected to avoid an influence by the catalyst loading (ZHANG et al., 2019). The 

catalytic activity was expressed by the degree of CO conversion and H2 yield, 

respectively: 
 

 
𝑋𝑋𝐶𝐶𝐶𝐶 =

𝐹𝐹𝐶𝐶𝐶𝐶0 − 𝐹𝐹𝐶𝐶𝐶𝐶
𝐹𝐹𝐶𝐶𝐶𝐶0

× 100      [%] (7) 

 

 
𝑌𝑌𝐻𝐻2 =

𝐹𝐹𝐻𝐻2
𝐹𝐹𝐶𝐶𝐶𝐶0

× 100      [%] (8) 

 

Moreover, to calculate the chemical reaction equilibrium that limits the reactant 

conversion, the REquil pallet from ANSPEN PLUS® 8.0 was used with the Soave-

Redlich-Kwong (SRK) Equation of State to consider the non-ideal behavior of the 

reaction medium. 

 

4.3.4 Intrinsic kinetic measurements 

 

The operating conditions, in which the kinetic data were acquired, were within 

the intrinsic kinetics regime. I.e. they were not disguised by mass and heat transfer 

limitations. This is critical to obtain reliable kinetic data (MARIN; YABLONSKY; 

CONSTALES, 2011). The corresponding criteria were used and satisfied using the 

worst-case scenario (i.e. at the highest temperature, lowest space velocity, and most 
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concentrated feed stream), which corresponds to 400oC, 0.025 mol s-1 kgcat-1, 10% CO, 

25.8% H2O, 30.1% H2, and 8.3% CO2. The Carberry number used to assess the extent 

of external mass transfer between the gas phase and the catalyst surface was 8.8 x 

10–5, which is 4 orders of magnitude lower than the maximum limit of 0.5 (CARBERRY, 

1961). The internal diffusional effects were evaluated by the Weisz-Prater criterion. For 

an isothermal spherical catalyst particle, this parameter was equal to 4.3 x 10-4, well 

below the threshold value of 0.08, confirming the absence of concentration gradients 

inside the catalyst particles (FROMENT; BISCHOFF; WILDE, 2011). The absence of 

external and intraparticle heat transport limitations was also verified by the Mears 

criterion (MEARS, 1971). The corresponding temperature gradients amounted to 

0.0384 K and 0.00052 K respectively, which are much lower than the corresponding 

limit of 5% deviation from the gradient of the observed reaction rate (1.75 K). 
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4.4 Results and discussion 
 

The experimental assessment is composed of two main parts. The first one 

presents the characterization of the synthesized Co/Ce-Sr-MWCNT catalyst. The 

second part describes the catalytic testing of the WGS reaction, evaluating the CO 

conversion at different temperatures and space velocities. 

 

4.4.1 Catalyst characterization 

 

In this subsection, the results of the characterization of the Co/Ce-Sr-MWCNT 

catalyst are shown. The structure and composition aspects, relevant for understanding 

the catalytic behavior of this material, are highlighted in view of the catalytic tests 

described in section 4.3.2. 

 

4.4.1.1 Nitrogen physisorption isotherms 

 

The N2 physisorption isotherms for the crude MWCNTs and the synthesized 

catalyst are presented in Figure 4.6. As can be observed, they exhibit a type IV 

adsorption curve with hysteresis, indicative of multilayer adsorption and capillary 

condensation in mesoporous materials (SCHMAL, 2016). However, the hysteresis loop 

(p/po > 0.7), attributed to the nanotube cavities (DONGIL et al., 2016), is not very broad 

for this specific type of MWCNTs acquired from Sigma-Aldrich (with > 7.5% MWCNT 

basis) compared to other carbon nanotubes with content of > 80% MWCNTs basis 

(DONGIL et al., 2016; FIGUEIRA et al., 2018). This can be explained by the existence 

of fewer cylindrical mesopores in the sample due to its lower content of MWCNTs 

(THOMMES et al., 2015). 
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Figure 4.6 – N2 physisorption isotherms at 77 K for the crude MWCNTs (black squares) and the 

synthesized catalyst of Co/Ce-Sr-MWCNT (blue circles) 

 

 

As also evident from the isotherms, much lower amounts of nitrogen adsorb 

on the synthesized catalyst than on the raw MWCNTs, since the metal particles used 

for impregnation are agglomerated on the nanotubes surface (see also the XRD and 

TEM analysis in sections 4.4.1.2 and 4.4.1.3), thus blocking their tips, i.e., hindering 

the access to their pores. As can be seen in Table 4.1, this information can also be 

confirmed by the surface area and pore volume of the catalyst, S and V respectively, 

which are much smaller than those of the raw support. This is in agreement with what 

was reported in literature for MWCNT-supported catalysts (KOZONOE; BRITO; 

SCHMAL, 2020). Moreover, the pore diameters of the support and the catalyst are 

similar and in the range of mesoporous materials, 2 nm < d < 50 nm (SCHMAL, 2016), 

yet closer to the lower limit, thus, they can be considered as micro-mesoporous. 

Therefore, the majority of the particles impregnated on the MWCNTs must be mainly 

located at the outer surface, since the access to their interior cavities is obstructed. 
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Table 4.1 – Textural properties of the crude MWCNT and the Co/Ce-Sr-MWCNT catalyst as obtained 
from N2 physisorption at 77 K 

Sample SBET (m²/g) SBJH (m²/g) VBJH (cm³/g) dBJH (nm) 

Crude MWCNT 267 218 0.40 3.2 

Co/Ce-Sr-MWCNT 22 22 0.11 3.4 

 

 

 

 

4.4.1.2 X-Ray Diffraction 

 

Figure 4.7 shows the X-ray diffractograms for the synthesized catalyst. The 

characteristic peaks of MWCNTs at 26.2o, 43.1o, and 53.7o are apparent. At 77.7o, 

another characteristic peak with very low intensity was found by the MID JADE 5.0 

software. These peaks can be attributed to the hkl graphite planes (002), (100), (004), 

and (110), respectively. This indicates that the graphitic structure of the MWCNTs was 

maintained after the different steps of catalyst synthesis. In addition, the higher peak 

intensity of the plane (002) in relation to (100) is an indication that these MWCNTs are 

made of concentric cylindrical graphene sheets with crystalline structure (PENG; LIU, 

2006). 
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Figure 4.7 – X-ray diffractogram of the Co/Ce-Sr-MWCNT catalyst. The numbers between brackets 

correspond to the hkl planes of the MWCNT. 

 

 

The peaks corresponding to the other components exhibit a lower intensity, 

since they are also present in a lower content in the material (< 10wt%), which 

sometimes makes them challenging to recognize, as is the case of Sr (3wt%). The 

peaks located at 44.2o and 51.5o correspond to the presence of metallic Co related to 

the crystallographic planes (111) and (200), respectively. In addition, the peak at 42.6o 

indicates the presence of cobalt oxide II, CoO, diffracted in the plane (200). The 

presence of Co0 in the diffractogram confirms that the reduction step in the synthesis 

method was properly performed. Moreover, Ceria (CeO2) peaks were also identified at 

28.6o, 32.9o, 36.6o, 48.1o, and 56.3o, which correspond to the planes (111), (200), 

(104), (214), and (311), respectively, of its face-centered cubic lattice structure. 

By the application of the Scherrer equation, the crystallite sizes of the identified 

species were computed and are in the range of 3 to 7 nm (Table 4.2). In addition, since 

a particle is a cluster of agglomerated crystallites, the metallic nanoparticles are larger 

than 3-7 nm and, thus, they block the MWCNT ends (outer diameter: 7-15 nm), 

preventing their access to the internal pores of the nanotubes. This explains the 

reduction in the surface area after the impregnation of the metallic nanoparticles and 
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indicates that these nanoparticles are mainly located at the external surface of the 

carbon nanotubes. 

 
Table 4.2 – Crystallite size of the compounds of the Co/Ce-Sr-MWCNT catalyst (calculated using the 

Scherrer equation) 

Compound Crystallite size (nm) 
CeO2 (111) 3.8 

CeO2 (200) 3.4 

CeO2 (104) 3.2 

CeO2 (214) 4.0 

CeO2 (311) 4.0 

CoO (200) 6.7 

Co (111) 4.5 

Co (200) 6.5 
 

 

 

4.4.1.3 Transmission Electron Microscopy (TEM) 

 

TEM images of the catalysts at different stages of the synthesis are shown in 

Figure 4.8. The first three images (a-c) show the crude MWCNTs. As can be observed, 

they are rather inflexible and rigid, unlike in other works that reported them as more 

malleable and softer (DONGIL et al., 2016; FIGUEIRA et al., 2018; KOZONOE et al., 

2019; KOZONOE; BRITO; SCHMAL, 2020). In addition, it is possible to observe some 

polygonal carbon nanoparticles around the nanotubes, as expected by the sample 

assay of > 7.5% MWCNT basis. Figure 4.8c illustrates the external (20 nm) and internal 

(3 nm) diameters of a nanotube, and allows determining the number of walls (about 

30), by counting the number of parallel lines when moving away from the internal cavity 

of the nanotube. Figure 4.8d shows the functionalized MWCNTs with the tips opened. 

It can be observed that the crude MWCNTs have fragmented into smaller length tubes 

during the acid treatment (SERP; CORRIAS; KALCK, 2003). 

Figure 4.8e and f depict the sample containing Ce and Sr particles deposited 

on the MWCNTs. As expected from the N2 physisorption and XRD results, these large 

particles could not enter the inner cavities of the nanotubes because of their sizes. As 
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seen in Figure 4.8e, there is a cloud of particles covering the support, confirming that 

Ce and Sr were agglomerated, thus blocking the tips of the MWCNTs. In Figure 4.8f, 

it can be observed that these particles are mainly located on the external surface of 

the nanotubes. Very few of them were able to enter, filling the internal cavities, as 

shown in Figure 4.8g. 

Furthermore, Figures 4.8h-l present the fully synthesized Co/Ce-Sr-MWCNT 

catalyst. It can be observed that the cobalt active phase particles and the promoter (Ce 

and Sr) particles were deposited on the external surface, wrapping around the 

nanotubes and building a metal-support interaction for the catalyst activity. Last but not 

least, the EDX spectrum taken from Figure 4.8i (shown in Figure 4.9) confirms the 

results from the XRD analysis, including the detection of Sr and the identification of 

copper and gold on the surface of the MWCNTs, which were the constituent 

compounds of the grid material. 
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Figure 4.8 – TEM images of the catalysts during different steps of the preparation method: (a)-(c) 
crude MWCNTs, (d) functionalized MWCNTs, (e)-(g) Ce and Sr nanoparticles impregnated on the 

MWCNTs, and (h)-(l) Co, Ce, and Sr nanoparticles deposited on the MWCNTs. 

 

 

 

 

   

     

   

     

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Figure 4.9 – EDX spectrum from Figure 3i of the Co/Ce-Sr-MWCNT catalyst 

 

 

 

4.4.1.4 Raman spectroscopy 

 

Figure 4.10 shows the Raman spectra for the crude MWCNTs and the 

synthesized catalyst. The characteristic D and G bands for the MWCNTs are presented 

at 1336 cm–1 and 1583 cm–1, respectively. The former is related to the structural 

disorder of the carbonaceous material as a consequence of the presence of some 

amorphous carbon, sp3 bonding defects, and curvatures of the nanotubes, while the 

latter is associated with high degree of order in sp2 bonded carbon graphitic materials 

(OSSWALD; HAVEL; GOGOTSI, 2007). 
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Figure 4.10 – Raman spectra of the raw MWCNT and the synthesized catalyst of Co/Ce-Sr-MWCNT 

 

 

The graphitization degree, measured by the ID/IG area ratio, amounts to 1.0 for 

the raw MWCNTs and 0.9 for the Co/Ce-Sr-MWCNT catalyst. These low values, 

compared to the ratio of amorphous and defective MWCNTs (1.4 to 2.1) (OSSWALD; 

HAVEL; GOGOTSI, 2007),  indicate that the acquired MWCNTs have a stronger 

graphitic character, as also evident from the TEM images, with inflexible and rigid 

nanotubes, and also presenting graphite polygonal nanoparticles. This high ordering 

can also be explained by the high number of walls presented in the MWCNTs. In 

addition, the D’ band at 1619 cm–1 indicates the presence of intercalated graphite 

compounds (LEHMAN et al., 2011).  

Furthermore, the slight decrease of the ID/IG ratio and the peak intensities of 

the catalyst compared to the ones related to the raw support confirms that the 

impregnated species are wrapping around most of the carbon nanotube surface, as 

shown in the TEM images. This confirms that the deposition of Co, Sr, and Ce particles 

is predominantly on the external surface of the MWCNTs, in agreement with the 

characterization results discussed above. The bands of the interaction of the carbon 

nanotubes with other species in the catalyst are indicated at 675 cm–1 for CoO (LI et 
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al., 2016) and 456 cm–1 for CeO2 (BELTRAM et al., 2015), confirming the compounds 

identified by the XRD analysis. 

 

 

4.4.1.5 Thermogravimetric Analysis (TGA) 

 

Figure 4.11 illustrates the TGA and DTG results for the prepared Co/Ce-Sr-

MWCNT catalyst. As observed, the catalyst begins to decompose at 632oC, when a 

large peak is observed in the DTG curve, and a pronounced slope is observed in the 

TGA thermogram. The peak at 690oC may be attributed to the formation of compounds 

with new crystalline structures, as Co-Ce alloys, or to the decomposition of the graphitic 

layers presented in the sample. Importantly, no significant weight loss was noticed in 

the temperature range of the WGS reaction (200-450oC), confirming the graphitic 

character of the catalyst (LEHMAN et al., 2011), as already reported in the previous 

characterization results. Thus, this material can withstand the operating conditions of 

the WGS without decomposing. 

 

 
Figure 4.11 – TGA (black) and DTG (blue) curves of the catalyst of Co/Ce-Sr-MWCNT under N2 

atmosphere. 
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The thermal resistance of the MWCNTs is directly related to the extended π-

conjugated bonds present in their structure, but it is also affected by the presence of 

the impregnated metallic nanoparticles of the catalyst, the existence of polygonal 

graphite nanoparticles, the number of walls of the nanotubes, the amount of defects 

on the MWCNT surface, etc. (LEHMAN et al., 2011). In addition, the low number of 

peaks on the DTG curve indicates a high degree of purity of the material under study. 

 

 

4.4.1.6 Hydrogen Temperature Programmed Reduction (H2-TPR) 

 

Figure 4.12 shows the reduction profile as a function of temperature for the 

Co/Ce-Sr-MWCNT catalyst. The observed peaks at 255oC and 380oC correspond to 

the first reduction stages of Co3O4 → Co1-xO → CoO, respectively (OLIVEIRA; 

FRANCESCHINI; PASSOS, 2014), showing the different reducible cobalt oxide 

species.  

While the highest peak at 489oC is attributed to the full reduction to Co0. This 

temperature of 489oC is lower than the one reported in the literature, 591oC, for 

obtaining cobalt in the metallic state from the pure Co3O4 (RABEE et al., 2022). This 

shift to lower temperatures demonstrates the pronounced interaction between these 

cobalt species with the promoter ceria, resulting in an easier reducibility (BUITRAGO 

et al., 2012). 

Furthermore, the peak at 536oC corresponds to the reduction of small 

crystallites of ceria with less interaction with the active phase (BUITRAGO et al., 2012), 

leading to CeOx phase formation (DAMYANOVA et al., 2002). 

As observed in the XRD results, the catalyst already consists of mostly of Co0 

nanoparticles, which are known to be the active sites for the WGS reaction (DE LA 

OSA et al., 2011).  
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Figure 4.12 – H2-TPR profile for the Co/Ce-Sr-MWCNT catalyst. 

 

 
 
 
4.4.1.7 Pulsed CO chemisorption analysis 

 
The CO chemisorption peaks in the effluent are visualized in Figure 4.13, 

showing the amount that was not chemically adsorbed. As can be noted, with the 

increase in the number of pulses, the gas is no longer chemisorbed, and therefore, the 

peak intensity reaches a plateau. The amount of irreversibly adsorbed gas is 

determined as the difference between saturation, i.e. the catalyst surface is fully 

covered by the gas, and the CO pulses that precede this equilibrium stage. The active 

site density has been calculated from these amounts, knowing the cobalt concentration 

in the catalyst (5 wt%) and assuming a chemisorption stoichiometry of CO:cobalt = 1:1. 

The most relevant parameters obtained from this analysis are shown in Table 4.3. The 

active site density (0.012 molAct.Surf./kgcat) is of the same order of magnitude as that 

found by Mitchell et al. (2020) for a similar catalyst of Pt3Co/MWCNT (0.019 

molAct.Surf./kgcat) (MITCHELL et al., 2020). These findings show that CO is interacting 

with the interface Co-MWCNT because of the synergy of the support with the active 

phase. 
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Figure 4.13 – Signal produced by successive injections of equal volumes of CO onto the catalyst of 

Co/Ce-Sr-MWCNT. 

 

 
 

Table 4.3 – Properties obtained from the CO pulsed chemisorption analysis. 

Property Values 
Volume of CO 

chemisorbed 

0.257 cm³/gcat 

Metallic surface area 9.2 m²/gmetal 

Active site density 0.012 molAct.Surf./kgcat 
 

 
 
 
4.4.2 Catalytic tests 

 
Figure 4.14 shows the catalytic activity of the Co/Ce-Sr-MWCNT catalyst for 

the WGS reaction in terms of CO conversion as a function of the temperature in the 

range from 200 to 450oC. Firstly, the activation temperature was 400oC (empty points 

in the graph) based on the TPR results, with all cobalt particles in their metallic form. It 
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can be observed that the CO conversion increases with the temperature in agreement 

with the Arrhenius law. The catalyst presented activity for the high-temperature WGS 

process (300-450oC) (SAEIDI et al., 2017), reaching CO conversions higher than 80%. 

It is also noteworthy that the H2 yield stoichiometrically agreed with the CO 

conversions, assuring a closed molar balance for the system (Figure 4.15). 

The performance curve for the activation temperature of 300oC is shown with 

filled points in Figure 4.14. At this condition, the CoO particles are reduced during the 

progress of the experiment with the H2 produced by the reaction. It can be seen that 

CO conversion was a little bit lower than a previous run with catalyst activation at 400oC 

for temperatures below 350oC (before in-situ reduction), and a little bit higher for 

temperatures above 375oC (after in-situ reduction), reaching near-equilibrium 

conversions (~ 90%). The novel active sites of Co0 formed after the in-situ reduction 

(T > 380oC) were, thus, readily available for the WGS reaction, boosting the catalyst 

activity. Therefore, in the following, all catalytic tests were carried out with the activation 

temperature of 300oC. 

 

 
Figure 4.14 – CO conversion as a function of temperature for the WGS reaction over the Co/Ce-Sr-

MWCNT catalyst with space time (W/FCO,inlet) of 62.5 kg s mol-1 for 2 different pretreatment 
temperatures (empty points at 400oC and filled points at 300oC). The dashed line represents the 

equilibrium conversions for the feed composition of the experiment: 11% CO, 29% H2O, and 60% N2 
under atmospheric pressure (calculated using the REquil pallet from ASPEN PLUS® 8.0). Lines 

connecting the experimental points were added to guide the eye. 
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Figure 4.15 – H2 yield as a function of temperature for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst with space time (W/FCO,inlet) of 62.5 kg s mol-1 for 2 different pretreatment temperatures (empty 
points at 400oC and filled points at 300oC). The dashed line represents the equilibrium conversions for 
the feed composition of the experiment: 11% CO, 29% H2O, and 60% N2 under atmospheric pressure. 
(calculated using the REquil pallet from ASPEN PLUS® 8.0). Lines connecting the experimental points 

were added to guide the eye. 

 

 
  

Figure 4.16 presents the CO conversion as a function of the space time, 

W/FCO,inlet, for the catalytic tests performed at 300o, 350o and 400oC. It can be observed 

that the CO conversion increases with space time as expected. The increase in CO 

conversion with the space time is more pronounced at higher temperatures. Hence, 

the optimal WGS conditions are a temperature between 350 and 450oC and a space 

time between 70 and 80 kg s mol–1. The CO conversion then approaches the 

equilibrium conversion. In addition, it can be seen that some points slightly deviate 

from the observed behavior (points outside the connecting dashed line), which could 

have happened due to some deactivation of the catalyst, possibly due to metal particle 

size growth (WANG; GORTE; WAGNER, 2002). 
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Figure 4.16 – CO conversion as a function of space time (W/FCO,inlet) for the WGS reaction over the 
Co/Ce-Sr-MWCNT catalyst  at three different temperatures: 300o (∎), 350o (●) and 400oC ( ). The 

reaction was conducted with a feed composition of 11% CO, 29% H2O, and 60% N2, and under 
atmospheric pressure. Lines are added to guide the eye. 

 

 

 

 A 15-hour time-on-stream-test was carried out at 350oC, at conditions 

resulting in 50% CO conversion (Figure 4.17). The catalyst activity remained within 

90% of its initial performance, which could be something expected for Pt and Pd ceria-

supported catalysts (WANG; GORTE; WAGNER, 2002), thus demonstrating stability 

of the MWCNTs during this time period investigated. Studies of deactivation for the 

WGS reaction were also conducted for a platinum catalyst promoted by ceria 

supported on activated carbon, showing no considerable deactivation after 120h 

(BUITRAGO et al., 2012). 
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Figure 4.17 – 15-hour stability test for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst  at 350oC 

and a space time (W/FCO,inlet) of 62.5 kg s mol-1, a feed composition of 11% CO, 29% H2O, and 60% 
N2, and under atmospheric pressure. 

 

 
 
4.5 Conclusions 

 

All of these results show the high CO conversion obtained during the HT-WGS 

over the developed Co/Ce-Sr-MWCNT catalyst. This is the first time that the use of a 

non-noble catalyst supported on MWCNTs is successfully demonstrated for the HT-

WGS. The interactions between cobalt and the functionalized carbon nanotubes (with 

defects) represents a charge transfer process (FIGUEIRA et al., 2018) that stimulate 

the formation of active sites for the WGS reaction at 300-450oC. Strontium is 

responsible for enhancing this interaction as a donor species (FIGUEIRA et al., 2018), 

and ceria promotes mobility of oxygen species on the surface as a result of the 

reduction of its cerium ions: Ce+4 ↔ Ce3+ (DONGIL et al., 2016). These characteristics 

enhance the electron movement in the catalyst structure, which is responsible for the 

adsorption of reactants, formation of intermediates, surface reactions, and the 

desorption of products. 
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5 CHAPTER III: (MACRO)KINETIC STUDY 
 

 

5.1 Introduction 
 

In order to optimize and fully understand the chemical reaction over the Co/Ce-

Sr-MWCNT catalyst, and the consequent reactor design, kinetic models can be used 

to provide the most elegant way to quantify the reaction rate (DEVOCHT et al., 2019). 

Two mechanisms are often considered in literature to explain the WGS reaction: the 

associative mechanism, in which adsorption-desorption reactions are considered with 

the formation of an intermediate, and the redox mechanism, in which oxidation and 

reduction cycles occur on the catalytic surface (DE QUEIROZ; DE MENEZES 

BARBOSA; DE ABREU, 2018; HOUSTON et al., 2019). 

Experimental evidence, through the use of mass spectroscopy, confirms that 

the HTS reaction follows the redox mechanism (ZHU; WACHS, 2016). On the other 

hand, many authors use both mechanisms to explain the LTS reaction. A fact to be 

highlighted is that there is no general consensus about the intermediary nature in the 

associative mechanism (SMITH R J; LOGANATHAN; SHANTHA, 2010). 

The most well-known macrokinetic models in the literature for the WGS 

reaction process are of power laws and Langmuir-Hinshelwood (SMITH R J; 

LOGANATHAN; SHANTHA, 2010), with some derivations for the introduction of 

correction factors for porosity (ADAMS II; BARTON, 2009), the pressure (ZHAO; HU; 

LI, 1999), and the presence of impurities (NEWSOME, 1980). 

In this kinetic study, the feed composition was varied in the range 11-18% 

(CO), 10-29% (H2O), 0-38% (H2), and 0-18% (CO2). Conventional power-law and rate-

determining step models have been adjusted to the WGS kinetic data obtained over 

numerous catalysts (SMITH R J; LOGANATHAN; SHANTHA, 2010). In this work, 

kinetic parameters have been estimated for the WGS over carbon-supported catalysts, 

to the best of our knowledge, for the first time, for different power-law and rate-

determining step models. Next, model discrimination was performed in a pioneering 

effort to achieve quantitative information of the role of these materials in the WGS 

reaction. 
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5.2 Data for kinetic study 
  

For the kinetic study of the WGS reaction over the Co/Ce-Sr-MWCNT catalyst, 

additional points were acquired varying also the feed composition: CO (11-18%), H2O 

(10-29%), H2 (0-38%), CO2 (0-18%). These points were obtained according to a 26–1 

fractional factorial design with a triplicate at the central point, which was selected to 

determine the experimental error. Co-feeding of the reaction products – H2 and CO2 – 

in some experiments aimed at capturing the effect of the equilibrium driving force, 

particularly in view of the model construction. In addition, extra points were acquired 

aiming at a more systematic variation of the operating conditions, thus totaling 60 data 

points for estimating the kinetic parameters. 

Table 5.1 shows the experimental conditions for each run of the kinetic study 

of the WGS reaction over the Co/Ce-Sr-MWCNT catalyst (with variations in 

temperature, feed composition, and space velocity). The last column presents CO 

conversion for each input data. 

 
Table 5.1 – Data acquired for the kinetic study of the WGS reaction over the Co/Ce-Sr-MWCNT under 

atmospheric pressure. 

Run T (oC) 𝒚𝒚𝟎𝟎𝑪𝑪𝑪𝑪 (%) 𝒚𝒚𝟎𝟎𝑯𝑯𝟐𝟐𝑶𝑶  (%) 𝒚𝒚𝟎𝟎𝑯𝑯𝟐𝟐  (%) 𝒚𝒚𝟎𝟎𝑪𝑪𝑪𝑪𝟐𝟐 (%) 𝒚𝒚𝟎𝟎𝑵𝑵𝟐𝟐  (%) GHSV (mL gcat-1 h-1) XCO (%) 
1 300 12 12 0 0 76 20214 21.8 
2 400 12 12 0 0 77 59034 55.2 
3 300 17 11 0 0 72 59740 8.3 
4 400 18 12 0 0 70 19908 55.2 
5 300 12 23 0 0 65 58932 14.3 
6 400 12 24 0 0 64 20010 91.9 
7 300 17 23 0 0 60 21200 15.9 
8 400 17 22 0 0 61 60064 53.4 
9 300 11 11 35 0 44 58800 8.1 
10 400 10 10 38 0 42 21000 72.1 
11 300 15 10 38 0 37 21400 1.8 
12 400 15 10 35 0 40 58930 25.2 
13 300 10 20 37 0 33 21654 2.1 
14 400 10 21 34 0 35 59256 49.5 
15 300 15 20 34 0 31 59432 1.5 
16 400 15 20 37 0 29 21304 70.2 
17 300 11 11 0 18 59 71898 4.3 
18 400 12 12 0 18 59 24174 79.6 
19 300 17 11 0 18 54 25026 4.2 
20 400 16 11 0 18 55 73216 45.5 
21 300 11 23 0 18 48 26646 16.0 
22 400 11 22 0 18 49 74562 73.4 
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Run T (oC) 𝒚𝒚𝟎𝟎𝑪𝑪𝑪𝑪 (%) 𝒚𝒚𝟎𝟎𝑯𝑯𝟐𝟐𝑶𝑶  (%) 𝒚𝒚𝟎𝟎𝑯𝑯𝟐𝟐  (%) 𝒚𝒚𝟎𝟎𝑪𝑪𝑪𝑪𝟐𝟐 (%) 𝒚𝒚𝟎𝟎𝑵𝑵𝟐𝟐  (%) GHSV (mL gcat-1 h-1) XCO (%) 
23 300 16 21 0 18 45 74240 4.2 
24 400 17 22 0 18 44 25824 68.3 
25 300 10 10 36 16 28 25842 4.5 
26 400 10 10 34 17 30 70500 32.3 
27 300 15 10 33 16 26 70360 -0.5 
28 400 14 9 36 16 24 25732 25.8 
29 300 10 19 33 16 22 71916 -0.2 
30 400 10 20 35 16 19 25578 50.0 
31 300 14 19 35 16 17 26568 4.4 
32 400 15 19 33 16 17 72128 34.9 
33 350 13 15 20 9 43 45404 8.2 
34 350 13 15 20 9 43 45404 7.7 
35 350 13 15 20 9 43 45404 5.9 
36 300 11 11 0 0 77 60306 18.1 
37 400 12 12 0 0 76 19722 87.1 
38 300 18 12 0 0 70 19584 7.2 
39 400 17 11 0 0 72 59792 60.6 
40 300 12 23 0 0 65 19986 18.4 
41 400 11 22 0 0 67 60534 87.0 
42 300 16 22 0 0 62 59952 7.7 
43 400 17 23 0 0 60 20624 87.5 
44 300 11 29 0 0 60 25947 27.2 
45 325 11 29 0 0 60 25947 42.1 
46 350 11 29 0 0 60 25947 53.8 
47 375 11 29 0 0 60 25947 76.7 
48 400 11 29 0 0 60 25947 80.9 
49 300 11 28 0 0 61 59304 15.0 
50 350 11 28 0 0 61 59304 40.9 
51 400 11 28 0 0 61 59304 66.8 
52 300 12 29 0 0 59 20538 16.9 
53 350 12 29 0 0 59 20538 60.5 
54 400 12 29 0 0 59 20538 85.8 
55 300 11 29 0 0 60 39354 13.0 
56 350 11 29 0 0 60 39354 35.6 
57 400 11 29 0 0 60 39354 78.0 
58 300 11 28 0 0 61 80115 8.1 
59 350 11 28 0 0 61 80115 27.8 
60 400 11 28 0 0 61 80115 56.2 

 
 

As can been observed in Table 5.1, generally, the higher the concentration of 

the reactants (CO and H2O) for a fixed space velocity, the lower the CO conversion, 

with greater sensitivity to the variation of CO. This can be explained if the increase in 
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CO surface coverage leads to and is overcompensated by a decrease in water surface 

coverage due to their competition for active sites on the catalyst surface (THYBAUT; 

SAEYS; MARIN, 2002). Moreover, the inclusion of the WGS reaction products (H2 and 

CO2) in the feed caused the CO conversion to decrease drastically due to the activity 

of this catalyst also for the reverse water-gas shift (RWGS) reaction with the presence 

of its reactants. Thus, the importance of considering the equilibrium driving force in the 

reaction rate expressions in all kinetic models evaluated in this work. 

In addition, Table 5.2 presents the same data acquired for the WGS kinetic 

study over the Co/Ce-Sr-MWCNT catalyst (Table 5.1), but in terms of input and output 

molar flow rates of the chemical species involved (μmol min-1). This representation is 

in agreement with the ideal plug flow reactor model represented in Equation 3 (integral 

approach). Thus, these were the data used directly to estimate the several parameters 

of the rival kinetic models. 

 
Table 5.2 – Data acquired in terms of molar flow rates for the kinetic study of the WGS reaction over 

the Co/Ce-Sr-MWCNT under atmospheric pressure. 

Run T (oC) 𝑭𝑭𝟎𝟎𝑪𝑪𝑪𝑪  
(μmol min-1) 

𝑭𝑭𝟎𝟎𝑯𝑯𝟐𝟐𝑶𝑶
  

(μmol min-1) 
𝑭𝑭𝟎𝟎𝑪𝑪𝑶𝑶𝟐𝟐  

(μmol min-1) 
𝑭𝑭𝟎𝟎𝑯𝑯𝟐𝟐

  
(μmol min-1) 

𝑭𝑭𝟎𝟎𝑵𝑵𝟐𝟐
  

(μmol min-1) 
𝑭𝑭𝑪𝑪𝑪𝑪  

(μmol min-1) 
1 300 86 86 0 0 544 67 
2 400 207 207 0 0 1367 93 
3 300 361 241 0 0 1515 331 
4 400 106 71 0 0 423 48 
5 300 240 481 0 0 1368 206 
6 400 72 144 0 0 387 6 
7 300 128 171 0 0 452 108 
8 400 302 403 0 0 1107 141 
9 300 225 225 721 0 913 207 
10 400 66 66 238 0 264 18 
11 300 113 75 287 0 282 111 
12 400 271 181 618 0 708 203 
13 300 78 157 281 0 252 77 
14 400 186 372 611 0 619 94 
15 300 319 425 718 0 645 314 
16 400 94 126 238 0 185 28 
17 300 285 285 0 463 1515 273 
18 400 84 84 0 133 428 17 
19 300 147 98 0 164 478 141 
20 400 361 241 0 402 1205 197 
21 300 107 214 0 167 456 90 
22 400 244 487 0 407 1112 65 
23 300 421 561 0 462 1187 403 
24 400 129 172 0 137 341 41 
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Run T (oC) 𝑭𝑭𝟎𝟎𝑪𝑪𝑪𝑪  
(μmol min-1) 

𝑭𝑭𝟎𝟎𝑯𝑯𝟐𝟐𝑶𝑶
  

(μmol min-1) 
𝑭𝑭𝟎𝟎𝑪𝑪𝑶𝑶𝟐𝟐  

(μmol min-1) 
𝑭𝑭𝟎𝟎𝑯𝑯𝟐𝟐

  
(μmol min-1) 

𝑭𝑭𝟎𝟎𝑵𝑵𝟐𝟐
  

(μmol min-1) 
𝑭𝑭𝑪𝑪𝑪𝑪  

(μmol min-1) 
25 300 89 89 330 147 260 85 
26 400 212 212 714 357 632 144 
27 300 369 246 831 409 639 371 
28 400 110 73 281 125 187 82 
29 300 248 497 836 418 549 249 
30 400 76 152 272 122 149 38 
31 300 133 177 328 146 157 127 
32 400 316 421 717 354 368 206 
33 350 189 227 300 130 634 174 
34 350 189 227 300 130 634 175 
35 350 189 227 300 130 634 178 
36 300 244 244 0 0 1650 200 
37 400 73 73 0 0 450 9 
38 300 123 82 0 0 489 114 
39 400 307 204 0 0 1293 121 
40 300 82 165 0 0 461 67 
41 400 203 406 0 0 1218 26 
42 300 350 466 0 0 1309 323 
43 400 107 142 0 0 374 13 
44 300 105 262 0 0 553 76 
45 325 100 251 0 0 530 58 
46 350 96 241 0 0 508 45 
47 375 93 232 0 0 489 22 
48 400 89 223 0 0 471 17 
49 300 236 589 0 0 1277 200 
50 350 217 542 0 0 1175 128 
51 400 201 502 0 0 1087 67 
52 300 85 213 0 0 430 71 
53 350 78 196 0 0 396 31 
54 400 72 181 0 0 366 10 
55 300 160 400 0 0 835 139 
56 350 147 368 0 0 768 95 
57 400 136 340 0 0 711 30 
58 300 317 793 0 0 1730 291 
59 350 292 729 0 0 1591 211 
60 400 270 675 0 0 1473 118 

 

 
 
5.3 Kinetic modeling and parameter estimation 
 

The kinetic model for the WGS was constructed in an ideal plug flow reactor 

(PFR) with isothermal operation and negligible pressure drop, for which the mass 

balance of CO can be written as (SPRUNG et al., 2015): 
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 𝑑𝑑𝐹𝐹𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝐶𝐶𝐶𝐶            with    𝐹𝐹𝐶𝐶𝐶𝐶 = 𝐹𝐹𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑎𝑎𝑎𝑎  𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐 = 0 (9) 

 

As only the occurrence of the equimolar WGS reaction was taken into account, 

the net consumption rate for CO, RCO, could be represented as the amount of CO 

consumed in that WGS reaction, with corresponding reaction rate, rWGS: 

 𝑅𝑅𝐶𝐶𝐶𝐶 = − 𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 (10) 

 

In addition, as the WGS is described by a single reaction equation, the molar 

flow rates of the remaining species (H2O, H2, and CO2) can be calculated from the 

molar flow rate of CO, as follows: 

 𝐹𝐹𝐶𝐶𝑂𝑂2 = 𝐹𝐹𝐶𝐶𝑂𝑂2,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐶𝐶𝐶𝐶 (11) 

 𝐹𝐹𝐻𝐻2𝑂𝑂 = 𝐹𝐹𝐻𝐻2𝑂𝑂,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐶𝐶𝐶𝐶 (12) 

 𝐹𝐹𝐻𝐻2 = 𝐹𝐹𝐻𝐻2,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹𝐶𝐶𝐶𝐶 (13) 

 

The reactor equations were solved using the integration routine of the odeint 

function available in the SciPy library from Python (VIRTANEN et al., 2020). 

The reaction rate rWGS was expressed by different kinetic model expressions 

based on power laws, associative and redox mechanisms with a rate-determining step, 

which are presented in Table 5.3. The associative mechanisms were represented by 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal approaches. In 

addition, the (1 – β) term represents the reaction equilibrium driving force, with β 

expressed by Eq. (14) and the temperature dependence of the equilibrium coefficient 

indicated by Eq. (15) (SMITH R J; LOGANATHAN; SHANTHA, 2010). 

 𝛽𝛽 =
𝑝𝑝𝐻𝐻2  𝑝𝑝𝐶𝐶𝑂𝑂2
𝑝𝑝𝐶𝐶𝐶𝐶 𝑝𝑝𝐻𝐻2𝑂𝑂

1
𝐾𝐾𝑒𝑒𝑒𝑒

 (14) 

 𝐾𝐾𝑒𝑒𝑒𝑒 = exp �
4577.8
𝑇𝑇

− 4.33� (15) 

 

The rate coefficients, k, and the adsorption equilibrium coefficients for each 

species i, Ki, were described via the Arrhenius and van’t Hoff equations in 

reparametrized form with the definition of a reference temperature, Tref, equal to 350oC, 

as described in Eqs. (15) and (16), respectively (POISSONNIER et al., 2018). Such an 

approach reduces the binary correlation between the pre-exponential factors and the 
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corresponding activation energy, Ea, or adsorption enthalpies, ΔHads,i (SCHWAAB; 

PINTO, 2007a). 

 
𝑘𝑘 = 𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 exp �−

𝐸𝐸𝑎𝑎
𝑅𝑅
�

1
𝑇𝑇
−

1
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

�� (16) 

 
𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 exp �−

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖

𝑅𝑅
�

1
𝑇𝑇
−

1
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

�� (17) 

 
 

Table 5.3 – Rival kinetic models considered for the WGS reaction rate conducted on the Co/Ce-Sr-
MWCNT catalyst. 

Kinetic model Expression 
 

Simplified Power Law (M1) 
 

𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑘𝑘 𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝐻𝐻2𝑂𝑂 (1 − 𝛽𝛽) 

 
Power Law (M2) 

 
𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑘𝑘 𝑝𝑝𝐶𝐶𝐶𝐶𝑎𝑎  𝑝𝑝𝐻𝐻2𝑂𝑂

𝑏𝑏  (1 − 𝛽𝛽) 

 
LHHW: dual-site surface 

reaction as RDS (M3) 

CO + * ⇌ CO* 

H2O + * ⇌ H2O* 

CO* + H2O* ⇌ H2* + CO2* 

(RDS) 

H2* ⇌ H2 + * 

CO2* ⇌ CO2 + * 
 

𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑘𝑘 𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝐻𝐻2𝑂𝑂 (1 − 𝛽𝛽)

�1 + 𝐾𝐾𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐻𝐻2𝑂𝑂𝑝𝑝𝐻𝐻2𝑂𝑂 + 𝐾𝐾𝐻𝐻2𝑝𝑝𝐻𝐻2 + 𝐾𝐾𝐶𝐶𝑂𝑂2𝑝𝑝𝐶𝐶𝑂𝑂2�
2 

 
Eley-Rideal: single-site surface 

reaction as RDS (M4) 

CO + * ⇌ CO* 

CO* + H2O ⇌ H2 + CO2* (RDS) 

CO2* ⇌ CO2 + * 
 

𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑘𝑘 𝑝𝑝𝐶𝐶𝐶𝐶 𝑝𝑝𝐻𝐻2𝑂𝑂 (1 − 𝛽𝛽)

1 + 𝐾𝐾𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶 + +𝐾𝐾𝐶𝐶𝑂𝑂2𝑝𝑝𝐶𝐶𝑂𝑂2
 

Redox: CO oxidation as RDS 

(M5) 

H2O + * ⇌ O* + H2 

CO + O* ⇌ * + CO2 (RDS) 

 

𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑘𝑘
𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝐻𝐻2𝑂𝑂

𝑝𝑝𝐻𝐻2
 (1 − 𝛽𝛽)

1 +
𝐾𝐾𝐻𝐻2𝑂𝑂𝑝𝑝𝐻𝐻2𝑂𝑂

𝑝𝑝𝐻𝐻2
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The kinetic parameters were estimated via the Maximum Likelihood Method, 

assuming that the error on the measurements is normally distributed, without 

correlation, and the independent variables are not subject to error (SCHWAAB; PINTO, 

2007b). Hence, nonlinear regression was performed by minimizing the objective 

function of the weighted least squares between the experimental and calculated outlet 

flow rates of the response 𝐹𝐹𝐶𝐶𝐶𝐶, as in Eq. (18). In this case, the weights were the inverse 

of the experimental errors for the response variables, σj (POISSONNIER et al., 2018). 

 

 
���

𝐹𝐹𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜎𝜎𝑗𝑗
�
2𝑁𝑁𝑁𝑁

𝑗𝑗=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

          
𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ,   𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 ,   𝐸𝐸𝑎𝑎,   Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�           𝑀𝑀𝑀𝑀𝑀𝑀      (18) 

 

 A hybrid strategy was used to reach the optimal parameters. First, the Particle 

Swarm Optmization (PSO) algorithm (KENNEDY; EBERHART, 1995), available in the 

pyswarm package from Python, was applied. The selection of a heuristic method as a 

first stage was to overcome the potential numerical challenges related to the 

nonlinearity of the objective function and to obtain a set of initial estimates with a high 

probability for converging to the global minimum in the second step (PARK; 

FROMENT, 1998; SCHWAAB et al., 2008). In this stage, the sum of squares of the 

residuals is further minimized using the Levenberg-Marquardt algorithm 

(MARQUARDT, 1963), available in the curve_fit function from SciPy, which exhibits a 

very fast convergence provided that the initial guesses are good (CONSTALES et al., 

2017). 
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5.4 Model discrimination 
 

In this section, the construction of kinetic models for this active WGS catalyst, 

together with the estimation of the kinetic parameters, is discussed, followed by the 

discrimination of the best model. The rival kinetic models considered in Table 5.3 were 

adjusted to the experimental data of the molar flow rates of CO, as shown in Table 5.2. 

The use of one response variable is enough to represent this single reaction, hence 

the rank of the stoichiometric matrix is 1. The statistical significance of the individual 

parameter estimates had a greater importance in the final decision more than the 

accuracy of the model, as the estimation of reliable parameters is critical to represent 

the catalytic reaction phenomenon with confidence. The metrics to evaluate the 

regression performance for each kinetic model are presented in Table 5.4, such as the 

multiple correlation coefficient (R²), the residual sum of squares (SSQ), the root-mean-

squared deviation (RMSD) and the calculated and tabulated values from the F-test 

(Fcalc and Ftab). 

The discrimination procedure was based on the choice of the best model to 

describe the data with the lowest root mean square deviation (RMSD) and that have 

statistically significant parameters. In this way, the statistical meaning of the 

parameters was assessed using the individual 95% confidence interval (computed 

from a t-test with NE.NY – NP degrees of freedom), which should not include zero. The 

global significance of the regression was verified with a F-test to evaluate if the model 

is better than simply averaging, i.e., if the regression sum of squares significantly 

overtakes the residual sum of squares divided by the corresponding degrees of 

freedom (TOCH; THYBAUT; MARIN, 2014). Furthermore, visual tools, such as parity 

plots and performance curves were also generated to assist in the determination of the 

statistical significance, and in the assessment of the physico-chemical meaning of the 

parameter estimates, respectively (TOCH, 2015). 
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Table 5.4 – Metrics to evaluate the regression performance for each kinetic model. 

 M1 M2 M3 M4 M5 

R² 0.9607 0.9681 0.9854 0.9616 0.9833 

Residual SSQ 

(µmol min-1)² 
2.3 · 104 1.8 · 104 8.4 · 104 2.2 · 104 9.6 · 103 

RMSD 

µmol min-1 
19 17 12 19 13 

Fcalc > Ftab ? 1 x 103 > 4 6 x 102 > 3 4 x 102 > 2 3 x 102 > 2 1 x 103 > 3 

 

 

 

 

The simplified power-law model (M1) is the simplest model among all 

considered. This expression represents a direct proportionality between the reaction 

rate and the reactant partial pressures. The regression metrics obtained can already 

be considered accurate to describe the WGS kinetics, with an R² of 0.9607 and a 

RMSD of 19 µmol min-1. Moreover, the two estimated parameters (Table 5.5) are 

statistically significant, i.e., their 95%-confidence intervals computed do not include 

zero (SCHWAAB; PINTO, 2007b). The activation energy of 101 kJ mol-1 is in 

agreement with those reported by Hutchings et al. (1992) with Co:Cr and Co:Mn 

catalysts (89-168 kJ mol-1) (HUTCHINGS et al., 1992). The parity plot and performance 

curves, shown in Figure 5.1, confirm these findings. 

 

 
Table 5.5 – Estimated kinetic parameters for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst of 

the model represented by the simplified power law model (M1). 

Parameter Value 

𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (3.1 ± 0.7) × 104   μmol g−1atm−2min−1 

𝐸𝐸𝑎𝑎 101 ± 18   kJ/mol 
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(a) 

 
(b)         (c) 

Figure 5.1 – (a) Parity plot of molar flow rates of CO. Performance curves of CO conversion as a 
function (b) of temperature and (c) of space time, for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst using model M1. 

 

 

The power-law model (M2) is an elaborated version of M1, by considering the 

reaction orders of CO and H2O (4 parameters in total). Nevertheless, M2 is also an 

empirical model, without a reaction mechanism behind it. The regression quality is 

similar to that of M1. All parameters are statistically significant, see Table 5.6, and the 

parity plot and performance curves, see Figure 5.2, show the good agreement of the 

model simulated flow rates with the experimental ones. The reaction orders of CO and 

H2O, 0.51 and 0.21, respectively, are close to the ones reported in Hal et al. (2011) 

(HLA et al., 2011b) for a commercial sulfide Co/Mo catalysts, 0.52 and 0.21. Evidently, 

they differ from values obtained for different more noble metals as active phase, such 

as Fe:Cr, Cu, Ru, Ni, Rh, Pt, and Pd (SMITH R J; LOGANATHAN; SHANTHA, 2010). 

The activation energy estimated of 83 kJ/mol was also similar to the work from de la 
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Osa et al. (2011), which studied the kinetics of a commercial CoMo catalyst and 

obtained an activation energy of 85 kJ mol-1 (DE LA OSA et al., 2011). These results 

are attributed to cobalt being the common denominator in these catalytic systems. 

 
Table 5.6 – Estimated kinetic parameters for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst of 

the model represented by power-law (M2). 

Parameter Value 

𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (2.6 ± 0.6) × 103   μmol g−1atm−0.66min−1 

𝐸𝐸𝑎𝑎 83 ± 14 kJ/mol 

𝑎𝑎 0.51 ± 0.19 

𝑏𝑏 0.21 ± 0.16 

 

 
 

 
(a) 

 
(b)         (c) 

Figure 5.2 – (a) Parity plot of molar flow rates of CO. Performance curves of CO conversion as a 
function (b) of temperature and (c) of space time, for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst using model M2. 
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The Langmuir-Hinshelwood-Hougen-Watson (LHHW) model (M3) 

investigated in this work assumed that the rate-determining step (RDS) was the dual-

site surface reaction CO* + H2O* ⇌ H2* + CO2*. In this approach, it is assumed that all 

species (reactants and products) are adsorbed on the catalyst surface, which 

substantially increases the number of parameters to be estimated (10 

parameters: 𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2𝑂𝑂, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝑂𝑂2, 𝐸𝐸𝑎𝑎, Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶,  

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2𝑂𝑂, Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2, and Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2). Despite having the lowest RMSD value and the 

best R² (very close to 1) among all models, the dual-site LHHW (M3) presented 

confidence intervals greater than the values of the parameters themselves, including 

zero and negative values for kinetic constants (Table 5.7 and Figure 5.3), which are 

misleading. This points overparameterization, when the degree of detail of the model 

is beyond the information available in the kinetic data (DEVOCHT et al., 2019). Given 

that this novel catalyst has been tested in a broad range of conditions, which include 

the industrially most relevant ones, the added value of acquiring kinetic data outside 

this range is considered to be limited. Therefore, M3 is not further considered. 

 

 
Table 5.7 – Estimated kinetic parameters for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst of 

the model represented by the LHHW mechanism (M3). 

Parameter Value 

𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (2.6 ± 17.3) × 106    

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶 (1.2 ± 7.4) × 101   atm−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2𝑂𝑂 (2.2 ± 8.0) × 101   atm−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2 (4.4 ± 14) × 101   atm−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝑂𝑂2  (6.0 ± 2909) × 10−2   atm−1 

𝐸𝐸𝑎𝑎 53 ± 433 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶 20 ± 406 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2𝑂𝑂 1 ± 231 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2  −130 ± 240 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝑂𝑂2 −365 ± 28850 kJ/mol 
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(a) 

 
(b)         (c) 

Figure 5.3 – (a) Parity plot of molar flow rates of CO. Performance curves of CO conversion as a 
function (b) of temperature and (c) of space time, for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst using model M3. 

 

 

 

Considering that H2O and H2 are weakly adsorbed on the catalyst surface, an 

Eley-Rideal mechanism was proposed (M4), with a single-site surface reaction as the 

RDS: CO* + H2O ⇌ H2 + CO2*. The total number of parameters in this case was 6: 

 𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶, 𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝑂𝑂2, 𝐸𝐸𝑎𝑎, Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶, and Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶2. The regression metrics are lower 

than those of M3, and similar to those of M1 and M2. Nevertheless, as can be seen in 

Table 5.8 and Figure 5.4, the estimated adsorption coefficients of CO and CO2 are 

again statistically nonsignificant, i.e., there are enough statistical arguments to remove 

them from the model. 
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Table 5.8 – Estimated kinetic parameters for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst of 

the model represented by the Eley-Rideal mechanism (M4). 

Parameter Value 

𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (4.1 ± 3.3) × 104   μmol g−1atm−2min−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶 0 ± 4   atm−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝑂𝑂2  7.6 ± 20.2   atm−1 

𝐸𝐸𝑎𝑎 86 ± 52 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶 −104 ± 0 kJ/mol 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝑂𝑂2 −159 ± 235 kJ/mol 

 

 

 
(a) 

 
(b)         (c) 

Figure 5.4 – (a) Parity plot of molar flow rates of CO. Performance curves of CO conversion as a 
function (b) of temperature and (c) of space time, for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst using model M4. 
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The perfect balance between the degree of detail and acquired kinetic data 

was found with the redox mechanism (M5). In this formulation, H2O is reduced on the 

catalyst surface forming H2 and O*, followed by CO oxidation to CO2, which was 

assumed to be the RDS. Thus, the number of estimated parameters amounts to 4 

(same number of M2, which was the last statistically reliable one). The kinetic 

parameters are present in Table 5.9. As can be noted, all the estimated parameters 

are statistically significant, thus having a clear meaning and value reasons to be 

maintained in the model.  

Moreover, the difference 𝐸𝐸𝑎𝑎 − Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2𝑂𝑂 = 54 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 represents the overall 

activation energy that is in agreement with the range reported by Newsome et al. 

(1980) for the WGS reaction: 49-89 kJ mol-1 (NEWSOME, 1980). The parity plot 

(Figure 5.5a) confirms the great model adjustment to the data, with the lowest RMSD 

value (compared to M1 and M2, which also presented reliable parameters). In addition, 

the performance curves of CO conversion as a function of temperature and of space 

time (Figure 5.5b-c) visualize this excellent agreement, showing that the experimental 

data can be accurately reproduced by the model simulations successfully describing 

the observed behavior of the catalytic tests. Finally, the model was globally significant 

with the calculated F-value of 1 x 10³ greatly exceeding the tabulated one of 3. 

 

 
Table 5.9 – Estimated kinetic parameters for the WGS reaction over the Co/Ce-Sr-MWCNT catalyst of 

the model represented by the redox mechanism (M5). 

Parameter Value 

𝑘𝑘𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 (3.1 ± 1.8) × 103   μmol g−1atm−1min−1 

𝐾𝐾𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝐻𝐻2𝑂𝑂 (2.8 ± 2.6) × 10−1 

𝐸𝐸𝑎𝑎 199 ± 41   kJ mol−1 

Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝐻𝐻2𝑂𝑂 145 ± 69   kJ mol−1 
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(a)

 
(b)         (c) 

Figure 5.5 – (a) Parity plots of molar flow rates of CO. Performance curves of CO conversion as a 
function (b) of temperature and (c) of space time, for the WGS reaction over the Co/Ce-Sr-MWCNT 

catalyst using model M5. 

 

It is noteworthy to mention that as the objective function, Fobj, in Eq. (17) is the 

appropriate definition of chi-square (χ²). Thus, its value at the end of the estimation 

procedure follows the chi-square distribution with a degree of freedom DF of NE.NY – 

NP. In this way, a probability ϕm was computed for each model according to Eq. (19) 

(SCHWAAB; PINTO, 2011). 

 

 𝜙𝜙𝑚𝑚 = 1 − 𝑃𝑃(𝜒𝜒𝐷𝐷𝐷𝐷2 ≤ 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜)      (19) 

 

This statistical discrimination procedure is based on the chi-square distribution 

and provides an absolute probability, as each model is evaluated independently. If ϕm 

is low for the models under study (i.e., having high values of Fobj), an improvement of 

such models or the inclusion of new ones in the discrimination analysis should be 
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considered. In other words, if the model can represent the experimental data, Eq. (20) 

is satisfied, considering a 95% confidence level (chi-squared test): 

 

 𝜒𝜒2,5%,𝐷𝐷𝐷𝐷
2 < 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 < 𝜒𝜒97,5%,𝐷𝐷𝐷𝐷

2  (20) 

 

If Fobj < 𝜒𝜒2,5%,𝐷𝐷𝐷𝐷
2  (or ϕm  < 2,5%), one can say that the model is inappropriate to 

represent the data, and must be removed from the analysis. In the other hand, if Fobj > 

𝜒𝜒97,5%,𝐷𝐷𝐷𝐷
2  (or ϕm  > 97,5%), the model is considered too good and should be revised: 

either the model is overparameterized or the experimental variances are very high 

(SCHWAAB; PINTO, 2011). 

Moreover, the calculation of the relative probability Pm, Eq. (21), helps to 

discriminate a model from the others in the analysis of all M models considered: 

 

 𝑃𝑃𝑚𝑚 =
𝜙𝜙𝑚𝑚

∑ 𝜙𝜙𝑚𝑚𝑀𝑀
𝑛𝑛=1

      (21) 

 

The results of this statistical analysis of the model discrimination procedure are 

presented in Table 5.10.  

 
Table 5.10 – Statistical analysis of the model discrimination procedure 

 M1 M2 M3 M4 M5 

DF 58 56 50 54 56 

𝝌𝝌𝟐𝟐,𝟓𝟓%,𝑫𝑫𝑫𝑫
𝟐𝟐  38,8 37,2 32,4 35,6 37,2 

𝝌𝝌𝟗𝟗𝟗𝟗,𝟓𝟓%,𝑫𝑫𝑫𝑫
𝟐𝟐  80,9 78,6 71,4 76,2 78,6 

Fobj 4.5 · 103 3.7 · 103 1.7 · 103 4.4 · 103 1.9 · 103 

𝑃𝑃(𝜒𝜒𝐷𝐷𝐷𝐷2 ≤ 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜) 1 1 1 1 1 

ϕm 0 0 0 0 0 

Pm NaN NaN NaN NaN NaN 

*NaN – Not a Number (indeterminate form 0/0) 
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As can be noted, all values of the objective function, Fobj, are greater than 

𝜒𝜒2,5%,𝐷𝐷𝐷𝐷
2 , indicating that all models can reproduce the experimental data well. However, 

they are also greater than 𝜒𝜒97,5%,𝐷𝐷𝐷𝐷
2 , indicating that none of the models are able to 

explain the experimental errors. Thus, the prediction errors may be significantly greater 

than the experimental ones, showing that the latter may be underestimated. In this 

situation, is recommended to reevaluate the precision of the measures of the response 

flow rates of CO (computed from the replicated central point in the experimental 

design), since this encountered scenario (equal ϕm’s) leads to the conclusion that all 

rival kinetic models are statistically equal. 

 

 

5.5 Discussion 
 

There were previous WGS studies with other catalysts supported on 

MWCNTs, but at different conditions than this work, with activity reported in different 

formats, and/or with noble metals as active phases (more expensive). For instance, 

Dongil et al. (2016) developed a Ni/Ce-MWCNT catalyst for LT-WGS exhibiting higher 

conversions (~97%) at 260oC and similar operating conditions (DONGIL et al., 2016), 

while the one built in this work presented approximately only 5% at 260oC. This 

confirms that the Co/Ce-Sr-MWCNT under this study is more suitable for the HT-WGS 

process. Zugic et al. (2014) investigated a Pt/Na-MWCNT catalyst, which presented 

better conversions (60-90%) at lower temperatures (250-350oC) (ZUGIC; BELL; 

FLYTZANI-STEPHANOPOULOS, 2014), again showing better performance for the 

LT-WGS reaction. 

In addition, Mitchell et al. (2020) studied the cobalt addition to a Pt/MWCNT 

catalyst (MITCHELL et al., 2020), however did not report the results in terms of CO 

conversion (they used the WGS turnover rate at 300oC), which makes comparison 

difficult. The power-law model used to estimate the kinetic parameters resulted in 

reaction orders (–0.26 to 0.1 for CO, and 0.75 to 1.1 for H2O) very different from those 

found in this work, due to the presence of the noble metal Pt in the catalyst matrix. 

While Beltram et al. (2015) developed Pd@CeO2/MWCNT catalysts, with higher 

surface area (64-186 m²/g) and the activity expressed in CO consumption. Also, they 
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did not perform a kinetic study (BELTRAM et al., 2015), again making comparison 

difficult. 

The kinetic model M5 derived from the redox mechanism was capable of nicely 

reproducing the WGS kinetics over the Co/Ce-Sr-MWCNT catalyst. Besides exhibiting 

a statistically significant regression R² ≈ 0.98 and the lowest RMSD compared to the 

power law models (M1 and M2) which are also statistically significant. The statistical 

significance is very important for the prediction capacity of the model within the range 

of experimental operating conditions considered in tasks such as the design, 

simulation, and control of a chemical process. 

Therefore, there are clear indications that the WGS reaction over the Co/Ce-

Sr-MWCNT catalyst follows the redox mechanism, which is also known as the 

regenerative mechanism (REDDY; SMIRNIOTIS, 2015), by which the HT-WGS is 

better explained (SMITH R J; LOGANATHAN; SHANTHA, 2010). The catalyst surface 

is oxidized by water forming hydrogen gas, followed by the surface reduction to 

transform carbon monoxide to dioxide, as schematized in Table 5.3. 

Further indication for this mechanism can be found in the structure and 

composition of the Co/Ce-Sr-MWCNT catalyst. As confirmed by XRD, Raman, and 

EDX, the presence of Co and CeO2 in the catalyst matrix plays an important role for 

WGS activity. The presence of ceria shifts the reduction of cobalt oxides to lower 

temperatures, as demonstrated in H2-TPR results. Ceria also promotes a high mobility 

of the oxygen species over the MWCNTs surface, which already has the presence of 

oxygenated groups because of the functionalization. This strong interaction between 

the catalyst components makes the cobalt a source of stabilization of water molecules, 

favoring the surface oxidation: H2O + * ⇌ O* + H2 (BARAJ; CIAHOTNÝ; HLINČÍK, 

2021). The existence of a high density of active phase (*) on the catalyst surface is 

confirmed by the CO chemisorption results. Therefore, the availability and mobility of 

O* surface species on the catalyst surface, which is also promoted by the extended π-

conjugation bonds of the MWCNTs, plays an important role in accelerating the reaction 

rate: CO + O* ⇌ * + CO2.  

Moreover, the presence of the metal nanoparticles mainly at the external 

surface of the MWCNTs, confirmed by N2-physisorption, TEM images and Raman 

spectra, confirms that this whole process occurs at the external surface and not inside 

the nanotubes. The latter which could cause mass transfer limitations, which have 

clearly been avoided. 



115 

 

5.6 Conclusions 
 

Via model discrimination, the redox mechanism was identified as most suitable 

to explain the WGS over the Co/Ce-Sr-MWCNT catalyst. Furthermore, this redox 

behavior was perfectly aligned with the catalyst characterization results. This was the 

first time that kinetic parameters for the well-studied WGS reaction have been 

estimated for carbon-support catalysts. Thus, this developed nanostructured catalyst 

appears to have a promising future for industrial use in the high-temperature WGS 

reaction. Furthermore, this model can be a useful tool for such future use, even more 

as the parameters have been estimated at industrially relevant CO conversions. 
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6 CHAPTER IV: MICROKINETIC STUDY 
 

 

6.1 Introduction 
 

For most catalytic reactor designs, macrokinetic models are used to describe 

the reaction. Rates are then generally represented in terms of power-law expressions 

or, in the best scenario, of Langmuir-Hinshelwood mechanisms. However, such 

models are limited to specific catalysts and provide little information for catalyst design, 

although they have a lower computational cost (SAW; NANDONG; GHOSH, 2016). 

The development of microkinetic models, on the other hand, allows gaining an 

understanding of fundamental catalyst surface phenomena in terms of elementary 

reaction steps, yielding more accurate reaction rates (DUMESIC et al., 1993). 

This methodology takes the physical and chemical catalyst properties into 

account as part of the model formulation. The corresponding parameters, referred to 

catalyst descriptors, can, ideally speaking, be computed from theoretical chemistry or 

experimentally measured, thus assisting in the search of new or improved catalysts for 

a particular process (THYBAUT et al., 2011).  

Some of these descriptors are the density of active sites, σ [molAct.Surf. mcat–2], 

which provides the number of available active sites on the catalyst surface, where the 

elementary steps of the reaction mechanism take place (SUN; THYBAUT; MARIN, 

2008), and the specific surface area, SP [m² kgcat–1], which quantifies the potential for 

interaction between gas molecules and the catalyst surface through adsorption-

desorption steps (SCHMAL, 2016). 

Moreover, they can also be chemisorption enthalpies, initial sticking 

probabilities, binding energies of intermediates, among others (SUN; THYBAUT; 

MARIN, 2008). Furthermore, the incorporation of these descriptors into microkinetic 

models is a powerful procedure to extract knowledge from high throughput 

experimentation in the search for new or improved catalysts for a process, allowing the 

prediction of reaction performance – conversion, activity, and selectivity – based on 

intrinsic catalyst properties (THYBAUT et al., 2011). Hence, the catalyst composition and 

structure can be changed to adjust the appropriate rate parameters. 

These microkinetic models are derived from the investigation of catalytic 

cycles and the catalyst surface, and they portray the reaction in terms of elementary 
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steps concerning adsorbed reactants, products, and reaction intermediates related to 

active sites (SUN; THYBAUT; MARIN, 2008). In addition, they can be employed for 

identifying the rate-determining step (RDS) or the most abundant reactive 

intermediates (MARI) without a priori assumptions on elementary reactions, since they 

can describe the reacting system behaviour under distinct operating conditions 

(MAESTRI et al., 2009). 

In addition, a matter of concern is about the computational time required in the 

implementation of microkinetic models due to the large number of differential equations 

to be solved, which come from the complex reaction network. However, model 

reduction techniques were developed elsewhere (MAESTRI et al., 2008) to make 

feasible their applications in online process control and computational fluid dynamics 

(CFD) simulations (MAESTRI; CUOCI, 2013). For example, the Principal Component 

Analysis (PCA) method has been applied with this purpose, using information from 

Sensitivity Analysis (SA) in a full microkinetic model, and thus reducing the number of 

reactions in the mechanism (DE CARVALHO et al., 2018). 

For the WGS reaction over Cu-ZnO-Al2O3 catalysts, microkinetic models were 

applied using a systematic reaction route (RR) analysis, showing that only three RRs 

dominate its kinetics: the formate, the associative, and the redox mechanisms 

(CALLAGHAN et al., 2003). From a microkinetic model based on the associative 

mechanism, it was proved that the oxidation of CO* by H2O*, forming COOH* and H*, 

is the rate-determining step of WGS reaction on Pt (MHADESHWAR; VLACHOS, 

2005). Moreover, a more robust model was developed with a closed catalytic cycle 

suggested from DFT calculation results, identifying that intermediate binding energies 

are relevant parameters for the process (MADON et al., 2011). There are other works 

regarding the WGS reaction microkinetics over other catalysts, such as Au/MgO 

(ZHAO et al., 2017) and  Pd-Cu/CeO2 (LUO et al., 2018), showing the critical influence 

of the metal/support interface on the catalysis. 

Moreover, in situ characterization techniques can help in elucidating the WGS 

reaction mechanism. For instance, in situ DRIFTS showed that the production of CO2 

goes through the reaction between CO and O* species coming from the dissociation 

of OH* species on catalysts of Au supported on Zn-Al/Cr/Fe layered double hydroxides 

(MENG et al., 2020). Such result can be supported by DFT calculations, which showed 
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that the redox mechanism has the lowest energy barriers and is the most potential 

reaction pathway to be used in microkinetic modeling. 

The aggregate analysis of DFT, microkinetic, and experimental studies are 

essential key kinetic descriptors for reactions occurring at metal/oxide interface. Using 

this combination, a dual-site microkinetic model was built to explain the role of the 

interface of a Pt/MgO catalyst for the WGS reaction with 17 elementary steps and 16 

species, revealing that the carboxyl mechanism is the governing pathway when 

accounting for relevant CO coverages (GHANEKAR et al., 2020).  

This chapter aimed at developing a microkinetic model that best describes the 

Water-Gas Shift (WGS) reaction, i.e., one of the major routes for hydrogen production 

over the Co/Ce-Sr-MWCNT catalyst under study. In this way, an appropriate and 

comprehensive reaction mechanism for the WGS reaction was proposed to describe 

the kinetics over this catalyst. 

 

6.2 Methodology 
 

The microkinetic methodology is based on the elementary steps that constitute 

the reaction mechanism without considering, in principle, a rate-determining step. 

Although it is computationally intensive, such a detailed description of the reaction 

chemistry allows understanding the fundamental catalyst surface phenomena taking 

place, justifying the additional (computational) effort. In this study, we formulated the 

microkinetic model based on a well-known mechanism for the WGS reaction involving 

a highly reactive surface intermediate – the carboxyl (COOH*), according to the 

following elementary steps in Table 6.1 (GOKHALE; DUMESIC; MAVRIKAKIS, 2008). 

  



120 

 

Table 6.1 – Reaction mechanism considered for the microkinetic model of the WGS over a Co catalyst 
supported on MWCNT with its parameter values (the estimated ones are shown in bold with the 

corresponding 95% confidence interval. The adsorption/desorption steps are shown in blue, while the 
surface reaction ones are shown in red. The fixed parameters were used from GOKHALE; DUMESIC; 

MAVRIKAKIS (2008).  

# Elementary steps ko [min–1] Ea [kJ mol–1] 
1 CO + * → CO* 4.62 x 1011 atm–1 0 

-1 CO* → CO + * 7.79 x 1014 42.3 

2 H2O + * → H2O * 5.76 x 1011 atm–1 0 

-2 H2O * → H2O + * 7.79 x 1014 54.3 

3 H2O* + * → OH* + H* 6.57 x 1014 g µmol–1 20.7 

-3 OH* + H* → H2O* + * 6.57 x 1014 g µmol–1 0 

4 CO* + OH* → COOH* + * 6.57 x 1014 g µmol–1 48.1 ± 12.3 
-4 COOH* + * → CO* + OH* 4.10 x 1014 g µmol–1 112.9 ± 8.0 
5 COOH* + * → CO2* + H* 9.03 x 1014 ± 4.02 x 105 g µmol–1 20.1† 

-5 CO2* + H* → COOH* + * 6.57 x 1014 g µmol–1 0.01 

6 2H* → H2 + 2* 7.79 x 1014 47.4 ± 11.3 
-6 H2 + 2* → 2H* (3.86 ± 0.41) x 108  g µmol–1 atm–1 0 

7 CO2* → CO2 + * 7.79 x 1014 32.0 

-7 CO2 + * → CO2* 3.68 x 1011 atm–1 0 
† thermodynamic constraint 

Source: (CAVALCANTI et al., 2020) 

In Table 6.1, * represents the free active sites and X* the adsorbed species on 

the catalyst surface (intermediates). The adsorption/desorption steps are shown in 

blue, while the surface reaction ones are shown in red. In this microkinetic 

methodology, apart from the set of ordinary differential equations describing the mass 

balance of each bulk species (Eq. (21)), the pseudo-steady state approximation for the 

intermediates (Eq. (22)), and the mass balance of the active sites (Eq. (23)) were also 

taken into account (POISSONNIER et al., 2018): 

 

 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝑖𝑖     with     𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  at  𝑊𝑊 = 0 (22) 

 

 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 (23) 

 

 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶∗ + �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (24) 
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Fi is the molar flow rate of component i (µmol min–1), W the catalyst mass (g), 

Ri the net production rate of component i (µmol g–1 min–1), Rintermediate the net production 

rate of each intermediate (µmol g–1 min–1), Ctotal the total active site concentration (mol 

g–1), C* the free active site concentration (mol g–1), and Cintermediate the occupied active 

site concentration (mol g–1). The resulting system of differential-algebraic equations 

(DAEs) (21)-(23) was solved using the DDAPLUS package, and the regression made 

by the GREGPLUS package, both as available in Athena VISUAL Studio. The kinetic 

data used for the model adjustment were collected from 60 experiments (Table 5.1), 

varying the temperature, feed composition, and space velocity.  

The microkinetic modeling uses kinetic parameters that exhibit a clear 

physicochemical meaning. As the model has a large set of adjustable parameters (a 

total of 28), only a subset of them could be estimated from the kinetic data without 

compromising the accuracy. Therefore, the others were calculated using theoretical 

prediction models, such as the Collision Theory and Transition-State Theory, 

respectively and kept fixed during the regression (SPRUNG et al., 2015): 

 

 𝑘𝑘𝑖𝑖0 =
𝑆𝑆𝑃𝑃
𝜎𝜎

1
√2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

 (25) 

 

 
𝑘𝑘𝑖𝑖0 =

𝑁𝑁𝐴𝐴
𝑆𝑆𝑃𝑃
𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑄𝑄𝐴𝐴𝐴𝐴‡
′′

𝑄𝑄𝐴𝐴∗′′ 𝑄𝑄𝐵𝐵∗′′
 (26) 

 

ki0 is the pre-exponential factor for adsorption [Pa–1 s–1], reaction [kg mol–1 s–

1] or desorption [s–1], SP is the catalyst specific surface area [m² kgcat–1], σ the active 

site density [molAct.Surf. kgcat–1], M the molar mass of the gas species [kg mol–1], NA the 

Avogadro constant [mol–1], kB the Boltzmann constant [J K–1], h the Planck constant [J 

s], and Qi” the molecular partition function of the involved species i [m–2]. 

In other words, these theories were used to complement the available 

information presented in the experimental data, which was not sufficient to estimate all 

rate coefficients (DEVOCHT et al., 2019). In addition, in order to further reduce the number 

of estimated parameters, beyond the theoretical calculations, some of the activation 

energies values were obtained from other modeling efforts performed on a similar 

catalyst (SPRUNG et al., 2015). 
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The catalyst descriptors (Sp and σ) used in those expressions were 

experimentally determined from characterization techniques. The catalyst specific 

surface area was acquired from N2 physisorption isotherms (NOVA 1200e Surface 

Area & Pore Size Analyzer, from Quantachrome Instruments), using the BET method: 

𝑆𝑆𝑃𝑃 = 2200 𝑚𝑚2𝑘𝑘𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐−1  (section 4.4.1.1). While, the catalyst activity site density was 

computed from CO pulse chemisorption measurements (Autochem II, from 

micromeritics®) assuming an equimolar stoichiometry of CO-cobalt: 𝜎𝜎 =

0.012 𝑚𝑚𝑚𝑚𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝑘𝑘𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐−1  (section 4.4.1.7).  

In addition, energetic consistency is ensured in the model, by expressing that 

the appropriate sum of the activation energies for all elementary steps must be equal 

to the overall standard enthalpy of the WGS reaction (DUMESIC et al., 1993; SPRUNG 

et al., 2015): 

 �𝜈𝜈𝑗𝑗(𝐸𝐸𝑗𝑗,𝑓𝑓𝑓𝑓𝑓𝑓)
𝑗𝑗

−�𝜈𝜈𝑗𝑗�𝐸𝐸𝑗𝑗,𝑟𝑟𝑟𝑟𝑟𝑟�
𝑗𝑗

= ΔH𝑊𝑊𝑊𝑊𝑊𝑊
0 = −41 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 (27) 

 

νj is the stoichiometry number of the elementary steps in the reaction 

mechanism, Ej the activation energy of the forward (for), and reverse (rev) steps [kJ 

mol–1], and ΔH𝑊𝑊𝑊𝑊𝑊𝑊
0  the standard enthalpy of the WGS reaction [kJ mol–1]. 

 

 

6.3 Results and discussion 
 

The estimated kinetic parameter values with their corresponding confidence 

intervals are presented in Table 6.1. As can be noted, five parameters were estimated 

from the collected kinetic data (all statistically significant), while the other 23 were 

determined a priori as discussed above. The main challenge in the parameter 

estimation was to find and tune the balance between the amount of information 

available in the kinetic data and the degree of detail retained in the model. 

In Figure 6.1, the performance curves and the parity plots are presented, 

showing that the microkinetic model seems to reasonably describe the behavior of the 

experimental data, with the catalyst presenting an optimal performance (XCO = 85-95%) 

at elevated temperatures (350-450oC) and space times (70-80 kg s mol–1). As 

expected, the higher the temperature and space velocity, the greater the CO 

conversion. 
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Figure 6.1 – Performance curves and parity plots. In the former, points are experimental data, and 

lines represent the model predictions. The CO conversion as a function of the temperature curve was 
carried out with space time of 88 kg s mol-1. For the CO conversion as a function of space time 

graphs, the blue line represents the reaction performed at 300oC, the red at 350oC, and the green at 
400oC. 

Source: (CAVALCANTI et al., 2020)  
 

This appropriate agreement between observed and predicted values is also 

confirmed by the R2 value of 0.96, and the F-test for verifying the global significance of 

the regression: Fcalc = 103 (> Ftab = 4). Also, the experimental points show a good 

distribution along the 45o line in the parity plots, being more symmetrical for CO. 

However, model simulated data at temperatures above 400oC are exceeding the 

equilibrium conversion, hence indicating where the discrepancy between experimental 

and model simulated data originates from. This may be overcome by considering the 

calculation of the reverse reaction rate coefficients, not by using the Collision and 

Transition-State theories, but rather by enforcing thermodynamic equilibrium for each 

elementary step (Kj = kj,for/kj,rev), which involves the knowledge of the standard Gibbs 

energy of all the intermediate species presented in the mechanism (DE CARVALHO et 

al., 2018). In this way, together with the energetic constraint in Eq. (26), the overall 
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thermodynamic consistency would be guaranteed. In addition, for the CO conversion 

as a function of space time graphs, the higher the temperature, the better seems the 

adjustment for lower W/FCO values. Thus, the model seems to work well in high 

temperature regions, but far from equilibrium and with small space times, potentially 

indicating that chemical kinetics are no longer dominating at this point and effects of 

heat and mass transfer are present. 

It is worth noting that the macrokinetic models developed in CHAPTER III: 

(MACRO)KINETIC STUDY presented better model fits to the data. In addition to the 

reasons related to the thermodynamic equilibrium mentioned above, the worse fit may 

be emerged from various sources: inadequate calculation of partition functions, small 

dataset to perform a microkinetic regression, choice of the wrong parameters to be 

estimated, and failure to account for other elementary steps in the mechanism. In other 

words, the microkinetic model was formulated by invoking many approximations that 

ultimately lower its quantitative accuracy. In summary, the challenge of microkinetic 

modeling lies in the need to have quality information regarding the model parameter 

values, for which relatively little input is available. 

Furthermore, the COOH* formation reaction (CO* + OH* → COOH* + *) has 

the highest activation energy of all surface reactions, as can be observed in the energy 

diagram (Figure 6.2) constructed with the activation energies in Table 6.1. Since ko 

values are almost the same in all reactions, it can be inferred with the Arrhenius law 

(𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑜𝑜,𝑗𝑗exp (−𝐸𝐸𝑎𝑎,𝑗𝑗/𝑅𝑅𝑅𝑅)) that the higher the activation energy, the lower the rate 

coefficient. Therefore, reaction #4 can be considered the rate-determining step for the 

WGS reaction over the Co/MWCNT catalyst, as its rate has the greatest sensitivity with 

temperature variation. In addition, the partial equilibrium ratio (= rj,for/rj,for+rj,rev) for this 

elementary reaction (with a value of 0.99, greater than 0.5) proves that it is forward 

favorable, and the conclusion above can be actually supported. Finally, in the diagram, 

the thermodynamic constraint incorporated into the model (Eq. 6) can be observed by 

the energy difference between the reactants and the products, being equal to Δ𝐻𝐻𝑊𝑊𝑊𝑊𝑊𝑊
𝑜𝑜 =

−41 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 (PAL et al., 2018). 
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Figure 6.2 – Energy diagram of the WGS reaction mechanism according to the values in Table 6.1. 

Source: (CAVALCANTI et al., 2020) 

 

6.4 Conclusions 
 

The development of this microkinetic model allowed the determination of more 

detailed kinetics for the WGS reaction over the Co/MWCNT catalyst, considering 

catalyst surface properties, such as its specific surface area and its density of active 

sites. The incorporation of these catalyst descriptors into this model confirms that the 

COOH* formation reaction (CO* + OH* → COOH* + *) is the rate-determining step and 

allows describing the optimal catalyst performance at elevated temperatures (350-

450oC) and space times (70-80 kg.s/mol), as indicated by the experimental results. 

Therefore, it is a robust procedure for predicting reaction performance based on 

intrinsic catalyst properties, thus assisting in future catalyst design and optimization 

research. 

However, it is important to mention that the macrokinetic models presented 

better adjustments in comparison to the microkinetic one developed in this chapter. In 

other words, despite the huge theoretical potential of the microkinetic approach, there 

is not always a practical advantage to use it due to the little input available to estimate 

its parameters. 
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7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 
 

 

The developed and characterized Co/Ce-Sr-MWCNT catalyst presented 

activity for the HT-WGS with CO conversion close to the thermodynamic limit. The 

redox mechanism was identified as the most suitable to describe its kinetics with 

oxidation and reduction cycles occurring on the catalyst surface. This fact can be 

explained by the extended π-conjugation bonds of the MWCNTs and the oxygen 

storage capacity brought by CeO2. Moreover, this was corroborated by the kinetic 

study which confirmed that the Langmuir-Hinshelwood model based on the redox 

mechanism was capable of nicely reproducing the WGS kinetics. It is noteworthy that 

this was the first time that kinetic parameters have been estimated for WGS reaction 

over carbon-support catalysts. A microkinetic approach with an understanding of 

fundamental catalyst surface phenomena in terms of elementary steps has also been 

developed to comprehend the detailed kinetics of this catalytic reaction. All this work 

together with the constructed ANN model is a robust consultancy material to assist in 

future catalyst design and optimization for industrial reactor projects. 

For future works on this topic, the following suggestions are presented: 

• Construction of a more robust ANN model with the use of a wider range 

of operating conditions in the experimental data to avoid some 

inconsistencies found in the results. 

• Performance of economic viability studies related to the large-scale 

synthesis of the Co/Ce-Sr-MWCNT catalyst for industrial use. 

• Execution of robust catalyst characterization techniques, such as 

Temperature-Programmed Superficial Reaction (TPSR) and in situ 

XRD to better understand the connection between the elementary steps 

of the microkinetic model with the surface reactions that occur in the 

catalyst structure. 

• Use of machine learning techniques to improve the microkinetic model 

accuracy: using surrogate models to compute partition functions and 

activation energies. 
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• Introduction of macro and microkinetic models into a multiscale fixed-

bed reactor design equation to identify the dominants phenomena at 

the different scales: nano, micro and macro. 
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APPENDIX A – DATABASE FOR ANN MODEL 
 

 

The database used to build the ANN model is available at: https://ars.els-

cdn.com/content/image/1-s2.0-S0301479719302439-mmc2.xlsx  
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APPENDIX B – ANN WEIGHTS 
 

Table B.1 exhibits the estimated weight values of the developed ANN 

represented in Figure 3.8. 

 
Table B.1 – Estimated weights of the developed ANN 

Weight Value 
Intercept.to.1layhid1 -0.142034951 

Temperature.to.1layhid1 16.21249168 
Pressure.to.1layhid1 -1.948047916 

Catalyst.Mass.to.1layhid1 4.159665538 
GSHV.to.1layhid1 5.19060862 

Specifc.Area.BET.to.1layhid1 -0.730298703 
Calcination.Temperature.to.1layhid1 1.192254139 

Calcination.Time.to.1layhid1 1.164595308 
CO.to.1layhid1 -8.398235332 
H2O.to.1layhid1 -0.571468492 
CO2.to.1layhid1 -0.68168954 
H2.to.1layhid1 -7.737595795 
N2.to.1layhid1 9.557840518 
He.to.1layhid1 -0.573124927 

CH4.to.1layhid1 -7.646201927 
Fe2O3.to.1layhid1 0.161734648 

AC.to.1layhid1 1.973008733 
CNT.to.1layhid1 2.425532348 

Mo2C.to.1layhid1 0.621106319 
CeO2.to.1layhid1 -0.553566414 
La2O3.to.1layhid1 -4.84990885 
ZrO2.to.1layhid1 -3.268432014 
MgO.to.1layhid1 -445.3008863 

Al2O3.to.1layhid1 -1.55181453 
TiO2.to.1layhid1 -0.966841336 
Co.to.1layhid1 -7.194662998 
Ni.to.1layhid1 -120.8313239 
Cu.to.1layhid1 -4.970889244 
Ru.to.1layhid1 0.279002643 
Pd.to.1layhid1 -12.74077839 
Ag.to.1layhid1 -1.758610372 
Ir.to.1layhid1 0.196746413 
Pt.to.1layhid1 -3.647036563 
Au.to.1layhid1 16.96977588 
Cr.to.1layhid1 -21.54656135 
Zn.to.1layhid1 -0.133744012 
Na.to.1layhid1 37.85724915 
K.to.1layhid1 -4.452523307 
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Weight Value 
Mg.to.1layhid1 -0.259653327 
Ba.to.1layhid1 -338.2133712 
B.to.1layhid1 1.375249895 
Al.to.1layhid1 -0.192281105 
Si.to.1layhid1 0.043714625 
Pb.to.1layhid1 -63.71912325 
S.to.1layhid1 -2.770034174 

Hg.to.1layhid1 0.029806387 
Y.to.1layhid1 31.19950196 
Ti.to.1layhid1 -0.352898239 
Zr.to.1layhid1 13.33255742 
La.to.1layhid1 9.283683637 
Ce.to.1layhid1 0.652484364 
Fe.to.1layhid1 16.0286989 

Intercept.to.1layhid2 0.065326744 
Temperature.to.1layhid2 2.406108978 

Pressure.to.1layhid2 -0.915418902 
Catalyst.Mass.to.1layhid2 -0.437394411 

GSHV.to.1layhid2 -2.489268026 
Specifc.Area.BET.to.1layhid2 5.526628271 

Calcination.Temperature.to.1layhid2 0.210228139 
Calcination.Time.to.1layhid2 -1.030150719 

CO.to.1layhid2 -1.151078442 
H2O.to.1layhid2 1.692690133 
CO2.to.1layhid2 1.348283503 
H2.to.1layhid2 -2.240772588 
N2.to.1layhid2 1.755746144 
He.to.1layhid2 -7.587289547 

CH4.to.1layhid2 -2.290043606 
Fe2O3.to.1layhid2 -4.548765622 

AC.to.1layhid2 -88.38353055 
CNT.to.1layhid2 16.21415019 

Mo2C.to.1layhid2 -0.656494317 
CeO2.to.1layhid2 -0.342021077 
La2O3.to.1layhid2 25.49364411 
ZrO2.to.1layhid2 0.233943736 
MgO.to.1layhid2 -1.074470546 

Al2O3.to.1layhid2 -0.551638822 
TiO2.to.1layhid2 -0.605469359 
Co.to.1layhid2 0.02220382 
Ni.to.1layhid2 1.547341873 
Cu.to.1layhid2 0.399061144 
Ru.to.1layhid2 1.048817147 
Pd.to.1layhid2 -0.13160744 
Ag.to.1layhid2 -1.406229188 
Ir.to.1layhid2 70.3132861 
Pt.to.1layhid2 -212.6592643 
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Weight Value 
Au.to.1layhid2 -8.942845844 
Cr.to.1layhid2 -1.127452423 
Zn.to.1layhid2 -0.212057175 
Na.to.1layhid2 28.60434631 
K.to.1layhid2 -1.218861359 

Mg.to.1layhid2 -0.010263896 
Ba.to.1layhid2 3.240173661 
B.to.1layhid2 0.420324916 
Al.to.1layhid2 -0.395093207 
Si.to.1layhid2 -0.174983964 
Pb.to.1layhid2 3.020170297 
S.to.1layhid2 0.585319607 

Hg.to.1layhid2 -1.96087424 
Y.to.1layhid2 -0.025512801 
Ti.to.1layhid2 0.235146635 
Zr.to.1layhid2 -0.26592617 
La.to.1layhid2 -342.2183743 
Ce.to.1layhid2 -464.6034643 
Fe.to.1layhid2 -1.46482605 

Intercept.to.1layhid3 -0.107137604 
Temperature.to.1layhid3 -5.806389711 

Pressure.to.1layhid3 -1.414143012 
Catalyst.Mass.to.1layhid3 -11.32108246 

GSHV.to.1layhid3 4.138205751 
Specifc.Area.BET.to.1layhid3 0.262302112 

Calcination.Temperature.to.1layhid3 -0.043809702 
Calcination.Time.to.1layhid3 -4.419379052 

CO.to.1layhid3 -0.213850558 
H2O.to.1layhid3 -1.069424047 
CO2.to.1layhid3 4.07431733 
H2.to.1layhid3 1.785843572 
N2.to.1layhid3 0.454399475 
He.to.1layhid3 3.059787824 

CH4.to.1layhid3 2.401357628 
Fe2O3.to.1layhid3 0.204247094 

AC.to.1layhid3 -88.63258859 
CNT.to.1layhid3 -0.096084577 

Mo2C.to.1layhid3 -0.485456503 
CeO2.to.1layhid3 -0.836330614 
La2O3.to.1layhid3 0.596534493 
ZrO2.to.1layhid3 2.503096316 
MgO.to.1layhid3 -1.015283072 

Al2O3.to.1layhid3 1.112677008 
TiO2.to.1layhid3 1.218237356 
Co.to.1layhid3 -1.085136638 
Ni.to.1layhid3 -110.5687204 
Cu.to.1layhid3 -0.178571645 
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Weight Value 
Ru.to.1layhid3 -0.538053281 
Pd.to.1layhid3 1.989313632 
Ag.to.1layhid3 -0.796319713 
Ir.to.1layhid3 6.370746269 
Pt.to.1layhid3 5.618108629 
Au.to.1layhid3 4.852729335 
Cr.to.1layhid3 1.09598084 
Zn.to.1layhid3 -5.008570621 
Na.to.1layhid3 1.204042042 
K.to.1layhid3 -6.2497086 

Mg.to.1layhid3 -0.346707391 
Ba.to.1layhid3 0.658972847 
B.to.1layhid3 -0.224854889 
Al.to.1layhid3 11.67902267 
Si.to.1layhid3 2.016787507 
Pb.to.1layhid3 0.471955133 
S.to.1layhid3 20.14616925 

Hg.to.1layhid3 -1.363594352 
Y.to.1layhid3 1.582665442 
Ti.to.1layhid3 0.326868452 
Zr.to.1layhid3 7.895387845 
La.to.1layhid3 -0.457303367 
Ce.to.1layhid3 -506.8073476 
Fe.to.1layhid3 1.003964375 

Intercept.to.1layhid4 0.237907994 
Temperature.to.1layhid4 3.181034573 

Pressure.to.1layhid4 -0.122953541 
Catalyst.Mass.to.1layhid4 0.016905114 

GSHV.to.1layhid4 -0.919925673 
Specifc.Area.BET.to.1layhid4 -0.512695946 

Calcination.Temperature.to.1layhid4 0.7363303 
Calcination.Time.to.1layhid4 1.244906559 

CO.to.1layhid4 1.522965155 
H2O.to.1layhid4 -0.771598283 
CO2.to.1layhid4 -1.976956409 
H2.to.1layhid4 -0.86336982 
N2.to.1layhid4 -0.196637364 
He.to.1layhid4 -0.26678303 

CH4.to.1layhid4 -0.554171962 
Fe2O3.to.1layhid4 0.879000478 

AC.to.1layhid4 -1.688103687 
CNT.to.1layhid4 -0.282624051 

Mo2C.to.1layhid4 1.636021008 
CeO2.to.1layhid4 -0.052041166 
La2O3.to.1layhid4 -0.592395177 
ZrO2.to.1layhid4 -0.348411112 
MgO.to.1layhid4 -0.257441733 
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Weight Value 
Al2O3.to.1layhid4 -0.980224548 
TiO2.to.1layhid4 -0.004526073 
Co.to.1layhid4 -0.440596598 
Ni.to.1layhid4 1.00088836 
Cu.to.1layhid4 0.441686987 
Ru.to.1layhid4 0.485204855 
Pd.to.1layhid4 -0.762477359 
Ag.to.1layhid4 -1.449884637 
Ir.to.1layhid4 50.95322248 
Pt.to.1layhid4 -1.907027767 
Au.to.1layhid4 2.660054253 
Cr.to.1layhid4 -0.550176845 
Zn.to.1layhid4 0.522964217 
Na.to.1layhid4 -0.779177702 
K.to.1layhid4 1.156353504 

Mg.to.1layhid4 -0.280584311 
Ba.to.1layhid4 -1.472487689 
B.to.1layhid4 -2.49725E-05 
Al.to.1layhid4 0.602384974 
Si.to.1layhid4 1.249175519 
Pb.to.1layhid4 0.199888094 
S.to.1layhid4 -0.810677114 

Hg.to.1layhid4 -1.405620114 
Y.to.1layhid4 -0.743832135 
Ti.to.1layhid4 1.246871803 
Zr.to.1layhid4 -2.050939588 
La.to.1layhid4 -1.176346977 
Ce.to.1layhid4 1.100571421 
Fe.to.1layhid4 -0.761221495 

Intercept.to.1layhid5 -0.867405878 
Temperature.to.1layhid5 -6.16216893 

Pressure.to.1layhid5 -1.609386768 
Catalyst.Mass.to.1layhid5 -6.485218456 

GSHV.to.1layhid5 -61.1447618 
Specifc.Area.BET.to.1layhid5 41.21402286 

Calcination.Temperature.to.1layhid5 -1.249879864 
Calcination.Time.to.1layhid5 -1.809124897 

CO.to.1layhid5 1.427553631 
H2O.to.1layhid5 1.319263409 
CO2.to.1layhid5 -0.318839761 
H2.to.1layhid5 0.224307997 
N2.to.1layhid5 3.115005739 
He.to.1layhid5 5.139649192 

CH4.to.1layhid5 -2.76857057 
Fe2O3.to.1layhid5 -30.75233139 

AC.to.1layhid5 -29.31629518 
CNT.to.1layhid5 1.933314869 
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Weight Value 
Mo2C.to.1layhid5 -1.474093862 
CeO2.to.1layhid5 0.001249612 
La2O3.to.1layhid5 -50.91092363 
ZrO2.to.1layhid5 2.667456849 
MgO.to.1layhid5 1.334227073 

Al2O3.to.1layhid5 3.89339902 
TiO2.to.1layhid5 -0.626478182 
Co.to.1layhid5 0.754340301 
Ni.to.1layhid5 2.741012618 
Cu.to.1layhid5 2.996950611 
Ru.to.1layhid5 -0.402482618 
Pd.to.1layhid5 -2.445713735 
Ag.to.1layhid5 10.46431149 
Ir.to.1layhid5 17.65351643 
Pt.to.1layhid5 -26.3379203 
Au.to.1layhid5 -25.78570036 
Cr.to.1layhid5 -70.27419435 
Zn.to.1layhid5 -6.790010008 
Na.to.1layhid5 2.39986298 
K.to.1layhid5 -0.188724887 

Mg.to.1layhid5 -0.007214427 
Ba.to.1layhid5 72.65122637 
B.to.1layhid5 -1.018599813 
Al.to.1layhid5 -1.742973527 
Si.to.1layhid5 1.404072059 
Pb.to.1layhid5 29.48741442 
S.to.1layhid5 -4.97459435 

Hg.to.1layhid5 30.13766195 
Y.to.1layhid5 3.549760471 
Ti.to.1layhid5 -0.090837375 
Zr.to.1layhid5 -1.726411157 
La.to.1layhid5 -9.607180636 
Ce.to.1layhid5 21.80237175 
Fe.to.1layhid5 -16.83634368 

Intercept.to.1layhid6 1.465450349 
Temperature.to.1layhid6 -0.632437276 

Pressure.to.1layhid6 0.711809591 
Catalyst.Mass.to.1layhid6 -1.515720109 

GSHV.to.1layhid6 -0.653953965 
Specifc.Area.BET.to.1layhid6 0.859793851 

Calcination.Temperature.to.1layhid6 0.5013695 
Calcination.Time.to.1layhid6 -1.750395432 

CO.to.1layhid6 1.029253724 
H2O.to.1layhid6 -0.341499691 
CO2.to.1layhid6 3.203078579 
H2.to.1layhid6 -0.084902663 
N2.to.1layhid6 -1.159794467 
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Weight Value 
He.to.1layhid6 -3.631901858 

CH4.to.1layhid6 0.730992994 
Fe2O3.to.1layhid6 -0.543573434 

AC.to.1layhid6 0.808969362 
CNT.to.1layhid6 1.096335446 

Mo2C.to.1layhid6 1.096993384 
CeO2.to.1layhid6 -0.525188566 
La2O3.to.1layhid6 -1.658710664 
ZrO2.to.1layhid6 2.575178614 
MgO.to.1layhid6 0.582897177 

Al2O3.to.1layhid6 -2.499976917 
TiO2.to.1layhid6 0.815777772 
Co.to.1layhid6 -22.73431916 
Ni.to.1layhid6 10.93278656 
Cu.to.1layhid6 -54.39445866 
Ru.to.1layhid6 -0.359237267 
Pd.to.1layhid6 -0.105559073 
Ag.to.1layhid6 0.561355612 
Ir.to.1layhid6 0.123532048 
Pt.to.1layhid6 -1.473470068 
Au.to.1layhid6 2.389542975 
Cr.to.1layhid6 0.70707602 
Zn.to.1layhid6 -7.146817051 
Na.to.1layhid6 5.300959908 
K.to.1layhid6 0.331998798 

Mg.to.1layhid6 0.81518737 
Ba.to.1layhid6 0.236002994 
B.to.1layhid6 -2.020485706 
Al.to.1layhid6 -6.356574892 
Si.to.1layhid6 1.308896504 
Pb.to.1layhid6 1.136079079 
S.to.1layhid6 14.96421522 

Hg.to.1layhid6 0.48748515 
Y.to.1layhid6 2.786629666 
Ti.to.1layhid6 0.326359423 
Zr.to.1layhid6 -462.6482245 
La.to.1layhid6 -0.400466049 
Ce.to.1layhid6 1.489327208 
Fe.to.1layhid6 42.52148394 

Intercept.to.1layhid7 1.112623264 
Temperature.to.1layhid7 -0.819053773 

Pressure.to.1layhid7 2.64753221 
Catalyst.Mass.to.1layhid7 0.677831543 

GSHV.to.1layhid7 0.088114702 
Specifc.Area.BET.to.1layhid7 0.092907843 

Calcination.Temperature.to.1layhid7 0.961108519 
Calcination.Time.to.1layhid7 -1.436796116 
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Weight Value 
CO.to.1layhid7 -0.579385047 
H2O.to.1layhid7 2.313222337 
CO2.to.1layhid7 -1.064021605 
H2.to.1layhid7 0.338580931 
N2.to.1layhid7 1.801494331 
He.to.1layhid7 0.557403264 

CH4.to.1layhid7 -0.62548572 
Fe2O3.to.1layhid7 -0.564966288 

AC.to.1layhid7 -1.056400705 
CNT.to.1layhid7 1.998002487 

Mo2C.to.1layhid7 -1.859795015 
CeO2.to.1layhid7 0.357140109 
La2O3.to.1layhid7 -2.925769147 
ZrO2.to.1layhid7 2.297537946 
MgO.to.1layhid7 0.195839561 

Al2O3.to.1layhid7 0.103364389 
TiO2.to.1layhid7 0.127726805 
Co.to.1layhid7 -0.237669354 
Ni.to.1layhid7 -3.231531532 
Cu.to.1layhid7 -2.029980976 
Ru.to.1layhid7 -0.640150981 
Pd.to.1layhid7 -3.864016235 
Ag.to.1layhid7 -1.653424157 
Ir.to.1layhid7 -0.085045527 
Pt.to.1layhid7 7.686523492 
Au.to.1layhid7 -1.136184019 
Cr.to.1layhid7 -2.114631056 
Zn.to.1layhid7 3.105922247 
Na.to.1layhid7 -4.794350633 
K.to.1layhid7 0.216440157 

Mg.to.1layhid7 0.169495716 
Ba.to.1layhid7 -2.13870318 
B.to.1layhid7 0.37088699 
Al.to.1layhid7 4.024690828 
Si.to.1layhid7 0.436420581 
Pb.to.1layhid7 -0.986037477 
S.to.1layhid7 -0.681072359 

Hg.to.1layhid7 -2.566101329 
Y.to.1layhid7 -1.679833079 
Ti.to.1layhid7 0.59307239 
Zr.to.1layhid7 38.28368674 
La.to.1layhid7 225.6745926 
Ce.to.1layhid7 -0.260674223 
Fe.to.1layhid7 -9.598490941 

Intercept.to.1layhid8 0.698498319 
Temperature.to.1layhid8 -2.445559882 

Pressure.to.1layhid8 0.712267264 
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Weight Value 
Catalyst.Mass.to.1layhid8 1.497588803 

GSHV.to.1layhid8 0.922650548 
Specifc.Area.BET.to.1layhid8 2.189073937 

Calcination.Temperature.to.1layhid8 1.113925226 
Calcination.Time.to.1layhid8 0.514851167 

CO.to.1layhid8 0.225580088 
H2O.to.1layhid8 -2.100260007 
CO2.to.1layhid8 1.147961168 
H2.to.1layhid8 -1.918178242 
N2.to.1layhid8 1.441351146 
He.to.1layhid8 1.49234053 

CH4.to.1layhid8 -0.141937174 
Fe2O3.to.1layhid8 -0.242243332 

AC.to.1layhid8 -3.760018812 
CNT.to.1layhid8 -4.041958297 

Mo2C.to.1layhid8 -0.004521227 
CeO2.to.1layhid8 1.318823857 
La2O3.to.1layhid8 33.04251209 
ZrO2.to.1layhid8 -0.885551611 
MgO.to.1layhid8 0.890274292 

Al2O3.to.1layhid8 0.108783866 
TiO2.to.1layhid8 0.056047254 
Co.to.1layhid8 0.31861726 
Ni.to.1layhid8 -0.297477283 
Cu.to.1layhid8 6.316358857 
Ru.to.1layhid8 -0.874695139 
Pd.to.1layhid8 -1.399504384 
Ag.to.1layhid8 -0.714052519 
Ir.to.1layhid8 -1.609071425 
Pt.to.1layhid8 19.48279812 
Au.to.1layhid8 13.20606442 
Cr.to.1layhid8 4.85107784 
Zn.to.1layhid8 -4.28451441 
Na.to.1layhid8 34.4800515 
K.to.1layhid8 -0.511451656 

Mg.to.1layhid8 -0.981113795 
Ba.to.1layhid8 22.83891568 
B.to.1layhid8 0.171240247 
Al.to.1layhid8 -0.832659372 
Si.to.1layhid8 -1.740684369 
Pb.to.1layhid8 -1.225690531 
S.to.1layhid8 0.841132456 

Hg.to.1layhid8 16.66392147 
Y.to.1layhid8 -0.239244837 
Ti.to.1layhid8 -0.655878226 
Zr.to.1layhid8 -0.48512396 
La.to.1layhid8 7.43418596 
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Weight Value 
Ce.to.1layhid8 4.272427729 
Fe.to.1layhid8 -2.772697841 

Intercept.to.1layhid9 0.574203584 
Temperature.to.1layhid9 -2.719292061 

Pressure.to.1layhid9 0.500711042 
Catalyst.Mass.to.1layhid9 -2.236710296 

GSHV.to.1layhid9 -0.422039554 
Specifc.Area.BET.to.1layhid9 -1.233628969 

Calcination.Temperature.to.1layhid9 -1.033560339 
Calcination.Time.to.1layhid9 -0.239918423 

CO.to.1layhid9 -0.67279865 
H2O.to.1layhid9 -1.772544393 
CO2.to.1layhid9 -0.190363295 
H2.to.1layhid9 1.5006585 
N2.to.1layhid9 2.313402617 
He.to.1layhid9 -0.503013026 

CH4.to.1layhid9 -1.457185591 
Fe2O3.to.1layhid9 0.417544711 

AC.to.1layhid9 0.195021899 
CNT.to.1layhid9 0.017343497 

Mo2C.to.1layhid9 -1.000112076 
CeO2.to.1layhid9 0.393330997 
La2O3.to.1layhid9 1.773146613 
ZrO2.to.1layhid9 1.313774868 
MgO.to.1layhid9 -32.91604102 

Al2O3.to.1layhid9 3.296767616 
TiO2.to.1layhid9 -0.046963444 
Co.to.1layhid9 7.291724239 
Ni.to.1layhid9 -27.83518863 
Cu.to.1layhid9 -16.01833116 
Ru.to.1layhid9 1.306304905 
Pd.to.1layhid9 -1.531063293 
Ag.to.1layhid9 -0.352226269 
Ir.to.1layhid9 -2.852300873 
Pt.to.1layhid9 -1.813295513 
Au.to.1layhid9 -4.995696096 
Cr.to.1layhid9 1.894201129 
Zn.to.1layhid9 2.695234314 
Na.to.1layhid9 2.283027473 
K.to.1layhid9 -0.869931121 

Mg.to.1layhid9 1.552396571 
Ba.to.1layhid9 -0.013536838 
B.to.1layhid9 -0.634543673 
Al.to.1layhid9 14.28350367 
Si.to.1layhid9 -0.586356027 
Pb.to.1layhid9 0.086089831 
S.to.1layhid9 0.826636886 
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Weight Value 
Hg.to.1layhid9 -0.555762157 
Y.to.1layhid9 -41.5694644 
Ti.to.1layhid9 -0.104531639 
Zr.to.1layhid9 1.445918427 
La.to.1layhid9 -5.605571867 
Ce.to.1layhid9 2.611037548 
Fe.to.1layhid9 -276.7235797 

Intercept.to.1layhid10 1.15081244 
Temperature.to.1layhid10 -0.867851245 

Pressure.to.1layhid10 -0.025363812 
Catalyst.Mass.to.1layhid10 -6.187013347 

GSHV.to.1layhid10 1.242948436 
Specifc.Area.BET.to.1layhid10 -0.138015856 

Calcination.Temperature.to.1layhid10 -0.450360314 
Calcination.Time.to.1layhid10 0.05550795 

CO.to.1layhid10 0.564131093 
H2O.to.1layhid10 -1.689859696 
CO2.to.1layhid10 0.144226507 
H2.to.1layhid10 0.456933043 
N2.to.1layhid10 2.111886335 
He.to.1layhid10 0.964267118 

CH4.to.1layhid10 3.681220957 
Fe2O3.to.1layhid10 0.24956724 

AC.to.1layhid10 0.881393443 
CNT.to.1layhid10 1.494519279 

Mo2C.to.1layhid10 -0.246338448 
CeO2.to.1layhid10 1.034851585 
La2O3.to.1layhid10 0.536908541 
ZrO2.to.1layhid10 -1.807793518 
MgO.to.1layhid10 -0.209634052 

Al2O3.to.1layhid10 -0.221844371 
TiO2.to.1layhid10 -0.63426149 
Co.to.1layhid10 0.040693445 
Ni.to.1layhid10 -0.318669026 
Cu.to.1layhid10 1.645984487 
Ru.to.1layhid10 -5.5028328 
Pd.to.1layhid10 0.245822998 
Ag.to.1layhid10 -1.583271909 
Ir.to.1layhid10 -0.867768375 
Pt.to.1layhid10 -1.49614031 
Au.to.1layhid10 6.435004694 
Cr.to.1layhid10 0.868013372 
Zn.to.1layhid10 2.326467196 
Na.to.1layhid10 -1.084772882 
K.to.1layhid10 0.757907899 

Mg.to.1layhid10 -1.318019344 
Ba.to.1layhid10 -1.53195407 
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Weight Value 
B.to.1layhid10 -1.138237098 
Al.to.1layhid10 0.635003038 
Si.to.1layhid10 -1.11598395 
Pb.to.1layhid10 -0.380358254 
S.to.1layhid10 0.965323485 

Hg.to.1layhid10 -0.799484283 
Y.to.1layhid10 1.405823613 
Ti.to.1layhid10 0.013730167 
Zr.to.1layhid10 -3.68437779 
La.to.1layhid10 -2.338445035 
Ce.to.1layhid10 -0.239183012 
Fe.to.1layhid10 9.486880698 

Intercept.to.1layhid11 1.103074853 
Temperature.to.1layhid11 -7.556210775 

Pressure.to.1layhid11 2.902788811 
Catalyst.Mass.to.1layhid11 6.767055977 

GSHV.to.1layhid11 0.355509248 
Specifc.Area.BET.to.1layhid11 0.17751877 

Calcination.Temperature.to.1layhid11 1.373211657 
Calcination.Time.to.1layhid11 -0.287662201 

CO.to.1layhid11 1.235041037 
H2O.to.1layhid11 1.49004375 
CO2.to.1layhid11 3.090760028 
H2.to.1layhid11 -0.767265854 
N2.to.1layhid11 -0.209988307 
He.to.1layhid11 -1.155916175 

CH4.to.1layhid11 -1.494118328 
Fe2O3.to.1layhid11 0.372130806 

AC.to.1layhid11 -0.400847133 
CNT.to.1layhid11 1.627543663 

Mo2C.to.1layhid11 0.09105528 
CeO2.to.1layhid11 -0.377731272 
La2O3.to.1layhid11 0.553432755 
ZrO2.to.1layhid11 -2.002351535 
MgO.to.1layhid11 -0.449300466 

Al2O3.to.1layhid11 2.425541608 
TiO2.to.1layhid11 -1.448115324 
Co.to.1layhid11 1.841633956 
Ni.to.1layhid11 0.651747434 
Cu.to.1layhid11 -1.065034285 
Ru.to.1layhid11 -1.754939036 
Pd.to.1layhid11 -0.154509872 
Ag.to.1layhid11 -4.945743234 
Ir.to.1layhid11 0.406792632 
Pt.to.1layhid11 -0.763236035 
Au.to.1layhid11 6.428378238 
Cr.to.1layhid11 -1.239724872 
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Weight Value 
Zn.to.1layhid11 0.263194546 
Na.to.1layhid11 -2.343828424 
K.to.1layhid11 -1.035660212 

Mg.to.1layhid11 0.336186293 
Ba.to.1layhid11 -73.05776863 
B.to.1layhid11 0.065721917 
Al.to.1layhid11 -0.047284986 
Si.to.1layhid11 -0.265283968 
Pb.to.1layhid11 -0.393667262 
S.to.1layhid11 -3.394229761 

Hg.to.1layhid11 -4.375253235 
Y.to.1layhid11 -0.084908529 
Ti.to.1layhid11 0.638063595 
Zr.to.1layhid11 0.514158067 
La.to.1layhid11 -1.239854943 
Ce.to.1layhid11 6.433014257 
Fe.to.1layhid11 1.293933194 

Intercept.to.1layhid12 -0.075896746 
Temperature.to.1layhid12 -0.140227106 

Pressure.to.1layhid12 -0.658351356 
Catalyst.Mass.to.1layhid12 0.539023516 

GSHV.to.1layhid12 -0.99490309 
Specifc.Area.BET.to.1layhid12 -0.352351472 

Calcination.Temperature.to.1layhid12 1.414664049 
Calcination.Time.to.1layhid12 1.148013349 

CO.to.1layhid12 -0.428100793 
H2O.to.1layhid12 1.91340747 
CO2.to.1layhid12 -0.767167022 
H2.to.1layhid12 -1.429802488 
N2.to.1layhid12 0.493382476 
He.to.1layhid12 -0.614553451 

CH4.to.1layhid12 10.22475166 
Fe2O3.to.1layhid12 -0.208221947 

AC.to.1layhid12 2.403332424 
CNT.to.1layhid12 -2.463990346 

Mo2C.to.1layhid12 0.635552283 
CeO2.to.1layhid12 7.550417549 
La2O3.to.1layhid12 -0.061662534 
ZrO2.to.1layhid12 -1.355685822 
MgO.to.1layhid12 -0.380501721 

Al2O3.to.1layhid12 -0.257231873 
TiO2.to.1layhid12 1.036593812 
Co.to.1layhid12 6.398547347 
Ni.to.1layhid12 -2.719941661 
Cu.to.1layhid12 48.98322418 
Ru.to.1layhid12 0.953889168 
Pd.to.1layhid12 -3.219533462 
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Weight Value 
Ag.to.1layhid12 -0.095432774 
Ir.to.1layhid12 0.957691468 
Pt.to.1layhid12 1.007033206 
Au.to.1layhid12 -11.41871576 
Cr.to.1layhid12 -1.544594477 
Zn.to.1layhid12 0.063568328 
Na.to.1layhid12 -271.3182626 
K.to.1layhid12 0.558022494 

Mg.to.1layhid12 -1.058609542 
Ba.to.1layhid12 -1.510505097 
B.to.1layhid12 -0.141710503 
Al.to.1layhid12 -0.609778569 
Si.to.1layhid12 1.613599519 
Pb.to.1layhid12 -1.746493033 
S.to.1layhid12 -1.446950914 

Hg.to.1layhid12 -0.642469732 
Y.to.1layhid12 0.018842698 
Ti.to.1layhid12 -0.259640598 
Zr.to.1layhid12 -26.91141911 
La.to.1layhid12 62.02912896 
Ce.to.1layhid12 -0.769141145 
Fe.to.1layhid12 23.23357536 

Intercept.to.Conversion -1.94877885 
1layhid.1.to.Conversion -0.373794276 
1layhid.2.to.Conversion 0.414363729 
1layhid.3.to.Conversion 0.6800703 
1layhid.4.to.Conversion 1.980621469 
1layhid.5.to.Conversion 0.682968782 
1layhid.6.to.Conversion 0.59532575 
1layhid.7.to.Conversion -0.322688963 
1layhid.8.to.Conversion 1.61706785 
1layhid.9.to.Conversion -0.829333158 

1layhid.10.to.Conversion -0.939182325 
1layhid.11.to.Conversion -0.537103471 
1layhid.12.to.Conversion 0.789510664 

Source: (CAVALCANTI et al., 2019) 
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APPENDIX C – PYTHON CODE TO ESTIMATE KINETIC PARAMETERS 
 
######################################################### 
#              # 
#   Program: KINETIC PARAMETER ESTIMATION FOR WGSR      # 
#            USING scipy.optimize.curve_fit       # 
# Author: FÁBIO MACHADO CAVALCANTI     # 
# Location: GHENT UNIVERSITY, BELGIUM     # 
# CreationDate: 2020-04-06       # 
# Updated on 2021-01-12        # 
# Special code improvement from Leonardo Cavalcanti # 
#       (Oregon State University) # 
#              # 
######################################################### 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.integrate import odeint 
from scipy.optimize import curve_fit 
import pandas as pd 
from scipy import stats 
from pyswarm import pso 
import pdb   # pdb.set_trace() 
from time import process_time 
import time 
from numpy.random import seed 
import os 
import errno 
 
# creating new directory for the output files 
actual_path = os.getcwd() 
# print(actual_path) 
script_name = os.path.basename(__file__) #get only the name of the 
script file 
modelnumber = os.path.splitext(script_name)[0] #without extension 
timestr = time.strftime("%Y-%m-%d-%Hh%M_") 
 
# filename_std = actual_path + '/results_' + timestr + modelnumber + 
'/' + modelnumber 
filename_std = actual_path + '/results_' + modelnumber + '/' + 
modelnumber 
filename =  filename_std + '_output_regression.txt' 
 
if not os.path.exists(os.path.dirname(filename)): 
    try: 
        os.makedirs(os.path.dirname(filename)) 
    except OSError as exc: # Guard against race condition 
        if exc.errno != errno.EEXIST: 
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            raise 
 
with open(filename, 'w') as f: 
 
 start = process_time() 
 
 ######################################################### 
 #                                                       # 
 #                     USER INPUT                        # 
 #                                                       # 
 ######################################################### 
 
 # parameter initial guess 
 k0 = 1.e4 
 E = 1.e5 
 par0 = np.array([k0,E]) 
 NP = par0.shape[0] 
 
 NY = 1 
 
 
 # Select initial guess 
 # initial_guess = "user_defined" 
 initial_guess = "PSO" 
 
 # Select mode 
 mode = "regression" 
 # mode = "simulation" 
 
 
 ######################################################### 
 #                                                       # 
 #                 READ INPUT DATA                       # 
 #                                                       # 
 ######################################################### 
 
 # Import data file using the Brazilian decimal system 
 #Read the pandas dataframe 
 mydata = 
pd.read_csv('kinetic_data.csv',delimiter=";",decimal=",") 
 mydata['T'] = mydata['T'] + 273.15 
 
 #data_exp={} 
 
 #Select columns and convert the pandas dataframe into a NumPy 
array 
 label_exp = mydata['Exp'].to_numpy() 
 T_exp = mydata['T'].to_numpy() 
 FA0_exp = mydata['FA0'].to_numpy() 
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 #data_exp['FA0_exp'] = mydata['FA0'].to_numpy() 
 FB0_exp = mydata['FB0'].to_numpy() 
 FC0_exp = mydata['FC0'].to_numpy() 
 FD0_exp = mydata['FD0'].to_numpy() 
 FI0_exp = mydata['FI0'].to_numpy() 
 FA_exp = mydata['FA'].to_numpy() 
 w_exp = mydata['w'].to_numpy() 
 replicate_exp = mydata['Replicate'].to_numpy() 
 
 NE = len(mydata['T']) # number of experimental points 
 
 
 
 
 ######################################################### 
 #                                                       # 
 #                      DEFINE MODEL                     # 
 #                                                       # 
 ######################################################### 
 
 # define kinetic model 
 def kinetics(F,W,par,parC): 
 
  T,FA0,FB0,FC0,FD0,FI0 = parC # constant parameters 
  k0,E = par      # optimized parameters 
 
  Tref = 350.+273.15 
  R = 8.314 #J/mol.K 
  k = k0*np.exp(-E/R*(1/T-1/Tref)) 
  Keq = np.exp(4577.8/T-4.33) 
 
  PT = 1. 
  FA = F[0] 
  # FC = F[1] 
  # FB = (FB0+FC0)-FC 
  FD = (FD0+FA0)-FA 
  FB = (FA0+FB0+2*FD0)-FA-2*FD 
  FC = (FB0+FC0)-FB 
 
  if FA == 0.: 
   FA = 1.e-20 
  if FB == 0.: 
   FB = 1.e-20 
  if FC == 0.: 
   FC = 1.e-20 
  if FD == 0.: 
   FD = 1.e-20 
 
  FT = FA+FB+FC+FD+FI0 
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  PA = FA/FT*PT 
  PB = FB/FT*PT 
  PC = FC/FT*PT 
  PD = FD/FT*PT 
 
  if FA == 0. or FB == 0.: 
   beta = 1.e20 
  else: 
   beta = (PC*PD)/(PA*PB)*1/Keq  
 
  NUM = k*PA*PB*(1.-beta) 
  DEN = 1. 
  rate = NUM/DEN 
 
  dFAdW = -rate 
 
  return np.array([dFAdW]) 
 
 
 # simulate for curve_fit 
 def simulate(label_exp,k0,E): 
  par = np.array([k0,E]) 
  W = np.linspace(0,0.1,50) 
  FA_calc = np.zeros((NE)) 
  for i in range(NE): 
   F0 = np.array([FA0_exp[i]])                  # umol/min 
   parC = 
np.array([T_exp[i],FA0_exp[i],FB0_exp[i],FC0_exp[i],FD0_exp[i],FI0_e
xp[i]])  
   args = (par,parC) 
   F = odeint(kinetics,F0,W,args) 
   FA_calc[i] = F[-1,0] 
  F_calc = np.r_[FA_calc] 
  return F_calc 
 
 
 # simulate for general purposes 
 def simulate2(par,F0,parC): 
  W = np.linspace(0,0.1,50)         
  args = (par,parC) 
  F = odeint(kinetics,F0,W,args) 
  return F[-1,:] 
 
 
 # define objective 
 def objective(par): 
  obj = 0. 
  for i in range(NE): 
   F0 = np.array([FA0_exp[i]])     # umol/min 
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   parC = 
np.array([T_exp[i],FA0_exp[i],FB0_exp[i],FC0_exp[i],FD0_exp[i],FI0_e
xp[i]])  
   F = simulate2(par,F0,parC) 
   obj = obj + ((F[0]-FA_exp[i])/w_exp[i])**2 
  return obj 
 
 
 # PSO for getting a better initial estimative 
 if initial_guess == "PSO": 
  seed(222) 
  lb = np.array([0.,0.]) 
  ub = np.array([1.e7,1.e6]) 
  swarmsize= 100 
  maxiter= 100 
  par0, f0 = 
pso(objective,lb,ub,swarmsize=swarmsize,maxiter=maxiter,debug=True) 
  # par0, f0 = 
pso(objective,lb,ub,swarmsize=100,maxiter=100,debug=True) 
  for i in range(NP): 
   # print('par'+str(i+1)+': ' + str(par_opt[i]), '+/- ' + 
str(par_error[i])) 
   print("par{:<2d}: {:10.3E}".format(i+1,par0[i])) 
  print("f0   :  {:.2f}".format(f0)) 
  print("swarmsize: {:<6d}".format(swarmsize)) 
  print("maxiter: {:<6d}".format(maxiter)) 
  pdb.set_trace() 
 
 
 
 
 ######################################################### 
 #                                                       # 
 #              ESTIMATE MODEL PARAMETERS                # 
 #                       curve_fit                  # 
 #                                                       # 
 ######################################################### 
 
 if mode == "regression": 
 
  F_exp = np.r_[FA_exp] 
  weights = np.r_[np.sqrt(w_exp)] 
  bounds = ((0.,0.),(np.inf,np.inf)) 
  par_opt,pcov = 
curve_fit(simulate,label_exp,F_exp,p0=par0,sigma=weights,bounds=boun
ds) 
  # print("pcov") 
  # print(pcov,"\n") 
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  # calculate model with updated parameters 
  F_calc = np.zeros((NE,NY)) 
  for i in range(NE): 
   F0 = np.array([FA0_exp[i]])     # umol/min 
   parC = 
np.array([T_exp[i],FA0_exp[i],FB0_exp[i],FC0_exp[i],FD0_exp[i],FI0_e
xp[i]])  
   F_calc[i,:] = simulate2(par_opt,F0,parC) 
  #print(F_calc) 
 
  #print initial information 
  print('\nmode: ' + mode, file=f) 
  print('initial_guess: ' + initial_guess, file=f) 
  if initial_guess == "PSO": 
   print("swarmsize: {:<6d}".format(swarmsize),file=f) 
   print("maxiter: {:<6d}\n".format(maxiter),file=f) 
  for i in range(NP): 
   print("par0{:<2d}: {:10.3E}".format(i+1,par0[i]), file=f) 
 
  # parameter confidence interval 
  par_std = np.sqrt(np.diag(pcov)) # array with parameter stdev 
values 
  aux = np.linalg.inv(np.diag(par_std,0)) # inverse of diagonal 
matrix 
  pcor = aux.dot(pcov).dot(aux) 
  print("\npcor", file=f) 
  print(pcor,"\n", file=f) 
 
  par_error = np.zeros((NP)) 
  df = NY*NE-NP 
  alpha = 0.05  # significance level 
  t = stats.t.ppf(1.-alpha/2.,df) 
  for i in range(NP): 
   par_error[i] = t*par_std[i] 
 
  # optimized parameter values 
  for i in range(NP): 
   # print('par'+str(i+1)+': ' + str(par_opt[i]), '+/- ' + 
str(par_error[i])) 
   print("par{:<2d}: {:10.3E}  +/- 
{:10.3E}".format(i+1,par_opt[i],par_error[i]), file=f) 
 
  # R² - Coefficient of Determination 
  #print(np.c_[FA_exp,FC_exp]) 
  #print(np.array([np.mean(FA_exp),np.mean(FC_exp)])) 
  SSres = np.sum((F_calc - np.c_[FA_exp])**2) 
  SStotal = np.sum((np.c_[FA_exp]-
np.array([np.mean(FA_exp)]))**2) 
  R2 = 1 - SSres/SStotal 
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  Fobj = np.sum(((F_calc - np.c_[FA_exp])/np.c_[w_exp])**2) 
  print("\nR^2: {:.4f}".format(R2), file=f) 
  print("\nSSQ: {:.4f}".format(SSres), file=f) 
  print("Fobj: {:.4f}".format(Fobj), file=f) 
 
  # RMSD - Root Mean Square Deviation 
  RMSD = np.sqrt(SSres/(NE*NY)) 
  print("RMSD: {:.4f}".format(RMSD), file=f) 
 
  # F-test (ANOVA) 
  SSreg = np.sum((F_calc - np.array([np.mean(FA_exp)]))**2) 
  df_reg = NP - 1 
  df_res = NE*NY - NP 
  MSSreg = SSreg/df_reg 
  MSSres = SSres/df_res 
  Fvalue = MSSreg/MSSres 
  Ftab = stats.f.ppf(1.-alpha,df_reg,df_res) 
  print('\ndf_reg : ' + str(df_reg), file=f) 
  print('df_res : ' + str(df_res), file=f) 
  print("F_value: {:.2f}".format(Fvalue), file=f) 
  print("F_tab  : {:.2f}".format(Ftab), file=f) 
 
  # write outputs in a csv file 
  data2write = {'FAexp': FA_exp, 
       'FAcalc': F_calc[:,0],} 
  dataframe = 
pd.DataFrame(data2write,columns=['FAexp','FAcalc']) 
  # print(dataframe) 
  #mydata = 
pd.read_csv('dados_francielle.csv',delimiter=";",decimal=",") 
  filename2 = filename_std + '_output_predictions.csv'  
  dataframe.to_csv(filename2,sep=";",decimal=",",index=False) 
 
 
 elif mode == "simulation": 
 
  par_opt = par0 
 
  # calculate model with updated parameters 
  F_calc = np.zeros((NE,NY)) 
  for i in range(NE): 
   F0 = np.array([FA0_exp[i]])     # umol/min 
   parC = 
np.array([T_exp[i],FA0_exp[i],FB0_exp[i],FC0_exp[i],FD0_exp[i],FI0_e
xp[i]])  
   F_calc[i,:] = simulate2(par_opt,F0,parC) 
  #print(F_calc) 
 
  #print initial information 
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  print('\nmode:' + mode, file=f) 
  print('initial_guess: ' + initial_guess, file=f) 
  if initial_guess == "PSO": 
   print("swarmsize: {:<6d}".format(swarmsize),file=f) 
   print("maxiter: {:<6d}\n".format(maxiter),file=f) 
  for i in range(NP): 
   print("par0{:<2d}: {:10.3E}".format(i+1,par0[i]), file=f) 
 
  # R² - Coefficient of Determination 
  #print(np.c_[FA_exp,FC_exp]) 
  #print(np.array([np.mean(FA_exp),np.mean(FC_exp)])) 
  SSres = np.sum((F_calc - np.c_[FA_exp])**2) 
  SStotal = np.sum((np.c_[FA_exp]-
np.array([np.mean(FA_exp)]))**2) 
  R2 = 1 - SSres/SStotal 
  print("\nR^2: {:.4f}".format(R2), file=f) 
  print("\nSSQ: {:.4f}".format(SSres), file=f) 
 
  # RMSD - Root Mean Square Deviation 
  RMSD = np.sqrt(SSres/(NE*NY)) 
  print("RMSD: {:.4f}".format(RMSD), file=f) 
 
  # write outputs in a csv file 
  data2write = {'FAexp': FA_exp, 
       'FAcalc': F_calc[:,0],} 
  dataframe = 
pd.DataFrame(data2write,columns=['FAexp','FAcalc']) 
  # print(dataframe) 
  #mydata = 
pd.read_csv('dados_francielle.csv',delimiter=";",decimal=",") 
  filename2 = filename_std + '_output_predictions.csv' 
  dataframe.to_csv(filename2,sep=";",decimal=",",index=False) 
 
 
 ######################################################### 
 #                                                       # 
 #                     PARITY PLOTS                      # 
 #                                                       # 
 ######################################################### 
 
 fig = plt.figure(1,figsize=(12,10)) 
 plt.rcParams["axes.spines.right"] = False 
 plt.rcParams["axes.spines.top"] = False 
 plt.rcParams["axes.labelweight"] = "bold" 
 plt.rcParams.update({'font.size': 14}) 
 
 plt.subplot(2,2,1) 
 plt.plot(FA_exp,F_calc[:,0],'bo') 
 plt.plot([0, 4.5e2], [0, 4.5e2],'k--') 
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 plt.xlim([0, 4.5e2]) 
 plt.ylim([0, 4.5e2]) 
 plt.xticks([0,100,200,300,400]) 
 plt.yticks([0,100,200,300,400]) 
 plt.xlabel('experimental F$_{CO}$ ($\mu$mol/min)') 
 plt.ylabel('simulated F$_{CO}$ ($\mu$mol/min)') 
 
 
 ######################################################### 
 #                                                       # 
 #                      OTHER PLOTS                      # 
 #                 SENSITIVITY ANALYSIS                  # 
 #                     TEMPERATURE                       # 
 #                                                       # 
 ######################################################### 
 
 # varying Temperature 
 T_sa = np.arange(200.,500.+5.,5.) 
 T_sa += 273.15 
 NT_sa = T_sa.shape[0] 
 F_T_sa = np.zeros((NT_sa,NY)) 
 XCO_T_sa = np.zeros((NT_sa,1)) 
 
 VA0 = 4.93  # mL/min 
 VB0 = 12.325 
 VC0 = 0. 
 VD0 = 0. 
 VI0 = 25.99 
 
 # convert volumetric flow rate into molar flow rate 
 def par_T_sa(T,V): 
  F = (1.*V)/(82.05*T)*1e6 
  return F 
 
 # simulate varying the temperature  
 for i in range(NT_sa): 
  F0 = np.array([par_T_sa(T_sa[i],VA0)])  # umol/min  
  
  parC = 
np.array([T_sa[i],par_T_sa(T_sa[i],VA0),par_T_sa(T_sa[i],VB0), 
                
par_T_sa(T_sa[i],VC0),par_T_sa(T_sa[i],VD0),par_T_sa(T_sa[i],VI0)])  
  F_T_sa[i,:] = simulate2(par_opt,F0,parC) 
  XCO_T_sa[i,0] = (par_T_sa(T_sa[i],VA0)-
F_T_sa[i,0])/par_T_sa(T_sa[i],VA0)*100. 
 
 # print(T_sa) 
 # print(F_T_sa) 
 # print(XCO_T_sa) 
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 # read experimental data varying the temperature 
 mydata = 
pd.read_csv('results_T_sa_XCO.csv',delimiter=";",decimal=",") 
 T_sa_exp = mydata['T_sa_exp'].to_numpy() 
 XCO_T_sa_exp = mydata['XCO_T_sa_exp'].to_numpy() 
 error_T_sa_exp = mydata['error_T_sa_exp'].to_numpy() 
 
 plt.subplot(2,2,3) 
 plt.plot(T_sa-273.15, XCO_T_sa,'b-', linewidth=2) 
 plt.plot(T_sa_exp, XCO_T_sa_exp,'ko') 
 plt.errorbar(T_sa_exp, XCO_T_sa_exp, yerr=error_T_sa_exp, fmt=' 
', ecolor='k', elinewidth=1, capsize=4) 
 plt.xlabel('Temperature ($^o$C)') 
 plt.ylabel('CO Conversion (%)') 
 plt.xlim([175, 525]) 
 plt.ylim([-5, 100]) 
 # plt.legend(['mod', 'exp']) 
 #plt.show() 
 
 
 
 ######################################################### 
 #                                                       # 
 #                      OTHER PLOTS                      # 
 #                 SENSITIVITY ANALYSIS                  # 
 #                    SPACE TIME W/F                     # 
 #                                                       # 
 ######################################################### 
 
 # varying Space Time W/F 
 FT_sa = np.arange(600.,3600.+40.,40.) # umol/min 
 N_WF_sa = FT_sa.shape[0] 
 F_WF_sa = np.zeros((N_WF_sa,NY)) 
 XCO_WF_sa = np.zeros((N_WF_sa,1)) 
 
 FA0_sa = 0.1*FT_sa 
 FB0_sa = 0.25*FT_sa 
 FC0_sa = 0.*FT_sa 
 FD0_sa = 0.*FT_sa 
 FI0_sa = 0.65*FT_sa 
 
 T_list = [300.,350.,400.] 
 XCO_list = [] 
 T_list_str = [] 
 
 for T_WF in T_list: 
  T_list_str.append('T = ' + str(int(T_WF)) + '$^o$C') 
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  T_WF += 273.15 
  # F_WF_sa = np.zeros((N_WF_sa,NY)) 
  for i in range(N_WF_sa): 
   F0 = np.array([FA0_sa[i]]) 
   parC = 
np.array([T_WF,FA0_sa[i],FB0_sa[i],FC0_sa[i],FD0_sa[i],FI0_sa[i]])  
   F_WF_sa[i,:] = simulate2(par_opt,F0,parC) 
   XCO_WF_sa[i,0] = (FA0_sa[i]-F_WF_sa[i,0])/FA0_sa[i]*100. 
  XCO_aux = XCO_WF_sa.copy() # to avoid updating variables by 
the pointer 
  XCO_list.append(XCO_aux) 
 
 W_FA0 = 0.1/FA0_sa*60000 # kg.s/mol 
 
 
 # read experimental data varying the space time 
 mydata = 
pd.read_csv('results_WF_sa_XCO.csv',delimiter=";",decimal=",") 
 #Select columns and convert the pandas dataframe into a NumPy 
array 
 WF_300_exp = mydata['WF_300_exp'].to_numpy() 
 XCO_300_exp = mydata['XCO_300_exp'].to_numpy() 
 error_300 = mydata['error_300'].to_numpy() 
 WF_350_exp = mydata['WF_350_exp'].to_numpy() 
 XCO_350_exp = mydata['XCO_350_exp'].to_numpy() 
 error_350 = mydata['error_350'].to_numpy() 
 WF_400_exp = mydata['WF_400_exp'].to_numpy() 
 XCO_400_exp = mydata['XCO_400_exp'].to_numpy() 
 error_400 = mydata['error_400'].to_numpy() 
 
 
 plt.subplot(2,2,4) 
 colors_list = ['b','r','g'] 
 for i,XCO_WF_sa in enumerate(XCO_list): 
  plt.plot(W_FA0,XCO_WF_sa,linewidth=2,color=colors_list[i]) 
 plt.plot(WF_300_exp, XCO_300_exp,'bo') 
 plt.plot(WF_350_exp, XCO_350_exp,'ro') 
 plt.plot(WF_400_exp, XCO_400_exp,'go') 
 plt.errorbar(WF_300_exp, XCO_300_exp, yerr=error_300, fmt=' ', 
ecolor='b', elinewidth=1, capsize=4) 
 plt.errorbar(WF_350_exp, XCO_350_exp, yerr=error_350, fmt=' ', 
ecolor='r', elinewidth=1, capsize=4) 
 plt.errorbar(WF_400_exp, XCO_400_exp, yerr=error_400, fmt=' ', 
ecolor='g', elinewidth=1, capsize=4) 
 plt.xlabel('W/$F_{CO}$ (kg.s/mol)') 
 plt.ylabel('CO Conversion (%)') 
 plt.ylim([0, 100]) 
 # plt.legend(T_list_str,loc='upper left') 
 # plt.show() 
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 my_dpi = 144 
 filename = filename_std + '_CEJ.png' 
 plt.savefig(filename) 
 plt.show() 
 
 end = process_time() 
 print("\nelapsed time: {:.2f} seconds".format(end-start), 
file=f) 
 
 print('\nEND') 
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