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Resumo

A busca por fontes renováveis de energia, materiais e produtos químicos tem sido o foco de
muitas políticas internacionais. Bioprocessos são uma promissora alternativa para atingir
esses objetivos, entretanto, esses processos devem ser economicamente viáveis para se
obter sucesso em um mercado altamente competitivo. A bioprodução precisa ser otimizada
tanto em nível celular, como em nível de processo. A biologia de sistemas pode contribuir
em ambos os níveis, tornando modelos adequados para a análise de engenharia metabólica,
modificando o metabolismo das células, e fornecendo modelos preditivos para otimizar
as operações de bioprocessos. Esses métodos computacionais devem ser precisos e
confiáveis, portanto, áreas como a Engenharia de Sistemas em Processos (PSE) têm um
enorme potencial de contribuição. O objetivo desta tese foi aplicar ferramentas de PSE para
aperfeiçoar os métodos existentes em Biologia de Sistemas. Para isso, foram construídas
colaborações interdisciplinares para encontrar gargalos nas metodologias existentes. A tese
foi dividida em três tópicos/projetos principais. No primeiro, métodos de identificabilidade
foram aplicados ao planejamento ótimo de experimentos de carbono marcado para melhorar
o processo de estimação de fluxos metabólicos. A metodologia foi aplicada à produção de
bioplásticos e biossurfactantes por Pseudomonas spp.. O planejamento de experimentos foi
utilizado para se determinar o melhor substrato marcado e para reduzir o custo experimental.
Foram aplicados três métodos de análise de identificabilidade, baseados na inspeção
visual das saídas do modelo, na Matriz de Informação de Fisher e em Componentes
Principais. As marcações ótimas para os substratos para cada espécie de Pseudomonas
foram determinadas e as principais rotas metabólicas foram estimadas. O segundo projeto
consistiu em tornar um modelo metabólico dinâmico conhecido como Dynamic flux balance
analysis (dFBA) mais adequado para aplicações de controle preditivo baseado em modelos.
Os modelos dFBA consistem em um sistema de equações diferenciais ordinárias com um
modelo de otimização integrado, portanto, aplicações em controle são desafiadoras. O
modelo de otimização foi substituto por um modelo surrogate e foi demostrado que esse
método pode diminuir consistentemente o tempo computacional e tornar o desempenho do
controlador mais confiável. Finalmente, o terceiro projeto também se concentrou em modelos
dFBA, mas visando torná-los mais viáveis para aplicações de engenharia metabólica
dinâmica. O modelo dFBA foi reformulado como um problema NLP em um único nível.
São discutidos os desafios de resolver um problema com restrições complementares e
como superá-los. Estudos de caso de controle dinâmico do metabolismo demonstraram o
potencial da metodologia desenvolvida. Juntos, esses métodos podem ser aplicados para
obter simulações numéricas mais confiáveis e precisas usando modelos de biologia de
sistemas.
Palavras chaves: Modelos metabólicos, Identificabilidade, Controle preditivo baseado em
modelo, Análise de Balanço de Fluxos, 13C-Análise de fluxos metabólicos



Abstract

The search for renewable sources of energy, materials, and chemicals has been the focus of
many international policies. Bioprocess emerged as a powerful alternative to achieve these
goals, however, this type of process should be economically feasible to be successful in
a highly competitive market. Bioproduction needs to be optimized at the cellular level, as
well as at the process level. Systems biology can contribute to that aim, making models
suitable for metabolic engineering analysis to modify cells’ metabolism, and also providing
predictive models to optimize bioprocess operations. These computational methods must
be precise and reliable, therefore, fields such as Process Systems Engineering (PSE) have
a larger potential to contribute. The aim of this thesis was to apply PSE tools to improve
existing systems biology methods. In order to do that, interdisciplinary collaborations were
built to find bottlenecks in the existing methodologies. The thesis was divided into three main
topics/projects. In the first one, identifiability methods were applied to the optimal design of
carbon labeling experiments to improve the metabolic flux distribution estimation process.
The methodology was applied to Pseudomonas spp. producing bioplastics and biosurfactants
under non-growing conditions. Design of experiments was performed to determine the best
labeling substrate and also to reduce experimental cost. Three methods for identifiability
analysis were applied, based on visual inspection of the response surface of the model
output, on the Fisher Information Matrix and a Principal Component-based technique. The
optimal labeled substrates for each Pseudomonas specie was determined, and the main
routes for bioproducts biosynthesis were estimated. The second project consisted in building
a dynamic metabolic model known as Dynamic flux balance analysis (dFBA) more suitable
for model predictive control applications. dFBA models consist of a system of ordinary
differential equations with an optimization model embedded, thus, incorporating them into
MPC applications is very challenging. We replaced the embedded optimization model with
a simple surrogate model and showed that this can consistently decrease computational
time and make the MPC performance more reliable. Finally, the third project also focused
on dFBA models but tried to make them more feasible for dynamic metabolic engineering
applications. We reformulate the dFBA model as an NLP and showed that the solution of
the bi-level optimization problem can be obtained from a single level problem, which is more
straightforward to solve. The challenges of solving a complementary constrained problem
and the way to overcome that problem are discussed. Case studies of dynamic control of
metabolism demonstrated the potential of the developed methodology. Taking all together,
these methods can be applied to obtain more reliable and precise numerical simulations
using system biology models.

Keywords: Metabolic models, Identifiability, Model Predictive Control, Flux Balance Analysis,
13C-Metabolic Flux Analysis
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1 Introduction

The search for a sustainable economy has driven the scientific community to look

for replacements for fossil-derived products. Bioproducts are, in this context, the natural

replacement candidates. Special attention has been dedicated to producing fuels, material,

and chemicals by microorganisms (ZETTERHOLM et al., 2020). That fact results from the high

flexibility of compounds that can be produced by cells (LEE; KIM, 2015). As examples of

commercialized bioproducts, it is possible to mention ethanol, isobutanol, acetone, lactic

acid, and polyhydroxyalkanoates (PHA) (GUSTAVSSON; LEE, 2016).

Although it is possible to mention some successful cases of industrialized biocom-

pounds, for most fossil-derived products, the equivalent bioproduct is far more expensive

(ZETTERHOLM et al., 2020). The cost of the process is usually an impediment, and in some

cases, a new biological route must be developed. Biological systems are complex, and the

complete knowledge of the cell’s functionality is not yet uncovered. However, in the past

decades, a variety of new tools have emerged with the development of fields like systems

biology (KITANO, 2002) and metabolic engineering (STEPHANOPOULOS, 1994). These fields

have in common the use of mathematical models to analyze the cell with a holistic view.

The concept of microbial cell factories can be explained from an analogy between

the cells and a chemical plant. As a chemical plant can be modified in order to produce

different products, in the same way, cells can be modified to generate a new bioproduct.

Molecular biology techniques for genetic modifications are now routine in research labs

around the world. The process of selecting a host organism, designing pathways, and genetic

engineering this host to produce a particular bioproduct, it is known as strain optimization

(GUSTAVSSON; LEE, 2016). The field of metabolic engineering emerged as a rational way of

performing strain optimization by the utilization of mathematical tools (STEPHANOPOULOS,

1994). The goals of metabolic engineering usually are: improving substrate utilization;

enabling a wide range of carbon source utilization; increasing product tolerance; removal of

feedback inhibition; and robustness.

Systems Biology is an interdisciplinary field that seeks to represent complex biological

systems by mathematical models (PALSSON, 2015). By applying a holistic view, systems

biology aims to find emergent properties of cells, tissues, and organisms. In particular, the

application of systems biology models to the study of cellular metabolism has significantly

increased the understanding of the cellular functions (NIELSEN, 2017).
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Nielsen and Keasling (2016) and Lee and Kim (2015) detailed some metabolic

engineering and systems biology achievements and the role played by mathematical models

in each of them. In all cases, metabolic models had an important role in the development of

the new strains by giving genetic modification targets, metabolic flux maps, or by optimizing

the bioprocess operation. In the next section, a general introduction will be presented to

a class of models (Metabolic Network models) widely applied in Systems Biology and

Metabolic Engineering.

Metabolic Network Models

There are diverse processes going on at the same time inside a cell, trying to

understand all these processes is a hard task to be achieved. A popular way to look at

and to organize these processes is to separate them into networks. A network consists of

nodes that represent compounds and links that are chemical transformations that relate

these compounds. In this sense, for each specific microorganism, it is possible to formulate a

signaling network, regulatory network, metabolic network, etc. The most studied network of a

cell is the metabolic network and consequently it is available for a variety of species (FANG et

al., 2020). Metabolic network consists of metabolite nodes that are connected by enzymatic

reactions. A recent and more advanced class of metabolic networks is the genome-scale

metabolic networks, where the enzymatic reactions are related with the respective genes.

These networks have become a powerful tool to give a systemic view of metabolism.

The process of building a metabolic network is called reconstruction. The reconstruc-

tion of a metabolic network consists in compiling a large amount of data like proteomics,

metabolomics and fluxomics and try to put all of this together in a matrix called stoichiometric

matrix (PALSSON, 2015). Each row of a stoichiometric matrix represents a metabolite and

each column an enzymatic reaction. A special reaction in this matrix is a pseudo biomass

reaction, where some pseudo reactions of basic constituents of the cell’s biomass are lumped

together. Once the stoichiometric matrix is built, it is possible to develop models based on it.

Different classes of metabolic models can be formulated, here they are classified as

steady-state, carbon flux, and dynamic models. The steady-state models have as the main

assumption that the metabolic fluxes and metabolite pool sizes do not change with time.

Usually, inside a cell, there are many more reactions than metabolites which implies that

the system of equations formed by the stoichiometric matrix has multiple solutions, in other
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words, multiple possible flux distributions. For the few cases of small networks when this is

not true, the technique Metabolic Flux Analysis (MFA) can be applied, where the external

fluxes are measured and the internal fluxes are estimated using the stoichiometric matrix

(STEPHANOPOULOS, 1994). MFA has historical importance because it was the first metabolic

model to be used (STEPHANOPOULOS, 1994), however, its applications are limited.

For the other cases with multiple possible solutions, two kinds of models can be

applied: biased or unbiased. Elementary Flux Modes (EFM) is an unbiased method because

it does not require any further assumption about the cellular metabolism behavior. EFM finds

an algebraic basis for the flux space, in other words, EFM finds pathways that keep the cell in

steady-state conditions (SCHUSTER; HLGETAG, 1994). EFM is very useful to compare product

yields for different metabolic pathways and find correlations between reactions. However,

the application of EFM to predict a flux distribution is not straightforward, because it does

not give a single solution. Flux Balance Analysis (FBA) is a biased method, that assumes an

objective function for the cell in order to find a flux distribution. Typically it is assumed that

the cells have the objective of maximizing biomass yield (ORTH et al., 2010). The FBA has

the advantage of giving a single solution of the flux distribution and being much easier to

interpret, however equally likely solutions are common and the assumption of maximizing

biomass yield is not always valid (ORTH et al., 2010). FBA is very useful to predict promising

gene deletions and how the insertion of new pathways influences on metabolism.

The main limitation of steady-state models is the availability of data. The carbon

flux models try to overcome this difficulty by using more information about the interior of

the cell. The core of this method is to use a labeled substrate (usually carrying carbon

isotope 13) and supply this substrate to the cells’ medium. As the cell consumes it, the

labeling is spread out in all metabolites until it finally comes out in the bioproducts. The

labeling pattern is usually measured in amino acids and bioproducts by techniques such

as Gas Chromatography-Mass Spectrometry (GS-MS) and Nuclear Magnetic Resonance

spectroscopy (NMR) (ANTONIEWICZ, 2015). The fate of all atoms in the metabolic network

must be known to formulate a model that simulates the labeling spread in cells. As the

measured patterns are a function of the metabolic fluxes, a flux distribution can be estimated

using carbon flux models and the labeling measured data. When this technique is applied

in metabolic and isotopic steady-state it is called 13C- Metabolic Flux Analysis (13C-MFA)

(WIECHERT, 2001). Isotopic steady state takes place when the labeling does not change with

time. A much more complex technique is applied in the isotopic non-stationary condition,
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which is called 13C- Non-stationary Metabolic Flux Analysis 13C-NMFA. 13C-NMFA has

required advanced analytical techniques to perform fast analysis and is computationally

costly, however, it enables the estimation of a higher amount of metabolic fluxes with more

precision (NöH et al., 2006). Finally, the technique that is performed outside the metabolic and

isotopic steady state is called 13C dynamic metabolic flux analysis (13C-DMFA), however,

only exploratory work has been reported because of its complexity (ANTONIEWICZ, 2015).

Although steady-state models had achieved success in many applications, they have

serious limitations, such as the lack of representation of metabolite concentrations and

enzymatic regulation (SRINIVASAN et al., 2015). These features are key concepts to analyze

real industrial bioprocess cases, which are essentially dynamic. Kinetic models can represent

the biological dynamic states with more physical precision. Nevertheless, building kinetic

models is not yet common because of many obstacles such as (SAA; NIELSEN, 2017): lack of

available data; parameter identifiability and estimability; and model non-linearity. Finally, there

are also hybrid models, that use stoichiometric models to represent the internal metabolism

and kinetic expression of key uptake rates. Examples of hybrid models are Dynamic Flux

Balance Analysis (dFBA) (MAHADEVAN et al., 2002) and Cybernetic models (RAMKRISHNA;

SONG, 2018).

Numerical challenges in metabolic network models

Behind the application of metabolic network models to bioprocess development there

are numerical methods used to solve these models. Usually, these methods are implemented

with the aid of a software where the user only has access to the interface. The numerical

methods applied to solve these models are far from being free of errors and pitfalls, that are

usually reported in the literature.

Chindelevitch et al. (2014) described some numerical issues in the toolbox for FBA

simulation and proposed an exact arithmetic toolbox to deal with these issues, and a discus-

sion followed from this work (EBRAHIM et al., 2015; CHINDELEVITCH et al., 2015). In 13C-MFA,

Follstad and Stephanopoulos (1997) pointed out that some simplification on reversible reac-

tion could lead to flux misestimations and Winden et al. (2001b) described pitfalls associated

to commonly applied model reduction techniques. Kohlstedt and Wittmann (2019) showed

that some assumptions in the design of experiments could lead to flux identifiability problems.

Vasilakou et al. (2016) defined challenges for dynamic metabolic modeling. Some of them



24

are computational/numerical issues like developing rigorous dynamical systems theory and

new computational tools for parameter exploration and identification. New methods must

be developed and, as already pointed out, Process Systems Engineering (PSE) has a

tremendous potential to contribute (MARANAS et al., 2003).

1.1 Aim and outline of the thesis

This thesis aimed to study numerical methods applied to metabolic network models.

This "learning by doing" process revealed some drawbacks to existing methodologies.

Therefore, the aim was to develop new methodologies and improve existing ones.

The thesis is separated into three sections/chapters, each one with a different appli-

cation of metabolic models. Chapter 2 describes the application of identifiability analysis to

the design of carbon labeling experiments. The case study is the simultaneous production of

PHA and rhamnolipids by Pseudomonas aeruginosa. 13C-MFA in non-growing conditions

can be challenging, and identifiability analysis had to be applied to overcome the scarcity of

available data. Chapter 3 presents a surrogate model approximation of FBA models. The

surrogate FBA can replace the original FBA optimization problem and avoid bi-level opti-

mization problems that arise in some dFBA applications and that be computationally costly.

Two case studies using the metabolic network of Saccharomyces cerevisiae were solved:

A model Predictive Control (MPC) of a bioreactor, and a parameter estimation problem.

Finally, Chapter 4 presents an NLP formulation for the dFBA models that replaces the FBA

optimization by the first-order optimality conditions. Some challenges in solving this problem

are highlighted and some solutions are proposed. Five case studies are presented and the

advantages and drawbacks of the method are discussed.
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2 Identifiability of metabolic flux ratios on carbon labeling experi-
ments

Metabolic Engineering is a field that aims to assist in the development of new strains

for the sustainable production of valuable bioproducts. In essence, it consists in applying

mathematical models to guide genetic modification in cells in order to obtain higher yields

and productivity (SAUER, 2006). Among the tools that have been developed in the field,
13C-Metabolic Flux Ratio Analysis (13C-MFA) emerged as a powerful tool to describe the

metabolism of a cell by estimating the flux distribution of metabolites (SAUER, 2006). Figure 1

illustrates how this method works; first a 13C labeled substrate is used in the culture medium

(e.g. [6-13C-glucose]), then the labeling goes through the internal metabolites until it reaches

a bioproduct. The labeling pattern in the bioproduct is a function of the metabolic pathway

that was used by the cell, and each pathway shuffles the labeling differently. Finally, the

labeling in the bioproduct is measured by techniques such as Gas Chromatography-Mass

Spectrometry (CG-MS) and Nuclear magnetic resonance (NMR). Using a metabolic network

model, an estimation problem is formulated and solved and the flux distribution inside the

cell estimated. Determining precisely which fluxes can be estimated from a given experiment

architecture (i.e. the particular substrate labeling and bioproducts measurements) is crucial

due to the high experimental cost associated with carbon labeling experiments.

Figure 1 – 13C-MFA method.

In this chapter, the mathematical formalism of 13C-MFA is presented with a focus

on the importance of the design of labeling experiments and identifiability analysis to

reduce experimental costs and the estimation uncertainty. Three different methods for

identifiability analysis were applied to study the central metabolism of Pseudomonas during

the production of polyhydroxyalkanoates (PHA) and/or rhamnolipids (RHL). The production

of these bioproducts takes place on non-growth conditions, where only a few labeling
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measurements are available to perform flux estimation, making it a challenging problem to

solve.

Remark. The results presented here are based on the works Oliveira et al. (2021b) and

Oliveira et al. (2021c). Three identifiability analyses were applied in different steps of the

development of this doctoral thesis with different aims. Here, all of these analyses were put

together in an effort to represent all the knowledge developed by the research group for

applying 13C-MFA on Pseudomonas.

2.1 Research background

13C-Metabolic Flux Analysis

Isotopomers

In order to describe the pattern of labeling of each metabolite in a cell during carbon

labeling experiments, the concept of isotopomer is applied. Isotopomers are isomers with

isotopic atoms, having the same number of each isotope of each element but differing in

their positions. An example is given in Figure 2 for a molecule of three atoms. The difference

of the isotopomers is due to where the labeled atoms are placed (filled circles). The position

isotopomers is the set of all possible isotopomers. A subset of isotopomers is the mass

isotopomers where the difference is made by the isotopomer’s weight.

Figure 2 – Comparison between position and mass isotopomers. Filled circles represents
isotopic atoms.
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Modeling and simulation of carbon labeling experiments

The mathematical model is a crucial part of 13C-MFA method. The model needs to

describe the carbon labeling patterns in each metabolite as a function of the metabolic flux

distribution inside the cell. In order to do that the metabolic network of the metabolism and

the atom transition map of the enzymatic reactions must be known a priori.

Zupke and Stephanopoulos (1994) were the first to propose a mathematical model to

account for labeling spreading in metabolic networks. The model has the form:

f̄ (v, x̄) =
1
2

x̄T · (
∑

i

→
v ·

→

Q̄i +
←
v ·

←

Q̄i) · x̄ + (
∑

i

→
vi ·

→

P̄i +
∑

i

←
vi ·

←

P̄i) · x̄ = 0 (2.1)

where v is a vector of metabolic fluxes; x̄ is a vector of isotopomer fraction; P̄i are unimolecular

isotopomer transition matrices; Q̄i are bimolecular isotopomer transition matrices. The

Equation 2.1 is linear with respect to the fluxes (v), but it is bilinear with respect to isotopomer

fractions (x̄). These bilinear terms come from the bimolecular reactions in metabolic networks,

and they introduce difficulties to solve the model. Solving systems of nonlinear equations

using a numerical method can be time-consuming and a source of uncertainties in the

solution (BEERS, 2007). Since the work of Zupke and Stephanopoulos (1994) until now, a

series of transformations of variables were proposed in the literature to obtain an explicit

solution for the isotopomer balance equations:

• Cumomers: sums of the original isotopomer variables (WURZEL; GRAAF, 1999);

• Bondomers: the carbon bonds are used to make the transformation (WINDEN et al.,

2002);

• Elementary Metabolic Units (EMU): eliminates isotopomer fractions that are not rele-

vant to the problem. (ANTONIEWICZ et al., 2007);

• Fluxomers: combine the flux and labeling fraction variables (SROUR et al., 2011);

The cumomer variable transformation was the first to be proposed and together with

the EMU, are the most applied transformations (ANTONIEWICZ, 2015). Recently, the cumomer

transformation was applied in a 13C-MFA toolbox developed in our research group (OLIVEIRA,

2018). When the cumomer transformation is applied, Equation 2.1 becomes:
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1 = 0x

0 = 1A(v) · 1x + 1b(v)

0 = 2A(v) · 2x + 2b(v,1 x)

0 = 3A(v) · 3x + 3b(v,1 x,2 x)
...

(2.2)

where nx are vectors of cumomer fraction of weight n; A and b are cumomer transition matri-

ces and vectors, respectively. The system of Equations 2.2 is linear if solved in sequential

order of the cumomer weights (n). Therefore, it is much faster and more precise to solve.

Equation 2.2 can be used to calculate a cumomer fraction x from a given flux distribution v.

Bidirectional reactions are crucial in 13C-MFA (WIECHERT; GRAAF, 1997; WIECHERT

et al., 1997; WURZEL; GRAAF, 1999; MöLLNEY et al., 1999). Normally, one flux variable is

associated with one reaction direction, however, this would imply in non-identifiability of both

revere and forward fluxes and, as consequence, cause problems of convergence in the

estimation process (WIECHERT; GRAAF, 1997). To avoid some of these problems Wiechert

and Graaf (1997) suggested a parameter transformation of bidirectional fluxes as:

vnet =
→
v −

←
v (2.3)

vxch = min(
→
v ,
←
v) (2.4)

where vnet represents the net flux in the reaction, and can be positive or negative depending

on the reaction direction; vxch represents the exchange in the reaction being a positive

number. For unidirectional reactions, vxch = 0, and for fast equilibrium reactions, vxch ⇒ ∞. In

order to reduce the dimension of fluxes to be estimated from labeling data, the metabolic

fluxes (v) are parametrized using the metabolite balances (S v = 0) and calculated in terms

of the so-called free fluxes (v = g(v f ree)). Finally, it is possible to compute the sensitivities of

the labeling of the measured components with respect to the free fluxes in an explicit form

differentiating the system of equations 2.2:

f (x, xinp, v f ree) = 0, y = h(x) (2.5)

∂y(x, v f ree)
∂v f ree

=
∂y(x)
∂x
·
∂x(v f ree)

v f ree
(2.6)
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where f is System of Equations 2.2, xinp is the labeling of the substrate and y the labeling of

the measurements.

Optimal Design of labeling experiments and identifiability analysis

The utilization of a mathematical model for designing the labeling experiment is called

Design Optimal of Labeling Experiment that we are going to call just Design of Experiments

and use the acronym DOE (ANTONIEWICZ, 2013). DOE usually applies mathematical model

simulations to choose the pattern of substrate labeling and the labeling measurements that

would minimize the experimental costs while allowing for the estimation of the aimed set of

fluxes with minimal uncertainty. The number and type of measurements can directly impact

the cost of the labeling experiment. Furthermore, the choice of the substrate labeling pattern

can also have an impact on experimental cost, as an example, 1 g of [1-13C]Glucose costs

around R$1625 (SIGMA-ALDRICH, 2021).

A field related to DOE is identifiability analysis, that consists of a group of methods

that are used to determine how well the parameters of a model can be estimated by a

given quantity and quality of experimental data (MCLEAN; MCAULEY, 2012). In the context of

metabolic flux estimation, 13C-MFA does not always provide a unique flux distribution for a

given set of labeling measurements. When a metabolic flux cannot be uniquely estimated

from the available experimental data, that flux is said to be non-identifiable. Non-identifiability

can be classified as structural or practical. Structural non-identifiability takes place if for

multiple values of the flux parameters the same labeling pattern would be obtained. Exam-

ples of methods for structural identifiability analysis are Taylor series expansion, similarity

transformations and generating series (MCLEAN; MCAULEY, 2012). Structural analysis just

analyses the structure of the model and does not take into account the experimental errors

and the experimental setting. On the other hand, practical identifiability analysis considers

the available measurements and the noise in the system. Practical identifiability methods

are based on Fisher Information Matrix (FIM), visual inspection of the response surface of

the model output, Monte Carlo simulations and Correlation matrix (MCLEAN; MCAULEY, 2012).

The process system engineering community has given important contributions to the

study of the identifiability of nonlinear model parameters (BARD, 1974; MCLEAN; MCAULEY,

2012). Wiechert (1995) was one of the first to study the subject. He performed a structural

analysis using a Gröbner Basis algorithm. Winden et al. (2001a) applied a structural identifi-
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ability analysis using a symbolical algorithm to reduce the metabolic network to a minimal

set of reactions that can possibly be estimated. Isermann and Wiechert (2003) developed a

general theory of structural flux identifiability of carbon labeling experiments. Chang et al.

(2008) developed an integer linear programming to compute the optimal measurements on

carbon labeling experiments. Kappelmann et al. (2016) performed a structural identifiability

analysis of anaplerotic reactions in Corynebacterium glutamicum by evaluating the remaining

degrees of freedom of the system by computing the rank of the Jacobian matrix. Möllney et

al. (1999) applied a practical identifiability analysis to the DOE. They computed the Fisher

Information Matrix and used the D-criterion to determine the best tracers. Finally, Theorell et

al. (2017) developed a practical identifiability approach that compute Bayesian confidence

intervals using Markov Chain Monte Carlo technique.

Taking all together, most of the work in literature focuses either on structural ap-

proaches or in complex algorithms to study the identifiability of metabolic fluxes on carbon

labeling experiments. Here, we will focus on practical identifiability analysis of a DOE prob-

lem. The cost of experiment will be briefly addressed when different mixtures of labeled

substrates will be considered. The type and number of measurements were not taken into

account in this project because the measurements were restricted to those data available in

our research group laboratory.

Polyhydroxyalkanoates and Rhamnolipids metabolism in Pseudomonas aerug-
inosa

Among the candidate bioproducts presenting high potential to replace petrochem-

ical compounds, two have received special attention: Polyhydroxyalkanoates (PHA) and

Rhamnolipids (RHL) (RANDHAWA; RAHMAN, 2014; RAZA et al., 2018). PHA are intracellular

bacterial polyester granules accumulated more expressively when cell growth is limited

by an essential nutrient such as nitrogen or phosphorus, and carbon is in excess. Those

polyesters act as a carbon and energy reserve and can represent up to 80% of the cell

final dry weight (RAZA et al., 2018). PHA are thermoplastics materials, therefore they are

sustainable substitutes to petroleum-based polymers (RAZA et al., 2018). Rhamnolipids are

glycolipid biosurfactants that are secreted in the medium by cells and, similarly to PHA,

they are mainly synthesized under nutrient limitation conditions. The applications of rhamno-

lipids are vast and present in different fields like pharmaceutical, cosmetics, food, laundry,
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agriculture and bioremediation (RANDHAWA; RAHMAN, 2014). In spite of the wide range of

applications and positive environmental impact related to these bioproducts, their production

cost is still higher than petroleum derivatives. PHA and Rhamnolipids can be produced

simultaneously in Pseudomonas aeruginosa (HORI et al., 2002). A broader understanding of

the metabolism in the biosynthesis of these bioproducts is necessary to explore approaches

to achieve the maximum yields. PHA and RHL have a common precursor in P. aeruginosa

metabolism, (R)-3-hydroxyalkanoic acids, channeled from the de novo fatty acids biosyn-

thesis pathway when glucose is used as carbon source (REHM et al., 2001). This is a cyclic

pathway that extends fatty acids with two carbons derived from acetyl-CoA after each round.

In a reaction catalyzed by PhaG, the intermediate (R)-3-hydroxyalkanoil-ACP is converted

into (R)-3-hydroxyalkanoil-CoA, the substrate for PHA polymerization by PHA synthase.

(R)-3-hydroxyalkanoil-ACP is also the substrate for the reaction catalyzed by RhlA leading

to the synthesis of hydroxyalkanoiloxy-alkanoates (HAAs) the precursor in rhamnolipids

biosynthesis (ZHU; ROCK, 2008). The glucose catabolism by Entner-Doudoroff (ED) pathway

supplies acetyl-CoA and redox power (NADPH) for PHA and RHL biosynthesis. ED can

operate in a cyclic or non-cyclic mode in Pseudomonas (NIKEL et al., 2015). Kohlstedt and

Wittmann (2019) estimated null flux through the PP pathway (oxidative branch) and a cyclic

operation of ED pathway in the human pathogen P. aeruginosa PAO1 during the exponential

growth phase. P. aeruginosa LFM634 (like P. aeruginosa PAO1) does not present the oxida-

tive branch of PP, due to the absence of gene gnd, making ED the main pathway for NADPH

supply.

Carbon labeling experiments in Pseudomonas aeruginosa

Proteinogenic amino acids are the target of the labeling measurements in the majority

of 13C-MFA reports (MCKINLAY et al., 2014). However, since proteinogenic amino acids

are poorly synthesized at the stationary growth phase, the elucidation of the metabolism

under non-growing conditions is a clear demand (MCKINLAY et al., 2014). Choi et al. (2011)

investigated the metabolic pathway for the biosynthesis of RHL and PHA by P. aeruginosa

from [1-13C] octanoic acid using 13C–NMR analysis. Riascos et al. (2013) estimated the flux

ratio into PP and ED node in Pseudomonas sp. producing PHA based on experiments with

mixtures of [U-13C] glucose (fully labeled glucose) and [U-12C] glucose (natural glucose).
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To the readers interested in 13C-MFA studies of others Pseudomonas species the review

published by Mendonca et al. (2020) is recommended.

This work aimed to understand the activity of central metabolic pathways in P. aerug-

inosa LFM634 when producing PHA and RHL. Identifiability analysis and a design of

experiments were carried out, followed by the labeling experiments.

2.2 Methodology

Identifiability of metabolic fluxes by 13C-MFA

Visual inspection of the response surface of the model output

Visual inspection of the response surface of the labeling simulations for different

values of metabolic fluxes can provide useful information on the fluxes identifiability for a

given experimental setup. This method consists in performing a series of simulations for

different values of metabolic fluxes and observing the labeling of metabolites available as

measurement for a given experimental setup. The method is simple to implement, easy to

analyze, and does not require an initial guess of the flux distribution. One drawback of the

method is the high computational effort to perform the simulations needed to cover all the flux

domain. Furthermore, the method is restricted to small models because of the impossibility

of visualizing a high-dimensional flux space.

For the analysis of the central metabolic network of P. aeruginosa LFM634 we solved

the model for every value of the metabolic fluxes in a equidistant grid of 10 by 10 grid. The

labeling of the metabolites that can be measured was plot as a response surface.

Fisher Information Matrix based analysis

One criterion used in DOE is to choose the experiments which will provide the

smallest variance of the estimated parameters. A classical way to access this information is

to compute an estimate of the Fisher Information Matrix (FIM) that gives the variance of the

expected parameters values. The FIM can be calculated by inverting the covariance matrix

of the parameters, that in turn can be approximated by the sensitivities (Equation 2.6) as

follows:
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FIM(v0, u) = Cov(v0)−1 ≈
∂y(x)
∂v f ree

T

· Σ−1 ·
∂y(x)
∂v f ree

(2.7)

where v0 is the vector of fluxes assumed in the analysis; u the selected labeled substrate

mixture; y are the measured mass isotopomers;
∑

is the covariance matrix of the mea-

surements. The FIM is a square matrix with the size of the number of degrees of freedom

(free fluxes). For this reason different criteria were formulated in order to synthesize the FIM

information (MCLEAN; MCAULEY, 2012). The D-criterion can be calculated by the determinant

of the FIM as follows:

D = det(FIM) (2.8)

Maximizing the D-criterion is equivalent to minimizing the volume of the joint confi-

dence region of the parameters (BARD, 1974).

Principal component based analysis

The well-known principal component analysis (PCA) is applied to identify linear

relations between metabolic fluxes in 13C-MFA. Also, a methodology recently developed to

obtain sparse PCA components is applied (NAKAMA et al., 2020).

Principal component (PC) was applied to assess the identifiability of the parameters

of the nonlinear model and select a subset of parameters that can be estimated with high

accuracy (VAJDA et al., 1989). This method consists in computing the Hessian matrix (H)

obtained by the Gauss-Newton approximation, using normalized sensitivities. Then, H is

decomposed into PC, by the Singular Value Decomposition (SVD) as follows:

∂y(x, v f ree)
∂v f ree

= UΣVT (2.9)

H =
∂y
∂v f ree

T

·
∂y
∂v f ree

= (UΣVT )T · (UΣVT ) = VΣ2VT (2.10)

where V is the matrix of PCs (eigenvectors of H) and Σ2 the matrix with the eigenvalues of H.

The PCs of H represent linear combinations of the original parameters, which may indicate

dependencies between parameters . However, because these matrices are normally dense,

finding combinations with a reduced number of relevant parameters can be challenging. Re-

cently, Nakama et al. (2020) developed a method to compute sparse PC that are orthogonal
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to the components associated with small eigenvalues, which can be specifically associated

to the large variance of the parameters. In this work, both PC and sparse PC were computed

to evaluate the identifiability of metabolic fluxes.

Carbon labeling experiment

For this work, a partnership with Prof. Dr. José Gregório (ICB-USP) and the MSc.

student Vânia Novello (ICB-USP) who performed all the experiments with labeled substrate

was established. The microorganism used in the experiments was Pseudomonas aeruginosa

LFM634 (PEIXOTO, 2008). This strain was cultivated in two different media. Mineral medium

was used to produce RHL and PHA. The LB medium (Lysogeny broth) is a rich medium

suitable for the growth and maintenance of various microorganisms. The LB medium was

used for inoculum preparation to obtain a high concentration of cells to be further transferred

to the mineral medium (RAMSAY et al., 1990). The carbon source of the two experiments

was a mixture of 13C glucose and natural glucose, 20% (w/w) of [U-13C]Glucose in the first

experiment and 55% (w/w) of [6-13C]Glucose in the second experiment. Nitrogen source was

NaNO3 and the carbon/nitrogen mass ratio (w/w) used was C/N=45. A previously prepared

culture was inoculated to the mineral medium in a ratio of 10% (v/v). Batch cultivations for

48h and 24h in 250 mL Erlenmeyer flasks containing 50 mL medium were performed in a

rotary shaker (30 °C and 150 rpm).

The analysis of the 3HA and the 3HAA were done by gas chromatography-mass

spectrometry (GC-MS) after their derivatization by propanolysis (RIIS; MAI, 1988), generating

3HA methyl esters. There are three typical fragments in 3HA propyl esters (Appendix: Figure

33). The fragments m/z=[M-59] are specific for each 3HA monomers and include carbons

derived from all Acetyl-CoA molecules used in the 3HA biosynthesis and none from the

propanol used in the derivatization reaction. The fragment m/z=131 is generated by α

cleavage at the hydroxyl functional group (LEE; CHOI, 1995) and includes three carbons

derived from biosynthesis and three carbons from the derivatization agent (propanol). The

fragment m/z=89 is derived from a McLafferty rearrangement of the three first carbons in the

3HAs (LEE; CHOI, 1995). Therefore, fragments m/z=89 and m/z=131 are common for all 3HA

and contain carbons derived from one and a half Acetyl-CoA molecules.



35

13C-Metabolic flux ratio analysis

A program developed in MATLAB (Version R2013a, MathWorks) was used to perform

the carbon labeling experiment simulations, DOE and metabolic flux estimation by 13C-MFA

(OLIVEIRA, 2018). The problem of estimating metabolic fluxes ratios was formulated as a

nonlinear constrained least squares problem, as follows:

minv

∑
j

(
xc

j(v f ree) − xm
j (v f ree

σ j
)2 subject to: Equation(2.2) and v ≥ 0 (2.11)

where v f ree is the vector of the free fluxes, and x is the cumomer fractional labeling. Indexes

c and m indicate calculated and measured quantities respectively; σ corresponds to the

standard deviation of the measurements. The objective function is non-linear, thus possibly

giving rise to non-convexity. Therefore, a numerical method is necessary to solve this

estimation problem; the function fmincon was used to find the objective function minima, by

applying a Trust-Region method. The parameter optimization was initialized from different

starting values and the solution corresponding to the lowest objective function value was

selected.

The algorithm for evaluating analytical sensitivities of the labeling state with respect

to the fluxes was implemented in the software. For all flux data, 95% confidence intervals

were calculated as in Wiechert et al. (1997) applying Fisherian statistics. The simulated

mass isotopomers were corrected taking into account the natural abundance of all stable

isotopes (WINDEN et al., 2002).

2.3 Results

Case Study: Glucose metabolism of Pseudomonas aerugionosa under non-
growth conditions

As mentioned at the end of the introduction section of Chapter 2, during the develop-

ment of this thesis, multiple analysis were performed to evaluate the estimation of metabolic

fluxes on Pseudomonas aerugionosa. The aim of these analysis was to determine the identi-

fiability of the metabolic fluxes of Pseudomonas aerugionosa under non-growth conditions

consuming glucose and producing PHA and/or RHL. Usually, the 13C-MFA method is applied

under growth conditions and the labeling measurements of amino acids are available (SAUER,
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2006). However, PHA and RHL production by P. aeruginosa mainly occurs under non-growth

conditions and, in this case, only the measurements of 3HAs/3HAAs mass isotopomer are

available (RIASCOS et al., 2013; OLIVEIRA et al., 2021b; OLIVEIRA et al., 2021c).

The metabolic network used here (Figure 3) contains the Pentose Phosphate (PP)

pathway; the Entner-Doudoroff pathway (ED) that can operate as a linear or cyclic mode;

The cyclic mode of the ED pathway is highlighted in Figure 3, where glucose 6-phosphate

(G6P) is oxidized to 6-phosphogluconate (6PG), and it is converted into glyceraldehyde

3-phosphate (G3P) and pyruvate (Pyr). G3P is recycled to fructose 6-phosphate which

is then converted back to to G6P. The network also comprises a pathway to 3HAAs and

3HAs biosynthesis, where two molecules of acetyl-CoA are condensed into one molecule of

3HAAs or 3HA. These mass isotopomers can be measured in GC-MS analysis and these

are the only measurements available from the labeling experiments. Metabolites that are

typically converted by fast exchange reactions are lumped in a unique pool (WIECHERT,

2007). Linear reactions are lumped, and fluxes related to growth conditions were set to zero,

which includes the TCA cycle reactions. The complete set of reactions and atom transitions

is presented in the Appendix (Table 13) .

The network (Figure 3) has 15 reactions (including three reversible reactions from the

PP pathway), 9 internal metabolites, and glucose uptake is fixed at the unity. Consequently,

the system has five degrees of freedom, that is, five free fluxes. The chosen free fluxes are:

the net flux of the oxidative PP pathway (PPoxi); the net flux of the cyclic mode of the ED

pathway (EDcyc); and the exchange fluxes of the PP pathway (PPxch1 , PPxch2 , and PPxch3).

Different strains of P. aeruginosa can have different metabolic networks. A common

variation on the metabolism of P. aeruginosa is the lack of the oxidative branch of the PP path-

way, due to the absence of gene gnd encoding for 6-phosphoglunate dehydrogenase. The

visual inspection of the response surface of the model output and the FIM based identifiability

analysis were performed based on the draft genome sequence of Pseudomonas aeruginosa

LFM634 where the the gnd gene was not identified. All the experiments presented in this

thesis were performed using this strain. However, because strains of Pseudomonas spp that

contains the gene gnd was also identified in our lab, the PCA based identifiability analysis

also considered the case where the oxidative branch of PP is active (PPoxi).
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Figure 3 – Pseudomonas spp. central glucose metabolism metabolic network.

Identifiability analysis and Optimal Design of labeling experiments

Identifiability analysis based on the visual inspection of the response surface of the
model output

Visual inspection of the response surface of the model output analysis was performed

as described in the methodology section, that is, simulating the mass isotopomers of 3HA

and 3HAA for different values of the metabolic fluxes. The oxidative flux of the PP pathway

was set to zero. To simplify the visual analysis, all exchange fluxes of PP pathway were

assumed to have the same value (PPxch1 = PPxch2 = PPxch3). The value of these fluxes is

represented by the extent of reversible reaction in the figures. Including the exchange fluxes

in the model can lead to identifiability problems (WIECHERT; GRAAF, 1997). Furthermore,

direct measurements of these parameters are not available. Wiechert (2007) has investigated

the relation of exchange fluxes with thermodynamic properties of the respective reactions.

He concluded that in a situation where no net flux is associated with the reversible reaction,

no physical meaning could be associated with these parameters. Despite the difficulty that

the exchange fluxes bring to the problem, they must be included to complete a broad system

representation. Follstad and Stephanopoulos (1997) demonstrated by simulations of carbon

labeling experiments on the PP pathway that the value of the exchange fluxes can have a
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considerable impact on the metabolites labeling. Follstad and Stephanopoulos (1997) also

pointed out that excluding these fluxes can lead to inconsistencies between the predicted

carbon label distributions using these models and those determined experimentally.

The first analysis was performed considering a medium with a mixture of 20% [U-
13C] glucose and 80% of natural glucose (Figure 4). The format of the response surface

indicates that the flux through ED has an effect on the label enrichment only for high values

of exchange fluxes. If only fully labeled G3P or natural G3P are generated, then the ED cycle

has no influence in the measurements. However, when the flux through the PP pathway is

high, new patterns of F6P come out, giving rise to G3P or Pyruvate presenting labeled and

unlabeled carbons, and higher or lower cyclicity of the ED cycle has a significant effect.

Figure 4 – Mass isotopomers simulated for different values of ED flux and extent of reversible
reactions in non-oxidative PP pathway. Medium with a mixture of 20% [U-13C]
glucose and 80% of natural glucose.

The same global sensitivity analysis as presented above was performed for the

[6-13C] glucose substrate (Figure 5). The experimental design provides useful labeling

information for the estimation of the ED flux in a different region of the reversible reactions

that corresponds to the lower values. The data are complementary for the identification

of the fluxes. As it can be observed, the amount of M+0 isotopomer increases as the flux
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through ED increases as a result of the increase of cyclicity. This happens because the main

effect of the cycle is in changing the labeling pattern of the third carbon atom in G3P to the

first atom of F6P, which is subsequently eliminated in the form of CO2. When PP has a high

exchange flux, close to equilibrium, the effect of ED cycle is neutralized. Thus, no sensitivity

information is provided in this scenario.

Figure 5 – Mass isotopomers simulated for different values of ED flux and extent of reversible
reactions in non-oxidative PP pathway. Medium with a mixture of 55% [6-13C]
glucose and 45% of natural glucose.

Figure 6 summarizes the results of the design of labeling experiments and sensitivity

analysis. First, the simulations indicated that for experiments with [U-13C] glucose (Figure 6A),

the labeling pattern that will be generated by linear ED or cyclic ED is the same. However,

the non-oxidative fluxes on PP pathway can shuffle the labeling, this is the main justification

for this experiment. In the second case (Figure 6B), the experiments with [6-13C] glucose

can clearly help to distinguish from the linear to the cyclic mode operation of ED pathway.

Furthermore, the effect of the fluxes in the non-oxidative PP pathway is minimal, mainly

when the ED cycles operate in linear mode.



40

 
 

 
 
 
 
 
 

 

A 

B 

Figure 6 – Overview of the effect of each pathway on the labeling pattern of 3HA/3HAA
mass isotopomers on experiments with [U-13C] glucose and [6-13C] glucose. ED
– linear operation of Entner-Doudoroff pathway; ED cycle – cyclic operation of
Entner-Doudoroff pathway; PPrev – non-oxidative reversible reactions of Pentose
Phosphate pathway.

Fisher Information Matrix based identifiability analysis

The Optimal Design of Labeling Experiments for the study of the metabolic network

of Pseudomonas aeruginosa LFM634 was carried out. Metabolic fluxes and the variance

of the measurements were both assumed from previous experiments (OLIVEIRA, 2018). In

order to restrict the labeling pattern possibilities in the glucose molecule, it was decided to
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evaluate the D-criterion for glucose molecules labeled in only one of its atoms. As it can be

seen in Table 1, labels on atoms 1, 2, 3 and 5 generate measurements that are not sensitive

to changes in the cycle flux (ED f lux in Figure 4); hence that flux cannot be estimated when

making experiments with these substrates. Physically, this result indicates that these atoms

are eliminated in the form of carbon dioxide during the conversion of G3P into pyruvate,

or that the atom does not pass through the cycle. The other two label possibilities can be

used. However, the use of [6-13C]glucose provides a larger value of the D-criterion because

of a greater scrambling in the reactions of the PP Pathway. Therefore, this substrate was

selected.

Table 1 – D-criterion for different labeled glucose substrates.

1-13C 2-13C 3-13C 4-13C 5-13C 6-13C
10√D 0 0 0 1.0 0 2.5

In order to reduce the cost of the experiments to be performed, mixtures between

[6-13C]-glucose, [U-13C]-glucose (fully labeled) and [U-12C]-glucose (natural) substrates were

evaluated using the D-criterion. Taking into account the sensitivity of the parameters with

respect to changes in the mixture composition, a series of simulations were performed

in a range of 0.1 between the different fractions of substrates. According to Figure 7, the

experiments that provide the most information are, as expected, those with a high fraction of

[6-13C]glucose, the dark red region in the graph. On the other hand, the use of [U-13C]glucose

or [U-12C]glucose as the only substrate, represented by the dark blue regions in the graph,

does not allow the estimation of the desired parameter. In those conditions the problem

becomes unidentifiable. The best results can be obtained for mixtures with at least 50%

[6-13C]glucose. Moreover, adding [U-13C]glucose or [U-12C]glucose to the substrate mixture

has the same effect on the D-criterion, as it can be understood from the symmetry of the

graph. Therefore, [U-12C]-glucose was chosen because of its lower cost.
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Figure 7 – D-criterion for different mixtures of substrates [6-13C] glucose, [U-13C] glucose
and [U-12C] glucose.

Principal component based identifiability analysis

Riascos et al. (2013) estimated the metabolic fluxes ratios on P. aeruginosa using

data from an experiment with 80% of [U-13C]glucose and made the hypotheses that the

ED pathway operates only in linear mode and the PP pathway operates without reversible

reactions. However, those hypotheses may not necessarily valid and, in this case, these

pathways would shuffle the labeling of PHA mass isotopomers (KOHLSTEDT; WITTMANN,

2019). In this section, the effect of considering the aforementioned pathways in the fluxes

ratio estimation problem is evaluated by an identifiability analysis.

The results presented in this section are based on a flux distribution similar to the one

used by (RIASCOS et al., 2013), in which part of the flux through the ED pathway was directed

to its cyclic mode (Appendix: Figure 32). PCs associated with small eigenvalues implies

in a large variance of the estimates. Based on the standard deviations of measurements

presented by (RIASCOS et al., 2013), eigenvalues lower than 10−4 were considered small

(VAJDA et al., 1989). The eigenvectors (v) and eigenvalues (σ) of the Hessian matrix for the

[U-13C]glucose experiment is presented in Table 2. Only one of the eigenvalues is above the

threshold, indicating that the problem has identifiability issues with dependencies between
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parameters. The only component that can be estimated with a certain confidence is the

flux through the cyclic mode of the ED. [6-13C]glucose substrate was also evaluated and

presented better results regarding parameter identification. As it can be seen in Table 2, only

two components are below the threshold. Although the problem still presents identifiability

issues, more parameters can be estimated with higher confidence with this experiment. Dis-

covering a physically meaningful combination of the parameters from the data more precisely

is not always a simple task (VAJDA et al., 1989). For this reason, the sparse eigenvectors of

the hessian matrix were calculated.

Table 2 – Eigenvectors (PC) and corresponding eigenvalues of the Hessian matrix

[U-13C]Glucose
v1 v2 v3 v4 v5

PPoxi -0.19 -0.06 0.08 -0.97 -0.14
EDcyc -0.92 0.36 0.04 0.16 0.01
PPxch1 -0.08 -0.33 0.83 0.04 0.44
PPxch2 -0.08 -0.29 0.33 0.19 -0.87
PPxch3 -0.33 -0.82 -0.45 0.06 0.15
σ2 0.17 8e-18 9e-19 5e-19 2e-20

[6-13C]Glucose
v1 v2 v3 v4 v5

PPoxi -0.07 0.35 0.29 -0.69 0.56
EDcyc 0.37 -0.86 0.16 -0.24 0.20
PPxch1 0.59 0.21 -0.32 0.39 0.59
PPxch2 0.59 0.21 -0.32 -0.5 -0.50
PPxch3 0.41 0.22 0.82 0.25 -0.20
σ2 60.7 0.69 0.004 9e-16 1e-16

The sparse PCs were obtained using the methodology proposed by Nakama et al.

(2020). The components v4 and v5 were removed and the other components were sparsified,

keeping the orthogonality to v4 and v5. The sparse PCs for [6-13C]glucose experiment using

the complete network are presented in Table 3. Now some combinations of parameters can

be easily identified; by analyzing component one, it is clear that the objective function only

depends on the PPxch1 /PPxch2 combination, not on these fluxes separately. Component v2

indicates that flux EDcyc can be estimated individually. A similar analysis can be applied to

component v3 and flux PPxch3 . Flux PPoxi cannot be estimated from this experiment since

the flux is present in both components v2 and v3.

The metabolic network for P. aeruginosa can differ among strains, hence two other

typical networks were also considered, the ∆ EDcyc and the ∆ PPoxi strains. For the former,
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in which the ED pathway cannot operate in cyclic mode (Table 3), PPoxi could be estimated

separately, which was the original goal of Riascos et al. (2013). The relationship among the

exchange fluxes of the PP pathways practically remains unchanged; however, component

v1 now has no influence from PPxch3 . The other common variation of the P. aeruginosa

network considered is the absence of the oxidative branch of the PP pathway (Table 3). In

this case, the situation is similar to the complete network without the PPoxi influence on the

components.

Table 3 – Sparse PC of the Hessian matrix for the [6-13C]glucose experiment.

complete network ∆ EDcyc ∆ PPoxi

v1 v2 v3 v1 v2 v3 v1 v2 v3

PPoxi 0.00 -0.33 0.34 0.00 1.00 0.00 x x x
EDcyc 0.00 0.94 0.00 x x x 0.00 1.00 0.00
PPxch1 -0.67 0.00 0.00 -0.71 0.00 0.00 -0.71 0.00 0.00
PPxch2 -0.67 0.00 0.00 -0.71 0.00 0.00 -0.71 0.00 0.00
PPxch3 -0.29 0.00 0.94 0.00 0.00 1.00 0.00 0.00 1.00

13C-MFA of Pseudomonas aeruginosa LFM634

The identifiability analyses presented in the last sections contributed to a better

understanding of how to estimate metabolic fluxes in Pseudomonas aeruginosa under

non-growing conditions by our research group. All these analysis were applied to design

carbon labeling experiments for the Pseudomonas aeruginosa LFM634 strain producing

simultaneously PHA and RHL.

Glucose catabolism in P. aeruginosa LFM634 is exclusively by Entner-Doudoroff

pathway. The Embden-Meyerhof-Parnas glycolysis is not complete in P. aeruginosa because

it lacks the 6-phosphofructokinase enzyme (LESSIE; PHIBBS, 1984). The PP Pathway, as

discussed above, presents only the non-oxidative phase and thus it has a null net flux

under non-growing conditions. In spite of the fact that the ED pathway is the unique option

for glucose catabolism, this pathway can operate in two distinct manners (LESSIE; PHIBBS,

1984). Glucose is converted into pyruvate and G3P, and then G3P can be converted into

pyruvate (linear mode) or converted back to G6P (cyclic mode). The switch of operation

modes in the ED pathway has huge consequences for the cell (SáNCHEZ-PASCUALA et al.,

2019). Therefore, distinguishing between these two architectures can give insights about P.

aeruginosa LFM634 metabolism under non-growing conditions.
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A dual estimation process of metabolic fluxes was performed with data from labelling

experiments with 80% (w/w) of [U-13C]Glucose (Appendix: Table 15) and 55% (w/w) of

[6-13C]Glucose (Appendix: Table 14). Although only the data from the experiment with [6-
13C]glucose is sensitive to variations of the ED cycle flux, the [U-13C]glucose data was

needed in order to fit the PP fluxes. When data from [U-13C]glucose was not used, the

optimization method was unable to converge. The estimation process started from several

different initial guesses, and all of them converged to the same ED flux value. The results

presented a large residual for the mass isotopomers from the [U-13C]glucose data (Table

4), this is an expected result because the fit for this experiment is more sensitive to the

unidentifiable parameters (in practice) of the PP pathway. The simulated mass isotopomers

describe better the data from [6-13C]glucose experiments, thus the recycle flux ratio could

be estimated with better accuracy.

Table 4 – Comparison of experimental and simulated mass isotopomers.

Mass Experimental Simulated RMSE
Isotopomers
M+0 [6-13C] 0.8392 0.8432 0.0104
M+1 [6-13C] 0.1460 0.1500 0.0127
M+2 [6-13C] 0.0130 0.0055 0.0128
M+3 [6-13C] 0.0018 0.0013 0.0014
M+0 [U-13C] 0.6282 0.5941 0.0491
M+1 [U-13C] 0.2086 0.1997 0.0132
M+2 [U-13C] 0.1347 0.1658 0.0443
M+3 [U-13C] 0.0285 0.0404 0.0170

Residual sum of squares 0.0024 -

The flux ratios at the estimated point (Figure 8) show a low flux in the pentose

phosphate pathway. The flux in the ED cycle showed that about two thirds of G3P is recycled

through G6P. This ratio is higher than the one that was recently estimated in the growth

phase for P. aeruginosa PA01 and P.putida KT2440 (KOHLSTEDT; WITTMANN, 2019) that was

about half of G3P. This indicates a possible increase of the cyclicity in the stationary phase

due to increased NADPH demand for biosynthesis.
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Figure 8 – Metabolic network of Pseudomonas aeruginosa LFM634 and estimated metabolic
flux ratios by 13C-MFA using the data from Table 4. Confidence intervals (I.C.) of
95% are shown. Metabolites abbreviations: Glucose 6-phosphate (G6P); Fructose
6-phosphate (F6P); glyceraldehyde-3-P (G3P); Pyruvate (PYR); acetyl-coenzyme
A (AcCoA). Reactions: glucokinase (v1); ED cycle pathway (v2, v3, v4 and v5); PP
pathway (v6, v7 and v8); Pyruvate formation (v9); Pyruvate dehydrogenase (v10).
The underlined fluxes correspond to exchange fluxes.

Glucose metabolism in P. aeruginosa is cyclic when producing PHA and RHL

The cyclic operation of the ED pathway seems to play a key role in NADPH reduction

power regulation in Pseudomonas. This architecture was also observed in several others

microorganisms (PORTAIS; DELORT, 2002). In Pseudomonas, it was observed in cells subject

to environmental stress (NIKEL et al., 2015), and in alginate biosyhthesis (LYNN; SOKATCH,

1984). The results suggests that the cyclic mode plays a key role in the simultaneous

production of PHA and rhamnolipid. Biosynthesis for production of PHA and rhamnolipid has

a higher demand for NADPH supply than the growth phase (NIKEL et al., 2015; KOHLSTEDT;

WITTMANN, 2019), which, in combination with precursors like Acetyl-CoA, are the building

blocks of those biocompounds. This reinforces the fact that the NADPH/AcCoA flux ratio is

relevant for the understanding of the biosynthesis metabolism.

The higher the cyclicity in the ED pathway higher the NADPH/AcCoA flux ratio

reached (Figure 9). Previous studies have also shown a periplasmic oxidation of glucose into

gluconate in Pseudomonas (NIKEL et al., 2015; KOHLSTEDT; WITTMANN, 2019), however, the
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periplasmic route does not shuffle the carbon atoms, then it is not possible to estimate this

flux by 13C-MFA. As expected, the stoichiometric maximum of the NADPH/AcCoA flux ratio

(ratio=1.00) was obtained for the total recycle of G3P in the ED pathway and null gluconate

formation. Since two-thirds of G3P is recycled, a maximum NAPDH/AcCoA flux ratio of 0.76

mol/mol is expected.

The ideal NADPH/AcCoA flux ratio depends on which monomer is synthesized, for

the 3HA present in higher amounts on PHA and RHL (3HD), the ratio is 1.4 mol/mol. The

estimated fraction of G3P recycled was 68%, meaning a maximum NADPH/AcCoA flux ratio

of 0.76 mol/mol, thus a supplementary source of NADPH must be active. Furthermore, the

simulated NADPH/AcCoA ratio can be lower if cofactor specificities are considered. Although

glucose-6-phosphate dehydrogenase enzyme in P. putida and P. aeruginosa was considered

as having a preference for NADPH (NIKEL et al., 2015) that preference could be indeed much

lower (OLAVARRIA et al., 2015; CARDINALI-REZENDE et al., 2020).

Three possible sources of redox power (NADPH) are isocitrate dehydrogenase,

maleic enzyme and transhydrogenase (NIKEL et al., 2015). The two first imply in a flux through

the TCA cycle, thus less AcCoA would be generated, and consequently, less PHA and

rhamnolipids. The transhydrogenase enzyme would lead the cell to maximum yield, with the

conversion of NADH into NADPH. NADH production is only affected by the G3P node in the

central metabolism. As the recycle flux increases, less flux goes to pyruvate (glyceraldehyde-

3-P dehydrogenase enzyme), therefore more NADPH is produced instead of NADH (Figure

8). The NADH/AcCoA ratio estimated here considering reactions 2 and 10 was 1.24. This

value, along with the NADPH generation by the ED cycle is more than sufficient for supplying

PHA biosynthesis. Therefore, future work should measure the activity of transhydrogenase

enzyme for a complete scenario of the NADPH/AcCoA flux ratio under 3HA biosynthesis.
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Figure 9 – NADPH/AcCoA ratio variations in relation to recycle ratio of G3P.

2.4 Conclusions

Identifiability analysis is an essential tool for research in which 13C-MFA is applied.

This analysis can reduce experimental costs and increase the precision of the estimated

metabolic fluxes. The DOE is crucial because, as already demonstrated, the wrong choice

of labeled substrate may result in misinterpretation of data (KOHLSTEDT; WITTMANN, 2019).

As examples of studies using Pseudomonas, the ED cycle was underestimated in Berger et

al. (2014), and the PP pathway overestimated in Opperman and Shachar-Hill (2016).

The identifiability analysis based on the visual inspection of the response surface of

the model output was shown to be useful for obtaining a global picture of the effect of the

fluxes on the measurements, however, it is not scalable for larger metabolic networks. The

analysis based on FIM is a practical and straightforward way of performing the identifiability

analysis, but an a priori flux distribution must be provided. Furthermore, it was demonstrated

that the application of a sparse PC decomposition can improve the identification of depen-

dencies among parameters and the determination of estimable fluxes from available data.

The method presented in this work enables the identification of parameter combinations that

can be estimated from labeling experiments. This represents an advantage when compared

to the methods presented in literature that only verifies whether a subset of parameters

is identifiable, leading to a combinatorial problem (WINDEN et al., 2001a; KAPPELMANN et al.,

2016).
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The methodology applied in this work provided useful information for elucidating

flux problems using conventional methods of analysis. This study was useful for bringing

up information about the simultaneous production of PHA and RHL by applying metabolic

network analysis. The measurements of HAs and HAAs were obtained under stationary

growth phase and analyzed by standard techniques like GC-MS. The results indicated that

experiments with [U-13C]glucose and [6-13C]glucose would be adequate for the estimation

of the flux ratio. The analysis allowed us to conclude that the PP pathway has a low flux

and the ED pathway operates in a cyclic mode, playing a key role in the regulation of the

NADPH/AcCoA flux ratio, which is crucial for PHA and 3HAA biosynthesis. The data revealed

in this work will be useful to establish better metabolic models for P. aeruginosa LFM634. In

silico experiments will be used to identify different approaches (genetic modification, culture

conditions etc) aiming to improve the production of PHA and/or RHL as well as to evaluate

this biotechnological chassis for the synthesis of other bioproducts.
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3 Surrogate model approximation of Flux Balance Analysis

In recent decades, bioprocessing technology has emerged as a sustainable al-

ternative to produce a wide range of chemical products. However, key limitations of bio

manufacturing systems, such as high production costs and feedstock variability, still impose

a burden when competing with traditional processes (e.g. petrochemical) (BURG et al., 2016).

For addressing these shortcomings and ensuring a cost-effective production, advanced

process control techniques, like Economic model predictive control (EMPC), can be applied.

They have a proven potential to maximize profit, increase process regularity, and enhance

product quality (LEE, 2011).

In EMPC, a dynamic model is used for predicting the system response to changes

in key process variables. Based on this model, the controller decides the best trajectories

of these variables for minimizing/maximizing a given criterion, while satisfying a set of

operational constraints. For example, EMPC finds the best possible feeding strategy of a

fed-batch reactor that minimizes the difference between the end-batch concentration and a

given desired value, while guaranteeing that the reactor temperature stays below a threshold.

Despite being widely used in other industries, EMPC’s full potential in relation to biological

processes is yet to be achieved (MEARS et al., 2017). The main drawback is linked to the

dynamic models used in the controller. EMPC requires models that can be reliably solved in

different operating conditions but are also sufficiently detailed to describe the real process

(SOMMEREGGER et al., 2017).

Obtaining such dynamic models for controlling systems where the microorganisms

metabolism needs to be taken into account becomes a critical issue. Models that do not

include intracellular metabolism (unstructured models) are the most common in the field, but

they do not describe crucial features of the metabolism (HODGSON et al., 2004). On the other

hand, dynamic flux balance analysis (dFBA) models can be applied for accurately describing

the microorganisms, but are not appropriate for computationally intense optimization studies

(NIELSEN, 2017). These models consist of mass balances for extracellular metabolites,

kinetic relations for nutrients uptake, and Flux Balance Analysis (FBA) for intracellular

metabolites, which is performed by an optimization scheme that determines the metabolic

fluxes (MAHADEVAN et al., 2002). Therefore, solving it inside the EMPC culminates in a bi-level

optimization problem that is a challenging task to be reliably carried out online.
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In this work, we propose to use a dFBA model together with a model predictive control

in order to maximize a desired bioproduct formation in a fed-batch bioreactor. However,

instead of solving the controller problem as a bi-level optimization, we replace the FBA

problem by a surrogate model. For obtaining this model, the linear programming problem of

FBA is solved offline for a wide range of feed conditions, here represented by the uptake rate.

Next, a great number of simulation points is obtained on a grid covering the whole operating

space for each exchange flux of extracellular metabolites in the model. Then, a polynomial

model is fitted by Partial Least Square Regression (PLSR) in order to approximate the

behaviour of each exchange flux. The resulting model is then applied in the controller. This

novel approach allows us to take advantage of the prediction capabilities and accuracy of

the dFBA models, while guaranteeing that the controller problem can be reliably solved

online using standard optimization tools. Moreover, the methodology opens the possibility

for applications of genome-scale models of metabolism on macromolecular expression

models (LLOYD et al., 2018), dynamic regulation of metabolism (ANESIADIS et al., 2008) and

process simulators, like ASPEN PLUS (PLUS, 2003). A diagram of our approach is shown in

Figure 10.

In order to validate the approach, a case study of a fed-batch bioreactor of Saccha-

romyces cerevisiae is used. The controller objective is to maximize ethanol production. After

an offline identification step, we obtain a surrogate model using PLSR and couple it to the

EMPC. The results show that the control strategy provides a higher ethanol titer in com-

parison to the open-loop operation. Additionally, since the surrogate approximation of FBA

allows us to apply the more detailed Saccharomyces cerevisiae reconstructed genome-scale

network model available up to date (see Lu et al. (2019)), the overall model presents a good

accuracy and a similar prediction capacity from models that solve FBA using an optimization

scheme.
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Figure 10 – Economic MPC of a bioreactor using surrogate FBA model scheme.

Remark. The results presented here are based on the works Oliveira et al. (2021a) and

Oliveira et al. (2022). Originally the surrogate FBA methodology was developed for application

of dFBA models in Economic MPC of bioreactors. The surrogate FBA was also extended to

the parameter estimation of dFBA kinetic parameters. This chapter focus is the formulation

of EMPC with surrogate FBA as described in Oliveira et al. (2021a) (Study case 1). Also,

the parameter estimation application was included as described in Oliveira et al. (2022) as

Study case 2.

3.1 Research background

Flux Balance Analysis

Flux balance analysis (FBA) has become the most popular mathematical method for

simulating metabolism using GSM in the past years (MARANAS, 2016), and the reason for

that relies on the simplicity and applicability of the method. FBA is a method based on an

optimization approach using the stoichiometric matrix. For all the possible fluxes for each

reaction in a network (Figure 11), the stoichiometry of the network imposes some constraints

for the possible solutions. FBA uses some criterion, i.e. objective function, to select one

phenotype among all possibilities. Mathematically, an FBA can be formulated as a linear

programming problem:
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max cT v

subject to: S · v = 0

lb ≤ v ≤ ub

(3.1)

where lb and ub are the lower and upper bound vectors for metabolic fluxes (v) respectively.

S is the stoichiometric matrix. c is the vector of coefficients that multiplies the flux vector

in order to express the objective function. The most applied objective function on FBA is

to maximize biomass formation (MARANAS, 2016), where vector c is a vector with zeros

except for the biomass reaction. The fluxes constraints are typically measured external

fluxes or derived from thermodynamics data. The ad hoc biomass reaction is built in the

reconstruction process of the network, and it is a drain reaction of all biomass precursors

(e.g., amino acids, lipids, and carbohydrates). The fluxes in FBA usually have unity of mmol
gDWh

where gDW means grams of dry cell weight. The biomass reaction has unity of h−1 and

to build the biomass reaction, the chemical composition of the cell must be determined

experimentally.

Figure 11 – The conceptual basis of constraint-based modeling.
Source: (ORTH et al., 2010)

Dynamic Flux Balance Analysis

The dynamic version of the FBA model, the dFBA, is formulated assuming that the

intracellular dynamics metabolism is much slower than the extracellular dynamics. Thus, the

internal metabolism can be represented by the FBA model, while the extracellular metabolites

are modeled by mass balance equations. Also, kinetic expressions are used to model the

uptake of substrates. dFBA can be formulated as an ordinary differential equation system

with an embedded optimization (ODEO) problem:
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dx
dt
= F(x, v)

vuptake = g(x)

x ≥ 0

v = FBA(vuptake) (Equation 3.1)

(3.2)

where x is the concentrations of the external metabolites; F is the right-hand side of the

mass balance equations; and g is the kinetic expression to calculate the uptake fluxes vuptake.

The dFBA model is an alternative to the utilization of kinetic models of metabolism that need

the knowledge of enzymatic reactions mechanism and kinetic parameters from the internal

reactions. The dFBA only uses a few kinetic parameters on the uptake reactions that are

considered as a limiting step. However, despite being easy to build, dFBA models as an

ODEO problem are challenging to solve. The most applied methods to solve dFBA models

are (GOMEZ et al., 2014):

1. Static optimization approach (SOA): For each integration interval, the uptake rates

are calculated from kinetic expressions and used as constraints in the FBA optimization

problem. The optimal extracellular fluxes v⋆ are, then, fed to the dynamic model

integrator. Since these fluxes are assumed constant during the entire integration

interval, they can be directly included in the differential equations. Next, the system of

equations is integrated in time for computing the state variables and uptake rates. This

process is repeated until the final simulation time;

2. Dynamic optimization approach (DOA): The FBA is optimized over the entire time

period applying an instantaneous objective function. The problems is solved as a

nonlinear programming problem (NLP) by converting the set of ordinary differen-

tial equations into an algebraic equation system by orthogonal collocation on finite

elements;

3. Direct approach (DA): The DA solves the Linear Problem (LP) of FBA inside the

ordinary differential system of equations.

Each of these approaches has its advantages and disadvantages. The SOA approach,

for example, has a trade-off between performance and computational time because small

integrator steps are usually required for convergence (GOMEZ et al., 2014). On the other

hand, the DOA approach can take advantage of robust nonlinear solvers (WÄCHTER; BIEGLER,
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2006), but it is limited to small-scale metabolic models because of the significant dimension

increase due to time discretization (GOMEZ et al., 2014). Finally, the DA method needs the

solution of an LP (FBA) problem in each evaluation of the ODE system. Hence, the DA

method can be time consuming. Implicit ODE integrators with adaptive step size for error

control can be applied to reduce the number of steps sizes (GOMEZ et al., 2014).

Even though each of the methods listed above presents an specific strategy to solve

the dFBA problem, the surrogate model approximation of the FBA can be coupled to all of

them, which is an important benefit of this approach.

Model Predictive Controller

Model predictive controller is used for determining the values of the system manipu-

lated variables that minimize/maximize an objective function. Typically, this objective function

is selected such that the controller regulates the system outputs at previously determined

setpoints (e.g. maintaining the outlet concentrations of a reactor at a given level). If the

MPC is used for solving a production optimization problem, in which the objective function

reflects some economic-like criterion, it is referred to as Economic Model Predictive Control

(EMPC)(RAWLINGS et al., 2017). The EMPC problem can be written as:

min
u

∫ t0+Tp

t0
ϕ(x(t),u(t))dt

s.t.

x(0) = x0

ẋ(t) = f(x(t),u(t)) t ∈ [t0, t0 + Tp]

y(t) = h(x(t)) t ∈ [t0, t0 + Tp]

ymin ≤ y(t) ≤ ymax t ∈ [t0, t0 + Tp]

umin ≤ u(t) ≤ umax t ∈ [t0, t0 + Tp]

(3.3)

where, x are the system states, u the system manipulated variables, and y the process

outputs (measurements). The inputs and outputs bounds are umin, umax, ymin and ymax,

respectively. f(·, ·) is the system dynamic model and h(·) is a function that maps the states

to the system outputs. ϕ(·, ·) is the controller economic objective function. The current time

step is represented by t0, and Tp represent the controller prediction horizon.
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Figure 12 – Simplified diagram of an economic model predictive controller.

On an EMPC implementation, the objective is to maximize a profit function. Figure 12

shows a simplified diagram of an EMPC implementation, in which the objective is to maximize

a profit function. At each time step, the current plant information is fed to the controller. Then,

the EMPC defines the optimal input trajectory (red dashed line) for maximizing the system

profit (blue dashed line). For practical reasons, the prediction horizon is truncated. It is

defined as a multiple of the controller sampling time h, i.e. Tp = Np · h.

Although a sequence of inputs u⋆ = [u⋆1 ,u
⋆
2 , . . . ,u

⋆
Np

] is computed, only u⋆1 is imple-

mented. Then, after one sampling time, the controller receives the new plant information and

a new input sequence u is computed using Equation (3.3). The control problem is solved in

this receding horizon framework because the u⋆ trajectory may change due to unexpected

system disturbances. Additionally, the model may not be a perfect representation of the

system and this feedback strategy mitigates the plant-model mismatch (RAWLINGS et al.,

2017).

Since the controller problem needs to be solved every sampling time, using a system

model f (·, ·) based on dFBA can be challenging for practical reasons. For obtaining the

solution of Equation (3.3), the system dynamic model needs to be integrated in time. If

integration solvers are applied, the FBA optimization problem needs to be solved at every

step of the solver. Event-based algorithms that detect LP base changes are state of the

art for dFBA simulations(GOMEZ et al., 2014). The points where the events take place are

non-differentiable points. Hence, the lack of model gradients hinders the application of
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strategies that simultaneously integrate the system and solve the optimization problem,

like collocation-based methods. Alternatively, one can use statistical/random methods, like

genetic algorithms. However, the high dimensionality of the flux space (e.g. over 3900

reactions in Saccharomyces cerevisiae metabolic network) makes the problem intractable

since these methods do not scale very well for large systems. Also, there is no rigorous

convergence guarantee to the problem solution when statistical/random methods are used.

Therefore, a more flexible and reliable modeling strategy for the dFBA needs to be adopted,

which is the main contribution of this work.

Surrogate model approximation of FBA

In order to obtain a more flexible and reliable model for the controller, the LP (FBA)

problem can be replaced by a surrogate model. This meta-modeling strategy has been

applied for optimizing a wide range of processes (e.g. oil gas field production (GRIMSTAD

et al., 2016) and pharma manufacturing (ÖNER et al., 2020)). Recently, a surrogate model

has been applied to uncertainty quantification on dFBA models (PAULSON et al., 2019). The

goal is to represent non-linear complex systems by functional approximations, such as

polynomials, that are computationally cheaper to evaluate and can easily provide gradient

information (QUEIPO et al., 2005). Despite being the simplest choice, using polynomial models

to represent the dFBA non-smooth behavior(MAHADEVAN et al., 2002) can be challenging.

One alternative is then to divide the domain into subdomains, in which the behaviour is

smooth. Then, a polynomial model is fitted to each of the subdomains.

After defining the surrogate model structure, we perform a series of simulations using

the full genome-scale network for obtaining a data collection that will be used to estimate the

parameters of the surrogate model. The goal here is to map the uptake fluxes to extracellular

and biomass fluxes, and replace the solution of the LP (FBA) optimization problem.

Before running the simulations, we determine an equidistant square grid for the

independent uptake fluxes variables. Since this step is carried out offline, the grid can be

chosen as fine as necessary for describing the metabolic network at hand. The grid shape

can also be adjusted according to the system of interest. As is well known for larger problems

the equidistant square grid can suffer from the so-called curse of dimensionality. Fortunately,

new methodologies for the sampling method step have been proposed in literature. Sparse

grids are a very common method to reduce the number of sampling points (PFLüGER et al.,
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2010). Also, more recently, a methodology that applies PLSR as a decision criterion of the

number of sample points has been proposed (STRAUS; SKOGESTAD, 2019). However, we

would like to point out that the sampling for the surrogate model identification is done offline

and can be easily parallelized. Thus, even if we use a equidistant grid, this step does not

affect the real-time performance of the controller.

For each grid node, we run an FBA optimization problem subjected to the corre-

spondent values of uptake fluxes. In our approach, we perform a Flux Variability Analysis

(MAHADEVAN; SCHILLING, 2003) to ensure that the effect of multiple optimal solution has a

minimum impact in extracellular fluxes values. For the cases where alternative optima may

be relevant, it is possible to replace the FBA simulations by parsimonious FBA simulations

(LEWIS et al., 2010) or performing lexicographic optimizations as described by Gomez et al.

(2014).

The surrogate models are written as follows:

υout,i =

np∑
j=1

nu∏
k=1

ai jυ
α
in,k (3.4)

where, υout,i is the approximate ith output flux; υin,k are the uptake fluxes that range from

k = 1, · · · , nu; ai j are the polynomial coefficients. For each output flux i, j = 1, · · · , np, where

np is the number of parameters of the surrogate models; α ∈ [0, nα] are the integer exponents

of the polynomial terms. The values of ai j are determined using a Partial least squares

estimator (PLS). This method chooses the parameters components (the polynomial and

interaction terms) that present the maximum covariance between independent and predicted

variables, which is useful to avoid data over-fitting (GELADI; KOWALSKI, 1986).

As an additional measure to avoid over-fitting, we divide the operation region in L

different zones. Next, we fit low-order polynomials to each zone instead of using a single

high-order polynomial model to describe highly nonlinear input and output fluxes (NIELSEN,

2017). The simple polynomial models are connected by a smooth analytic approximation of

the heaviside function, which makes them infinitely differentiable (i.e. of class C∞):

υout,i =

L∑
l=1

υout,i,l

1 + e−klH(υin) (3.5)

where, kl is the heaviside parameter. H(υin) := (υin − υlim) ∈ Rnu → R is a function that maps

the intake fluxes into a scalar. If υin > υlim, the lth term of the sum becomes υout,i,l, otherwise
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Figure 13 – Diagram block describing the surrogate model identification process.

it becomes 0. Figure 13 shows a diagram block summarizing how we obtain the surrogate

models:

After obtaining the surrogate models that replace the LP (FBA) problem, Equa-

tion (3.5) is included in the controller formulation, Equation (3.3), as part of the dynamic

model f (·, ·).

Nonlinear model predictive control of bioreactors using dFBA

Different bioprocess control strategies, in which a dFBA model is included in the con-

troller, have already been reported in the literature. They are focused on simplifying/reducing

the metabolic network, on reformulating the bi-level optimization problem, or on using a

surrogate model.

Jabarivelisdeh et al. (2020) worked with E.coli with a small-scale metabolic model (50

metabolic reactions) in order to solve the bi-level optimization problem. (ZHENG et al., 2020)

applied a tableau based tree method for a robust EMPC formulation, that also culminates in

a bi-level problem. An E.coli network of four metabolic reactions was used.

The utilization of small-scale metabolic network models allows the controller problem

to be solved online, but it may lead to significant plant-model mismatch. Neglected metabolic

reactions can affect the model dynamic behavior and the prediction of the flux model
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response to extracellular stimuli (FRITZEMEIER et al., 2017). Since the model is used for

determining an input trajectory to an a priori unknown optimal value in EMPC, the deviation

between model predictions and the system behavior can lead to a suboptimal (and even

infeasible) input sequence. This can significantly affect the controller performance even with

the receding horizon strategy. An additional shortcoming in this simplification strategy is

the fact that the controller relies in the plant measurements, which are used to updated

the model states x, to compute the next input sequence. If a measurement is missing (e.g.

probe failure), the controller still needs to provide a solution in the next sampling time. In

this case, the adequacy of the computed input sequence heavily depends on the controller

model accuracy, which can be considerably impacted by plant-model mismatch.

A second alternative is reformulating the system. Chang et al. (2016) replaced the

LP problem of the DFBA with its first optimally conditions, which are included as equality

constraints in the controller formulation (Equation (3.3)). By solving this augmented system,

the solution of the FBA and control problem are obtained simultaneously. The authors

applied this strategy to maximize the ethanol production in a fed-batch bioreactor with

Saccharomyces cerevisiae. Since this reformulation led to a large system of equations

and variables, the authors used a small metabolic network complexity to decrease the

computational burden.

The alternative of using surrogate models to replace dFBA models has also been

explored by Kumar and Budman (2015) and Kumar and Budman (2017) who applied a

polynomial chaos expansion for the dFBA model in the implementation of a robust EMPC

for an E. coli batch fermentation. The method has shown promising results to deal with the

parametric uncertainty. However, the resulting formulation for online application of the EMPC

is still a bi-level optimization architecture. In both works, a E.coli network composed of four

metabolic reactions was used.

Even tough the approaches above have demonstrated great potential for using

metabolic network models on EMPC-based control, solving full genome-scale network online

based on a surrogate model can significantly increase the model accuracy when compared

to the reduction strategies listed above, whereas it keeps the model simple enough that it

can be reliably solved online. Furthermore, given that the surrogate models are properly

identified, we can decrease the loss of optimally associated with the use of this model

approximation even without explicitly solving for the first optimally conditions of the FBA

problem, like in Chang et al. (2016).
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It is important to make a clear distinction between the method proposed here and the

methods proposed by Kumar and Budman (2015) and Kumar and Budman (2017). While

Kumar and Budman (2015) and Kumar and Budman (2017) trained a surrogate model for

the entire dFBA model, here, only the FBA LP inner problem is replaced by a surrogate

model. As it will be shown, this methodology allows that more complex metabolic-networks

be used and also transforms the problem into a single level optimization.

Another possibility would be to use network reduction. Several methods have been

proposed in literature in the past years (SINGH; LERCHER, 2021). Even though these methods

can in some cases describe the behaviour of the original network, they can also reduce the

model versatility (SINGH; LERCHER, 2021). Also, in some cases, the reduced network could

yet have a prohibitive size for MPC bi-level applications.

Parameter estimation in dynamic metabolic models

Kinetic models of cell metabolism are a very promising category of models because

of their high prediction capabilities. However, the lack of knowledge of enzymatic reactions

mechanisms and the need to estimate a prohibitively number of parameters makes the

application of kinetic models restricted to the description of small enzymatic pathways so far.

Dynamic Flux Balance Analysis (dFBA) models appear as an alternative approach where

the internal flux distribution is described by a steady-state model and the solution computed

by an optimization problem. Therefore, in dFBA models, only a small number of parameters

must be estimated from experimental data making the problem solvable in practice. Despite

the fact that the number of parameters to be estimated is reduced, dFBA model consists

of a system of differential equations and an embedded optimization problem, making the

parameter estimation problem challenging to solve.

The sequential solution of the problem consists in solving the nested LP and the ODE

system inside the optimization. The lack of gradient information and the non-smoothness of

dFBA makes the problem hard to solve. Leppävuori et al. (2011) developed a sequential

gradient-based solution with direct sensitivities equations. They estimated 8 parameters

and used a metabolic network of 1266 enzymatic reactions and 1061 metabolites. Waldherr

(2016) reformulated the bi-level problem as a Mixed Integer Quadratic Program, however,

due to the computational burden they used a small-scale network of 10 reactions and 12

metabolites. Raghunathan et al. (2003) and Raghunathan et al. (2006) reformulated the
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problem as a Mathematical Program with Complementary constraints (MPCC). MPCC cannot

be solved by standard NLP solvers, therefore they relaxed the complementary constraints

using a barrier parameter. They applied the approach to a small-scale metabolic network of

39 reactions and 43 metabolites.

Here, we investigate the suitability of the surrogate FBA methodology in order to

reduce the computational load of parameter estimation problems using dFBA models. As

a case study, a dFBA model is formulated to describe batch cultivation of glucose and

xylose mixtures by Saccharomyces cerevisiae. S. cerevisiae is the main microorganism for

industrial alcoholic fermentation; however, the spectrum of substrates is almost restricted to

sugars, such as glucose and fructose. S. cerevisiae does not naturally consume xylose and

the development of strains of S. cerevisiae for the conversion of xylose into ethanol by S.

cerevisiae has been implemented (KUYPER et al., 2004). However, studies are needed in order

to make the xylose fermentation by S. cerevisiae more efficient. Metabolic models can be

very useful to achieve this aim, because they allow the understanding of xylose fermentation

in a multi-scale approach, from a genome-scale level to the bioreactor operation.

3.2 Methodology

Study case 1: Economic MPC

For investigating the capabilities, advantages and challenges of the implementation of

our approach, we use the fed-batch bioreactor containing Saccharomyces cerevisiae model

proposed by Chang et al. (2016). The controller goal is to maximize ethanol production

by manipulating the glucose feed and the dissolved oxygen level. The manipulation of the

glucose feed profile is important in order to avoid substrate inhibition effects. In turn, the

manipulation of the dissolved oxygen profile is important to optimize the switch from aerobic

to anaerobic regime.

The model is based on the work of Chang et al. (2016). It is composed by component

mass balances, total mass balance (since the density is assumed constant, this equation

becomes a volume variation relation) and equations for computing the glucose, oxygen

consumption and biomass and ethanol exchange fluxes. The direct manipulation of oxygen

concentration was performed, assuming a perfect feedback controller. Therefore, oxygen
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balance was not included in the model. The percent dissolved oxygen is calculated as a

function of the oxygen saturation concentration (DO = O/Osat). The model can be written as:

dV
dt
= F

d(VX)
dt

= µVX

d(VG)
dt

= FG f − vgVX

d(VE)
dt

= veVX

vg ≤ vg,max
G

Kg +G + (G2/Kig)
1

1 + (E/Kie)

vo ≤ vo,max
O

Ko + O

X,G, E ≥ 0

ve, µ = Ξ(vo, vg)

(3.6)

where, X, G, O and E are the concentrations of biomass, glucose, oxygen and ethanol,

respectively. F is the feed flow rate, which contains the growth rate limiting nutrient glucose

with a concentration G f , and other essential nutrients that are considered to be supplied in

excess. V is the reactor liquid volume. vg and vo are the uptake fluxes of glucose and oxygen

that are calculated based on the oxygen and glucose saturation parameters (Ko and Kg) and

ethanol and glucose inhibition constants (Kie and Kig).

The exchange flux of ethanol ve and relative cellular growth µ are computed by the

mapping Ξ, which can be solved either by the FBA problem in Equation (3.1) or by the

surrogate approximation in Equation (3.5). The metabolic network model used was the

consensus yeast metabolic network (HEAVNER et al., 2013) version 8.3. The network consists

of 2666 metabolites and 3928 enzymatic reactions. Table 5 lists the model parameters

values, and the system concentration initial values.



64

Table 5 – Dynamic Flux Balance (dFBA) model parameters from Chang et al. (2016).

Parameter Description Value [unit]
X(0) Biomass initial condition 0.10 [g]
G(0) Glucose initial condition 7.32 [g]
V(0) Volume initial condition 0.5 [L]
G f Feed glucose concentration 50 [gL−1]
Ko Oxygen saturation 3.0 x 10−6 [molL−1]
Kg Glucose saturation 0.5 [gL−1]
Kig Inhibition constant 10 [gL−1]
Kie Inhibition constant 10 [gL−1]
Osat Oxygen saturation concentration 2.53 x 10−4[molL−1]

vg,max max uptake flux of glucose 0.02 [mol g−1 h−1]
vo,max max uptake flux of oxygen 0.008 [mol g−1 h−1]

Study case 2: Parameter estimation

The genome-scale S. cerevisiae model Yeast version 8.30 (LU et al., 2019) was also

applied. The uptake rates of the substrates were fixed to solve the FBA problem, the uptake

rate of oxygen was set to zero, and the objective function was the maximization of biomass

yield. For the anaerobic fermentation of glucose and xylose by S. cerevisiae, the dFBA model

was formulated as follows:

dX
dt
= µX

dG
dt
= vgX

dE
dt
= veX

dZ
dt
= vzX

ve, µ = Ξ(vg, vz) vg = − vg,max
G

Kg +G

X,G,Z, E ≥ 0 vz = − vz,max
Z

Kz + Z
1

1 + (G/Kig)

(3.7)

where µ, vg, vz, and ve are the growth rate, and the exchange fluxes of glucose, xylose, and

ethanol, respectively. X, G, Z, and E represent the biomass, glucose, xylose, and ethanol

concentrations, respectively. vg,max and vz,max are the maximum uptake rate for glucose and

xylose respectively. Kg and Kz are the saturation constants, and Kie is the glucose inhibition

constant. The exchange flux of ethanol ve and cellular growth µ are computed by the mapping

Ξ, which can be solved either by the optimization FBA problem (Equation 3.1) or by the

surrogate approximation (Equation (3.5)).

The methodology to generate the surrogate FBA model was performed as described

in Study case 1 (OLIVEIRA et al., 2021a). First, a series of optimization problems (FBA) were
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solved covering the whole flux input domain (vg and vz). After that, a polynomial model for

each output (µ and ve) was fitted to the data by Partial Least Square (PLS) to avoid over-

fitting. A parameter estimation problem for estimating the five parameters in Equation 3.7

was implemented (vg,max, vz,max, Kg, Kz and Kie). The measurements data of the extracellular

metabolites were generated by in silico experiments using the nominal parameter values

presented in Table 11. The parameter estimation was solved as a nonlinear constrained

least-squares problem as follow:

minθ
∑

j

(yc
j(θ) − ym

j (θ))2 subject to: Equation 3.7 (3.8)

where θ is the vector of the parameter to be estimated, and y is the vector of extracellular

concentrations. Indexes c and m indicate calculated and measured quantities respectively.

Three different methods were applied to solve the problem in Equation 3.8:

1. dFBA + lsqnonlin: Solved as a bi-level optimization problem. The outer parameter

estimation problem was solved by lsqnonlin routine in MATLAB with the levenberg-

marquardt method. The ODE system was solved with ODE15s with the embedded LP

(FBA) solved in GUROBI. No gradient information was supplied.

2. dFBA surrogate + lsqnonlin: Solved as a single-level optimization problem by lsqnon-

lin routine in MATLAB with the levenberg-marquardt method. The ODE system was

solved with ODE15s with the embedded LP (FBA) replaced by the surrogate model.

No gradient information was supplied.

3. dFBA surrogate + IPOPT: Solved as a single-level optimization problem in Julia

language with the interior point NLP solver IPOPT. The ODE system was solved by

orthogonal collocation with the embedded LP (FBA) replaced by the surrogate model.

Automatic differentiation package was used to compute the gradient.

3.3 Results

Study case 1: Economic MPC

Model structure identification

As discussed previously, the goal of the surrogate models is to approximate the

rigorous solution of the mapping Ξ in Equation (3.6). Here, we use the polynomial functions
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of Equation (3.4) to approximate the growth rate µ and exchange flux of ethanol ve profiles,

respectively.

In order to define the structure of the polynomial approximations, we solved the

FBA problem in Equation (3.1) for different values of the uptake rates of glucose vg and

oxygen vo. These values are defined based on an equidistant 50 by 50 grid, in which the

independent variables range from 0 and to the maximum values of the constants in Table

5, i.e. vg,max = 0.02 [mol g−1 h−1] and vo,max = 0.008 [mol g−1 h−1]. The profiles of the FBA

solutions are shown in Figure 14.

As expected, the increase of glucose and oxygen uptake rates have, in general,

a positive impact on the growth rate. For ethanol production, the highest rates are in the

anaerobic regime, i.e. no oxygen uptake. First, a unique polynomial for the whole domain was

fitted to each surface ( Appendix: Figure 34), however, the Root Mean Square Error (RMSE)

and the Root Mean Squared Error of Prediction (RMSEP) presented unacceptable values

(Appendix: Figure 35), mainly for the growth rate model. In spite of the fact a reasonable

result in the controller was obtained with a single polynomial (Figure 36 and Figure 37), we

decided to divide the surfaces into zones and use piecewise polynomials, with a smoothed

transition.

Based on the response surface, three operation zones were formulated (Figure 14).

These operation zones are analogous to the concept of phenotypic phase plan presented

by Duarte et al. (2021). However, in this work, the zones were chosen based on their

curvature.The operation zones were divided by visual inspection for that case study; however,

a more systematic approach must be investigated in future works. The application of state

of the art machine learning techniques like regression and classification trees would be

interesting. However, a unique model, flexible enough could have been chosen instead.

The first operation zone (blue) is when glucose and oxygen are at higher rates. This

zone represents the maximum biomass formation because of the high oxygen availability.

The second zone (red) occurs when the glucose uptake rate is low compared to the oxygen

uptake rate. Finally, the third zone (yellow) encompasses the anaerobic regime when the

cells have to increase the synthesis of ethanol that is necessary to maintain internal redox

balance. Zones red and blue are growth zones, and zone yellow is a production zone. The

objective of the controller was balancing between this two operation modes to ensure a high

productivity.
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Figure 14 – Profile of the FBA solutions for different values of the uptake rates of glucose vg

and of oxygen vo. We solved the FBA problem for every value of the independent
variables in an equidistant 50 by 50 grid.

With the FBA solution profiles available and the operation zones defined, the next step

for obtaining the surrogate models was to identify the polynomial parameters. We carried

out a PLS analysis for comparing the different model options. The purpose of applying

PLS regression is to evaluate the hyper parameter corresponding to the number of PLS

components retained. This hyper parameter is able to express the balance between over-fit

and under-fit.

For the model structure comparison, we consider the Root Mean Square Error

(RMSE) to evaluate how well a given model fits the training data set, and the Root Mean

Squared Error of Prediction (RMSEP) of a 10-fold cross-validation analysis to indicate the

lack of prediction accuracy. Both indexes are normalized by the mean of the maximum and

minimum value of each model, i.e. 0.374 for µ and 0.017 for ve.

We performed the analysis using a relatively large polynomial with 20 parameters

and then use PLS analysis to determine the number of PLS components to retain. The
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results of the average of RMSE and RMSEP for the three zones are shown on percentage in

Figure 15.

Figure 15 – Relative RMSE and RMSEP for growth rate µ model (black), and the exchange
ethanol rate ve (grey) as a function of the number of PLS components.

The results indicate that the models with only two PLS components have a poor

prediction capacity. Both models for µ and ve have a similar tendency in RMSE and RMSEP

when the number of PLS components increase. However, as a consequence of a more

flat response surface (shown in Figure 14), the model for ve presents a better fitting and

prediction.

Defining a threshold to decide the number of PLS components can be challeng-

ing(GELADI; KOWALSKI, 1986). Normally, heuristics are used to establish an acceptable

threshold for RMSEP or a minimum variation after the addition of a component. Here, using

more than 11 PLS components marginally improves the model prediction capacity and

fitting for both the growth rate µ and the exchange ethanol ve. Since an RMSEP of 0.4 % is

acceptable for our proposes, the response surfaces are approximated by models obtained

by using 11 PLS components.
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Model validation

After determining the surrogate model, we need to assess how it influences the

complete reactor model accuracy. The comparison of the solution of Equation (3.6) using

the mapping Ξ as the FBA problem in Equation (3.1) and the surrogate approximation in

Equation (3.4) was performed. The parameters of Table 5 were used in this simulation.

Since the surrogate model consists of three polynomial models (one for each zone

in Figure 13) connected by a smoothed heaviside step function, preliminary simulations

were used for tuning the heaviside parameter (kl). This parameter controls how sharp is the

transition between models. The adjusted heaviside parameter was kl = 1.0x103, which led to

a smooth transitions between the operation zones.

The validation simulation starts with DO = 0 % (yellow zone in Figure 13), then,

after 6h the DO is changed to 50 % (blue zone in Figure 13), finally, as glucose is being

consumed, the process reaches the third zone (red in Figure 13). The results are shown in

Figure 16. The simulation for standard dFBA (dashed) and surrogate dFBA (dotted) present

overlapping profiles.

The simulations were performed in JULIA language (BEZANSON et al., 2017) using an

explicit Runge-Kutta method from JULIA’s DifferentialEquations package (RACKAUCKAS; NIE,

2017). Both standard dFBA and surrogate dFBA were solved by the DA method. However,

the standard dFBA was solved in about 120 s, while the surrogate dFBA was solved in 4 s in

an Intel core i7 @ 1.8GHz . Since the LP/FBA problem needs to be solved at each integration

step, it makes the DA method for the standard dFBA time-consuming. For comparison, the

solution of the same problem for the standard dFBA with the SOA method was solved in

about 60 s. For simulations of the dFBA model alone, it is evident that the use of the state-of-

the-art methods would be preferential, not because of the time of simulation, but because

of the time needed to train the surrogate model. However, if the aim is to insert the dFBA

model on an architecture such as optimal control or parameter estimation problems then, in

our opinion, the surrogate dFBA would culminate in a single-level optimization problem with

a fast computation of gradient and hessian information.
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Figure 16 – Comparison between simulated profiles for standard DFBA (dashed) and surro-
gate DFBA (dotted). Glucose (red), biomass (blue) and ethanol (green).

Controller formulation using the surrogate model for dFBA

The EMPC controller is formulated to maximize ethanol mass at the end of the

control horizon. The manipulated variables are F and DO. In order to simulate the case

study problem, we use the model described in Equation (3.6) both as the “plant” and as the

controller model. They differ on how the mapping Ξ is solved. For the “plant”, we use the FBA

formulation of Equation (3.1), whereas our method with the surrogate model approximation

is used in the controller (Equation (3.5)). The EMPC formulation, then, becomes:

max
u(t)=[F(t),DO(t)]

ϕ := V(t0 + Tp)E(t0 + Tp)

s.t. DFBA model:

ẏ(t) = f (y(t), u(t)), for t ∈ (t0, t0 + Tp]

y(0) = y0

inequality constraints:

V(t) ≤ 1.2

F(t) ≥ 0

0 ≤ DO(t) ≤ 50

(3.9)
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where y(t) = [V(t), X(t),G(t), E(t)]T , and u(t) = [F(t),DO(t)]T . The dFBA model is repre-

sented by an ordinary differential equation (ODE), which results from rearranging Equa-

tion 3.6. The inequality constraints incorporate technical restrictions of the system. We

assume that the final simulation time is tend = 13[h], t0 is the current time, the prediction

horizon is Tp = 50[min], and the controlling sampling time is h = 10[min]. In this control

formulation, we also constrained the number of control moves by including a control horizon

of Tc = 30[min]. Full state feedback is assumed in the simulations

The controller is implemented in JULIA language (BEZANSON et al., 2017) and IPOPT

(WÄCHTER; BIEGLER, 2006) is used for solving the optimization problems. The “plant” biore-

actor model is integrated in time using an explicit Runge-Kutta method from JULIA’s Dif-

ferentialEquations package (RACKAUCKAS; NIE, 2017) (DA method). On the other hand, the

differential equations of the controller model are discretized using Radau collocation on finite

elements with 3 collocation points in each interval, and integrated by the NLP solver (DOA

method).

EMPC implementation

The economic NMPC implementation is evaluated in two steps: First, we evaluate the

controller performance in the absence of modeling errors, i.e. the dFBA with the surrogate

model is used as the true model of the bioreactor. Second, we add plant-model mismatch to

the analysis by considering errors in the surrogate model identification process.In this case,

the “plant” bioreactor model is set as the standard dFBA, in which the linear optimization is

performed in the genome-scale network model null space. On the other hand, the parameters

of the surrogate model are estimated from the FBA simulations with the genome-scale

network model, leading to the model discrepancy.

No plant-model mismatch

Figure 17 shows the results for the scenario without plant-model mismatch. The

results are presented in the following order: the top left plot shows the evolution of the

volume inside the fed-batch reactor as well as the maximum volume constraint; the top right

plot shows the concentrations of glucose (red), biomass (blue) and ethanol (green). The
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latter is the product of interest of the reaction being carried out. The bottom plots show

profiles of the manipulated variable profiles, feed flowrate (left) and dissolved oxygen (right).
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Figure 17 – Profiles obtained using the surrogate model both in the controller and as the
“plant” bioreactor model. The concentration profiles are glucose (red), biomass
(blue) and ethanol (green). In the volume plot, the maximum volume constraint
is shown in red.

The final obtained ethanol mass is 15.64 [g] with a final biomass mass of 6.97 [g]. The

glucose feeding starts at 6 [h] of batch time and the aerobic-anaerobic switch happens after

8 [h]. Additionally, the controller keeps the glucose concentration in an optimal value (∼ 2.4

[g L−1]) during the ethanol production phase, which is important for the reaction yield. If the

glucose concentration is high, it inhibits the microorganisms activity. On the other hand, if it

is low, the ethanol production decreases.

The profiles are similar to the results reported in Chang et al. (2016), where the case

study was originally introduced. The direct comparison cannot be performed because the

authors used a smaller scale network model. However, this qualitative result indicates an

advantage of our method. In Chang et al. (2016), the FBA LP problem first order optimality

conditions are added as constraints in the controller formulation (Equation (3.9)), which

allows the simultaneous solution of both optimization problems (LP (FBA) and control). This

strategy requires a reduction model step, in which the network model is simplified, or a small-

scale network model is used. Since network models are getting larger and more detailed

(LLOYD et al., 2018), this simplification step may discard important information about the
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underlying metabolic pathways and affect the controller performance. In turn, in our method,

the surrogate models capture the entire information provided by the detailed genome-scale

network model, which can be explored by the controller.

Implementation issues

In a preliminary study, before obtaining the results of Figure 17, the controller pro-

moted abruptly changes in the manipulated variables (F and DO) during the simulations.

This policy culminated in glucose concentration fluctuations, which are not desirable in real

implementations. The same patterns were reported by Chang et al. (2016). The authors

solved the problem by imposing constraints in the manipulated variables. However, this

strategy did not have the same impact in our simulations. Then, in order to obtain smoother

manipulated variable profiles, a penalty was added in the controller objective function (see

Equation 3.9), which became:

ϕ := V(t0 + Tp)E(t0 + Tp) +
∫ t0+Tp

t0
u̇(t)T Ru̇(t) dt (3.10)

where u̇(t) = [Ḟ(t), ḊO(t)]T are the input changes and R is a weighting matrix with appropriate

dimensions. Here it was set as 0.1.

Another challenge during the control implementation was related to the NLP conver-

gence. Initially, the control problem did not converged in approximately 10% of the times. The

problem was solved by relaxing some equality constraints using slack variables and adding

one more penalty in the objective function. The new control formulation, then, became:



74

max
u(t)=[F(t),DO(t)]T

ϕ := V(t0 + Tp)E(t0 + Tp) +
∫ t0+Tp

t0
u̇(t)T R u̇(t) dt +

∫ t0+Tp

t0
s(t)T Q s(t) dt

s.t. DFBA model:

ẏ(t) = f(y(t),u(t)), for t ∈ (t0, t0 + Tp]

y(0) = y0

s(t) = [s(t)F , s(t)DO]T

y(t) = [V(t), X(t),G(t), E(t)]T

inequality constraints:

V(t) ≤ 1.2

F(t) ≥ 0

0 ≤ DO(t) ≤ 50

|Ḟ(t)| ≤ 0.02 + s(t)F

|ḊO(t)| ≤ 0.5 + s(t)DO

(3.11)

Parameter mismatch

Although the surrogate modeling approach has advantages, a poor approximation

may affect the control performance because of plant-model mismatch. In order to illustrate

this scenario, we use a less accurate version of the surrogate model inside the controller.

Instead of using 11 PLS components, as in the previous section, we use only 2. As a conse-

quence, the average prediction error of the surrogate models increases to approximately

14% (see Figure 15), leading to a significant degree of plant-model mismatch.

For testing the controller with the less accurate surrogate model, we run the controller

both in open loop (without state feedback) and in closed loop (considering full state feed-

back). Feedback plays an important role in the control performance providing robustness to

modeling uncertainty (ASTROM; MURRAY, 2008). If the model response deviates significantly

from the true system response, which indicates plant model-mismatch, feedback supplies

a corrective action to the model. In turn, if no feedback is used, the control performance

heavily depends on the model accuracy. If there is any degree of plant-model mismatch, it is

very likely that the control results are poor.
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Figure 18 illustrates how we can use feedback to deal with the plant-model mismatch

created by less accurate surrogate model approximations. The figure setting is the same as

in Figure 17. We plot the responses of the open loop (dotted line) and closed loop (full line)

together.
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Figure 18 – Comparison between open (·) and closed loop (–) operation. The concentration
profiles are glucose (red), biomass (blue) and ethanol (green). Here, the surro-
gate model is obtained by using the first two PLS components, while the “true”
system is based on genome-scale network null space.

The results show that, in this case, the controller feedback mitigates the effects of

the plant-model mismatch. The final ethanol concentration obtained was 15.60 [g] with a

final biomass mass of 6.66 [g]. Both are are very similar to the results shown in the previous

sections, where the controller model it is a surrogate model. The final ethanol concentration

deviates only 0.25% of the solution with the perfect control, whereas the final biomass

concentration deviates 4.6% .

In contrast, the open-loop had a poor performance. The open-loop formulation was

unable to follow the behavior of the real model. The controller overestimates the glucose

uptake rate and, as a result, glucose started to accumulate in the bioreactor, inhibiting the

ethanol production.

Remark. For completeness, we performed two extra simulations, in which the controller

model is different from the plant. We used two distinct genome-scale models (GSM) as the

plant models (the GSM Saccharomyces cerevisiae models iND750 and iMM904), whereas
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the controller model was trained using Yeast 8.3. In both cases the plant-model mismatch

impact on the controller performance was small. For the sake of brevity, the results are

shown in the Appendices (Figure 38).

Noisy measurements

A test to verify the performance of the controller in the presence of noise in measure-

ments was carried out. A zero-mean white noise of 10% was added to the biomass, glucose,

and ethanol measurements, and 1% for volume measurements. The goal of this test is to

mimic an imperfect state feedback. The surrogate models using 11 PLS components were

set to the controller and the standard dFBA for the "plant" bioreactor model. 100 simulations

were performed to evaluate the performance distribution of the closed-loop controller (Figure

19). It is important to say that measurements were directly used in the controller, without any

filter. The profiles do not considerably differ from the original trajectories (–). Furthermore, In

all simulations, the controller guaranteed that the operational constraints were not violated.

The standard deviation in the final ethanol concentration from the perfect control case was

1.18%, and the worst-case deviation was 3.33 %.
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Figure 19 – Comparison between 100 simulations of closed loop operation with noisy mea-
surements. The concentration profiles are glucose (red), biomass (blue) and
ethanol (green). Here, a zero mean white noise of 10% was added to the
biomass, glucose and ethanol measurements, and 1% for volume measure-
ments. (–) reference profiles without noisy measurements.

Both Figure 18 and Figure 19 show that feedback can alleviate the plant-model

mismatch if it is present. On the other hand, for a proper feedback, we need sensors that

provide accurate measurements, with proper levels of measurement noise. It is crucial to

properly balance the trade-off between the costs of sensors with obtaining a more detailed

model and the benefits that the controller can bring. Also, it is important to consider that

as a bottom-up model the process of training the surrogate model from a detailed genome

scale description is much more simple than the estimation process for top-down models,

that could be obtained from a large number of experiments.

Study case 2: Parameter estimation

First, the surrogate FBA model was trained using FBA simulations performed in

COBRA Toolbox for MATLAB. The FBA was solved for every value of the vg and vz uptake

fluxes in an equidistant 40 by 40 grid (Figure 20). Both response surfaces for µ and ve

are flat, which means that the amount of ethanol and biomass being produced are linearly

proportional to the uptake of each substrate. Different from the non-linear response surface
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in Study case 1 (OLIVEIRA et al., 2021a) where a piecewise polynomial surrogate model was

needed, here a single polynomial could fit the data. The relative Root Mean Square Error

(RMSE) was 6.67e − 8 % and 1.41e − 4 % for µ and ve respectively. While the relative Root

Mean Square Error of Prediction (RMSEP) was 2.99e − 10 % and 1.91e − 6 % for µ and ve

respectively. The relative RMSE and RMSEP were computed by dividing the fluxes by the

maximum value of the correspondent uptake flux.
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Figure 20 – Profiles of the FBA (Equation 3.1) solutions for different values of the uptake
rates of glucose vg and xylose vz. We solved the FBA problem for every value of
the independent variables in an equidistant 40 by 40 grid.

After the FBA surrogate model was trained, the parameter estimation problem was

solved using the three different methods described in the methodology section. Ten different

initial guesses were supplied to solve the problem by each method and the solution with the

lower objective function (OF) was selected. Figure 21 compares the predicted concentrations

with the best-fitted set of parameters for each case. Visually, the methods that applied the

surrogate FBA fit the in silico data adequately, on the other hand, the method that uses the

nested LP to solve the dFBA model was unable to fit the data. In fact, all the attempts to

solve the estimation problem using the nested LP resulted in a set of parameters close to

the initial guess. Because of the embedded optimization problem, the lsqnonlin solver was

not able to compute efficiently the gradient of the problem. Furthermore, the attempts of

using derivative-free methods like simplex (i.e. fminsearch) have failed as well.
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Figure 21 – Simulated profiles for dFBA surrogate in Julia (solid), dFBA surrogate in MATLAB
(dashed) and dFBA DA in MATLAB (dotted). in silico data points are presented
as circles.

The performance of each method for solving the problem is presented in Table 11.

The dFBA with the embedded optimization had a CPU time about 60 times higher than the

methods that used the surrogate FBA. Despite the larger CPU time, the solver performed

only 5 iterations and 36 function evaluations. The need of solving the nested LP at each

step of the ODE solver makes this method computationally expensive and ineffective, as

it can be seen by the poor fit as well (Figure 21). Comparing the methods that applied the

surrogate approximation, the utilization of automatic differentiation can improve performance.

However, the utilization of the surrogate FBA is enough to guarantee a good fitting. These

results illustrate the advantage of the surrogate approximation FBA to solve parameter

estimation problems. The time and effort to train the surrogate model must be taken into

account in that analysis, but for a small number of input fluxes the task can be easily done.

Moreover, Table 11 also presents the set of parameters estimated in each case, as well as

the set of parameters used to generate the measurements. The set of estimated parameters

was different from the one used to simulate the measurements data even when a good fit

was achieved. In fact, the set of parameters in dFBA models are typically dependent and

cannot be uniquely identified (LEPPäVUORI et al., 2011). In order to make a complete analysis,

parameter uncertainty must be taken into consideration. This is a practical identifiability issue

that should be discussed with more depth. A possibility is to apply a recent methodology

developed in our group that used sparse Principal Component Analysis to access the

identifiability of metabolic fluxes on carbon labeling experiments (OLIVEIRA et al., 2021b).
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Table 6 – Comparison of the Computational Performance of each method and the parameter
values used in model simulation to yield measurements.

Model dFBA surrogate dFBA surrogate dFBA
simulation IPOPT lsqnonlin lsqnonlin

CPU - 0.05 s 26.47 s 27.82 min
iterations - 29 20 5

function evaluations - 50 126 36
Objective function - 0.049 0.009 7.17

vmax
g 7.30 6.44 7.13 30.01
Kg 1.03 0.64 0.94 12.02

vmax
z 32.00 26.07 4.69 7.99
Kz 14.85 10.48 1.60 0.80
Kie 0.50 0.39 0.81 1.00

3.3.1 Conclusions

We presented a new NMPC application to bio-reactors. By combining mass balances

with a surrogate model for the genome-scale network, our approach provides significant

reduction in online computations while still accurately describing the microorganism of

interest.

The core idea is to replace the inner LP problem associated with the solution of the

flux balances analysis (FBA) of the genome-scale network model by a polynomial. Therefore,

the computational issues associated with solving a bi-level optimization problem, which

comes from placing the LP inside the optimal control problem, are avoided. Moreover, apart

from the approximation errors due to the use of a surrogate model, our approach does

not require any further simplification of metabolic networks. In this work, we suggested an

approximation identification procedure based on Partial Least Squares Regression to assure

that the polynomials are an accurate representation of the underlying metabolic network.

Our approach is an alternative to the controllers that require a reformulation of the

FBA problem (CHANG et al., 2016). In these controllers, instead of directly solving the FBA,

the problem first-order optimality conditions are used as constraints to the optimal control

problem. The results show that the NMPC with the surrogate models has an equivalent

performance, in terms of manipulated variables profiles and economic results, to the controller

with reformulated FBA reported by Chang et al. (2016). Moreover, the controller used in

Chang et al. (2016) relies on small scale genome-scale metabolic models whereas our
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approach relies on polynomial approximations of the complete metabolic network, which are

more representative of the underlying system.

The strategy was also applied to a parameter estimation study case. The estimation

of the model parameters poses a challenge due to the bi-level optimization architecture

and the non-smooth behavior of the dFBA model. Here, the replacement of the embedded

optimization problem by a surrogate model was evaluated. The results demonstrated that the

surrogate model can be easily trained from FBA simulations and improve the performance

of the estimation problem. In the future, the methodology should be applied to parameter

estimation and uncertainty quantification problems using experimental data.

Finally, we would like to summarize some limitations of the current work, which are

interesting for future research. The FBA approach can give rise to a non-unique set of

solutions (ORTH et al., 2010), which can be more common in genome-scale models that are

not completely validated. Another aspect that should be addressed in the future is the case

when not all state measurements are available and some of them must be estimated. An

approach similar to Jabarivelisdeh et al. (2020) could be used, where a moving horizon

estimation and resource balance analysis algorithms were combined with the MPC in order

to estimate the states and account for parameter uncertainty. Additionally, for more complex

examples, the polynomial models could not be a good fit, then other surrogate models

families should be explored.



82

4 Nonlinear Programming Reformulation of Dynamic Flux Balance
Analysis Models

The description of the metabolism dynamic behavior is relevant for a range of research

fields such as systems biology, synthetic biology, metabolic engineering, and bioprocess

engineering (NIELSEN, 2017). Dynamic models have been used for a variety of applications

such as predicting gene deletion effects on a bioproduct productivity (HJERSTED et al., 2007),

optimal control of bioprocesses (CHANG et al., 2016), and understating the effect of diseases

on human cell metabolism (GUEBILA; THIELE, 2021). A widely applied dynamic model of

metabolism is the so-called Dynamic Flux Balance Analysis (dFBA) (MAHADEVAN et al., 2002).

The main hypothesis in dFBA models is that the intracellular dynamics are faster than the

extracellular dynamics, in consequence the intracellular metabolites could be described

by a steady-state model. In order to implement that hypothesis, a metabolic network is

used. The networks are built using omics information, mapping transformations between

substrates to bioproducts mediated by enzymes (THIELE; PALSSON, 2010). The metabolic

networks are expressed in the form of a matrix (stoichiometric matrix), in which each column

corresponds to an enzymatic reaction and each row to a metabolite. Because typically those

matrices have more fluxes than metabolites, an undetermined system of equations is to be

solved. An optimization problem is formulated for that purpose using a biological meaningful

objective function. This process is called Flux Balance Analysis (FBA) (ORTH et al., 2010). The

dynamic version of FBA is implemented by applying mass balances equations to describe

the behavior of the extracellular metabolites, in conjunction with kinetic expressions aimed

to describe the uptake of substrates. The solution of dFBA models present some challenges

that are summarized below:

• Stiff behavior: Normally dFBA models present stiff behavior, especially in situations as

diauxic growth (MAHADEVAN et al., 2002; HJERSTED et al., 2007).

• Non-unique solutions: in most cases, the solution of the optimization problem (FBA)

is not unique. In consequence, situations where the fluxes ”jump” between different

optimal solutions can arise.

• Feasibility: When the optimization solver cannot find a feasible solution for the FBA

problem, the interaction with an ODE solver can be tricky.

• Scalability: The size of the metabolic networks applied in FBA can be large, therefore

methods should scale adequately for those situations.
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• Nonlinearity: The presence of nonlinear constraints or objective functions can substan-

tially increase the computational demand.

• Differentiability: When the dFBA models are used inside an optimal control or param-

eter estimation architecture, the first and second derivatives of the model must be

computed.

The simplest method for solving a dFBA model is the Static optimization approach

(SOA) (MAHADEVAN et al., 2002). In the SOA the ODE system is discretized using an explicit

Euler method and the FBA is solved at each time step. For stiff problems, the Euler method

would need a small step, then the FBA needs to be solved a large number of times. Another

usual approach is the direct approach (DA) (ZHUANG et al., 2011), where an adaptive size

solver for the ODE system is used and the number of optimizations decreases in comparison

with the SOA method. Both SOA and DA are easy to implement but the solution of the

optimization problem can make the simulations fail.

Modifications on the DA have been proposed in order to address this issue, like

event-based methods. Gomez et al. (2014) developed an event-based methodology that

detects changes in active-set of the FBA model (HARWOOD et al., 2016). This makes the

solution faster because the FBA problem does not need to be solved at each time step. They

also applied a lexicographic optimization methodology to deal with the non-unique solutions

of FBA, wherein the first optimization problem solves a feasibility problem. Other event-based

methods that compute an optimal basis for the FBA feasible space have also been proposed

(PLOCH et al., 2020; BRUNNER; CHIA, 2020). The drawback of these formulations is the need of

continuous monitoring the active-set of the optimization problem that can increase with the

size of the metabolic network. Also, the model is non-differentiable at the points of change of

the active-set.

Another class of approaches propose the reformulation of the dFBA using the Karush

Kuhn Tucker (KKT) conditions of the FBA problem. Ploch et al. (2020) reformulated the

dFBA model as a nonsmooth DAE system and applied a homotopy continuation to avoid

the fluxes from jumping between optimal solutions. Scott et al. (2018) uused an interior

point reformulation of FBA. The solvers failed to solve the generated DAE system and

they needed to apply DAE index reduction to obtain an implicit ODE system. Dynamic

optimization problems using genome-scale networks were solved and the model derivative

information was computed solving the sensitivity equations. Surrogate models of dFBA have
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also been proposed, they focused mainly on Model Predictive Control (MPC) applications,

for introducing robustness using a polynomial chaos expansion (KUMAR; BUDMAN, 2017) or

to allow the resolution of large genome-scale models in a short time and high convergence

rate (OLIVEIRA et al., 2021a).

Finally, there is a class of approaches that reformulate the problem as a nonlinear

programming (NLP) problem. These approaches discretize the ODE system using a tech-

nique such as orthogonal collocation on finite elements, which are included as constraints

in the optimization problem. The simplest version is the Dynamic Optimization approach

(DOA) (MAHADEVAN et al., 2002) that uses some instantaneous objective function such as the

maximization of biomass formation. Raghunathan et al. (2003) formulate a parameter esti-

mation problem for dFBA problems using the KKT conditions for the FBA problem. Chang et

al. (2016) did the same for MPC formulation. The great advantage of these NLP formulations

is that they can easily incorporate path constraints, nonlinear constraints, nonlinear objective

functions and they can be easily integrated into parameter estimation and optimal control

problems as a single-level problem. Also, the FBA optimization does not need to be solved a

large number of times during the simulation. The main drawback of this strategy is the need

to solve large NLP that can be difficult to initialize and can suffer from convergence problems

(MAHADEVAN et al., 2002; CHANG et al., 2016).

Here, we present an NLP reformulation for the dFBA models that is fast, precise, and

can be applied for large genome-scale networks. The methodology consists in incorporating

a KKT reformulation of a parsimonious FBA problem, applying a collocation technique

to the ODE system. The method was implemented using the free open source and high-

performance language Julia (BEZANSON et al., 2017). Furthermore, the utilization of automatic

differentiation code packages can allow for fast computation of first and second-order

derivatives. This represents a considerable advance in comparison to the simulation-based

approaches that need to compute the derivatives by finite differences, sensitivities equations,

or applying derivative-free methods. Also, the application of a large-scale NLP solver (e.g.

IPOPT) can considerably reduce the computational time and handle large optimization

problems by exploring the sparsity of the NLP systems (SHIN et al., 2019).
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4.1 Methodology

ODE discretization using orthogonal collocation on finite elements

The Ordinary Differential Equation (ODE) system of the dFBA model represents the

external metabolites mass balances. Efficient ODE solvers are available for stiff problems

like dFBA models, and many of them have been applied until now (GOMEZ et al., 2014; SCOTT

et al., 2018). However, the interaction of the optimization solver with the FBA problem can

be tricky, mainly if the optimization solver does not return any solution (infeasible problem)

at a given integration step. Another difficulty is that the optimization problem needs to be

solved many times, at each time step of the ODE solver. For large metabolic networks or

more computational demanding versions of FBA like pFBA (Equation 4.3), the sequence of

optimizations can get computationally cumbersome.

Alternatively, to use an ODE solver, the ODE system can be discretized using the

orthogonal collocation technique (BIEGLER, 2010) (also know as direct transcription). This

technique was demonstrated to be equivalent to an implicit Runge–Kutta method with high-

order accuracy and strong stability properties (BIEGLER, 2010). Here, we discretized the

ODE system using orthogonal collocation on three Radau collocation points. Also, the time

domain was divided into finite elements.

xk+1 = xk + F(xk+1, vk+1)

x(t) ≈ A + Bt +
C
2

t2 +
D
3

t3
(4.1)

Applying Equations 4.1 to the ODE of the state variables presented in Equation 3.7:

x = x0 + hMF(x, v) (4.2)

where M is a matrix that can be calculated based only on the position of the collocation

points; h is the time step; and x0 is the vector with the initial condition for each element that

is defined as the last point of the previous element, and for the first element is defined as the

initial condition of the state vector x.
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Karush–Kuhn–Tucker (KKT) reformulation of FBA

In an analogous way to the ODE system, the FBA optimization problem can also be

transformed into a system of algebraic equations. This can be done by applying either the

duality theory (MARANAS; ZOMORRODI, 2016) or the first-order necessary optimality condition

(Karush Kuhn Tucker-KKT) (RAGHUNATHAN et al., 2003). Besides the fact that the duality theory

transformation avoids the complementarity constraints on the model, this formulation leads

to a nonconvex NLP, for which only local optimal solutions can be guaranteed (RAGHUNATHAN

et al., 2003). For this reason we decided to apply the KKT conditions here.

Typically, FBA has multiple optimal solutions, Gomez et al. (2014) applied lexico-

graphic optimization to deal with the multiplicity of solutions, however, the number of opti-

mization problems increases, and the order of objective functions must be supplied. Scott

et al. (2018) applied an interior-point method to obtain an arbitrary unique solution in the

interior of the feasible space. pFBA (Equation 4.3) has shown a good agreement with experi-

mental data (LEWIS et al., 2010; MACHADO; HERRGåRD, 2014), therefore, here an alternative

formulation for the pFBA problem presented by Ploch et al. (2020) was implemented:

max
v

cT v − vT W v

s.t.

S v = 0

vmin ≤ v ≤ vmax

(4.3)

Equation 4.3 consists in the FBA formulation with the addition of a quadratic reg-

ularization term to search for solutions with minimal overall intracellular flux. W is the

regularization diagonal matrix. As observed by Ploch et al. (2020),for a small value of param-

eter w the solution of Equation 4.3 is also a solution of Equation 3.1. The LP FBA is then

transformed into a quadratic programming (QP) problem that is also convex (PLOCH et al.,

2020). The KKT conditions for the Equation 4.3 are:

c −W v + S Tλ − αU + αL = 0

(vmax − v)αU = 0

(v − vmin)αL = 0

λ, αU , αL ≥ 0

(4.4)



87

where λ, αU , and αL are the multipliers corresponding to the stoichiometric equation, fluxes

lower bound and fluxes upper bound, respectively. Equation 4.4 belongs to a class of

problems called Mathematical Programs with Complementarity Constraints (MPCC) (BAUM-

RUCKER et al., 2008). Complementarity constraints are related constraints that at least one of

them must be active. This MPCC is particularly changeling to solve because they violate

the linear independence constraint qualification (LICQ), which requires the gradients of the

active constraints to be linearly independent (BAUMRUCKER et al., 2008).

A series of regularization methods have been proposed to deal with the MPCC. Some

methods consist in just relaxing the right-hand side of the complementarity constraints using

a small value and solving a series of simulations decreasing this value (BAUMRUCKER et al.,

2008). Applying an extreme-ray-based transformation (ZHAO et al., 2017), or an interior-point

transformation (SCOTT et al., 2018) have also been proposed. Also, a Mixed-Integer Nonlinear

Programming (MINLP) transformation can be applied (MARANAS; ZOMORRODI, 2016).

Finally, a penalization method can be applied when the complementarity constraints

are inserted in the objective function as a penalty parameter. Here, we decided to apply the

penalty method to deal with the MPCC because it can be solved in a single optimization

problem and it has also presented good results with NLP interior-point solvers (BAUMRUCKER

et al., 2008), which was applied in this work.

NLP dFBA implementation

We are now able to build an NLP formulation of the dFBA model applying the

discretized ODE and the KKT conditions with the penalization method to deal with the

complementarity constraints as follows:
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max
x,v

Φ(x, v) − ρ((vmax − v)αU + (v − vmin)αL)

s.t.

x = x0 + hMF(x, v)

x ≥ 0

vuptake = g(x)

lb ≤ v ≤ ub

c −W v + S Tλ − αU + αL = 0

λ, αU , αL ≥ 0

(4.5)

where ρ is the penalization parameter and Φ(x, v) is the objective function. For the case of

a simple dFBA simulation, the value of Φ(x, v) is zero. However, Φ(x, v) can also be a sum

of squares of residues for a parameter estimation problem, or an optimal control objective.

That is one advantage of the NLP formulation, which can be easily adapted for different

applications of the dFBA model. Moreover, the NLP formulation allows direct gradient and

Hessian evaluations, differently from the sensitivity calculations when DAE solvers are used,

which can cause convergence difficulties (BIEGLER, 2010) and requires that the dynamic

model be simulated many times (SHIN et al., 2019).

On the other hand, efficient large-scale NLP solvers are required for efficient solution

of the NLP formulation. Therefore, we implemented the NLP dFBA formulation on JULIA

language (BEZANSON et al., 2017) using the automatic differentiation package (RACKAUCKAS;

NIE, 2017) for fast computation of the gradient and Hessian. The NLP was solved using the

IPOPT solver (WÄCHTER; BIEGLER, 2006) with the linear solver MA27. An overview of the

NLP dFBA approach can be found in Figure 22. All calculations were performed on a laptop

equipped with an Intel Core i5-1135 CPU, 2.40 GHz and 16 GB RAM.



89

FBA (LP) pFBA (QP) KKT
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Figure 22 – Overview of the NLP dFBA approach. The ODE system is discretized using
the orthogonal collocation technique on finite elements and inserted on the
NLP dFBA as constraint. The algebraic constraints of dFBA related to uptake
kinetics are directly inserted on the optimization problem as constraints. The
FBA problem was first transformed into a pFBA by the addition of a quadratic
regularization term. Then the KKT conditions of the pFBA were computed
and inserted on the NLP dFBA as constraints. Finally the NLP dFBA was
implemented in Julia language using the JUMP environment. An automatic
differentiation package was used to compute the derivatives and the solver
IPOPT was used to solve the resulting NLP problem.

4.2 Results

A series of case studies are presented in this section for different applications of dFBA

models. First, the NLP dFBA is applied to the simple E. coli core model. The need for flux

constraints and an adaptive mesh scheme is justified based on diauxic growth simulations.

In the second case study the E. coli iJR904 model was applied, where the effect of the

metabolic network size is explored.In the next case study the E. coli iJO1366 model was

applied to estimate the optimal profile of genetic alterations for D-lactic acid production.

Case study four evaluates the application of NLP dFBA for S. cerevisiae iND750 model

in the dynamic optimization of a bioreactor problem. Finally, the NLP dFBA is applied to

S. cerevisiae Yeast 8.3 model, which is the largest metabolic network applied in this work,

solving a parameter estimation problem.
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Study Case 1: Escherichia coli core model

The E. coli core model was chosen to be the first case study to test the methodology

proposed because it is a simple and well-established model. First, a simulation of the aerobic

growth on a medium containing glucose and acetate was performed. The model consists

of mass balances for glucose (G), acetate (A), and biomass (X). Also, a Michaelis-Menten

equation was applied for describing the glucose uptake:

dX
dt
= µX

dG
dt
= −vgX

dA
dt
= vAX

vg ≤ vg,max
G

Kg +G

vo ≤ vo,max

X,G, A ≥ 0

vA, µ = pFBA(vo, vg)

(4.6)

where µ, vg, vo, vA are the growth rate, the glucose uptake flux, the oxygen uptake flux and

the acetate flux, respectively. Kg = 0.01 mmol is the affinity constant for the substrate. vg,max =

10.5 mmol/gdw h and vo,max = 19.0 mmol/gdw h are the maximum uptake rate for glucose and

oxygen, respectively. The acetate can be produced during aerobic growth on glucose or

consumed when glucose is exhausted. It was considered that acetate can freely diffuse

through the cell, and the acetate lower bound flux was set to −2.5 mmol/gdw h.

The first simulation was performed until the moment of glucose exhaustion, for

that case, no acetate consumption should occur. The NLP dFBA formulation presented in

Equation 4.5 was used with an equidistant mesh of six elements and Φ(x, v) = 0. In order

to validate the solution obtained by the NLP formulation, the DFBAlab simulator was used

as reference (GOMEZ et al., 2014). The lexicographic optimization order in DFBAlab was

maximizing growth rate, minimizing glucose uptake, and maximizing acetate production.

Also, the DA approach was applied using an explicit Runge-Kutta method from JULIA’s

DifferentialEquations package. The results showed a good agreement between the different

approaches (Figure 23A).
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Figure 23 – Escherichia coli core model simulation until (a) glucose exhaustion and (b)
acetate exhaustion. The concentration profiles are glucose (red), biomass (blue)
and acetate (green). NLP dFBA (solid), DFBAlab (dotted) and direct approach
(dashed). All the methods presented the same result for the E. coli growth on
glucose (a), however, the NLP dFBA failed to describe the diauxic growth (b).

E. coli diauxic growth

A classic problem that can be simulated by dFBA models is the diauxic growth

phenomena, when a microorganism in the presence of two substrates presents a two-phase

growth, one for each substrate (MAHADEVAN et al., 2002). The dFBA should predict the

right point when the preferential substrate is exhausted, and the cells start to consume

the second substrate. In this example, E. coli should consume first the glucose and then

acetate (MAHADEVAN et al., 2002). The NLP dFBA approach described the system dynamics

poorly for this problem (Figure 23B). In order to diagnose the reasons for the NLP dFBA

approach not to converge to the right solution, the acetate flux (vac) profile and the Lagrange

multipliers associated to the acetate flux lower bound (αL
ac) were examined more carefully.

Table 7 shows the acetate flux and multipliers for each node in each finite element. As it

can be seen, the flux of acetate alternates between the two possible optimal solutions, one

consuming glucose and another consuming acetate. The last finite element is placed in the

middle of the transition between the two phases. The multipliers for the last element are

equal to zero for the first two nodes, and different from zero in the last one. This indicates

that the acetate lower bound flux constraint becomes active within the element.
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Biegler et al. (2002) noted that when there is a change of the active-set within a finite

element, convergence problems can arise. They proposed an ad hoc method to deal with

this problem. First, the NLP problem is solved and then it is evaluated if there is a change of

active set within some finite element. Then, for these elements, the size is set as a variable.

The methodology presented good results for optimal control applications, however, the need

to solve the problem more than once makes the method not so practical to apply. Here, in

order to deal with this problem, an extra constraint was imposed into the Equation 4.5 to

prevent that flux distribution within a finite element from having a considerable change:

vk
i − vk−1

i ≤ ϵ k = 1, ..., ncp (4.7)

where ncp is the number of collocation points, and ϵ is the allowed change in each flux.

When this new constraint is added to the solution of the E. coli diauxic growth problem (using

ϵ = 0), the profiles that are obtained are closer to those from the other approaches (Figure

24A). Looking again at the acetate flux and multipliers profiles on the finite elements (Table

7), it is possible to see that there are no changes within a finite element. Moreover, only the

last element is in the phase of consuming acetate.
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Table 7 – Acetate flux and acetate lower bound multiplier profiles for each node in each finite element for the solution of E. coli diauxic growth
using the NLP dFBA. When no flux constraint imposes the solution to jump between the two local solutions. However, when the flux
constraints were imposed, there is no change in the flux and multipliers within an element.

Element 1 2 3
Node 1 2 3 1 2 3 1 2 3

Without αL
ac 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9

flux const. vac 4.13 -2.50 4.13 4.13 -2.50 4.13 4.13 -2.50 4.12
Applying αL

ac 9.62e-9 9.62e-9 9.62e-9 9.62e-9 9.62e-9 9.62e-9 9.62e-9 9.62e-9 9.62e-9
flux const. vac 4.13 4.13 4.13 4.13 4.13 4.13 4.04 4.04 4.04

Element 4 5 6
Node 1 2 3 1 2 3 1 2 3

Without αL
ac 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 9.86e-9 -0.02 -0.02

flux const. vac 4.12 -2.50 4.12 4.12 -2.50 4.08 3.76 -2.50 -2.5
Applying αL

ac 9.59e-9 9.59e-9 9.59e-9 9.51e-9 9.51e-9 9.51e-9 -0.02 -0.02 -0.02
flux const. vac 3.73 3.73 3.73 2.62 2.62 2.62 -2.50 -2.50 -2.50
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Figure 24 – Escherichia coli core model simulation until acetate exhaustion for NLP dFBA
(-), DFBAlab (dotted) and direct approach (dashed). (A) imposing the constraint
on the flux profile and (B) also using a adaptive mesh. RMSE [%] for glucose,
acetate and biomass for DFBAlab/DA were 0.81/1.57, 0.70/1.07, 0.89/1.65,
respectively. CPUs for NLP dFBA, DFBAlab and DA were 0.46, 0.99, 13.79
(seconds), respectively.

Adaptive mesh

Despite the profiles presenting a better agreement with other approaches when the

flux constraints were imposed (Figure 24B), the transition between the two phases is still

poorly described. This happens because the last element, which is in the consuming acetate

phase, starts before the transition of the two phases. Therefore, to solve this issue, a simple

adaptive mesh strategy was implemented as described in (BIEGLER, 2010):

ne∑
k=1

hk = tend, hk ∈ [(1 − γ)h, (1 + γ)h] (4.8)

In this strategy, the size of each element (hk) is now a variable in the NLP and it is

allowed to change in a range based on the equidistant element size (h). For this problem,

the element sizes were allowed to change freely (γ = 1). The profiles now have a good

agreement with other approaches (Figure 24B). The position of the elements is indicated

with circles on the bottom the Figure 24. The last element now begins exactly at the point of

transition between phases, then the profile can be more accurately described. In order to



95

have a more precise measure of the difference between the approaches to solve the dFBA

model, the Normalized Root Mean Square Error (RMSE) was calculated as follows:

RMS E[%] =

√∑N
i=1(xa

i −xb
i )2

N

max(xi)
(4.9)

where N is the number of samples, indices a and b correspond to different approaches and

max(xi) is the maximum value of the metabolite. RMSE [%] for glucose, acetate and biomass

for DFBAlab/DA were 0.81/1.57, 0.70/1.07, 0.89/1.65, respectively. CPU times for NLP dFBA,

DFBAlab and DA were 0.46, 0.99, 13.79 (seconds), respectively. The adaptive mesh makes

the problem more flexible with the cost of a bigger optimization problem to solve. However,

by tuning the γ parameter this issue can be softened. For this small metabolic network, no

considerable difference in the time to solve the problem was noted between NLP dFBA or

DFBAlab. However, the DA method spends more time solving the problem. This can be

explained by the need for the DA to solve more optimizations problems. Two for each step,

because the bi-level version of pFBA was used.

Study Case 2: E. coli iJR904 model

The size of the metabolic network can have a considerable impact on the time and

precision of dFBA simulations. Many authors suggested that an optimization approach would

be intractable for genome-scale metabolic networks simulations (GOMEZ et al., 2014; SCOTT et

al., 2018; OLIVEIRA et al., 2021a). Indeed, optimization approaches can suffer from scalability

issues if the optimization problem becomes too big to be handled. Therefore, the E. coli

iJR904 genome-scale model (GSM) (REED et al., 2003) was applied to simulate the diauxic

growth problem in Equation 4.6. The E. coli iJR904 model has 761 metabolites and 1075

reactions, which is ten times bigger than the E. coli core model solved in the last section.

The problem was solved using 9 adaptive elements. The results are shown in Figure 25, the

RMSE [%] for glucose, acetate, and biomass for DFBAlab/DA were 0.85/4.88, 4.17/12.7,

0.79/4.48, respectively. CPU times for NLP dFBA, DFBAlab, and DA were 101.11, 1.05, and

204.62 seconds, respectively.

The DA method failed to predict the transition between the two substrate phases, thus

explaining the higher RMSE deviation. Indeed, the NLP dFBA had a significant increment

in computational time for the GSM while the DFBAlab had almost the same CPU times.
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This can be explained by the fact that it is much easier to solve larger LP problems than

NLP problems. Moreover, the fact that the DFBAlab computes an optimal basis for the FBA

problem and avoids solving the optimization problem many times during the simulations

explains the differences for the DA approach. It is important to highlight that despite the

larger amount of time to solve the NLP dFBA, it is still a short time and also, the utilization of

initial guess for the NLP problem can reduce that time (SHIN et al., 2019).

Figure 25 – E. coli iJR904 model diauxic growth simulation. The concentration profiles are
glucose (red), biomass (blue) and acetate (green). NLP dFBA (solid), DFBAlab
(dotted) and direct approach (dashed). RMSE [%] for glucose, acetate and
biomass for DFBAlab/DA are 0.85/4.88, 4.17/12.7, 0.79/4.48, respectively. CPU
seconds for NLP dFBA, DFBAlab and DA were 101.11, 1.05 and 204.62, re-
spectively. The position of the finite elements is indicated with black circles.

Dynamic control of metabolism

An useful application of dFBA model is the dynamic control of metabolism. Gadkar

et al. (2005) demonstrated that it is possible to apply dFBA models to estimate the optimal

profile of metabolic fluxes to maximize the productivity of a bioproduct. The authors study the

problem of maximizing ethanol production by E. coli regulating the flux through the acetate

pathway. When acetate is being produced in anaerobiosis the cell can produce more ATP

and have a high growth rate, on the other hand, when no acetate is being produced, the

growth rate decreases but the ethanol production increases. The role of the optimization

problem is to find the right time to switch from one state to another. The problem was



97

formulated as a bi-level optimization problem, in the upper level they maximize ethanol at

the end of the batch by manipulating the time of regulation (treg). In the lower level, the dFBA

model was solved using the direct approach. Here, the same problem was solved using the

E. coli iJR904 metabolic network. The problem was solved by the NLP dFBA in a single-level

optimization and the objective function in Equation 4.5 was set to Φ(x, v) = ethanol(end).

Three finite elements were used, in the last two elements the constraint of a null flux on the

acetate pathway were imposed. Because the size of the elements can change, the NLP can

choose the treg based on the position of these elements.

Figure 26 shows the dynamic flux profile computed by NLP dFBA and the profiles for

the wild-type strain and the static deletion strategy (when the acetate pathway is blocked

since the beginning of the batch). As expected, the dynamic control strategy was able to

increase ethanol production by manipulating the flux through acetate. Even though the direct

comparison with the results presented in Gadkar et al. (2005) is not possible because here

a GSM model was applied instead of a core model, the profiles are very similar.

Figure 26 – Dynamic control of metabolism applying the E. coli iJR904 GSM solving by the
NLP dFBA approach (solid). Static deletion simulation (dotted) and wild type
simulation (dashed) are also presented.

This problem was also solved in DFBAlab as a bi-level optimization problem using

the fmincon (SQP method) solver in MATLAB. In the outer optimization problem, treg was

set as variable, and in the inner problem, two DFBAlab simulations were performed (one

for each phenotype) based on treg. The formulation of this problem in DFBAlab illustrates



98

that the implementation is not so straightforward as the dFBA is already formulated as

an optimization problem. The results of both methods were similar (Table 8) in terms of

the time of switch and the CPUs time to solve the problem. Despite the fact that dFBAlab

presented smaller time of simulation for the diauxic growth on E. coli, here, because the NLP

dFBA is already formulated as an optimization problem, the computational cost to perform a

simulation is almost the same as performing an optimal control simulation. This difference

will be more relevant when solving larger problems as it will be evident in the next case

studies.

Table 8 – Comparison of NLP dFBA and DFBAlab for solving the dynamic control of
metabolism case study problem.

DFBAlab NLP dFBA
Number of elements – 3

NLP iter 14 97
CPU time (s) 38.72 36.16

treg (h) 5.42 5.39
Ethanol (mM) 15.06 15.06

Case study 3: E. coli iJO1366 model

Despite the improvement of the two-stage process in the ethanol titer problem pre-

sented in the last section, the difference between the static strategy and the dynamic control

strategy was small. Raj et al. (2020) demonstrated that for the two-stage process to over-

come the one-stage process in productivity the second stage must have a non zero growth

rate. Moreover, the glucose uptake profile can also have a significant impact on the analysis.

Here, we reproduced the results presented in Raj et al. (2020) for the optimization of D-lactic

acid productivity in E. coli using the NLP dFBA. The E. coli iJO1366 model was used (1805

metabolites and 2583 reactions) (ORTH et al., 2011). The dFBA model used as described by

Raj et al. (2020) was:
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dX
dt
= µX

dG
dt
= −vgX

dL
dt
= vLX

vg = vg,min + (vg,max − vg,min) ∗ (−1 +
2

(1 + exp(−Kup ∗ µ))
)

X,G, L ≥ 0

vL, µ = pFBA(vg)

(4.10)

where µ, vg, vL are the growth rate, the glucose uptake flux and the D-lactic acid flux, respec-

tively. Kup = 5 is the uptake constant for the glucose substrate. vg,max = 10.0 mmol/gdw h and

vg,min = 0.5 mmol/gdw h are the maximum and minimum uptake rate for glucose, respectively.

The model was solved using the logistic curve to describe the glucose uptake (reduced) as

in Equation 4.10 and using a constant glucose uptake rate equal to vg,max. Raj et al. (2020)

formulated a bi-level optimization problem to maximize the D-lactic acid productivity in a

two-stage process. Here, the problem was solved by the NLP dFBA in a single-level optimiza-

tion and the objective function in Equation 4.5 was set to Φ(x, v) = D-lactic acid(end)/h. Six

finite elements were used with a constraint that the first three elements must have the same

growth rate, and the same for the last three elements. Because the size of the elements can

change, the NLP can choose the treg based on the position of these elements.
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Figure 27 – D-lactic acid production in E. coli iJO1366 model for constant glucose uptake
(solid line) and reduced glucose uptake (dotted line) using the NLP dFBA. When
the glucose uptake is used the second stage has a null growth rate and the
maximum D-lactic acid production. However, when the reduced uptake is applied,
the second stage must have a non zero growth rate.

Figure 27 show the profiles for both cases (constant and reduced glucose uptake).

As already described by Raj et al. (2020),when the glucose uptake is held at its maximum

value, there is a first stage of growth only and a second stage of D-lactic acid production only.

On the other hand, when the effects in the glucose uptake are considered, the best profiles

change, and the second optimum stage has a growth rate that decreases the D-lactic acid

production. Table 9 shows the change in the stages when glucose uptake is constant and

reduced. Maximum growth rate is 0.9 and maximum vL is 20. treg was similar to the one

reported by Raj et al. (2020) demonstrating the capacity of NLP dFBA of reproducing the

optimal solution using a single-level approach.

Table 9 – Process parameters for the D-lactic acid production in E. coli iJO1366 model using
the NLP dFBA.

Glucose uptake
constant reduced

µ (1/h) 0.9⇒ 0.0 0.9⇒ 0.3
vL ( mmol/gdw h) 0.0⇒ 20 0.0⇒ 7.35

treg (h) 5.17 4.81
Productivity ( mmollac/gdw h) 82.52 50.41

Yield ( mmol lac/mmol glu) 1.65 1.01
Titer ( mmol lac/gdw) 825 504
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Study Case 4: Saccharomyces cerevisiae iND750

Ethanol production by S. cerevisiae is still an active subject of research, both in terms

of genetic manipulations and bioreactor control and optimization. dFBA model can be useful

in both cases and this method was applied to simulate the metabolism of S. cerevisiae

using the GSM iND750 model containing 1061 metabolites and 1266 reactions (DUARTE et

al., 2004). A bioreactor model for the production of ethanol by controlling the glucose feed

profile and the dissolved oxygen level was formulated based on previous work (CHANG et al.,

2016; OLIVEIRA et al., 2021a):

dV
dt
= F

d(VX)
dt

= µVX

d(VG)
dt

= FG f − vgVX

d(VE)
dt

= veVX

vg ≤ vg,max
G

Kg +G + (G2/Kig)
1

1 + (E/Kie)

vo ≤ vo,max
O

Ko + O

X,G, E ≥ 0

ve, µ = pFBA(vo, vg)

(4.11)

where µ, vg, vo, ve are the growth rate, the glucose uptake flux, the oxygen uptake flux and

the ethanol flux, respectively. Kg = 0.5 g/L, Kig = 10 g/L, Kie = 10.0 g/L and Ko = 3.0x 10−6

mol/L are the glucose saturation constant, glucose inhibition constant, ethanol Inhibition

constant and oxygen saturation constant, respectively. vg,max = 20.0 mmol/gdw h and vo,max =

8.0 mmol/gdw h are the maximum uptake rate for glucose and oxygen, respectively. G f is

the feed glucose concentration and was fixed in 50.0 g/L. The control variables were the

glucose feed (F) and oxygen concentration that was assumed to be direct manipulated by a

perfect feedback controller. The percentage of dissolved oxygen is calculated as a function

of the oxygen saturation concentration (DO = O/Osat) and Osat was set to 3.0x 10−4 mol/L.

First, a simple simulation was performed in order to compare the performance of the

different approaches. Figure 28 present the results, the RMSE [%] for biomass, glucose, and

ethanol for DFBAlab/DA were 0.41/1.75, 0.42/2.35, 0.62/1.44, respectively. The CPUs for

NLP dFBA, DFBAlab, and DA were 203.37, 1.38, 31.85, respectively. As can be seen again,
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a good agreement between the NLP dFBA and dFBAlab was achieved. However, the DA

approach failed to represent the profiles after the step in the control variables. NLP dFBA

had a considerable increase of time of simulation in comparison with the last examples.

Figure 28 – Bioreactor model simulation using Saccharomyces cerevisiae iND750 model.
RMSE [%] for biomass, glucose, and ethanol for DFBAlab/DA were 0.41/1.75,
0.42/2.35, 0.62/1.44, respectively. CPUs for NLP dFBA, DFBAlab and DA were
203.37, 1.38, 31.85, respectively.

Dynamic optimization of bioreactors

Besides the application of the dFBA model to dynamic control of the metabolism, this

model can also be applied to dynamic optimization/optimal control of a bioprocess. Chang

et al. (2016) formulated a model predictive control using a KKT reformulation of the FBA

problem. The authors reported convergence and initialization problems when trying to use a

GSM and consequently they were forced to apply a core model of S. cerevisiae. Oliveira

et al. (2021a) was able to apply a GSM for the same problem, however, they needed to

replace the FBA optimization problem by a surrogate model, adding a training step to the

process. Scott et al. (2018) formulated two dynamic optimization problems for E. coli and

Pichia stipitis using GSM. Scott et al. (2018) solved the dFBA as an implicit ODE system

and computed the gradient information by solving the sensitivity equation.

The model presented in Equation 4.11 was applied to dynamic optimization of the

ethanol production in the bioreactor. The aim is to control the glucose feed flow rate to avoid
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substrate inhibition avoiding the violation of the maximum volume constraint of the bioreactor

(1.2 L). The DO inside the reactor must be manipulated to switch from a growth phase

(high DO) to a production phase (low DO). The NLP dFBA model was formulated using

the objective function in Equation 4.5 as Φ(x, v) = ethanol(end) and the process constraints

were also imposed to the problem (V f inal ≤ 1.2 and umin ≤ u ≤ umax). The problem was also

solved using DFBAlab+fmincon as a bi-level optimization problem. The control variables

were discretized into 10 elements for both approaches.

Figure 29 – Dynamic optimization simulation of a bioreactor using the Saccharomyces
cerevisiae iND750 model using NLP dFBA (solid) and DFBAlab (dotted). The
concentration profiles are glucose (red), biomass (blue) and ethanol (green).

The results are presented in Figure 29 and Table 10. The NLP dFBA model reached a

solution with better performance in comparison to the solution found using DFBAlab in terms

of ethanol final mass. The NLP dFBA profiles have two clearly distinct phases (growth and

production) which is analogous to the profiles obtained by Chang et al. (2016) and Oliveira

et al. (2021a) in recent studies. On the other hand, the DFBAlab profiles were less smooth

and because of a higher feed flow at the beginning of the batch, glucose inhibition effects

takes place. Looking at the numerical aspects, the NLP dFBA takes almost the same time to

perform a simulation or optimization. This is expected because of the optimization nature of

the problem. DFBAlab took a long time to converge using fmincon mostly because of the

lack of gradient information, that must be estimated by finite differences, and also because

of the presence of nonlinear constraints (V f inal ≤ 1.2). Another problem with DFBAlab for this
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application was pointed out by Scott et al. (2018), is the presence of discontinuities in the

model at the points where events take place.

It is important to mention that the methodology presented by Scott et al. (2018)

represents an alternative for supplying gradient information of dFBA models. Nonetheless,

the transcription of the dynamic model into algebraic equation allows the utilization of

automatic differentiation packages that makes the solution of optimization problems more

straightforward. In contrast, simulation-based computation of derivatives information (e.g.

finite difference forward sensitivities) are computationally expensive and differential equation

solvers can fail at some perturbation inputs making the process unstable (SHIN et al., 2019).

Table 10 – Comparison of the solution of the dynamic optimization of bioreactor using NLP
dFBA and DFBAlab.

DFBAlab NLP dFBA
number of elements 10 10
function evaluations 195 268

NLP iterations 6 174
CPU time (min) 40.15 3.27

Ethanol (g) 15.29 21.282

Case study 5: Saccharomyces cerevisiae Yeast 8.3 model

In spite of the fact that dFBA models have fewer parameters than detailed kinetic

models, there are still some parameters that need to be estimated using experimental data.

As in dynamic control optimization, parameter estimation using dFBA becomes a bi-level

problem and the non-smoothness of dFBA makes the problem hard to solve. Raghunathan

et al. (2006) represent the dFBA model inside the estimation problem using a system of

Differential Variational Inequalities that is discretized to yield a MPCC problem and then

solved using a interior point algorithm. They applied the approach to a small-scale metabolic

network of 39 reactions and 43 metabolites. Leppävuori et al. (2011) formulated a sequential

gradient-based solution with direct sensitivity equations. They estimated 8 parameters and

used a metabolic network of 1266 enzymatic reactions and 1061 metabolites. Waldherr

(2016) solved a parameter estimation problem for a small-scale network of 10 reactions and

12 metabolites. The bi-level problem was solved as an mixed integer quadratic program.

Oliveira et al. (2022) solved a parameter estimation of 5 parameters using a Yeast metabolic
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network of 2666 metabolites and 3928 enzymatic reactions. They trained a surrogate model

to replace the FBA optimization inside the dFBA model.

Here, we applied NLP dFBA to solve the estimation problem formulated by Oliveira et

al. (2022) using the Yeast 8.3 metabolic network model (HEAVNER et al., 2013). The dFBA

model describes the S. cerevisiae anaerobic growth on glucose and xylose substrates

(Equation 4.12).

dX
dt
= µX

dG
dt
= −vgX

dZ
dt
= −vzX

dE
dt
= veX

vg ≤ vg,max
G

Kg +G

vz ≤ vz,max
Z

Kz + Z
1

1 + (G/Kig)

X,G, E,Z ≥ 0

ve, µ = pFBA(vg, vz)

(4.12)

where µ, vg, vz, and ve are the growth rate, and the exchange fluxes of glucose, xylose, and

ethanol, respectively. X, G, Z, and E represent the biomass, glucose, xylose, and ethanol

concentrations, respectively. vg,max and vz,max are the maximum uptake rate for glucose and

xylose respectively. Kg and Kz are the saturation constants, and Kie is the glucose inhibition

constant.

A dFBA simulation using the direct method in MATLAB was applied to yield the

in silico data of glucose, xylose, biomass and ethanol. The set of parameters used are

presented in Table 11. The parameter estimation problem was implemented as an NLP

dFBA using the objective function in Equation 4.5 as Φ(x, v) =
∑

j(xc
j(θ) − xm

j )2. Indices c and

m indicate calculated and measured quantities respectively. Multiple initial guesses were

supplied to the solver and the best fit parameters simulation is presented in Figure 30. The

NLP dFBA method was able to find a good fit to the data and the parameters were similar to

the ones used to generate the in silico data. The features of the performance of NLP dFBA

can also be found in Table 11. 12 finite elements were used to solve the problem culminating

in a large optimization problem to solve. Considering that the problem was solved in a

personal laptop, the CPU time was adequate. The uncertainty quantification of the estimated
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parameters is a crucial step on the model identification process, some techniques rely on

solving repeated parameter estimation problems (SHIN et al., 2019). Therefore, a fast and

reliable method as NLP dFBA is needed.
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Figure 30 – Best fit of dFBA using S. cerevisiae Yeast 8.3 model to the in silico data points
(circles) computed by NLP dFBA (solid line) and the direct approach (dotted
line). The concentration profiles are glucose (red), biomass (blue) and acetate
(green).

Table 11 – Computational Performance of NLP dFBA to solve the parameter estimation prob-
lem and the parameter values used in model simulation to yield measurements.

Model NLP Direct
Parameters simulation dFBA approach

vmax
g 7.30 7.11 30.01
Kg 1.03 1.01 12.02

vmax
z 32.00 32.88 7.99
Kz 14.85 15.16 0.80
Kie 0.50 0.48 1.00

number of elements - 12 -
variables - 268026 -

constraints - 362496 -
CPU - 26.02 min 27.82 min

iterations - 628 5
function evaluations - 1440 36
Objective function - 1.89e-3 7.17
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Sequential approach

Finally, we want to highlight another possible approach to solve dFBA models using

NLP dFBA. In addition to the single optimization approach that we have been using so far

in this work, another possibility is to use a sequential approach as illustrated in Figure 31.

On the sequential approach, the time domain is discretized and one optimization problem

is solved for each interval. This approach improves the CPU time for big problems (Table

12) and also deals well with the problems pointed out in Section 4.2 on the diauxic growth

simulations. This approach is similar to the one used by Scott et al. (2018) with the distinction

that each step is solved by an optimization problem using an orthogonal collocation method

instead of solving as an implicit ODE system. This approach can be mainly useful to perform

simulations in a short time or to solve large systems (e.g. human cells GSM) that otherwise

would culminate in a large single optimization problem. However, for small/medium size GSM

simulation problems, dynamic optimization, or parameter estimation problems, the single

optimization approach still being the best approach because the gradients can be computed

simultaneously. To solve this issue, in the future, techniques such as the quasi-sequential

approach could be explored (HONG et al., 2006).

Initial 
conditions

Solve 
NLP dFBA
t0      t1

x0 Solve 
NLP dFBA
t1      t2

x1 Solve 
NLP dFBA

tend-1       tend

xend-1x2 xend

Initial 
conditions

x0 Solve 
NLP dFBA

t0      tend

xend

Single optimization approach

Sequential approach

Figure 31 – Comparison between the sequential and single optimization approaches for the
NLP dFBA.

Table 12 – CPUs time comparison for simulations with different metabolic network models.

NLP dFBA NLP dFBA
DFBAlab single opt. sequential

E. coli core 0.99 0.46 1.11
E. coli iJR904 1.05 101.11 12.34

S. cerevisiae iND750 1.38 31.85 6.91
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4.3 Conclusions

An NLP formulation of dFBA model was presented (NLP dFBA). The method consists

in reformulating the pFBA using the KKT conditions and discretizing the dynamic model using

the orthogonal collocation technique. The method was implemented in the high-performance

JULIA language and solved by the large-scale NLP solver IPOPT. An automatic differen-

tiation code package was applied to supply first and second-order derivative information.

NLP dFBA represents a new attempt to solve dFBA models as an optimization problem. As

demonstrated, this approach can significantly improve the solution of a class of problems

in comparison with the simulation approach. We hope that the tool developed here will

contribute to fields such as metabolic engineering, synthetic biology, and bioprocess opti-

mization. From the study cases of simulation of E. coli diauxic growth on glucose and acetate

the need to impose some flux constraints to guarantee the convergence of the method

when there is a change in the active-set of the FBA optimization problem was evidenced.

Furthermore, the advantage of using an adaptive mesh strategy was also highlighted. The

NLP dFBA was applied to different metabolic networks and scaled well for genome-scale

networks. NLP dFBA is a more straightforward way to solve optimization problems with

embedded dFBA models. This was demonstrated when the method was applied to simulate

a dynamic control of metabolism and to solve a dynamic optimization of a bioreactor and a

parameter estimation problem.

In future work, some extensions of the methodology and some new applications may

be explored, like a quasi-sequential approach that can further decrease the CPU time (HONG

et al., 2006). The methodology developed here can also be extended to problems beyond

dFBA models, such as kinetic dynamic models that apply an optimality principle to obtain a

solution (TSIANTIS et al., 2018).
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5 Future work

A recommendation of work for the identifiability analysis of metabolic flux ratios

on carbon labeling experiments is to take into consideration the nonlinearity of the flux

space for the methods that apply Principal Component Analysis and the Fisher Information

Matrix. The labeling pattern of the substrates determined by the Design of Optimal Labeling

Experiments can be locally optimal but not globally optimal. This effect was illustrated

when the exchange flux on the Pentose phosphate pathway goes from low values to close

to the equilibrium. A sampling technique can be applied to explore the whole flux space.

Furthermore, the application of thermodynamic constraints and Flux Balance Analysis for

reducing the searching space can also be explored. Another possible extension of the work

would be to the isotopic non-stationary condition (13C-NMFA), where more information about

the flux distribution can be obtained. However, a system of nonlinear differential equations

must be solved in the identifiability analysis and the number o variables are higher because

the pool sizes of the metabolites must be taken into account (WIECHERT; NöH, 2013). These

characteristics makes DOE harder to solve.

An interesting work on the surrogate FBA method would be to develop an approach

to train automatically the surrogate model from the Flux Balance Analysis simulations. This

method could be used to determine the amount of sampling points to obtain, but also the

type of surrogate models to be applied. In the case of piecewise polynomial models, the

regions should also be determined. The surrogate FBA has a good potential to scale to

larger networks, for example those that include protein synthesis networks. This makes the

application of these models suitable to integrate inside a whole-cell model (ELSEMMAN et al.,

2022). Finally, process synthesis design can take advantages of dFBA simulations, and the

surrogate FBA can be appropriate for a superstructure optimization (AKBARI; BARTON, 2019).

Applying the NLP dFBA approach to large metabolic network models (e.g. Human

metabolic network model) would be interesting and challenging to solve, new modifications

to the NLP dFBA methodology will be required, a quasi-sequential approach can be explored

(HONG et al., 2006).
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Table 13 – Atoms transitions in metabolic network model of of Pseudomonas aeruginosa
LFM634.

Reaction Stoichiometry Atom carbon transition
1 Glucose→ G6P abcdef→ abcdef
2 Glucose→ Gluconate abcdef→ abcdef
3 Gluconate→ 6PG abcdef→ abcdef
4 G6P→ 6PG abcdef→ abcdef
5 G6P→ Rhamnose abcdef→ abcdef
6 6PG→ G3P + PYR abcdef→ def + abc
7 G3P + G3P→ F6P abc + def→ cbadef
8 F6P⇔ G6P abcdef⇔ abcdef
9 P5P + E4P⇔ G3P + F6P abcde + fghi⇔ cde + abfghi
10 G3P + S7P⇔ E4P + F6P abc + defghij⇔ ghij + defabc
11 P5P + P5P⇔ S7P + G3P abcde + fghij⇔ abfghij + cde
12 G3P→ PYR abc→abc
13 PYR→ AcCoA abc→bc
14 AcCoA + AcCoA→ 3HA/3HAA ab + cd→ abc

Table 14 – GC-MS analysis of monomers 3HD in PHA and 3HAA in fragments m/z=89 and
m/z=131 for medium C/N=45. Medium with a mixture of 55% (w/w) [6-13C]glucose
and 45% of natural glucose.

PHA 3HAA
Mass m/z=89 m/z=89

isotopomer mean s.d. mean s.d.
M+0 0.8397 0.0023 0.8387 0.0031
M+1 0.1457 0.0020 0.1463 0.0032
M+2 0.0127 0.0003 0.0132 0.0007
M+3 0.0019 0.0001 0.0017 0.0008

Table 15 – GC-MS analysis of monomers 3HD in PHA and 3HAA in fragment m/z=89 for
medium C/N=45. Medium with a mixture of 80% (w/w) [U-13C]glucose and 20%
of natural glucose. standart deviation (s.d.)

PHA 3HAA
Mass C/N=45 C/N=45

isotopomer mean s.d. mean s.d.
M+0 0.6294 0.0090 0.6270 0.0054
M+1 0.2080 0.0028 0.2093 0.0032
M+2 0.1339 0.0054 0.1255 0.0026
M+3 0.0288 0.0014 0.0281 0.0010
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Figure 32 – a priori flux distribution on Pseudomonas spp. central glucose metabolism
metabolic network.

Figure 33 – Important mass fragments in 3HAs and 3HAA monomers.
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Figure 34 – Profiles of the FBA solutions for different values of the uptake rates of glucose
and of oxygen. We solved the FBA problem for every value of the independent
variables in an equidistant 50 by 50 grid. Here, only one zone of operation was
used.

Figure 35 – Relative RMSE and RMSEP for growth rate model and the exchange ethanol
rate as a function of the number of PLS components for a surrogate model with
a single zone (Figure 34).
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Figure 36 – Profiles obtained using the surrogate model with a single zone (–) and three
zones (-) in the controller. The standard dFBA was used as the bioreactor model.
The concentration profiles are glucose (red), biomass (blue) and ethanol (green).

Figure 37 – Control variables and objective function (OF) profiles obtained using the sur-
rogate model with a single zone (–) and three zones (-) in the controller. The
standard dFBA was used as the bioreactor model.
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Figure 38 – Comparison between different GSM for the plant-model: Yeast 8.3 (-), iND750 (–)
and iMM904 (···). The simulations were performed on open-loop operation. The
concentration profiles are glucose (red), biomass (blue) and ethanol (green).


