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ABSTRACT 

 There is a rising need for more practical, efficient and sustainable techniques for improving 

industrial system operation in the face of a highly competitive market. The integration of real time 

optimization (RTO) and model predictive control (MPC) is a classical approach applied in the 

industry for improving processes. In this work, we analyze the application of the two most common 

RTO and MPC integration strategies – one-layer and two-layer – to a gas-lifted system. We analyzed 

the performance of the economic cost function and efficiency in handling disturbance for each 

strategy, as well as consider practical industrial application. 

In the two-layer strategy, an upper economic optimization layer uses a rigorous nonlinear 

steady state model to compute the optimal process decision variables and send to the controller as an 

optimizing target which then computes the optimal control actions to achieve these targets. For this 

strategy, the hybrid RTO (HRTO) technique is implemented in the upper layer and an established 

controller - infinite horizon MPC with zone control- in the lower dynamic control layer. The hybrid 

RTO stems from the modification of the traditional static RTO found in the industry, to deal with the 

steady state wait time challenge. This is achieved by updating the optimizer with dynamic information 

rather than the static used in the traditional RTO. The zone control strategy allows the controller to 

focus on reaching a desired input target supplied by the optimization layer if the outputs are kept 

within their specified zones and constraints are respected. In the one-layer strategy, the gradient of 

the economic cost function is included in the controller cost function to be considered when 

computing the manipulated variable used to achieve optimal process operation. It was proposed with 

the main aim of practical industrial application. 

The two strategies were applied to a gas-lifted system and their results are compared and 

discussed considering economic objective. The results show that the IHMPC can reach the desired 

input targets despite abrupt disturbances of the uncertain parameter while keeping the outputs within 

the desired zone. Therefore, the HRTO can efficiently work with the IHMPC implemented in 

achieving optimal operation under uncertainties interfering as disturbance. It also shows that the one-

layer strategy gives similar results to the two-layer strategy, implying that it can also achieve similar 

economic objective. However, the two-layer strategy using HRTO technique is more efficient in 

handling the disturbances. 

Keywords: Real-time Optimization (RTO), Model predictive control (MPC), Zone control, 

Extended Kalman filter (EKF), Online estimation. 



 
 

RESUMO 

Otimização em tempo real (no inglês, RTO) e controle preditivo baseado em modelo (no inglês, 

MPC) é uma abordagem clássica na indústria para melhorar processos industriais. Nesta dissertação, 

duas técnicas mais comuns de integração de RTO e MPC – uma e duas camadas – são aplicadas em um 

sistema de gas-lift. Compara-se a performance da função objetivo econômico bem como a rejeição à 

distúrbios das duas configurações, considerando aplicação industrial prática. 

Na configuração de duas camadas, utiliza-se um modelo não-linear rigoroso de estado 

estacionário em uma camada de otimização econômica, que tem por função calcular variáveis de 

decisão ótimas para o processo. Estas variáveis são então enviadas para a camada inferior, responsável 

pelo controle dinâmico do sistema e por atingir os valores ótimos computados na camada superior. 

Nesta configuração, utiliza-se a técnica de RTO híbrida (do inglês, HRTO) na camada superior e uma 

estratégia de controle estabelecida na camada inferior – controle por zona de horizonte infinito. HRTO 

vem de modificações feitas na RTO estática com o propósito de lidar com a necessidade de aguardar o 

estado estacionário. Isso é feito por atualizações do otimizador com informações dinâmicas ao invés de 

estáticas, como é feito na RTO tradicional. A estratégia de controle por zona permite ao controlador 

focar em alcançar um alvo para as variáveis manipuladas uma vez que as variáveis controladas se 

encontrem dentro de suas zonas operacionais e as restrições do processo sejam satisfeitas. Para a 

configuração de uma camada, o gradiente da função objetivo econômico é incluso na função objetivo 

do controlador, para que o objetivo econômico seja considerado ao se computar valores para as 

variáveis manipuladas que acarretem operação ótima. 

As duas configurações foram aplicadas a um sistema de gas-lift e seus resultados são comparados 

com respeito ao objetivo econômico. Os resultados mostram que o MPC alcança os objetivos 

econômicos mesmo na presença de distúrbios no parâmetro estimado em tempo real 

concomitantemente mantendo as saídas dentro das zonas operacionais desejadas. Sendo assim, a HRTO 

opera juntamente com o MPC afim de levar a operação ótima, mesmo com incertezas perturbadas. Fica 

evidente que a estratégia de uma camada fornece resultados simulares à estratégia de duas camadas, 

implicando que também maximiza o objetivo econômico. Porém, a estratégia de duas camadas que 

utiliza a técnica de HRTO é mais eficiente em detectar e responder a distúrbios para este sistema. 

Palavras-chave: Otimização em tempo real, controle preditivo baseado em modelo, controle por zonas, 

filtro de Kalman estendido, estimação em tempo real.  
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1 INTRODUCTION 

1.1 Process industry optimization 

The primary objective of industrial processes is to efficiently and safely produce valuable 

products at the least cost possible. The interconnection of different components with different 

objectives make these processes inherently complicated. Moreover, there is an immense pressure 

on the industries - from a highly competitive market, to produce these quality products under 

strict environments (exogenous and endogenous constraints), at the least cost possible. Therefore, 

there is an increasing interest in research areas that facilitate better techniques for improving these 

industrial processes. With the advancement of numerical methods, modeling tools and techniques 

for handling industrial process complexities; process modeling, simulation, optimization and 

control are the leading research areas towards handling these large scale process complexities.  

Process optimization can basically be described as finding the maximum or minimum point 

(known as optimum points) of a process with constraints given an objective function. Typically, 

the optimal point of an operation would likely be found at the overlap of the different system 

constraints, therefore to safely and optimally operate these complex and mostly large processes, 

goals need to be met at different time scales (DARBY et al., 2011). The hierarchical approach of 

process control is widely accepted for managing the production chain in the process industry, it 

has been successful in facilitating optimal operations through distinction of roles for each layer, 

ease of tracking faults and communication.  

The hierarchical structure of the process control framework can be identified by a functional 

or temporal decomposition. The control objectives in an order of decreasing consequence are 

handled by the functional decomposition (i.e. ensuring safe operation, meeting product quality 

and environmental constraints and ensuring maximum profit is achieved). Temporal 

decomposition determines the formulation of the control framework with respect to the dynamics 

of the state variables (DARBY et al., 2011; MENDOZA et al., 2016). Figure 1.1 presents a 

schematic of the process control hierarchy. 
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Figure 1.1 - Process optimization decision hierarchy 

Source: (own elaboration) 

As seen in Figure 1.1, the planning and scheduling layer of the decision hierarchy 

determines the organizations objectives such as product, quality, production schedules, coverage 

and expenses and making available the resources required. The optimization and control layer 

work towards implementing and achieving the given objectives considering the system dynamics, 

constraints and disturbances. The optimization and control layer can be said to be the core of the 

process, here the set-points for optimal operations are computed by the optimization layer (using 

a rigorous nonlinear stationary plant model) and sent to the control layers, where the input 

trajectories (control actions) to achieve and maintain the trajectories of the given optimum set-

points, are computed (supervisory control) and implemented (regulatory control), with 

consideration to the system constraints (ENGELL, 2007; DARBY et al., 2011; GAO; WENZEL; 

ENGELL, 2016; DAOUTIDIS et al., 2018; AHMAD; GAO; ENGELL, 2019).  
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1.2 Real-time optimization and Model predictive control (RTO&MPC) 

The optimization and control theory presents fundamental mathematical basis, whereas 

automation and control systems enable implementation, monitoring and verification of processes 

(DAOUTIDIS et al., 2018). Real-time optimization and the model predictive control are both 

online optimization techniques that can handle large scale processes with constraints. They bring 

about efficiency in production while considering process disturbances. Since the introduction of 

the RTO in the 1980's, it has improved the economic efficiency of industrial production as 

compared to when the controller is burdened with optimizing and controlling the processes. The 

real-time optimizer - finds specifically and reliably the optimal operating point, within or at 

boundary intersections in the presence of disturbances and process nonlinearities. Although this 

has brought about some challenges (structural and hierarchical), it has been a welcomed 

improvement for some complex processes. And ongoing research continues to reinvent the online 

optimization techniques for increased efficiency. 

The scope of this study covers the optimization and supervisory control layer; it presents 

the application of an improved process optimization and control techniques. Existing RTO 

technique is modified to handle some of its challenges with respect to the system under 

consideration, it is then implemented with stable linear model predictive controller. The control 

strategy has a guaranteed stability and feasibility for a nominal case. The integration of this 

modified RTO method with MPC will be studied and the results evaluated for optimal operations 

considering economic profits in the presence of uncertainties. 

1.3 Motivation and Objective 

1.3.1 Motivation 

Understanding the needs of large scale industrial processes and testing new ideas to improve 

these processes, so as to achieve optimal operations, can be very risky, time consuming and 

expensive. Likewise, there is progression in the development of tools and techniques for 

improving processes to meet the increasing production demands. Industries continue to invest 

huge amounts into researching and designing these tools/techniques.  
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The traditional RTO and MPC are established technologies that have been successfully used 

in industries, however, application comes with challenges. Many of the new methods presented 

to handle these challenges are mostly theoretically and have not been successfully implemented. 

As most researchers thrive towards developing new methods for improving dynamic processes, 

it will also be beneficial to understand the limits of the existing established methods and find 

ways to improve these limitations to fit peculiar problems, rather than using the new complicated 

methods for systems that might have been easier solved with the existing methods. Researchers 

have been working on ways to improve the RTO and manage the challenges which (DARBY et 

al., 2011; GAO; WENZEL; ENGELL, 2016; MENDOZA et al., 2016) described in details. 

A technique was proposed by KRISHNAMOORTHY; FOSS; SKOGESTAD, (2018) and 

MATIAS; LE ROUX, (2018), called ‘Hybrid Real Time Optimization (HRTO)’ and ‘Real-time 

optimization with persistent parameter adaptation (ROPA)’ respectively to curb the most limiting 

challenge of the traditional RTO which is the steady state wait time. Using online parameter 

estimation to update the optimizer, more reliable information is used for the steady state 

optimization. This technique eliminates the need for steady state detection and allows for a more 

frequent optimization. Therefore, the process is not operated sub optimally when there are 

changes in parameters. The RTO uses a rigorous nonlinear model to find the optimal decision 

variable for the system and sends it down to the MPC as a desired target or set-point, the MPC 

then finds and maintains the trajectory to achieve this optimum. The interaction between the RTO 

and the MPC continues to pose questions, due to the possible conflict in their models, objectives 

and implementation time scale. 

The main contribution of this work is, the application of the two commonly used RTO/MPC 

integration strategies to a gas-lifted system.  Considering application to real systems, we use 

practically implemented optimization tools, and we compare the results obtained with respect to 

achieving optimal operations and maximizing revenue. This can help in understanding the extent 

of RTO benefits to processes, especially slow processes with parameters that are dynamic and 

can disturb the optimal operating point. Furthermore, the implementation of the RTO with a 

practical MPC that have been applied to a complex process as the Fluid catalytic cracking (FCC), 

on another complicated process as gas-lifted system demonstrates the efficiency and robustness 

of these existing optimization tools. It shows that while research in this area is ongoing and new 



5 
 

ideas are proposed to solve existing gaps in the industry - especially as it relates to models 

capturing data accurately enough to be feasible practically. Some modifications can be made on 

existing tools and techniques to address some of the challenges, as they are more realistic for 

large-scale processes. 

In this study, the novel hybrid RTO is implemented with a zone control infinite horizon 

MPC and applied to a gas-lifted oil production system network. For the production of oil and gas 

at the upstream, daily production optimization is required to find the optimal decision variables 

that can efficiently operate the production process and maximize revenue. The utilization of 

mathematical models to optimize the process performance is typical, moreover these models 

predict the outcomes of production decision variables such as choke and valve openings or gas-

lift rates. Oil and gas production system constitute multiphase flow and pipelines pressure drops, 

therefore modelling such system can be quite complex, with significant uncertainties 

(KRISHNAMOORTHY; FOSS; SKOGESTAD, 2016). In trying to avoid too much 

complications, the process models could be oversimplified and some parameters ignored or their 

impact minimized. This can affect the quality of optimization performed significantly, as the 

optimal solutions computed could be infeasible in real systems or the system would be operated 

sub-optimally. Therefore, there is a need to perform online optimization with models that are not 

too complex but accurate and efficient enough to be applied in real processes.  

The gas-lifted system is one of such complex systems that requires less complicated but 

efficient online optimization tools and techniques. This system is suitable because its optimal 

decision variable changes as the system encounters disturbance. This brings about uncertainty 

especially when the disturbance becomes quite frequent, hence there is need to consider these 

disturbances in the optimization models for the system. Furthermore, it has so many outputs to 

be manipulated with fewer inputs, which fits into the kind of problem the zone control MPC is 

used to solve. With the main objective of maximizing revenue, the RTO/MPC techniques applied 

in this work can aid the process achieve optimal operations, very close enough to what is 

obtainable with the dynamic optimizations. Furthermore, in the study, the application of the one-

layer RTO/MPC strategy (a strategy developed for the purpose of practical large-scale process 

application) to the gas-lifted system is done. Overall, we compare and discuss the two-layer 
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RTO/MPC integration strategy and the one-layer RTO/MPC integration as applied to the gas-

lifted system. 

1.3.2 Objective 

The main objective of this study is to apply the two RTO/MPC integration strategies 

commonly found in the industries to a gas-lifted system and compare their optimal operational 

objectives. 

1.4 Dissertation Overview 

This dissertation containing six (6) chapters is structured as follows:  

Chapter 1 introduces the scope of the research work, lays out the motivation, objectives and 

structure of this research.  

Chapter 2 gives a review of the literature, presenting an overview of traditional RTO and its 

shortcomings, steps taken to overcome these shortcomings; an overview of MPC structure and 

algorithms. Also, here we present the different RTO/MPC integration strategies commonly 

applied in the industry.  

Chapter 3 describes methodology in details, showing the underlying concept and the 

mathematical preliminaries under consideration; it describes the implementation of novel hybrid 

optimization as well as the integration of RTO with zone control infinite horizon MPC (IHMPC) 

in two major strategies considered.  

Chapter 4 describes the process under consideration in detail, this involve the process description, 

and process modeling and assumptions made, process optimization and then discusses the process 

simulation and results obtained.  

Chapter 5 gives a comparison between the two-layer strategy and the one-layer strategy applied 

to the system under consideration  

Chapter 6, conclusions are drawn from the result analysis, and insights with suggestion on future 

works is provided.  
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2 LITERATURE REVIEW 

The quest for the improving industrial processes continues to evolve through the years, from 

the coming of optimal control in the 1960s to the advanced control and the introduction of 

technologies such as model predictive control (MPC). These developments were to tackle specific 

optimization and control needs, such as maintaining process trajectories in the presence of 

disturbances, considering their multi-objectives and operating constraints. The advanced 

controllers also enabled the economical optimization of these processes online (LI; QI, 2010; 

TRAN; LINGA; MACIEJOWSKI, 2014; MATIAS; LE ROUX, 2018).  

The development of the real-time optimization (RTO) in the mid-1980s, where rigorous 

steady state process models are utilized to achieve economic optimization  provided a clear 

separation, between the optimization and the control of processes (ENGELL, 2007; DARBY et 

al., 2011). Researchers continue to develop new techniques, and also improve existing techniques 

to meet the increasing optimization demands of the industry.  

2.1 Real-time optimization (RTO) 

RTO (Real-time Optimization) is a successful process automation technology for optimal 

operations, it is concerned with implementing economic decisions in real time based on attuned 

non-linear models.  

Traditional RTO uses a rigorous nonlinear steady-state models from the fundamental first 

principles equations such as hydraulic effects or reaction kinetics, multi-component mass and 

energy balances, vapor–liquid equilibrium expressions etc. It is used only where it is 

economically viable and justified as it may not be suitable for all continuous processes 

(ADETOLA; GUAY, 2010; DE SOUZA; ODLOAK; ZANIN, 2010; DARBY et al., 2011). 

Engell, (2007) suggested that the RTO is a “well-established” optimization approach which can 

be used to create a connection between economic optimization and regulatory control. The author 

further describes RTO as “a model based upper-level control system that is operated in closed 

loop and provides set-points to the lower-level control systems in order to maintain the process 

operation as close as possible to the economic optimum”.  Although there are other online 

optimization approaches in the literature, the traditional RTO also known as Model Parameter 
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Adaptation (MPA) or Static Real-time optimization (SRTO), is commonly found in the process 

industry (ENGELL, 2007; DARBY et al., 2011).  

The traditional RTO is implemented based on the assumption that the disturbances and 

dynamics of transient measurements can be neglected if the time at which the optimization is 

executed is long enough; the process can be assumed to be at steady-state (ENGELL, 2007; 

ADETOLA; GUAY, 2010). Basically, the SRTO can be described by three main steps briefly 

summarized below: 

 Steady-state detection and data pre-processing – the first step is to detect the steady state. 

The steady-state detection is based on the analysis of the data obtained from the process. It 

identifies if the system is operating at or close enough to steady-state. This is a very 

important step which sets the RTO cycle, since the RTO uses a rigorous steady state model.  

 Static Parameter estimation: if steady state is confirmed, measurement data are reconciled 

mostly based on material and energy balances to sort out unreasonable erroneous data and 

compensate for systematic errors. The reconciled model parameters are then updated to 

match current data at operating point, using regression techniques. Significant knowledge 

of the process is required to decide on the crucial parameters to be updated. 

 Static Optimization: Given an economic objective function, system constraints and an 

updated model with the reconciled values, the optimum set-points are computed using 

mathematical optimization methods (ENGELL, 2007; KRISHNAMOORTHY; FOSS; 

SKOGESTAD, 2018). 

Th summary of the steps described is given by Figure 2.1: 
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Figure 2.1 - Traditional Real time optimization  

Source: (own elaboration) 

The mathematical formulation based on KRISHNAMOORTHY; FOSS; SKOGESTAD, 

(2018) are presented in equations (2.1) - (2.5): 

Consider a discrete time system:  

 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝜍𝑘)  

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘)  

(2.1) 

(2.2) 

 

Where 𝑥𝑘 ∈ ℝ
𝑛𝑥 are the states, 𝑢𝑘 ∈ ℝ

𝑛𝑢 are the process inputs and 𝑦𝑘 ∈ ℝ
𝑛𝑦  are the 

process measurements at time step 𝑘. The model contains a set of time varying parameters and 

disturbances represented as 𝜍𝑘 = [𝑝𝑘
𝑇 , 𝑑𝑘

𝑇] ∈ ℝ𝑛𝜍. The static part of the model is given by: 

  𝑦 = 𝑓𝑠𝑠(𝑥, 𝑢, 𝜍) (2.3) 

Where 𝑓𝑠𝑠: ℝ
𝑛𝑥 × ℝ𝑛𝑢  ×  ℝ𝑛𝜍 → ℝ𝑛𝑦 describing the static input-output mapping 

Step 1: Parameter Estimation 

  𝜍�̂� = 𝑎𝑟𝑔min
∅
‖𝑦𝑚𝑒𝑎𝑠 − 𝑓𝑠𝑠(𝑥𝑘, 𝑢𝑘, 𝜍)‖2

2 (2.4) 
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Step 2: Static Optimization 

 

 𝑢∗ = 𝑎𝑟𝑔min
𝑢
𝐽(𝑦, 𝑢) 

s. 𝑡.  𝑥𝑘 = 𝑓𝑠𝑠(𝑢, 𝜍�̂�) 

𝑔(𝑦, 𝑢) ≤ 0  

(2.5) 

  Where 𝑦𝑚𝑒𝑎𝑠 𝜖 ℝ
𝑛𝑦 denotes the measurements from the plant 𝐽: ℝ𝑛𝑢 × ℝ𝑛𝑦 → ℝ 

describes the objective function, 𝑔: ℝ𝑛𝑢 × ℝ𝑛𝑦 → ℝ𝑛𝑐 describes vector of nonlinear constraints 

that may be imposed and 𝜍 are the system parameters. 

In process optimization the RTO requires an accurately performing MPC to be 

successfully implemented. 

RTO Challenges 

As stated earlier in the introduction, SRTO is a technology that have been successfully 

implemented in process industry. However, it comes with limitations and challenges which 

reduces its applicability. These challenges include: 

 Model uncertainties /mismatch such as lack of process measurements, measurement noises 

and structural uncertainties. 

 System identification and parameter update challenges due to frequent data changes, this 

reduces the relevance of steady-state optimization as the system optimum point would have 

moved from the steady-state being computed as at the time it is being sent as set points. 

 Dynamic limitations such as infeasibility due to constraint violation. 

 Low frequency of set-points update and miscommunication with the control layer due to 

different time scales and models used (ENGELL, 2007; DARBY et al., 2011; MENDOZA 

et al., 2016; KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018; AHMAD; GAO; 

ENGELL, 2019). 

Tackling Challenges 

In a bid to tackle these challenges, different techniques have been proposed to improve the 

efficiency of the RTO. More of the current research tend towards Dynamic Real time optimization 

and Economic MPC. Since most systems are dynamic and disturbed, and they also do not stay at 
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steady state for such a time long enough for the steady state optimization as assumed, the Dynamic 

RTO (using dynamic models) and the economic MPC (where the RTO is completely removed 

and the economic optimization is done at the MPC layer) are gaining more attention for research. 

Although the DRTO may seem logical given the challenges of the SRTO, because it gives a closer 

representation of real systems, it is more expensive, computationally exhaustive. Moreover, there 

are very few successes recorded in the literature and stability is still an open discussion. 

Furthermore, some processes will achieve an economic optimum or close using SRTO at a 

cheaper computational cost as compared to using DRTO (KRISHNAMOORTHY; FOSS; 

SKOGESTAD, 2018; MATIAS; LE ROUX, 2018).  

In an RTO overview review DARBY et al., (2011) pointed out that the fundamental limiting 

factor of the SRTO is the steady-state detection and wait time that is required for online update 

of model (parameter adaptation). To this effect (KRISHNAMOORTHY; FOSS; SKOGESTAD, 

2018; MATIAS; LE ROUX, 2018) proposed a method of steady-state optimization using 

transient data, where the parameter estimation step is done using online estimators with dynamic 

models. They demonstrated that, using online parameter estimation will eliminate the difficult 

steady-state detection step, and also the steady-state wait-time since the updated measurement 

used is transient. Therefore, the technique will provide the optimizer with more reliable data as 

compared to the outdated information obtained using a static model parameter estimator. There 

are different methods of online parameter estimation approaches suggested in the literature such 

as Modifier adaptation, integrated system optimization (ISOPE) (GRACIANO, 2016).  

For this study the method proposed by KRISHNAMOORTHY; FOSS; SKOGESTAD, 

(2018) is applied and will be discussed in details in section 2.3. 

2.1.1 Dynamic real time optimization (DRTO) 

Real industrial processes are dynamic and continuous. The static RTO is a simplified 

representation of the real process based on some assumptions. This poses a challenge because it 

does not necessarily capture some intrinsic details, leading to suboptimal operations when applied 

to real systems.  
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The dynamic real-time optimization is a technique developed to overcome the challenges 

of the traditional RTO. It basically involves the use of dynamic models rather than static models 

for economic optimization. Since the real processes are dynamic, process details will be better 

captured using the dynamic models, also there is no need to wait for the process to get steady-

state before optimization takes place, this eliminates the wait time especially for highly transient 

and slow processes. While this method has been an interesting and more logical research area in 

recent times, current tools available are less practical especially for large scale systems. It is more 

expensive and computationally exhaustive to implement. Although more research in this area are 

explored, few successes have been recorded in the literature. The dynamic RTO technique can be 

mathematically represented in (2.6) and ((2.7): 

 

Step 1:  Dynamic Parameter Estimation 

 
𝜍�̂� = 𝑎𝑟𝑔min

𝜃
‖𝑦𝑚𝑒𝑎,𝑘 − ℎ(𝑥𝑘, 𝑢𝑘)‖  

𝑠. 𝑡.  𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝜍)  

(2.6) 

 Step 2:  Dynamic real time optimization (DRTO) 

 

𝑢𝑘
∗ = 𝑎𝑟𝑔min

𝑢𝑘
∑𝐽(𝑦𝑘, 𝑢𝑘)

𝑁

𝑘=1

                                                                                                  

𝑠. 𝑡.  𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝜍�̂�)  

        𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘)  

           𝑔(𝑦𝑘, 𝑢𝑘) ≤ 0   

           𝑥𝑘 = �̂�𝑘     ∀𝑘 ∈ {1,2… ,𝑁} 

(2.7) 

Where the subscript ∗𝑘 represents optimal point at each sampling time in the optimization 

horizon of length 𝑁. Figure 2.2 shows the dynamic RTO 
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Figure 2.2 - Dynamic RTO  

Source: (KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018) 

2.1.2 Hybrid Real-Time Optimization 

The Hybrid Real-Time Optimization (HRTO) is a modification of traditional RTO, it was 

proposed by Krishnamoorthy; Foss; Skogestad, (2018) to handle some of the limitations of the 

traditional RTO found in the industry. This technique tackles the challenge of steady-state wait 

time and eliminates the steady-state detection step of the SRTO mentioned in section 2.1 above. 

The idea here is to use transient data for steady-state optimization rather than the conventional 

static data, which is usually obsolete as at the time of optimization.  

To achieve this, the parameter estimation step which is a very important step in real-time 

optimization is done using online parameter estimators (dynamic models) rather than static 

estimators.  Moreover, in reality these parameters that are used for the optimization are not always 

static but can be uncertain and change with time. After the parameters are estimated and the model 

data is updated to current data, the parameters are sent to the static optimizer which optimizes at 

steady state. Since the primary objective is to optimize the system at steady-state, the introduction 

of the dynamic terms of the system is only required at the model adaptation step.  

The HRTO tends to serve as an intermediary between the more successfully established 

SRTO and the computationally expensive but efficient theoretical DRTO. HRTO enjoys the best 

of both worlds such that, it constantly approximates the optimal operation point, since the 

parameters are constantly updated with current data. It also enjoys the less computational cost of 
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the steady-state model by relying on its already established literature and software for 

implementation in large processes. Note that HRTO does not seek continuous optimization as in 

dynamic optimization rather it pursues continuous improvement of optimal economic decisions 

by computing steady-state optimum persistently until the process attains steady-state optimum 

(MATIAS; LE ROUX, 2018). It is also important to understand that it cannot be as exact as the 

steady-state optimization or dynamic optimization, because it carries both properties it might take 

more time than the SRTO and more number of parameter or states to be estimated but it will 

achieve an efficiency that is close to the dynamic RTO at a relatively reduced cost and time. 

(KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018; MATIAS; LE ROUX, 2018).  

This method is suitable for most real processes that require frequent parameter update but 

are not very complex dynamic models that require intrinsic optimization, this should be noted 

during implementation and the process for which it will be used must be critically analyzed to 

validate its efficiency on the process. Figure 2.3 demonstrates the Hybrid RTO. 

 

Figure 2.3 - ‘Hybrid Real-Time Optimization’(HRTO) 

Source: (KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018) 

The mathematical representation for the HRTO is based on KRISHNAMOORTHY; FOSS; 

SKOGESTAD, (2018) and it is presented in the equations (2.8) - (2.10) : 
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Step 1:  Dynamic Parameter Estimation 

 
𝜍�̂� = 𝑎𝑟𝑔min

𝜃
‖𝑦𝑚𝑒𝑎,𝑘 − ℎ(𝑥𝑘, 𝑢𝑘)‖  

𝑠. 𝑡.  𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝜍)  
(2.8) 

Step 2:  Static Optimization 

 

   𝑢∗ = 𝑎𝑟𝑔min
𝑢
𝐽(𝑦, 𝑢)   

          𝑠. 𝑡.  𝑥𝑘 = 𝑓𝑠𝑠(𝑥, 𝑢, 𝜍�̂�)  

                      𝑔(𝑦, 𝑢) ≤ 0    

(2.9) 

 

(2.10) 

2.2 Model predictive control (MPC) 

Model Predictive control (MPC), also referred to as Receding horizon control, is an online 

optimization based supervisory control technique that optimizes a performance index over a 

control horizon by taking advantage of a dynamic nominal process, while accounting for process 

constraints (ELLIS; DURAND; CHRISTOFIDES, 2014).  

Since its development in the 70s, it has gained popularity for its ability to handle 

multivariable complex systems with strict constraints. The formulation of MPC takes into 

consideration the product specification, equipment limitation, safety and environmental 

constraints. MPC is also a successful technology widely applied in the continuous process 

industry. It is required to drive the process to and maintain the operations at optimum trajectories. 

In the two-layer strategy, it is common practice to implement RTO in cascade to MPC. When the 

optimal value for the system is found at the RTO layer, this value is sent down to the MPC 

controller as set-point. MPC then finds the optimal trajectory that drives the process to the desired 

set-point. It is important to note that, RTO  requires a properly working controller to be 

successfully implemented (DARBY et al., 2011).  

The optimization in MPC is implemented at each sampling time using the actual process 

output measurements or estimated state variables and parameters when the process measurements 

are not available or measuring tools are not reliable. MPC computes the series of control actions 

for the manipulated input variables that would drive the system along its optimal trajectory, from 
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the series of control actions computed, only the first one is applied to the system and these steps 

are repeated over a given time horizon (MACIEJOWSKI, 2002). 

Different types of predictive controllers have been introduced for the optimization and 

control of industrial processes, as well as different approaches in their implementation. MPC have 

distinguished itself with the following advantages: 

 It can be easily implemented by operators with limited knowledge of control as the 

underlying concepts are quite intuitive and it is also relatively easy to tune. 

 It has the ability to handle a great variety of processes, from relatively simple 

dynamics to quite complex multivariate processes, including processes with long time 

delays, dead times, non-minimum phase or unstable. 

 It introduces a feed forward control in an organic way to compensate for disturbances 

thereby resulting in an easy to implement control law. 

 It has the ability to handle constraints in a conceptually simple way, hence can be 

systematically included in the controller design. 

 It is an open and flexible methodology with fundamental principles that allow for 

future extensions or modifications. 

The conventional model predictive control requires the tracking of the trajectory of an 

optimum set point within a given prediction horizon. The formulation of the cost function is such 

that, the quadratic deviation between the process controlled/manipulated variables and the set-

point trajectory is penalized with respect to the degrees of freedom of control and also the control 

effort (CAMACHO; BORDONS, 2007). 

As the control technique advanced, different approaches towards achieving efficiency and 

recursive stability of processes emerged. (ALLGOWER; ZHENG, 1991; SANTOS; AFONSO; 

BIEGLER, 2001; HOLKAR; WAGHMARE, 2010; DARBY et al., 2011; ORUKPE, 2012; AL-

NAUMANI; ROSSITER, 2015; ALANQAR; ELLIS; CHRISTOFIDES, 2015; CHU; YOU, 

2015; GUIDO et al., 2017; MULLER; ALLGOWER, 2017) are just a few of the numerous papers 

that have given an overview of the concept, theory and application of MPC in the industry.  
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Although the early articles with relative interest in MPC emerged in the 1970s with the 

model predictive heuristic control (MPHC) as the first reported in 1978 by Richalet et al. 

Constituting an impulse response model, a quadratic objective function, the input and output 

constraints, the optimal input values computed by heuristic iterations over a finite prediction 

horizon.  

The dynamic matrix control (DMC), followed the MPHC.  In the dynamic matrix control 

(DMC), an unconstrained multivariable control was reported by a team of Shell engineers Cutler 

and Ramaker in 1979. The DMC formulation involved a linear step response system model, a 

quadratic objective function, optimal inputs computed by solving a least square problem over a 

finite prediction horizon. These two developments are regarded as the first MPC technology, they 

were closely related to the minimum time optimal control problem.  

The structure of MPHC and the DMC posed the challenge of handling process constraints. 

To solve this challenge in 1986 Garcia and Morshedi developed the QDMC (Quadratic Dynamic 

Matrix Control) and in 1985 (Morshedi, Cutler, Skrovanek) developed the LDMC (Linear 

Dynamic Matrix Control), in which the DMC is modified to fit into quadratic programming and 

linear programing respectively so that it can handle explicit constraints in the optimization 

problem, solving MPC problems in the standard QP solvers. Subsequently, the formulation of 

MPC in the state space context allowed for the use of well-known state space theorems and 

facilitate the generalization of MPC to more complex cases such as multivariable processes, 

nonlinear processes and systems with disturbances and noise in measured variables.  

Algorithms like   LDMC, Linear Matrix Inequality (LMI), EMPC, infinite horizon MPC, 

NMPC to mention a few have been proposed, developed or modified to consider robustness and 

stability and achieve optimal process operations. Several successful practical application of MPC 

have been documented in the literature since the first algorithm of MPC was proposed. 

2.2.1 Mechanism for MPC algorithm 

Generally, all MPC algorithms constitute the same fundamental components which can be 

developed using different strategies. The following discussion involves these components and 

some of the methodologies by which they are developed: 
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 Prediction model representation 

 Objective function and  

 Attaining the control law 

2.2.1.1 MPC Model representation 

The process model is an intrinsic component in implementing the MPC. The model 

representation defines the algorithm of the technique to be used for solving the control problem. 

Therefore, it is very important that the characteristic of the system considered is critically 

analysed. The process model should fully capture the process dynamics as best as possible, yet 

maintain simplicity for ease of computation (CAMACHO; BORDONS, 2007). The process 

model used for prediction in MPC is usually a dynamic linear model. The models can be obtained 

through two classes of modelling namely: 

 Non-parametric models: these are essentially represented by impulse or step response 

models. 

 Parametric models represented by transfer function models or state space models. 

The different model representation that demonstrate the relationships between the outputs 

and inputs, some of the commonly used models are described as follows: 

 Impulse response model: the impulse response model the also known as weighting or 

convolution models are characterised by a sequence of values that corresponds to the 

response of the system when a unit impulse is introduced in the system. See equation ((2.11) 

 𝑦(𝑘) =∑ℎ𝑗𝑢(𝑘 − 𝑗)

𝑁

𝑗=1

 

(2.11) 

Where ℎ𝑗  are the 𝑗𝑡ℎsampled output values when the process is disturbed by a unitary pulse 

and 𝑢 is the input at 𝑁 values. This limits the method to only stable processes without 

integrators, unstable systems cannot benefit from it. With no prior information about the 

process needed besides the stability of 𝑁, the method gives a significant advantage, in that 

process identification is simplified. 
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 Step response: with the exception of the input signal being a step, that is the model 

corresponds to the coefficients of a unit step, the step response is similar to the impulse 

response model, shown in equation ((2.12): 

 𝑦(𝑘) = 𝑦0 +∑𝑔𝑖∆𝑢(𝑘 − 𝑖)

𝑁

𝑖=1

 

(2.12) 

 

Where 𝑔𝑖 are the 𝑖𝑡ℎsampled output values when the process is disturbed by a unitary step 

and ∆𝑢 is the incremental input. The advantage and disadvantage of this method is the same 

as in the impulse response method. It can easily be shown that the two models are similar 

in that, an impulse can be considered as the difference between two steps with a lag of one 

sampling period as can be seen in equation ((2.13). 

 ℎ𝑗 = 𝑔𝑖 − 𝑔𝑖−1   𝑔𝑖 = ∑ ℎ𝑗
𝑖
𝑗=1  (2.13) 

 

The application of this method can be found in DMC and its variants. 

 Transfer function model: This can usually be obtained as a transitional step to the 

construction of a step or impulse model. In practice, transfer function is usually identified 

from experimental data and then a step unit or impulse is applied to produce the desired 

model required for MPC implementation. In the discrete form, the transfer function model 

of the order 𝑛𝑎 uses the concept of 𝐺 = 𝐵/𝐴  so that the relationship between the output to 

the input in discrete form is given by equations ((2.14) and ((2.15): 

 

𝐴(𝑧−1)𝑦(𝑡) = 𝐵(𝑧−1)𝑢(𝑡)  

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯+ 𝑎𝑛𝑎𝑧
−𝑛𝑎  

𝐵(𝑧−1) = 1 + 𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯+𝑏𝑛𝑏𝑧
−𝑛𝑏  

(2.14) 

Given a system  

 

𝑦(𝑘) = 𝐺(𝑧−1)𝑢(𝑘)  

Such that, 

𝐺(𝑧−1) =
𝑦(𝑘)

𝑢(𝑘)
=
𝐵(𝑧−1)

𝐴(𝑧−1)
= 

𝑏0𝑧
𝑛+𝑏1𝑧

𝑛−1+⋯+𝑏𝑛𝑏

𝑧𝑛+𝑎1𝑧𝑛−1+⋯+𝑎𝑛𝑎
  

(2.15) 

 

Where, 𝑦(𝑘) corresponds to the system output and 𝑢(𝑘) correspond to the input. The 

coefficients 𝑏0, … , 𝑏𝑛𝑏  and 𝑎1, … , 𝑎𝑛𝑏 are the model parameters. This method gives a 
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significant advantage of applicability to any kind of system, stable or unstable and it only 

needs fewer parameters to represent the system compared to the parametric models, 

although priori knowledge of the process is essential, especially the order of the 

polynomials 𝐴 and 𝐵 (𝑛𝑎 𝑎𝑛𝑑 𝑛𝑏) for process identification. This method can be found in 

GPC, UPC, EPSAC. Furthermore, for implementation, the transfer function or step 

response can be easily converted to a state space model.  

 Linear State space model: considering the discrete form of a system, the state space model 

can be presented in equations ((2.16)and ((2.17): 

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)    

𝑦(𝑘) = 𝐶𝑥(𝑘)  

(2.16)  

(2.17) 

 

Where, 𝑥 corresponds to the states, 𝑦 corresponds to the system output, 𝑢(𝑘) correspond to 

the input and A, B, C, D are matrices of the system. The prediction for this model can be 

represented by equation (2.18): 

 �̂�(𝑡 + 𝑘|𝑡) = 𝐶�̂�(𝑡 + 𝑘|𝑡) = 𝐶[𝐴𝑘𝑥(𝑡) +∑𝐴𝑘−𝑖𝐵𝑢(𝑡 + 𝑖 − 𝑖)

𝑘

𝑖=1

] 
(2.18) 

 

The ability to be easily and conveniently used for multivariate processes gives this method 

an advantage. The control law is simply the feedback of a linear combination of the state 

vector. Although if the states are not available or accessible the calculations may become 

complicated requiring an observer/estimator.  

 Linear State space model in incremental form: in this case, the input of the state space 

model is represented in incremental form such that: 

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘)  

(2.19) 

Where ∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) and other components of the equation is as already 

defined in the equation ((2.16). 

 Output Prediction Oriented Model (OPOM) 
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With respect to the IHMPC by RAWLINGS and MUSKE (1993), (ODLOAK, 2004) 

proposed the OPOM with objective of practical implementation in the industries in mind, 

the technique: 

- Reproduces exactly the step response model with fewer parameters including the 

cases where time delays are present.  

- Some of the states are related with the output steady state. 

- Makes easier the development of infinite horizon controllers. 

Consider a SISO system with a transfer function as follows: 

 
𝑦(𝑠)

𝑢(𝑠)
=  
𝑏0 + 𝑏1𝑠 + 𝑏2𝑠

2 +⋯+ 𝑏𝑛𝑏𝑠
𝑛𝑏

1 + 𝑎1𝑠 + 𝑎2𝑠2 +⋯+ 𝑎𝑛𝑎𝑠𝑛𝑎
 

(2.20) 

Where {𝑛𝑎, 𝑛𝑏 ∈  Ν|𝑛𝑏 < 𝑛𝑎}. Assuming that the system has only stable poles with single 

multiplicity, the system step response at time t can be written as: 

𝑆(𝑡) = 𝑑0 +∑[𝑑𝑑(𝑗)]𝑒
𝑟𝑗𝑡

𝑛𝑎

𝑗=1

, 

𝑆(𝑡) = 𝑦(𝑡) = 𝑑0 + 𝑑1𝑒
𝑟1𝑡, 𝑑2 𝑒

𝑟2𝑡.  ; 

For example, assuming that the system have distinct poles 𝑟1 𝑎𝑛𝑑 𝑟2  and the coefficients 

𝑑0, 𝑑1, 𝑑2  can be obtained by partial fraction expansion of the system transfer function, we 

can write the equation ((2.20) as: 

 
𝑦(𝑠)

𝑢(𝑠)
=  

𝑏0 + 𝑏1𝑠

𝑎2(𝑠 − 𝑟1)(𝑠 − 𝑟2)
 (2.21) 

Then, if 𝑢(𝑠) = 1/𝑠 

𝑦(𝑠) = {
𝑑0
𝑠
+

𝑑1
𝑠 − 𝑟1

+
𝑑2
𝑠 − 𝑟2

} 

The state space model:  

 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘)  
(2.22) 

can then be written as: 

𝑥(𝑘 + 1) =  [
1 0 0
0 𝑒𝑟1𝑡 0
0 0 𝑒𝑟2𝑡

] [

𝑝0
𝑝1
𝑝2
]

𝑘

+ [

𝑑0
𝑑1𝑒

𝑟1𝑡

𝑑2 𝑒
𝑟2𝑡

] ∆𝑢(𝑘)  
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𝑦(𝑘) = [1 1 1]  [

𝑝0
𝑝1
𝑝2
]

𝑘

  

Now considering a MIMO system with 𝑛𝑢 inputs and 𝑛𝑦 outputs, analogously the transfer 

function relating inputs 𝑢𝑗  to output 𝑦𝑗  is represented by: 

 𝐺𝑖,𝑗(𝑠) =
𝑏𝑖,𝑗,0 + 𝑏𝑖,𝑗,1𝑠 + 𝑏𝑖,𝑗,2𝑠

2 +⋯+ 𝑏𝑖,𝑗,𝑛𝑏𝑠
𝑛𝑏

1 + 𝑎𝑖,𝑗,1𝑠 + 𝑎𝑖,𝑗,2𝑠2 +⋯+ 𝑎𝑖,𝑗,𝑛𝑎𝑠𝑛𝑎
 

(2.23) 

and 

𝑆(𝑡) = 𝑑0 +∑[𝑑𝑑(𝑗)]𝑒
𝑟𝑗𝑡

𝑛𝑎

𝑗=1

 

The following coefficient matrices can be conveniently defined as: 

𝐷0 = [

𝑑1,1
0 … 𝑑1,𝑛𝑢

0

⋮ ⋱ ⋮
𝑑𝑛𝑦,1
0 … 𝑑𝑛𝑦,𝑛𝑢

0
] , 𝐷0 ∈ ℜ𝑛𝑦×𝑛𝑦 

𝐷𝑑 = 𝑑𝑖𝑎𝑔(𝑑1,1,1
𝑑  ⋯ 𝑑1,1,𝑛𝑎

𝑑 ⋯ 𝑑1,𝑛𝑢,1
𝑑 ⋯ 𝑑1,𝑛𝑢,𝑛𝑎

𝑑 ⋯ 𝑑𝑛𝑦,1,1
𝑑 ⋯ 𝑑𝑛𝑦,𝑛𝑢,1

𝑑 ⋯ 𝑑𝑛𝑦,𝑛𝑢,𝑛𝑎
𝑑  ,  

𝐷𝑑 ∈ ℜ𝑛𝑑×𝑛𝑑  

For such a system, a discrete time space model representing the process is as in equations 

((2.24 -(2.25).  

 

 

[
𝑥𝑠(𝑘 + 1)

𝑥𝑑(𝑘 + 1)
] = [

𝐼𝑛𝑦 0

0 𝐹
] [
𝑥𝑠(𝑘)

𝑥𝑑(𝑘)
] + [ 𝐷

0

𝐷𝑑𝐹𝑁
]∆𝑢(𝑘)  

            𝑦(𝑘) = [𝐼𝑛𝑦 Ψ] [
𝑥𝑠(𝑘)

𝑥𝑑(𝑘)
]  

(2.24) 

 

(2.25) 

Where  

𝑥𝑠 = [𝑥1⋯𝑥𝑛𝑦]
𝑇, 𝑥𝑠 ∈ ℜ𝑛𝑦, 𝑥𝑑 = [𝑥𝑛𝑦+1  𝑥𝑛𝑦+2 ⋯ 𝑥𝑛𝑦(𝑛𝑢 𝑛𝑎+1 )]

𝑇, 

𝑥𝑑 ∈ 𝐶𝑛𝑑, 𝑛𝑑 = 𝑛𝑢 𝑛𝑎 𝑛𝑦 

𝐹 = 𝑑𝑖𝑎𝑔(𝑟1,1,1  ⋯ 𝑟1,1,𝑛𝑎⋯ 𝑟1,𝑛𝑢,1⋯ 𝑟1,𝑛𝑢,𝑛𝑎⋯ 𝑟𝑛𝑦,1,1⋯ 𝑟𝑛𝑦,𝑛𝑢,1⋯ 𝑟𝑛𝑦,𝑛𝑢,𝑛𝑎), 
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𝐹 ∈ 𝐶𝑛𝑑×𝑛𝑑 , 𝑁 = [

𝐽1
⋮
𝐽𝑛𝑦
], 𝑁 ∈ ℜ𝑛𝑑×𝑛𝑢 , 𝐽1 =

[
 
 
 
 
 
 
1 0
⋮ ⋮
1 0

⋯ 0
⋱ ⋮
⋯ 0

 ⋱
0 0
⋮ ⋮
0 0

⋯ 1
⋱ ⋮
⋯ 1]

 
 
 
 
 
 

 , 𝑁 ∈ ℜ𝑛𝑢 𝑛𝑎×𝑛𝑢 

Ψ = [
Φ  0
 ⋱  
0  Φ

], Ψ ∈ ℜ𝑛𝑦×𝑛𝑑 Φ = [1 ⋯ 1], Φ ∈ ℜ𝑛𝑢×𝑛𝑎 

 Nonlinear Models: Most real industrial system models are nonlinear represented as: 

 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝜍𝑘)  

𝑦𝑘 = ℎ(𝑥𝑘, 𝑢𝑘)  

(2.26) 

(2.27) 

Where, 𝑥𝑘 corresponds to the states,𝑦𝑘 corresponds to the outputs measurement, 𝑢𝑘 

correspond to the inputs, all at time step 𝑘, 𝑓 represents the system nonlinear equations and 

ℎ the output measurement equations. 

2.2.2 MPC Algorithms 

The main objective of the supervisory controller is to compute the optimal input trajectory 

that drives the system to the optimal operating point. There are various algorithms of control 

formulated to achieve this objective. Depending on the process model, objective and constraints, 

the MPC algorithm are generally the same; developed to achieve feasibility, stability and 

optimality (CAMACHO; BORDONS, 2007).  

The objective function of the controller is defined as a quadratic function with respect to 

the inputs, output and constraints of the process under consideration. The model developed is 

mostly based on past process data obtained and can be linear or non-linear, the traditional MPC 

is linear, although the non-linear MPC is under intensive research, and linear MPC is the 

practically attainable one currently. The algorithm is implemented in a strategy known as the 

‘receding horizon’. The receding horizon idea is such that, given the previous history of the output 

trajectory, a set point which the output should follow and input injected into the process at the 

current time, an output is obtained which is used as the previous point for the next time step. 

Using the information the controller computes the best input that will lead to and maintain the 

given set point trajectory and continues to adapt process iteratively along this trajectory within 

the control horizon until the input becomes constant (MACIEJOWSKI, 2002).  
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2.2.2.1 Objective function: 

Depending on the MPC algorithm considered, different cost function for achieving a control 

law can be presented. The main aim is that the prediction of the future output (y) within a given 

prediction horizon should follow a given reference trajectory, while at the same time penalizing 

the input actions required for achieving the aim.  

The objective function considers: 

 Parameters: such as the prediction horizon within which the output trajectory follows the 

reference trajectory, the control horizon- usually a smaller range compared to the prediction 

horizon, which is the interval by which necessary control actions are implemented, the 

output and input weights used to penalize deviation from the objective. These parameters 

can be used to tune the controller. 

 Reference trajectory (set-point): knowing the future evolution of the reference a priori 

can avoid the effects of delay in process response since the system can react before the 

change is effectively made. This is one of the advantages of MPC, as knowing ahead what 

to expect facilitates getting ahead of any disturbance (CAMACHO; BORDONS, 2007). 

 Constraints: all industrial processes are subject to certain constraints. These constraints 

come from safety measures, environmental measures or production deliverables. Therefore, 

it is necessary to factor in these constraints in the objective function to achieve optimal 

condition necessary. This consideration is also an advantage of MPC. Inclusion of process 

constraints can complicate the minimization solution, but it is necessary to achieve optimal 

operations. 

2.2.2.2 Obtaining the control Law:  

In order to obtain the sought values of input actions, the objective function have to be 

minimized. This is achieved by computing the values of predicted output as a function of the past 

inputs, outputs and future targets, using the model and substituting in the objective function. This 

obtains an expression that leads to the values sought (CAMACHO; BORDONS, 2007). 

The MPC can be implemented within a prediction horizon or in an infinite horizon. Process 

operation is not always smooth and steady, the conditions of operation changes when disturbed 
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by changes in some parameters or introduction of impurities, therefore the robust MPC’s are 

developed to handle processes uncertainties and disturbances. Within the scope of this work, the 

following section describes different MPC algorithms categorised with respect to the type of 

process model, time horizon and kind of control.  

2.2.3 Quadratic Model Predictive controller  

The Quadratic DMC is an extension of the DMC to accommodate constraints and fit into a 

quadratic programming problem. DMC is based on a linear state space model in incremental form 

as in equation ((2.19), where the state is the following: 

 𝑥(𝑘) = [𝑦(𝑘 + 1|𝑘)𝑇 𝑦(𝑘 + 2|𝑘)𝑇…  𝑦(𝑘 + 𝑝|𝑘)𝑇]𝑇 

Where 𝑦(𝑘 + 1|𝑘)𝑇 is the output prediction computed within the prediction horizon at a 

time 𝑘.    

The QDMC leads to an optimization problem that has the structure: 

 
min
𝑢
𝐽;   𝐽 =

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥 

𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏 

(2.28) 

Where 𝐻 is a symmetric matrix 𝑛𝑥 × 𝑛𝑥, c is a vector of 𝑛𝑥 dimension, A is a matrix of 

𝑚 × 𝑛 𝑛 dimension and 𝑏 is a vector of 𝑚 dimension. The basic concept of the QMDC is to fit 

the DMC into the different parameters defined in equation ((2.29) while considering constraints.  

2.2.3.1 Conventional MPC (SET-POINT TRACKING) 

The conventional set point tracking MPC involves the prediction of the trajectory for a 

given set point provided either by the optimization layer or the operator in a given prediction 

horizon. The equations ((2.29) – ((2.40) show the mathematical representation of the 

conventional MPC. 

Consider a discrete - time system with state variables 𝑥 and control inputs 𝑢: 
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𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 

(2.29) 

(2.30) 

Where 𝑢 ∈ ℝ𝑛𝑢, 𝑦 ∈ ℝ𝑛𝑦, 𝑛𝑢 is the number of manipulated variables(input control action) 

and the 𝑛𝑦 is the number of controlled variables (output), 𝑥𝑘 is the state variables at time k; 𝑤𝑘 

is the disturbance, 𝑣𝑘 is the measurement noise of the system; A is the matrix of state, B is the 

input matrix and C is the output matrix 

Given a controller cost: 

 𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝‖𝑄
2

𝑝

𝐽=1

+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑄
2

𝑚−1

𝐽=0

 

(2.31) 

 

Where 𝑝 is the prediction horizon; m is the input horizon, 𝑦𝑠𝑝 is the desired set-point 

(output), ∆𝑢(𝑘 + 𝑗|𝑘) = 𝑢(𝑘 + 𝑗|𝑘) − 𝑢(𝑘 + 𝑗 − 1|𝑘), Q and R are the matrices of appropriate 

dimensions. 

The equation ((2.31) is developed based on the equations ((2.29) and ((2.30) as shown 

below: 

 𝑦(𝑘 + 1|𝑘) = 𝐶𝑥(𝑘 + 1|𝑘) = 𝐶𝐴𝑥(𝑘) + 𝐶𝐵𝑢(𝑘|𝑘)  

𝑦(𝑘 + 2|𝑘) = 𝐶𝐴𝑥(𝑘 + 1|𝑘) + 𝐶𝐵𝑢(𝑘 + 1|𝑘)  

       = 𝐶𝐴2𝑥(𝑘) + 𝐶𝐴𝐵𝑢(𝑘|𝑘) + 𝐶𝐵𝑢(𝑘 + 1|𝑘)   

𝑦(𝑘 + 3|𝑘) = 𝐶𝐴3𝑥(𝑘) + 𝐶𝐴2𝐵𝑢(𝑘|𝑘) + 𝐶𝐴𝐵𝑢(𝑘 + 1|𝑘) + 𝐶𝐵𝑢(𝑘 + 2|𝑘)  

⋮   ⋮   

𝑦(𝑘 + 𝑗|𝑘) = 𝐶𝐴𝑗𝑥(𝑘) + 𝐶𝐴𝑗−1𝐵𝑢(𝑘|𝑘) + 𝐶𝐴𝑗−2𝐵𝑢(𝑘 + 1|𝑘) + ⋯+ 𝐶𝐵𝑢(𝑘 + 2|𝑘)  

If we suppose that  

𝑢(𝑘 + 𝑚|𝑘) = 𝑢(𝑘 + 𝑚 + 1|𝑘) = ⋯𝑢(𝑘 + 𝑚 − 1|𝑘)  (2.32) 
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Meaning that the control input remains constant after time instant 𝑘 + 𝑚. With this 

assumption in equation ((2.35), the output predictions can be written as: 

𝑦(𝑘 +𝑚 + 1|𝑘) = 𝐶𝐴𝑚+1𝑥(𝑘) + 𝐶𝐴𝑚𝐵𝑢(𝑘|𝑘) + 𝐶𝐴𝑚−1𝐵𝑢(𝑘 + 1|𝑘) + ⋯+  

+[𝐶𝐴𝐵 + 𝐶𝐵]𝑢(𝑘 + 𝑚 − 1|𝑘) 

𝑦(𝑘 +𝑚 + 2|𝑘) = 𝐶𝐴𝑚+2𝑥(𝑘) + 𝐶𝐴𝑚+1𝐵𝑢(𝑘|𝑘) + 𝐶𝐴𝑚𝐵𝑢(𝑘|𝑘) + ⋯  

+[𝐶𝐴2𝐵 + 𝐶𝐴𝐵 + 𝐶𝐵]𝑢(𝑘 + 𝑚 − 1|𝑘)  

⋮   ⋮   

𝑦(𝑘 + 𝑝|𝑘) = 𝐶𝐴𝑝𝑥(𝑘) + 𝐶𝐴𝑝−1𝐵𝑢(𝑘|𝑘) + 𝐶𝐴𝑝−2𝐵𝑢(𝑘 + 1|𝑘) + ⋯+

 𝐶𝐴𝑝−𝑚+1𝐵𝑢(𝑘 + 𝑚 − 2|𝑘) + [𝐶𝐴𝑝−𝑚𝐵 + 𝐶𝐴𝑝−𝑚−1𝐵 +⋯+ 𝐶𝐵]𝑢(𝑘 + 𝑚 − 1|𝑘)  

Therefore, the vector of output predictions can be written as such: 

[
 
 
 
 
 
 
𝑦(𝑘 + 1|𝑘)

𝑦(𝑘 + 2|𝑘)
⋮

𝑦(𝑘 + 𝑚|𝑘)

𝑦(𝑘 + 𝑚 + 1|𝑘)
⋮

𝑦(𝑘 + 𝑝|𝑘) ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑚

𝐶𝐴𝑚+1

⋮
𝐶𝐴𝑝 ]

 
 
 
 
 
 

𝑥(𝑘) +

[
 
 
 
 
 
 

𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐵
𝐶𝐴𝐵
⋮

0
⋮
0

0
⋮
0

𝐶𝐴𝑚−1𝐵
𝐶𝐴𝑚𝐵
⋮

𝐶𝐴𝑝−1𝐵

𝐶𝐴𝑚−2𝐵
𝐶𝐴𝑚−1𝐵

 
𝐶𝐴𝑝−2𝐵

⋯
⋯
⋯
0

𝐶𝐵
𝐶�̃�1𝐵
 

𝐶�̃�𝑝−𝑚𝐵]
 
 
 
 
 
 

 [

𝑢(𝑘|𝑘)
𝑢(𝑘 + 1)

⋮
𝑢(𝑘 + 𝑚 − 1|𝑘)

] 

(2.33) 

 

Where �̃�1 = 𝐴 + 𝐼; �̃�2 = 𝐴
2 + 𝐴 + 𝐼; ⋯ �̃�𝑝−𝑚 = 𝐴

𝑝−𝑚 + 𝐴𝑝−𝑚−1 +⋯+ 𝐼 

Then the output prediction given in equation ((2.30) can be represented in the form  

 �̅�(𝑘) = Ψ𝑥(𝑘) +  Θ𝑢𝑘 (2.34) 

And defining the set point vector �̅�𝑠𝑝 = [𝑦𝑠𝑝 ⋯ 𝑦𝑠𝑝⏟        
𝑝

]

𝑇

 and the weight matrix  

�̅� = [𝑄 ⋯ 𝑄⏟      
𝑝

]

𝑇

, then the first term of the right hand side of equation ((2.31) becomes: 
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 𝐽𝑘 =∑(𝑦(𝑘 + 𝑗|𝑘)

𝑃

𝐽=1

− 𝑦𝑠𝑝)
𝑇
𝑄(𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝)                                                                                           

= (Ψ𝑥(𝑘) +  Θ𝑢𝑘 − �̅�
𝑠𝑝)𝑇𝑄(Ψ𝑥(𝑘) +  Θ𝑢𝑘 − �̅�

𝑠𝑝)                                                                             

Now, to develop the second term of equation we can write: 

[

∆𝑢(𝑘|𝑘)
∆𝑢(𝑘 + 1)

⋮
∆𝑢(𝑘 + 𝑚 − 1|𝑘)

] = [

𝑢(𝑘|𝑘) − 𝑢(𝑘 − 1)

𝑢(𝑘 + 1|𝑘) − 𝑢(𝑘|𝑘)
⋮

𝑢(𝑘 + 𝑚 − 1|𝑘) − 𝑢(𝑘 + 𝑚 − 2|𝑘)

] = 𝑢𝑘 −𝑀𝑢𝑘 − 𝐼�̅�(𝑘 − 1) 

Such that: 

 𝑀 =

[
 
 
 
 
0𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 0𝑛𝑢
𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 0𝑛𝑢
0𝑛𝑢 𝐼𝑛𝑢 ⋯ 0𝑛𝑢 0𝑛𝑢
⋮ ⋮ ⋯ 0𝑛𝑢 ⋮
0𝑛𝑢 0𝑛𝑢 ⋯ 𝐼𝑛𝑢 0𝑛𝑢]

 
 
 
 

, 𝑀 ∈ ℜ(𝑚.𝑛𝑢)×(𝑚.𝑛𝑢), 𝐼 ̅ = [

𝐼𝑛𝑢
0𝑛𝑢
⋮
0𝑛𝑢

], 𝐼 ̅ ∈  ℜ(𝑚.𝑛𝑢)×(𝑚.𝑛𝑢) 

Therefore, the second term of equation ((2.30) can be written as: 

∑ ∆𝑢(𝑘 + 𝑗|𝑘)𝑇𝑅∆𝑢(𝑘 + 𝑗|𝑘) = [(𝐼𝑛𝑢.𝑚 −𝑀)𝑢𝑘 − 𝐼�̅�(𝑘 − 1)]
𝑇𝑅[

𝑚−1

𝐽=0

(𝐼𝑛𝑢.𝑚 −𝑀)

− 𝐼�̅�(𝑘 − 1)] 

The two parts of the equation ((2.34) developed can be expressed as: 

𝐽𝑘 = (Ψ𝑥(𝑘) +  Θ𝑢𝑘 − �̅�
𝑠𝑝)𝑇�̅�(Ψ𝑥(𝑘) +  Θ𝑢𝑘 − �̅�

𝑠𝑝)

+ [𝐼𝑂𝑢𝑘 − 𝐼�̅�(𝑘 − 1)]
𝑇�̅�[𝐼𝑂𝑢𝑘 − 𝐼�̅�(𝑘 − 1)] 

(2.35) 

 

Where: 𝐼𝑂 = 𝐼𝑛𝑢.𝑚 −𝑀, �̅� = 𝑑𝑖𝑎𝑔[𝑅⋯𝑅⏟  
𝑚

] 

The Objective function can thus be reduced to the quadratic form: 

𝐽𝑘 = 𝑢𝑘
𝑇𝐻𝑢𝑘 + 2𝐶𝑓

𝑇𝑢𝑘 

Where: 

(2.36) 
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 𝐻 =  Θ𝑇�̅�Θ + 𝐼𝑂
𝑇�̅�𝐼𝑂  

𝐶𝑓 = (Ψ𝑥(𝑘) − �̅�
𝑠𝑝)𝑇�̅�Θ − 𝑢(𝑘 − 1)𝑇 𝐼𝑇�̅�𝐼𝑂  

 𝑐 = (Ψ𝑥(𝑘) − �̅�𝑠𝑝)𝑇�̅�(Ψ𝑥(𝑘) − �̅�𝑠𝑝) + 𝑢(𝑘 − 1)𝑇 𝐼𝑇�̅�𝐼�̅�(𝑘 − 1) 

The control law for the MPC can finally be written as: 

min
𝑢𝑘
𝑢𝑘
𝑇𝐻𝑢𝑘 + 2𝐶𝑓

𝑇𝑢𝑘 

𝑠. 𝑡.   

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗|𝑘) ≤ 𝑢𝑚𝑎𝑥 ,   𝑗 = 0,1, … ,𝑚 − 1  

−∆𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑘 + 𝑗|𝑘) − 𝑢(𝑘 + 𝑗 − 1) ≤ 𝑢𝑚𝑎𝑥 ,   𝑗 = 0,1, … ,𝑚 − 1  

(2.37) 

 

(2.38) 

(2.39) 

 

2.2.3.2 Infinite Horizon MPC 

The infinite horizon controller implements a control law which minimizes the difference 

between the predicted outputs and the future outputs trajectory of a system along an infinite 

prediction horizon. Proposed by RAWLINGS; MUSKE, (1993), the authors showed that stability 

can be guaranteed for the undisturbed regulator as IHMPC would stabilize an ideal system 

regardless of the controller tuning parameter. It is characterized by the following objective: 

Consider the equation ((2.31) previously mentioned in the conventional finite horizon MPC 

from the state model given in equation ((2.29), but this time we replace the prediction horizon p 

with infinity. Adapting the proposed IHMPC by RAWLINGS; MUSKE, (1993) to the state space 

model in incremental form, the following cost function is formed (RODRIGUES; ODLOAK, 

2003): 

𝐽𝑘 =∑‖𝑒(𝑘 + 𝑗|𝑘)‖𝑄
2

∞

𝐽=1

+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝐽=0

 

(2.40) 

And simplifying equation (2.40) the control problem is reduced to the optimization problem 

as follows: 
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min
∆𝑢𝑘

[∆𝑢𝑘
𝑇𝐻∆𝑢𝑘 + 2𝑐𝑡 

𝑇∆𝑢𝑘] 

𝑠. 𝑡.  

  𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗|𝑘) ≤ 𝑢𝑚𝑎𝑥 ,   𝑗 = 0,1, … ,𝑚 − 1 

−∆𝑢𝑚𝑎𝑥 ≤ ∆𝑢(𝑘 + 𝑗|𝑘) ≤ ∆𝑢𝑚𝑎𝑥,   𝑗 = 0,1, … ,𝑚 − 1  

𝑒𝑠 + 𝐷𝑚
0 ∆𝑢𝑘 = 0     

Where 𝐷𝑚
0 = [𝐷0 𝐷0 ⋯ 𝐷0⏞          

𝑚

 0 ⋯ 0]   ∈ ℝ𝑛𝑦×𝑚.𝑛𝑢 

𝑒𝑠 = 𝑦𝑠𝑝 − 𝑥𝑠(𝑘)  

(2.41) 

 

(2.42) 

(2.43) 

(2.44) 

The terminal constraint in equation (2.44) keeps the control objective bounded 

2.2.3.3 Zone control MPC 

As mentioned, the conventional MPC receives set points, and tracks the trajectory that leads 

to achieving the given set-points. For processes in the places as pharmaceutical industries where 

exact product quality is a major priority, the conventional setpoint tracking MPC is necessary. 

However, in some chemical processes where the desired output can be within a range of given 

values with an upper and lower boundary beyond which is unacceptable, the ‘zone control’ MPC 

can be  implemented in the supervisory control layer. The zone control strategy is mostly applied 

to processes where the exact values of controlled outputs are not required as long as they are 

within a specified acceptable range.(MACIEJOWSKI, 2002; GONZÁLEZ; ODLOAK, 2009). 

For this type of control strategy, efficient application stems from defining the implementation 

objectives of the control problem in a hierarchy such as: 

 first objective is to find a feasible solution based on the given constraints and 

boundaries, 

 secondly, reach and maintain the outputs within the given zones, 

 and to steer the inputs as close as possible to the desired target. 

As long as the higher priority objective is obtained, the lower objective can be satisfied with 

the remaining degrees of freedom. This strategy can be seen as moving the solution to within a 

range rather than the general exact ouput (FERRAMOSCA et al., 2012).  
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The zone control strategy is suitable for most real dynamic systems with high economic 

objective, process systems with highly correlated outputs to be controlled with fewer inputs to 

control all the outputs, biological systems etc. Figure 1.1 and equation (2.45) - (2.50) represents 

the MPC strategy described: 

 

Figure 2.4 – Structure of Model predictive control (MPC) with Zone control 

Source:(GONZÁLEZ; ODLOAK, 2009) 

The cost function can then be described mathematically as: 

min
∆𝑈𝑘,𝑦𝑠𝑝,𝑘

𝐽𝑘(𝑦, 𝑢) (2.45) 

  

𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘‖𝑄𝑦

2
+∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅

2

𝑚

𝑗=1

∞

𝑗=1

+∑‖(𝑢(𝑘 + 𝑗|𝑘) − 𝑢𝑑𝑒𝑠,𝑘)‖𝑄𝑢

2
𝑚

𝑗=1

 

𝑠. 𝑡:   

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘  

𝑦𝑘+1 = 𝐶𝑥𝑘  

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 1) + ∑ (∆𝑢(𝑘 + 𝑖|𝑘))
𝑗
𝑖=0 ≤ 𝑢𝑚𝑎𝑥  𝑗 = 0,… ,𝑚 − 1   

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑖|𝑘) ≤ ∆𝑢𝑚𝑎𝑥  

∆𝑢(𝑘 + 𝑗|𝑘)𝜖 𝑈        

(2.46) 

 

 

 

 

 

(2.47) 

 

(2.48) 

(2.49) 
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        𝑦𝑚𝑖𝑛 ≤ 𝑦𝑠𝑝,𝑘 ≤ 𝑦𝑚𝑎𝑥   (2.50) 

Where m is the control horizon; 𝑦𝑠𝑝,𝑘 is the output set-point, 𝑢𝑑𝑒𝑠,𝑘  is the input desired 

target, ∆𝑢(𝑘 + 𝑗/𝑘) = 𝑢(𝑘 + 𝑗/𝑘) − 𝑢(𝑘 + 𝑗 − 1/𝑘) is the input move computed at time 𝑘 to be 

applied at time 𝑘 + 𝑗 ; 𝑄𝑦, 𝑄𝑢 and 𝑅 are the positive weighting matrices of appropriate 

dimensions. Note that the 𝑦𝑠𝑝,𝑘 can assume any value within the output zone, and  𝑢𝑑𝑒𝑠,𝑘  varies 

whenever the operating objective changes. 

2.3 Parameter Estimation 

Measurement data coming from the plant/process through measuring tools such as 

sensors and transmitters are combined with internal and external disturbances or noises and are 

not very reliable. These data are filtered for the relevant and actionable information to validate 

and align these measurements to the actual process under consideration through a process 

called parameter adaptation (estimation). (SOROUSH, 1998; RAWLINGS; BAKSHI, 2006; 

HEDENGREN, 2016; HEDENGREN; EATON, 2017). 

In the traditional RTO model encountered in commercial RTOs, unknown or uncertain 

parameters for the system are estimated based on measurement data from the system. These 

data are filtered and the validated data updated to the RTO layer to compute optimal values 

that is assumed to drive the process to optimum operation iteratively (CHACHUAT; 

SRINIVASAN; BONVIN, 2009; KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018).  

Parameter estimation is very essential for RTO implementation and in the HRTO method 

above, online estimation is used for parameter estimation; this allows transient data to be used 

for the optimization. The online estimator sends updates to the model at current time regardless 

of if it is in steady state. It needs to infer the most likely state/ parameter estimate based on a 

dynamic model and the available measurements as they come from the system, hence the choice 

of estimator is very important. It has to be robust(RAWLINGS; BAKSHI, 2006). 

For this study, the online estimator that will be used here is the Extended Kalman Filter 

(EKF) since the system is a constrained nonlinear system, other types of estimators that can be 

used are Kalman filter (for linear systems), rEKF, Unscented Kalman Filter (UKF), Moving 
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Horizon Estimation (MHE), etc found in the literature(RAWLINGS; BAKSHI, 2006; 

HEDENGREN; EATON, 2017).  

EKF is the most commonly used parameter estimator for nonlinear systems. It involves the 

linearization of nonlinear model of the system considered, it takes advantage of the recursive 

strategy and computational efficiency of the Kalman filter. However, linearization of highly non-

linear systems could not be as efficient considering it is an approximation, and most researchers 

argue its implementation on large systems due to the stress of computing the Jacobian 

(GOLDENSTEIN, 2004; UMAMAGESWARI; IGNATIOUS; VINODHA, 2012; SHI; 

O’BRIEN, 2019). EKF is applied based on (SIMON, 2006; KRISHNAMOORTHY; FOSS; 

SKOGESTAD, 2018). 

2.4 Integration of RTO with MPC 

The introduction of the RTO in the 80s gave an apparent separation of concerns and 

timescales between the RTO system and the process control system, the use of RTO in cascade 

to MPC has become a norm in the industries as the RTO requires a properly working MPC to be 

successfully implemented. This is not the case with the MPC which can be implemented 

successfully without the RTO. The RTO performs economic optimization on a time scale of hours 

to days whereas the control system functions on a shorter time scale of second to hours, this could 

lead to an erroneous conclusion that dynamics do not matter and that the introduction of the RTO 

layer could significantly increase the complexity of the control system, bringing about extra costs 

in design implementation and maintenance. Although operators could know which variables 

should be kept within their bounds, optimization of set-points with respect to their constraints and 

disturbance encountered is beyond their ability. The purpose of economic optimization is to find 

the point in which processes can be operated at an economic optimum. And as mentioned, this 

optimal point can be found at the intersection of constraints, therefore the multilayer structure of 

RTO – MPC integration is a classical approach. 

The integration of RTO with MPC is mostly implemented in three ways namely: 
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2.4.1 Two-layer strategy 

The two-layer structure of integrating RTO with MPC is a common approach. As 

mentioned earlier the RTO uses rigorous steady state non-linear model to compute the optimizing 

targets/set points of decision variables and sent to the advanced controller. The controller then 

uses a linear dynamic model to compute the best trajectory, to drive and maintain the system to 

the optimal operating point provided by the upper layer. This approach is suitable for some 

processes such as the ethylene plants, this is because units always operate at maximum production 

and there are certain tradeoffs that MPC alone cannot address, the pricing and the cost here are 

well defined and there is a lack of significant inventories. Also RTO has better response to 

disturbances and feasibility is maintained between RTO implementations, but for refining 

applications this method could create complications (DARBY et al., 2011). In a case where RTO 

is integrated with MPC in a two-layer structure, there is a clear separation of tasks performed by 

the optimization and the control layer (MILETIC; MARLIN, 1998; ENGELL, 2007). 

The challenge with the two-layer technique is that: RTO and MPC layers of the 

optimization hierarchy are implemented with different objective function, different models and 

at different time-scale, this could bring about conflict arising from model mismatch (set-point 

computed by RTO nonlinear model inconsistent with linear model used by the MPC) or 

competing objectives (differences in the degrees of freedom). Consequently, leading to steady 

state set-point implementation offset and in some cases infeasibility and poor performances of 

the MPC. The time interval between consecutive RTO implementations must be large enough for 

the plant to reach steady state. It is a difficulty achieving this, moreover steady-state detection 

itself is not an easy task, especially since most large processes considered are dynamic and 

frequently disturbed. Therefore, making the RTO infrequently implemented. Furthermore, the 

MPC is conservatively designed to accommodate constraints hence the economic optimal points 

computed by RTO that likely changes in the presence of disturbances may not be considered by 

the MPC or result in instability (YING; JOSEPH, 1999; DE SOUZA; ODLOAK; ZANIN, 2010; 

DARBY et al., 2011; HINOJOSA, 2015; MENDOZA et al., 2016). Figure 2.5 shows the scheme 

of the two-layer approach. 
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Figure 2.5 - Simplified representation of a two-layer RTO/MPC approach  

(Own elaboration) 

2.4.2 Three-layer strategy 

With the challenges of the two-layer approach mentioned in the preceding section, the need 

for optimal set-points computed to be consistent with the principal model used in the MPC 

algorithm led to another approach for integrating RTO with MPC, the three-layer structure. In 

this approach, a linear optimization layer is introduced between the non-linear optimization 

(RTO) layer and the linear dynamic advanced controller (MPC). The objective of the second 

optimization layer is to enable compatibility of the nonlinear model in the first layer with the 

dynamic linear model of the third layer, it is formulated such that the difference between the 

optimizing targets it computes with the one computed by the upper RTO layer is minimized. This 

steady state target optimizer (SSTO) to choose the best admissible input and output targets for 

the MPC to work with. (YING; JOSEPH, 1999) gave a detailed comparison between the two 

layer RTO/MPC and the three layer strategy.(DANG; BANJERDPONGCHAI, 2013; ALAMO 

et al., 2014; WANG et al., 2017; PAN; ZHONG; WANG, 2018) all proposed and implemented 

different algorithms concerning this strategy. Figure 2.6 describes the scheme of the three layer 

strategy. 
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Figure 2.6 - The three-layer approach 

(Own elaboration) 

2.4.3 One-layer strategy 

The one-layer approach is yet another solution proposed to solve the RTO/MPC integration. 

The idea presented here is to include the economic cost function in the RTO directly in the MPC 

controller cost function, the controller then does the job of optimizing the process, choosing the 

set-points and computing the manipulated variables trajectory. This will eliminate the need for 

designing RTO models and also tackle the time scale conflict challenge of the two-layer structure 

(ENGELL, 2007; ADETOLA, 2008; DE SOUZA; ODLOAK; ZANIN, 2010; ALAMO et al., 

2014; FERRAMOSCA et al., 2014; TRAN; LINGA; MACIEJOWSKI, 2014; HINOJOSA, 

2015).  

The limitations of this proposed method is that, there are some processes that require the 

RTO because the MPC alone cannot handle the dynamics of these processes (ENGELL, 2007; 

DARBY et al., 2011). In situations where the optimum always lies at the constraints, there is a 

possibility that the constraint can change and in such case the RTO can more efficiently find the 

optimal point. This implies that in some processes, there are tradeoffs that RTO can account for 

and MPC cannot, due to nonlinearities or by a robust consideration. Moreover, RTO has a better 

response to frequent disturbance and feasibility is maintained between executions. An example 

of such process is the ethylene plant, with reasons being that units always run at maximum 
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production, price and cost are defined  and there is lack of major liquid inventories, such 

complicated tradeoffs cannot be addressed by MPC (DARBY et al., 2011). Figure 2.7 describes 

the steps for the one-layer approach 

 

Figure 2.7 - Simplified representation of a one layer RTO/MPC 

(Own elaboration) 
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3  ALGORITHMS FOR THE INTEGRATION OF RTO WITH MPC   

 In the preceding section 2.4, we described the three commonly used strategies for the 

integration of the RTO with MPC for the optimization of large-scale processes.  There are several 

techniques and algorithms presented in the literature for implementing these strategies. While 

new process optimization strategies are continually proposed with the advancement of numerical 

tools, in the same manner, modifications to some of the existing and successfully applied 

techniques are proposed to improve their performance and efficiencies. 

 In this research, these modified practical techniques are applied.  The two-layer and the 

one-layer, strategies which are the commonly applied approaches in the industry, are considered 

and the modified techniques to improve these strategies as proposed recently in the literature is 

applied as well. 

For the optimization layer of the process control hierarchy as in Figure 1.1, we implement 

the  steady-state real-time optimization modified by KRISHNAMOORTHY; FOSS; 

SKOGESTAD, (2018) to address the challenges of steady state wait time and parameter update 

mismatch. While this technique addresses the structural challenge of the RTO layer, it does not 

consider the hierarchical challenge with the supervisory control layer; the set-point tracking 

nonlinear MPC which is mostly theoretical, was used for this layer. The linear MPC is the 

controller mostly implemented in the industry for large-scale processes, therefore its 

compatibility with the modified RTO technique needs to be considered for practical 

implementation. In this work, for the supervisory control layer, we implement the infinite horizon 

MPC with zone control represented with OPOM (output prediction oriented model) model as 

proposed by GONZÁLEZ; ODLOAK, (2009);  and DE SOUZA; ODLOAK; ZANIN, (2010) in 

the two strategies of RTO/MPC integration considered for this work.  

The first controller we use for the two-layer approach as proposed by GONZÁLEZ; 

ODLOAK, (2009) was designed for nominal stable systems and have been successfully 

implemented on an FCC system. Likewise the controller we implement for the one-layer approach 

where we include the gradient of the RTO in the controller objective function as modified by DE 

SOUZA; ODLOAK; ZANIN, (2010) to computationally simplify the initial technique proposed 
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by ZANIN; TVRZSKÁ DE GOUVÊA; ODLOAK, (2002). The following section describes the 

mathematical preliminaries for the algorithms considered and applied in this work. 

3.1 The Two-layers algorithm 

The two layer strategy includes:  

 Layer 1: data filtering, reconciliation, updating step and the real time optimization step 

 Layer 2: Supervisory control step (model predictive control). 

3.1.1 The Traditional RTO (Static RTO/MPA) 

 Steady state detection and data processing is the initial step in implementing the classic 

RTO commonly found in the commercial RTO used in the industries. Using statistical or heuristic 

tools, a condition for which a steady state can be said to be attained is set and the plant 

measurements are tested to detect if the steady state condition has been closely fulfilled. Once the 

process is believed to be operating close enough to this steady state condition the parameter 

estimation step is initiated, this include data reconciliation and model adaptation of the model 

parameters. It is essentially to understand the process so that the choice of important parameters 

that significantly affect the process, hence the need for frequent update is made correctly. With 

an updated model, a given economic objective and process constraint, the optimal decision 

variables are computed by the optimization layer using a numerically optimization tool. The steps 

involved is represented in equations ( (3.1) – ((3.2): 

 Steady state detection: 

 Step 1a: Model adaptation/Parameter Estimation 

 𝜍�̂� = 𝑎𝑟𝑔min
�̂�
‖𝑦𝑚𝑒𝑎𝑠 − 𝑓𝑠𝑠(𝑢𝑘, 𝜍)‖𝑃

2     (3.1) 

 

 Step 1b: Steady state Optimization 

 

𝑢∗ = 𝑎𝑟𝑔min
𝑢
𝐽(𝑦, 𝑢)         

            𝑠. 𝑡.  𝑥𝑘 = 𝑓𝑠𝑠(𝑢, 𝜍�̂�)  

                𝑔(𝑦, 𝑢) ≤ 0 

(3.2) 
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3.1.2 Steady state RTO using transient measurement (Hybrid RTO) 

 In the implementation of the ‘hybrid real time optimization’ proposed by 

KRISHNAMOORTHY; FOSS; SKOGESTAD, (2018), the parameter estimation (information 

updating) step is the novelty of the technique. In this approach the information update is carried 

out using online parameter estimation tools. This implies that the information from the dynamic 

process, measured with tools such as sensors, which come with some noises or measurement errors, 

is sent directly to be filtered by a dynamic parameter estimator without having to wait for the 

process steady state to be detected, therefore the economic optimization step is updated with a more 

timely and adequate information for the computation of optimal decision variables. The following 

describes the computation steps for the hybrid RTO technique. 

 Step 1a:  Dynamic Parameter Estimation 

 
𝜍�̂� = 𝑎𝑟𝑔min

𝜍
‖𝑦𝑚𝑒𝑎,𝑘 − ℎ(𝑥𝑘, 𝑢𝑘)‖     

𝑠. 𝑡.  𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝜍)  

(3.3) 

 As earlier mentioned, the parameter estimation step is the distinction (modification 

made) between the traditional RTO with this new RTO technique, therefore the choice of a 

good information filter is necessary. There are so many online estimators in the literature, 

popular amongst them is the group of Kalman filters such as the Kalman filter, extended 

Kalman filter, reduced extended Kalman filter, unscented Kalman filter, other filters that 

are optimization based such as the moving horizon estimation, constrained extended 

Kalman filter are also gaining more research attention.  

For this research, the EKF is used. The Kalman filter though simpler to implement 

is only suitable for linear unconstrained process, that is not the case in most of the real 

industrial processes, the EKF an extension of the linear Kalman filter, and it is used for 

nonlinear processes as other members of the Kalman filter family (UKF, CEKF, rEKF), but 

the EKF is popularly applied due to its simplicity of implementation to nonlinear processes 

and computational speed. It achieves the desired result through approximation of the 

process about a point and it does not require solving the nonlinear optimization problems 

online. Since it is an approximation of the process, the limitations of the EKF comes when 
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it has to deal with highly nonlinear processes. To implement the EKF we use augmented 

state vector constructed using the state and parameters (uncertain parameter to be estimated) 

as shown:  

𝑥′ = [𝑥𝑇 ,  𝜍𝑇]𝑇𝜖 ℝ𝑛𝑥+𝑛 𝜍 

The uncertain parameters augmented system is given by: 

𝑥𝑘+1
′ = [𝑥𝑘+1

∅𝑘+1
] = 𝑓′(𝑥′, 𝑢𝑘) + 𝑤𝑘

′   

  𝑦𝑘 = [ℎ
′(𝑥′, 𝑢𝑘)   0] [

𝑥𝑘
 𝜍𝑘
] + 𝑣𝑘 

(3.4) 

Where 𝑤𝑘~𝑁(0, 𝑄) is the normally distributed measurement noise with zero mean and 

covariance 𝑄, and the augmented system 𝑓′(𝑥𝑘 , 𝑢𝑘,  𝜍𝑘) is constructed as: 

𝑓′(𝑥𝑘, 𝑢𝑘,  𝜍𝑘) = [
𝑓(𝑥𝑘, 𝑢𝑘 ,  𝜍𝑘)

 𝜍𝑘
] 

(3.5) 

Where 𝑣𝑘~𝑁(0, 𝑅)is the normally distributed process noise with zero mean and 

covariance 𝑅. 

The discrete –time EKF for the augmented system is: 

�̂�𝑘|𝑘−1
′ = 𝑓′(�̂�𝑘−1|𝑘−1

′ , 𝑢𝑘 , 𝜍�̂�−1|𝑘−1
′ )               

𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘

′                  

𝐾𝑓,𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘 + 𝑅𝑘)

−1     

�̂�𝑘|𝑘
′ = �̂�𝑘|𝑘−1

′ + 𝐾𝑘(𝑦𝑚𝑒𝑎𝑠,𝑘, −ℎ(�̂�𝑘|𝑘−1
′ , 𝑢𝑘))           

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1      

𝐹 = 
𝜕𝑓′(𝑥,𝑢,∅)

𝜕𝑥′
|
𝑥′= �̂�′

     𝐻 = 
𝜕ℎ(𝑥,𝑢)

𝜕𝑥′
|
𝑥′= �̂�′

   

The augmented covariance 𝑄′ is given by 

𝑄′ = [
𝑄 0
0 𝑄 𝜍

] 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

 

The estimated parameter  �̂� is then used in the static optimizer as shown in (3.13) 

Step 1b:  Static Optimization 

𝑢∗ = 𝑎𝑟𝑔min
𝑢
𝐽(𝑦, 𝑢)   

  𝑠. 𝑡.  0 = 𝑓𝑠𝑠(𝑢,  �̂�𝑘) 

(3.13) 
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𝑔(𝑦, 𝑢) ≤ 0  

Step 2: Zone control IHMPC with optimizing targets 

 The controller model is presented based on the output prediction oriented model (OPOM) 

developed by ODLOAK, (2004). The controller applied here is as developed by GONZÁLEZ; 

ODLOAK, (2009) with the goal of practical applications. 

 Consider a stable system with 𝑛𝑢 inputs and 𝑛𝑦 outputs and assume the poles related to 𝑢𝑖 

and output 𝑦𝑗 are non-repeated. Suppose that the state space model: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘)   

(3.14) 

Is represented as the equations (3.15) and (3.16) 

[
𝑥𝑠(𝑘 + 1)

𝑥𝑑(𝑘 + 1)
]

⏟        
𝑥(𝑘+1)

= [
𝐼𝑛𝑦 0

0 𝐹
]

⏟      
𝐴

[
𝑥𝑠(𝑘)

𝑥𝑑(𝑘)
]

⏟    
𝑥(𝑘)

+ [ 𝐷
0

𝐷𝑑𝐹𝑁
]

⏟    
𝐵

∆𝑢(𝑘)  

 𝑦(𝑘) = [𝐼𝑛𝑦 Ψ]⏟      
𝐶

[
𝑥𝑠(𝑘)

𝑥𝑑(𝑘)
]

⏟    
𝑥(𝑘)

 

(3.15) 

 

(3.16) 

Where  

𝑥𝑠 = [𝑥1⋯𝑥𝑛𝑦]
𝑇, 𝑥𝑠 ∈ ℜ𝑛𝑦, 𝑥𝑑 = [𝑥𝑛𝑦+1  𝑥𝑛𝑦+2 ⋯ 𝑥𝑛𝑦(𝑛𝑢 𝑛𝑎+1 )]

𝑇, 

𝑥𝑑 ∈ 𝐶𝑛𝑑, 𝑛𝑑 = 𝑛𝑢 𝑛𝑎 𝑛𝑦,  𝐹 ∈ 𝐶𝑛𝑑×𝑛𝑑 ,   𝑁 ∈ ℜ𝑛𝑢 𝑛𝑎×𝑛𝑢, ∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) 

Ψ = [
Φ  0
 ⋱  
0  Φ

], Ψ ∈ ℜ𝑛𝑦×𝑛𝑑 Φ = [1 ⋯ 1], Φ ∈ ℜ𝑛𝑢×𝑛𝑎 

For this control structure, at each time step k, an upper economic optimization layer 

computes the optimal target  𝑢𝑑𝑒𝑠,𝑘 , for the manipulated inputs. In this case it is assumed that the 

MPC is dedicated to ensuring the outputs are kept within the provided output range and at the 

same time guiding the manipulated inputs to the desired target provided by the upper economic 

optimization layer. This target provided changes with changes in operating objectives, entrance 

of disturbances or parameter uncertainties. The controller is able to follow the trajectory of this 

optimal inputs sent down to it from the upper layer. Therefor the control problem is given as: 
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min
∆𝑢𝑘,𝑦𝑠𝑝,𝑘,𝛿𝑦,𝑘,𝛿𝑢,𝑘

𝐽𝑘  (3.17) 

𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘‖𝑄𝑦

2
+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅

2

𝑚−1

𝑗=0

…

∞

𝑗=0

 

 

(3.18) 

+∑‖(𝑢(𝑘 + 𝑗|𝑘) − 𝑢𝑑𝑒𝑠,𝑘 − 𝛿𝑢,𝑘)‖𝑄𝑢

2
𝑚−1

𝑗=0

+ ‖𝛿𝑦,𝑘‖𝑆𝑦

2
+ ‖𝛿𝑢,𝑘‖𝑆𝑢

2
 

        𝑠. 𝑡.  

∆𝑢(𝑘 + 𝑗|𝑘)  ∈ 𝑈;     𝑗 = 0,1,⋯ ,𝑚 − 1  

∆𝑢(𝑘 + 𝑗|𝑘) = 0       𝑗 ≥  𝑚  

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑠𝑝,𝑘 ≤ 𝑦𝑚𝑎𝑥     

𝑥𝑠(𝑘) + �̃�0∆𝑢𝑘 − 𝑦
𝑠𝑝,𝑘 − 𝛿𝑦,𝑘 = 0     

𝑢(𝑘 − 1) + �̃�𝑢∆𝑢𝑘 − 𝑢𝑑𝑒𝑠,𝑘 − 𝛿𝑢,𝑘 = 0  

 

 

 

 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Where 𝑆𝑦, 𝑆𝑢 are positive matrices of the appropriate dimensions and 𝛿𝑦,𝑘 ∈ ℜ
𝑛𝑦, 𝛿𝑢,𝑘 ∈

ℜ𝑛𝑢 are the corresponding slack variables that eliminate a possible infeasibility of the terminal 

constraints and equations (3.22) and (3.23) of the constraints ensure that the control objective is 

bounded.  

�̃�
0
= [𝐷0   ⋯  𝐷0⏟      

𝑚

]  ,  �̃�
𝑢
= [𝐼𝑛𝑢   ⋯  𝐼𝑛𝑢⏟      

𝑚

]  

Now to develop the control optimization problem defined above to implement the zone 

control and enforce economic target, equation (3.18) can be written as: 

𝐽𝑘,𝑢 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘‖𝑄𝑦

2
𝑚

𝑗=0

+∑‖(𝑢(𝑘 + 𝑗|𝑘) − 𝑢𝑑𝑒𝑠,𝑘 − 𝛿𝑢,𝑘)‖𝑄𝑢

2
𝑚

𝑗=0

 

+∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝑗=0

+ ‖𝑥𝑑(𝑘 + 𝑚|𝑘)‖�̅�
2 + ‖𝛿𝑦,𝑘‖𝑆𝑦

2
+ ‖𝛿𝑢,𝑘‖𝑆𝑢

2
 

(3.24) 

Where �̅� is calculated from the Lyapunov equation: 

�̅� = Ψ𝑇𝑄𝑦Ψ+ 𝐹
𝑇�̅�𝐹 (3.25) 
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Simplifying further we have: 

𝐽𝑘,𝑢 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘‖𝑄𝑦

2
𝑚

𝑗=0

+∑‖(𝑢(𝑘 + 𝑗|𝑘) − 𝑢𝑑𝑒𝑠,𝑘 − 𝛿𝑢,𝑘)‖𝑄𝑢

2
𝑚

𝑗=0

 

+∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝑗=0

+ ‖𝐹𝑥𝑥
𝑑(𝑘) + 𝐹𝑢∆𝑢𝑘‖�̅�

2 + ‖𝛿𝑦,𝑘‖𝑆𝑦

2
+ ‖𝛿𝑢,𝑘‖𝑆𝑢

2
 

(3.26) 

A point of note for this controller is that, even if the desired steady state is not admissible, 

the controller will still be stable. Resulting from the decreasing property of the cost function and 

the slack variables included in the optimization, since the open loop system is assumed stable. 

Therefore, the system will evolve to a point in which the slack variables are as small as possible, 

but not equal to zero. This feature is very important in this controller because in a practical 

scenario, disturbance may move the system to a point in which it is impossible to reach the 

targeted steady state. This controller will be able to compensate the disturbance while keeping 

the system under control when such scenario presents itself (GONZÁLEZ; ODLOAK, 2009). 

When the state estimator is fast enough such that the state estimation converges to the true 

system state in negligible time, the controller will stabilize the closed loop system. The stability 

and feasibility of this controller have been tested on an FCC system and it will be used in this 

work for a gas-lift system. 

3.2 The One-layer algorithm 

 In the previous chapter, in section (2.4.3), we discussed the one layer RTO/MPC, where the 

economic cost function used in the optimization layer is included in the controller cost function 

instead, this way there is no desired target required to be computed by an upper layer optimizer. 

For this research work, we implement the one layer RTO/MPC approach proposed by DE 

SOUZA; ODLOAK; ZANIN, (2010). The technique modified the one layer approach initially 

proposed by ZANIN; TVRZSKÁ DE GOUVÊA; ODLOAK, (2002), the paper proposed the 

inclusion of the economic cost function into the controller, this led to a complex nonlinear 

problem. Considering the implication of the complexity and the computational burdens of solving 
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a large scale NLP, the computational delay, and also to avoid closed loop system stability 

jeopardy.  

DE SOUZA; ODLOAK; ZANIN, (2010)  proposed a simplified one layer RTO/MPC 

integration with the aim of maintaining  the advantages of the proposed one layer – a technique 

that is promising practical industrial application-  while reducing the complexity of solving the 

resulting NLP problem for large scale systems. The simplified one layer RTO/MPC integration 

includes the gradient of the economic cost in the controller instead of the direct nonlinear 

economic cost. This will enable low cost computation by allowing the resulting 

optimization/control problem to be solved as a QP problem. 

 In this work, the controller proposed by DE SOUZA; ODLOAK; ZANIN, (2010) is 

extended to the infinite horizon MPC with zone control and the system model for the controller 

is represented using the OPOM model described in section 2.2.1.1. Extending to the infinite 

horizon controller is to ensure recursive stability, considering also the presence of uncertain 

parameters which can disturb the system. The controller should be able to keep all the outputs 

within their corresponding zones while computing the optimal operating point. The following 

describes the technique we implement in this research for the one layer approach: 

Consider a multivariable system with 𝑛𝑦 controlled output variables and 𝑛𝑢 manipulated 

input variables. At any instant 𝑘 we can represent the system outputs and inputs as: 

𝑦(𝑘) = [𝑦1(𝑘),  𝑦2(𝑘),⋯ , 𝑦𝑛𝑦(𝑘)]
𝑇
    𝑢(𝑘) = [𝑢1(𝑘),  𝑢2(𝑘),⋯ , 𝑢𝑛𝑢(𝑘)]

𝑇 

 With the predicted steady state controlled variable corresponding to 𝑢 represented as 𝑦, the 

economic objective function associated to the steady state will be represented by: 

 𝐽 = 𝑓𝑒𝑐𝑜(�̂�, 𝑢) (3.27) 

Modifying the control vector to 𝑢 + ∆�̅�, the first order approximation of the gradient of the 

objective function at this point is: 
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𝛾𝑢+∆𝑢 =
𝑑𝐽

𝑑𝑢
|
𝑢+∆𝑢

=
𝑑𝐽

𝑑𝑢
|
𝑢
+
𝑑2𝐽

𝑑𝑢2
∆�̅� 

(3.28) 

In a case of an unconstrained optimization, a point where 𝛾 = 0 corresponding to the 

extreme point of the economic cost function, then we can expand equation ((3.28) as: 

                                                               
𝑑𝐽

𝑑𝑢
=
𝜕𝐽

𝜕�̂�
.
𝜕�̂�

𝜕𝑢
+
𝜕𝐽

𝜕𝑢
                                                

and 

𝑑2𝐽

𝑑𝑢2
= (

𝜕�̂�

𝜕𝑢
)
𝑇 𝜕2𝐽

(𝜕�̂�)2
𝜕�̂�

𝜕𝑢
+
𝜕2𝐽

𝜕�̂�𝜕𝑢

𝜕�̂�

𝜕𝑢
+
𝜕𝐽

𝜕�̂�
.
𝜕2�̂�

𝜕𝑢2
+ (
𝜕�̂�

𝜕𝑢
)
𝑇

.
𝜕2𝐽

𝜕𝑢𝜕�̂�
+
𝜕2𝐽

(𝜕𝑢)2
 

(3.29) 

 

 

(3.30) 

Where 
𝜕�̂�

𝜕𝑢
 is the process gain known as 𝐾𝑝 and can be computed using the nonlinear steady 

state model of the process considered so also can 
𝜕2�̂�

𝜕𝑢2
. Substituting therefore ((3.29) and (3.31) 

into equation ((3.28), we have: 

𝛾𝑢+∆𝑢 = [
𝜕𝐽

𝜕�̂�
. 𝐾𝑝 +

𝜕𝐽

𝜕𝑢
]

⏟        
𝑣

+ [𝐾𝑝
𝑇 𝜕2𝐽

(𝜕�̂�)2
𝐾𝑝 +

𝜕2𝐽

𝜕�̂�𝜕𝑢
𝐾𝑝 +

𝜕𝐽

𝜕�̂�
(
𝜕2�̂�

𝜕𝑢2
) + 𝐾𝑝

𝑇 𝜕2𝐽

𝜕𝑢𝜕�̂�
+
𝜕2𝐽

𝜕𝑢2
]

⏟                                
∆�̅�

 𝑍

  

Represented as: 

𝛾𝑢+∆𝑢 = 𝑣 + 𝑍∆�̅� 

(3.31) 

Where: 

∆�̅� = 𝑢(𝑘 + 𝑚 − 1) − 𝑢(𝑘 − 1) is the vector of total input moves 

The controller cost function is given by equation (3.32):  

𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑘‖𝑄𝑦

2
+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅

2

𝑚−1

𝑗=0

+ ‖𝛾𝑢+∆𝑢‖𝑊𝑒𝑐𝑜
2

∞

𝑗=0

+ ‖𝛿𝑘‖𝑆𝑦
2  

 

(3.32) 
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Where 𝑊𝑒𝑐𝑜 is the matrix of appropriate weight assigned to the economic cost included in 

the controller cost function. To develop the control problem from the cost function in equation 

(3.32), we simplify each term on the objective function. The equation can be re-written as: 

𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑘‖𝑄𝑦

2
𝑚

𝑗=0

+∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑘‖𝑄𝑦

2
∞

𝑗=1

 

+∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝑗=0

+ ‖𝛾𝑢+∆𝑢‖𝑊𝑒𝑐𝑜
2 + ‖𝛿𝑘‖𝑆𝑦

2       

(3.33) 

Equation can be further simplified as: 

𝐽𝑘 =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑘‖𝑄𝑦

2
𝑚

𝑗=0⏟                    
𝐽𝑘,1

+ ‖𝑥𝑑(𝑘 + 𝑚|𝑘)‖�̅�
2

⏟          
𝐽𝑘,2

+ ‖𝛿𝑘‖𝑆𝑦
2

+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝑗=0⏟            
𝐽𝑘,3

+ ‖𝛾𝑢+∆𝑢‖𝑊𝑒𝑐𝑜
2

⏟        
𝐽𝑘,4

 

(3.34) 

 

Considering each term of the equation (3.34) and simplifying we have: 

𝐽𝑘,1 = [‖𝐼�̅�𝑦𝑥
𝑠(𝑘) + �̃�0∆𝑢𝑘 +Ψ1𝐹𝑥𝑥

𝑑(𝑘) + Ψ1𝐹𝑢∆𝑢𝑘 − 𝐼�̅�𝑦𝑦𝑠𝑝,𝑘 − 𝐼�̅�𝑦𝛿𝑦,𝑘‖𝑄𝑦1

2
]  

 𝐽𝑘,2 = (𝐹𝑥𝑥
𝑑(𝑘) + 𝐹𝑢∆𝑢𝑘)

𝑇�̅�(𝐹𝑥𝑥
𝑑(𝑘) + 𝐹𝑢∆𝑢𝑘)  

𝐽𝑘,3 =

[∆𝑢(𝑘|𝑘)𝑇  ∆𝑢(𝑘 + 1|𝑘)𝑇  ⋯ ∆𝑢(𝑘 + 𝑚 − 1|𝑘)𝑇 ] [

𝑅 0 ⋯ 0
0 𝑅 ⋯ ⋮
⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 𝑅

] [

∆𝑢(𝑘|𝑘)

∆𝑢(𝑘 + 1|𝑘)
⋮

∆𝑢(𝑘 + 𝑚 − 1|𝑘)

]  

𝐽𝑘,4 = [𝑣 + 𝑍𝑘∆𝑢𝑘]
𝑇𝑊𝑒𝑐𝑜[𝑣 + 𝑍𝑘∆𝑢𝑘]  

𝑍𝑘 = [𝑍  𝑍 ⋯𝑍]⏟      
𝑚

 , ∆𝑢𝑘 = [

∆𝑢(𝑘|𝑘)

∆𝑢(𝑘 + 1|𝑘)
⋮

∆𝑢(𝑘 + 𝑚 − 1|𝑘)

] 
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Substituting these equations into equation (3.34) we have: 

𝐽𝑘 = ∆𝑢𝑘
𝑇(Ξ𝑇𝑄𝑦1Ξ +  𝐹𝑢

𝑇�̿�𝐹𝑢 + 𝑅 + 𝑍𝑘
𝑇𝑊𝑒𝑐𝑜𝑍𝑘)∆𝑢𝑘 + 𝑦𝑠𝑝,𝑘

𝑇 𝐼�̅�𝑦
𝑇 𝑄𝑦1𝐼�̅�𝑦𝑦𝑠𝑝,𝑘 +

𝛿𝑘
𝑇𝐼�̅�𝑦
𝑇 𝑄𝑦1𝐼�̅�𝑦𝛿𝑘 − ∆𝑢𝑘

𝑇Ξ𝑇𝑄𝑦1𝐼�̅�𝑦𝑦𝑠𝑝,𝑘 − 𝑦𝑠𝑝,𝑘
𝑇 𝐼�̅�𝑦

𝑇 𝑄𝑦1Ξ∆𝑢𝑘 + 𝑦𝑠𝑝,𝑘
𝑇 𝐼�̅�𝑦

𝑇 𝑄𝑦1𝐼�̅�𝑦𝛿𝑘 +

𝛿𝑘
𝑇𝐼�̅�𝑦
𝑇 𝑄𝑦1𝐼�̅�𝑦𝑦𝑠𝑝,𝑘 + 𝛿𝑘

𝑇𝑆𝑦𝛿𝑘 − ∆𝑢𝑘
𝑇Ξ𝑇𝑄𝑦1𝐼�̅�𝑦𝛿𝑘 − 𝛿𝑘

𝑇𝐼�̅�𝑦
𝑇 𝑄𝑦1Ξ∆𝑢𝑘 +

2 [(∆𝑢𝑘
𝑇 (Ξ𝑇𝑄𝑦1 (𝐼�̅�𝑦𝑥

𝑠(𝑘) + Ψ1𝐹𝑥𝑥
𝑑(𝑘)) + 𝐹𝑢

𝑇�̿�(𝐹𝑥𝑥
𝑑(𝑘) + 𝑍𝑘

𝑇𝑊𝑒𝑐𝑜𝑣) +

𝑦𝑠𝑝,𝑘
𝑇 (�̅�𝑛𝑦

𝑇 𝑄𝑦1 (𝐼�̅�𝑦𝑥
𝑠(𝑘) + Ψ1𝐹𝑥𝑥

𝑑(𝑘)) + 𝛿𝑘
𝑇(�̅�𝑛𝑦

𝑇 𝑄𝑦1 (𝐼�̅�𝑦𝑥
𝑠(𝑘) + Ψ1𝐹𝑥𝑥

𝑑(𝑘))))] +

[(𝐼�̅�𝑦𝑥
𝑠(𝑘))

𝑇

𝑄𝑦1 (𝐼�̅�𝑦𝑥
𝑠(𝑘)) + (𝐼�̅�𝑦𝑥

𝑠(𝑘) + Ψ1𝐹𝑥𝑥
𝑑(𝑘))

𝑇

𝑄𝑦1 (𝐼�̅�𝑦𝑥
𝑠(𝑘) +

Ψ1𝐹𝑥𝑥
𝑑(𝑘)) + (𝐹𝑥𝑥

𝑑(𝑘))𝑇�̿�(𝐹𝑥𝑥
𝑑(𝑘) + 𝑣𝑇𝑊𝑒𝑐𝑜𝑣]  

Arranging the terms together we have: 

𝐽𝑘 = [∆𝑢𝑘
𝑇 𝑦𝑠𝑝,𝑘

𝑇 𝛿𝑦,𝑘
𝑇 ]

[
 
 
 
 ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33⏟          

𝐻 ]
 
 
 
 

[

∆𝑢𝑘
𝑦𝑠𝑝,𝑘
𝛿𝑦,𝑘

] + 2𝐶𝑡
𝑇 [

∆𝑢𝑘
𝑦𝑠𝑝,𝑘
𝛿𝑦,𝑘

] + 𝑐  

ℎ11 = (�̃�
0 +Ψ1𝐹𝑢⏟      

Ξ

)𝑇�̅�𝑦(�̃�
0 +Ψ1𝐹𝑢⏟      

Ξ

) + 𝐹𝑢
𝑇�̿�𝐹𝑢 + 𝑅 + 𝑍𝑘

𝑇𝑊𝑒𝑐𝑜𝑍𝑘  

ℎ12 = ℎ21
𝑇 = ℎ13 = ℎ31

𝑇 = −(�̃�0 +Ψ1𝐹𝑢⏟      
Ξ

)𝑇�̅�𝑦𝐼�̅�𝑦  

ℎ22 = ℎ23 = ℎ32 = 𝐼�̅�𝑦
𝑇
�̅�𝑦𝐼�̅�𝑦  

 ℎ33 = 𝐼�̅�𝑦
𝑇
�̅�𝑦𝐼�̅�𝑦 + 𝑆𝑦 ℎ44 = 𝐼�̅�𝑢

𝑇
�̅�𝑢𝐼�̅�𝑢 + 𝑆𝑢 

𝐶𝑡,1 = (�̃�
0 +Ψ1𝐹𝑢⏟      

Ξ

)𝑇�̅�𝑦(𝐼�̅�𝑦𝑥
𝑠(𝑘) + Ψ1𝐹𝑥𝑥

𝑑(𝑘)) + �̃�𝑢
𝑇
�̅�𝑢(𝑢(𝑘 − 1) − 𝑢𝑑𝑒𝑠,𝑘 +

𝐹𝑢
𝑇�̅�𝐹𝑥𝑥

𝑑(𝑘)  

𝐶𝑡,2 = −𝐼�̅�𝑦
𝑇
�̅�𝑦(𝐼�̅�𝑦𝑥

𝑠(𝑘) + Ψ1𝐹𝑥𝑥
𝑑(𝑘))  

𝐶𝑡,3 = −𝐼�̅�𝑦
𝑇
�̅�𝑦(𝐼�̅�𝑦𝑥

𝑠(𝑘) + Ψ1𝐹𝑥𝑥
𝑑(𝑘))  

𝐶𝑡,4 = 𝐼�̅�𝑦
𝑇
�̅�𝑦(𝑢(𝑘 − 1) − 𝑢𝑑𝑒𝑠,𝑘)  

𝑐 = (𝐼�̅�𝑦𝑥
𝑠(𝑘))

𝑇

�̅�𝑦 (𝐼�̅�𝑦𝑥
𝑠(𝑘)) + (𝐼�̅�𝑦𝑥

𝑠(𝑘) + Ψ1𝐹𝑥𝑥
𝑑(𝑘))

𝑇

�̅�𝑦 (𝐼�̅�𝑦𝑥
𝑠(𝑘) +

Ψ1𝐹𝑥𝑥
𝑑(𝑘))  
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        +(𝐹𝑥𝑥
𝑑(𝑘))𝑇�̿�(𝐹𝑥𝑥

𝑑(𝑘) + 𝑣𝑇𝑊𝑒𝑐𝑜𝑣   

𝐽𝑘 = [∆𝑢𝑘 𝑦𝑠𝑝,𝑘 𝛿𝑦,𝑘]𝑇𝐻[∆𝑢𝑘 𝑦𝑠𝑝,𝑘 𝛿𝑦,𝑘] + 2𝐶𝑡[∆𝑢𝑘 𝑦𝑠𝑝,𝑘 𝛿𝑦,𝑘] + 𝑐  

Where: 

𝐻 = Ξ𝑇�̅�𝑦 Ξ + �̃�
𝑢𝑄𝑢�̃�

𝑢 + 𝐹𝑢
𝑇�̿�𝐹𝑢 + 𝑅 + 𝑍𝑘

𝑇𝑊𝑒𝑐𝑜𝑍𝑘  

Therefore the control problem is posed as ((3.35) – ((3.38): 

min
∆𝑢𝑘,𝑦𝑠𝑝,𝑘,𝛿𝑘,

𝐽𝑘 

𝑠. 𝑡.  

∆𝑢(𝑘 + 𝑗|𝑘)  ∈ 𝑈;     𝑗 = 0,1,⋯ ,𝑚 − 1  

∆𝑢(𝑘 + 𝑗|𝑘) = 0       𝑗 ≥  𝑚  

  𝑦𝑚𝑖𝑛 ≤ 𝑦𝑠𝑝,𝑘 ≤ 𝑦𝑚𝑎𝑥 

𝑥𝑠(𝑘) + �̃�𝑚
0∆𝑢𝑘 − 𝑦

𝑠𝑝,𝑘 − 𝛿𝑦,𝑘 = 0  

(3.35) 

 

(3.36) 

 

 (3.37) 

(3.38) 

Equation (3.38) ensures the control cost remains bounded. The stability of this control law for a 

nominal case is guaranteed. 
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4 APPLICATION OF THE RTO/MPC ALGORITHMS TO A GAS-LIFTED SYSTEM 

4.1 Process Description 

In the production of oil and gas from an oil reservoir to the surface (well head), the reservoir 

pressure should be enough to lift the oil from the reservoir to the surface using the natural drive 

mechanism. Figure 4.1  shows a well deliverability curve. 

 

Figure 4.1 - Well deliverability curve  

Source: (HÜLSE, 2015) 

Where IPR is the inflow performance relationship and TPR is the well tubing performance 

relation. As production continues over a period of time the bottom-hole pressure builds up and 

the reservoir energy declines. Therefore, it is no longer sufficient to drive the oil to the surface 

naturally at an economic rate or even at all (i.e. in the situation where the oil can move from the 

reservoir into the well tubing but cannot be produced at the wellhead). In this case, an artificial 

lift mechanism is applied to assist in moving the oil to the surface and at a desired rate. There are 

different types of artificial lift mechanism that can be applied depending on numerous factors 

such as implementation cost, oil viscosity, type of well, reservoir properties, gas to liquid ratio, 

safety and environmental factor and the list goes on. The common artificial lift mechanisms used 

include: 

i) Gas lift (continuous and intermittent) 
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ii) Electrical submersible pumping (ESP) 

iii) Sucker rod pump 

iv)  Plunger lift 

v) Progressive Cavity Pumping (PCP) 

Gas lift is the most common artificial lift method used in the production of oil to increase, 

maintain or revive production. This is the process of injecting compressed gas into the well tubing 

through the annulus of the well to lift the oil from the reservoir to the surface. This injected 

compressed gas goes into the well and reduces the fluid density due to the continuous aeration 

process in the well thereby making the oil lighter and also reducing the hydrostatic pressure in 

the well tubing. This will allow more oil to flow in from the reservoir into the well tubing as the 

flowing bottom hole pressure is lowered (EIKREM; AAMO; FOSS, 2008; JAHANSHAHI; 

SKOGESTAD; HANSEN, 2012; MUKHTYAR; SHASTRI; GUDI, 2013). Consequently 

assisting the lifting of oil to the surface to be produced.  

In using gas lift method, as gas is injected into the well, it gets to a point where the benefit 

of increased production is no longer enjoyed due to increase in frictional pressure loss. In the case 

where there is much gas present in the well tubing, this effect increases the pressure in the bottom-

hole of the well and lowers fluid production. Therefore, to obtain an efficient operation, the rate 

at which the compressed gas is injected into the well has to be optimal. An appropriate design of 

the gas lift system is required for this efficiency and different components play important roles in 

ensuring the effectiveness of the lifting mechanism implemented. These components place 

constraints such as availability of compressed gas (cost), the capacity of the surface facility to 

handle and treat the quantity of oil, water and gas to be produced. Every well has an individual 

optimal gas lift injection rate but when more than one well is considered in a gathering network, 

the gas lift rate differs compared to when the well is being optimized 

independently(MUKHTYAR; SHASTRI; GUDI, 2013).  Figure 4.2 shows the gas-lift well oil 

production curve and Figure 4.3 shows the workings of a gas lift well. 
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Figure 4.2 - A gas-lift well oil production curve 

Source: (HÜLSE, 2015) 

 

Figure 4.3 - Typical gas lift process  

Source: (SHI et al., 2016)  
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4.2 System modelling 

 

Figure 4.4 - Gas-lift Network with two wells connected by a common manifold and riser. 

(Own elaboration) 

For this research we consider two producing wells connected to a common riser by a 

manifold as shown in Figure 4.4.  

The oil production process is dynamic therefore, the gas lift model has to be a dynamic 

model capturing essential details as it changes with time. The instabilities and uncertainties in 

flow of oil that results from interplay between the gas in the casing and the fluid in the tubing is 

reflected in the rigorous oscillations in the oil within a short period of time. Over the years models 

for gas-lift well have been modified to capture the dynamics of the system (EIKREM; AAMO; 

FOSS, 2008; KRISHNAMOORTHY; FOSS; SKOGESTAD, 2016, 2018). The modeling and 

assumptions made for the gas-lift process in this study is based on the Eikrem model (EIKREM; 

AAMO; FOSS, 2008) which include: 

1. Temperature is almost constant 

2. All liquid produced from the reservoir is oil 
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The model that describes the dynamics involved in gas lift network system of a multiphase 

fluid (oil and gas) produced from two different wells interconnected at the same production 

manifold; the model description is represented in four parts: 

(i) Multiphase mass balance  

(ii) Density equations 

(iii) Pressure equations  

(iv) Flowrate equation (EIKREM; IMSLAND; FOSS, 2003; KRISHNAMOORTHY; 

FOSS; SKOGESTAD, 2018).  

4.2.1 Mathematical representation of the model 

The system under consideration described in the preceding section, leads to a system of 

semi-explicit index-1 differential algebraic equations (DAE) of the form: 

�̇� = 𝐹𝑐(𝑥, 𝑧, 𝑢, 𝜍) 

0 = 𝐺(𝑥, 𝑧, 𝑢, 𝜍) 

(4.1) 

(4.2) 

Where 𝐹𝑐(𝑥, 𝑧, 𝑢, 𝜍) is a set of differential equations and 𝐺(𝑥, 𝑧, 𝑢, 𝜍) is a set of algebraic 

equations, 𝑥 𝜖 ℝ𝑛𝑥 are the set of differential variables,  𝑧 𝜖 ℝ𝑛𝑧 are the set of algebraic variables, 

𝑢 𝜖 ℝ𝑛𝑢 are the set of control inputs and 𝜍 𝜖 ℝ𝑛𝜍 are the set of uncertain parameters. 

The summary of the model parameters and variables as used for the simulation is given 

below as: 

𝑥𝑖 = [𝑚𝑔𝑎𝑖  𝑚𝑔𝑡𝑖  𝑚𝑜𝑡𝑖 
𝑚𝑔𝑟 𝑚𝑜𝑟]

𝑇  

𝑧𝑖 = [𝑃𝑎𝑖  𝑃𝑤𝑖   𝑃𝑤ℎ𝑖  𝑃𝑏ℎ𝑖  𝑃𝑟ℎ  𝑃𝑚   𝜌𝑎𝑖  𝜌𝑚𝑖 𝜌𝑟 𝑤𝑖𝑣𝑖  𝑤𝑝𝑐𝑖  𝑤𝑝𝑔𝑖 𝑤𝑝𝑜𝑖  𝑤𝑟𝑜𝑖  𝑤𝑟𝑔𝑖  𝑤𝑟ℎ 𝑤𝑡𝑜 𝑤𝑡𝑔 ]
𝑇   

𝑢 = [𝑤𝑔𝑙𝑖]
𝑇  

𝑝 = [𝐺𝑂𝑅𝑖]
𝑇  
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This gives 8 differential state variables for each well and the riser, 30 algebraic state 

variables for each well and the riser, 2 input variables for each well and 2 uncertain parameters 

for each well. The appendix A shows full details of model description. 

For this process, the economic optimization objective is to maximize profit, given by: 

max
𝑤𝑔𝑙𝑖

 𝐽 = ($𝑜∑𝑤𝑝𝑜𝑖 −

𝑖∈Ν

$𝑔𝑙∑𝑤𝑔𝑙𝑖
𝑖∈Ν

)  

s.t. 

 𝐹𝑐(𝑥, 𝑧, 𝑢, 𝜍) = 0 

0 = 𝐺(𝑥, 𝑧, 𝑢, 𝜍)  

∑ 𝑤𝑝𝑔𝑖𝑖∈Ν ≤ 𝑤𝑔𝑚𝑎𝑥         

  

(4.3) 

 

 

(4.4) 

 

(4.5) 

Where the $𝑜 and $𝑔𝑙 are the unit price of oil and the cost of gas compression for the gas-

lift process respectively,𝑤𝑝𝑜𝑖, 𝑤𝑝𝑔𝑖 and 𝑤𝑔𝑙𝑖 are the flow rates of the produced oil, produced gas 

and gas lift for each well respectively, 𝑤𝑝𝑔𝑚𝑎𝑥  is the total capacity of the surface gas treatment 

facility constraint. The process model (4.1) and (4.2) are enforced as equality constraint which 

makes it equivalent to RTO. 

Here, the flow rate of gas injected for the gas lift process from the surface is the input, and 

the best choice of this input is required to obtain maximum oil production rate. The gas used for 

the gas-lift process is compressed at a cost leading to the consideration of compressed gas that 

can be available for gas-lift distribution between the wells and then the cost of the oil produced. 

Considering the model constraint, the optimization is performed. For the two layer 

implementation for both the SRTO and the HRTO, the upper optimization layer provides the 

optimizing targets (desired decision variables) for the IHMPC to control the trajectory in 

achieving these targets. 

4.3 SIMULATION 

All the simulations in this work are carried out using MATLAB R2015a programming 

software, we simulate the dynamic gas-lifted system using the Euler method at a small step size, 
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and we also carried out the system linearization for the linear MPC model and the EKF using 

numerical linearization methods. In the oil and gas production process, the annulus pressure, 

bottom-hole pressure, wellhead pressure, manifold pressure, riser head pressure, total oil and gas 

flowrates produced and sent to the separator are commonly available measurements 

(KRISHNAMOORTHY; FOSS; SKOGESTAD, 2018). In the case considered for this work, the 

annulus pressure for each well, the manifold pressure, the riser-head pressure and total gas 

produced at the riser are the output measurements used in the EKF for parameter and state 

estimation.  

The NLP problem of the upper optimization layer as well as the control problem in 

equations (3.13) and (3.17) respectively are solved using the interior point algorithm of ‘fmincon’ 

in MATLAB. The uncertain parameter GOR varies in the plant simulator, interfering as 

disturbance. We perform the simulation for a period of 10h. For the MPC layer, we use the infinite 

horizon MPC with zone control, this ensures the stability of the controller and furthermore the 

controller sampling time is set to 5min.  

4.4 Two-layer strategy implementation  

4.4.1 Standard Steady-state RTO (Model Parameter Adaptation) 

We implement the standard RTO for comparison to the hybrid RTO and the one layer 

RTO/MPC approach. Here for the steady state detection, an algorithm is set to compare the 

variance of the current and previous output measurement within a 98% difference tolerance, when 

the algorithm detects the system steady state, the chosen uncertain parameter is estimated from 

the output measurement at that time. The parameter estimation is carried out as in equation (3.1) 

by minimizing the sum of least squared errors between the system process and predicted outputs 

at steady state.  The steady state economic optimization in equation (3.2) is then solved and the 

optimal decision variables obtained are sent to the controller for implementation. The simulation 

results will be discussed in section 4.6. 

4.4.2 Steady-State RTO using transient measurements (Hybrid RTO) 

We consider the implementation of the steady state RTO using transient measurement 

(HRTO) already discussed. Here, the online parameter estimation is used to estimate the uncertain 
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parameter, which is used to update the state optimizer for economic optimization. The uncertain 

parameter considered in this case is the gas-to oil ratio (GOR). This is a reservoir parameter hence 

cannot be measured, this parameter can affect the optimal input required to achieve optimal 

operations. The discrete extended Kalman filter (EKF) is implemented for the dynamic parameter 

estimation, the EKF estimates the parameter at the same sampling time as the optimizer, and the 

optimizer is updated using the estimated GOR parameter. The optimal gas-lift rate is then 

computed by the optimizer at steady state as in the traditional RTO and send to the controller for 

desired target tracking.  

The estimator tuning parameters play very significant roles in the efficiency of the EKF, 

since it is just an approximation. Here we assume the model is perfect, therefore a high weight is 

placed on R demonstrating the trust level of the model predictions and a smaller weight on the Q. 

The results obtained from the simulation will also be discussed in section 4.6. 

4.4.3 MPC implementation in the two layer 

As mentioned, after the RTO computes the optimal decision variables, the values are sent 

to the controller which computes the trajectory for achieving these values. The process considered 

for this work is a nonlinear, therefore a nonlinear model in equation (4.1) and (4.2) is used at the 

at the upper optimization layer, but for the MPC layer a linear process model is used, therefore 

the nonlinear process linearized about the steady state point. We implement the infinite horizon 

model predictive controller with input targets and control zones in equations (3.17) - (3.23), the 

output prediction oriented model (OPOM) described in section 2.2.1.1, is used for the controller 

model. The transfer function model obtained from the linearized system model is shown in 

appendix A. MPC computes the sequence of optimal input trajectory for the next prediction time 

step based on the process model prediction and implements just the first value of the computed 

input trajectory to create a feedback control law (CAMACHO; BORDONS, 2007).  

For the system considered in this work, the controller has 2 manipulated input variables, 

the gas-lift injection flowrates for each of the two wells, 5 controlled output variables. For this 

work, the annulus pressure of each well, manifold pressure, riser-head pressure and the flowrate 

of total gas produced at the riser flowing into the separator.  The output control zones chosen are 

with respect to the optimal outputs computed from the RTO layer. The MPC tuning parameters 
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are also shown in Appendix A. EKF is used for the state feedback. We show and discuss the 

controller results in the result discussion section. 

4.5 One-layer Implementation 

We consider the implementation of the one layer RTO/MPC based on the simplified one 

layer RTO/MPC proposed by DE SOUZA; ODLOAK; ZANIN, (2010) discussed earlier. As 

mentioned, the gradient of RTO economic objective is included in the controller cost function as 

in equation (3.32). Therefore, we do not have a different layer for the RTO, rather the controller 

computes the optimal manipulated input variable that it implements in the system. We calculate 

the gradient of the economic objective equation (4.3) with respect to the inputs at predicted steady 

state numerically using the forward finite differences sensitivity. The sensitivity computes the 

changes in the objective function and output with change small changes in the input as shown in 

the equations (4.6) - (4.7) : 

 

𝐽′ = lim
∆𝑡

ℎ(𝑥, 𝑢, 𝜍 + Δ𝑡) − ℎ(𝑥, 𝑢, 𝜍)

Δ𝑡
  

𝐽′′ = lim
∆𝑡

ℎ(𝑥, 𝑢, 𝜍 + 2Δ𝑡) − ℎ(𝑥, 𝑢, 𝜍 + Δ𝑡)
Δ𝑡 −

ℎ(𝑥, 𝑢, 𝜍 + Δ𝑡) − ℎ(𝑥, 𝑢, 𝜍)
Δ𝑡

Δ𝑡
    

𝐽′′ = lim
∆𝑡

ℎ(𝑥, 𝑢, 𝜍 + Δ𝑡) − 2ℎ(𝑥, 𝑢, 𝜍) − ℎ(𝑥, 𝑢, 𝜍 − Δ𝑡)

(Δ𝑡)2
               

(4.6) 

 

 

 

(4.7) 

 

Where 𝐽′is the gradient of the economic cost, 𝐽′′ is the hessian, Δ𝑡 is the small change in the 

input and ℎ is the output function. An infinite horizon zone control MPC is also applied rather 

than the finite MPC used in the original paper proposing the technique. The results obtained will 

be discussed in section 4.7. 

Table 4.1 and Table 4.2 show the parameters used in the simulation of the gas lift network 

system and Table 4.3 shows the values of the GOR used for the plant simulation. The full model 

description is shown in the appendix A. 
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Parameter Units Well 1 Well 2 

𝑳𝒘  [m] 1500 1500 

𝑯𝒘  [m] 1000 1000 

𝑫𝒘  [m] 0.121 0.121 

𝑳𝒃𝒉  [m] 500 500 

𝑯𝒃𝒉  [m] 500 500 

𝑫𝒃𝒉  [m] 0.121 0.121 

𝑳𝒂  [m] 1500 1500 

𝑫𝒂  [m] 1000 1000 

𝑯𝒂  [m] 0.189 0.189 

𝝆𝒐   [kg/m3] 800 800 

𝑪𝒊𝒗  [m2] 0.1E-3 0.1E-3 

𝑪𝒑𝒄  [m2] 2E-3 2E-3 

𝑷𝒓  [bar] 150 155 

𝑷𝑰  [kg s-1 bar-1] 0.7 0.7 

𝑻𝒂  [oC] 28 28 

𝑻𝒘  [oC] 32 32 

𝑮𝑶𝑹  [kg/kg] 0.1 ± 0.05  0.1 ± 0.05  

Table 4.1 – List of well parameters and their respective values used in the results 

 

Parameter Units Riser 

𝑳𝒓  [m] 500 

𝑯𝒓  [m] 500 

𝑫𝒓  [m] 0.121 

𝑪𝒓𝒉  [m2] 10E-3 

𝑷𝒔  [bar] 20 

𝑻𝒓  [oC] 30 

𝑴𝒘  [g/mol] 20 

𝑹  [J mol-1 K-1] 8.314 

Table 4.2 – List of well parameters and their respective values used in the results 
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GOR well 1 0.1 0.1033 0.0817 0.1198 0.0757 0.0864 1104 0.0854 

GOR well 2 0.12 0.115 0.1127 0.1278 0.1197 0.1295 1176 0.1176 

Table 4.3 – GOR values used in the well simulator  

4.6 Simulation results discussion 

 Parameter and state estimation 

First, we discuss the parameter estimation step. Figure 4.5 and Figure 4.6 show the 

process measurement used for the parameter estimation; the annulus pressure for each well, 

manifold pressure, riser-head pressure and total gas produced. 

 

Figure 4.5 – Output measurements used for the EKF parameter estimation 
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Figure 4.6 – Output measurements used for the EKF parameter estimation 

The parameter estimation is a fundamental step in the optimization process, moreover 

it is the differentiator between the traditional RTO found in the industries and the hybrid 

RTO technique proposed by KRISHNAMOORTHY; FOSS; SKOGESTAD, (2018) , 

which we use for this work. We update the optimization layer with the information coming 

from the filter. Figure 4.7 - Figure 4.10 show the static and dynamic parameter estimations 

respectively. We can see that Figure 4.7 (static estimator) shows a delay from the parameter 

values sent to the optimizer by the estimator. While the parameter in the plant has already 

changed, the parameter estimation algorithm did not pick that change up immediately until 

a steady state was detected. Furthermore, the change in parameter causes the system to go 

back to the transient state, and the parameter estimation step can only be carried out when 

the system steady state is detected. Therefore, during the period where the process is in 

transient state due to the change in parameter, the process is operating sub-optimally since 

the parameters used for optimization are not up to date as in the system.  
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Figure 4.7 – SRTO Estimated parameters (GOR) 

However in the hybrid RTO technique, the dynamic estimator performs the parameter 

estimation online, thereby updating the economic optimizer with a more accurate 

information as the parameters change in the plant. From Figure 4.8, we can see that the 

dynamic parameter estimation performed with EKF is consistent with the plant, likewise 

the state estimations shown in Figure 4.9. Therefore, EKF is working properly and will 

efficiently transmit a more accurate data to the RTO and MPC. 

 The results show that the use of an online estimator eliminates the need for steady 

state detection and consequently the steady-state wait time challenge of the traditional RTO. 

Figure 4.10 shows the estimation error for the state and parameter estimation. We can see 

that the EKF (even though with an approximation of the nonlinear model), if efficiently 

tuned can estimate the parameters and the state with as minimum error as possible. It is 

important to note that in this case a perfect nominal model is assumed (no model mismatch), 

so the tuning parameters selected assumes the model used can be trusted. 
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Figure 4.8 – EKF estimated parameters 

  

Figure 4.9 – Some of the state trajectories showing the parameter estimation with EKF 
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Figure 4.10 – Plant Vs EKF Estimation error 

 Steady state optimization 

Here we discuss the steady state economic optimization. As mentioned, the EKF 

updates the optimizer at every optimization sampling time, thus the information used for 

performing the steady state optimization is more accurate and consistent with the system 

under consideration. Figure 4.11 - Figure 4.12 show the optimal decision variable (input 

variable) and the economic objective respectively. From Figure 4.11 we can see that the 

optimal input changes with change in the uncertain parameter (GOR), so the use of the 

online estimator to update this parameter is justified. Neglecting this parameter could lead 

to sub optimal operation of the process. It also shows that, a change in the uncertain 

parameter (GOR) in one well leads to a change in the optimal input for both wells, justifying 

the point that: for a gas-lift system with more than one well it is essential to update this 

parameter for each well, as it influences the choice of the optimal input required to achieve 

the desired economic optimal outcome for the overall process.  
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Figure 4.11 – Optimal inputs computed using HRTO 

From Figure 4.12 showing the economic cost, we can see how the changes in the 

GOR causes the system to be in transient state for a significant duration. Therefore, the 

hybrid RTO enables optimal process operation by computing new steady state gas lift rates 

(input) as the GOR changes in the system. Table 4.4 shows the optimal gas lift rates as the 

GOR changes. 
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Figure 4.12 - Optimal RTO objective function using HRTO  

𝑤_𝑔𝑙1
∗ 

[kg/s] 

1.5898 1.5916 1.4823 2.2037 2.1979 0.9255 

 

0.9285 2.4013 

 

2.3975 1.2388 

𝑤_𝑔𝑙2
∗  

[kg/s] 

0.7609 0.9370 1.0168 1.0250 0.4931 0.4788 0.7640 0.7807 0.4355 0.4224 

Table 4.4 – Optimal gas-lift injection rates with changes in the GOR 

 MPC implementation of the two-layer approach 

Here we discuss the implementation of the hybrid RTO with the MPC. This is one of 

the key contributions of this work, we study the relationship between the two online 

optimization layers, considering the decision hierarchy challenge which is mostly 

encountered during implementation in real industrial processes. Figure 4.13 - Figure 4.16 

show the simulation results of the RTO with the zone control IHMPC. As mentioned in 

section 3.1, we implement the hybrid RTO with a controller that has been applied 

practically. For the zone control IHMPC, the controller objective is also in a hierarchy. 
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First, the controller ensures that the outputs are within a given optimal interval/region, once 

this objective is achieved then the attention of the controller moves to manipulating the 

input to achieve the desired input target provided by the RTO layer. In the event where the 

outputs go out of the zone, the controller refocuses on forcing it back into the zone. We can 

see from Figure 4.13 and Figure 4.14 showing the output trajectory, that the controller is 

working properly and meeting the desired objectives. The controller can efficiently keep 

the outputs within their given zones.  

 

Figure 4.13- HRTO with Zone control MPC Output trajectory 
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Figure 4.14- HRTO with Zone control IHMPC Output trajectory 

Figure 4.15 shows the inputs computed by the controller to reach the desired target. 

Figure 4.16 shows the input computed by the RTO with the input computed by the 

controller, we can see that despite the intermittent changes of the GOR leading to 

consequent abrupt changes of optimal decision variable (input), the controller is still able 

to reach the desired target sent by the RTO layer.  
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Figure 4.15- Manipulated input targets trajectory HRTO with IHMPC 

 

Figure 4.16- Manipulated input targets trajectory HRTO with IHMPC 
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4.7 One-layer implementation Results 

In the second part of this research, we consider the implementation of the one-layer 

RTO/MPC on a gas-lifted system and examine the difference with the two-layer implemented in 

the preceding section.  

As described earlier, the gradient of the economic objective is included in the controller 

cost, this allows the controller to consider this when computing the manipulated variable rather 

than receive the targets and try to reach it. We implement the zone control IHMPC which has also 

been practically applied. Figure 4.17 - Figure 4.20 show the results obtained. The simulation 

results show that this controller can optimize the gas lift system and achieve the economic 

objective for the process very similarly to the two-layer strategy but faster. For this MPC 

implementation, we also use the EKF for updating the states in the controller. We see from Figure 

4.17 and Figure 4.18 showing the output trajectory, that the outputs are maintained within the 

optimal range provided. The effect of the changes in the GOR is also evident in the outputs.  

 

Figure 4.17 – One-layer RTO with Zone control IHMPC Output trajectory  
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Figure 4.18 – One-layer RTO with Zone control IHMPC Output trajectory  

Figure 4.19 shows the manipulated input variable. Here we can see that, as expected the 

control signal for the one-layer is not exact as the two-layer but gives a similar trajectory. Figure 

4.20 shows a similar economic objective as the two layer strategy is achieved. In the next chapter, 

we will be discussing the differences in the simulation results obtained in the two optimization 

strategies applied for this work. 
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Figure 4.19 – One-layer RTO with Zone control IHMPC manipulated input trajectory  

 

 

Figure 4.20 – One-layer RTO Economic Profit  
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5 COMPARISON OF THE TWO INTEGRATION STRATEGIES 

In this chapter, we discuss the two optimization strategies considered in this research work, 

and compare the results we obtained from the simulation. The performance metrics considered 

for this work, are mainly the economic cost, the optimal decision variable (the gas lift rate) 

computed to meet these economic objectives considering the GOR interfering as an uncertainty 

and the time of implementation. 

 

Figure 5.1 - Comparison of the economic performance  

First, we compare the economic objective for the system as given in equation (4.3). Figure 

5.1 shows the profit computed using the two layers – SRTO and HRTO - and the one layer 

strategies. We can see from Figure 5.1 that the three optimization techniques are able to give a 

similar economic cost function, except for the delay in the SRTO due to the steady state wait time 

(hence the need for HRTO). The HRTO and the one-layer IHMPC are overlapping each other, 

this shows that, a similar economic objective can be achieved using both HRTO and the one-layer 
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IHMPC. It also shows the dynamics of how the system steady state is affected by the disturbance. 

We can see that the system quickly compensates the disturbance, and maintain optimal operation. 

The one layer also gives an optimal operation, however, for the system under consideration, it 

does not handle disturbance as well as the two-layer technique. It requires a longer time to return 

to steady state after the system is disturbed, therefore the choice of sampling time and weighting 

matrices play a significant role in the simulation. As expected, the SRTO delays, thus making the 

system operate sub optimally. 

In Figure 5.2 and Figure 5.3 – Comparison of the manipulated input 2 (gas-lift rate), we 

show the optimal inputs computed in the two-layer and one-layer techniques. We can see that the 

inputs follow the same trajectory finding new optimal input (decision variable) as the uncertain 

parameter (GOR) changes. Furthermore, the two-layer (HRTO) and the one-layer optimization 

strategy gives similar response, although the one-layer is more sensitive to the changes in the 

GOR, it still tries to find and stabilize at the optimal value. We can also see the delay in the 

response of the traditional two-layer (SRTO) approach found in the industry. The simulation 

result demonstrates the need for the HRTO proposed, where this uncertain parameter that can 

affect the optimal operation of the system should be consistently updated. 

  

Figure 5.2 – Comparison of the manipulated input 1 (gas-lift rate) 
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Figure 5.3 – Comparison of the manipulated input 2 (gas-lift rate) 

Table 5.1 shows the performance index of the two strategies, it can be seen that while the 

HRTO gives a little more value of total profit than the one-layer, the one-layer gives a very similar 

economic cost at a shorter computation time. Moreover, the idea behind the simplified one layer 

RTO/MPC integration used in this work is to reduce computation effort and time for similar or 

close economic cost, this could be an advantage over the two-layer strategy depending on the 

trade-off considered. The table also shows a higher percentage increase in production in the two-

layer strategy compared to the one-layer. This is because of the initial point of optimization in 

both strategies. While the steady state RTO (two-layer) has particular optimal points for each 

GOR value at steady state, therefore obtains this value from the first optimization point until the 

GOR changes. The one-layer RTO/MPC continues to find the optimal operating point at each 

point of the optimization until the system gets to steady state. 
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Strategy 

Increase in 

production 

[%] 

Avg time 

[s] 

Total profit 

[x 106$] 

Two layer 

(SRTO) 
38.3 0.3037 2.449 

Two layer 

(HRTO) 

45.7 
0.3288 2.454 

One layer 11.5 0.0876 2.453 

 Table 5.1 – Performance comparison 

5.1 DISCUSSION 

The production of petroleum is chiefly an economic objective process, therefore achieving 

an optimal operation and maximizing revenue depends on a tradeoff. In the current clime, where 

the constraints is getting more strict profit still have to be made. Of course representing the real 

system for optimization is necessary, this have shifted the research discussions towards the 

nonlinear online optimization techniques (dynamic RTO, EMPC and NMPC), these are 

instinctively the points of reference when discussing optimal operations since they best represent 

the process. However, for large-scale and quite complex systems such as the gas-lifted system, 

these techniques could further magnify the problems they set out to solve. This is as a result of 

limited computing resources currently available for large-scale application. With large-scale 

system operations such as a gas-lifted system, which constitute a large number of variables and 

constraints, the use of dynamic online optimization techniques usually lead to large nonlinear 

programming problems. Therefore the addition of the time dimension can result in computational 

exhaustion as the tools are limited, consequently problems of closed loop instabilities and sullied 

performance arises (ALLGÖWER; FINDEISEN; NAGY, 2004).  



78 
 

With the limitations of these sophisticated ‘ideal’ techniques it is not clear when the 

available existing techniques are enough to achieve reasonable optimal operations, for the 

petroleum production process, the question continues to arise as asked by FOSS; KNUDSEN; 

GRIMSTAD, (2018) when is the static RTO technique enough to give the desired optimal 

operation? Could the profit obtained using a sophisticated, expensive but comprehensive 

technique be justified compared to the profit obtained using a modified simple, cheaper and 

available technique. For processes where the changes are frequent and mostly in transient states, 

the dynamic online optimization would be more adequate and efficient, but for the gas-lifted 

system where the changes in system parameters are not as frequent, and steady state could be 

achieved for a significant amount of time before another change, the static optimization could be 

enough.  

As pointed out by KRISHNAMOORTHY; FOSS; SKOGESTAD, (2018) the computing 

power challenge is more evident when the optimization has a discrete integer decision variables 

such as cyclic operational processes, start up and shutdown etc. The paper compares the hybrid 

RTO to the dynamic RTO, demonstrating that the static RTO used in the hybrid RTO gives a 

preferred formulation present in real industrial applications. Moreover, the modification of the 

parameter estimation aspect of the traditional RTO gives it more benefit to be applied, as it 

addresses the steady state wait time challenge which is one of the structural issues plaguing the 

static RTO.  

As mentioned, the one-layer RTO/MPC strategy was proposed to handle the decision 

hierarchy challenge, that is, avoiding conflict of interest between the two optimization layers 

(RTO and Supervisory control), as well as to enable practical application in real processes. And 

as shown in the comparative simulation results already discussed, it is also able to achieve quite 

similar economic objective as the two-layer. The one-layer RTO/MPC could be preferred in the 

case where the traditional RTO is implemented with the MPC due to the steady state wait time 

challenge, as the one-layer technique would consider the change in the parameter faster than when 

the traditional RTO is used as demonstrated by ZANIN; TVRZSKÁ DE GOUVÊA; ODLOAK, 

(2002). The main challenge with the one-layer is the inclusion of the nonlinear economic cost, 

which leads to the NLP, making it demand higher computing power and time. Therefore, the 

simplified RTO/MPC of the one-layer technique proposed by DE SOUZA; ODLOAK; ZANIN, 
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(2010) to reduce the computational burden makes it even more attractive for some large-scale 

industrial processes, especially when practical applications are considered.  

 The argument made that the introduction of the RTO further complicates the control 

system, and incur additional cost since the implementation can be expensive; given that from 

extended knowledge and experience, it is likely that the operator could easily know which 

variables are to be kept within their bonds. However, knowing that optimal operating points are 

likely found in the intersection of constraints and the influence of disturbance over the optimal 

operating points, especially if the system constraints can change, it is safe to point out that 

operators would not efficiently detect, identify or optimize these changes especially if frequent 

and abrupt. As explained in a detailed RTO/MPC application review by ENGELL, (2007) and 

DARBY et al., (2011), the introduction of the RTO layer in the optimization hierarchy gives a 

clear separation of objective and implementation time scale between the RTO and process control, 

this can be a benefit or a disadvantage depending on the system under consideration. 

 For processes where optimal operation point can be consistently determined by the MPC, 

even if it lies at the constraint, then RTO would not be necessary, whereas in processes where the 

optimal operating points varies due to changes in process constraints, process nonlinearities and 

significant economic variations, then RTO will be required to find this optimal point consistently 

with the operating conditions. Ultimately, RTO could account for tradeoffs in some cases and 

MPC cannot (DARBY et al., 2011).  

The need for the use of RTO layer and by extension the two-layer strategy will always 

attract scrutiny because of the ability of the MPC to perform the functions of the RTO, therefore 

the use of the RTO for the optimization of a process must be justified. Moreover, if the variability 

of process variables is not so frequent, the benefit is minimal because the process steady state will 

not be highly disturbed and consequently the optimal operating point will necessarily be affected 

thus application of the RTO not be cost effective. As pointed out by DARBY et al., (2011), while 

a process like the ethylene plants enjoy the benefits of the two layer strategy, refining processes 

like the FCC and crude unit face issues with the strategy. However, the hybrid RTO addresses 

the issue of the steady-state wait time, which is the main challenge on the delay in optimization 

cycles, making it possible for a more frequent optimization cycle than in the traditional RTO. 
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As mentioned, the simplified one-layer RTO/MPC approach applied to the gas-lifted 

system in this work, was proposed for the purpose of practical application on large-scale industrial 

process. Furthermore, in this work the controller decision variables include the output set-point 

which enables the controller to compute the reference value for optimal operation and a slack 

variable to ensure feasibility. Therefore, in this case the controller does not require the reference 

point to be provided by the RTO layer or the operator. The controller, considers the gradient of 

the economic cost when computing the optimal input and the reference value, thereby relegating 

the need for the RTO layer. This approach is more practical to implement in the industry 

especially for large-scale processes. Moreover, the simplified one-layer RTO/MPC is faster and 

simpler to implement, than the two-layer and the one-layer RTO/MPC (where the nonlinear 

economic cost is directly included in the controller cost function), and it also achieves similar 

results. However, it is prone to more numerical problems since it mostly involves a lot of 

approximations of the nonlinear process under consideration, the choice of tuning parameters 

used play a significant role. 

Ultimately, there is no one size fits all approaches to optimizing large-scale systems, it 

always comes down to understanding the nature of the system and the trade-off to be made with 

respect to the performance in either time, profit or intrinsic details. Therefore, for a process like 

the gas-lifted system which we are considering for this research, where the uncertain parameter 

change can be considered as intermediately frequent and have a significant effect on the optimal 

decision variables for optimal operations, the two-layer approach using the hybrid RTO strategy 

shows better performance in handling the disturbance (GOR changes). However, the one-layer 

strategy is a more practical approach that is simpler and faster to implement, giving a similar 

result (economic cost and optimal input trajectory) as the two-layer. Unlike the two-layer strategy 

that has a particular optimal operating point at steady state, and depends on the MPC to find the 

trajectory that drives the system to this point,  the one-layer is more dynamic, it finds the optimal 

operating point of the system at each sampling time until it achieves steady state. 
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6 CONCLUSION AND RECOMMENDATION 

6.1 CONCLUSION 

This research work presents a comparative study between the two main RTO/MPC 

integration techniques found in the industry, applied to a gas-lifted system. The contribution of 

this work is in two ways. 

First, the two layer RTO/MPC integration strategy is applied to a gas-lift system by 

implementing a modified RTO technique called ‘hybrid RTO’ with a nominal zone control 

IHMPC, with the objective of studying the practical application of this modified technique. The 

hybrid RTO technique proposed by KRISHNAMOORTHY; FOSS; SKOGESTAD, (2018) 

addresses the issue of the standard RTO steady state wait time which is a major challenge in the 

practical application bringing to question the need for RTO. The technique enables the RTO to 

be updated with more reliable information and a more frequent successive RTO cycle. The 

simulation results show that the nominal zone control IHMPC applied can efficiently reach the 

desired targets provided by the so called hybrid RTO, while keeping the outputs in their given 

zones. The technique was able to achieve 45% increase in the given economic cost from the initial 

point of optimization. 

Secondly, the one layer RTO/MPC integration strategy proposed by DE SOUZA; 

ODLOAK; ZANIN, (2010) is applied to the gas-lifted system for comparison with the hybrid 

RTO technique and the existing traditional RTO found in the industries. In this work, the MPC is 

extended to an infinite prediction horizon and the decision variables include the output reference 

value and a slack variable to ensure feasibility. The one-layer RTO was implemented in a shorter 

time and achieved similar economic objective as the two-layer HRTO, it is also takes into account 

the variation of the uncertain parameter which comes in as a disturbance, however it does not 

handle this disturbance as well as the two-layer. Moreover, the two-layer returns to steady-state 

faster after encountering disturbance.  

Overall, the study shows that, the modification made in the traditional RTO leading to the 

hybrid RTO is a useful development that should attract better reception of RTO in the industry. 

Moreover it solves a major challenge of the controversial steady state wait time, bridges the gap 
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between the traditional RTO and the dynamic optimization techniques, and can serve as an 

intermediary techniques for some systems with enough disturbance that the traditional RTO will 

be too limited and the dynamic optimizations would be overreaching. The one-layer on the other 

hand, with a simpler and faster implementation achieves a similar result as the modified two-layer 

(HRTO), which gives it an advantage for practical application. 

6.2 RECOMMENDATION 

In furtherance of this work: 

 More large scale processes should be considered to test the new RTO technique with MPC. 

 The robustness of the controller applied in this work for both the two-layer and one-layer 

technique could be tested using output zone tracking. 

 It would also be interesting to consider a robust MPC based on a multi-model representation 

to account for the nonlinearities that was not considered in the nominal MPC. Moreover, it 

will also be interesting to see if a robust MPC could handle the disturbances better than in 

the case of the one-layer.  

 It will be interesting to consider more implementation of practical controllers on oil and gas 

production systems. Consider more variables within the system that can be controlled to 

maximize revenue. 

 It will also be interesting to consider more strict constraints such as environmental 

restrictions to allow for a more robust optimization.  
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APPENDIX A 

The gas-lift system under consideration consist of two wells connected to a riser through 

which the total produced oil is transported to a separator. The system can be described using first 

principle differential and algebraic equations. The mass balances in each well and the riser models 

the dynamics in the systems represented in equations A1-A5 

 

ℕ = {1,2… . 𝑛𝑤} 

𝑑𝑥1𝑖
𝑑𝑡

=  𝑤𝑔𝑙𝑖 − 𝑤𝑖𝑣𝑖                                                                                                               

𝑑𝑥2𝑖
𝑑𝑡

=  𝑤𝑖𝑣𝑖 − 𝑤𝑝𝑔𝑖 + 𝑤𝑟𝑔𝑖                                                                                                

𝑑𝑥3𝑖
𝑑𝑡

=  𝑤𝑟𝑜𝑖 − 𝑤𝑝𝑜𝑖                                                                                                               

𝑑𝑥4
𝑑𝑡

=∑𝑤𝑝𝑔𝑖

𝑛𝑤

𝑖=1

−  𝑤𝑡𝑔                                                                                                            

𝑑𝑥5
𝑑𝑡

=∑𝑤𝑝𝑜𝑖

𝑛𝑤

𝑖=1

−  𝑤𝑡𝑜                                                                                                            

 

(A.0.1) 

 

(A.0.2) 

 

(A.0.3) 

 

(A.0.4) 

 

(A.0.5) 

 

where, 𝑥1𝑖is the mass of gas in the annulus, 𝑥2𝑖is the mass of gas in the well tubing, 𝑥3𝑖is the mass 

of oil in the well tubing 𝑥4is the mass of gas in the riser and 𝑥5is the mass of oil in the riser, 𝑤𝑔𝑙𝑖is 

the gas lift injection rate, 𝑤𝑖𝑣𝑖is the gas flow from the annulus into the tubing, 𝑤𝑝𝑔𝑖and 𝑤𝑝𝑜𝑖are 

the produced gas and oil flow rates respectively and, 𝑤𝑟𝑔𝑖and 𝑤𝑟𝑜𝑖are the gas and oil flow rates 

from the reservoir for each well i,𝑤𝑡𝑔 and 𝑤𝑡𝑜 are the total gas and oil flow rates respectively.  

The densities in the model are represented by equations (A.0.6) - (A.0.11) for the two wells and 

the riser head: 

 

𝜌𝑎𝑖 = 
𝑀𝑤𝑃𝑎𝑖
𝑇𝑎𝑖𝑅

                                                                                                                           

𝜌𝑚𝑖 = 
𝑥2𝑖 + 𝑥3𝑖 − 𝜌𝑜𝐿𝑏ℎ𝑖𝐴𝑏ℎ𝑖

𝐿𝑤𝑖𝐴𝑤𝑖
                                                                                            

𝜌𝑟 = 
 𝑥4 + 𝑥5
𝐿𝑟𝐴𝑟

                                                                                                              

(A.0.6) 

 

(A.0.7) 

 

(A.0.8) 
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𝜌𝑎𝑖 = 
𝑀𝑤𝑃𝑎𝑖
𝑇𝑎𝑖𝑅

                                                                                                                           

𝜌𝑚𝑖 = 
𝑥2𝑖 + 𝑥3𝑖 − 𝜌𝑜𝐿𝑏ℎ𝑖𝐴𝑏ℎ𝑖

𝐿𝑤𝑖𝐴𝑤𝑖
                                                                                           

𝜌𝑟 = 
 𝑥4 + 𝑥5
𝐿𝑟𝐴𝑟

                                                                                                       

(A.0.9) 

 

(A.0.10) 

 

(A.0.11) 

Where 𝜌𝑎𝑖 is the density of gas in the annulus of each well and 𝜌𝑚𝑖 is the fluid mixture density 

in the tubing for each well and 𝜌𝑟fluid mixture density in the riser, 𝑀𝑤is the molecular weight of 

the gas, R is the gas constant, 𝑇𝑎𝑖 is the temperature in the annulus in each well, ρo is the density 

of oil in the reservoir,𝐿𝑤𝑖 and 𝐿𝑏ℎ𝑖are the lengths of each well above and below the injection point 

respectively and 𝐴𝑤𝑖and 𝐴𝑏ℎ𝑖are the cross-sectional area of each well above and below the injection 

point respectively , 𝐿𝑟𝑎𝑛𝑑 𝐴𝑟are the length and the cross sectional area of the riser manifold. 

Equations (A.0.12) - (A.0.18) show the pressure models for the two wells and the riser head: 

 

𝑃𝑎𝑖 = (
𝑇𝑎𝑖𝑅

𝑉𝑎𝑖𝑀𝑤
+
𝑔𝐿𝑎𝑖
𝐿𝑎𝑖𝐴𝑎𝑖

) 𝑥1𝑖                                                                                                 

𝑃𝑤ℎ𝑖 = 
𝑇𝑤𝑖𝑅

𝑀𝑤
(

𝑥2𝑖

𝐿𝑤𝑖𝐴𝑤𝑖 + 𝐿𝑏ℎ𝑖𝐴𝑏ℎ𝑖 − (
𝑥3𝑖
𝜌𝑜
)
) −  0.5 (

𝑥2𝑖 + 𝑥3𝑖
𝐿𝑤𝑖𝐴𝑤𝑖

𝑔𝐻𝑤𝑖)                     

𝑃𝑤𝑖 = 𝑃𝑤ℎ𝑖 + 
𝑔(𝑥2𝑖 + 𝑥3𝑖 − 𝜌𝑜𝐿𝑏ℎ𝑖𝐴𝑏ℎ𝑖)𝐻𝑤𝑖

𝐿𝑤𝑖𝐴𝑤𝑖
+ ∆𝑃𝑓𝑟𝑖𝑐

𝑡                                               

𝑃𝑏ℎ𝑖 = 𝑃𝑤ℎ𝑖 + 𝜌𝑚𝑖𝑔𝐻𝑏ℎ𝑖 + ∆𝑃𝑓𝑟𝑖𝑐
𝑏ℎ ∀𝑖∈ ℕ                                                                        

𝑃𝑟ℎ =  
𝑇𝑟𝑅

𝑀𝑤
(
𝑥4
𝐿𝑟𝐴𝑟

)                                                                                                                  

𝑃𝑚 = 𝑃𝑟ℎ + 𝜌𝑟𝑔𝐻𝑟 + ∆𝑃𝑓𝑟𝑖𝑐
𝑟 ∀𝑖∈ ℕ                                                                                   

∆𝑃𝑓𝑟𝑖𝑐 =
128𝐿𝜇𝑄

𝜋𝐷𝑐4
                                   (as given by Darcy −Weisbach equation) 

(A.0.12) 

 

(A.0.13) 

 

(A.0.14) 

 

(A.0.15) 

 

(A.0.16) 

(A.0.17) 

 

(A.0.18) 

 The annulus pressure 𝑃𝑎𝑖well- head pressure 𝑃𝑤ℎ𝑖, well injection point pressure 𝑃𝑤𝑖and the 

bottom-hole pressure 𝑃𝑏ℎ𝑖, manifold pressure 𝑃𝑚and the riser head pressure 𝑃𝑟ℎ.𝐿𝑎𝑖and 𝐴𝑎𝑖are 

the length and cross sectional area of each annulus, 𝑇𝑤𝑖is the temperature in each well tubing, 

𝐻𝑏ℎ𝑖and 𝐻𝑤𝑖are the vertical height of each well tubing below and above the injection point 
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respectively and g is the acceleration of gravity constant. ∆𝑃𝑓𝑟𝑖𝑐
𝑡 and ∆𝑃𝑓𝑟𝑖𝑐

𝑏ℎ  represents the frictional 

pressure drop in the well tubing above and below the gas injection point respectively.  

The flowrates in the model are represented by equations (A.0.19) - (A.0.27) for the two wells and 

the riser head: 

 

𝑤𝑖𝑣𝑖 = 𝐶𝑖𝑣𝑖√𝑚𝑎𝑥(0, 𝜌𝑎𝑖(𝑃𝑎𝑖 − 𝑃𝑤𝑖))                                                                             

𝑤𝑝𝑐𝑖 = 𝐶𝑝𝑐𝑖√𝑚𝑎𝑥(0, 𝜌𝑤𝑖(𝑃𝑤ℎ𝑖 − 𝑃𝑚))                                                                        

𝑤𝑝𝑔𝑖 =
𝑥2𝑖

𝑥2𝑖 + 𝑥3𝑖
𝑤𝑝𝑐𝑖                                                                                                           

𝑤𝑝𝑜𝑖 =
𝑥3𝑖

𝑥2𝑖 + 𝑥3𝑖
𝑤𝑝𝑐𝑖                                                                                                          

𝑤𝑟𝑜𝑖 = 𝑃𝐼𝑖(𝑃𝑟𝑖 − 𝑃𝑏ℎ𝑖)                                                                                                         

𝑤𝑟𝑔𝑖 = 𝐺𝑂𝑅𝑖. 𝑤𝑟𝑜𝑖∀𝑖∈ ℕ                                                                                                      

𝑤𝑟ℎ = 𝐶𝑟ℎ√𝜌𝑟(𝑃𝑟ℎ − 𝑃𝑠)                                                                                                  

𝑤𝑡𝑔 =
𝑥4

𝑥4 + 𝑥5
𝑤𝑟ℎ                                                                                                                 

𝑤𝑡𝑜 =
𝑥5

𝑥4 + 𝑥5
𝑤𝑟ℎ                                                                                                                 

(A.0.19) 

 

(A.0.20) 

 

(A.0.21) 

 

(A.0.22) 

(A.0.23) 

(A.0.24) 

(A.0.25) 

(A.0.26) 

 

(A.0.27)  

Where 𝑤𝑖𝑣𝑖 is the flow through the down-hole gas lift injection valve, 𝑤𝑝𝑐𝑖is the total flow through 

the production choke, 𝑤𝑝𝑔𝑖 and 𝑤𝑝𝑜𝑖 are, the produced gas and oil flow rates respectively, 𝐶𝑖𝑣𝑖and 

𝐶𝑝𝑐𝑖are the valve flow coefficients for the down-hole injection valve and the production choke for 

each well respectively, 𝑃𝐼𝑖is the reservoir productivity index, 𝑃𝑟𝑖is the reservoir pressure and 

𝐺𝑂𝑅𝑖is the gas-oil ratio for each well. The two wells produce to a common manifold, where the 

manifold pressure is denoted by 𝑃𝑚 and the flow rates from the two well mixes together. The total 

flow through the riser head choke 𝑤𝑟ℎ,𝑤𝑡𝑔and 𝑤𝑡𝑜 are the total produced oil and gas rates 

respectively, 𝐶𝑟ℎ is the valve flow coefficient for the riser head valve and 𝑃𝑠 is the separator 

pressure, which is assumed to be held at a constant value. 

The transfer function model obtained from the system under consideration is: 
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𝐺(𝑠) =

[
 
 
 
 
 
 
−0.1476s 2+0.002668 s+6.018e−06

 s 2+0.004914s+6.018e−06

−0.1847s 2+0.0002337s−1.013e−21

s 2+0.004914s+6.018e−06

0.06846s 2−0.0002876s+1.491e−20

 s 2+0.004914s+6.018e−06

0.05803s 2+0.002015s+6.018e−06

s 2+0.004914 s+6.018e−06

 −0.2769s 2+ 0.002245s+6.802e−06

s 2+0.004914s+6.018e−06

−0.3845s 2+0.001879s + 6.606e−06

s 2 + 0.004914s + 6.018e−06

 0.1226s 2+0.003901s+7.744e−06

s 2+0.004914s+6.018e−06

0.3217s 2+0.003355s+5.029e−06 

s 2+0.004914s+6.018e−06 ]
 
 
 
 
 
 

  (A.0.28) 

The decision variables for the controller to achieve this objective are: [∆𝑢𝑘, 𝑦𝑠𝑝,𝑘, 𝛿𝑦,𝑘, 𝛿𝑢,𝑘].  

Steady state values: 𝑥𝑠𝑠 = [1456.1; 1478; 0822.8; 0878.5; 6324.4; 5935.8; 0133.2; 0956.0] 𝑘𝑔 

𝑢𝑠𝑠 = [1; 1]  

Manipulated input: [𝑤𝑔𝑙1;   𝑤𝑔𝑙2] 

Controlled outputs: [𝑝𝑎1;  𝑝𝑎2; 𝑝𝑚;  𝑝𝑟ℎ;  𝑤𝑡𝑔] 

Controller tuning parameters for the two-layer strategy:  

𝑚 = 3;  𝑛𝑦 = 5; 𝑛𝑢 = 2; 𝑅 = 𝑑𝑖𝑎𝑔[1000 1000]; 𝑄 = 𝑑𝑖𝑎𝑔[1 1 1 1 1];   

 𝑦𝑚𝑎𝑥 = [2000 1800 140 1100 10];   𝑦𝑚𝑎𝑥 = [1200 1000 120 900 0]  

𝑢𝑚𝑎𝑥 = [4 4]; 𝑢𝑚𝑖𝑛 = [0.01 0.01];   ∆𝑢𝑚𝑎𝑥 = [1 1] . 

 

Controller tuning parameters for the one layer strategy:  

𝑚 = 3;  𝑛𝑦 = 5; 𝑛𝑢 = 2; 𝑅 = 𝑑𝑖𝑎𝑔[5𝑒4 5𝑒4]; 𝑄 = 𝑑𝑖𝑎𝑔[5𝑒2 5𝑒2 5𝑒2 5𝑒2 5𝑒5];𝑊3 = 2𝑒1;   

 𝑦𝑚𝑎𝑥 = [3000 3000 140 1100 13];   𝑦𝑚𝑖𝑛 = [1200 1000 120 700 0]  

𝑢𝑚𝑎𝑥 = [4 4]; 𝑢𝑚𝑖𝑛 = [0.01 0.01];   ∆𝑢𝑚𝑎𝑥 = [1 1] . 

 

 


