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Resumo 

BEARZI, Lara Fadel. Computer-Aided Product Design for Cocoa Butter Alternatives. 2023. 

Dissertação (Mestrado em Engenharia Química) – Escola Politécnica da Universidade de São 

Paulo, São Paulo, 2023. 

 

A busca por substitutos à manteiga de cacau em produtos de chocolate é uma atual realidade, 

dados os riscos existentes à produção do cacau, seu preço instável, e a disponibilidade de 

outras matérias-primas mais baratas. Além disso, o mercado para as indústrias químicas vem 

se tornando cada vez mais competitivo, exigindo que as empresas foquem na satisfação do 

cliente, tanto em qualidade do produto quanto em tempo para lançamento. Para auxiliar no 

desenvolvimento de novos produtos, a metodologia Computer-Aided Product Design utiliza 

conceitos de Engenharia Reversa usando simulações computacionais e modelos de predição 

de propriedades físico-químicas. Visando proporcionar uma busca otimizada de substitutos à 

manteiga de cacau, o presente trabalho trata da criação de uma ferramenta de otimização em 

Python, acoplada a um modelo de predição do cálculo de Conteúdo de Gordura Sólida (CGS), 

cujo objetivo é encontrar uma mistura que possa vir a substituir a manteiga de cacau em 

produtos de chocolate. O CGS foi escolhido, pois quantifica uma propriedade fundamental em 

chocolates: sólido a temperatura ambiente, e líquido à temperatura corporal. As predições do 

CGS foram feitas pela solução de um problema termodinâmico de equilíbrio sólido-líquido. A 

etapa de Engenharia Reversa construída nesse trabalho, utilizou um Algoritmo Genético (AG), 

e para isso, foi definida uma função objetivo baseada no CGS das temperaturas de 5, 25, e 

35ºC. Dentro dos testes de óleos individuais e misturas binárias, foi feita uma análise de 

sensibilidade para otimizar os parâmetros quantitativos, como o tamanho da população, taxa 

de crossover e mutação. Para as misturas binárias, com tamanho de população de 100 

indivíduos, taxa de crossover de 90%, taxa de mutação de 5%, e tempo de simulação de 12 

horas, foi possível obter uma função objetivo 15% acima da obtida com óleos individuais, ou 

seja, foi possível encontrar uma solução mais bem adaptada para substituir a manteiga de 

cacau, o que demonstra que a metodologia pode vir a ser utilizada como guia em processos 

de desenvolvimento de novos produtos. Como trabalhos futuros recomenda-se unificar as 

ferramentas utilizadas na otimização, o que reduziria consideravelmente o tempo de 

simulação, realizar uma análise de sensibilidade dos parâmetros qualitativos do Algoritmo 

Genético, como os métodos de seleção e substituição, e buscar soluções formadas por 

misturas ternárias de óleos e gorduras. 

 

Palavras-chave: Computer-Aided Product Design, Chocolate, Algoritmo Genético, 

Otimização, Conteúdo de Gordura Sólida.  



 
 

Abstract 

 

BEARZI, Lara Fadel. Computer-Aided Product Design for Cocoa Butter Alternatives. 2023. 

Dissertação (Mestrado em Engenharia Química) – Escola Politécnica da Universidade de São 

Paulo, São Paulo, 2023. 

 

The search for cocoa butter substitutes in chocolate products is a current reality, given existing 

risks to cocoa production, its unstable prices, and the availability of cheaper raw material. 

Besides that, market is becoming more competitive for Chemical industries, demanding 

companies to focus on customer satisfaction, both in product quality and time-to-market. To 

fasten new product development, Computer-Aided Product Design methodology uses Reverse 

Engineering concepts, through computational simulations and property prediction models. 

Aiming at an optimized search for cocoa butter substitutes, the current work creates an 

optimization tool in Python, coupled with a pre-existing prediction model for Solid Fat Content 

(SFC) estimation, whose objective is to find a possible substitute for cocoa butter in chocolate 

products. SFC was chosen, because it quantifies a fundamental property in chocolates: solid 

at room temperature, and liquid at body temperature. SFC prediction was calculated by solving 

a thermodynamic solid-liquid equilibrium problem. The reverse engineering step built in this 

work used Genetic Algorithm (GA) and, thus, an objective function was defined based on SFC 

values for 5, 25, and 35ºC temperatures. Within individual and binary mixture tests, a sensitivity 

analysis was performed to optimize quantitative parameters, such as population size, 

crossover and mutation rates. For binary mixtures, population size of 100, crossover rate of 

90%, mutation rate of 5%, and simulation of 12 hours, provided results 15% better than the 

one obtained with single vegetable oil simulation, i.e., it was possible to find a better adapted 

solution to the current problem, which demonstrates that the methodology can be used as a 

guide in new product development processes. As future work, it is recommended a unification 

of the tools, which would decrease considerably simulation time, a sensitivity analysis on 

Genetic Algorithm’s qualitative parameters, such as selection and replacement methods, and 

the search for ternary mixtures of oil and fats, besides single and binary mixtures. 

 

Keywords: Computer-Aided Product Design, Chocolate, Genetic Algorithm, Optimization, Solid 

Fat Content. 
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1. Introduction 
 

1.1. Market Context 

 

According to market research done by Fortune Business Insights (2022) cocoa 

and chocolate global market size was valued at $47 billion in 2021 and was expected 

to reach $68 billion by 2029. They also see cocoa as an emerging healthy ingredient 

and a greater demand for high-quality cocoa derivatives. A greater demand for cocoa 

substitutes and equivalents is also seen, mainly driven by the increasing price of cocoa 

and the higher availability of its substitutes. Many industries are already offering cocoa 

butter equivalent blends. 

From historical data provided by the International Cocoa Organization, 2022, in 

Figure 1, we can see a significant oscillation of the cocoa beans’ prices throughout the 

years. 

 

Figure 1: Cocoa Beans Monthly Price Oscillation. Source: (INTERNATIONAL COCOA 
ORGANIZATION, 2022) 

 

In Brazil, there was an increasing cocoa production until 1989, when witch’s 

broom disease (WBD) outbroke (DIAS, 2022). In Figure 2 we see that between the 

60’s and the 80’s, Brazil had an increasing production and exported a part of it. After 

the start of this disease, production decreased and has not yet come back to the same 

levels as before. According to Teixeira, Thomazella, and Pereira (2015), WBD is one 

of the most severe problems that could affect the cocoa crop and can result in a 

production loss up to 90%. Even though this disease has not yet reached any country 
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in Africa, which is the biggest cocoa producer, WBD represents a real threat to the 

world chocolate industry (TEIXEIRA; THOMAZELLA; PEREIRA, 2015). 

 

 

With an increasing cocoa demand, a reduction in cocoa production in some 

countries, an oscillating price, and the fact that other vegetable oils and fats are 

cheaper (JAHURUL et al., 2013), the use of alternative oils and fats to replace cocoa 

butter in chocolate formulations, which is already a current reality, is becoming even 

more desirable. 

There are different kinds of cocoa butter alternatives: Cocoa Butter Equivalents 

(CBEs), Cocoa Butter Replacer (CBRs) and Cocoa Butter Substitutes (CBSs) (LIPP; 

ANKLAM, 1998). Main differences and some examples of each of them are shown in 

Table 1. 

 

 

 

 

Figure 2: Cocoa production, importation, and exportation in Brazil throughout the years. 
Source: Dias, 2022 
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Table 1: Summary for Cocoa Butter Alternatives 

 

Cocoa Butter 

Equivalent (CBE) 

Cocoa Butter Replacer 

(CBR) 

Cocoa Butter 

Substitute (CBS) 

Type non-lauric vegetable fat non-lauric vegetable fat lauric fat 

Properties 

Similar physical and 

chemical properties to 

CB 

Similar fatty acid 

distribution, different 

TAG composition 

Some physical 

similarities, very different 

chemically 

Mixing 
Can be mixed with CB 

in any amount 

Partially compatible to 

CB 

Suitable for 100% 

substitution only 

Main Fatty 

Acids 

Palmitic, Stearic, and 

Oleic acids 

Elaidic, Stearic, 

Palmitic, Linoleic acids 
Lauric, Myristic Acid 

Main TAGs POP, POS, SOS PEE, SEE LLL, LLM, LMM 

Examples  

Palm oil, Illipé Butter, 

Shea Butter, Kokum 

Butter, Sal Fat 

Soya oil, Rape Seed oil, 

Cotton oil, Ground Nut 

oil, Palm olein 

Coconut oil, Palm Kernel 

Oil 

  

Sources: (LIPP; ANKLAM, 1998) (BUDIANTO; KUSMARDINI, 2021).  

L: Lauric acid (C12:0), M: Myristic acid (C14:0), P: palmitic acid (C16:0), S: Stearic acid 

(C18:0), O: Oleic acid (C18:1), E: Elaidic acid (C18:1 trans-9), L: Linoleic acid (C18:2) 

 

 

The need to develop innovative products is spread over several industries 

besides the food and chocolate industry. Nowadays, companies are facing increased 

market competition, mainly because of globalization and the spread of information. 

Smith and Ierapepritou, (2010), made a study to evaluate the trends in chemical 

industries regarding product development. It was discovered that global 

competitiveness and demand for product variety were the main topics that affected 

new product strategies for these companies, as stated in Figure 3. Thus, aiming at a 

good performance, companies ought to seek competitive advantage against their 

competitors. 
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Figure 3: Trends affecting new product development strategies. Source: (SMITH; 
IERAPEPRITOU, 2010)  

This context requires that companies shorten their time-to-market for chemical 

products to keep up with the new tendencies that emerge and consider more consumer 

acceptance in the product development process (ARRIETA-ESCOBAR et al, 2019a; 

ZHANG et al., 2020). However, there is no point in launching a new product fast if it 

won't sell as expected. According to Yang et al. (2003), the expectations from 

consumers are more diverse and rapidly changing, which results in the reduction of 

the product's life cycle (SEIDER et al., 2009). According to Terzi et al. (2010), 

companies need to not only reduce time spent in product development and its costs, 

but also improve the final quality of the product. 

One strategy that demonstrates the importance of customer's acceptance is 

Mass Customization, which is a strategy focused on producing personalized products 

and services (DAVIS, 1989; PINE II; VICTOR; BOYNTON, 1993). Some studies have 

shown that Mass Customization is an important strategy regarding companies’ 

competitive advantage and have shown successful case studies in different sectors, 

such as the food industry and electronics (FOGLIATTO; DA SILVEIRA; BORENSTEIN, 

2012). 

Market research within research and development employees working in 

different chemical industries in Brazil showed that the usual time to launch a new 
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product is around 3 years (verbal information)1, proving that long time-to-market is still 

a reality in industries nowadays. One issue, that emerged mostly after the pandemic, 

is shortage of raw material. This means that the company must quickly substitute a 

material for another, due to unavailability of the original one. Another necessity, mainly 

in the food industry, is the adaptation of products that are trend in other countries, 

which results in ingredient substitution, according to regional availability and market 

necessity. 

 

1.2. Product Design 

 

According to Hill (2009), chemical product development is normally done by 

scientific hypothesis, trial-and-error, and, sometimes, can be accelerated by methods 

such as high-throughput experimentation (HTE) or experimental design (CONTE; 

GANI; NG, 2011). While in the HTE approach many experiments are performed in 

parallel in small quantities, the experimental design relies on statistical analysis to 

reduce the number of experiments. In both cases, there is a reduction in the total 

amount of materials required to perform the experiments.  

The above-mentioned techniques result in an adequate product, however, since 

it is not possible to test all alternatives, a better product was probably missed (ZHANG 

et al., 2018). Also, these traditional methods are often costly and take a long time to 

be performed. (VENKATASUBRAMANIAN; CHAN; CARUTHERS, 1994). 

Another aspect is that, with these approaches being highly dependent on 

previous knowledge, makes it even more complex to search for optimal properties 

without systematic selection tools (CHURI; ACHENIE, 1996). 

Given the resourceful and prolonged current product development, opposed to 

the fast-changing market, a more robust and accurate framework for Product 

Development must be adopted to guarantee the companies' success (COSTA; 

MOGGRIDGE; SARAIVA, 2006). In this context, arises Product Design, a systematic 

framework to minimize experiments and launch new products faster and more 

efficiently (COSTA; MOGGRIDGE; SARAIVA, 2006; HILL, 2009). It also represents a 

shift from focus on purity to performance (CONTE et al., 2012). 

 
1 Interviews performed by Beatriz Mazzini and Lara Bearzi with R&D professionals from different private companies. 
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According to the framework developed by Moggridge and Cussler (2000) the 

starting point of the Chemical Product Design is the identification of the customer’s 

needs, then product ideas are generated, with the most promising ones being selected 

for the development of a process for manufacturing it. Most of the different proposed 

Chemical Product Design Frameworks are market-pull (COSTA; MOGGRIDGE; 

SARAIVA, 2006), which means that the products are developed to meet an already 

existing market demand. 

The customers' needs for a specific product are qualitative and subjective; and 

ought to be modeled by quantitative parameters, the performance indices, which 

depend on the product’s composition, structure and usage conditions (COSTA; 

MOGGRIDGE; SARAIVA, 2006). 

According to Terzi et al. (2010), an increased focus on product design is 

essential for the success of the current industry. Previous investments on just in time, 

quality management and maintenance aimed at improving cost, quality, and time to 

market, are not enough anymore for a company to succeed. Nowadays, the focus must 

be on innovation to guarantee customer satisfaction. Figure 4 shows this shift of 

importance from the Manufacturing to Design and End of Life phases (TERZI et al., 

2010). 

The Product Design concept has been growing over the past few years and is 

even considered by some authors to be a possible third paradigm of Chemical 

Engineering, after Unit Operations, which was developed in the 1920s and 1930s, and 

Transport Phenomena, developed in the late 1950s (HILL, 2009). 

 

 

Figure 4: Added value by lifecycle stage comparison between past and future trends 

in companies. Source: (TERZI et al., 2010) 
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1.3. Computer-Aided Product Design 

 

 Computer-Aided Product Design, also referred to as CAPD or CAMD 

(Computer-aided molecular design), is the Product Design methodology assisted by 

computational tools. According to Harper et al. (1999) , a CAMD main goal is to find 

compounds that match previously defined properties. Harper and Gani (2000) defined 

the CAMD methodology in a three-step procedure: problem definition (pre-design 

step), molecules or product search (design step) and results analysis (post-design 

step). In the first step, it is important to identify the problem, define the compounds 

which will take part in the search and the desired properties and properties’ constraints. 

In the second step, the CAMD design, possible molecules are generated and evaluated 

based on property constraints. Some approaches here can be taken to avoid 

combinatorial explosion, such as the multi-level approach or an evolutionary algorithm. 

The last step, post-design, is used to analyze results with more robust property 

predictions methods or experiments.  

Figure 5 shows a 5-step framework for Computer-Aided Product Design. It starts 

with defining customers’ needs, which may involve market research; then, this 

qualitative information is translated into quantitative properties and constraints. 

Depending on the case study, a database containing the property’s values for different 

substances could be enough. For more complex properties or more innovative 

materials, property prediction models are necessary and, if mixtures are being 

considered, mixing models should also be included. The CAPD step is the optimization 

one and, according to Harper et al. (1999) can be classified as a database search, 

Generate and Test Method, or Mathematical Programming and Genetic Algorithm 

Method, which will be further explained on the Literature Review Section. The last step 

is the Validation, which may include experiments or more rigorous property 

calculations. 
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Figure 5: Computer-Aided Product Design Generic Framework 

 

2. Objectives 
 

Based on the previous discussed need to improve search methods for 

innovative products, the general objective of this work is to develop a computational 

tool to aid the design of fat-based products. With this goal, the following specific 

objectives can be outlined: 

 

▪ To model the problem of cocoa butter replacers design with the 

conceptual methodologies of chemical product design. 

▪ To develop, implement and test a search method based on evolutionary 

methods.  

▪ To integrate the search method with the computational tools previously 

developed for solid fat content prediction. 

▪ To apply the methodology to identify optimal mixtures of fats and oils able 

to replace cocoa butter.  
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3. Literature Review 
 

3.1. Product Design 

 

3.1.1. General Formulation 

 

According to Austin; Sahinidis; Trahan (2016), chemical product development 

is based on trial-and-error, limited by the number of chemicals, time and financial 

resources. The set of possible solutions (molecules/mixtures) – the “design space”— 

is too large to allow an exhaustive test and an approve/disapprove approach. Also, 

aiming at a sustainable growth, product development must balance expenditure of 

resources, environmental impact, product performance and cost (GANI, 2004). 

Product Design arises in this context, to speed up new product launches, bring a 

customer-centric methodology and propose a more sustainable product development 

process. 

In Chemical Product Design, the desired behavior of the products is known, and 

the goal is to identify a composition of the final product that matches such behavior. 

(GANI, 2004). After the product search and validation, there is a next step of finding 

out if it’s possible to manufacture it in a profitable manner with positive environmental 

impact (GANI, 2004). Moggridge and Cussler (2001) suggested a four-step product 

design process: needs definition, generation of ideas, selection of best ideas and 

product manufacturing. According to Gani (2004) there are two possible types of 

chemical product design problems: molecular and mixture design, and the applicability 

of the solution is highly dependent on reliable target property models (GANI, 2004). 

Product Design has been differently classified among researchers in the 

literature. Ng, Gani and Dam-Johansen, (2007)  divided Product Design approaches 

into three types: trial-and-error experiments approach, where experiments are planned 

based on previous knowledge; model-based approach, where mathematical models 

are used for properties estimation; and integrated experiment-modeling approach. 

According to Conte, Gani, and Ng (2011), the integrated approach is the best one, as 

it requires less time and resources when compared to approach 1, and leads to more 

accurate outputs, when compared to approach 2. 

Zhang et al. (2018)  listed five different Product Design approaches: experiment 

based, database search, heuristic-rule based, model-based computer-aided, and 

integrated model-based computer-aided techniques combined with experiments. 
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According to Zhang et al (2018), all methods can have a good product as output, 

however, it is not feasible to test all alternatives, and a better product might have been 

missed. 

 

3.1.2. Experiment-guided product design 

 

Being highly dependent on experiments, strategies as to reduce the number of 

experiments have emerged in the Product Design field. One of them is the 

Experimental Design. As stated by Montgomery (2012), statistical design of 

experiments is the process of planning experiments and have reliable conclusions 

using statistical methods. Experimental Design has three principles: randomization, 

replication, and blocking. 

Factorial design is one Experimental Design strategy, in which all possible 

combinations of the levels of the variables/factors and the individual contribution of 

each of them to the response are analyzed (DEAN; VOSS, 1999). Factors vary 

together, which saves time and resources (MONTGOMERY, 2012). Montgomery 

shows an example of experimental design applied to a robust product design regarding 

choice of battery material that would result in a long life, in a wide range of different 

temperatures. This is a two-factor factorial experiment, in which observations are 

selected at random, and the Analysis of Variance method, also known as ANOVA, can 

be used to interpret the results (MONTGOMERY, 2012) 

The response surface methodology (RSM) can also be used, in which the 

response of interest is represented graphically (MONTGOMERY, 2012). Several 

studies used this approach. Particularly in the oils and fats area, studies using RSM 

can be found in the works of Ahn et al. (2008), Santos et al. (2014), Vitolo; Ract; 

Guebara (2017), Sivakanthan; Jayasooriya; and Madhujith (2019) and Boroujeni et al. 

(2020). 
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3.2. Search Methods 

 

3.2.1. Introduction 

 

Optimization methods are vastly used in the Chemical Engineering field to 

improve product quality, and reduce costs and environmental impact (GUT, 2021). The 

optimization process normally needs an objective function, which indicates the quality 

of the results, and process and product constraints applied to the search space. There 

are different optimization methods, and classifications.  

Mathematical programming is a systematic approach used for optimizing an 

objective function, considering a set of constraints (HUANG; LAI; CHENG, 2009). A 

generic mathematical programming problem can be stated as: (MASHWANI; HAIDER; 

BELHAOUARI, 2021) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = 𝑓1(𝑥),  𝑓2(𝑥), … , 𝑓𝑚(𝑥), 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2, … , 𝑝 

ℎ𝑖(𝑥) = 0, 𝑗 = 1, 2, … , 𝑞 

𝑥𝑙
𝑖 ≤  𝑥𝑖 ≤  𝑥𝑢

𝑖 , 𝑖 = 1, 2, … 𝑁 

 

 

Where F(x) is the function with m objectives, g are the inequality constraints, h 

are the equality constraints, and 𝑥𝑙
𝑖 ≤  𝑥𝑖 ≤  𝑥𝑢

𝑖  are constraints over x.  

Mathematical programming problems are usually deterministic, in which the 

same starting point leads to the same solution. Linear programming (LP) involves 

solutions for problems with linear and continuous objective function and restrictions. 

Linear problems are convex, which means that the optimal solution is always the global 

one. Simplex is an example of methodology to solve LP problems. Non-linear 

programming (NLP) includes non-linear equations, which result in non-convexities, i.e., 

multiple local minimum solutions. Some examples of solution methods are successive 

linear programming (SLP), sequential quadratic programming (SQP), and generalized 

reduced gradient (GRG). Discrete optimization includes variables assuming only 

specific values, different from continuous restrictions. Binary variables are one 

common restriction, in which the result can only be yes/no (1/0). Mixed integer linear 

programming (MILP), Mixed integer non-linear programming (MINLP) and Integer 
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programming (IP) are examples of discrete optimization problems. Examples of 

methods to solve these equations are Branch and Bound, and Decomposition based. 

Decomposition-based is a very common solution approach for computer-aided 

chemical product design, in which the number of feasible mixtures decreases in each 

level (CONTE; GANI; NG, 2011). It divides the problem into smaller subproblems, 

which can be: (KARUNANITHI; ACHENIE; GANI, 2005) 

1. Generation of feasible molecular structures 

2. Evaluation of pure component properties constraints 

3. Evaluation of mixture properties constraints 

4. Evaluation of material miscibility among each other 

5. Evaluation of process model constraints (if applicable) 

There are numerous examples of mathematical programming and deterministic 

optimization methods applied to computer-aided product design. Some few examples 

were compiled and are listed in Table 2. 

 

 

Table 2: Mathematical Programming Methods Applied to Chemical Product Design 

 

 

Case Study Problem 

Formulation 

Solution Approach References 

Paint Formulation and Insect 

Repellent Lotion 

MINLP Decomposition-based (CONTE; GANI; NG, 

2011) 

Gasoline and Lubricant 

Blends 

MINLP Decomposition-based (YUNUS et al., 2014) 

Solvent Blend MINLP Decomposition-based (CIGNITTI; ZHANG; 

GANI, 2015) 

Gasoline and Diesel Blends MINLP Decomposition-based 

and two-step solution 

(KALAKUL et al., 

2018) 

Gasoline and Jet-Fuel Blends MINLP Two-steps solution (ZHANG et al., 2018) 

Cosmetics Design MILP CPLEX  (ARRIETA-ESCOBAR 

et al., 2019) 
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Complexity increases with non-linearity and the presence of discrete variables, 

which makes it harder to reach global optimum. Normally, the real-world objective 

functions indeed are non-linear, non-continuous, multidimensional, which increases 

complexity and computational cost (MASHWANI; HAIDER; BELHAOUARI, 2021).  

As an alternative to exact methods with increasing computational costs, 

heuristic techniques have become more popular, resulting in reasonably good local 

optimal solution (HUANG; LAI; CHENG, 2009). Heuristics are procedures for solving 

complex combinatorial optimization problems using intuitive approaches, which 

requires a new solution for each problem (ÓLAFSSON, 2006). Metaheuristics were 

also developed to deal with complex optimization problems, but they provide a more 

generic approach when compared to heuristics and require less work than developing 

a specialized heuristic for each application (ÓLAFSSON, 2006). Most of the 

Metaheuristic algorithms are associated with behaviors found in nature, such as the 

evolution process (genetic algorithm), or the self-organization of ant colonies (ant 

colony optimization) (BELSLEY, 2009). Metaheuristic algorithms can be classified into 

single solution and population based. Single solution use candidate solution and 

improve it by using local search, which can result in local optima solutions (KATOCH; 

CHAUHAN; KUMAR, 2021). Examples of common single solutions are simulated 

annealing and tabu search. Population-based, on the other hand, use multiple 

candidate solution in the search process. Some examples being genetic algorithm and 

ant colony optimization.  

In stochastic optimization, random variables are usually associated with the 

search process: the same starting point does not necessarily result in the same output. 

Heuristic and metaheuristic have some examples of stochastic methods, that obtain 

acceptable solutions easily and quickly, but not necessarily optimal (LIN, 1975; 

ZANAKIS; EVANS, 1981).  

Meta-Heuristic methods are also seen in computer aided product design in the 

chemical engineering field, although less frequently than deterministic methods, as 

listed in Table 3. 
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Table 3: Some meta-Heuristic Optimization Methods Applied to Chemical Product Design 

 

 

 

 

3.2.2. Genetic Algorithm 

 

3.2.2.1. Introduction 

 

Genetic Algorithms are based on Darwinian models of natural selection and 

evolution, in which a new population is generated iteratively through biological-inspired 

operators, passing on the fittest characteristics (VENKATASUBRAMANIAN; CHAN; 

CARUTHERS, 1994). The main terminologies used in this methodology are described 

in Table 4.  

 

 

 

 

 

 

 

 

Case Study Solution Approach References 

Polymer Design Genetic Algorithm Venkatasubramanian, 

Chan, Caruthers (1994) 

Refrigerant and Solvent Design Simulated Annealing Ourique and Telles (1998) 

Molybdenum Catalyst Tabu search Lin et al. (2005)  

Blanked Wash Mixture, Chlorinated 

Paraffins, Solvents 

Genetic Algorithm Heintz et al. (2014) 

Cosmetics Design Efficient Ant Colony 

Algorithm (EACO)  

 Gebreslassie and Diwekar 

(2015) 
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Table 4: Genetic Algorithm Main Concepts and Terminologies. Adapted from (ALHIJAWI; 
AWAJAN, 2023) 

 

 

Each generation has a certain number of chromosomes that represent possible 

solutions, and that are composed of different genes/alleles (ALHIJAWI; AWAJAN, 

2023).  Each individual in the population has a fitness score attributed to it, that 

represents how close they are to a certain solution (KOZENY, 2015), previously 

defined according to the problem the genetic algorithm is trying to solve.  

 In Figure 6, there is a generic framework for Genetic Algorithm. First, we have 

the random initial population, which is one of the stochastic step in this method. Then, 

there’s an iteration involving a fitness score and genetic operators, until a certain 

termination criterion is reached. 

Concept Definition 

Population/Generation List of possible solutions, composed by several individuals. 

Individual 
One possible solution, also named chromosome. It represents a single 

solution to the problem.  

Initialization 
First generated population in the GA algorithm, usually chosen at 

random. 

Evaluation 

Every individual is evaluated using an objective function that will 

attribute to the individual a performance (fitness). This fitness will rank 

the individual in the population. 

Selection 

This step selects the individuals that will compose the parents pool and 

generate offsprings, by going through genetic operators (crossover and 

mutation). 

Crossover 
Recombination process involving two individuals, responsible for 

generating offsprings. 

Mutation Random modification of an individual’s part. 

Replacement 
Process of substituting the previous population for a new one, including 

the offsprings generated by genetic operators. 

Stop Criteria Criteria for the algorithm to stop. 
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 Evolutionary algorithms (EA), including the genetic algorithm, have variable 

parameters to be chosen upon when building the optimization solution. For example, 

the main components of an EA are the genetic operators, which includes selection and 

variation operators (EIBEN; SMIT, 2011), and there are different methods to perform 

these modifications. Thus, the choice of these parameters is very important to 

guarantee a good performance of the algorithm.  

Algorithm design is the parameter choices needed to specify an algorithm and 

solve a specific problem. Within algorithm design, there is parameter tuning, which is 

a methodology to study how parameters affect final performance and find specific ones 

that optimize algorithm performance (EIBEN; SMIT, 2011). 

Eiben et al. (2011) divides the possible parameters for EA into qualitative and 

quantitative, and within each qualitative choice, more quantitative parameters can 

emerge, which are called sub-parameters. Also, qualitative parameters define the main 

structure of the algorithm, and different quantitative values create instances of the 

algorithm. 

The generic algorithm has two main downsides. The first is that the optimal 

solution is not guaranteed, as it is for other stochastic methods. The second is that 

there are many variable parameters in the GA, quantitative and qualitative, that have 

a big impact on the optimization performance. 

Depending on the qualitative and quantitative parameters chosen to run the 

algorithm, one can encounter premature convergence. Convergence in GA means that 

there’s a reduction in diversity in population’s genetic material, which reduces the 

number of possible distinct offspring and reduces the potential search space of 

recombination (BAKER, 1989). 

Figure 6: Generic Genetic Algorithm Framework 
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3.2.2.2. Qualitative Parameters 

 

There are three main types of qualitative parameters in genetic algorithm: 

selection and variation methods, and termination criteria. 

In each iteration of the GA, genetic operators process the previous population 

by replacing it by a new one (KATOCH; CHAUHAN; KUMAR, 2021), through 

crossover, mutation, and selection operations (KOZENY, 2015). In the selection step, 

individuals are selected based on its fitness value; in the crossover step, a random part 

of the chromosome is changed between another one to create off-springs; and in the 

mutation step, a random part of the chromosome will be changed (KATOCH; 

CHAUHAN; KUMAR, 2021). This process is repeated until the termination criteria is 

reached. 

The selection step, also known as reproduction operator, determines if an 

individual will go through the reproduction process or not (KATOCH; CHAUHAN; 

KUMAR, 2021). Selection processes can be divided into fitness proportionate and 

ordinal selection (BURKE; KENDALL, 2005). Examples of fitness proportionate 

selection are roulette-wheel selection, stochastic universal selection, and elitist 

selection. Examples of ordinal selection are tournament and truncation selection. 

These two types are explained in Table 5. 
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Table 5: Different Selection Techniques for Genetic Algorithms. Adapted from (KATOCH; 
CHAUHAN; KUMAR, 2021)  

Method Description Pros & Cons 

Roulette-wheel 

(ALHIJAWI; AWAJAN, 

2023) 

A selection probability is calculated for each 

individual, proportional to its objective function, then 

individuals with highest probability are selected as 

parents  

Individuals with lower 

performance are less probable to 

be selected. 

Risk of premature convergence 

to a local optimum (JEBARI; 

MADIAFI, 2013)  

Stochastic Universal 

(ALHIJAWI; AWAJAN, 

2023) 

Population is ordered according to performance. A 

single random number is selected (P1), and the 

parents are selected starting with P1 and spaced by 

1/M, where M is the number of parents to be 

selected. 

Reduced risk of premature 

convergence (JEBARI; MADIAFI, 

2013) 

Elitist 
The first M individuals with best performance are 

selected. (ALHIJAWI; AWAJAN, 2023)  

Best chromosomes are kept in 

the population 

Tournament  

S individuals are randomly chosen from the 

population, and the fittest one wins the tournament. 

This tournament is repeated M times to select M 

parents (ALHIJAWI; AWAJAN, 2023) 

Loss of diversity when 

tournament size is large 

(KATOCH; CHAUHAN; KUMAR, 

2021) 

Truncation 

The X chromosomes with highest fitness value are 

chosen for reproduction, and are reproduced 1/X 

times (HUANG; LAI; CHENG, 2009) 

Simple, more used in very large 

populations (JEBARI; MADIAFI, 

2013) 

 

 

Crossing-over is the exchange of alleles between two different individuals 

(HOLLAND, 1992). One generic crossover process proceeds in three steps 

(HOLLAND, 1992): 

1. Two individuals A and B are selected at random from the population. 

2. A number x is selected at random. 

3. Two new structures (offsprings) derive from A and B, by exchanging the 

elements to the right of position x. 



 

19 
 

By varying x or the number of xs, there are different possible crossover 

techniques. In the single point crossover, there’s only one crossover point for the allele 

swap; in the two-point or k-point crossover, on the other hand, two or more random 

crossover points are selected to perform the segments swapping (KATOCH; 

CHAUHAN; KUMAR, 2021). Crossover does not introduce new alleles to the 

population, it creates new combinations of existing alleles (BAKER, 1989). 

Another genetic operator is mutation. In the mutation, a random segment of the 

chromosome is replaced or modified to generate a new structure; normally, it is 

associated with a low probability of happening (HOLLAND, 1992). Whereas the main 

role of crossover is to generate new structures, mutation ensures that no gene is 

permanently gone from the population and avoid local optima (HOLLAND, 1992). 

After performing the genetic operators and generating the new offsprings, there 

are different ways to replace the new generation. Some examples are listed in Table 

6. 

 

Table 6: Different Replacement Techniques, with methodology, pros and cons (ALHIJAWI; 
AWAJAN, 2023; BURKE; KENDALL, 2005) 

Method Description Pros & Cons 

Delete-All 

Current generation (i.e. parents) are 

replaced by the new offsprings 

generated 

Children may improve population fitness; no new 

parameters are added to the optimization process. 

Parents with good fitness value are deleted from the 

population 

Steady State 

N individuals from the previous 

population are deleted and replaced by 

N new ones 

Two new parameters are added to the optimization: N 

value and how to choose the parents to be deleted 

(the best ones, the worst ones or at random) 

Elitism 
Selects the fittest individuals from the 

parents and the new offspring 

Parents with good fitness can be maintained in the 

next generation 

Delete n-last 

Worst n individuals of the current 

population are replaced by n 

individuals from the new offspring 

group. 

Parents with good fitness are maintained in the next 

generation 
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To end the genetic algorithm, a termination criterion also must be chosen. 

Termination criteria can be based on number of iterations (generations) or a minimum 

value for the objective function. 

 

3.2.2.3. Quantitative Parameters 

 

Regardless of qualitative parameters chosen, there are 3 main quantitative 

values to be chosen: population size, mutation rate, and crossover rate. Population 

size is the number of individuals that compose each generation, that will have its fitness 

function calculated and will go through genetic operators. Mutation and crossover rate 

are probability operators that define if individuals will go through those processes. 

Other quantitative sub-parameters can be necessary depending on qualitative 

parameters’ choice. For example, elitism selection requires the number of individuals 

that will be chosen for reproduction; and termination criteria depends on the number of 

iterations or the minimum objective function value, which adds another parameter 

necessity. All these parameters must be chosen for each problem. 

  

 

3.2.3. Computer-Aided Product Design 

 

3.2.3.1. Concept 

 

Computer-Aided Product Design (CAPD) is one of the ten technologies 

associated with the Industry 4.0 concept (DALENOGARE et al., 2018) and it is 

essentially the Product Design assisted by computational tools. It is the reverse 

problem of property prediction, meaning that given a set of previously specified 

properties, the CAPD uses optimization-based tools to find the molecules or mixtures 

that achieve these properties (GANI, 2004). CAPD requires target properties that 

depend on the function of the designed material, and on the available property 

prediction methods (HARPER; GANI, 2000). Property prediction methods are 

extremely important for CAPD methods as they ensure that product development is 

not strictly dependent on experimental data (CIGNITTI; ZHANG; GANI, 2015).  
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The CAPD method can be divided into computer-aided molecular design 

(CAMD) or computer-aided mixture/blend design (CAMbD).  

In the CAMD, a molecule needs to be found, given a set of building blocks and 

a target property. According to Gani (2004), the main steps of a CAMD are: generate 

feasible structures, estimate desired properties, and choose those that satisfy 

properties constraints. There are different methods to solve this type of problem, such 

as the generate and test approach, mathematical programming methods, or hybrid 

methods (GANI, 2004).  

In the generate and test approach, one way to avoid combinatorial explosion is 

to use the multilevel methodology, developed by (HARPER et al., 1999). This approach 

consists of four levels, and, in each of them, there is a generation and screening step. 

The results from each level are used as input for the next one, and the most complex 

steps are performed at the higher levels, where the candidates are already the most 

promising ones. Levels 1 and 2 use macroscopic representation of molecules, while 

levels 3 and 4 employ microscopic representations. Macroscopic representation of 

molecules is composed of first and second order group building blocks, and 

microscopic representation includes the atomic representation of the molecules, in 

level 3, and a three-dimensional representation, in level 4.   

Mathematical programming techniques solve the product design problems with 

numerical solvers, modeling each problem as MILP or MINLP models.  

Hybrid techniques integrate the two previous methods, by using them in the 

region where they perform best (GANI et al., 2016).  

In the CAMbD, the potential molecular structures are known, but the identity and 

the fraction of each one in the final mixture are unknown. Some application examples 

on computer-aided mixture/blend design are solvent mixture, polymer formulations, oil 

blend, pesticides and paint formulations (GANI, 2004). One challenge of the mixture 

design, according to Gani (2004), is the need for appropriate property prediction 

models for mixtures, given that most formulation design problems involve non-ideal 

mixtures and its property models have not been developed yet, or require complex 

implementations in a CAMbD framework. 
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3.2.3.2. Property Prediction Methods 

 

Property prediction methods and models are extremely important for the 

success of a computer-aided product design. According to Gani and O’Connell (2001), 

these methods have three different roles in chemical product design: service role, 

where property values are provided; service plus advice role, where, besides the 

property values, they are used in evaluating the feasibility of the design; and integration 

role, where in addition to advice and service roles, the property methods contribute to 

the solution of the problem. 

One possible classification of properties, according to Kontogeordis and Gani 

(2004), is between primary (single value properties, calculated from molecular 

structure information only, such as critical temperature), secondary (need the 

molecular structure information, and other properties to be calculated, such as entropy 

of fusion, calculated using the melting temperature and melting enthalpy) and 

functional (properties dependent on intensive variables, such as temperature and 

pressure, besides the molecular structural information. One example of such property 

is the viscosity, which depend on the temperature). Primary properties are calculated 

using group contribution methods; secondary properties are functions of primary 

properties; and functional properties are functions of primary properties, temperature 

and pressure (ZHANG et al., 2018). 

Property prediction methods, on the other hand, can be classified as theoretical 

(e.g. Molecular Modeling) and semi-empirical and empirical (correlated functions 

based on experimental data) (GANI, 2019). Most common property models are semi-

empirical, where properties are estimated from regressed values for a set of model 

parameters (GANI, 2019). One example of a semi-empirical method is the Group-

Contribution (GC), also known as additive method, in which the molecular structure is 

composed of several groups (building blocks), and the final property of the molecule is 

the sum of each group’s contribution (GANI, 2019). In the GC-Method, it is assumed 

that the contribution value of a given group is the same in all the compounds where it 

appears, and that the property value of the compound is a sum of the partial 

contributions of all the groups in its representation of the molecular structure (GANI, 

2019). Also, in GC methods, molecular groups are represented as 1st order, 2nd order, 

and 3rd order, where an increase in order increases the precision of the prediction 

(CIGNITTI; ZHANG; GANI, 2015).  
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Group-Contribution methods can be useful when there is not a strong need for 

accuracy, such as product design itself where the promising candidates generated will 

be verified by experiments or more rigorous models later (GANI, 2019).  

 

3.2.3.3. Property Prediction methods on fats and oils 

 

Property prediction methods specific for fats and oils have been widely 

researched and tested in the literature. Table 7 and Table 8 show different prediction 

methods for viscosity and surface tension, respectively, in fatty based products. 

Viscosity and surface tension are some of the key properties needed to study the 

deodorization process of fats and oils, which is an important step in the edible oil 

industry (DÍAZ-TOVAR; GANI; SARUP, 2011).  

 

 

Table 7: Different Prediction Methods for viscosity of fatty acids, TAGs, and vegetable oils. 

 

Method Sources Inputs Chemical species 

Modified Andrade 

+ Kay's Rule 

(NOUREDDINI; TEOH; 

CLEMENTS, 1992) (1); (AZIAN et 

al., 2001) (2); (VALERI; 

MEIRELLES, 1997) (3) 

Temperature and 

experimental 

correlation constants 

FA (1) 

TAG (2) 

Vegetable Oil (3) 

Group 

Contribution 
(RABELO et al., 2000) 

Temperature, 

number of carbons 

and number of 

double bonds 

FA 

Ceriani Equation 
(CERIANI et al., 2007); (CERIANI; 

GONÇALVES; COUTINHO, 2011) 

Temperature, 

compound chemical 

formula 

FA 

Fragment-based 

methodology 

(ZONG; RAMANATHAN; CHEN, 

2010) 

Fragment 

composition 
FA 

Viscosity from 

Density 

(ESTEBAN et al., 2012); 

(RODENBUSH; HSIEH; 

VISWANATH, 1999) 

Density Vegetable Oils 

Viscosity from IV 

and SV 
(TOSCANO et al., 2012) 

Iodine and 

saponification 
Vegetable Oils 
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TAG: triacylglycerol. FA: fatty acid 

 

 

 

Table 8: Different Prediction Methods for surface tension of fatty acids, and vegetable oils. 

 

Method Sources Inputs Chemical Species 

Artificial Neural 

Networks and Multiple 

Linear Regression 

(MELO-ESPINOSA et al., 

2014) 
Fatty Acid composition Vegetable Oils 

Group Contribution 
(DÍAZ-TOVAR; GANI; 

SARUP, 2011) 

Molecular structure 

(functional groups) 
Fatty Acids 

Temperature 

Correlation 

(CHUMPITAZ; 

COUTINHO; 

MEIRELLES, 1999) 

Temperature, 

Experimental data 
Fatty Acids 

 

 

3.2.3.4. Applications 

 

The CAPD methods are used in the pre-design step of a chemical product 

development, to help choose a set of possible products (ACHENIE; GANI; 

VENKATASUBRAMANIAN, 2003). 

There are many different frameworks for developing a new chemical product, 

depending on the type of the final product desired and the ingredients used in the 

process. It is improbable that a single ingredient satisfies the needs of a product, so a 

mixture of different ingredients is normally sought (CONTE; GANI; NG, 2011).  

Zhang et al. (2018)  proposed a 7-step framework, that has the following steps: 

1. identification of product attributes, 2. conversion of product attributes to property 

constraints, 3. identification of possible ingredients, 4. generation of a basic set of 

ingredient-chemicals, 5. Mixed Integer Linear/Nonlinear Programming (MILP/MINLP) 

number, and 

temperature 

Fatty Acid 

Viscosity 
(FERRER et al., 2017) 

Temperature, 

melting temperature 

and constants 

FA 



 

25 
 

model formulation, 6. optimization model solution, using optimization platforms such 

as GAMS, 7. verification, and experimental iteration. 

Considering the large database of compounds and non-linear constraints, 

normally a large combinatorial problem emerges. A way of managing this complexity 

is to use a decomposition-based approach (KARUNANITHI; ACHENIE; GANI, 2005), 

in which the search method, a MINLP algorithm, is divided into several sub-problems 

that are easier to solve. As previously mentioned, there are several authors that used 

the decomposition-based approach for the CAPD solution. 

Cignitti, Zhang and Gani (2015) applied the CAMbD framework for the 

development of solvents, using a MINLP formulation, solved through a decomposed 

optimization approach, where the optimum product could be a single compound, or a 

mixture/blend.  

Zhang et al. (2018) developed a MINLP formulation for the design of surrogate 

fuels. Target properties included viscosity and density, which were predicted using a 

group-contribution method, and phase equilibrium-based properties, which were 

calculated through a UNIFAC model. The UNIFAC model, used to calculate the activity 

coefficient values of properties such as Reid vapor pressure, made the optimization 

model highly nonlinear and hard to solve directly. Thus, a decomposition-based 

algorithm was used to solve the MINLP problem. 

Kalakul et al. (2018) also used a decomposition-based approach for fuel 

development but also included a two-step solution approach in the CAMbD resolution.  

In this methodology, the constraints of the MINLP model are grouped into two parts: 

all constraints except UNIFAC model, and the UNIFAC model itself. Based on this 

grouping, the first group of constraints is solved with a fixed activity coefficient. Then, 

on step-2, the UNIFAC equations are solved with the ingredients’ compositions 

calculated in step-1, and a new set of activity coefficients are obtained. Step-1 is 

repeated with the new activity coefficient values, and this iteration is repeated until a 

specified error is satisfied.  

Conte, Gani, and Ng (2011) developed a framework for liquid formulated 

products, applying CAPD to case studies such as a paint formulation and an insect 

repellent. A formulation consists of an active ingredient (AI), which is the ingredient 

responsible for the main function of the product; additives, which enhance the desired 

properties; and a solvent mixture, responsible for dissolving the AI and other additives. 



 

26 
 

The main difference between the blend and liquid formulation product design is the 

existence of one new step for each category of ingredient in the latter. 

Mattei, Kontogeorgis, and Gani (2014) applied a computer-aided product design 

framework for surfactant selection and the development of emulsions, with UV 

sunscreen and hand wash case studies. Their developed framework is shown in Figure 

7. An emulsion is a type of formulation that consists of previously immiscible liquids 

with an emulsifier (also known as surfactants) that stabilizes the mixture. As in the 

liquid formulation, it can be also decomposed in active ingredients, additives, and 

solvent mixture. 

The advisor of this MSc work is one of the authors of a computer-aided 

molecular design tool called IBSS (HEINTZ et al., 2014). The tool was design to cope 

with biomass-sourced molecules and it has been used in several cases, including 

blanket wash, chlorinated paraffins substitutes, and solvent design for active 

compounds extraction (HEINTZ et al., 2014). The search method used by the authors 

is a Genetic Algorithm.  

In Table 9, there are different CAPD examples from the literature, including the 

above-mentioned ones. 

 
 

 

 
 

Figure 7: Computer Aided Mixture-emulsion design framework. Source: (MATTEI; 
KONTOGEORGIS; GANI, 2014) 
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Table 9: Summary of Some Computer-aided product design models in the open literature 

 

Case Study Solution approach References 

Paint Formulation and Insect Repellent 

Lotion 

Decomposition-based (CONTE; GANI; NG, 2011) 

Biomass-based molecules Genetic Algorithm (HEINTZ et al., 2014) 

Surfactant Design Not informed (MATTEI; 

KONTOGEORGIS; GANI, 

2014) 

Gasoline and Lubricant Blends Decomposition-based (YUNUS et al., 2014) 

Solvent Blend Decomposition-based (CIGNITTI; ZHANG; GANI, 

2015) 

Gasoline and Diesel Blends Decomposition-based 

and two-step solution 

(KALAKUL et al., 2018) 

Gasoline and Jet-Fuel Blends Two-steps solution (ZHANG et al., 2018) 

Cosmetics Design CPLEX  (ARRIETA-ESCOBAR et 

al., 2019) 

 

 

 

3.2.3.5. Product Design using fats and oils 

 

Cocoa butter is extracted from the cocoa bean, the seed from the Theobroma 

cocoa tree (DEPOORTERE, 2010). Cocoa butter consists of 97% of triacylglycerols 

(TAGs) and 3% of free fatty acids, mono- and diacylglycerols and phospholipids 

(SMITH, 2001). Cocoa beans are composed of of 85% cotyledon (nib) and 15% shell; 

the nibs contain around 55% of fat (JAHURUL et al., 2013). 

A triacylglycerol (TAG) is formed by three fatty acids attached to a glycerol 

backbone. In cocoa butter, the main fatty acids are palmitic (P, 20 to 26%), stearic (S, 

29 to 38%), oleic (O, 29 to 38%), linoleic (L, 2 to 4%), and arachidic (A, 1%) acids 

(DEPOORTERE, 2010). Cocoa Butter TAGs are mainly POP (palmitic-oleic-palmitic), 
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POS (palmitic-oleic-stearic) and SOS (stearic-oleic-stearic) (DEPOORTERE, 2010). 

The amount of each fatty acid and TAG vary according to the origin of the Cocoa Butter 

(SMITH, 2001). A higher number of unsaturated fatty acids is associated with a lower 

melting point (JAHURUL et al., 2013). 

In chocolate formulations, cocoa butter is responsible for the dispersion of other 

components and for the physical behavior of chocolate, such as its typical melting 

profile, as it is the continuous phase (LIPP; ANKLAM, 1998). 

The melting of cocoa butter occurs between 27 and 33ºC, which makes it ideal 

for confectionary applications (JAHURUL et al., 2013). The steepness of its melting 

profile has an impact on flavor release: the flavor is released as the cocoa butter melts; 

if the fat has a sharp melting profile, the flavor is released in a short space of time, 

yielding an intense flavor (SMITH, 2001). The brittleness is another important property 

of the cocoa butter, responsible for the “snap” when the chocolate breaks (LIPP; 

ANKLAM, 1998). 

Cocoa butter can crystalize into different polymorphic forms, such as 𝞪, 𝞫, 𝞫’, 𝞬, 

with melting points of 17, 35-37, 26, 23ºC, respectively and only 𝞫 crystal is used for 

chocolate production, because of its melting point (JAHURUL et al., 2013).  

Thus, according to the temperature, the triacylglycerol mixtures that compose 

fats and oils are distributed among solid and liquid phases. This solid-liquid equilibrium 

determines the physical and sensorial properties of many fat-based products. As the 

temperature increases, the TAGs molecules are more likely to be in the liquid state.  

The melting profile of a fat is important to product development, as it influences 

the application of the fat (TELES DOS SANTOS; GERBAUD; LE ROUX, 2012). Fats 

and oils don’t have sharp melting points, different from pure compounds (FASINA et 

al., 2008). This happens, because they are composed of mixtures of TAGs that 

gradually melt before becoming completely liquid, as the temperature increases 

(O’BRIEN, 1988). 

Solid Fat Content (SFC) is used to describe food properties, and its behavior in 

different conditions (AUGUSTO et al., 2012).  However, the search for new mixtures 

of vegetable oils and fats based on its melting profiles is usually guided by heuristics, 

prior knowledge, and experimental data; thermodynamic and computational modeling 

are still not common (TELES DOS SANTOS; GERBAUD; ROUX, 2013). Teles dos 

Santos; Gerbaud; Le Roux, (2014) showed how modeling and simulation can aid 
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Product Design of vegetable oils and fats to match a desired melting profile, which can 

be helpful in the first steps of computer-aided mixture/blend design, to avoid 

combinatorial explosion in the experimental steps. 

Block, Figueiredo and Gomide (1997) developed a Neural Network designed to 

formulate ternary mixture fats from based on a desired solid profile. Results showed 

that it is possible to use neural networks to automate fat formulation, however, this is 

highly dependent on experimental data and would probably not work when dealing with 

new fats and oils others than those used to train the neural network. Thus, the 

prediction capability for Solid Fat Content is very limited. 

Fasina et al. (2008) developed a linear equation to correlate melting 

characteristics of a vegetable oil with the amount of monounsaturated or 

polyunsaturated fatty acids. Soares et al. (2009) calculated multiple regression 

coefficients over experimental data related to mixtures of palm stearin and palm olein, 

for different properties, such as softening and melting points, consistency, and solid fat 

content. 

Augusto et al. (2012) evaluated different sigmoidal functions (Gompertz model, 

Power decay model, and the Logistic model, shown in equations 8, 9 and 10, 

respectively) to model SFC curves as a function of temperature for animal and 

vegetable oils, which resulted in R2 higher than 0.96. The data for this modeling was 

obtained from the literature, calculated by either nuclear magnetic resonance (NMR) 

or differential scanning calorimeter (DSC). Farmani, (2015) also used the sigmoidal 

Gompertz model to fit SFC data as a function of temperature and saturated fatty acids 

in chemically interesterified vegetable oils. 

 

 

                                       𝑆𝐹𝐶(%) = 𝑎 ∗  𝑒−𝑒(𝑏−𝑐 𝑇)
                                        (8) 

                                      𝑆𝐹𝐶(%) =  
𝑎

1+(𝑏∗𝑡)𝑐
                                                 (9) 

                                       𝑆𝐹𝐶(%) =  
𝑎

1+𝑏∗𝑒𝑐 𝑇
                                                (10) 

 

 

Silva, Barrera-Arellano and Ribeiro (2022) calculated Pearson correlation 

coefficients between trans fatty acid, saturated fatty acid, monounsaturated fatty acids 
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and polyunsaturated fatty acids content and some physical properties, such as 

adhesiveness, hardness, spreadability and solid fat content.  

As stated above, several studies have used sigmoidal functions and empirical 

models for modeling SFC curves for oils and fats. However, equations and curves fitted 

to data from specific experiments cannot be generalized (PEREIRA; MEIRELLES; 

MAXIMO, 2020). This is where thermodynamic solid-liquid equilibrium models can 

provide a more accurate and general prediction model for the SFC. 

Concerning rigorous thermodynamics models to the solid-liquid phase behavior 

of vegetable oils and fats, composed of dozens of different TAGs, Teles dos Santos; 

Gerbaud; Roux (2013) developed a Solid-Liquid Equilibrium model with an algorithm 

to minimize Gibbs free energy. Once the phase equilibria is solved, the solid fat content 

of a given fats or oil can be estimated in a given temperature. This method was 

validated both with experimental data from the literature (TELES DOS SANTOS; 

GERBAUD; ROUX, 2013 (TELES DOS SANTOS; GERBAUD; LE ROUX, 2014 

(TELES DOS SANTOS; MORGAVI; LE ROUX, 2018), and with experiments done by 

the authors (TELES DOS SANTOS; GERBAUD; LE ROUX, 2012) (TELES DOS 

SANTOS et al., 2016). The validations performed are shown in Table 10, with the 

respective absolute errors and oils/fats used for validation. This is the method used in 

this work. 

 

 

Table 10: Validation of Teles dos Santos model for SFC and melting profile values 

Oils and fats used 

for validation 

Property 

evaluated 

Experimental data 

source 

Average Absolute 

Error 
References 

Palm, Peanut and 

Grapeseed Oil 

Phase 

Transition 

Temperatur

e 

Both Literature 

and Experiments 

Between -0.72 oC 

and -1.29 oC 

(TELES DOS 

SANTOS; 

GERBAUD; LE 

ROUX, 2012) 

Canola oil, fully 

hydrogenated palm 

oil stearin, Palm oil 

stearin, Cottonseed 

oil, Milkfat and corn 

oil 

SFC 
Experimental data 

from literature 

3.33% (without CI) 

4.13% (after CI) 

(TELES DOS 

SANTOS; 

GERBAUD; ROUX, 

2013) 

Palm oil, Sunflower 

oil, Palm kernel oil 
SFC 

Experimental data 

from literature 

Between 5.2% and 

6.3% before CI 

(TELES DOS 

SANTOS; 
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4.2% after CI GERBAUD; LE 

ROUX, 2014) 

Palm stearin, 

Canola oil, fully 

hydrogenated 

soybean oil 

Melting 

Profile and 

SFC 

Experiments Not informed 

(TELES DOS 

SANTOS et al., 

2016) 

Tucumã pulp and 

kernel oils, Rubber 

seed oil, Passion 

fruit oil, Buriti pulp 

oil, Ucuúba butter, 

Pracaxi seeds oil, 

Cupuassu fat and 

Palm stearin 

SFC and 

Melting 

Point 

Experimental data 

from literature 

4.5oC (MP) 

3.8% (SFC) 

(TELES DOS 

SANTOS; 

MORGAVI; LE 

ROUX, 2018) 

 

 

Pereira et al. (2019) described the melting behavior of fats through a solid-liquid 

equilibrium model and used UNIFAC and UNIQUAC models to calculate the 

compounds’ activity coefficients for both liquid and solid phases. This modeling was 

validated with predictive curves of two fats. Different from the Teles dos Santos et al. 

modeling (2013, 2014, 2016, 2018), Pereira’s work considers the non-ideal behavior 

of both liquid and solid phases, whereas Teles dos Santos considers only the solid 

phase as non-ideal. 

Pereira, Meirelles and Maximo (2020) gathered all thermodynamic modeling 

approaches for Solid Fat Content estimation for triacylglycerols and compared them in 

Table 11.  

 

 

 

 

 

 

 

 

 



 

32 
 

Table 11: Summary of different thermodynamic approaches for Solid Fat Content in 

Vegetable oils and fats estimation 

Modeling Approach 
Activity coefficient 

model 
References 

Experimental values or Group-
Contribution method for pure 

compounds, solid-liquid equilibrium 
for mixtures 

Equation 11 (WON, 1993) 

Number of carbons for pure 
compounds, solid-liquid equilibrium 

for mixtures 
Margules equations 

(WESDORP, 1990) 
(HJORTH et al., 2015) 

Group-Contribution method for pure 
compounds, solid-liquid equilibrium 

for mixtures 
Margules equations 

(TELES DOS SANTOS et al., 
2016); (TELES DOS SANTOS; 
GERBAUD; LE ROUX, 2013, 

2014); (TELES DOS SANTOS; 
MORGAVI; LE ROUX, 2018). 

Number of carbons for pure 
compounds, solid-liquid equilibrium 

for mixtures 
Predictive UNIQUAC (PEREIRA et al., 2019) 

Source: Adapted from Pereira, Meirelles, and Maximo (2020) 

 

 

A diversity of chemical products has attracted the interest in the Product Design 

area, such as fuels additives, pharmaceuticals, polymers, ionic liquids and solvents, 

as previously shown in section 3.1.3. However, up to our knowledge, there is a lack of 

integrated computational-experimental works in the early steps of guiding product 

design in the fats and oils industry. This work aims to fill this gap, coupling the model 

previously developed by Teles dos Santos et al. with a genetic algorithm-based search 

model developed in this work. 
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3.2.4. Cocoa Butter Equivalent Problem 

 

Cocoa is mainly consumed as chocolate or cocoa powder, including beverages 

and cakes (AFOAKWA, 2016). The consumption of chocolate products has 

significantly increased worldwide. (LOULLIS; PINAKOULAKI, 2018) highlighted that to 

overcome the challenges of the increasing demand for cocoa, the variable cocoa 

supply and its rising price, it is necessary to use other fats as substitutes.  The research 

and use of alternative fats as cocoa butter substitutes is a traditional practice in the 

food industry. The European Chocolate Directive (Directive 2000/36/EC) allows the 

addition of up to 5% of vegetable fats (CBE) other than cocoa butter in chocolate. Also, 

it defines that only the following 6 vegetable fats may be added to chocolate products, 

besides cocoa butter: shea butter, palm-oil, sal fat, kokum butter, illipe fat and mango 

kernel fat. Although other solutions have been proposed to cope with this problem, 

such as the use of oleogels (LI; LIU, 2019) and interesterification reaction between 

different oils and fats (ABIGOR et al., 2003), the diversity of underexploited 

components and the possibility to mix them can still offer new solutions for such an old 

problem. Thus, given the large diversity of oils and fats, a product design combinatorial 

problem is set and computational tools can aid in this search procedure, prior to the 

experimental step.  
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4. Methodology 
 

 

Methodologies used in this project are shown in Figure 8, and described in the 

sections 4.1, 4.2, and 4.3. 

 

Figure 8: Methodologies used in each step of the CAPD. 

 

 

4.1. Property Models 

 

A set of desired physical chemical properties can be chosen in the cocoa butter 

equivalents design. One of the most important is the Solid Fat Content, as the solid 

percentage of TAGs determines physico chemical properties and sensory attributes of 

many products (Teles dos Santos et al; 2013). Thus, this work uses the SFC as the 

target property.  

The SFC prediction model used in this work is divided in three steps: generation 

of TAGs, solution of the solid-liquid equilibrium model, and computation of the SFC for 

a given temperature., This methodology was developed in a previous work (TELES 

DOS SANTOS; GERBAUD; ROUX, 2013), and was used as a starting point for the 

current methodology. Also, it is important to mention that the modeling and simulation 

was already validated with experimental data from literature, as stated in Teles dos 

Santos et al. (2013). 

Triacylglycerol (TAG) composition is predicted by combinatorial assembly of 

fatty acids composition of a given fat/oil in the glycerol structure. In this work, the 

random distribution of fatty acids in the glycerol (no preferential position) is assumed.  

Thus, only fatty acid mass distribution is necessary as input to generate all possible 
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TAGs that account for 95% of the total mass, as described in previous work (TELES 

DOS SANTOS; GERBAUD; ROUX, 2013). A FORTRAN 90 code embedded in a main 

framework called VOSTAT copes with this task, along with the calculation of 

thermodynamic interaction parameters, melting temperature, and melting enthalpy 

which are used in the next steps. 

The prediction of SFC in each temperature can be viewed as a thermodynamic 

solid-liquid equilibrium (SLE) problem. This problem is solved by minimizing the Gibbs 

Free Energy function and finding the distribution between solid and liquid TAG 

composition (the second order condition for phase equilibrium), as stated in equation 

12. This optimization problem is nonlinear and aims at minimizing the Gibbs free 

energy function (G), subject to linear material balance constraints (equations 13 and 

14), where nc and np are the number of different TAGs and the number of phases in 

the mixture, respectively; 𝑛𝑖
𝑗
 and 𝜇

𝑖

𝑗
 represent the number of mols and the chemical 

potential of TAG i in phase j, respectively and 𝑛𝑖 is the total number of mols of TAG i.  

 

            𝑚𝑖𝑛 𝐺(𝑛)  =  ∑ ∑ 𝑛𝑖
𝑗
𝜇𝑖

𝑗
(𝑛)

𝑛𝑝
𝑗=1

𝑛𝑐
𝑖=1 = ∑ 𝑛𝑗𝑔𝑗𝑛𝑝

𝑗=1           (12) 

s.t. 

                     𝑛𝑖 =  ∑ 𝑛𝑖
𝑗𝑛𝑝

𝑗=1  , 𝑖 =  1 . . . 𝑛𝑐                                   (13) 

           0 ≤  𝑛𝑖
𝑗

 ≤  𝑛𝑖  , 𝑖 =  1 . . . 𝑛𝑐;  𝑗 =  1 . . . 𝑛𝑝                   (14) 

 

 The intensive Gibbs energy is the weighted sum of partial Gibbs energy of the 

components, as stated in equation 15. By definition, the partial Gibbs Energy is equal 

to its chemical potential. 𝜇
𝑖,0

𝑗
 is the chemical potential of a pure TAG, and 𝛾

𝑖

𝑗
 is the 

activity coefficient of TAG i. 

 

𝑔𝑗 = ∑ 𝑥𝑗
𝑗
(𝑔𝑖

𝑗
)𝑛𝑐

𝑖=1  = ∑ 𝑥𝑗
𝑗
(𝜇𝑖

𝑗
)𝑛𝑐

𝑖=1 = ∑ 𝑥𝑗
𝑗
(𝜇𝑖,0

𝑗
+  𝑅𝑇𝑙𝑛𝛾𝑖

𝑗
𝑥𝑖

𝑗
)𝑛𝑐

𝑖=1   (15) 

 

 When j = liquid, 𝜇
𝑖,0

𝑗
= 0 and 𝛾

𝑖

𝑗
 = 1 (considered as ideal) 

                     𝑔𝑙𝑖𝑞𝑢𝑖𝑑 = 𝑅𝑇 ∑ 𝑥𝑗
𝑙𝑖𝑞𝑢𝑖𝑑

( 𝑙𝑛𝑥𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

)𝑛𝑐
𝑖=1                          (16) 
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 When j = solid: 

                    𝜇
𝑖,0
𝑗

 =  𝑇𝛥𝐻𝑚,𝑖
𝑠𝑜𝑙𝑖𝑑(𝑗)

(
1

𝑇
−

1

𝑇𝑚,𝑖
𝑠𝑜𝑙𝑖𝑑(𝑗))                    (17) 

Where 𝑇𝑚,𝑖
𝑠𝑜𝑙𝑖𝑑(𝑗)

 and 𝛥𝐻𝑚,𝑖
𝑠𝑜𝑙𝑖𝑑(𝑗)

 are the melting temperature and melting enthalpy 

of pure TAG i in solid state j. 

 The activity coefficient for the non-ideal solid phases is calculated with 2-suffix 

Margules model, which is an Excess Gibbs Free Energy Model. This model was 

chosen due to the existence of an experimental database in triacylglycerols that allows 

computing the interaction parameters between a pair of TAGs i and j (Aij) (Wesdorp et 

al., 2005).  

The melting temperatures and melting enthalpies necessary for the calculation 

can be found in the program via experimental data gathered from literature. When the 

data is not available, group contribution methods, such as that of (ZEBERG-

MIKKELSEN; STENBY, 1999) are used to estimate these properties. For a complete 

description of the methods used, the reader must consult previous works (Teles dos 

Santos et al., 2013, 2014, 2016). 

Once the number of moles of each TAG in each phase in equilibrium is 

determined, the SFC for a given temperature (SFC(T)) is computed according to 

Equation 18, where Mi is the molar mass of TAG i. 

 

                  𝑆𝐹𝐶 (𝑇) =  
∑ ∑ (𝑛𝑖

𝑗
)𝑛𝑐

𝑖=1 𝑀𝑖
𝑛𝑝=1
𝑗=1

∑ ∑ (𝑛𝑖
𝑗

)𝑛𝑐
𝑖=1 𝑀𝑖

𝑛𝑝
𝑗=1

                           (18) 

 

The NLP optimization problem generated by the SLE model is then solved using 

a Generalized Reduced Gradient Method (CONOPT 3 solver). This optimization 

program was coupled with the VOSTAT framework, already described in the former 

sections. When a particular polymorphic form is evaluated, the number of mols of all 

TAGs in the other two is set to zero. We assume, as in Won (1993), that all the 

triglyceride constituent molecules exhibit the same polymorphic behavior in one phase. 

Despite β being the most common solid crystal for chocolate usage (JAHURUL et al., 

2013), and the extensive experimental validations on the VOSTAT tool, it was 
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important to have a confidence interval on the results. Thus, all results of this work 

refer to the β' solid state, as it represents an intermediate result between α and β 

polymorphs. 

For further details, a previous work of the authors can be consulted (TELES 

DOS SANTOS; GERBAUD; LE ROUX, 2012).  

 

 

4.2. Integration of Computational Tools 

 

 The VOSTAT software previously developed by Teles dos Santos, et al. (2013) 

predicts the whole melting curve for a given fat/oil mixture based on the Solid Fat 

Content predictions, as shown in section 4.1. The inputs and outputs of the VOSTAT 

are shown in Figure 9; temperature interval and step are needed, along with fatty acid 

composition and minimal fraction, which stands for the percentage of TAGs considered 

in the SFC estimation. For these calculations, three different tools are involved: 

Fortran, GAMS and Matlab, illustrated in Figure 10. 

The program starts manually with the Product Designer choosing the desired 

vegetable oils with its composition in the mixture, chosen from a pre-existing vegetable 

oil database that already contains fatty acid composition. This selection is done in the 

.exe file main program, written in Fortran. This program also includes TAG composition 

prediction, melting temperature, and melting enthalpy databases and predictions, 

when necessary. After the Fortran calculations are performed, GAMS is then called via 

batch files to solve the NLP optimization problem using a CONOPT 3 solver. The 

GAMS program reads a set a txt files, containing data generated by Fortran, performs 

the optimization and saves the results in an Excel file. Then, Matlab is called to plot 

the SFC by temperature charts. 

 One of the steps of the current work is to automate this search, by adding 

another layer of optimization (a genetic Algorithm, in Python) on top of the SFC 

calculation, as illustrated in Figure 11. A program in Python was added and, at the 

beginning, generates a random list of vegetable oils to send via txt file to Fortran and 

GAMS. After the SFC is calculated with the VOSTAT for all vegetable oils in the list, 

the program goes back to Python, which via a Genetic Algorithm, selects the best 

options, creates new ones, and goes back to the Fortran. This iteration needs to have 

a termination criterion, which will be further explained in section 4.3. 
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Figure 9: Inputs and Outputs of VOSTAT Software 

 

 

 

 

 
Figure 10: Initial SFC calculation Framework 
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Figure 11: Modified tool by a Python framework developed in this work 

 

 

4.3. Search Algorithm 

 

In this work, a second layer of optimization was added on top of the SFC 

thermodynamic optimization that already existed in the program. This extra 

optimization was developed using a Genetic Algorithm. A Meta-Heuristic algorithm was 

chosen, due to the high complexity of the SFC model and the high number of possible 

mixtures. The Genetic Algorithm was chosen specifically, because it is simpler to 

implement than other Meta-Heuristic algorithms and because there are examples in 

the literature that show this can be a good option for chemical optimization problems. 

In this project, qualitative parameters were chosen based on previous studies 

and remained fixed throughout the tests; a small sensitivity analysis was performed on 

quantitative parameters and sub parameters. Parameters used and varied in this 

simulation are described in Table 12. Crossover method is shown in Figure 12, and 

selection and replacement methods in Figure 13. 
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Table 12: Parameters applied to the simulation. 

 

 

Parameter Values for Single Oils Search Values for Binary Mixtures Search 

Population/Generation 10, 20, 30 30, 50, 100 

Individual One oil ID per individual 
Two oil IDs and the percentage of the 

first one 

Initialization Random Individuals Random Individuals 

Evaluation 

Fitness/Objective function = 

average of SFC values at three 

different temperatures 

Same as Single Oils 

Selection NA Elitism of 50%, 70%, 80% and 90%. 

Crossover NA 
Single Point: exchange of oil ID and/or 

oil percentage.  

Mutation Random modification of oil ID 
Random modification of oil ID and/or 

percentage 

Replacement Elitism Elitism of 10%, 20%, 30% and 50%. 

Stop Criteria Number of generations (20) Number of generations (50) 

Figure 12: Example of the crossover method used in the proposed model. 
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The objective function created considers a desired solid fat content at three 

different temperatures: 5, 25 and 35oC. These temperatures were chosen based on 

the current case study, which involves finding oils, fats and its mixtures that match 

melting properties of Cocoa Butter, that has a low and sharp melting point, ranging 

from 27 to 35oC (JAHURUL et al., 2013), represented in Figure 14.  

 

Figure 13: Selection and Replacement Methods used in the optimization. 
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Figure 14: Solid Fat Content curve of Cocoa Butter. Source: (NILSON, 1986) 

 

The three intermediate objective functions are represented in equations 19, 20 

and 21, which represents the desired behavior of potential solutions: 

 

- At 5oC (fridge temperature), Cocoa Butter should contain at least 80% of its 

composition at solid state (constraint f(1), represented in equation 19).  

- At 25oC, which represents the shelf-temperature, it should be solid as well, 

with a solid fraction above 75% (constraint f(2), represented in equation 20); and  

- At 35oC it should be completed liquid, because it represents the body-

temperature and, thus, the consumption temperature, and it should have solid fraction 

below 5% (constraint f(3), represented in equation 21).  

 

 

                      𝑓(1) = {
1, 𝑆𝐹𝐶(@5𝑜𝐶) ≥ 0,80

𝑆𝐹𝐶/0,80, 𝑆𝐹𝐶(@5𝑜𝐶) < 0,80
                                    (19) 

 

                     𝑓(2) = {
1, 𝑆𝐹𝐶(@25𝑜𝐶) ≥ 0,75

𝑆𝐹𝐶/0,75, 𝑆𝐹𝐶(@25𝑜𝐶) < 0,75
                                  (20) 
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                    𝑓(3) = {
1, 𝑆𝐹𝐶(@35𝑜𝐶) ≤ 0,05

0,05/𝑆𝐹𝐶, 𝑆𝐹𝐶(@35𝑜𝐶) > 0,05
                                 (21) 

 

 

                         𝑓(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) =  
𝑓(1)+𝑓(2)+𝑓(3)

3
                                     (22) 

 

The SFC at these three temperatures are therefore calculated, and then a value 

between 0 and 1 was attributed to each one of them, with 1 being the closest to the 

desired constraint, and 0 the furthest. An average of the three values was calculated 

as the individual’s fitness function (equation 22) and is used in the evaluation step. 

After the fitness function was calculated, the population was ordered, and the 

genetic operators were applied.  

For the single individuals, the elitism value chose the oils that would continue in 

the next population, and the remaining were changed for different ones. This process 

was repeated until maximum number of generations, which varied between 10 and 30. 

For binary mixtures, the elitism number chose the parent pool, and they went 

through single point crossover of oil ID and proportion of the oils, and mutation. Then, 

worst individuals were deleted and replaced by generated offsprings. This iteration was 

repeated until the maximum number of generations, which varied between 10 and 50. 

Figure 15 shows an overview of the Genetic Algorithm framework, and how it 

communicates to the VOSTAT software. The genetic algorithm aims to maximize the 

so-called performance (the arithmetic mean of the 3 objective functions). 
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Figure 15: Overview of the Genetic Algorithm framework used in this work. 

 

  



 

45 
 

5. Results 
 

5.1. Case Study: Cocoa Butter Alternatives 

 

5.1.1. Introduction 

 

The methodology was divided into single vegetable oils search and binary 

mixtures search. For both, some adjustments on the original VOSTAT Software were 

necessary, to adapt the program to run on another computer. As already mentioned, 

four main softwares were used in the entire optimization process: Fortran, Python, 

GAMS and Matlab, each of them with different licenses and access methods, which 

made the optimization process less efficient.  

The objective function was as an average of three cocoa butter SFC constraints, 

as detailed in section 4.3 and the same was used for both use cases: single and binary 

mixtures.  

Each intermediate function curve according to the SFC value is represented in 

Figure 16. For f(1) and f(2), the curve has a linear increasing shape until it reaches the 

desired value of 0.80 and 0.75, respectively, when the function is set to 1.0 (best 

value). For f(3), it is 1 at lower SFCs, and then it decreases as a function of 0.05/SFC.  

 

Figure 16: Variation of objective function in each temperature, according to solid fat content 

values. 
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A database of 45 oils and fats was used in the optimization process, presented 

in Table 13. In appendix A it is listed each oil’s fatty acid composition. With 45 oils, a 

total of 98,010 combinations were possible in the binary mixture search space. 

 

Table 13: Oil and Fats used in the Optimization Process 

Oil ID Oil Name 

1 Açaí Oil 

2 Argan Oil 

3 Avocado Oil 

4 Babaçu Oil 

5 Brazilian Nut Oil 

6 Buriti Pulp Oil 

7 Canola Oil 

8 Coconut Oil 

9 Corn Oil 

10 Cotton Seed Oil 

11 Cupuaçu Oil 

12 Andiroba Oil 

13 Vaccenic-enriched Oil 

14 Copaíba Oil 

15 Fully Hydrogenated Soy Fat 

16 Grapeseed Oil 

17 Illipe Butter 

18 Jatropa Butter 

19 Kokum Kernel Fat 

20 Licuri Oil 

21 Linseed Oil 

22 Macadamia Nut Oil 

23 Macaúba Kernel Oil 

24 Mango Oil 

25 Mango Seed Butter 

26 Microalgae Oil 

27 Murumuru Butter 

28 Olive Oil 

29 Palm Oil 

30 Palm Stearin 

31 Passion Fruit Oil 

32 Passion Fruit Seed Oil 

33 Peanut Oil 

34 Pequi Oil 

35 Pomegranate Oil 

36 Pracaxi Oil 

37 Rice Brain Oil 

38 Rubber Seed Oils 
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39 Sal Fat 

40 Shea Butter 

41 Soybean Oil 

42 Sunflower Oil 

43 Tucumã Pulp Oil 

44 Tucumã Kernel Oil 

45 Ucuúba Butter 

 

 

5.1.2. Single Vegetable oils 

 

As the single vegetable oil is the simplest application, two approaches were 

applied in this case: the exhaustive search, and the genetic algorithm search, which 

helped validate the methodology.  

In the exhaustive search, the solid fat content values of a database previously 

built containing 45 oils and fats were predicted using the VOSTAT Software, 

methodology already explained in Section 4. Then, the objective function for each of 

them was calculated to rank the solutions according to the desired performance.  

After calculating all SFC values, it was already possible to detect which were 

the best ones, by analyzing the objective function values. Tables 14 and 15 show the 

predicted SFC values for the 45 fats and oils in different temperatures. The color red 

represents low values of SFC, the color green indicates high values of SFC, and the 

color yellow represents intermediate values.  

Table 14 shows SFC calculated for every fat/oil, where 100% mean a 

completely solid fat, and 0% a completely liquid oil. Table 15 contains the functions 

that compose the final objective at the 3 analyzed temperatures (5, 25 and 35oC), and 

the final objective function, which is an average of those three. In Table 15 , the value 

1 would be the product closest to the desired properties, and 0 the furthest one. In this 

case, best oils and fats for this specific case study would be 15, 20, 27, 45, 4, and 19, 

which are respectively fully hydrogenated Soy fat, Licuri oil, Murumuru butter, Ucuúba 

butter, Babassu oil, and Kokum kernel fat. 
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Table 14: Results from SFC calculation of the entire 

database 
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Temperature/Oil 
ID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

5 0.14 0.01 0.00 0.94 0.01 0.08 0.00 1.00 0.00 0.05 0.43 0.25 0.48 0.01 1.00 

25 0.01 0.00 0.00 0.36 0.00 0.00 0.00 0.52 0.00 0.01 0.19 0.00 0.00 0.00 1.00 

35 1.00 1.00 1.00 0.71 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00 1.00 1.00 0.05 

Final Objective 0.38 0.34 0.33 0.67 0.34 0.36 0.33 0.61 0.33 0.35 0.54 0.42 0.49 0.34 0.68 

                

                
Temperature/Oil 

ID 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

5 0.00 0.98 0.03 1.00 0.81 0.00 0.01 0.60 0.40 0.60 0.11 1.00 0.00 0.53 0.81 

25 0.00 0.44 0.00 0.83 0.24 0.00 0.00 0.08 0.27 0.29 0.09 0.96 0.00 0.15 0.43 

35 1.00 0.25 1.00 0.17 1.00 1.00 1.00 1.00 0.56 0.50 1.00 0.09 1.00 0.71 0.24 

Final Objective 0.33 0.56 0.34 0.67 0.68 0.33 0.34 0.56 0.41 0.46 0.40 0.68 0.33 0.46 0.49 

                

                
Temperature/Oil 

ID 
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

5 0.00 0.00 0.01 0.38 0.00 0.13 0.08 0.00 0.56 0.85 0.00 0.00 0.21 1.00 1.00 

25 0.00 0.00 0.00 0.08 0.00 0.01 0.00 0.00 0.27 0.45 0.00 0.00 0.03 0.77 1.00 

35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.63 0.36 1.00 1.00 1.00 0.13 0.05 

Final Objective 0.33 0.33 0.34 0.49 0.33 0.38 0.36 0.33 0.48 0.55 0.33 0.33 0.41 0.63 0.68 

Table 15: Objective Function calculation for each vegetable oil. 
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In parallel, a genetic algorithm was applied to the database, varying population 

size from 10 to 30, keeping elitism at 5, and varying the number of generations from 

10 to 200. With 10 generations, it was already possible to obtain the same results as 

the exhaustive search methodology. Table 16 shows the top-5 oils and fats, according 

to the objective function. Table 17 shows how the best vegetable oil fitness function 

vary with the number of generations (termination criteria) and population size. After 10 

generations, all metrics do not change anymore. 

 

Table 16: Top 5 oils and fats, according to the objective function. 

VO ID VO Name f(1) f(2) f(3) 
Objective 
Function 

45 Ucuúba Butter 1.000 1.000 0.055 0.685 

20 Licuri Oil 0.813 0.240 1.000 0.684 

27 Murumuru Butter 1.000 0.960 0.091 0.684 

15 
Fully hydrogenated 

Soy Fat 
1.000 1.000 0.050 0.683 

 4 Babaçu Oil 0.938 0.360 0.714 0.671 

 

Table 17: Best VO fitness function, keeping elitism at 5 and varying population size (10, 20, 

30) and number of generations (5 to 20). 

Number of generations/ 
Population size 

5 10 15 20 

10 0.685 0.685 0.685 0.685 

20 0.684 0.685 0.685 0.685 

30 0.685 0.685 0.685 0.685 

 

Figure 17 shows the average performance of the population and elitism, varying 

with the number of generations from 1 until 200, using 10 as the population size and 5 

as elitism.  

In this first version of the Genetic Algorithm, the average performance of the 

entire population increases on average until a performance of 0.55, and the oscillates 

around this number. This value is mainly influenced by elitism part of the population, 

as the individuals for the following population are always chosen at random. Elitism 

reaches its maximum value at generation 32, as seen in Figure 17. 
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Figure 17: Average performance of the whole population and elitism according to the number 

of generations. 
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5.1.3. Binary Mixtures 

 

In binary mixtures’ case, the main challenge is to define the optimal quantitative 

and qualitative parameters for the Genetic Algorithm. A pseudo-code of this 

implementation is illustrated in Appendix B. 

The tested structure considered Elitism as the Selection method and Elitism 

also as the Replacement technique. This means that N best mixtures were kept in the 

next population, and the M best individuals went through crossover and mutation 

processes, being the sum of M and N the number of individuals in each population. 

Different values were tested for population size, replacement elitism rate, crossover 

rate, and mutation rate. In each test, only the variable of interest varied, and the 

remaining ones were kept constant. Also, for the same population size, the same 

starting population was considered, as a way for the results to be more comparable. 

5.1.3.1 Population Size Analysis 

 

Population size was the first quantitative parameter varied. Quantitative 

Parameters’ values are shown in Table 18, with population size varying between 30, 

50, and 100. Overall, an early convergence was observed for populations with lower 

number of individuals, as seen in Figures 18, 19, and 20, resulting in final fitness 

function very close to best results obtained in single oil optimization for population size 

30. For 50 and 100 individuals, best mixture’s performance increased considerably, 

showing that a higher population size result in better mixtures. However, as shown in 

Table 18, increase in population size also results in higher computational cost, as the 

optimization process takes longer to run. 
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Table 18: Genetic Algorithm Quantitative Parameters for Population Size Variation 

26_30_45: 30% of Microalgae oil and 70% of Ucuúba butter;  

4_93_13: 93% of Babassu oil and 7% of Vaccenic-enriched oil;  

13_27_8: 27% of Vaccenic-enriched oil and 73% of Coconut oil. 

 

 

 

 

 

Figure 18: Elitism average performance for each population size tested, varying by 
generation. 
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30 6 20% 5% 90% 50 140 26_30_45 0.697 

50 10 20% 5% 90% 50 300 4_93_13 0.740 

100 20 20% 5% 90% 50 720 13_27_8 0.787 
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Average population performance tends to increase and converge to best 

mixture performance, as shown in Figure 19, because there is a convergence of all the 

individuals towards best mixtures. With a higher population size, convergence takes 

longer, and better results can be achieved. 

0.697

0.740

0.787

0.685

0.600

0.650

0.700

0.750

0.800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

B
e
s
t 
M

ix
tu

re
 P

e
rf

o
rm

a
n
c
e

Generation

Population size = 30 Population size = 50

Population size = 100 Best Result Single VO Optimization

Figure 20: Best Mixture Performance for each population size tested, varying by 
generation. 
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Best mixtures obtained in binary optimization do not necessarily involve best 

oils and fats found in single optimization, as shown in Table 19. The best performance 

found using population size of 100, is composed of oils that are not in the top-5 

individual performers, Vaccenic-enriched and Coconut Oil. 

 

Table 19: Best Mixtures obtained in Binary Optimization, varying population size. 

Best Mixture 
Obtained 

Population size = 
30 

Population size = 
50 

Population size = 
100 

VO 1 Microalgae Oil Babaçu Oil 
Vaccenic-enriched 

Oil 

VO 2 Ucuúba Butter 
Vaccenic-enriched 

Oil 
Coconut Oil 

VO 1 Percentage 30% 93% 27% 

 

  

 

 

Figure 21: SFC curves from best mixtures obtained by each population size test.  

Theoretical SFC Cocoa Butter based on Figure 14. 

 

 In Figure 21, it is possible to compare the best mixtures obtained by each 

population size test. Population 30 is good in lower temperature, as it is solid, but it 

does not melt when reaches body temperature, which is an essential property of cocoa 
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butter. Populations 50 and 100, however, are adequate in very low or very high 

temperatures, but do not show the steep decrease between 25 and 35ºC. 

Analyzing each mixture with the respective individual oils, Figure 22 shows that 

Ucuúba Butter has a higher melting point, which can be explained by higher amount of 

saturated fatty acids, such as Myristic acid. The microalgae oil, on the other hand, is 

composed of more than half of unsaturated fatty acids, which explains the lower 

melting point. The mixture shows a melting point closer to Ucuúba, as it represents 

70% of the mixture. 
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Figure 22: SFC curve for population with size 30, and its individual vegetable oils and 
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Figure 23 shows the oils that compose the best result for simulation with 50 

generations. Vaccenic-enriched oil is composed mostly of unsaturated fatty acids, and 

Babaçu oil mostly saturated, which explains the difference between the curves. 

 

In Figure 24, we also see Coconut oil with a higher melting point, because of a 

higher amount of saturated fatty acids. Even though this is the best result obtained, it 

is possible to the that the shape of the curve is very different from Cocoa Butter’s. 
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Population size of 100 showed the best performances, and an even higher 

population size would probably result in better mixtures, but at the expense of 

computational cost. For the remainder of the sensitivity analysis, population size of 100 

will be considered. 

 

5.1.3.2 Replacement Elitism Rate Analysis 

 

Replacement Elitism refers to the number of individuals that are copied to the 

next population without going through any modifications. This parameter was varied 

from 10%, 20%, 30%, and 50%.  

On one hand, a higher elitism rate guarantees that good individuals will not be 

lost in following generations; on the other hand, it prevents that even more individuals 

go through crossover and mutation processes, which are the main responsible for 

introducing new genes and new combinations into the population. 

In Table 20 and Figure 27, one can see that the best mixture found was using 

an elitism rate of 20%; both lower and higher elitism rates showed worse results. In 
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Figure 24: SFC curve for population with size 100, and its individual vegetable oils and 
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Figure 25, one can see that elitism rates of 10% and 30% both converge to same 

results after around 10 generations.  

There’s no clear trend as what happens to results with increase or decrease of 

replacement elitism rate. For example, the highest rate, 50%, has an intermediate 

result: 20% rate has a better result, and 10%/30% has a worse result. Figure 27 shows 

that all four tests are at least 9% better than results obtained with single vegetable oil 

optimization, which shows the potential of this methodology. 

In Figure 26, we see overall population performance converging to best results, 

as also seen in previous simulations. 

 

Table 20: Genetic Algorithm Quantitative Parameters for Replacement Elitism Rate Variation 

20_70_8: 70% of Licuri oil and 30% of Coconut oil;  

13_27_8: 27% of Vaccenic-enriched oil and 73% of Coconut oil;  

8_31_20: 31% of Coconut oil and 69% of Licuri oil; 

13_59_45: 59% of Vaccenic-enriched oil and 41% of Ucuúba butter. 

Population 
Size 

Replacement 
Elitism 

Replacement 
Elitism Rate 

Mutation 
Rate 

Crossover 
Rate 

Number of 
Generations 

Running 
Time 
(min) 

Best 
Mixture 

ID 

Best Mixture 
Performance 

100 10 10% 5% 90% 50 1110 20_70_8 0.744 

100 20 20% 5% 90% 50 720 13_27_8 0.787 

100 30 30% 5% 90% 50 480 8_31_20 0.744 

100 50 50% 5% 90% 50 300 13_59_45 0.768 
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Figure 25: Elitism average performance for each Elitism Rate tested, varying by generation. 
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Figure 27: Best mixture performance for each Elitism Rate tested, varying by generation. 
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Figure 26: Entire Population Average Performance for each Elitism Rate tested, 
varying by generation. 
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When compared to population size optimization, in the elitism rate a new 

vegetable oil appeared among the best mixtures, the Licuri Oil, as it is seen in Table 

21, and the best result (elitism rate of 20%) showed the same composition as best 

result in population size optimization. 

 

 

Table 21: Best Mixtures obtained in Binary Optimization, varying elitism rate. 

Best Mixture 
Obtained 

Elitism Rate = 
10% 

Elitism Rate = 
20% 

Elitism Rate = 
30% 

Elitism Rate = 
50% 

VO 1 
Licuri Oil 

Vaccenic-enriched 
Oil 

Coconut Oil 
Vaccenic-

enriched Oil 
VO 2 Coconut Oil Coconut Oil Licuri Oil Ucuúba Butter 

VO 1 Percentage 70% 27% 31% 59% 

 

 

 

In Figure 28, it is possible to see that all elitism rate tests have a similar behavior: 

they match the requirements from temperatures 5 and 35ºC, but not at 25ºC and, thus, 

do not show the sharp melting point. 

In Figure 30 and Figure 32, it is possible to see that Vaccenic-enriched Oil has a 

very low melting temperature, which is a direct result of its composition being mostly 

unsaturated fatty acids. In Figure 29 and Figure 31, one can see that the shape of the 
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Figure 28: SFC curves from best mixtures obtained by each elitism rate test. 
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Coconut and Licuri Oil curves are very similar, but at different levels, which can be 

explained by both having a high amount of saturated fatty acids, but Coconut oil’s 

saturated composition being a bit above Licuri’s. 

 

 

 
Figure 29: SFC curve for elitism rate of 10%, and its individual vegetable oils and fats. 

 

 
Figure 30: SFC curve for elitism rate of 20%, and its individual vegetable oils and fats. 
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Figure 31: SFC curve for elitism rate of 30%, and its individual vegetable oils and fats. 

 

 

 
Figure 32: SFC curve for elitism rate of 50%, and its individual vegetable oils and fats. 
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5.1.3.3 Crossover Rate Analysis 

 

Each pair of selected parents have a chance of going through crossover or not, 

and this percentage was the third parameter analyzed. Each pair of parents had a 50% 

chance of going through oil crossover, and a 50% chance of going through oil and 

percentage crossover, this 50%/50% ratio remained constant in all simulations. 

Best results were obtained with a crossover rate of 90%, which also showed the 

second highest running time, as seen in Table 22. All the other simulations resulted 

practically in the same mixture: 70% of Licuri Oil and 30% of Coconut Oil, mixture 

already analyzed in Section 5.1.3.2. 

In Figures 33, 34, and 35 it is possible to see that crossover rates of 70%, 80% 

and 100% converge to the same elitism average, best mixture performance, and 

population average. As it also happened to Replacement Elitism Rate, there’s no clear 

trend regarding elitism rate: the best result is neither the lowest nor the highest rate. 

 

Table 22: Genetic Algorithm Quantitative Parameters for Crossover Rate Variation 

20_71_8: 71% of Licuri oil and 29% of Coconut oil;  

8_31_20: 31% of Coconut oil and 69% of Licuri oil; 

13_27_8: 27% of Vaccenic-enriched oil and 73% of Coconut oil;  

20_68_8: 68% of Licuri oil and 32% of Coconut oil. 

 

Population 
Size 

Replacement 
Elitism 

Elitism Rate 
Mutation 

Rate 
Crossover 

Rate 
Number of 

Generations 
Running 

Time (min) 
Best 

Mixture ID 
Best Mixture 
Performance 

100 20 20% 5% 70% 50 480 20_71_8 0.744 

100 20 20% 5% 80% 50 600 8_31_20 0.744 

100 20 20% 5% 90% 50 720 13_27_8 0.787 

100 20 20% 5% 100% 50 740 20_68_8 0.744 
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Figure 33: Elitism average performance for each Crossover Rate tested, varying by 
generation. 

 

 

 

 
Figure 34: Best Mixture Performance for each Crossover Rate tested, varying by generation. 
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Figure 35: Entire Population Average Performance for each Crossover Rate tested, varying 

by generation. 

 

 

In Figure 36 it is possible to see that best result from crossover rate of 90% is 

indeed closer to expected curve, however, it still does not show the steep decrease 

between 25 and 35ºC, as it also happened with other parameters analysis. 
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Figure 36: SFC curves from best mixtures obtained by each crossover rate test. 
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The analysis performed in previous sections 5.1.3.1 and 5.1.3.2 comparing best 

mixtures with its individual oils SFC will not be done for the current section, as the 

results are the same as presented before. 

 

5.1.3.4 Mutation Rate Analysis 

 

Mutation rate works very similarly to crossover rate. Each pair of parents 

selected have a change of going through mutation or not, being 50% of them going 

through oil mutation, and the other 50% through oil and percentage mutation. The 

mutation process is important, as it ensures that no gene is permanently removed from 

future generations. 

As seen in Table 23 and Figure 38, mutation rates of 5%, 15%, and 25% 

resulted in the same best mixture. The running time between simulations are not 100% 

comparable, as results from previous simulations were available for usage, meaning 

that if a mixture has already been analyzed, the optimization process of finding its SFC 

curve does not have to be performed again. This explains the counterintuitive running 

time of a mutation rate of 15%, which should result in a higher running time than 2% 

and 5% mutation rate. Figure 37 shows that mutation rates of 5%, 15%, and 25% also 

resulted in the same elitism averages. In Figure 39 it is possible to see that average 

population varies in all mutation rates. 

 

Table 23: Genetic Algorithm Quantitative Parameters for Mutation Rate Variation 

8_31_20: 31% of Coconut oil and 69% of Licuri oil; 

13_27_8: 27% of Vaccenic-enriched oil and 73% of Coconut oil;  

8_74_13: 74% of Coconut oil and 26% of Vaccenic-enriched oil.  

Population 
Size 

Replacement 
Elitism 

Elitism Rate 
Mutation 

Rate 
Crossover 

Rate 
Number of 

Generations 
Running 

Time (min) 
Best 

Mixture ID 
Best Mixture 
Performance 

100 20 20% 2% 90% 50 390 8_31_20 0.744 

100 20 20% 5% 90% 50 720 13_27_8 0.787 

100 20 20% 15% 90% 50 390 8_74_13 0.787 

100 20 20% 25% 90% 50 780 8_74_13 0.787 
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Figure 37: Elitism average performance for each Mutation Rate tested, varying by 

generation. 

 

 

 
Figure 38: Best Mixture Performance for each Mutation Rate tested, varying by generation. 
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Figure 39: Entire Population Average Performance for each Mutation Rate tested, varying by 

generation. 

 

Mutation rate seems to have a small impact on results, as 3 of the tests reached 

the same final mixture. So, the lowest one will be chosen, as it should result in the 

lowest running time. 
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6. Conclusions 
 

Utilization of oils and fats alternatives to cocoa butter in chocolate products is a 

current reality. Increasing demand, together with higher prices and reduced in 

production in some countries, turns this substitution even more appealing to industries.  

In parallel, Computer-Aided Product Design (CAPD) and Reverse Engineering 

concepts were developed to make product development process cheaper and faster, 

helping industries launch better products in a shorter period. 

In the case study for cocoa butter, Solid Fat Content (SFC) was chosen as the 

main optimization property in CAPD Framework, because it represents the most 

important behavior of chocolate that needs to be reproduced: solid at fridge and shelf-

temperature, and liquid at body/consumption temperature. The additional optimization 

layer was done using a Genetic Algorithm, because the SFC computation is itself a 

nonlinear optimization step.  

Calculation of SFC for each simulation used a methodology previously 

developed, by minimizing the Gibbs Free Energy function. This requires a resolution 

of a NLP problem, using a CONOPT 3 solver. 

The first challenge of this work was the tools’ integration, since SFC optimization 

was done using Fortran, GAMs, and Matlab, and the GA was written in Python, a more 

recent programming language. 

The main challenge of working specifically with GA is the number of modifiable 

parameters, which ideally would involve a thorough sensitivity analysis involving both 

qualitative and quantitative parameters. This analysis was performed only in 

quantitative parameters, maintaining qualitative choices fixed. Even with the 

optimization of GA parameters, best results are not guaranteed, and different 

simulations are not 100% comparable, as a result of the stochastic nature of this 

method. 

In the case of single oils and fats, a simpler approach was performed, because 

only 45 simulations needed to be performed and compared to the genetic algorithm. In 

this case, Ucuúba butter, Licuri Oil, and Murumuru butter were the top 3 results. 

For the binary mixtures simulations, an exhaustive search cannot be performed, 

as it would result in almost 100k simulations varying the 45 oils with 99 different 

proportions. So, only the genetic algorithm was applied, together with its sensitivity 

analysis.  
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Regarding population size, the higher the total population, the best results that 

can be obtained. However, this also increases computational cost, as process will take 

longer to run, so this modification but be done with caution. In this work, population 

size was increased only until 100 individuals, as it already increased running time to 

12 hours in almost all simulations.  

For the Replacement Elitism Rate, which derives from a fixed qualitative 

parameter, the optimal value found was 20%; lower and higher values resulted in 

worse mixtures. Crossover rate showed the best result in a value of 90%. Mutation rate 

seems to not affect so much the results, as 3 out of the 4 simulations converged to the 

same best mixture. 

With the optimized parameters in the binary mixture optimization, it was already 

possible to see an increase in the objective function when compared to single VO tests. 

With population size of 100, an average of 900 mixtures were evaluated in each 

simulation in approximately 12 hours, which shows the biggest advantage of this 

method: analysis of a large of number of oils and fats, in a short period of time, with no 

experiments needed.  

In a real product development scenario, experiments are required, and this tool 

would be useful by choosing previously the best mixtures before going into the 

laboratory, which would fasten the launch of new products or raw material substitution. 

Also, innovative, and non-previously tested materials can be identified. 
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7. Future Works 

 

As future works, the following points are highlighted:  

 

● Run Genetic Algorithm for ternary mixtures. 

 In this work, only single and binary oil mixtures were tested. Another possibility 

would be to test ternary mixtures to achieve an even higher objective function. 

 

● Enhance Genetic Algorithm: 

 

1. Modify objective function. 

 The current objective function considers only values of solid fat content at three 

different temperatures, with the final performance being an average of them. With this, 

it was not possible to obtain a curve with a similar shape to cocoas. So, other types of 

aggregation could be done over the SFC values, such as weighted average, and other 

properties could be added to the genetic algorithm optimization. 

 

2. Perform a Sensitivity Analysis on GA Qualitative Parameters 

In this project, only quantitative parameters were varied and tested. To achieve 

even better results, a sensitivity analysis on qualitative parameters could be performed 

to find better results for the optimization process. 

 

3. Change the percentage of each oil/fat in binary mixtures. 

In the current simulation, the percentage of each oil could be any integer number 

from 1 to 99. However, very similar results were obtained because of this. So, in a 

future simulation, percentage could be limited to go from 1% to 95%, by 5 p.p. steps.  
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8. Scientific Events Participation 
 

The current work was presented in the V International Meeting on Fats and Oils, 

which happened in Campinas on May 10, 11 and 12th of 2022. 

 

BEARZI, L. F.; TELES DOS SANTOS, M. Computer-Aided Product Design for Cocoa 

Butter Alternatives. International Meeting on Fats and Oils - Challenges in a Changing World. 

Anais.Campinas: Sociedade Brasileira de Óleos e Gorduras, 2022. 
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APPENDIX A – Table with vegetable oils and fats’ fatty acid composition. 
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APPENDIX B – Pseudocode of the Genetic Algorithm used in the Binary Mixture 

Optimization 

 

 

n_elem #Number of available oils in the database 

n_pop #Total population of each generation 

n_gen #Total number of generations (termination criteria) 

elit #Replacement Elitism Rate  

selection_elit = n_pop - elit 

mutation_rate  

crossover_rate 

dataset_with_oil_list 

j = 0 

 

while j < n_gen: 

 dataset_evaluated = calculate_objective_function(dataset_with_oil_list) 

 parents_list = elitism_selection(dataset_evaluated) 

     

########################### Crossover operation ############################## 

 

    i = 0 

    while i < (selection_elit):    

        if crossover_prob <= crossover_rate: 

            child_1, child_2 = crossover(parents_list[i], parents_list[i+1]) 

 

        else:  

            child_1, child_2 = parents_list[i], parents_list[i+1] 

         

        i = i + 2 

 

############################ Mutation operation ############################## 

    k = 0 

    while k < (selection_elit): 

        if mutation_prob <= mutation_rate: 

            child_mut = mutation(children[k], n_elem) 

 

        else:  

            child_mut = children[k] 

 

        k = k + 1 

     

best_mixtures_kept_in_next_pop = elitism_replacement(dataset_with_oil_list) 

final_dataset = best_mixtures_kept_in_next_pop ++ child_mut 

final_dataset_with_sfc_values = run_programs(final_dataset) 


