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Abstract

SENCIO, R. R. Model predictive control based on the output prediction-
oriented model: a dual-mode approach, and robust distributed algorithms.
2022. 157p. Thesis (Doctor in Science) - Polytechnic School, University of São Paulo, São
Paulo, 2022.

The output prediction-oriented model (OPOM) is a state-space model with incremental
inputs that is derived from the analytical form of the system step response. This model
has the prediction of the output at steady state as part of the state vector, which is useful
for imposing the terminal constraint in an infinite horizon MPC formulation suitable
for setpoint tracking. In this work, stabilizing MPC approaches based on the output
prediction-oriented model are proposed, namely, a dual-mode MPC and three robust
cooperative distributed MPC algorithms. First, a method to transform a state-space model
with positional inputs into an OPOM-like model is presented. The resultant model can
be viewed as a generalization of the traditional OPOM, being able to represent systems
with stable, integrating and unstable poles as well as with pole multiplicity and time
delays. Deploying a terminal control law and applying the concept of an invariant set
for tracking, the proposed dual-mode MPC with OPOM has embedded integral action
and guaranteed stability and feasibility under any setpoint change. In this approach, the
characterization of steady outputs and inputs is based only on terminal states and inputs,
avoiding parametrization of system equilibria. Such a method allows the computation
of artificial references that are consistent with the true plant steady state, even in the
presence of plant-model mismatch or unmeasured disturbances. The proposed MPC also
addresses the case of output zone control and optimizing input targets. It is proved that,
if the desired operating point is not admissible, the proposed controller steers the system
to the operating point that minimizes an offset cost function. Concerning the proposed
algorithms for robust cooperative distribute MPC, the multi-model system representation is
adopted, and a plantwide performance index is optimized while imposing a cost-contracting
constraint for all the models. This strategy results in a QCQP (quadratically constrained
quadratic programming) problem that is solved for each subsystem. Local solutions are
shared between the agents and an iterative procedure is applied to improve the overall
solution. This approach is extended and two alternative algorithms are proposed. One is
based on computing optimal weights of the convex combination of agents’ solutions, which
improves the convergence over iterations. The other enforces the robustness constraint only
after iterations terminate, thereby turning the optimization problem solved by each agent
into a QP (quadratic programming) problem. This strategy reduces the number of QCQP
problems solved at each time step, which also reduces the CPU time spent by the agents.



The proposed distributed algorithms are suitable for dealing with both setpoint tracking
and zone control problems, and have guaranteed recursive feasibility, convergence and
stability. Numerical examples are presented to illustrate the application of the proposed
controllers.

Keywords: Model predictive control. Robust distributed control. Cooperative distributed
control. Setpoint tracking. Zone control.



Resumo

SENCIO, R. R. Controle preditivo baseado no modelo orientado à predição
da saída: uma abordagem dual e algoritmos distribuídos robustos. 2022. 157p.
Tese (Doutor em Ciências) - Escola Politécnica, Universidade de São Paulo, São Paulo, 2022.

O modelo orientado à predição da saída (OPOM, no acrônimo em inglês) é um modelo de
espaço de estado com entradas incrementais que é derivado da forma analítica da resposta
ao degrau do sistema. Este modelo tem a previsão da saída em regime permanente como
parte do vetor de estados, o que é útil para impor a restrição terminal em uma formulação
de MPC de horizonte infinito adequada para rastreamento de referência. Neste trabalho,
são propostas abordagens estabilizantes de MPC baseadas no modelo orientado à predição
da saída, a saber, um MPC dual e três algoritmos de MPC distribuído cooperativo robusto.
Primeiramente, é apresentado um método para transformar um modelo de espaço de
estados com entradas posicionais em um modelo do tipo OPOM. O modelo resultante
pode ser visto como uma generalização do OPOM tradicional, sendo capaz de representar
sistemas com polos estáveis, integradores e instáveis, bem como com multiplicidade de polos
e tempo morto. Utilizando uma lei de controle terminal e aplicando o conceito de conjunto
invariante para rastreamento, o MPC dual com OPOM proposto possui ação integral em-
butida e garantia de estabilidade e viabilidade sob qualquer mudança de referência. Nesta
abordagem, a caracterização de saídas e entradas em regime permanente é baseada apenas
em estados e entradas terminais, evitando a parametrização do equilíbrio do sistema. Tal
método permite o cálculo de referências artificiais que são consistentes com o verdadeiro
estado estacionário da planta, mesmo na presença de incompatibilidade planta-modelo ou
perturbações não medidas. O MPC proposto também aborda o caso de controle por zonas
das saídas e alvos ótimos das entradas. Prova-se que, se o ponto de operação desejado
não for admissível, o controlador proposto direciona o sistema para o ponto de operação
que minimiza uma função de custo do desvio. Com relação aos algoritmos propostos para
MPC distribuído cooperativo robusto, adota-se a representação multi-modelo do sistema,
e otimiza-se um índice de desempenho de toda a planta enquanto uma restrição de con-
tração de custo para todos os modelos é imposta. Essa estratégia resulta em um problema
QCQP (acrônimo em inglês para programação quadrática com restrição quadrática) que é
resolvido para cada subsistema. As soluções locais são compartilhadas entre os agentes e
um procedimento iterativo é aplicado para melhorar a solução geral. Esta abordagem é
estendida e dois algoritmos alternativos são propostos. Um é baseado no cálculo de pesos
ótimos da combinação convexa das soluções dos agentes, o que melhora a convergência
ao longo das iterações. O outro impõe a restrição de robustez somente após o término
das iterações, transformando assim o problema de otimização resolvido por cada agente



em um problema QP (acrônimo em inglês para programação quadrática). Essa estratégia
reduz o número de problemas QCQP resolvidos a cada período de amostragem, o que
também reduz o tempo de CPU gasto pelos agentes. Os algoritmos distribuídos propostos
são adequados para lidar com problemas de rastreamento de referência e controle por
zonas, e possuem garantia de viabilidade recursiva, convergência e estabilidade. Exemplos
numéricos são apresentados para ilustrar a aplicação dos controladores propostos.

Palavras-chave: Controle preditivo. Controle distribuído robusto. Controle distribuído
cooperativo. Rastreamento de referência. Controle por zonas.
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Ãin state transition matrix related to x̃in
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∆ũ suboptimal sequence of N plantwide input increments
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Chapter 1

Introduction

1.1 Model predictive control technology

Model predictive control (MPC) is a generic term that refers to a class of control
algorithms that explicitly use a system model to compute and optimize the open-loop
plant response over a prediction horizon. This future system behavior is usually penalized
in terms of the deviation from a given reference in the definition of a performance index,
also known as cost function. The objective is to optimize this performance index by solving
an optimization problem, possibly subject to constraints. The decision variables of the
optimal control problem usually consist of a sequence of system inputs or input increments
over a control horizon. Although a sequence of future control actions is obtained at each
time instant, only the first input, i.e., the one corresponding to the current time step, is
applied to the system. Then, once new measurements are available at the next sampling
time, the MPC problem is solved again, which implicitly defines a feedback control law.
This procedure is called moving or receding horizon principle, which is the reason why
MPC is also known as receding horizon control (RHC) (MUSKE; RAWLINGS, 1993).

Considered a well-established and accepted control strategy, MPC has attracted
significant interest from both industry and academia over the last few decades. Such success
can be mostly explained by advantageous features that MPC possesses. For instance, MPC
is among the few control strategies that systematically deal with system constraints, e.g.,
actuator limits and process variable specifications. This allows the plant to safely achieve
economically optimal operating points typically located at the intersection of constraints
(QIN; BADGWELL, 2003). Besides considering important system constraints, another
attractive aspect of MPC is the optimization of a user-specified performance index that
can be easily defined by practitioners through physically meaningful metrics and tuning
parameters. In addition to reflecting control purposes, the cost function can also incorporate
economic objectives in order to obtain a more profitable operation, even during transients.
Moreover, in the MPC algorithm, feedforward information and system time delays can be
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explicitly taken into account over predictions through the use of a plant model. In general,
these models are obtained from plant tests, not requiring advanced methods of system
identification. Since models that describe MIMO (multiple-input, multiple-output) systems
can be employed, this gives MPC the ability to straightforwardly handle multivariable
systems.

Early developments and industrial applications of MPC controllers date from the end
of the 1970s. The first implementations reported in the literature are the Model Predictive
Heuristic Control (MPHC), also known as IDCOM and developed by Richalet et al. (1978),
and the Dynamic Matrix Control (DMC), proposed by Shell engineers Cutler and Ramaker
(1980). Improvements in the DMC algorithm have been made towards the inclusion of
input and output constraints, as presented in the Linear Dynamic Matrix Control (LDMC)
(MORSHEDI; CUTLER; SKROVANEK, 1985), and the use of a quadratic cost function,
deployed in the Quadratic Dynamic Matrix Control (QDMC) (GARCIA; MORSHEDI,
1986).

Even though MPC applications had already been consolidated in the late 1980s,
there were unresolved issues to be addressed, such as robustness and stability of the
available algorithms. In this regard, Garcia and Morari (1982) proposed a controller
design method for SISO (single-input, single-output) systems that considers explicitly the
uncertainty caused by plant modeling errors and provided practical tuning guidelines. An
extension of this technique was presented in Garcia and Morari (1985a) for MIMO systems,
while the control law computation, as well as more tuning guidelines, were discussed in
Garcia and Morari (1985b). Other works that address robustness and stability problems
of MPC controllers may be highlighted such as Rouhani and Mehra (1982) and Morari
and Zafiriou (1989).

All the techniques described above use discrete step or impulse response data
rather than parametric models. However, Clarke, Mohtadi and Tuffs (1987a) and Clarke,
Mohtadi and Tuffs (1987b) proposed the Generalized Predictive Control (GPC), which
is a parametric approach based on CARMA (Controlled Auto-Regressive and Moving-
Average) or CARIMA (Controlled Auto-Regressive, Integrated and Moving-Average)
models. These approaches have encouraged the development of other parametric model-
based MPC controllers, such as the state-space formulation proposed in Li, Lim and Fisher
(1989). At the same time, Shell engineers developed the Shell Multivariable Optimizing
Controller (SMOC), described as a bridge between state-space models and MPC algorithms
(MARQUIS; BROUSTAIL, 1988; YOUSFI; TOURNIER, 1991).

A comprehensive historical development of the industrial MPC technology and
a summary of the main commercial solutions based on this class of algorithms can be
found in the survey of Qin and Badgwell (2003). More recent industrial MPC products
and implementation steps are detailed in Lahiri (2017).
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The use of state-space models not only allowed the application of MPC to a larger
class of systems, i.e. with stable, integrating and unstable dynamics, but it also paved
the way for the development of new MPC formulations with strong stabilizing properties.
Ingredients needed for ensuring stability of MPC controllers are well discussed in Mayne
et al. (2000) and in Mayne and Falugi (2019), while theoretical aspects of different MPC
formulations can be found in tutorial papers (RAWLINGS, 2000; WANG, 2004) as well as
in many textbooks (MACIEJOWSKI, 2002; ROSSITER, 2004; CAMACHO; BORDONS,
2007; RAWLINGS; MAYNE; DIEHL, 2017).

Although today MPC can be considered a well-matured control strategy, it is still
a matter of research and several contributions continue to appear in the literature every
year.

1.2 Motivation

The analysis and design of MPC using state-space models directly benefits from
optimal control theory, which explains why the majority of the modern MPC literature
has been developed using this model framework. Despite this fact, few commercial MPC
packages support state-space models (QIN; BADGWELL, 2003) and, currently, the most
popular industrial MPC vendors still employ step/impulse response models and transfer
functions (KANO; OGAWA, 2010; WHEAT, 2018; FERNANDES et al., 2020).

As a new interpretation of DMC-like controllers, an approach that rearranges
step/impulse response models into a state-space form has been proposed by Li, Lim and
Fisher (1989). However, since the resulting state vector has the dimension of the number
of step response coefficients times the number of outputs, the proposed method produces
a state-space model with a potentially very large order.

With the purpose of representing DMC-like controllers with fewer states, Gouvêa
and Odloak (1997) proposed a reduced-order state-space model with incremental inputs
and whose state vector contains the prediction of system output at steady state. Thus,
unlike DMC state predictors that often need a large number of coefficients to capture
plant steady state, the approach of Gouvêa and Odloak (1997) deploys a much more
parsimonious model. This model has been used in an MPC that addresses robust stability
via linear-matrix inequalities (LMI) methods (RODRIGUES; ODLOAK, 2000). Another
relevant advantage of the state-space model proposed by Gouvêa and Odloak (1997) is
revealed in (RODRIGUES; ODLOAK, 2003a), in which the output prediction at steady
state is shown to be a useful feature for establishing the terminal constraint in an infinite
horizon MPC (IHMPC). In this work of Rodrigues and Odloak (2003b), the model proposed
by Gouvêa and Odloak (1997) was rearranged and named as the output prediction-oriented
model (OPOM), as it has been known ever since.
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Several MPC formulations based on the OPOM model have been proposed in the
literature (RODRIGUES; ODLOAK, 2003a; ODLOAK, 2004; CARRAPIÇO; ODLOAK,
2005; SANTORO; ODLOAK, 2012; MARTINS et al., 2013; MARTINS; ODLOAK, 2016).
These studies have led to successful practical applications in laboratory-scale plants (MAR-
TIN; ODLOAK; KASSAB, 2013; SILVA et al., 2020) and even in oil refineries (PORFÍRIO;
ALMEIDA NETO; ODLOAK, 2003; CARRAPIÇO et al., 2009; MARTIN; ZANIN; OD-
LOAK, 2019). The MPC with OPOM is now part of an in-house advanced control package
developed by Petrobras (Petróleo Brasileiro S.A.) and has been implemented in many
other process units of the main oil refineries of Brazil.

Concerning the literature of MPC strategies based on the OPOM model, the
following open issues served as motivation to the research developed in this work:

• Naturally, the OPOM model has been incrementally improved and extended for-
mulations have been proposed for dealing with different types of system dynamics.
However, this often leads to ad hoc rules regarding the way OPOM is built, which
not only divides the OPOM formulation into many cases but also makes model
construction less straightforward. Therefore, an easier and more general method to
build OPOM is still lacking.

• Concerning the infinite horizon MPC with OPOM, stability is guaranteed by forcing
to zero terminal states related to integrating and unstable manifolds. This is usually
performed by imposing a terminal equality constraint, which can be very restrictive
and, upon conflicts with input constraints, leads to problem infeasibilities. To avoid
this, the available formulations of IHMPC with OPOM often employ slack variables
to soften this equality constraint, thereby ensuring problem feasibility. The downside
of this procedure is evident when dealing with integrating and unstable systems,
for which stability guarantee is only recovered when slack variables are zeroed. An
alternative way of avoiding the terminal equality constraint consists of employing a
terminal inequality constraint instead. This constraint forces the terminal state into
a (non-trivial) invariant set in which a terminal control law is considered. Such an
approach has not been applied to the IHMPC with OPOM yet.

• In large-scale plants, distributing the controller while exchanging information between
subsystems can be advantageous not only due to the reduction of local computational
requirements but mainly because it facilitates organizational aspects such as commis-
sioning and maintenance. To address such cases, distributed MPC formulations based
on OPOM have recently been proposed (SANTANA; MARTINS; ODLOAK, 2020b;
SARAPKA; MARTINS; ODLOAK, 2021). These approaches deploy a cooperative
algorithm, i.e., subsystems pursue a common objective and thus optimize a plantwide
performance index. However, since these controllers are based on a single linear
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model, their performance can deteriorate due to changing economic criteria that can
lead the system to operate far from the steady state in which the model was obtained.
Therefore, existing robust MPC strategies based on OPOM (ODLOAK, 2004) can
be extended for dealing with distributed systems, which represents a viable and
important contribution to enhance robustness while guaranteeing system stability.

1.3 Objectives

Motivated by the aforementioned aspects, the main objective of this thesis is to
propose:

• a unified and simple method to build OPOM;

• a general infinite horizon MPC with OPOM that deploys a terminal control law
(dual-mode approach);

• a robust cooperative distributed MPC with OPOM.

Along with pertinent literature review, these objectives are better supported and
justified in the subsequent chapters, whose content will be outlined in the sequel.

1.4 Outline of the thesis

This thesis is organized into five chapters, including the present introductory one.
The remaining chapters are outlined as follows.

In Chapter 2, a straightforward method for building an OPOM-like model is
proposed. The new OPOM, as it is called here, is first proposed for open-loop stable
systems and then extended for the more general case considering systems with stable,
integrating and unstable poles as well as with time delays. A comparison of the new OPOM
with the traditional one is given. It is also shown how the state vector of the new OPOM
can be computed to cope with output feedback. The advantages of the new OPOM are
highlighted before finishing the chapter.

Chapter 3 first addresses the characterization of artificial references as well as
the definition of the invariant set for tracking. Then, the formulation of a dual-mode
MPC with OPOM for tracking setpoints is presented along with analyses regarding the
controller’s recursive feasibility and closed-loop convergence. The proposed MPC is applied
to a double-integrator system. An extension of the dual-mode MPC with OPOM for
handling output control zones and input targets is presented and technical lemmas and
theorem are proven. Finally, numerical results regarding the application of the proposed
strategy to an unstable reactor system are given.
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In Chapter 4, a robust cooperative distributed MPC based on the OPOM model
that handles the zone control problem is proposed. Technical lemmas and theorem regarding
algorithm convergence, recursive feasibility and closed-loop stability are presented. The
proposed algorithm is applied to a high-purity distillation column and then compared with a
centralized robust MPC and a nominal distributed MPC. Then, two alternative algorithms
are proposed, namely, one that improves the convergence of subsystems’ solutions over
iterations and another that robustifies a nominal cooperative distributed MPC. Theoretical
analyses are presented. Numerical results in a simulated two reactors-separator system are
presented along with the comparison of CPU (central processing unit) times spent by the
proposed strategies. The first two algorithms proposed in Chapter 4 have been published
in Sencio and Odloak (2022).

Finally, Chapter 5 serves as an overview of the main contributions of this thesis
and presents directions for future research.

1.5 Notation

For a given positive-definite symmetric matrix P ∈ Rn×n, the weighted Euclidean
norm of x ∈ Rn is denoted as ‖x‖P :=

√
xTPx. Matrix In ∈ Rn×n is the identity matrix.

Besides denoting the number zero, the symbol 0 also represents a matrix whose entries
are zeros. When not indicated, matrix dimension is determined by the context. Given
two matrices M, N ∈ Rn×n, M > N denotes that (M −N) is a positive-definite matrix.
For a matrix M ∈ Rn×n, λmin(M) denotes the smallest eigenvalue of M . Given two
vectors a, b ∈ Rn, a ≤ b corresponds to an element-wise inequality. A vector [aT bT ]T is
simply represented by (a, b). Given integers a and b, with b > a, the set Ia:b is defined as
Ia:b := {a, a+ 1, . . . , b− 1, b}, while I≥a denotes the set of integers greater than or equal
to a. For a ∈ Rn, b ∈ Rm, and set Ψ ⊂ Rn+m, Proja(Ψ) := {a ∈ Rn : ∃b ∈ Rm, (a, b) ∈ Ψ}
denotes the projection operation. For an initial state x(k), x(j|k) represents the j-steps
ahead predicted state and ∆u(j|k) denotes the j-th control increment of a sequence ∆uk
computed at time step k, in which j and k are integers. To simplify notation, the indication
of time instant k is omitted when its use is not necessary, with x+ and u− denoting the
successor state and the predecessor input, respectively. Other definitions will be presented
throughout this thesis as needed. Although the general notation is the same, some symbols
have different meanings in each chapter.
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Chapter 2

The new output prediction-oriented
model

2.1 Introduction

The output prediction-oriented model is a state-space model that is written in the
incremental form of inputs and that is derived from the analytical form of the step response
of the system (RODRIGUES; ODLOAK, 2003b). A particular feature of this type of model
is that it has the output steady-state prediction as one of the states, which is useful for
imposing the end constraint in the infinite horizon MPC. Enjoying this property, many
IHMPC formulations based on the OPOM model have been proposed considering systems
with stable (RODRIGUES; ODLOAK, 2003b; ODLOAK, 2004), integrating (RODRIGUES;
ODLOAK, 2003a; CARRAPIÇO; ODLOAK, 2005) and unstable (MARTINS; ODLOAK,
2016) poles as well as with time delay (SANTORO; ODLOAK, 2012; MARTINS et al.,
2013). Practical applications of MPC based on OPOM have been reported in the literature
(PORFÍRIO; ALMEIDA NETO; ODLOAK, 2003; CARRAPIÇO et al., 2009; MARTIN;
ODLOAK; KASSAB, 2013; MARTIN; ZANIN; ODLOAK, 2019; SILVA et al., 2020).

To exemplify the construction of the OPOM model, let us consider a simple case of
a MIMO open-loop stable system with ny outputs and nu inputs described by the following
matrix of transfer functions:

G(s) =


G1,1(s) · · · G1,nu(s)

... . . . ...
Gny ,1(s) · · · Gny ,nu(s)

 (2.1)

in which each transfer function Gi,j(s) describes the relationship between output i and
input j and is given as follows:

Gi,j(s) = bi,j,0 + bi,j,1s+ bi,j,2s
2 + · · ·+ bi,j,nbs

nb

1 + ai,j,1s+ ai,j,2s2 + · · ·+ ai,j,nas
na

, na, nb ∈ N, nb < na
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After performing a partial fraction expansion, the unit step response of Gi,j(s) is:

Si,j(s) = Gi,j(s)
s

=
d0
i,j

s
+

ddi,j,1
s− ri,j,1

+ · · ·+
ddi,j,na

s− ri,j,na
(2.2)

where d0
i,j and ddi,j,l, l ∈ I1:na , are static and dynamic coefficients, respectively, and ri,j,l,

l ∈ I1:na are the system poles, assumed distinct. By taking the inverse Laplace transform of
(2.2) and considering a sampling time Ts, the corresponding discretized unit step response
is:

Si,j(k) = d0
i,j +

na∑
l=1

ddi,j,le
ri,j,lkTs , ∀k ∈ I≥0 (2.3)

Now, let us define the following matrices:

F = diag
(
er1,1,1Ts , . . . , er1,1,naTs , . . . , er1,nu,1Ts , . . . , er1,nu,naTs , . . . ,

erny,1,1Ts , . . . , erny,1,naTs , . . . , erny,nu,1Ts , . . . , erny,nu,naTs
)

Dd = diag
(
dd1,1,1, . . . , d

d
1,1,na , . . . , d

d
1,nu,1, . . . , d

d
1,nu,na , . . . ,

ddny ,1,1, . . . , d
d
ny ,1,na , . . . , d

d
ny ,nu,1, . . . , d

d
ny ,nu,na

)

D0 =


d0

1,1 · · · d0
1,nu

... . . . ...
d0
ny ,1 · · · d0

ny ,nu



in which F ∈ Cnd×nd , Dd ∈ Cnd×nd , D0 ∈ Rny×nu and nd = nunany. Defining the
incremental input as ∆u(k) = u(k)− u(k − 1) and applying the superposition principle,
the following state-space model is obtained:

xs
xd

+

=
Iny 0

0 F

 xs
xd

+
 D0

DdFN

∆u (2.4)

y =
[
Iny Ψ

] xs
xd

 (2.5)

in which xs ∈ Rny and xd ∈ Rnd are system states and N ∈ Rnd×nu and Ψ ∈ Rny×nd are
incidence matrices given as follows:
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N =


J1
...
Jny

 , Ji =



1 0 · · · 0
... ... . . . ...
1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 1 · · · 0

...
0 0 · · · 1
... ... . . . ...
0 0 · · · 1



, Ji ∈ Rnuna×nu ,

Ψ =


Φ 0

. . .
0 Φ

 , Φ =
[
1 · · · 1

]
, Φ ∈ Rnuna .

In the OPOM model defined in (2.4)-(2.5), xs is the integrating state that appears
when writing the model in the incremental form of inputs and xd is related to the stable
poles of the system. As a unique feature of the OPOM, the state xs also corresponds to
the prediction of the system output at steady-state. Note that, beyond the way OPOM is
obtained, which is closely related to step response models often used by DMC controllers,
the major difference between OPOM and other state-space models with incremental inputs
(also called velocity-form models) is the embedded prediction of steady outputs. This
feature, as already mentioned, is useful for stating the end constraint in an offset-free
infinite horizon MPC formulation with guaranteed stability.

Although we here used the OPOM formulation presented by Odloak (2004), the
underlying rationale regarding the construction of this type of model can be found in
Rodrigues and Odloak (2003b) for open-loop stable systems. For other types of systems,
the reader is referred to the works already cited at the beginning of this section.

The main steps needed to build the OPOM model from system transfer functions
can be summarized as follows:

1. apply a unit step change to system inputs;

2. obtain the analytical form of the step response by partial fractions expansion;

3. define the states related to the incremental form of the inputs;

4. define the states related to the system poles (stable, integrating, or unstable);

5. build up the state-space model.
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Even though the overall steps to build OPOM are the same, there exist many ad hoc
rules depending on whether the system has stable, integrating, unstable poles, or time delay.
For instance, if the system has complex poles, some OPOM matrices end up having entries
with complex numbers, which may be undesirable, especially in applications that require
solving an LMI problem, whose solvers cannot directly handle complex-valued matrices. In
such cases, a different procedure must be applied, which involves using Euler’s formula to
obtain an OPOM model with real-valued states. Thus, due to these particularities for each
system, it may be difficult to automate the OPOM construction for the general case in a
computer program without using different subroutines for each type of system, e.g. stable
and integrating, stable and unstable with time delay, etc. Furthermore, different model
structures often lead to distinct MPC formulations, which may be an issue for building a
more general industrial package.

Another aspect of the OPOM construction concerns the resulting model dimension.
Obviously, any procedure that augments the states to obtain inputs in the incremental
form results in a non-minimal state-space model. However, apart from the inevitable
additional integrating states needed to obtain incremental inputs, the way that OPOM
is built may produce unnecessarily large states xd. This occurs because coefficients are
packed in matrices F and Dd in a way that is oriented through each output-input pair,
which does not economically deal with cases of pole multiplicity or when some poles are
shared between different outputs.

Therefore, aiming at addressing the above-mentioned OPOM limitations, the
objective of this chapter is to propose an alternative method for building up this type
of model. Here, instead of starting from the transfer functions that define the dynamics
between each input and output, we look for a general formulation that can be used for
transforming a state-space model in the positional form of inputs into an OPOM-like model.
Also, the proposed method deals with systems that have pole multiplicity and is easy
to automate in a computer program, which is an advantage for developing an industrial
package. Since the resulting state-space model preserves the same features as the original
OPOM proposed in Rodrigues and Odloak (2003b), namely the prediction of the output
at steady state as one of the states, it can also be considered as an output-prediction
oriented model. However, to differentiate from the traditional OPOM, the proposed model
will be called the new OPOM hereafter.

This chapter is organized as follows. In the next section, the method for building the
new OPOM for open-loop stable systems is described and an example that illustrates the
dynamics of this model is presented. Then, in Section 2.3 the proposed method is extended
for systems with stable, integrating and unstable poles and an alternative formulation in
which the dynamics of integrating states do not depend on system parameters is proposed.
The case of time-delay systems is considered in Section 2.4 along with a numerical example
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that compares system responses produced by the new OPOM and the traditional one.
Section 2.5 discusses the use of the realigned model as a starting model to build the new
OPOM in order to obtain output feedback. Finally, Section 2.6 summarizes the advantages
of the new OPOM over the traditional one and concludes the chapter.

2.2 The new OPOM for open-loop stable systems

The proposed method to build the new OPOM requires the system discrete-
time state-space model, which in general can be easily obtained by linearization and
discretization of rigorous differential equations models or even through system identification
techniques, when experimental data are available. Although the steps described in the
sequel are somewhat exhaustive, the final formulation is straightforward to be applied.

Consider the state-space model in the positional form of inputs defined below, in
which x ∈ Rnx , u ∈ Rnu , y ∈ Rny and nx, nu and ny are the number of states, inputs and
outputs, respectively:

x+ = Ax+Bu (2.6)
y = Cx (2.7)

For the sake of simplicity, we first assume here that the system (2.6)-(2.7) has only
stable poles. An extension to a more general case will be provided in the next section.

Defining the incremental states ∆x(k) = x(k)− x(k − 1), the following model can
be obtained from (2.6) and (2.7):

∆x+ = A∆x+B∆u
y+ = y + C∆x+

Suppose a step input with amplitude ∆u is applied to the system at time instant
k. The evolution of the system output can be given as follows:

y(k + 1) = y(k) + C∆x(k + 1)
y(k + 2) = y(k + 1) + C∆x(k + 2)

= y(k) + C (I + A) ∆x(k + 1)
...

y(k + j) = y(k) + C
(
I + A+ · · ·+ Aj−2 + Aj−1

)
∆x(k + 1)

Since we have assumed that A is stable, then the inverse (I − A)−1 exists and the
following expression holds:

Sj = I + A+ · · ·+ Aj−2 + Aj−1 =
j−1∑
i=0

Ai =
(
I − Aj

) (
I − A

)−1
(2.8)
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The equality (2.8) can be easily verified by computing the difference Sj − SjA = I − Aj.
Now, the expression for y(k + j) can be rewritten in such a way that we can separate the
static part, which does not depend on j, from the dynamic one, which in turn depends on
j:

y(k + j) = y(k) + C
(
I − Aj

) (
I − A

)−1(
A∆x(k) +B∆u(k)

)
= y(k) + C

(
I − A

)−1(
A∆x(k) +B∆u(k)

)
︸ ︷︷ ︸

static part

− CAj
(
I − A

)−1(
A∆x(k) +B∆u(k)

)
︸ ︷︷ ︸

dynamic part

(2.9)

Let us define the following states:

ys(k) = y(k) + C (I − A)−1A∆x(k)
xd(k) = − (I − A)−1A∆x(k)

Remark 1. At steady state, observe that ∆x = 0, which implies that xd = 0 and ys = y.

Then, (2.9) can be rewritten as follows:

y(k + j) = ys(k) + C (I − A)−1B∆u(k)︸ ︷︷ ︸
static part

+CAj
(
xd(k)− (I − A)−1B∆u(k)

)
︸ ︷︷ ︸

dynamic part

(2.10)

The substitution of j = 0 in (2.10) yields:

y(k) = ys(k) + C (I − A)−1B∆u(k) + C
(
xd(k)− (I − A)−1B∆u(k)

)
= ys(k) + Cxd(k) (2.11)

Also, for j = 1, we have that:

y(k + 1) = ys(k) + C (I − A)−1B∆u(k) + CA
(
xd(k)− (I − A)−1B∆u(k)

)
(2.12)

Observe that, for k ← k + 1, (2.11) also implies that y(k + 1) = ys(k + 1) + Cxd(k + 1).
Then, from (2.12), the following expressions for ys(k + 1) and xd(k + 1) can be obtained:

ys(k + 1) = ys(k) + C (I − A)−1B∆u(k)
xd(k + 1) = Axd(k)− A (I − A)−1B∆u(k)

Therefore, the following OPOM-like model is obtained in the matrix form:

ys
xd

+

=
Iny 0

0 F

 ys
xd

+
Bs

Bd

∆u (2.13)

y =
[
Iny Ψ

] ys
xd

 (2.14)
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in which

F = A, Bs = C (I − A)−1B, Bd = −A (I − A)−1B, Ψ = C.

In this model, ys represents integrating states that correspond to the prediction of
steady outputs and xd is the system stable dynamic part. Thus, it has the same model
structure as the one proposed in Rodrigues and Odloak (2003b), apart from the fact that
the steady output is denoted here as ys instead of xs. In fact, the above presented method
generates exactly the same OPOM model if the original system given in (2.6) and (2.7)
has the following properties:

• the original model is not minimal in the case some outputs share states in common;

• C is a binary matrix;

• A is a diagonal matrix.

Particularly, if A is a diagonal matrix, the proposed method generates a model that
inherits an interesting property of the traditional OPOM model, which is the possibility
of explicitly solving the Lyapunov equation. For instance, P − ATPA = Q can be easily
solved as P =

(
I − ATA

)−1
Q when A is a diagonal matrix.

In the sequel, we provide an example to illustrate the dynamics of the new OPOM
model.

2.2.1 Example

Consider a SISO second-order non-minimal phase system (MUSKE; RAWLINGS,
1993) written in the form of (2.6)-(2.7) with the following matrices:

A =
4/3 −2/3

1 0

 , B =
1

0

 , C =
[
−2/3 1

]

Using the final formulation of the proposed method given in (2.13) and (2.14), then
the resulting OPOM model of this system can be written as follows:

ys
xd

+

=


1 0 0
0 4/3 −2/3
0 1 0


ys
xd

+


1
−2
−3

∆u

y =
[
1 −2/3 1

] ys
xd


Figure 1 shows the system response with the application of unit-step input at time

instants k = 10 and k = 50. As observed, the state ys achieves the predicted steady output
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Figure 1 – System output, states and input of the new OPOM

that corresponds to the applied unit-step and xd tends to zero because A is stable. Also,
system output initially responds in the opposite direction due to the unstable zero, but
eventually achieves the predicted steady output ys, as expected.

2.3 The new OPOM for stable, integrating and
unstable systems

Now, let us assume that the system (2.6)-(2.7) has nst stable, nin integrating and nun
unstable poles. There exists a matrix T such that the following similarity transformations
can be written (GOLUB; LOAN, 2013, page 353):

T−1x =


x̃st

x̃in

x̃un

 , T−1AT =


Ãst 0 0
0 Ãin 0
0 0 Ãun

 , T−1B =


B̃st

B̃in

B̃un


CT =

[
C̃st C̃in C̃un

]
in which x̃st ∈ Rnst , x̃in ∈ Rnin , x̃un ∈ Rnun , Ãst ∈ Rnst×nst , Ãin ∈ Rnin×nin ,
Ãun ∈ Rnun×nun , B̃st ∈ Rnst×nu , B̃in ∈ Rnin×nu , B̃un ∈ Rnun×nu , C̃st ∈ Rny×nst ,
C̃in ∈ Rny×nin and C̃un ∈ Rny×nun . The transformation matrix T can be obtained from a
real Schur decomposition of A followed by the block diagonalization using Roth’s removal
rule (GERRISH; WARD, 1998). More details can be found in Appendix A.



2.3. The new OPOM for stable, integrating and unstable systems 47

After performing the system decomposition, the following state-space model can
be written:


x̃st

x̃in

x̃un


+

=


Ãst 0 0
0 Ãin 0
0 0 Ãun



x̃st

x̃in

x̃un

+


B̃st

B̃in

B̃un

u (2.15)

y =
[
C̃st C̃in C̃un

] 
x̃st

x̃in

x̃un

 (2.16)

We shall mention that the tilde (̃·) notation is used here to make a distinction between
the notation we reserve for the final form of the OPOM model that will be obtained.

Let us define the incremental variables ∆x̃st(k) = x̃st(k)− x̃st(k − 1), ∆x̃in(k) =
x̃in(k)− x̃in(k− 1) and ∆x̃un(k) = x̃un(k)− x̃un(k− 1). Again, considering a step input of
amplitude ∆u is applied to the system at time instant k and following the same steps as
in the previous section, we have that:

y(k + j) = y(k) + C̃st
(
I + Ãst + · · ·+ Ãj−2

st + Ãj−1
st

) (
Ãst∆x̃st(k) + B̃st∆u(k)

)
+ C̃in

(
I + Ãin + · · ·+ Ãj−2

in + Ãj−1
in

) (
Ãin∆x̃in(k) + B̃in∆u(k)

)
+ C̃un

(
I + Ãun + · · ·+ Ãj−2

un + Ãj−1
un

) (
Ãun∆x̃un(k) + B̃un∆u(k)

)
(2.17)

Note that, for stable and unstable modes, we can substitute the partial sum given in (2.8),
which does not apply for the integrating part since

(
I − Ãin

)
is singular. Thus, (2.17) can

be rewritten as follows:

y(k + j) = y(k) + C̃st
(
I − Ãjst

) (
I − Ãst

)−1 (
Ãst∆x̃st(k) + B̃st∆u(k)

)
+ C̃in

j−1∑
i=0

Ãiin
(
Ãin∆x̃in(k) + B̃in∆u(k)

)
+ C̃un

(
I − Ãjun

) (
I − Ãun

)−1 (
Ãun∆x̃un(k) + B̃un∆u(k)

)
(2.18)

Now, let us define the following states:

ys(k) = y(k) + C̃st
(
I − Ãst

)−1
Ãst∆x̃st(k) + C̃un

(
I − Ãun

)−1
Ãun∆x̃un(k) (2.19)

xst(k) = −
(
I − Ãst

)−1
Ãst∆x̃st(k) (2.20)

xin(k) = ∆x̃in(k) (2.21)

xun(k) = −
(
I − Ãun

)−1
Ãun∆x̃un(k) (2.22)
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Then, (2.18) can be rewritten as follows:

y(k + j) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃stÃ
j
st

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)

+ C̃in

j−1∑
i=0

Ãiin
(
Ãinxin(k) + B̃in∆u(k)

)
+ C̃unÃ

j
un

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)

For j = 0, we have that:

y(k) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃st

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)
+ C̃un

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)
= ys(k) + C̃stxst(k) + C̃unxun(k)

In the same way, considering j = 1, it yields:

y(k + 1) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃stÃst

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)
+ C̃in

(
Ãinxin(k) + B̃in∆u(k)

)
+ C̃unÃun

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)
= ys(k + 1) + C̃stxst(k + 1) + C̃unxun(k + 1)

with

ys(k + 1) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃in
(
Ãinxin(k) + B̃in∆u(k)

)
xst(k + 1) = Ãstxst(k)− Ãst

(
I − Ãst

)−1
B̃st∆u(k)

xun(k + 1) = Ãunxun(k)− Ãun
(
I − Ãun

)−1
B̃un∆u(k)
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Finally, we can write the following state-space model:


ys

xst

xin

xun



+

=


Iny 0 CinAin 0
0 Ast 0 0
0 0 Ain 0
0 0 0 Aun




ys

xst

xin

xun

+


Bs

Bst

Bin

Bun

∆u (2.23)

y =
[
Iny Cst 0 Cun

]

ys

xst

xin

xun

 (2.24)

in which

Ast = Ãst, Ain = Ãin, Aun = Ãun,

Bs = C̃st
(
I − Ãst

)−1
B̃st + C̃inB̃in + C̃un

(
I − Ãun

)−1
B̃un,

Bst = −Ãst
(
I − Ãst

)−1
B̃st, Bin = B̃in, Bun = −Ãun

(
I − Ãun

)−1
B̃un,

Cst = C̃st, Cin = C̃in, Cun = C̃un.

Here in this representation, ys corresponds to the artificial integrating states related
to the incremental form of inputs and xst, xin and xun stand for the states related to
stable, integrating and unstable modes of the original system, respectively.

This general version of OPOM can be used in many formulations of IHMPC with
OPOM available in the literature, e.g., the ones proposed by Odloak (2004), González and
Odloak (2009) and Carrapiço and Odloak (2005).

2.3.1 An alternative formulation

In González, Marchetti and Odloak (2007), the authors propose a different OPOM
model in which the states xin related to the integrating modes do not depend on any model
parameters that describe the system. Although this method can be applied only when
the system has simple integrating poles (i.e., when Ãin is the identity matrix), it covers
most cases of integrating systems encountered in the process industry. Moreover, this
approach is particularly useful to formulate a robust MPC for dealing with uncertainties
in the integrating part of the system. Thus, in order to cover this case, we provide here
an alternative formulation of the new OPOM that has the same feature as the model
proposed in González, Marchetti and Odloak (2007).

First, observe that ∆x̃in(k + 1) = ∆x̃in(k) + B̃in∆u(k) for the case of simple
integrating poles and, from (2.15), we have that ∆x̃in(k) = B̃inu(k − 1). Then, (2.18) can
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be rewritten as follows:

y(k + j) = y(k) + C̃st
(
I − Ãjst

) (
I − Ãst

)−1 (
Ãst∆x̃st(k) + B̃st∆u(k)

)
+ jC̃inB̃in

(
u(k − 1) + ∆u(k)

)
+ C̃un

(
I − Ãjun

) (
I − Ãun

)−1 (
Ãun∆x̃un(k) + B̃un∆u(k)

)
(2.25)

Now, consider the states ys, xst and xun given in (2.19), (2.20) and (2.22), respec-
tively and take xin = u(k − 1). Then, we can rewrite (2.25) as follows:

y(k + j) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃stÃ
j
st

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)
+ jC̃inB̃in

(
xin(k) + ∆u(k)

)
+ C̃unÃ

j
un

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)

As we did before, taking j = 0, it yields:

y(k) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃st

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)
+ C̃un

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)
= ys(k) + C̃stxst(k) + C̃unxun(k)

And, for j = 1, we have that:

y(k + 1) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃stÃst

(
xst(k)−

(
I − Ãst

)−1
B̃st∆u(k)

)
+ C̃inB̃in

(
xin(k) + ∆u(k)

)
+ C̃unÃun

(
xun(k)−

(
I − Ãun

)−1
B̃un∆u(k)

)
= ys(k + 1) + C̃stxst(k + 1) + C̃unxun(k + 1)

with

ys(k + 1) = ys(k) + C̃st
(
I − Ãst

)−1
B̃st∆u(k) + C̃un

(
I − Ãun

)−1
B̃un∆u(k)

+ C̃inB̃in

(
xin(k) + ∆u(k)

)
xst(k + 1) = Ãstxst(k)− Ãst

(
I − Ãst

)−1
B̃st∆u(k)

xun(k + 1) = Ãunxun(k)− Ãun
(
I − Ãun

)−1
B̃un∆u(k)
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Thus, we can obtain the state-space model given as follows:
ys

xst

xin

xun



+

=


Iny 0 CinBin 0
0 Ast 0 0
0 0 Inu 0
0 0 0 Aun




ys

xst

xin

xun

+


Bs

Bst

Inu

Bun

∆u (2.26)

y =
[
Iny Cst 0 Cun

]

ys

xst

xin

xun

 (2.27)

in which

Ast = Ãst, Aun = Ãun,

Bs = C̃st
(
I − Ãst

)−1
B̃st + C̃inB̃in + C̃un

(
I − Ãun

)−1
B̃un,

Bst = −Ãst
(
I − Ãst

)−1
B̃st, Bin = B̃in, Bun = −Ãun

(
I − Ãun

)−1
B̃un,

Cst = C̃st, Cin = C̃in, Cun = C̃un.

Note here that the dynamics of state xin related to the integrating part do not
depend on any matrix of the original system (2.15)-(2.16). Therefore, this model has the
same applicability as the one proposed in González, Marchetti and Odloak (2007).

2.4 The new OPOM for time-delay systems

Consider here a time-delay system with the state updating equation given as follows:

x̃(k + 1) = Ãx̃(k) + B̃(0)u(k) + B̃(1)u(k − 1) + · · ·+ B̃(q)u(k − q) (2.28)

in which q is the largest time delay between any output-input pair of the system. Hence,
assuming this system has stable, integrating and unstable poles, after performing a system
decomposition (NAGAR; SINGH, 2004), the following model is obtained:

x̃st(k + 1)
x̃in(k + 1)
x̃un(k + 1)

 =


Ãst 0 0
0 Ãin 0
0 0 Ãun



x̃st(k)
x̃in(k)
x̃un(k)

+


B̃

(0)
st

B̃
(0)
in

B̃(0)
un

u(k)

+


B̃

(1)
st

B̃
(1)
in

B̃(1)
un

u(k − 1) + · · ·+


B̃

(q)
st

B̃
(q)
in

B̃(q)
un

u(k − q) (2.29)

y(k) =
[
C̃st C̃in C̃un

] 
x̃st(k)
x̃in(k)
x̃un(k)

 (2.30)
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In order to build the model in the incremental form of inputs, we can use the same
expressions of the general formulation of the new OPOM given in (2.23)-(2.24). Then, we
obtain the following model:

x(k + 1) = Ax(k) +B(0)∆u(k) +B(1)∆u(k − 1) + · · ·+B(q)∆u(k − q) (2.31)
y(k) = Cx(k) (2.32)

with

x(k) =
[
yTs (k) xTst(k) xTin(k) xTun(k)

]T
,

A =


Iny 0 CinAin 0
0 Ast 0 0
0 0 Ain 0
0 0 0 Aun

 , C =
[
Iny Cst 0 Cun

]
,

B(i) =


B(i)
s

B
(i)
st

B
(i)
in

B(i)
un

 , i ∈ I0:q

in which

Ast = Ãst, Ain = Ãin, Aun = Ãun,

B(i)
s = C̃st

(
I − Ãst

)−1
B̃

(i)
st + C̃inB̃

(i)
in + C̃un

(
I − Ãun

)−1
B̃(i)
un,

B
(i)
st = −

(
I − Ãst

)−1
ÃstB̃

(i)
st , B

(i)
in = B̃

(i)
in , B

(i)
un = −

(
I − Ãun

)−1
ÃunB̃

(i)
un,

Cst = C̃st, Cin = C̃in, Cun = C̃un.

A conventional state-space representation can be obtained by augmenting the states
in the same manner as presented in Santoro and Odloak (2012). For this purpose, the
following additional states are defined:

[
zT1 (k) zT2 (k) · · · zTq (k)

]T
=
[
∆uT (k − 1) ∆uT (k − 2) · · · ∆uT (k − q)

]T
Therefore, with a slight abuse of notation, the extended OPOM model for time-delay

systems is given as follows:

x+ = Ax+B∆u (2.33)
y = Cx (2.34)

with

x =
[
yTs xTst xTin xTun zT1 zT2 · · · zTq

]T
,
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A =



Iny 0 CinAin 0 B(1)
s B(2)

s · · · B(q−1)
s B(q)

s

0 Ast 0 0 B
(1)
st B

(2)
st · · · B

(q−1)
st B

(q)
st

0 0 Ain 0 B
(1)
in B

(2)
in · · · B

(q−1)
in B

(q)
in

0 0 0 Aun B(1)
un B(2)

un · · · B(q−1)
un B(q)

un

0 0 0 0 0 0 · · · 0 0
0 0 0 0 Inu 0 · · · 0 0
... ... ... ... . . . . . . . . . ... ...
0 0 0 0 0 0 . . . 0 0
0 0 0 0 0 0 · · · Inu 0



, B =



B(0)
s

B
(0)
st

B
(0)
in

B(0)
un

Inu

0
...
0
0



,

C =
[
Iny Cst 0 Cun 0ny×nuq

]

We shall note that, if the new OPOM for time-delay systems is built by using
the alternative formulation given in (2.26)-(2.27), the resulting model is suitable for
formulating a robust MPC for integrating systems with time delay, as proposed by Martins
et al. (2013).

2.4.1 A comparison with the traditional OPOM

Here, we compare the new OPOM formulation with the traditional one proposed
in Santoro and Odloak (2012) for integrating systems with time delay. For this purpose,
consider the following system taken from Santoro and Odloak (2012):

y(s) = −0.19e−s
s (10s+ 1)u1(s) + 0.235

s (15s+ 1)u2(s) (2.35)

Following the steps described in Santoro and Odloak (2012) and considering a
sampling time Ts = 1, we obtain the traditional OPOM model given below:

x+ =



1 0 0 1 1.71 0
0 0.9048 0 0 −1.7192 0
0 0 0.9355 0 0 0
0 0 0 1 −0.19 0
0 0 0 0 0 0
0 0 0 0 0 0


x+



0 −3.29
0 0
0 3.2977
0 0.2350
1 0
0 1


∆u (2.36)

y =
[
1 1 1 0 0 0

]
x (2.37)

Now, we proceed by following the steps for building the new OPOM model given
in (2.33)-(2.34). First, we consider Ts = 1 and discretize the transfer function model given
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in (2.35). Then, the following state-space realization is obtained in MATLAB®:

x̃(k + 1) =


0.4132 −0.4942 0.1610
0.8656 1.7905 −0.2989
0.8656 0.8549 0.6366

 x̃(k) +


0 −0.0212
0 0.0998
0 −0.0252

u(k)

+


−0.0568 0
−0.0677 0
−0.0677 0

u(k − 1)

y(k) =
[
−0.0482 0.0887 0.0873

]
x̃(k)

After performing a system decomposition into stable and integrating manifolds, we
can write the model in the form given in (2.29)-(2.30) with the following system matrices:

Ãst =
0.9048 0

0 0.9355

 , Ãin = 1,

B̃
(0)
st =

0 0
0 1.7063

 , B̃(0)
in =

[
0 1.7608

]
,

B̃
(1)
st =

1.3588 0
0 0

 , B̃(1)
in =

[
−1.4236 0

]
,

C̃st =
[
0.1331 −0.1332

]
, C̃in = 0.1335

The new OPOM model can be directly obtained by applying the formulas for
computing the matrices used to build the model (2.33)-(2.34). This results in the following
model:

x+ =



1 0 0 0.1335 1.71 0
0 0.9048 0 0 −12.9197 0
0 0 0.9355 0 0 0
0 0 0 1 −1.4236 0
0 0 0 0 0 0
0 0 0 0 0 0


x+



0 −3.29
0 0
0 −24.7512
0 1.7608
1 0
0 1


∆u (2.38)

y =
[
1 0.1331 −0.1332 0 0 0

]
x (2.39)

Figure 2 depicts the dynamics of the traditional OPOM (2.36)-(2.37) and the
new OPOM (2.38)-(2.39) under the application of input increments ∆u = (−1, 0.1) and
∆u = (1,−0.1) at time instants k = 10 and k = 20, respectively. As expected, the outputs
y of both models are identical, as well as the state ys, which corresponds to the predicted
steady output when the integrating state xin is zeroed. Regarding the dynamics of states
xst and xin, the difference between the models is due to the presence of larger absolute
values in the state and input matrices of the new OPOM, which does not result in different
output dynamics because the output matrix has proportionally smaller numbers.
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Figure 2 – System response comparison between the new OPOM and the traditional one

As observed in the above example, although the new OPOM and the traditional
one produce the same input/output behavior, they may have different state/input gains.
This depends on the initial state-space model that one chooses to build the new OPOM.
Since state-space realizations are not unique, different models can be obtained through
similarity transformations. For instance, note that one can obtain the same model matrices
as the traditional OPOM by considering the following transformation matrix:

T = diag
([
C̃st C̃in

])
=


0.1331 0 0

0 −0.1332 0
0 0 0.1335


and redefining the decomposed model as follows:x̃st

x̃in

← T

x̃st
x̃in

 ,
Ãst 0

0 Ãin

← T

Ãst 0
0 Ãin

T−1,

B̃st

B̃in

← T

B̃st

B̃in

 , [
C̃st C̃in

]
←
[
C̃st C̃in

]
T−1

This results in the following transformed matrices:

Ãst =
0.9048 0

0 0.9355

 , Ãin = 1,

B̃
(0)
st =

0 0
0 −0.2273

 , B̃(0)
in =

[
0 0.2350

]
,
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B̃
(1)
st =

0.1808 0
0 0

 , B̃(1)
in =

[
−0.19 0

]
,

C̃st =
[
1 1

]
, C̃in = 1

Again, applying the formulas for building the new OPOM (2.33)-(2.34), we now
obtain a model that is identical to the traditional OPOM given in (2.36)-(2.37).

2.5 Output feedback with the new OPOM

Similar to available MPC approaches that rely on a state-feedback framework,
the deployment of the new OPOM into an MPC formulation also demands the state
vector to be available. Hence, to apply these controllers in practice, one often needs to
design state observers since only plant outputs are in general measured. However, it is
well-known that closed-loop stability may not be assured by separately designing a stable
state observer and a nominally stabilizing MPC. This is so because the MPC control law
becomes nonlinear when there are active constraints, which makes the separation principle
no longer applicable.

To avoid the need for designing state observers, YOUNG et al. (1987) proposed a
non-minimal state-space model built in such a way that the state vector consists of only
measured variables, namely, the current system output along with past outputs and inputs.
This model is obtained as a state-space realization that is equivalent to the following
discrete-time difference equation model:

y(k) = −
na∑
i=1

Aiy(k − i) +
nb∑
i=1

Biu(k − i) (2.40)

in which u ∈ Rnu , y ∈ Rny , Ai ∈ Rny×ny and Bi ∈ Rny×nu are matrices of model coefficients,
and na and nb are maximum delays with respect to outputs and inputs, respectively.

Let the state vector be defined as follows:

x(k) =
[
y(k)T y(k − 1)T · · · y(k − na)T u(k − 1)T u(k − 2)T · · · u(k − nb)T

]T

Then, model (2.40) can be written in the following state-space form:

x+ = Ax+Bu (2.41)
y = Cx (2.42)
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in which

A =



−A1 −A2 · · · −Ana−1 −Ana B2 · · · Bnb−1 Bnb

Iny 0 · · · 0 0 0 · · · 0 0
0 Iny · · · 0 0 0 · · · 0 0
... ... . . . ... ... ... . . . ... ...
0 0 · · · Iny 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 Inu · · · 0 0
... ... . . . ... ... ... . . . ... ...
0 0 · · · 0 0 0 · · · Inu 0



, B =



B1

0
0
...
0
Inu

0
...
0



,

C =
[
Iny 0 · · · 0 0 0 · · · 0 0

]

Since the state-space form (2.41)-(2.42) is obtained by realigning the model on
past data, it is also known as the realigned model (MACIEJOWSKI, 2002). Although the
state-space realization of model (2.40) presented here has inputs in the positional form,
realigned models with incremental inputs have also been proposed (WANG; YOUNG,
2006; PEREZ; ODLOAK, 2006).

Finite horizon MPC formulations using the realigned model with embedded integral
action for removing offset were proposed in Wang and Young (2006) and Zhang et al.
(2011). Concerning the infinite horizon approach, an output-feedback robust MPC based
on the realigned model was proposed in Perez and Odloak (2006) and González and Odloak
(2010). The IHMPC with the realigned model is then extended to integrating systems
for the nominal case (GONZÁLEZ; PEREZ; ODLOAK, 2009) and when multi-model
uncertainty is considered (PEREZ; ODLOAK; LIMA, 2012; PEREZ; ODLOAK; LIMA,
2014). However, the formulations proposed by Perez, Odloak and Lima (2012) and Perez,
Odloak and Lima (2014) consider systems that can be divided into pure integrating outputs
and pure stable outputs, which poses a limitation on dealing with other types of dynamics.
More recently, Ribeiro et al. (2020) employed the realigned model in the development of
an output-feedback tube-based robust MPC.

Therefore, the use of the realigned model as a starting model to build the new
OPOM represents an interesting alternative to deal with output feedback while also
allowing the application of existing IHMPC formulations with OPOM, which cover a
much wider class of systems and control objectives in comparison with available MPCs
exclusively developed with realigned models. Note that the key property of the realigned
model, i.e., the measured states, is not lost in this approach because, by construction,
the states of the new OPOM can be written in terms of the states of the original system
(2.6)-(2.7). To show that, consider equations (2.19)-(2.22), then observe that the states of
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the new OPOM can be computed as follows:
ys

xst

xin

xun

 = L

 x

∆x

 (2.43)

with

L =


Iny C̃st

(
I − Ãst

)−1
Ãst 0 C̃un

(
I − Ãun

)−1
Ãun

0 −
(
I − Ãst

)−1
Ãst 0 0

0 0 Inin 0
0 0 0 −

(
I − Ãun

)−1
Ãun


C 0

0 T−1



in which T is the transformation matrix used to obtain system (2.15)-(2.16).

As an alternative, when A has inverse, the incremental states in (2.43) can be
substituted by the predecessor input u− as follows:

ys

xst

xin

xun

 = L̃

 x
u−

 (2.44)

with

L̃ = L

 Iny 0
(I − A−1) A−1B


This shows that the state vector of the new OPOM can be directly computed

whenever the states of the original system are measured. Note that this can be achieved
not only with the realigned model but also when a state-space model is obtained through
the linearization of a first-principle model written in terms of measured variables. On the
other hand, when no state-space model with measured states is available, the new OPOM
allows the use of an existing state observer originally designed for the (possibly minimal)
original state-space model of the system. This means that, by using the new OPOM, one
can avoid either the use of a state observer or the design of a new one, which represents an
important advantage over the traditional OPOM, whose states must always be estimated
via a tailor-designed observer.

2.6 Conclusion

We here proposed a new method to build a state-space model in the velocity form of
inputs that has, as one of the states, the prediction of system output at steady-state. This
approach successfully emulates the output prediction-oriented model, originally presented
by Rodrigues and Odloak (2003b). The proposed model, here named as the new OPOM,
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has some advantages over the traditional OPOM proposed by Rodrigues and Odloak
(2003b). They are summarized as follows:

• the new OPOM is built from a state-space model, which is a more general represen-
tation of MIMO systems and is usually used in the modern MPC literature;

• model construction is straightforward since one can easily plug system matrices into
the final formulas;

• it is easy to automate in a computer program, which favors the development of an
industrial package;

• this approach directly deals with pole multiplicity;

• if the original system is minimal, then the vector
[
xTst xTin xTun

]T
is also minimal

because the dimension of the original system is retained in the dynamic part, which
may generate smaller models in comparison to the traditional OPOM;

• the new OPOM avoids the use of a state observer when the state of the original
system is measured, making it possible to use the realigned model;

• it also supports the use of an existing state observer for the original system.

Under minimal adaptations, the new OPOM proposed in this chapter can be
applied to existing IHMPC formulations based on the traditional OPOM. Moreover, the
new OPOM allows the combination of such approaches into a more general IHMPC
formulation. Since it is not in the scope of this chapter to present such an extended
IHMPC formulation, the reader is referred to the works of Sencio and Odloak (2018a)
and Sencio and Odloak (2018b). The application of the IHMPC with the new OPOM to
a deisobutanizer column and to an unstable reactor is presented in Sencio and Odloak
(2018a), while in Sencio and Odloak (2018b) the authors show the application to a system
whose stable, integrating and unstable modes have double multiplicity. However, these
approaches of IHMPC with the new OPOM are based on a finite control horizon, which
means that integrating and unstable modes must be zeroed at the end of the prediction
horizon so as to assure closed-loop stability. This not only produces a suboptimal controller
but also results in a small domain of attraction. The latter issue can be alleviated by
including slack variables into stability constraints, guaranteeing problem feasibility, which
comes at the expense of losing stability guarantees for open-loop unstable systems. To
address this problem, a more general dual-mode MPC with OPOM will be presented in
the next chapter.
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Chapter 3

A dual-mode MPC with OPOM

3.1 Introduction

In practical applications, an MPC controller typically receives steady-state targets
from an optimizer that performs the integration between the MPC and an upper layer
called real-time optimization (RTO) (YING; VOORAKARANAM; JOSEPH, 1999). Due
to variations in operating conditions and economic objectives specified in the RTO stage,
the desired targets may change and the controller should be able to steer the system to
the new reference while satisfying constraints. Theoretically speaking, this objective is
achieved by ensuring problem feasibility, closed-loop stability and offset removal.

Enjoying stability properties first established for the receding horizon regulator
(RAWLINGS; MUSKE, 1993), early MPC formulations deal with the problem of target
tracking simply by shifting system coordinates to the operating point provided by the
target calculation layer (MUSKE; RAWLINGS, 1993; RAO; RAWLINGS, 1999). To obtain
offset-free control in the presence of unmeasured disturbances and model uncertainty, this
approach often requires augmenting the model with integrating disturbances that must be
estimated to produce steady-state and input targets that are consistent with zero tracking
error in the controlled variables. Criteria for designing disturbance models for offset-free
control are given in Muske and Badgwell (2002) and Pannocchia and Rawlings (2003).

Although the offset in the controlled variables can be effectively removed by using
disturbance models, the target optimizer per se does not ensure the feasibility of the control
problem when large excursions between operating points are required, for instance, due to
changing economic criteria in the RTO layer. In other words, during sudden changes in the
reference, terminal stability constraints may not be satisfied, leading the control problem
to lose its feasibility. This occurs because shifting the system origin to the new steady
state also changes the controller’s domain of attraction, which may turn the current state
to be infeasible. In such cases, a longer control horizon must be chosen so that problem
feasibility is recovered (SCOKAERT; RAWLINGS, 1998). Another issue with shifting the
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system origin is that the invariant set employed in a terminal inequality constraint must
be recomputed, which may be intractable to be performed online.

Feasibility issues are handled in some approaches (ROSSITER; KOUVARITAKIS;
GOSSNER, 1996; CHISCI; ZAPPA, 2003) by simply switching between different control
laws according to whether the constraints can be satisfied or not for the current target and
system state. If not, a feasibility recovery mechanism is triggered. Rossiter, Kouvaritakis
and Gossner (1996) proposed an algorithm for SISO systems in which a constrained stable
generalized predictive control (CSGPC) (ROSSITER; KOUVARITAKIS, 1993) is applied
whenever the terminal constraint is feasible, otherwise, a modified endpoint constraint
with a slack variable is employed. A contractive constraint guarantees the predicted steady
output converges to the desired setpoint. Concerning target handling in MPC algorithms,
Chisci and Zappa (2003) also propose a switching strategy in which, if the current state
becomes infeasible upon a setpoint change, a recovery mode is activated to steer the state
into the domain of attraction of a predictive regulator. Under some assumptions, it is
proved that the algorithm ensures a finite recovery time.

To deal with the tracking problem in constrained systems, the so-called command
governors ensure constraints satisfaction by computing admissible references to be tracked
by the controller. Gilbert, Kolmanovsky and Tan (1995) proposed a first-order low-pass
filter with a bandwidth parameter that depends nonlinearly on the system reference,
which is modified to enforce state and input constraints. A generalized reference governor
approach for nonlinear systems has been proposed by Gilbert and Kolmanovsky (2002)
and several other formulations have appeared in the literature, see e.g. a comprehensive
survey on reference and command governors (GARONE; CAIRANO; KOLMANOVSKY,
2017) and the references therein.

Some strategies merge the features of reference governors and MPC in a single
optimization layer (RODRIGUES; ODLOAK, 2003b; ODLOAK, 2004; LIMON et al.,
2008; FERRAMOSCA et al., 2009; MAYNE; FALUGI, 2016). In general, the idea behind
these studies lies in the inclusion of artificial references as decision variables of the optimal
control problem, consisting of an extra degree of freedom that allows the desired target to
be tracked in an admissible way. In these approaches, state (or output) and input predicted
trajectories are penalized as deviations from their respective artificial references, which
are, in turn, penalized in terms of the deviation from the true steady-state target, possibly
chosen by the RTO layer. Deviations from the true reference are treated as slack variables
in some MPC approaches, such as the ones presented by Rodrigues and Odloak (2003b)
and Odloak (2004) and in the feasibility recovery mode proposed by Rossiter, Kouvaritakis
and Gossner (1996). Since slack variables correspond to extra degrees of freedom, the idea
of artificial references is implicitly deployed in these studies.

Concerning the explicit use of artificial references within the MPC formulation,
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Limon et al. (2008) proposed an MPC for tracking in which artificial steady state and
input are characterized through a suitable parameter, representing an additional decision
variable of the control problem. The deviation between the artificial steady state and
the desired one is penalized in the so-called offset cost function and the resulting control
strategy steers the system to the closest admissible reference if the desired target is not
admissible. Moreover, in this approach, terminal stability constraints do not depend on
any exogenous reference, which allows the control problem to retain feasibility despite
changes in the desired target. Stability is ensured by constraining the terminal state and
the artificial references into an invariant set for tracking.

The effect of the offset cost function on the local optimality property of this class of
MPC based on artificial references is studied in Ferramosca et al. (2009) and in Ferramosca
et al. (2011), and an extension to the zone control problem is presented in Ferramosca et
al. (2010). Simon, Lofberg and Glad (2014) propose an MPC for tracking in which the
invariant set for tracking is replaced by a dynamically scaled terminal set. More recent works
based on artificial references have been proposed considering robust stability (D’JORGE;
FERRAMOSCA; GONZÁLEZ, 2017), stochastic (PAULSON; SANTOS; MESBAH, 2019)
and nonlinear systems (LIMON et al., 2018; KÖHLER; MÜLLER; ALLGÖWER, 2020).

Artificial references can be sensitive to uncertainties given that even small changes
in the model parameters may lead to very different steady states and inputs (DUGHMAN;
ROSSITER, 2015). In this case, since the MPC for tracking proposed by Limon et al.
(2008) has no built-in integral action, this approach may compute artificial references that
do not represent a steady state for the real plant, which leads to offset in the controlled
variables, as in fact can be observed in the experimental results presented in Ferramosca
et al. (2013). Therefore, similar to approaches that deploy a target optimization layer
(MUSKE; RAWLINGS, 1993; RAO; RAWLINGS, 1999), the one-stage MPC based on
artificial references of Limon et al. (2008) also needs an augmented model with disturbance
estimates so that consistent artificial references can be computed, thereby removing the
influence of model errors and unmeasured constant disturbances.

Aiming at providing offset-free control, the MPC proposed by Rodrigues and Odloak
(2003b) is based on a state-space model in the velocity-form of inputs. Corresponding
to a particular case of the general disturbance model (PANNOCCHIA, 2015), velocity
models have the advantage of avoiding the computation of input references at steady state
(GONZÁLEZ; ADAM; MARCHETTI, 2008). Rodrigues and Odloak (2003b) propose the
output prediction-oriented model (OPOM), consisting of a different class of velocity models
in which the integrating states that appear when writing the model in the incremental
form of inputs correspond to the prediction of system outputs at steady state, as described
in the previous chapter. This embedded output prediction at steady state avoids the
use of an auxiliary steady-state model and is useful for imposing the terminal constraint
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in a stabilizing MPC formulation. Rodrigues and Odloak (2003b) propose to soften the
terminal constraint with a slack variable, which is then penalized in the control cost
function. This strategy enlarges the controller’s domain of attraction by ensuring problem
feasibility under any setpoint change. Initially proposed for open-loop stable systems,
the MPC with OPOM has also been extended for integrating (CARRAPIÇO; ODLOAK,
2005), unstable (MARTINS; ODLOAK, 2016; SANTANA; MARTINS; ODLOAK, 2020a),
and time-delay systems (GONZÁLEZ; ODLOAK, 2011; SANTORO; ODLOAK, 2012).
Approaches for handling the zone control problem and optimizing input targets have
been proposed (GONZÁLEZ; ODLOAK, 2009; MARTINS; ODLOAK, 2016) and robust
stability has been addressed considering different classes of model uncertainty such as
the multi-model paradigm (MARTINS; ZANIN; ODLOAK, 2014; MARTINS; ODLOAK,
2016) and the polytopic representation (RODRIGUES; ODLOAK, 2003b; ODLOAK, 2004;
ALVAREZ; ODLOAK, 2010). These formulations of MPC with OPOM have proved to be
implementable in practice as demonstrated in successful applications in laboratory-scale
plants (MARTIN; ODLOAK; KASSAB, 2013; SILVA et al., 2020) as well as in the oil
refining industry (CARRAPIÇO et al., 2009; MARTIN; ZANIN; ODLOAK, 2019).

Although it ensures the feasibility of terminal constraints, the main problem of
including slack variables is that, when dealing with open-loop integrating and unstable
systems, one may not guarantee that the control cost function is non-increasing, which
is an important argument for stability proof. To overcome this issue, some works apply
a two-step approach as a mechanism to enforce slack variables to decrease over time
instants (CARRAPIÇO; ODLOAK, 2005; GONZÁLEZ; MARCHETTI; ODLOAK, 2007;
SANTORO; ODLOAK, 2012). Considering integrating systems and assuming no input
saturation, finite-time convergence of the slack variable related to integrating modes is
proved in González, Marchetti and Odloak (2007) and Santoro and Odloak (2012). One-step
strategies propose including a contractive constraint that forces slack variables to decrease
with respect to the slack variable recomputed for the current state and shifted past input
sequence (SANTORO; ODLOAK, 2012; MARTINS; ODLOAK, 2016). Although this
procedure ensures the contractive constraint is always satisfied, the convergence of the
slack variable is not guaranteed and strongly depends on the slack penalization in the
cost function. Consequently, stability is only proved by assuming slack variables related to
non-stable modes are zeroed.

Given the respective limitations of the MPC formulations proposed by Rodrigues
and Odloak (2003b) and Limon et al. (2008), this chapter exploits the synergy between the
two approaches by extending the MPC with OPOM proposed in Rodrigues and Odloak
(2003b) with the idea of invariant set for tracking presented in Limon et al. (2008). While
the former produces offset-free control and allows the characterization of artificial references
that are independent of model parameters at steady state, the latter provides a method
for computing an invariant set that does not depend on any exogenous reference. The
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resulting strategy is a dual-mode MPC for tracking with embedded integral action and
guaranteed stability and feasibility under any setpoint change. In the proposed approach,
the characterization of steady outputs and inputs is based only on terminal states and
inputs, which is simpler than the one proposed by Limon et al. (2008) since equilibria
parametrization is not necessary. Even in the presence of model errors and unmeasured
disturbances, our method allows the computation of artificial references that are consistent
with the true plant steady state, leading to a well-posed performance index, i.e., whose
minimum corresponds to zero tracking error. Moreover, unlike most MPC formulations
available in the literature, the proposed controller explicitly deals with constraints on input
increments, which is especially important in applications of model predictive controllers
in the process industry. We also provide an extension of the proposed MPC to deal with
output control zones and optimizing input targets. It is proved that, if the desired operating
point is not admissible, the proposed controller steers the system to the operating point
that minimizes an offset cost function. Numerical examples are provided.

This chapter is organized as follows. The next section presents the system model
and constraints along with the characterization of the artificial references, and definitions
of the invariant set for tracking and performance index. In Section 3.3, the formulation of
the dual-mode MPC with OPOM is presented followed by technical lemmas and theorem,
with their respective proofs. In Section 3.4, the proposed controller is applied to a double-
integrator system and a comparison with the MPC for tracking of Limon et al. (2008) is
given. In Section 3.5, we address the control problem that deals with output zones and input
targets. The extended formulation is presented along with theoretical analyses regarding
recursive feasibility and closed-loop convergence. Section 3.6 shows the application of the
extended controller to an unstable reactor system. Finally, conclusions are given in Section
3.7.

3.2 Preliminaries

3.2.1 System model

Consider a linear time-invariant system with nst stable, nin integrating and nun
unstable poles, ny outputs, nu inputs and a maximum input delay of q time steps. The
OPOM model built for this system has the following form:

x+ = Ax+B∆u (3.1)
y = Cx (3.2)

with

x =
[
yTs xTst xTin xTun zT1 zT2 · · · zTq

]T
,
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A =



Iny 0 CinAin 0 B(1)
s B(2)

s · · · B(q−1)
s B(q)

s

0 Ast 0 0 B
(1)
st B

(2)
st · · · B

(q−1)
st B

(q)
st

0 0 Ain 0 B
(1)
in B

(2)
in · · · B

(q−1)
in B

(q)
in

0 0 0 Aun B(1)
un B(2)

un · · · B(q−1)
un B(q)

un

0 0 0 0 0 0 · · · 0 0
0 0 0 0 Inu 0 · · · 0 0
... ... ... ... . . . . . . . . . ... ...
0 0 0 0 0 0 . . . 0 0
0 0 0 0 0 0 · · · Inu 0



, B =



B(0)
s

B
(0)
st

B
(0)
in

B(0)
un

Inu

0
...
0
0



,

C =
[
Iny Cst 0 Cun 0ny×nuq

]
in which ys ∈ Rny , xst ∈ Rnst , xin ∈ Rnin , xun ∈ Rnun and zi ∈ Rnu ∀i ∈ I1:q are past input
increments, with zi = ∆u(k − i).

Here, we will not make any assumptions regarding the way the OPOM is obtained.
In other words, this general form of OPOM can be built either by using the method
proposed in the previous chapter (see Section 2.4) or by combining different formulations
of the traditional OPOM proposed in the literature, namely the works of Odloak (2004),
Santoro and Odloak (2012) and Martins and Odloak (2016).

To simplify our developments, we can group some matrices so that the system
(3.1)-(3.2) is written as follows:

ys
xd

+

=
Iny Asd

0 Ad

ys
xd

+
Bs

Bd

∆u (3.3)

y =
[
Iny Cd

] ys
xd

 (3.4)

in which xd ∈ Rnd , Ad ∈ Rnd×nd , Asd ∈ Rny×nd , Bs ∈ Rny×nu , Bd ∈ Rnd×nu , Cd ∈ Rny×nd

and nd = nst + nin + nun + nuq.

Assumption 1. The pair (Ad, Bd) is stabilizable.

3.2.2 System constraints

We consider the system is subject to linear constraints on system outputs, inputs
and input increments, for which the following sets can be defined:

Y := {y ∈ Rny : Ayy ≤ by} (3.5)
U := {u ∈ Rnu : Auu ≤ bu} (3.6)
U∆ := {∆u ∈ Rnu : A∆∆u ≤ b∆} (3.7)
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Note that, unlike most MPC formulations available in the literature, constraints on
input increments are explicitly considered here. This type of constraint is associated with
physical limitations and equipment preservation, and is mostly used by practitioners in the
process industry. Among the reasons for constraining input increments are: control valves
may have a limited positioning velocity; the motor coupled to the pump shaft has limited
acceleration; furnaces and reboilers must have moderate temperature variations in order
to avoid equipment damage due to thermal dilatation of tubes and refractory walls; etc.

Remark 2. Due to the inevitable presence of disturbances and model errors in practical
applications, hard output constraints may lead to infeasibilities of the control problem,
which is the reason why this type of constraint usually is not taken into account in MPC
formulations with OPOM. Since the approach proposed here does not depend on the
existence of output constraints, they can either be removed or softened. Different strategies
for handling infeasibilities of MPC problems are discussed in Scokaert and Rawlings (1999).

3.2.3 Characterization of steady outputs and inputs

To simplify notation, for a given state x = (ys, xd), let u− denote the predecessor
input, i.e. the input of previous time step with respect to x. Here, we will show that steady
outputs and inputs can be computed as (ȳs, ūs) = M(x, u−), in which M is a suitable
matrix that will be defined later on.

First, consider the following control law:

∆u = Kxd (3.8)

in which K is computed such that F = Ad + BdK is discrete-time Hurwitz. Note that
Assumption 1 guarantees the existence of a stabilizing control gain K, whose computation
can be performed by means of standard techniques such as pole placement or the well-
known LQR (linear quadratic regulator). Under control law (3.8), the evolution of system
(3.3) is described by the following autonomous system:

x+ =
Iny Asd +BsK

0 F

x
For a given x = x(k) = (ys(k), xd(k)), states ys(k + j) and xd(k + j) are given

separately as follows:

ys(k + j) = ys(k) + (Asd +BsK)
j−1∑
i=0

F ixd(k) (3.9)

xd(k + j) = F jxd(k) (3.10)
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Noting that ∑j−1
i=0 F

i = (I − F j) (I − F )−1 = (I − F )−1 (I − F j) and defining
Γ = (I − F )−1, we can compute the output y(k + j) as follows:

y(k + j) = ys(k + j) + Cdxd(k + j)
= ys(k) +

(
(Asd +BsK)Γ + (Cd − (Asd +BsK)Γ)F j

)
xd(k) (3.11)

Since F is a stable matrix, we can compute the steady output as follows:

ȳs = lim
j→∞

ys(k + j) = ys(k) + (Asd +BsK)Γxd(k) (3.12)

In the same manner, for a given u− = u(k − 1), the input u(k + j) is:

u(k + j) = u(k − 1) +
j∑
i=0

∆u(k + i) = u(k − 1) +K
j∑
i=0

F ixd(k)

= u(k − 1) +KΓ(I − F j+1)xd(k) (3.13)

And the steady input can be computed as follows:

ūs = lim
j→∞

u(k + j) = u(k − 1) +KΓxd(k) (3.14)

Then, the combination of (3.12) and (3.14) results in:

(ȳs, ūs) = M(x, u−) (3.15)

with

M =
 Iny (Asd +BsK)Γ 0ny×nu

0nu×ny KΓ Inu


Note that, when the system is at steady state, xd = 0 and ȳs and ūs do not depend

on any model parameter, becoming the actual steady output and input of the system.
Thus, even in the presence of plant-model mismatch, unbiased steady output and input
are obtained.

3.2.4 Characterization of the invariant set for tracking

For the characterization of the invariant set for tracking, we will follow similar
steps as the approach proposed by Limon et al. (2008). However, we here use a different
characterization of steady-state variables and explicitly consider constraints on input
increments.

The evolution of states and inputs considering system (3.3) and control law (3.8)
is given in terms of the augmented state w = (x, u−) as follows:

w+ = Aww (3.16)
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in which

Aw =


Iny Asd +BsK 0
0 F 0
0 K Inu


Now, considering the sets given in (3.5)-(3.7), the following convex polyhedron can

be defined for any λ ∈ (0, 1):

Wλ :=
{
w = (x, u−) : Cx ∈ Y , (u− +Kxd) ∈ U , Kxd ∈ U∆,Mw ∈ λ(Y × U)

}
(3.17)

A set Ωw
t ⊆ Wλ=1 is said to be admissible positively invariant for system (3.16) if,

for all w ∈ Ωw
t , the successor w+ = Aww is such that w+ ∈ Ωw

t . The maximal admissible
invariant set for tracking is defined as Ow∞ = {w : Aiww ∈ Wλ=1,∀i ≥ 0}.

Maximal admissible invariant sets can be computed offline by applying the algorithm
proposed in Gilbert and Tan (1991). However, observing the sufficient conditions for finite
determinability of maximal admissible invariant sets provided in Gilbert and Tan (1991),
the set Ow∞ may not be finitely determined because Aw has ny + nu eigenvalues on the
unit circle that are related to ys and u−. To deal with such cases, Gilbert and Tan (1991)
propose a method to compute an approximation of the maximal admissible invariant set
and, by using this approach, we can ensure that the set Ow∞,λ := {w : Aiww ∈ Wλ, ∀i ≥ 0}
can be finitely determined for any λ ∈ (0, 1). In other words, by choosing λ arbitrarily
close to 1, one can obtain a polyhedral approximation to the maximal invariant set Ow∞,
which has also been applied in the computation of the invariant set for tracking proposed
in Limon et al. (2008).

Given a Ωw
t = Ow∞,λ for some λ ∈ (0, 1), the set of steady outputs that can be

tracked with no steady error is limited to Ȳs = Projy(Z̄s), in which Z̄s is the set of
admissible steady outputs and inputs (ȳs, ūs) that are consistent with the invariant set for
tracking and is defined as follows:

Z̄s :=
{
z̄s = (ȳs, ūs) : (ȳs, ūs) = M(x, u−), (x, u−) ∈ Ωw

t , u
− ∈ U

}
(3.18)

3.2.5 Performance index

Let N denote a control horizon along which we can define the following sequence
of input increments:

∆u = {∆u(0),∆u(1), . . . ,∆u(N − 1)} (3.19)

Given a state x, a sequence of input movements ∆u and an output setpoint ysp,
let us consider the following infinite horizon performance index:

V (x,∆u, ysp) =
∞∑
j=0
‖y(j)− ysp‖2

Qy + ‖∆u(j)‖2
R (3.20)
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in which Qy ∈ Rny×ny and R ∈ Rnu×nu are given weighting matrices and the outputs
y(j) ∈ Rny are computed through model (3.3)-(3.4) with x(0) = x and control movements
∆u(j) that are elements of the sequence ∆u for j ∈ I0:N−1 and are given as ∆u(j) = Kxd(j)
for j ∈ I≥N .

In order to obtain a finite horizon performance index, we can split (3.20) into
partial and infinite sums:

VN(x,∆u, ysp) =
N−1∑
j=0
‖y(j)− ysp‖2

Qy + ‖∆u(j)‖2
R

+
∞∑
j=0
‖y(N + j)− ysp‖2

Qy + ‖∆u(N + j)‖2
R (3.21)

Combining (3.11) with (3.12) and noting that ∆u(N + j) = F jxd(N), the infinite
sum of (3.21) can be written as follows:

∞∑
j=0
‖y(N + j)− ysp‖2

Qy + ‖∆u(N + j)‖2
R =

∞∑
j=0
‖ȳs + (Cd − (Asd +BsK)Γ)F jxd(N + j)− ysp‖2

Qy

+ ‖KF jxd(N + j)‖2
R (3.22)

To prevent the above infinite sum from being unbounded, we must ensure that
ȳs − ysp = 0. Thus, the infinite sum can be computed as follows:

∞∑
j=0
‖y(N + j)− ysp‖2

Qy + ‖∆u(N + j)‖2
R = ‖xd(N)‖2

P (3.23)

in which
P =

∞∑
j=0

(F j)T Q̄F j (3.24)

with
Q̄ = (Cd − (Asd +BsK)Γ)T Qy (Cd − (Asd +BsK)Γ) +KTRK (3.25)

Since F is stable, the infinite sum P converges and can thus be computed. For this
purpose, multiply P by F T from the left and by F from the right and observe that:

P − F TPF =
∞∑
j=0

(F j)T Q̄F j −
∞∑
j=1

(F j)T Q̄F j

which results in the following Lyapunov equation:

P − F TPF = Q̄ (3.26)

Then, the performance index (3.21) can be written as follows:

VN(x,∆u, ysp) =
N−1∑
j=0

(
‖y(j)− ysp‖2

Qy + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P (3.27)
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Note that ȳs − ysp = 0 is a terminal constraint because ȳs is defined in terms of
the terminal state x(N) = (ys(N), xd(N)). Due to conflicts with input constraints (3.6)
and (3.7), this terminal constraint may not be satisfied in a control problem, leading
to infeasibilities. To circumvent this issue, this terminal constraint can be relaxed as
ȳs − ysp − δ = 0, in which δ ∈ Rny is an additional degree of freedom that corresponds
to the offset between the steady output ȳs and the output setpoint ysp. A similar type of
relaxation was first proposed by Rodrigues and Odloak (2003b) for stable systems without
time delay in which no terminal control law is employed and the terminal constraint is
simply given as ys(N) − ysp − δ = 0. From (3.12), it is easy to see that this terminal
constraint proposed in Rodrigues and Odloak (2003b) is a particular case of the one we
employed in this work since ȳs = ys(N) for Asd = 0 and K = 0.

As in Rodrigues and Odloak (2003b), the slack variable δ is penalized by a matrix
Sy ∈ Rny×ny in the performance index, which can be redefined as follows:

VN(x,∆u, ysp, δ) =
N−1∑
j=0

(
‖y(j)− ysp − δ‖2

Qy + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P + ‖δ‖2
Sy (3.28)

Although the inclusion of the slack variable δ serves the purpose of explicitly showing
the relaxation of the terminal constraint, it can be eliminated from the performance index
by substituting δ = ȳs − ysp. Hence, the performance index can be written as follows:

VN(x,∆u, ysp) =
N−1∑
j=0

(
‖y(j)− ȳs‖2

Qy + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P + ‖ȳs − ysp‖2
Sy (3.29)

Note that the steady output ȳs can be viewed here as an artificial reference, which
is a much more meaningful quantity than δ. Also, observe that the last term of (3.29),
which corresponds to the penalization of the slack variable δ employed in Rodrigues and
Odloak (2003b), is equivalent to the offset cost function proposed in Limon et al. (2008).
This shows the similarity between the two approaches.

In some applications, one may want to penalize the input trajectory rather than
input increments. Then, for the sake of completeness, the performance index can be
extended as follows:

VN(w,∆u, ysp) =
N−1∑
j=0

(
‖y(j)− ȳs‖2

Qy + ‖u(j)− ūs‖2
Qu + ‖∆u(j)‖2

R

)
+ ‖xd(N)‖2

P + ‖ȳs − ysp‖2
Sy (3.30)

in which Qu ∈ Rnu×nu and P is computed as solution of the following Lyapunov equation:

P − F TPF = Q̄ (3.31)

where

Q̄ = (Cd − (Asd +BsK)Γ)T Qy (Cd − (Asd +BsK)Γ) + (KΓF )T Qu (KΓF ) +KTRK

(3.32)
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3.3 A dual-mode MPC with OPOM

3.3.1 Problem formulation

For a given extended state w = (x, u−) and an output setpoint ysp, the proposed
dual-mode MPC with OPOM is based on the control problem PN (w, ysp) defined as follows:

∆u∗ = arg min
∆u

VN(w,∆u, ysp) (3.33)

subject to

(x(0), u(−1)) = w (3.34)
x(j + 1) = Ax(j) +B∆u(j), j ∈ I0:N−1 (3.35)
y(j) = Cx(j), j ∈ I0:N−1 (3.36)
u(j) = u(j − 1) + ∆u(j), j ∈ I0:N−1 (3.37)
y(j) ∈ Y , j ∈ I0:N−1 (3.38)
u(j) ∈ U , j ∈ I0:N−1 (3.39)
∆u(j) ∈ U∆, j ∈ I0:N−1 (3.40)
(ȳs, ūs) = M(x(N), u(N − 1)) (3.41)
(x(N), u(N − 1)) ∈ Ωw

t (3.42)

in which Ωw
t = Ow∞,λ for some λ ∈ (0, 1).

The set of initial extended states w that can be admissibly steered in N steps to
Ωw
t defines a polyhedral region WN ⊆ Rny+nd+nu such that problem PN(w, ysp) is feasible

for all w ∈ WN . Note that ysp does not affect problem feasibility since no constraint
depends on ysp. Then, for a given extended state wk ∈ WN and output setpoint ysp,k at
time step k, the solution of problem PN (wk, ysp,k) results in an optimal sequence of control
movements ∆u∗k. Since only the first element ∆u∗(0|k) is applied to the system and this
procedure is repeated in a receding horizon fashion, it implicitly defines the control law
∆u(k) := κN(wk, ysp,k).

Remark 3. Note that feedforward control can be incorporated into problem PN (w, ysp) by
considering a measured disturbance as a fixed input that remains constant over predictions.

3.3.2 Recursive feasibility and convergence analyses

Before establishing the recursive feasibility of problem PN(w, ysp) and the system
convergence under the control law κN(w, ysp), we will make the following assumption:
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Assumption 2. Let the following hold:

1. System (3.3)-(3.4) is undisturbed and the state is measured;

2. K ∈ Rnu×nd is a stabilizing control gain for the pair (Ad, Bd);

3. Qy ∈ Rny×ny , P ∈ Rnd×nd , Sy ∈ Rny×ny are positive definite matrices with P

computed through the Lyapunov equation (3.31);

4. Matrices Qu ∈ Rnu×nu and R ∈ Rnu×nu are given such that both are positive definite
or one of them is positive definite and the other is a positive semidefinite matrix.

Now, the following technical lemmas and theorem can be stated:

Lemma 1 (Recursive feasibility). Let Assumption 2 hold and consider a time step k

with an extended state wk ∈ WN and an output setpoint ysp,k. Then, the feasibility of
problem PN(wk, ysp,k) at time step k implies that PN(wk+j, ysp,k+j) will remain feasible at
any subsequent time step k + j, ∀j ∈ I≥1.

Proof. This proof follows standard arguments found in the MPC literature. Let ∆u∗k
denote the solution of problem PN(wk, ysp,k) at time step k. By the receding horizon
principle, only ∆u∗(0|k) is injected into the system and we move to time step k + 1, at
which x(0|k+1) = x(k+1) = x(1|k). Consider a suboptimal candidate solution to problem
PN(wk+1, ysp,k+1) denoted as ∆ũk+1 and given as follows:

∆ũk+1 = {∆u∗(1|k), . . . ,∆u∗(N − 1|k), Kxd(N |k)} (3.43)

Since we have explicitly defined ∆ũ(j|k+1) = ∆u∗(j+1|k) for j ∈ I0:N−2 in (3.43), it is easy
to see that u(j|k+1) = u(j+1|k) ∈ U ∀j ∈ I0:N−2 and, because the system is assumed to be
undisturbed, x(j|k+1) = x(j+1|k) ∀j ∈ I0:N−1 and y(j|k+1) = y(j+1|k) ∈ Y ∀j ∈ I0:N−1.
Concerning the last element of ∆ũk+1, observe that (x(N |k), u(N − 1|k)) ∈ Ωw

t and Ωw
t is

an admissible invariant set that satisfies (3.17), which implies that ∆ũ(N − 1|k + 1) =
Kxd(N |k) ∈ U∆ and u(N − 1|k + 1) = (u(N − 1|k) + Kxd(N |k)) ∈ U . Consequently,
constraints (3.34)-(3.40) are satisfied. Since (3.41) only defines transformation of variables,
it is trivially satisfied as well. Finally, due to the positive invariance of Ωw

t , we have that
(x(N |k+ 1), u(N − 1|k+ 1)) = (x(N + 1|k), u(N |k)) ∈ Ωw

t and, thus, constraint (3.42) is
also satisfied.

Therefore, by induction, it is easy to see that problem PN (wk+j, ysp,k+j) will remain
feasible at every time step k + j, ∀j ∈ I≥1.
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Lemma 2 (Auxiliary results). Let Assumption 2 hold and consider a given extended state
w = (x, u−) ∈ int(Ωw

t ) in which x = (ȳs, 0) and an admissible output setpoint ysp ∈ Ȳs
with ȳs 6= ysp. Then, there exists an admissible sequence of control movements given as
∆ũ = {∆u,Kx+

d , . . . , KF
N−2x+

d } that produces a new artificial reference ȳ+
s such that the

following relationship holds:

‖ȳs − ȳ+
s ‖2

Qy + ‖u− ū+
s ‖2

Qu + ‖∆u‖2
R + ‖x+

d ‖2
P + ‖ȳ+

s − ysp‖2
Sy < ‖ȳs − ysp‖

2
Sy (3.44)

in which (ȳ+
s , ū

+
s ) = M(x+, u), with x+ = (y+

s , x
+
d ), y+

s = ȳs + Bs∆u, x+
d = Bd∆u and

u = u− + ∆u.

Proof. First, we will prove that ∆ũ is an admissible control sequence. For this purpose,
consider a steady output given as ȳ+

s = αȳs + (1 − α)ysp, in which α ∈ (0, 1). We also
have ȳ+

s = ȳs + (Bs + (Asd +BsK) ΓBd) ∆u from the substitution of x+ = (y+
s , x

+
d ),

y+
s = ȳs + Bs∆u and x+

d = Bd∆u into ȳ+
s = Myx

+ where My =
[
Iny (Asd +BsK) Γ

]
.

Noting that ȳ+
s − ȳs = (1− α)(ysp − ȳs) and assuming (Bs + (Asd +BsK) ΓBd) has full

rank, then there exists ∆u such that (1−α)(ysp− ȳs) = (Bs + (Asd +BsK) ΓBd) ∆u holds
for some α ∈ (0, 1).

Now, to prove that ∆u is admissible, observe that, since (x, u−) ∈ int(Ωw
t ), there

exists a constant γ ∈ (0, 1) such that (x, u−) ∈ γΩw
t . Then, taking a sufficiently large α ∈

(0, 1) such that (B∆u,∆u) ∈ (1−γ)Ωw
t and ∆u ∈ U∆, it follows that (x, u−)+(B∆u,∆u) =

(x+, u) ∈ Ωw
t , which implies that ∆u is feasible. Now, since the remaining control movements

of ∆ũ are defined through the control law ∆u(j) = KF j−1x+
d , ∀j ∈ I1:N−1, they are also

feasible due to the positive invariance of Ωw
t . Therefore, the entire sequence of control

movements ∆ũ is admissible, which proves the claim.

Using (3.10)-(3.14), the performance index computed for ∆ũ is given as follows:

VN(w,∆ũ, ysp) =
N−1∑
j=0

(
‖y(j)− ȳ+

s ‖2
Qy + ‖u(j)− ū+

s ‖2
Qu + ‖∆u(j)‖2

R

)
+ ‖xd(N)‖2

P + ‖ȳ+
s − ysp‖2

Sy

= ‖ȳs − ȳ+
s ‖2

Qy + ‖(Cd − (Asd +BsK)Γ)x+
d ‖2

Qy

+ ‖(Cd − (Asd +BsK)Γ)Fx+
d ‖2

Qy + . . .

+ ‖(Cd − (Asd +BsK)Γ)FN−2x+
d ‖2

Qy + ‖u− ū+
s ‖2

Qu + ‖KΓFx+
d ‖2

Qu

+ ‖KΓF 2x+
d ‖2

Qu + · · ·+ ‖KΓFN−1x+
d ‖2

Qu + ‖∆u‖2
R + ‖Kx+

d ‖2
R

+ ‖KFx+
d ‖2

R + · · ·+ ‖KFN−2x+
d ‖2

R + ‖FN−1x+
d ‖2

P + ‖ȳ+
s − ysp‖2

Sy

(3.45)

Now, considering (3.24) with Q̄ given in (3.32), it follows that:
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‖(Cd − (Asd +BsK)Γ)x+
d ‖2

Qy + ‖(Cd − (Asd +BsK)Γ)Fx+
d ‖2

Qy + . . .

+ ‖(Cd − (Asd +BsK)Γ)FN−2x+
d ‖2

Qy + ‖u− ū+
s ‖2

Qu

+ ‖KΓFx+
d ‖2

Qu + ‖KΓF 2x+
d ‖2

Qu + · · ·+ ‖KΓFN−1x+
d ‖2

Qu

+ ‖Kx+
d ‖2

R + ‖KFx+
d ‖2

R + · · ·+ ‖KFN−2x+
d ‖2

R

+ ‖FN−1x+
d ‖2

P

=
(
x+
d

)T Q̄+ F T Q̄F + · · ·+
(
FN−2

)T
Q̄FN−2

+
∞∑

j=N−1

(
F j
)T
Q̄F j

x+
d

=
(
x+
d

)T  ∞∑
j=0

(
F j
)T
Q̄F j

x+
d = ‖x+

d ‖2
P

Thus, the performance index given in (3.45) can be written as follows:

VN(w,∆ũ, ysp) = ‖ȳs − ȳ+
s ‖2

Qy + ‖u− ū+
s ‖2

Qu + ‖∆u‖2
R + ‖x+

d ‖2
P + ‖ȳ+

s − ysp‖2
Sy (3.46)

Noting that ȳ+
s = My(y+

s , x
+
d ), we have:

‖ȳs − ȳ+
s ‖2

Qy = ‖ȳs − y+
s − (Asd +BsK)Γx+

d ‖2
Qy

= ‖ȳs − ȳs −Bs∆u− (Asd +BsK)ΓBd∆u‖2
Qy

= ‖∆u‖2
Q̃y

(3.47)

with Q̃y = (Bs + (Asd +BsK)ΓBd)T Qy (Bs + (Asd +BsK)ΓBd).

In the same manner, given that ū+
s = Mu(x+

d , u), with Mu =
[
KΓ Inu

]
, and

x+
d = Bd∆u, we also have:

‖u− ū+
s ‖2

Qu = ‖u−KΓx+
d − u‖2

Qu

= ‖KΓBd∆u‖2
Qu

= ‖∆u‖2
Q̃u

(3.48)

with Q̃u = (KΓBd)T Qu (KΓBd).

Using x+
d = Bd∆u again, it follows that:

‖x+
d ‖2

P = ‖Bd∆u‖2
P = ‖∆u‖2

P̃ (3.49)

in which P̃ = BT
d PBd.

Moreover, since ȳ+
s − ysp = α(ȳs − ysp), the following expression can be obtained:

‖ȳ+
s − ysp‖2

Sy = α2‖ȳs − ysp‖2
Sy

= α2(1− α)−2‖(Bs + (Asd +BsK)ΓBd) ∆u‖2
Sy

= α2(1− α)−2‖∆u‖2
S̃y

(3.50)
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with S̃y = (Bs + (Asd +BsK)ΓBd)T Sy (Bs + (Asd +BsK)ΓBd).

The substitution of (3.47)-(3.50) into (3.46) yields:

VN(w,∆ũ, ysp) = ‖∆u‖2
Q̃y

+ ‖∆u‖2
Q̃u

+ ‖∆u‖2
R + ‖∆u‖2

P̃ + α2(1− α)−2‖∆u‖2
S̃y

= ‖∆u‖2
H (3.51)

in which H = Q̃y + Q̃u +R + P̃ + α2(1− α)−2S̃y.

Now, to prove that ‖∆u‖2
H < ‖ȳs − ysp‖2

Sy = (1− α)−2‖∆u‖2
S̃y
, we will show that

there exists a sufficiently large α ∈ (0, 1) such that (1 − α)−2S̃y > H. For this purpose,
observe that there exists a constant ϕ > 0 such that ϕS̃y > Q̃y + Q̃u +R + P̃ holds for a
positive definite matrix S̃y. Thus, the following expression can be written:

(1− α)−2S̃y −H = (1− α2)(1− α)−2S̃y − Q̃y − Q̃u −R− S̃y
> (1− α2)(1− α)−2S̃y − ϕS̃y
= (1− α)−2

(
1− α2 − (1− α)2ϕ

)
S̃y

= (1− α)−1 (1 + α− (1− α)ϕ) S̃y

Therefore, (1 − α)−2S̃y > H for every α ∈ (αmin, 1) with αmin = max
(
0, ϕ−1

ϕ+1

)
,

which finishes the proof.

Lemma 3 (Convergence of ȳs to ysp). Under Assumption 2, consider a given initial
extended state w = (x, u−) ∈ int(Ωw

t ) with x = (ys, 0) and an admissible output setpoint
ysp ∈ Ȳs. If the solution of problem PN(w, ysp) is ∆u∗ such that ‖Cx − ȳs‖2

Qy = 0, then
‖ȳs − ysp‖2

Sy = 0.

Proof. Note that x = (ys, 0) is a steady state with corresponding steady output given
by ys. Since ‖Cx − ȳs‖2

Qy = 0, it follows that ys = ȳs, which implies that ūs = u− and
∆u∗ = {0, . . . , 0}. To prove by contradiction, we will assume that ȳs 6= ysp, which results
in the performance index V ∗N(w,∆u∗, ysp) = ‖ȳs − ysp‖2

Sy .

Since w ∈ int(Ωw
t ) and ȳs 6= ysp, by virtue of Lemma 2, there exists an admissible

sequence of control movements ∆ũ that is suboptimal and produces an artificial reference
ȳ+
s with the corresponding performance index VN(w,∆ũ, ysp) given as follows:

V ∗N(w,∆u∗, ysp) ≤ VN(w,∆ũ, ysp)

=
N−1∑
j=0

(
‖y(j)− ȳ+

s ‖2
Qy + ‖u(j)− ū+

s ‖2
Qu + ‖∆u(j)‖2

R

)
+ ‖xd(N)‖2

P + ‖ȳ+
s − ysp‖2

Sy

= ‖ȳs − ȳ+
s ‖2

Qy + ‖u− ū+
s ‖2

Qu + ‖∆u‖2
R + ‖x+

d ‖2
P + ‖ȳ+

s − ysp‖2
Sy

in which (ȳ+
s , ū

+
s ) = M(x+, u), with x+ = (y+

s , x
+
d ), y+

s = ȳs + Bs∆u, x+
d = Bd∆u and

u = u− + ∆u.
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Observe that, again by virtue of Lemma 2, the following relationship holds:

V ∗N(w,∆u∗, ysp) ≤ ‖ȳs − ȳ+
s ‖2

Qy + ‖u− ū+
s ‖2

Qu + ‖∆u‖2
R + ‖x+

d ‖2
P + ‖ȳ+

s − ysp‖2
Sy

< ‖ȳs − ysp‖2
Sy

= V ∗N(w,∆u∗, ysp)

Since the strict inequality contradicts the optimality of V ∗N(w,∆u∗, ysp), it follows
that ȳs = ysp.

Theorem 1 (Closed-loop convergence). Let Assumption 2 hold and consider an admissible
output setpoint ysp ∈ Ȳs. Then, for any feasible initial augmented state w0 ∈ WN , the
system (3.3)-(3.4) with inputs computed through control law κN (w, ysp) is admissibly steered
to the setpoint ysp.

Proof. Consider a given initial augmented state wk ∈ WN at time step k at which problem
PN(wk, ysp) is feasible with optimal solution denoted as ∆u∗k and optimal value function
V ∗N(wk,∆u∗k, ysp). Then, by the receding horizon principle, only the first input movement
is injected into the system and we move to time step k+ 1, at which a solution to problem
PN(wk+1, ysp) is guaranteed to exist by virtue of Lemma 1.

Consider a suboptimal solution ∆ũk+1 to problem PN(wk+1, ysp) at time step
k + 1, in which ∆ũk+1 is given in (3.43). As already shown in Lemma 1, the sequence of
control increments ∆ũk+1 is feasible. Let ṼN(wk+1,∆ũk+1, ysp) denote the corresponding
performance criterion.

Now, we will show that ∆ũk+1 produces steady outputs and inputs such
that (ȳs,k+1, ūs,k+1) = (ȳs,k, ūs,k). Consider the matrix My =

[
Iny (Asd +BsK) Γ

]
.

Since ȳs,k = My(ys(N |k), xd(N |k)) and ȳs,k+1 = My(ys(N |k + 1), xd(N |k + 1)),
with ys(N |k + 1) = ys(N |k) + (Asd +BsK)xd(N |k) and xd(N |k + 1) = Fxd(N |k), the
subtraction ȳs,k+1 − ȳs,k can be given as follows:

ȳs,k+1 − ȳs,k = (Asd +BsK) (I + Γ(F − I))xd(N |k)

Then, since I+Γ(F−I) = I+(I−F )−1(F−I) = I−(I−F )−1(I−F ) = 0, it follows
that ȳs,k+1 = ȳs,k. By following the same rationale, it can be shown that ūs,k+1 = ūs,k.

Observe that ∆ũk+1 produces the following sequences of predicted outputs and
inputs:

{y(0|k + 1), y(1|k + 1), . . . , y(N − 1|k + 1)} = {y(1|k), y(2|k), . . . , y(N |k)}
{u(0|k + 1), u(1|k + 1), . . . , u(N − 1|k + 1)} = {u(1|k), u(2|k), . . . , u(N |k)}

Also, given that xd(N |k + 1) = xd(N + 1|k) = Fxd(N |k), the performance index
ṼN(wk+1,∆ũk+1, ysp) can be written as follows:
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ṼN(wk+1,∆ũk+1, ysp) = ‖y(1|k)− ȳs,k‖2
Qy + · · ·+ ‖y(N |k)− ȳs,k‖2

Qy

+ ‖u(1|k)− ūs,k‖2
Qu + · · ·+ ‖u(N |k)− ūs,k‖2

Qu

+ ‖∆u∗(1|k)‖2
R + · · ·+ ‖∆u∗(N − 1|k)‖2

R + ‖Kxd(N |k)‖2
R

+ ‖Fxd(N |k)‖2
P + ‖ȳs,k − ysp‖2

Sy (3.52)

Note that ‖y(N |k)− ȳs,k‖2
Qy can be given as follows:

‖y(N |k)− ȳs,k‖2
Qy = ‖ys(N |k) + Cdxd(N |k)− ys(N |k)− (Asd +BsK) Γxd(N |k)‖2

Qy

= ‖xd(N |k)‖2
(Cd−(Asd+BsK)Γ)TQy(Cd−(Asd+BsK)Γ) (3.53)

Similarly, ‖u(N |k)− ūs,k‖2
Qu can be written as follows:

‖u(N |k)− ūs,k‖2
Qu = ‖us(N − 1|k) +KΓ (I − F )xd(N |k)− us(N − 1|k)−KΓxd(N |k)‖2

Qu

= ‖xd(N |k)‖2
(KΓF )TQu(KΓF ) (3.54)

Also, we have that:

‖Kxd(N |k)‖2
R = ‖xd(N |k)‖2

KTRK (3.55)

Summing up (3.53), (3.54) and (3.55) yields:

‖y(N |k)− ȳs,k‖2
Qy + ‖u(N |k)− ūs,k‖2

Qu + ‖Kxd(N |k)‖2
R = ‖xd(N |k)‖2

Q̄ (3.56)

with Q̄ given in (3.32).

Combining (3.52) and (3.56) and noting that, from (3.31), Q̄ + F TPF = P , it
follows that:

ṼN(wk+1,∆ũk+1, ysp) = ‖y(1|k)− ȳs,k‖2
Qy + · · ·+ ‖y(N − 1|k)− ȳs,k‖2

Qy

+ ‖u(1|k)− ūs,k‖2
Qu + · · ·+ ‖u(N − 1|k)− ūs,k‖2

Qu

+ ‖∆u∗(1|k)‖2
R + · · ·+ ‖∆u∗(N − 1|k)‖2

R

+ ‖xd(N |k)‖2
Q̄ + ‖Fxd(N |k)‖2

P + ‖ȳs,k − ysp‖2
Sy

=
N−1∑
j=1

(
‖y(j|k)− ȳs,k‖2

Qy + ‖u(j|k)− ūs,k‖2
Qu + ‖∆u∗(j|k)‖2

R

)
+ ‖xd(N |k)‖2

P + ‖ȳs,k − ysp‖2
Sy (3.57)

Now, we can easily show that the following relationship holds:

ṼN(wk+1,∆ũk+1, ysp)− V ∗N(wk,∆u∗k, ysp) =− ‖y(0|k)− ȳs,k‖2
Qy − ‖u(0|k)− ūs,k‖2

Qu

− ‖∆u∗(0|k)‖2
R (3.58)



3.4. Case study 1: double-integrator system 79

Then, it follows that ṼN (wk+1,∆ũk+1, ysp) ≤ V ∗N (wk,∆u∗k, ysp) since the right-hand
side of (3.58) is non-positive. By the optimality of V ∗N (wk+1,∆u∗k+1, ysp), we also have that
V ∗N(wk+1,∆u∗k+1, ysp) ≤ ṼN(wk+1,∆ũk+1, ysp), which implies that:

V ∗N(wk+1,∆u∗k+1, ysp)− V ∗N(wk,∆u∗k, ysp) ≤− ‖y(0|k)− ȳs,k‖2
Qy − ‖u(0|k)− ūs,k‖2

Qu

− ‖∆u∗(0|k)‖2
R (3.59)

The expression in (3.59) implies that the sequence of performance criteria at
subsequent time instants is non-increasing, which means that:

V ∗N(wk+1,∆u∗k+1, ysp) ≤ V ∗N(wk,∆u∗k, ysp), ∀k ∈ N

Since the sequence of performance indexes is non-increasing and bounded below
by zero, it converges, i.e. limk→∞

(
V ∗N(wk+1,∆u∗k+1, ysp)− V ∗N(wk,∆u∗k, ysp)

)
= 0, which

implies that both sides of (3.59) tend to zero as k →∞. Consequently, by the positiveness
of Qy, it follows that limk→∞‖y(k) − ȳs,k‖ = 0. Moreover, if Qu is positive definite,
limk→∞‖u(k)− ūs,k‖ = 0, which implies that limk→∞‖∆u(k)‖ = 0. On the other hand, if R
is positive definite, limk→∞‖∆u(k)‖ = 0, implying that limk→∞‖xd(k)‖ = 0. Consequently,
from (3.15), we also have that limk→∞‖u(k)− ūs,k‖ = 0.

Now, in virtue of Lemma 3, it follows that limk→∞‖y(k)− ysp‖ = 0, which proves
that the system output converges to the setpoint ysp.

3.4 Case study 1: double-integrator system

Here, we first compare the proposed controller (C1) with the MPC for tracking (C2)
presented in Limon et al. (2008). For this purpose, consider the following double-integrator
system: x1

x2

+

=
1 1

0 1

x1

x2

+
0 0.5

1 0.5

u1

u2


y1

y2

 =
x1

x2


This system is subject to constraints on outputs and inputs, with ‖y‖∞ ≤ 5 and

‖u‖∞ ≤ 0.3. In the application of the proposed MPC, the tuning parameters have been
chosen as N = 4, Qy = I2, Qu = I2, R = 0× I2, and Sy = 100× I2 and an LQR controller
with QLQR = RLQR = I2 has been used to design the control law (3.8). A λ = 0.99 has
been considered in the computation of the invariant set for tracking Ωw

t . Using the notation
of Limon et al. (2008), the controller C2 has been tuned with N = 3, Q = I2, R = I2,
T = 100 × I2 and λ = 0.99. The terminal control law has also been designed using an
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LQR controller with QLQR = RLQR = I2. These design parameters are the same as those
used by Limon et al. (2008). System states are assumed to be measured and C1 uses the
OPOM states computed through (2.43).

First, to compare C1 and C2, we will reproduce here the simulation scenario
presented in Limon et al. (2008). The system starts from x = (0,−2) and the output
setpoint is initially ysp = (5, 0), which is changed to ysp = (−5.5, 0) at time step k = 30 and
to ysp = (2, 0) at k = 60. In C1, we consider an initial input position of u− = (0.25, 0.1),
which has no effect on the results since input increments are not constrained here for a
fair comparison with C2.

Output and input responses obtained with controllers C1 and C2 are depicted in
Figures 3 and 4, respectively. Observe that C1 and C2 produced the same results, steering
the system to the closest (in a least square sense) admissible steady output such that
ȳs ∈ Ȳs ⊂ λY . These steady outputs are ȳs = (4.95, 0) when the setpoint is ysp = (5, 0) and
ȳs = (−4.95, 0) for ysp = (−5.5, 0). When the reference was changed to ysp = (2, 0) ∈ Ȳs,
the system was driven to ysp without steady error. As shown in Figure 5, the performance
indexes are non-increasing for a given ysp, as expected.
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Figure 3 – Outputs of the double-integrator system controlled by C1 (proposed approach)
and C2 (Limon et al. (2008)). Dotted black lines are the output upper/lower
limits and the solid black line is the output setpoint. The remaining lines are
described in the legend
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Figure 4 – Inputs of the double-integrator system controlled by C1 (proposed approach)
and C2 (Limon et al. (2008)). Dotted black lines are the input upper/lower
limits. The remaining lines are described in the legend
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Figure 5 – Performance indexes of the double-integrator system controlled by C1 (proposed
approach) and C2 (Limon et al. (2008))
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Figure 6 – Phase portrait of the double-integrator system controlled by C1 (proposed
approach) and sets of feasible initial states and terminal states
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Figure 7 – Sets of feasible initial states and terminal states of controllers C1 (proposed
approach) and C2 (Limon et al. (2008))
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For C1, the set of terminal states is Ωx
t = Projx(Ωw

t ) and the set WN is sliced at
u− = (0.25, 0.1) to obtain the set of initial feasible states XN . These sets Ωx

t and XN are
then written in terms of the state of the original system using (2.43) and denoted as Ωx,C1

t

and XC1
N , respectively. This procedure enables comparison with the sets XC2

N and Ωx,C2
t of

controller C2.

Figure 6 shows the phase portrait obtained with C1 along with the sets Ωx,C1
t and

XC1
N . Figure 7 shows that C1 and C2 produce the same sets of terminal states and initial

feasible states. Since we have used N = 4 for C1 and N = 3 for C2, one may argue that,
for the same N , C2 has a larger domain of attraction XN in comparison with C1. However,
in terms of degrees of freedom of the optimal control problem, C2 computes not only N
inputs but also an additional parameter θ ∈ Rnu that characterizes the artificial references
(LIMON et al., 2008), resulting in (N + 1)× nu decision variables. Conversely, C1 has only
N × nu decision variables. Therefore, since N has been chosen such that C1 and C2 have
the same number of degrees of freedom, our comparison is fair.
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Figure 8 – Outputs of the double-integrator system controlled by C1 (proposed approach)
and C2 (Limon et al. (2008)) in the presence of plant-model mismatch and
unmeasured disturbance. The solid black line is the output setpoint and the
remaining lines are described in the legend
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Figure 9 – Inputs of the double-integrator system controlled by C1 (proposed approach)
and C2 (Limon et al. (2008)) in the presence of plant-model mismatch and
unmeasured disturbance. Dotted black lines are the input upper/lower limits.
The remaining lines are described in the legend

Controllers C1 and C2 are now compared in the presence of plant-model mismatch
and unmeasured disturbances. To do so, the plant is simulated considering the following
modified model: x1

x2

+

=
1 1

0 1

x1

x2

+
0 0.4

1 0.4

 u1

u2

+
1

0

 d
y1

y2

 =
x1

x2


Note that, in the input matrix, the elements related to u2 were reduced in 20%, which may
represent in practice an actuator fault called loss of effectiveness (COSTA et al., 2021). A
persistent disturbance d = −0.1 enters the plant at time step k = 30. In this simulation,
the system starts at x = (0,−1) and the output setpoint is fixed at ysp = (1, 0).

Figures 8 and 9 show system outputs and inputs, respectively. As observed, C1
steered the system to the setpoint in both cases while C2 fails to reject the disturbance,
resulting in a steady-state offset. This happens because in C2 the parametrization of
steady states and inputs entirely depends on the system model (LIMON et al., 2008),
generating artificial references that make the performance index inconsistent with zero
tracking error in the presence of plant-model mismatch and unmeasured disturbances. In
fact, C2 only steered the plant to the setpoint in the first part of the simulation because



3.4. Case study 1: double-integrator system 85

ūs = (0, 0) is always a steady input for this integrating plant, which is not the case in the
presence of persistent disturbances or if the plant has stable or unstable poles. Note that
C1 produces consistent artificial references at steady state because the characterization of
steady outputs and inputs only depends on model parameters during transients. Therefore,
while C2 requires the estimation of disturbances to obtain offset-free control in this scenario,
this is not necessary for C1 due to its embedded integral action characterized by the
well-posed performance index that is consistent with zero tracking errors and unbiased
predictions at steady state achieved by the use of an incremental model (ROSSITER,
2004).

Now, let the input increments be constrained to ‖∆u‖∞ ≤ 0.1 and consider the
controller C3 as a copy of C1 that takes into account this additional constraint. The first
simulation scenario is reproduced here, but now the system starts at x = (−1,−1.5), which
is a feasible initial state for both C1 and C3. System outputs and inputs are shown in Figures
10 and 11, respectively. As expected, system convergence to the setpoint is slower with C3
in comparison to C1. On the other hand, while abrupt input movements were suppressed
with C3, C1 clearly produced larger input increments, which may not be acceptable in
some applications. As observed in Figure 12, C3 produced a larger performance index in
comparison with C1, which was expected due to the limited convergence velocity that
results from the constraint on the input increments.
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Figure 10 – Outputs of the double-integrator system controlled by C1 (unconstrained ∆u)
and C3 (constrained ∆u). Dotted black lines are the input upper/lower limits
and the solid black line is the output setpoint. The remaining lines are described
in the legend
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Figure 11 – Inputs of the double-integrator system controlled by C1 (unconstrained ∆u)
and C3 (constrained ∆u). Dotted black lines are the input upper/lower limits.
The remaining lines are described in the legend
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Figure 12 – Performance indexes of the double-integrator system controlled by
C1 (unconstrained ∆u) and C3 (constrained ∆u)
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Figure 13 – Sets of feasible initial states and terminal states of controllers C1 (uncon-
strained ∆u) and C3 (constrained ∆u)

Figure 13 shows the sets of terminal states (Ωx,C1
t and Ωx,C3

t ) along with the sets
of feasible initial states (XC1

N and XC3
N ), which were computed considering u− = (0.25, 0.1)

for both C1 and C3. To illustrate the effect of u−, Figure 13 also depicts XC3′
N , which

denotes the set of feasible initial states computed for a predecessor input u− = (0, 0).
Comparing Ωx,C1

t and Ωx,C3
t , it easy to see that this additional constraint results in smaller

invariant set. This impacts the set of initial feasible states that was substantially reduced
for C3 in comparison with C1. Regarding the previously applied input u−, while it does
not affect the set of initial feasible states for the case of unconstrained input increments,
different predecessor inputs may produce distinct sets of initial feasible states, which can
be concluded from the comparison of XC3

N with XC3′
N .

3.5 Output zones and input targets

3.5.1 Problem formulation

The zone control strategy is largely applied in the process industry and consists of
driving or keeping system outputs inside predefined operating zones or ranges (GONZÁLEZ;
ODLOAK, 2009). This is a particularly suitable tool for non-square plants with more
controlled variables than manipulated ones, in which the problem of independently tracking
setpoints for all controlled outputs may not be feasible, especially if these outputs are
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highly correlated (FERRAMOSCA et al., 2010). Also, in real process applications, some
input variables are required to be steered to optimizing targets in order to fulfill economic
objectives and, in this case, the zone control approach can be easily applied to deal
with a possible lack of degrees of freedom. Moreover, zone control is inherently robust to
disturbances and plant-model mismatch (LIU; MAO; LIU, 2019) and avoids unnecessary
and excessive manipulation of a control valve when controlled variables are inside their
limits.

When dealing with the zone control problem (GONZÁLEZ; ODLOAK, 2009), the
output setpoint ysp is not fixed but rather lies in a specified range referred to as control
zone, which is represented here by the set Ysp ⊂ Y defined as follows:

Ysp := {ysp ∈ Y : ysp,min ≤ ysp ≤ ysp,max} (3.60)

Note that the setpoint tracking problem is a particular case of the zone control
strategy in which ysp = ysp,min = ysp,max.

Let usp be the optimizing input target provided by an RTO layer. A more general
way of accommodating steady-state objectives is by using the so-called offset cost function
(FERRAMOSCA et al., 2009), which is denoted here as VO(z̄s, zsp), with VO : R2(ny+nu) → R
and zsp = (ysp, usp). In terms of VO, the performance index is written as follows:

V zt
N (w,∆u, zsp) =

N−1∑
j=0

(
‖y(j)− ȳs‖2

Qy + ‖u(j)− ūs‖2
Qu + ‖∆u(j)‖2

R

)
+ ‖xd(N)‖2

P + VO(z̄s, zsp) (3.61)

Assumption 3. The offset cost function VO(z̄s, zsp) is subdifferentiable and convex w.r.t
(z̄s, zsp). If z̄s = zsp, then VO(z̄s, zsp) = 0. Otherwise, VO(z̄s, zsp) > 0.

In an industrial application of the MPC with OPOM (MARTIN; ZANIN; OD-
LOAK, 2019) and in many other works (GONZÁLEZ; ODLOAK, 2009; MARTINS et
al., 2013; MARTINS; ODLOAK, 2016), the offset cost function (equivalently viewed as
the penalization of slack variables in these studies) is simply defined in terms of squared
weighted Euclidean norms, i.e. VO(z̄s, zsp) = ‖ȳs−ysp‖2

Sy +‖ūs−usp‖2
Su . The use of different

norms (e.g. 1-norm and ∞-norm) is addressed in Ferramosca et al. (2010). Conditions
under which the choice of the offset cost function provides the best possible performance
index are studied in Ferramosca et al. (2009).

Now, the proposed dual-mode MPC with OPOM extended for the case of output
zone control and input target tracking is based on the control problem P zt

N (w,Ysp, usp),
which is defined below for a given extended state w = (x, u−), control zone Ysp and input
target usp:
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(∆u∗, y∗sp) = arg min
∆u,ysp

V zt
N (w,∆u, zsp) (3.62)

subject to

(x(0), u(−1)) = w (3.63)
x(j + 1) = Ax(j) +B∆u(j), j ∈ I0:N−1 (3.64)
y(j) = Cx(j), j ∈ I0:N−1 (3.65)
u(j) = u(j − 1) + ∆u(j), j ∈ I0:N−1 (3.66)
y(j) ∈ Y , j ∈ I0:N−1 (3.67)
u(j) ∈ U , j ∈ I0:N−1 (3.68)
∆u(j) ∈ U∆, j ∈ I0:N−1 (3.69)
ysp ∈ Ysp (3.70)
(ȳs, ūs) = M(x(N), u(N − 1)) (3.71)
(x(N), u(N − 1)) ∈ Ωw

t (3.72)

In the same manner as problem PN(w, ysp), the solution of P zt
N (wk,Ysp,k, usp,k) at

a given time step k results in the sequence of control increments ∆u∗k, whose first element
∆u∗(0|k) is applied to the system. Hence, the control law ∆u(k) := κztN(wk,Ysp,k, usp,k) is
implicitly produced by the receding horizon implementation.

3.5.2 Recursive feasibility and convergence analyses

Recursive feasibility and convergence properties of this extended controller are
assessed in the following Lemma and Theorem, respectively.

Lemma 4 (Recursive feasibility). Let Assumption 2 hold and consider a time step k

with an extended state wk ∈ WN and control zone Ysp,k. Then, the feasibility of prob-
lem P zt

N (wk,Ysp,k, usp,k) at time step k implies that P zt
N (wk+j,Ysp,k+j, usp,k+j) will remain

feasible at any subsequent time step k + j, ∀j ∈ I≥1.

Proof. Let (∆u∗k, y∗sp,k) denote the solution of problem P zt
N (wk,Ysp,k, usp,k) at time step k.

After the application of ∆u∗(0|k) into the system, we move to time step k + 1, at which
x(0|k + 1) = x(k + 1) = x(1|k). Consider a suboptimal candidate solution to problem
P zt
N (wk+1,Ysp,k+1, usp,k+1) denoted as (∆ũk+1, ỹsp,k+1), in which ∆ũk+1 is given by (3.43).

Now, observe that choosing ỹsp,k+1 = y∗sp,k clearly satisfies (3.70) when y∗sp,k ∈ Ysp,k∩Ysp,k+1.
However, since the terminal stability constraint (3.72) does not depend on ysp, there is no
conflict with constraint (3.70) and, consequently, any ỹsp,k+1 ∈ Ysp,k+1 can be chosen so
as to satisfy (3.70). Since the input target usp only appears in the objective function, it
does not affect the feasibility of problem P zt

N (w,Ysp, usp). The remaining constraints are
satisfied by the same arguments presented in Lemma 1.
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Therefore, by induction, problem P zt
N (wk+j,Ysp,k+j, usp,k+j) will remain feasible at

every time step k + j, ∀j ∈ I≥1.

Corollary 1. Given the same sets Y, U and U∆ of system constraints and the same
terminal set Ωw

t , then problems PN(w, ysp) and P zt
N (w,Ysp, usp) have the same set WN of

feasible initial augmented states.

Proof. This is a direct result of the fact that the terminal constraint does not depend
on ysp in both problems PN(w, ysp) and P zt

N (w,Ysp, usp) and that the inclusion of control
zones and input targets does not affect the feasibility of problem P zt

N (w,Ysp, usp), as shown
in Lemma 4.

Theorem 2 (Closed-loop convergence). Let Assumption 2 hold and consider a control zone
Ysp and an input target usp. Then, for any feasible initial augmented state w0 ∈ WN , the
system (3.3)-(3.4) with inputs computed through control law κztN (wk,Ysp, usp) is admissibly
steered to an operating point z̄s = (ȳs, ūs) ∈ Z̄∗s , in which Z̄∗s is the set of all possible
optimal operating points defined as follows:

Z̄∗s =

z̄∗s : (z̄∗s , z∗sp) = arg min
z̄s∈Z̄s
ysp∈Ysp

VO(z̄s, zsp)


Moreover, if (Ysp × usp) ∩ Z̄s 6= ∅, then ȳs = ysp ∈ Ysp and ūs = usp.

Proof. Consider a given initial augmented state wk ∈ WN at time step k at which problem
P zt
N (wk,Ysp, usp) is feasible with optimal solution denoted as (∆u∗k, y∗sp,k) and optimal value

function V zt
N
∗(wk,∆u∗k, y∗sp,k). Then, by the receding horizon principle, only the first input

movement is injected into the system and we move to time step k + 1, at which a solution
to problem P zt

N (wk+1,Ysp, usp) is guaranteed to exist by virtue of Lemma 4.

At time step k + 1, consider a suboptimal solution to problem P zt
N (wk+1,Ysp, usp)

denoted as (∆ũk+1, ỹsp,k+1), in which ∆ũk+1 is given in (3.43) and ỹsp,k+1 = y∗sp,k. As already
shown in Lemma 4, (∆ũk+1, ỹsp,k+1) is feasible. Let Ṽ zt

N (wk+1,∆ũk+1, z̃sp,k+1) denote the
corresponding performance criterion with z̃sp,k+1 = (ỹsp,k+1, usp).

Since this suboptimal solution produces the same artificial references (ȳs,k, ūs,k),
the steps presented in the proof of Theorem 1 can be followed to show that:

V zt
N
∗(wk+1,∆u∗k+1, z

∗
sp,k+1) ≤ V zt

N
∗(wk,∆u∗k, z∗sp,k), ∀k ∈ N

Therefore, by the same arguments used in Theorem 1, we can conclude that
limk→∞‖y(k)− ȳs,k‖ = 0, limk→∞‖u(k)− ūs,k‖ = 0 and limk→∞‖∆u(k)‖ = 0. This implies
that the system converges to an operating point z̄s,∞ = limk→∞(ȳs,k, ūs,k), corresponding
to a performance index given as V zt

N
∗(w∞,∆u∗, z∗sp) = VO(z̄s,∞, z∗sp).
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Now, let us show that z̄s,∞ ∈ Z̄∗s . To prove by contradiction, assume that z̄s,∞ /∈ Z̄∗s .
Then, there exists a z̄∗s ∈ Z̄∗s such that VO(z̄∗s , z∗sp) < VO(z̄s,∞, z∗sp). By the definition of
Z̄s, there is also a w∗ such that z̄∗s = Mw∗ and w∗ ∈ Ωw

t . Consider a w+ = (x+, u) given
as w+ = γw∞ + (1 − γ)w∗ in which γ ∈ (0, 1). In terms of ys, xd and u, this convex
combination is: 

y+
s

x+
d

u

 = γ


ȳs,∞

0
ūs,∞

+ (1− γ)


y∗s

x∗d

u∗


Since Ωw

t is a convex polyhedron and both w∞ ∈ Ωw
t and w∗ ∈ Ωw

t , it follows that
w+ ∈ Ωw

t and, consequently, (y+
s + Cdx

+
d ) ∈ Y for any γ ∈ (0, 1). Similarly, any γ ∈ (0, 1)

produces u ∈ U because ūs,∞ ∈ λU and u∗ ∈ U . Observing that the input increment
needed to steer w∞ to w+ corresponds to ∆u = u− ūs,∞ = (1− γ)(u∗− ūs,∞), there exists
a sufficiently large γmin such that ∆u ∈ U∆ for any γ ∈ [γmin, 1).

Now, taking γ ∈ [γmin, 1), we can build a sequence of input movements given as
∆ũ = {∆u,Kx+

d , . . . , KF
N−2x+

d }, which is feasible due to the positive invariance of Ωw
t .

By following a similar procedure to the one used to obtain (3.46) in Lemma 2, it can be
shown that the performance index associated with (∆ũ, z∗sp) can be written as follows:

V zt
N (w∞,∆ũ, z∗sp) = ‖ȳs,∞ − ȳ+

s ‖2
Qy + ‖u− ū+

s ‖2
Qu + ‖∆u‖2

R + ‖x+
d ‖2

P + VO(z̄+
s , z

∗
sp) (3.73)

in which z̄+
s = (ȳ+

s , ū
+
s ) = M(x+, u), with x+ = (y+

s , x
+
d ), y+

s = ȳs,∞ +Bs∆u, x+
d = Bd∆u

and u = ūs,∞ + ∆u.

By following the same steps used to obtain (3.47)-(3.50), it can be shown that
(3.73) can be rewritten as follows:

V zt
N (w∞,∆ũ, z∗sp) = ‖∆u‖2

(Q̃y+Q̃u+R+P̃ ) + VO(z̄+
s , z

∗
sp) (3.74)

The substitution of ∆u = (1− γ)(u∗ − ūs,∞) into (3.74) results:

V zt
N (w∞,∆ũ, z∗sp) = (1− γ)2 ‖w∞ − w∗‖2

Qw + VO(z̄+
s , z

∗
sp) (3.75)

with Qw = ĪTu
(
Q̃y + Q̃u +R + P̃

)
Īu and Īu =

[
0nu×ny 0nu×nd Inu

]
.

Note that V zt
N (w∞,∆ũ, z∗sp) = VO(z̄s,∞, z∗sp) = V zt

N (w∞,∆u∗, z∗sp) for γ = 1.

Now, following the ideas presented in Ferramosca et al. (2009), let ∂VO(z̄+
s , z

∗
sp)

denote the subdifferential of VO at (z̄+
s , z

∗
sp), then the partial of V zt

N (w∞,∆ũ, z∗sp) about γ
is:

∂V zt
N (w∞,∆ũ, z∗sp)

∂γ
= −2 (1− γ) ‖w∞ − w∗‖2

Qw + gT (z̄s,∞ − z̄∗s)

in which gT ∈ ∂VO(z̄+
s , z

∗
sp). For γ = 1, we have:

∂V zt
N (w∞,∆ũ, z∗sp)

∂γ

∣∣∣∣∣
γ=1

= ḡT (z̄s,∞ − z̄∗s)
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in which ḡT ∈ ∂VO(z̄s,∞, z∗sp) and ∂VO(z̄s,∞, z∗sp) denotes the subdifferential of VO at
(z̄s,∞, z∗sp). From the interpretation of the subdifferential in the context of minorization
by affine functions (HIRIART-URRUTY; LEMARÉCHAL, 2001, p. 167), the following
inequality holds:

VO(z̄∗s , z∗sp) ≥ VO(z̄s,∞, z∗sp) + ḡT (z̄∗s − z̄s,∞)

Given that VO(z̄∗s , z∗sp) < VO(z̄s,∞, z∗sp) as z̄∗s ∈ Z̄∗s and z̄s,∞ /∈ Z̄∗s , it follows that:

∂V zt
N (w∞,∆ũ, z∗sp)

∂γ

∣∣∣∣∣
γ=1

= ḡT (z̄s,∞ − z̄∗s)

≥ VO(z̄s,∞, z∗sp)− VO(z̄∗s , z∗sp) > 0

Thus, since V zt
N (w∞,∆ũ, z∗sp) is positively related to γ, there exists a γ ∈ [γmin, 1)

that produces a smaller value of V zt
N (w∞,∆ũ, z∗sp) in comparison to the value it takes with

γ = 1. However, since V zt
N (w∞,∆ũ, z∗sp) = V zt

N (w∞,∆u∗, z∗sp) for γ = 1, this contradicts
the optimality of V zt

N (w∞,∆u∗, z∗sp), and thus z̄s,∞ ∈ Z̄∗s .

Now, observe that ysp is a decision variable that appears directly in the offset
cost function and it is only constrained to ysp ∈ Ysp. Then, for any given z̄s,k ∈ Z̄s at
time step k, an optimal y∗sp is also a minimizer of VO(z̄s,k, z∗sp). Consequently, V ∗O(z̄s,∞, z∗sp)
corresponds to the smallest value that the offset cost function takes for a given control
zone Ysp and input target usp.

To complete the proof, let us analyze the case in which (Ysp × usp) ∩ Z̄s 6= ∅.
Observe that, in this circumstance, there exists a z̄s,∞ ∈ Z̄∗s such that z̄s,∞ = z∗sp, which
results in V ∗O(z̄s,∞, z∗sp) = 0 by virtue of Assumption 3. Therefore, if (Ysp × usp) ∩ Z̄s 6= ∅,
the system converges to an operating point given by ȳs = ysp ∈ Ysp and ūs = usp.

3.6 Case study 2: unstable reactor system

In this section, the proposed MPC with zone control and input targets is applied
to a continuous stirred-tank reactor (CSTR), in which an exothermic diabatic irreversible
first-order reaction (A→ B) takes place. Assuming constant physical parameters, perfect
mixing and static holdup, the dynamics of this system are obtained from material and
energy balances, as described in Russo and Bequette (1997). A model nondimensionalization
is performed with representative values of dimensionless model variables and parameters
given in Russo and Bequette (1997), resulting in the following set of nonlinear ordinary
differential equations:
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dx1

dτ
= q (x1f − x1)− φx1 exp

(
x2

1 + x2/γ

)

dx2

dτ
= q (x2f − x2)− δ (x2 − x3) + βφx1 exp

(
x2

1 + x2/γ

)

dx3

dτ
= qc (x3f − x3)

δ1
+ δ (x2 − x3)

δ1δ2

Table 1 – Model parameters of the CSTR system

Parameter β γ δ δ1 δ2 φ x1f x2f x3f

Value 8.0 20 0.3 0.1 0.5 0.072 1 0 -1

Values of model parameters are given in Table 1, while model variables are described
in Table 2 together with steady-state values at which this model is linearized. These values
correspond to an unstable equilibrium point of the system (MARTINS, 2014).

Table 2 – Variables of the CSTR system

Symbol Dimensionless variable Linearization point
x1 concentration of reactant A 0.5528
x2 reactor temperature 0.2517
x3 jacket temperature 0
q reactor feed flow rate 1
qc jacket flow rate 1.6510

Aiming at reproducing a common situation encountered in chemical processes,
Martins and Odloak (2016) included time delays in this system, resulting in the following
model:


y1(s)
y2(s)
y3(s)

 =



0.4472(s+22.59)(s+0.5798)e−0.05s

(s+22.58)(s+0.8925)(s−0.6222)
1.0365

(s+22.58)(s+0.8925)(s−0.6222)

−2.7517(s+22.51)(s+0.7572)e−0.05s

(s+22.58)(s+0.8925)(s−0.6222)
−3(s+1.809)

(s+22.58)(s+0.8925)(s−0.6222)

−16.51(s+0.7572)
(s+22.58)(s+0.8925)(s−0.6222)

−10(s+0.8374)(s−0.4926)e−0.2s

(s+22.58)(s+0.8925)(s−0.6222)


u1(s)
u2(s)

 (3.76)

in which the outputs represent dimensionless states x1, x2 and x3 and the inputs u1 and
u2 correspond to q and qc, respectively. A state-space realization of model (3.76) has been
discretized using the zero-order hold method with sampling time Ts = 0.05. The resulting
discrete-time state-space model was used to simulate the plant and to build the new
OPOM through the formulas presented in Chapter 2. Hereafter, system outputs and inputs
represent deviation variables with respect to the linearization point given in Table 2.
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The system is subject to constraints on inputs and input increments whose limits
are given as umin =

[
−1 −1.5

]T
, umax =

[
1 1.5

]T
and ∆umax = −∆umin =

[
0.5 0.5

]T
.

An LQR has been used to design the terminal control law with QLQR = I3 and RLQR = I2

and the invariant set for tracking has been computed using λ = 0.99. The offset cost
function is simply selected as VO(z̄s, zsp) = ‖ȳs − ysp‖2

Sy + ‖ūs − usp‖2
Su and the tuning

parameters of the proposed MPC are N = 5, Qy = I3, Qu = 0× I2, R = I2, Sy = 103 × I2

and Su = 102 × diag
([

0 5
])
.

The simulation starts with y =
[
−0.1360 1.1074 0.3224

]T
and

u− =
[
0.3 −0.0595

]T
and, initially, the objective is to steer the system to the

origin, i.e. ysp =
[
0 0 0

]T
. At time step k = 100, the zone control mode is activated

with ysp,min =
[
−0.20 1.5 −1

]T
and ysp,max =

[
−0.15 1.5 1

]T
. Note that, while the

concentration of reactant A and the jacket temperature are controlled within zones, the
reactor temperature still has a setpoint. Initially, usp =

[
0 0

]T
, which is changed to

usp =
[
0 −0.5

]T
at k = 200. However, observe that only u2 actually has a target due to

the way we have selected Su.

As depicted in Figure 14, system outputs are driven either to their setpoints or
into the control zones. Note that, as long as ȳs ∈ Ysp, the output setpoint is chosen
such that ysp = ȳs, which is equivalent to have a reduced offset cost function given as
VO(z̄s, zsp) = ‖ūs − usp‖2

Su . This remaining term of the offset cost function vanishes when
the jacket flow rate is steered to its target, as shown in Figure 15. Input limits were
achieved for a few moments during transients and piece-wise constant lines allow one
to observe that constraints on input increments were also satisfied. Figure 16 shows the
monotonically decreasing behavior of the performance index after changes on setpoint,
zone control and input target.
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Figure 14 – Outputs of the unstable reactor system. Dotted black lines are the output
control zones. The remaining lines are described in the legend
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Figure 15 – Inputs of the unstable reactor system. Dotted black lines are the input up-
per/lower limits. The remaining lines are described in the legend



96 Chapter 3. A dual-mode MPC with OPOM

0 50 100 150 200 250 300

k

0

200

400

600

800

1000

1200
V

Figure 16 – Performance index of the unstable reactor system

3.7 Conclusion

This chapter proposes combining the approaches presented in Rodrigues and Odloak
(2003b) and Limon et al. (2008) to formulate a dual-mode MPC with OPOM. Here, we
adopt a performance index based on artificial references, which is shown to be equivalent
to the use of slack variables, employed in Rodrigues and Odloak (2003b). A simple
characterization of artificial references that is based only on terminal states and inputs is
presented. Unlike in Limon et al. (2008), the proposed method avoids the parametrization
of system steady states and inputs. Moreover, since artificial references do not depend on
model parameters at steady state, they converge to a consistent real plant equilibrium even
in the presence of plant-model mismatch or constant unmeasured disturbances. Explicitly
considering constraints on input increments, a new characterization of an invariant set
for tracking is presented. The combination of all these ingredients results in a dual-mode
MPC strategy with embedded integral action and guaranteed recursive feasibility and
stability.

A comparison between the MPC with OPOM and the one proposed by Limon et al.
(2008) is performed in a double-integrator system. Considering the same number of degrees
of freedom, the attraction domain of the proposed MPC is equivalent to the one produced
by the controller of Limon et al. (2008). Moreover, results have shown the closed-loop
trajectories obtained with these controllers are the same when there is no model error
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or disturbances. However, while the proposed strategy has a built-in integral action, the
MPC of Limon et al. (2008) needs to augment the system with disturbance estimates to
remove offset in the controlled variables in the presence of plant-model mismatch and
constant unmeasured disturbances. Results have also shown that, when input increments
are constrained in the proposed MPC with OPOM, the previous input applied to the
system affects the set of feasible initial states. Moreover, although this type of constraint
may slow down system convergence to the setpoint, it can be an essential feature in some
practical applications.

First formulated for the setpoint tracking problem, the proposed MPC was then
extended to address the case of output control zones and optimizing input targets, in
which steady-state control objectives are posed within an offset cost function. It is shown
that, once the control problem is feasible, it remains feasible despite any changes in control
zones or input targets. The system is steered to an output setpoint inside the control zone
and to the input target if this operating point is admissible. If not, the system is steered
to an operating point that minimizes the offset cost function. The proposed dual-mode
MPC with OPOM for handling output zone control and input targets was applied to an
unstable reactor system with changing input targets.
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Chapter 4

Robust Cooperative Distributed
MPC: a multi-model approach

4.1 Introduction

Despite the development of nonlinear MPC strategies, the application of MPC
with linear models is still dominant in industry. The reason for this is that methods for
the identification of linear models are easy to implement and also because, under mild
nonlinearities, a linear model may be a reasonable representation of plant dynamics around
an operating point. However, in order to satisfy different economic criteria, chemical plants
usually work with changing operating points, which may lead to performance degradation
of an MPC controller or even instabilities when the system is far from the operating point
in which the linear model was obtained.

A convenient and simple way to model this type of uncertainty is by considering a
finite family of linear models that satisfactorily represent the plant at different operating
points. This strategy has been successfully applied to a multi-model MPC for controlling an
industrial distillation column (C3/C4 splitter) (PORFÍRIO; ALMEIDA NETO; ODLOAK,
2003). Also, some commercial products for identifying linear models that support the
multi-model strategy have been reported in a survey on industrial MPC applications
(QIN; BADGWELL, 2003). From a theoretical perspective, a stabilizing robust MPC that
considers this multi-model uncertainty was first proposed by Badgwell (1997) for open-loop
stable systems. This idea has been extended and applied to several robust MPC approaches,
e.g. considering the setpoint-tracking problem for stable systems (RODRIGUES; ODLOAK,
2003b), for unstable systems with time delay (MARTINS; ODLOAK, 2016) and for changing
economic criterion (FERRAMOSCA; GONZALEZ; LIMON, 2017).

Chemical plants can be viewed as a collection of subsystems that are interconnected
and interact with each other through material and energy streams. Since decentralized
MPC structures do not account for this interactive nature of chemical processes, they
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usually have poor performance in comparison to a centralized MPC strategy that, on the
other hand, may be difficult to maintain and organize in the case of large-scale systems.
For instance, a common maintenance task in MPC controllers is the model update, which
may be cumbersome in a single-model centralized MPC, not to mention in a multi-model
one. Besides, subsystems have distinct levels of nonlinearity and a different number of
possible operating points, thereby requiring a diverse number of linear models to be used
in the implementation of a multi-model MPC.

As an alternative framework to perform plantwide control, distributed MPC
(DMPC) algorithms provide organizational flexibility and require little effort of main-
tainability, allowing for gradual commissioning and local reconfiguration. Also, unlike
a decentralized control structure, DMPC takes into account the interactions between
subsystems and an iterative procedure may be used to improve the overall solution. In
general, DMPC strategies differ in the amount of information the subsystems share with
each other and the objective they pursue. In noncooperative DMPC approaches, each
subsystem optimizes a local performance index and the plantwide system is driven to a
Nash equilibrium. Alternatively, in cooperative DMPC strategies all the agents share the
same performance criterion, which converges to a Pareto optimum (SCATTOLINI, 2009).

A cooperative DMPC that retains closed-loop stability if the iterative procedure
is terminated prior to convergence has been proposed in Stewart et al. (2010). When
iterating to convergence, this strategy produces the same solution as the one of a centralized
MPC scheme, corresponding to the plantwide Pareto optimum. This idea was extended in
Ferramosca et al. (2013) by using artificial references and a suitable offset cost function,
ensuring feasibility under any setpoint change. Separable terminal costs and time-varying
local terminal sets were used as stability ingredients in the cooperative DMPC proposed
in Conte et al. (2016). Another strategy suitable for setpoint tracking has been proposed
by Razzanelli and Pannocchia (2017), in which the graph theory was applied to reduce the
dimension of dynamic prediction and steady-state models, thereby resulting in a DMPC
algorithm with lower computational and communication requirements, while retaining
centralized optimality of cooperative schemes.

Recently, cooperative distributed MPC algorithms based on OPOM have also been
proposed. In Santana, Martins and Odloak (2020b), a cooperative DMPC with soft terminal
constraints is proposed and appropriate conditions on weighting control increments are
provided to guarantee closed-loop stability. As an extension of this approach, Sarapka,
Martins and Odloak (2021) propose a cooperative DMPC with control zones and input
targets, which has no tuning requirements regarding the input move suppression weights
for guaranteeing stability. Further details of these works can be found in Santana (2020)
and in Sarapka (2020).
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Concerning the literature on robust DMPC, different works have proposed solutions
for dealing with persistent disturbances and model uncertainty. Considering bounded
disturbances, a distributed closed-loop operation of existing centralized robust MPCs is
proposed by Conte et al. (2013) and a noncooperative robust DMPC strategy based on
the constraint tightening approach is presented in Richards and How (2007). In Shalmani,
Rahmani and Bigdeli (2020), a Nash-based robust DMPC is proposed for large-scale
systems with polytopic uncertainties. Hereafter, we will here focus only on robust DMPC
approaches that are based on cooperative algorithms. An LMI-based robust DMPC suitable
for cooperative, noncooperative and decentralized control objectives was proposed by Al-
Gherwi, Budman and Elkamel (2011) for the case of polytopic uncertainty. This method
was improved in Al-Gherwi, Budman and Elkamel (2013) by considering a dual-mode
approach, reducing online computations compared to the algorithm previously proposed by
the authors in Al-Gherwi, Budman and Elkamel (2011). In Trodden and Richards (2013),
a robust DMPC algorithm is proposed in which local agents make hypothetical plans for
other agents while optimizing the weighted costs of all subsystems, thereby resulting in
cooperation. Under bounded disturbances, problem feasibility is guaranteed by letting
only one agent optimize per time step and maintaining previous solutions for the other
subsystems. A robustness constraint was employed in the robust cooperative dual-mode
DMPC presented in Li and Shi (2014) for nonlinear systems with external bounded
disturbances. Using noncooperative distributed moving horizon estimation, an output-
feedback robust cooperative DMPC is proposed by Razavinasab, Farsangi and Barkhordari
(2018) for linear systems with bounded disturbances and time-varying communication
delays. More recently, Wang and Manzie (2020) proposed a robust cooperative DMPC
algorithm based on a set-membership constraint tightening approach, avoiding the use of
robust positively invariant sets. In the hierarchical robust coalitional MPC presented in
Masero et al. (2021), an upper layer computes optimal new topology and transition time
that are used by the agents in a lower layer to adapt their predicted trajectories while
solving their control problem.

Aiming for a more tractable and implementable algorithm, the multi-model ap-
proach already employed in robust MPC formulations with OPOM (ODLOAK, 2004;
MARTINS; ODLOAK, 2016) is used here to propose a robust cooperative DMPC. The
resulting strategy addresses the case in which distributed systems are subject to model
uncertainties that arise due to changing operating conditions. The distributed algorithm is
built upon the cooperative scheme presented in Stewart et al. (2010) and has guaranteed
recursive feasibility, convergence and stability. Based on the OPOM model, the proposed
robust DMPC produces offset-free control and is suitable for both setpoint tracking and
the so-called zone control strategy. Moreover, it can be seen as an extension of recently
published cooperative DMPC formulations based on OPOM (SANTANA; MARTINS;
ODLOAK, 2020b; SARAPKA; MARTINS; ODLOAK, 2021).
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Based on the approach presented here, two alternative algorithms are proposed.
One improves convergence over iterations by computing weights of the convex combination
of agents’ solutions such that the plantwide performance index is minimized. The other
turns the optimization problem solved by each agent into a QP (quadratic programming)
problem by enforcing the robustness constraint only after iterations terminate. This
strategy reduces the number of QCQP (quadratically constrained quadratic programming)
problems solved at each time step, which also reduces the CPU time spent by the agents.
The proposed methods are applied to two case studies and compared to the centralized
robust MPC. The first two algorithms proposed in this chapter have been published in
Sencio and Odloak (2022).

This chapter is organized as follows. Section 4.2 presents preliminary definitions that
involves the considered system model, constraints, performance index as well as the multi-
model uncertainty. In Section 4.3, the robust cooperative distributed MPC (Algorithm 1)
is formulated and recursive feasibility, convergence and stability analyses are presented.
Numerical simulations of the proposed Algorithm 1 applied to a high-purity distillation
column are presented in Section 4.4. Section 4.5 provides an alternative approach for
improving algorithm convergence (Algorithm 2) and a method for robustifying a nominal
DMPC (Algorithm 3) is presented in Section 4.6 along with theoretical analyses. The
proposed algorithms are applied to a two reactors-separator process in Section 4.7. Finally,
Section 4.8 presents some concluding remarks.

4.2 Preliminaries

4.2.1 Velocity-form model

Consider the time-invariant, discrete-time state-space model in the positional form
of inputs defined below, in which x ∈ Rnx , u ∈ Rnu , y ∈ Rny and nx, nu and ny are the
number of states, inputs and outputs, respectively:

x+ = Ax+Bu (4.1)
y = Cx (4.2)

Assumption 4. Matrix A is discrete-time Hurwitz.

As shown in Chapter 2, the following OPOM-like model can be obtained:ys
xd

+

=
Iny 0

0 F

 ys
xd

+
Bs

Bd

∆u (4.3)

y =
[
Iny Ψ

] ys
xd

 (4.4)



4.2. Preliminaries 103

in which

F = A, Bs = C (I − A)−1B, Bd = −A (I − A)−1B, Ψ = C.

In the model given in (4.3) and (4.4), ys is an artificial integrating state that
appears when writing the model in the incremental form of inputs and corresponds to the
prediction of system steady output (static part); and xd is related to the stable dynamic
part of the original system (4.1)-(4.2).

4.2.2 Subsystems and plantwide model

The centralized model (4.1)-(4.2) can be partitioned into M subsystems coupled
through the inputs (see (STEWART et al., 2010), Appendix B) such that each one is
represented by a (possibly non-minimal) state-space model of the following form:

x+
i = Aixi +Biiui +

M∑
j=1
j 6=i

Bijuj, i ∈ I1:M

yi = Cixi, i ∈ I1:M

In the above model, subsystem i has state xi ∈ Rnxi , input ui ∈ Rnui , output yi ∈ Rnyi

and matrices Ai ∈ Rnxi×nxi , Bii ∈ Rnxi×nui , Bij ∈ Rnxi×nuj and Ci ∈ Rnyi×nxi . Note that
the input of every subsystem j 6= i can be viewed as a disturbance to subsystem i. The
plantwide representation of a collection of M subsystems is:


x1

x2
...
xM



+

=


A1

A2
. . .

AM




x1

x2
...
xM

+
M∑
i=1


B1i

B2i
...

BMi

ui

y1

y2
...
yM

 =


C1

C2
. . .

CM




x1

x2
...
xM


which can be represented with a little abuse of notation in a simplified form as follows:

x+ = Ax+
M∑
i=1

Biui (4.5)

y = Cx (4.6)

in which we redefine nx = ∑M
i=1 nxi and x ∈ Rnx , ui ∈ Rnui , y ∈ Rny , A ∈ Rnx×nx ,

Bi ∈ Rnx×nui and C ∈ Rny×nx .
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Using the proposed method to obtain a model in the velocity-form of inputs, system
(4.5)-(4.6) can be split into static and dynamic parts as follows:ys

xd

+

=
Iny 0

0 F

 ys
xd

+
M∑
i=1

Bs,i

Bd,i

∆ui (4.7)

y =
[
Iny Ψ

] ys
xd

 (4.8)

in which

F = A, Bs,i = C (Inx − F )−1Bi, Bd,i = −F (Inx − F )−1Bi, Ψ = C.

Throughout this chapter, we use a redefined notation given as follows:

x←

ys
xd

 , A←

Iny 0
0 F

 , Bi ←

Bs,i

Bd,i

 , C ←
[
Iny Ψ

]
.

4.2.3 System constraints

Here, we consider that the system is subject to linear constraints on inputs and
input movements. For this purpose, the following sets can be defined:

U := {u = (u1, . . . , uM) ∈ Rnu : Au,iui ≤ bu,i, i ∈ I1:M} (4.9)
U∆ := {∆u = (∆u1, . . . ,∆uM) ∈ Rnu : A∆,i∆ui ≤ b∆,i, i ∈ I1:M} (4.10)

Since we will deal with the problem of zone control, the plantwide output setpoint
ysp is assumed to be in a given zone or range defined by the following set:

Ysp := {ysp ∈ Rny : ysp,min ≤ ysp ≤ ysp,max} (4.11)

As already mentioned in Chapter 3, the setpoint tracking problem is a particular
case of the zone control strategy in which ysp = ysp,min = ysp,max.

4.2.4 The plantwide performance index

In a cooperative game, all the agents share the same objective. This means that,
concerning a cooperative distributed MPC framework, each agent i computes a sequence
of control movements ∆ui = {∆ui(0), . . . ,∆ui(N − 1)} such that it minimizes a plantwide
performance index and satisfies the constraints of all subsystems. Let ysp ∈ Rny define
a given output setpoint, then the state setpoint for system (4.7) is simply given by
xsp = (ysp, 0) ∈ Rny+nx . Now, consider the plantwide performance criterion V (x,∆u, ysp)
given as follows:

V (x,∆u, ysp) =
∞∑
j=0
‖x(j)− xsp‖2

Q + ‖∆u(j)‖2
R (4.12)
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in which Q ∈ R(ny+nx)×(ny+nx) and R ∈ Rnu×nu are positive definite weighting matrices.
To simplify our developments, we consider Q =

[
Qs Qsd
QTsd Qd

]
, with Qs ∈ Rny×ny , Qd ∈ Rnx×nx

and Qsd ∈ Rny×nx . The states x(j) ∈ Rny+nx are predicted through model (4.7) with
x(0) = x and control movements ∆u(j) that are elements of the sequence ∆u.

Remark 4. As will be clearer later on, the chosen structure of matrix Q is useful to write
the penalization of ys and xd separately. Moreover, Qsd represents a nonzero submatrix of
Q that appears when choosing Q = CTQyC, with Qy ∈ Rny×ny positive definite, which is
typically used to penalize the predicted output errors with respect to ysp.

Beyond a control horizon N , we consider here the zero control policy in which
∆u(N + j) = 0 for j ∈ I≥0. The infinite sum in (4.12) can be divided into two parts as
follows:
∞∑
j=0
‖x(j)− xsp‖2

Q + ‖∆u(j)‖2
R =

N−1∑
j=0
‖x(j)− xsp‖2

Q + ‖∆u(j)‖2
R +

∞∑
j=N
‖x(j)− xsp‖2

Q

=
N−1∑
j=0
‖x(j)− xsp‖2

Q + ‖∆u(j)‖2
R +

∞∑
j=0

(
‖ys(N + j)− ysp‖2

Qs

+ ‖xd(N + j)‖2
Qd

+ 2 (ys(N + j)− ysp)T Qsdxd(N + j)
)

From (4.7), we obtain ys(N + j) and xd(N + j), resulting in ys(N + j) = ys(N)
and xd(N + j) = F jxd(N) for j ∈ I≥0. In order to prevent the control cost from being
unbounded, we must ensure that ys(N)− ysp = 0, then we have that:

∞∑
j=0

(
‖ys(N + j)− ysp‖2

Qs + ‖xd(N + j)‖2
Qd

+ 2 (ys(N + j)− ysp)T Qsdxd(N + j)
)

=
∞∑
j=0
‖F jxd(N)‖2

Qd

= xTd (N)
 ∞∑
j=0

(
F j
)T
QdF

j

xd(N)

= xTd (N)Pxd(N)

Since F is stable, the infinite sum P converges and can thus be computed. For this
purpose, multiply P by F T from the left and by F from the right and observe that:

P − F TPF =
∞∑
j=0

(
F j
)T
QdF

j −
∞∑
j=1

(
F j
)T
QdF

j

which results in the following Lyapunov equation:

P − F TPF = Qd (4.13)

Then, the control cost (4.12) can be rewritten as follows:

V (x,∆u, ysp) =
N−1∑
j=0

(
‖x(j)− xsp‖2

Q + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P (4.14)
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However, in a constrained system, the terminal constraint ys(N) − ysp = 0 may
not be satisfied due to conflicts with input constraints (4.9) and (4.10), which leads to
infeasibilities. Following the approach of Rodrigues and Odloak (2003b), the terminal
constraint is softened as ys(N) − ysp − δ = 0, in which δ ∈ Rny is an additional degree
of freedom that corresponds to the offset between the terminal predicted steady output
ys(N) and the output setpoint ysp. This relaxation is then penalized in the control cost,
which can be redefined as follows:

V (x,∆u, ysp, δ) =
N−1∑
j=0

(
‖x(j)− xsp − δx‖2

Q + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P + ‖δ‖2
S (4.15)

in which δx = (δ, 0) ∈ Rny+nx and S ∈ Rny×ny is a positive definite weighting matrix.

Let xs be the artificial reference defined as follows:

xs = xsp + δx =
ysp + δ

0

 =
ys(N)

0

 (4.16)

Then, by substituting δ = ys(N)−ysp, the following plantwide performance criterion
is obtained:

V (x,∆u, ysp) =
N−1∑
j=0

(
‖x(j)− xs‖2

Q + ‖∆u(j)‖2
R

)
+ ‖xd(N)‖2

P + ‖ys(N)− ysp‖2
S (4.17)

Remark 5. As also pointed out in Chapter 3, that the last term in (4.17) corresponds to
the penalization of the slack variable δ employed in Rodrigues and Odloak (2003b) which
is equivalent to the offset cost function proposed by Limon et al. (2008).

Remark 6. In a cooperative approach, the agents have the same objective and thus need
to predict the plantwide output, even if they only manipulate their local inputs. This
is why the performance index employed here is defined in terms of the overall system
variables, which has also been used in Ferramosca et al. (2013). Equivalently, a performance
criterion can also be defined in terms of the weighted sum of objective functions written
individually for each subsystem (STEWART et al., 2010), which is employed in other DMPC
formulations based on OPOM (SANTANA; MARTINS; ODLOAK, 2020b; SARAPKA;
MARTINS; ODLOAK, 2021). However, compared with Santana, Martins and Odloak
(2020b) and Sarapka, Martins and Odloak (2021), the approach used in this work results
in a more compact performance index. Moreover, unlike in Sarapka, Martins and Odloak
(2021), the use of a large set of slack variables related to the offset in the outputs is avoided
here, which simplifies the control problem.

4.2.5 Multi-model uncertainty

Model uncertainty arises when system matrices A, B and C are not exactly known.
In order to account for different operating conditions, one can consider a finite set of L
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models θ = (Aθ, Bθ, Cθ) defined as Ω := {θ1, . . . , θL} and select a model as the one that
most likely represent the plant, referred to as the nominal model θn ∈ Ω. Let us assume
that the true plant model θt is such that θt ∈ Ω, although we do not know which model of
set Ω is the true one (BADGWELL, 1997).

Using the plantwide representation of the partitioned system given in (4.7) and
(4.8) and considering the presence of multi-model uncertainty, one can define models
θ = (Fθ, Bs,θ,i, Bd,θ,i,Ψθ, i ∈ I1:M) = (Aθ, Bθ,i, Cθ, i ∈ I1:M) such that θ ∈ Ω. In this case,
the control cost (4.17) can be written for each plantwide model θ ∈ Ω as follows:

Vθ(xθ,∆u, ysp) =
N−1∑
j=0

(
‖xθ(j)− xs,θ‖2

Q + ‖∆u(j)‖2
R

)
+ ‖xd,θ(N)‖2

Pθ
+ ‖ys,θ(N)− ysp‖2

S

(4.18)
in which subscript θ denotes the dependency on model θ and Pθ is computed through the
following Lyapunov equation written for a given model θ:

Pθ − F T
θ PθFθ = Qd, θ ∈ Ω (4.19)

Assumption 5. All models θ ∈ Ω have gain matrices with the same sign of input/output
directions (SKOGESTAD; POSTLETHWAITE, 2005).

4.3 A robust cooperative distributed MPC

4.3.1 Problem formulation

Assume that a feasible initial solution (∆u[0], y[0]
sp ) is available. Then, at each

iteration p ∈ I≥1, each agent i ∈ I1:M solves the following control problem denoted as
Pi(x; ∆u[p−1], y[p−1]

sp ):

(∆u∗i , y∗sp,i) = arg min
∆ui,ysp,i

Vθn (xθn ,∆u, ysp) (4.20)

subject to:

xθ(0) = xθt , θ ∈ Ω (4.21)

xθ(j + 1) = Aθxθ(j) +
M∑
i=1

Bθ,i∆ui(j), j ∈ I0:N−1, θ ∈ Ω (4.22)

∆ul = ∆u[p−1]
l , l ∈ I1:M \ i (4.23)

u(j) ∈ U , j ∈ I0:N−1 (4.24)
∆u(j) ∈ U∆, j ∈ I0:N−1 (4.25)
ysp ∈ Ysp (4.26)
Vθ(xθ,∆u, ysp) ≤ Vθ(xθ,∆u[0], y[0]

sp ), θ ∈ Ω (4.27)



108 Chapter 4. Robust Cooperative Distributed MPC: a multi-model approach

in which ∆u∗i is the optimal control movement of subsystem i, y∗sp,i is the optimal plantwide
output setpoint computed by agent i and (4.27) corresponds to a robustness constraint
that enforces the performance criterion of each plantwide model θ ∈ Ω to be no greater
than the control cost evaluated with the feasible initial solution.

Considering the positiveness of weighting matrices, the performance index (4.18)
used as the objective function of problem Pi(x; ∆u[p−1], y[p−1]

sp ) is, by construction, a
strictly convex function of the decision variables, which implies that constraint (4.27) is
convex. Therefore, since U , U∆ and Ysp are convex sets, problem Pi(x; ∆u[p−1], y[p−1]

sp ) is a
convex optimization problem and, consequently, every local minimum is a global minimum.
Moreover, since the objective function is strictly convex, this implies that the solution, if
exists, is unique. In fact, given that the objective function and the robustness constraint
(4.27) are quadratic and the remaining constraints are linear, the proposed control problem
consists of a convex quadratically constrained quadratic program (QCQP), which can
be solved via nonlinear programming (NLP). A convex QCQP can also be cast as a
second-order cone program (SOCP), which, in turn, can be expressed as a semi-definite
program (SDP) by writing constraints as a linear matrix inequality. However, solving
SOCPs via NLP or SDP is not recommended since specialized interior-point methods that
solve SOCPs directly are computationally more efficient (LOBO et al., 1998).

Remark 7. The proposed robust cooperative distributed MPC can be extended for dealing
with integrating and unstable systems. In this case, the control problem Pi(x; ∆u[p−1], y[p−1]

sp )
must also include terminal constraints related to integrating and unstable modes of the
system. As an alternative to improve problem feasibility, these terminal constraints can be
softened by using slack variables, as proposed in Santoro and Odloak (2012) and Martins
and Odloak (2016).

After each agent i has solved its respective problem Pi(x; ∆u[p−1], y[p−1]
sp ), the

solutions are combined to produce a global solution (∆u[p], y[p]
sp ) as follows:

(∆u[p], y[p]
sp ) =

M∑
i=1

wi(∆ū∗i , y∗sp,i) (4.28)

in which

∆ū∗i = (∆u[p−1]
1 , . . . ,∆u∗i , . . . ,∆u[p−1]

M )
M∑
i=1

wi = 1, wi > 0,∀i ∈ I1:M

Once the solutions of each agent are combined to produce (∆u[p], y[p]
sp ), one can

move to the next iteration p+ 1 or stop if the maximum number of iterations has been
achieved or if the current solution meets some accuracy specification. When the iterative
procedure terminates at iteration p̄ at a given time step k, the best available solution is
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(∆uk, ysp,k) = (∆u[p̄]
k , y

[p̄]
sp,k) which is then used to build an initial condition for the first

iteration to be performed at time step k + 1 as follows:

∆u[0]
k+1 = {∆u(1|k), . . . ,∆u(N − 1|k), 0} (4.29)

y
[0]
sp,k+1 = ysp,k (4.30)

By following the receding horizon principle, the first control movement of ∆uk is
applied to the system, i.e. ∆u(k) = ∆u(0|k), and this procedure is then repeated at any
subsequent time step k + j > k, which implicitly generates the MPC control law denoted
as κN(xθt ,∆u[0], y[0]

sp ).

The proposed robust cooperative distributed MPC with multi-model uncertainty
can be summarized in the following algorithm:

Algorithm 1: Robust cooperative distributed MPC
Input: (∆u[0], y[0]

sp ) and Ysp
1 Set x = xθt(k) and p = 1;
2 while stop criteria are not met do
3 for i ∈ I1:M do
4 Obtain (∆u∗i , y∗sp,i) by solving Pi(x; ∆u[p−1], y[p−1]

sp );
5 end
6 Compute (∆u[p], y[p]

sp ) through (4.28);
7 p← p+ 1;
8 end
9 Set (∆uk, ysp,k) = (∆u[p], y[p]

sp );
10 Compute (∆u[0], y[0]

sp ) through (4.29) and (4.30);
11 Implement ∆u(0|k);
12 k ← k + 1;
13 Return to line 1.

Note that, for a given control zone Ysp, the above algorithm can always be initialized
by choosing ∆u[0] = {0, . . . , 0} and any y[0]

sp ∈ Ysp.

4.3.2 Recursive feasibility, convergence and stability analyses

The recursive feasibility of problem Pi(x; ∆u[p−1], y[p−1]
sp ) of an iteration p is ad-

dressed as follows:

Lemma 5 (Recursive feasibility over iterations). Assume that the initial condition
(∆u[0], y[0]

sp ) is feasible and consider the application of Algorithm 1. Then, problem
Pi(x; ∆u[p−1], y[p−1]

sp ) is feasible at iteration p = 1 for any agent i ∈ I1:M and it will
remain feasible at any subsequent iteration p+ j, j ∈ I≥1.
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Proof. First, since we have assumed that a feasible initial condition (∆u[0], y[0]
sp ) is available,

it is easy to see that a feasible solution to Pi(x; ∆u[0], y[0]
sp ) is the initial condition itself and,

consequently, every agent i ∈ I1:M will have a solution at p = 1. A convex combination of
these solutions leads to (∆u[1], y[1]

sp ), which is used as an initial condition for iteration p = 2
and clearly satisfies constrains (4.24)-(4.26) because U , U∆ and Ysp are convex sets. Since
constraint (4.27) is satisfied for each subsystem i ∈ I1:M at p = 1, then we can state that:

M∑
i=1

wiVθ
(
xθ,∆ū∗i , y∗sp,i

)
≤

M∑
i=1

wiVθ
(
xθ,∆u[0], y[0]

sp

)
= Vθ

(
xθ,∆u[0], y[0]

sp

)
, ∀θ ∈ Ω

Then, from the convexity of the control cost, it follows that:

Vθ(xθ,∆u[1], y[1]
sp ) ≤

M∑
i=1

wiVθ
(
xθ,∆ū∗i , y∗sp,i

)
≤ Vθ

(
xθ,∆u[0], y[0]

sp

)
, ∀θ ∈ Ω

which implies that (∆u[1], y[1]
sp ) satisfies (4.27) and, thus, serves as a feasible solution to all

agents i ∈ I1:M .

Therefore, by induction, we conclude that Pi(x; ∆u[p−1], y[p−1]
sp ) will be feasible for

all agents i ∈ I1:M at any subsequent iteration p+ j, j ∈ I≥1.

Corollary 2 (Recursive feasibility over time steps). Consider the application of Algorithm
1. The feasibility of Pi(x; ∆u[p−1], y[p−1]

sp ) at iteration p = 1 implies the feasibility at every
time step k + j > k.

Proof. This is a direct result from Lemma 5 and the construction of a feasible initial
condition (∆u[0], y[0]

sp ) given in (4.29) and (4.30).

Since we are minimizing the cost computed for the nominal model θn ∈ Ω, we
expect it to be non-increasing over iterations and to converge, which is ensured by the
following lemma:

Lemma 6 (Convergence of the algorithm). In the application of Algorithm 1, the plantwide
performance criterion Vθn(xθn ,∆u[p], y[p]

sp ) of the nominal model θn ∈ Ω is non-increasing
and converges as p→∞.

Proof. After solving Pi(x; ∆u[p], y[p]
sp ) at an iteration p+ 1, each agent i ∈ I1:M obtains a

value function such that Vθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤ Vθn

(
xθn ,∆u[p], y[p]

sp

)
. A convex combination

of these value functions satisfies the following relationship:
M∑
i=1

wiVθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤

M∑
i=1

wiVθn
(
xθn ,∆u[p], y[p]

sp

)
= Vθn

(
xθn ,∆u[p], y[p]

sp

)
Therefore, by the convexity of the control cost, we have that:

Vθn
(
xθn ,∆u[p+1], y[p+1]

sp

)
≤

M∑
i=1

wiVθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤ Vθn

(
xθn ,∆u[p], y[p]

sp

)
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This shows that the control cost is non-increasing over iterations. Since the control cost is
non-negative by construction, it is bounded below by zero and, therefore, converges.

Lemma 7 (Auxiliary results). Consider an admissible output setpoint ysp ∈ Ysp and a
given initial state x = (ys, 0) with ys 6= ysp and a predecessor input u− = us ∈ int (U).
Then, there exists an admissible control movement ∆u that steers ys to y+

s,θ such that the
following relationship holds for a positive definite matrix S:

‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − ysp‖2

S < ‖ys − ysp‖2
S, ∀θ ∈ Ω

in which y+
s,θ = ys +Bs,θ∆u and x+

d,θ = Bd,θ∆u.

Proof. Consider a steady output given as y+
s,θ = αθys+(1−αθ)ysp with αθ ∈ (0, 1), ∀θ ∈ Ω

and assume Bs,θ, ∀θ ∈ Ω, has full rank. From (4.7), the control movement ∆uθ needed to
steer ys to y+

s,θ is such that y+
s,θ = ys +Bs,θ∆uθ, ∀θ ∈ Ω and, from the definition of y+

s,θ, we
have that y+

s,θ− ys = (1− αθ) (ysp − ys). Then, since us ∈ int (U), there exists a sufficiently
large αθ ∈ (0, 1) such that (1− αθ) (ysp − ys) = Bs,θ∆uθ holds for all models θ ∈ Ω with
∆uθ ∈ U∆ and (us + ∆uθ) ∈ U , which means that every model has an admissible control
movement that steers the predicted steady output closer to the output setpoint.

Now, observe that steering ys to y+
s,θ with a control sequence ∆uθ = {∆uθ, 0, . . . , 0}

results in the following control cost:

Vθ(x,∆uθ, ysp) =
N−1∑
j=0

(
‖xθ(j)− xs,θ‖2

Q

)
+ ‖∆uθ‖2

R + ‖xd,θ(N)‖2
Pθ

+ ‖ys,θ(N)− ysp‖2
S

= ‖ys − y+
s,θ‖2

Qs + ‖x+
d,θ‖2

Qd
+ ‖Fθx+

d,θ‖2
Qd

+ · · ·+ ‖FN−2
θ x+

d,θ‖2
Qd

+ ‖∆uθ‖2
R + ‖FN−1

θ x+
d,θ‖2

Pθ
+ ‖y+

s,θ − ysp‖2
S, θ ∈ Ω

in which xs,θ = (ys,θ(N), 0), ys,θ(N) = y+
s,θ = ys +Bs,θ∆uθ and xd,θ(N) = FN−1

θ x+
d,θ, with

x+
d,θ = Bd,θ∆uθ. Noting that Pθ = ∑∞

j=0

(
F j
θ

)T
QdF

j
θ , then we have that:

‖x+
d,θ‖2

Qd
+ ‖Fθx+

d,θ‖2
Qd

+ · · ·+ ‖FN−2
θ x+

d,θ‖2
Qd

+ ‖FN−1
θ x+

d,θ‖2
Pθ

=
(
x+
d,θ

)T Qd + F T
θ QdFθ + · · ·+

(
FN−2
θ

)T
QdF

N−2
θ +

∞∑
j=N−1

(
F j
θ

)T
QdF

j
θ

x+
d,θ

=
(
x+
d,θ

)T  ∞∑
j=0

(
F j
θ

)T
QdF

j
θ

x+
d,θ = ‖x+

d,θ‖2
Pθ

Then, the control cost is:

Vθ(x,∆uθ, ysp) = ‖ys − y+
s,θ‖2

Qs + ‖∆uθ‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − ysp‖2

S, θ ∈ Ω

One can derive the following expressions:

‖ys − y+
s,θ‖2

Qs = ‖∆uθ‖2
Q̃s,θ

, Q̃s,θ = BT
s,θQsBs,θ
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‖x+
d,θ‖2

Pθ
= ‖∆uθ‖2

P̃θ
, P̃θ = BT

d,θPθBd,θ

‖y+
s,θ − ysp‖2

S = α2
θ(1− αθ)−2‖∆uθ‖2

S̃θ
, S̃θ = BT

s,θSBs,θ

‖ys − ysp‖2
S = (1− αθ)−2‖∆uθ‖2

S̃θ
, S̃θ = BT

s,θSBs,θ

Then, we have that:

Vθ(x,∆uθ, ysp) = ‖∆uθ‖2
Q̃s,θ

+ ‖∆uθ‖2
R + ‖∆uθ‖2

P̃θ
+ α2

θ(1− αθ)−2‖∆uθ‖2
S̃θ

= ‖∆uθ‖2
Hθ

in which Hθ = Q̃s,θ +R+ P̃θ +α2
θ(1−αθ)−2S̃θ. Now, to prove that ‖ys− ysp‖2

S > ‖∆uθ‖2
Hθ

,
which is equivalent to show that (1−αθ)−2‖∆uθ‖2

S̃θ
> ‖∆uθ‖2

Hθ
, we shall find a sufficiently

large αθ such that (1−αθ)−2S̃θ > Hθ. For this purpose, observe that there exists a constant
ϕ > 0 such that ϕS̃θ > Q̃s,θ +R+ P̃θ holds for all θ ∈ Ω. Then, we can write the following
expression:

(1− αθ)−2S̃θ −Hθ =
(
1− α2

θ

)
(1− αθ)−2S̃θ − Q̃s,θ −R− P̃θ

>
(
1− α2

θ

)
(1− αθ)−2S̃θ − ϕS̃θ

= (1− αθ)−2
(
1− α2

θ − (1− αθ)2 ϕ
)
S̃θ

= (1− αθ)−1 (1 + αθ − (1− αθ)ϕ) S̃θ

Therefore, for every αθ ∈ (αmin, 1), in which αmin = max
(
0, ϕ−1

ϕ+1

)
, we have that

Hθ < (1− αθ)−2S̃θ holds for every model θ ∈ Ω.

Under Assumption 5, all the models θ ∈ Ω have the same sign of output/input
directions. Then, there exists an admissible control movement ∆u that produces a steady
output given as y+

s,θ = ys + Bs,θ∆u such that αmin‖ys − ysp‖ < ‖y+
s,θ − ysp‖ < ‖ys − ysp‖,

∀θ ∈ Ω, which means that all the models will have a predicted steady output y+
s,θ closer to

the output setpoint ysp and that the control cost satisfies the following relationship:

Vθ(x,∆u, ysp) =
N−1∑
j=0

(
‖xθ(j)− xs,θ‖2

Q

)
+ ‖∆u‖2

R + ‖xd,θ(N)‖2
Pθ

+ ‖ys,θ(N)− ysp‖2
S

= ‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − ysp‖2

S

< ‖ys − ysp‖2
S, ∀θ ∈ Ω

in which xs,θ = (ys,θ(N), 0), ys,θ(N) = y+
s,θ = ys +Bs,θ∆u and x+

d,θ = Bd,θ∆u.

In what follows, (∆u∗k, y∗sp,k) denotes the best available solution at time step k and
not an optimal one in the sense of the centralized MPC problem.

Lemma 8 (Convergence of ys to ysp). Consider an admissible output setpoint y∗sp ∈ Ysp
and a given initial state xθ = xθt , ∀θ ∈ Ω, with predecessor input u− = us ∈ int(U). If the
combined solutions of all the agents i ∈ I1:M computed through (4.28) is (∆u∗, y∗sp) such
that ‖xθ − xs,θ‖2

Q = 0, then ‖ys,θ(N)− y∗sp‖2
S = 0, ∀θ ∈ Ω.
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Proof. Since ‖xθ − xs,θ‖2
Q = 0 ∀θ ∈ Ω, this means that xθ = xs,θ = (ys,θ(N), 0) ∀θ ∈ Ω,

which implies that ys,θ = ys,θ(N) and that xd,θ = 0 ∀θ ∈ Ω. Then, for the true plant we
have that xθt = (ys,θt , 0), which is a steady state with corresponding steady output ys =
yθt = ys,θt(N). Also, given that the prediction of all the models θ ∈ Ω start with xθ = xθt ,
they have the same predicted steady output ys,θ(N) = ys,θt(N) = yθt = ys, which implies
that ∆u∗ = {0, . . . , 0}. Now, to prove by contradiction, assume that ys 6= y∗sp. Thus, the
optimal control cost corresponding to (∆u∗, y∗sp) is V ∗θ (xθt ,∆u∗, y∗sp) = ‖ys−y∗sp‖2

S, ∀θ ∈ Ω.

Then, since u− ∈ int(U) and we have assumed that ys 6= y∗sp, by virtue of Lemma
7, there exists an admissible control movement ∆u such that the predicted steady output
of every model θ ∈ Ω can be steered closer to the setpoint by a feasible control sequence
∆ũ = {∆u, 0, . . . , 0}. Since this control sequence is suboptimal, the associated performance
index Vθ(xθt ,∆ũ, y∗sp) is such that:

V ∗θ (xθt ,∆u∗, y∗sp) ≤ Vθ(xθt ,∆ũ, y∗sp)

=
N−1∑
j=0

(
‖xθ(j)− xs,θ‖2

Q

)
+ ‖∆u‖2

R + ‖xd,θ(N)‖2
Pθ

+ ‖ys,θ(N)− y∗sp‖2
S

= ‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − y∗sp‖2

S, ∀θ ∈ Ω

in which xs,θ = (ys,θ(N), 0), ys,θ(N) = y+
s,θ = ys +Bs,θ∆u and x+

d,θ = Bd,θ∆u for all θ ∈ Ω.
Again, by virtue of Lemma 7, we have that:

V ∗θ (xθt ,∆u∗, y∗sp) ≤ ‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − y∗sp‖2

S

< ‖ys − y∗sp‖2
S

= V ∗θ (xθt ,∆u∗, y∗sp)

The strict inequality contradicts the optimality of V ∗θ (xθt ,∆u∗, y∗sp) and, therefore,
the predicted steady output is such that ys,θ(N) = ys = y∗sp, ∀θ ∈ Ω.

Theorem 3 (Asymptotic stability). Consider positive definite matrices Q, R, S and
Pθ ∀θ ∈ Ω, a feasible initial solution (∆u[0], y[0]

sp ) and an admissible output setpoint
ysp ∈ Ysp. Then, the application of Algorithm 1 admissibly steers the plantwide state of
the true plant to xs,θt = (ys, xd) = (ysp, 0), which implies that the output of the true plant
is steered to ysp. Moreover, the state xs,θt is an asymptotically stable equilibrium point of
system (4.7).

Proof. Convergence: Consider a given time step k. Since there exists a feasible initial
condition, by virtue of Lemma 5, problem Pi(xk; ∆u[0]

k , y
[0]
sp,k) is feasible for every agent

i ∈ I1:M and the sequential solution of this problem is feasible over iterations, thereby
resulting in a plantwide solution denoted as (∆u∗k, y∗sp,k), with the corresponding control
cost given as V ∗θ (xk,∆u∗k, y∗sp,k), ∀θ ∈ Ω. From (4.29) and (4.30), one obtains a feasible
initial solution (∆u[0]

k+1, y
[0]
sp,k+1) to be used at the next time step.
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Then, by the receding horizon principle, only the first control movement of ∆u∗k
is injected into the plant and we move to time step k + 1, at which a solution of
Pi(xk+1; ∆u[0]

k+1, y
[0]
sp,k+1) is guaranteed to exist by virtue of Corollary 2. Observe that

a feasible plantwide suboptimal solution at k + 1 is (∆ũk+1, ỹsp,k+1) = (∆u[0]
k+1, y

[0]
sp,k+1),

corresponding to the control cost Ṽθ(xθ,k+1,∆ũk+1, ỹsp,k+1), ∀θ ∈ Ω. Note from (4.21)
that the predictions of all models θ ∈ Ω start from the state of the true plant θt and,
consequently, the suboptimal solution (∆ũk+1, ỹsp,k+1) leads to the following sequence of
predicted states of the true plant model:

{xθt(0|k + 1), xθt(1|k + 1), . . ., xθt(N − 1|k + 1), xθt(N |k + 1)} =
{xθt(1|k), xθt(2|k), . . . , xθt(N |k), Aθtxθt(N |k)}

In terms of static and dynamic parts, the above sequence of states corresponds to
the following sequences of ys,θt and xd,θt :

{ys,θt(0|k + 1), ys,θt(1|k + 1), . . . , ys,θt(N − 1|k + 1), ys,θt(N |k + 1)} =
{ys,θt(1|k), ys,θt(2|k), . . . , ys,θt(N |k), ys,θt(N |k)}

{xd,θt(0|k + 1), xd,θt(1|k + 1), . . ., xd,θt(N − 1|k + 1), xd,θt(N |k + 1)} =
{xd,θt(1|k), xd,θt(2|k), . . . , xd,θt(N |k), Fθtxd,θt(N |k)}

Then, it is clear that ys,θt(j|k+ 1) = ys,θt(j + 1|k) and xd,θt(j|k+ 1) = xd,θt(j + 1|k)
and that xs,θt,k+1 = (ys,θt(N |k + 1), 0) = (ys,θt(N |k), 0) = xs,θt,k. Thus, the control cost
Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) can be written as follows:

Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) = ‖xθt(1|k)− xs,θt,k‖2
Q + · · ·+ ‖xθt(N |k)− xs,θt,k‖2

Q

+ ‖∆u∗(1|k)‖2
R + · · ·+ ‖∆u∗(N − 1|k)‖2

R

+ ‖Fθtxd,θt(N |k)‖2
Pθt

+ ‖ys,θt(N |k)− y∗sp,k‖2
S (4.31)

Observe that:

‖xθt(N |k)− xs,θt,k‖2
Q = ‖ys,θt(N |k)− ys,θt(N |k)‖2

Qs + ‖xd,θt(N |k)‖2
Qd

+ 2
(
ys,θt(N |k)− ys,θt(N |k)

)T
Qsdxd,θt(N |k)

= ‖xd,θt(N |k)‖2
Qd

(4.32)

Now, combining (4.31) and (4.32) and noticing that, from (4.19),
Qd + F T

θtPθtFθt = Pθt , it follows that:
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Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) = ‖xθt(1|k)− xs,θt,k‖2
Q + · · ·+ ‖xθt(N − 1|k)− xs,θt,k‖2

Q

+ ‖xd,θt(N |k)‖2
Qd

+ ‖∆u∗(1|k)‖2
R + · · ·+ ‖∆u∗(N − 1|k)‖2

R

+ ‖Fθtxd,θt(N |k)‖2
Pθt

+ ‖ys,θt(N |k)− y∗sp,k‖2
S

= ‖xθt(1|k)− xs,θt,k‖2
Q + · · ·+ ‖xθt(N − 1|k)− xs,θt,k‖2

Q

+ ‖∆u∗(1|k)‖2
R + · · ·+ ‖∆u∗(N − 1|k)‖2

R

+ ‖xd,θt(N |k)‖2
Pθt

+ ‖ys,θt(N |k)− y∗sp,k‖2
S

Thus, the following relationship holds:

Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1)− V ∗θt(xθt,k,∆u∗k, y∗sp,k) =− ‖xθt(0|k)− xs,θt,k‖2
Q

− ‖∆u(0|k)‖2
R (4.33)

Then, it is clear that Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) ≤ V ∗θt(xθt,k,∆u∗k, y∗sp,k) because
the right-hand side of (4.33) is non-positive. Note that the robustness constraint (4.27)
guarantees that V ∗θt(xθt,k+1,∆u∗k+1, y

∗
sp,k+1) ≤ Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) and we have that:

V ∗θt(xθt,k+1,∆u∗k+1, y
∗
sp,k+1)− V ∗θt(xθt,k,∆u∗k, y∗sp,k) ≤− ‖xθt(0|k)− xs,θt,k‖2

Q

− ‖∆u(0|k)‖2
R (4.34)

From (4.34), we conclude that the sequence that comprises optimal value functions
of subsequent time instants is non-increasing, which means that:

V ∗θt(xθt,k+1,∆u∗k+1, y
∗
sp,k+1) ≤ V ∗θt(xθt,k,∆u∗k, y∗sp,k), ∀k (4.35)

Now, since the control cost is non-increasing and bounded below by zero, it con-
verges, which implies that both sides of (4.34) tend to zero as k → ∞. Consequently,
by the positiveness of matrices Q and R, we have that limk→∞‖xθt(k)− xs,θt,k‖ = 0
and limk→∞‖∆u(k)‖ = 0. Because limk→∞‖xθt(k) − xs,θt,k‖ = 0, it follows
that limk→∞‖ys,θt(k)− ys,θt(N |k)‖ = 0 and limk→∞‖xd,θt(k)‖ = 0, implying that
limk→∞ yθt(k) = ys,θt(N |k).

Now, in virtue of Lemma 8, we can finally conclude that the plantwide output
converges to yθt(k) = ys,θt(N |k) = y∗sp,k as k →∞.

Stability: Consider an initial state of the true plant xθt,0 = xθt(0) and a suboptimal
control cost Vθt(xθt,0,∆ũ0, ysp,0) computed for ∆ũ0 = {0, . . . , 0} and a given ysp,0 ∈ Ysp,
then we have that:

V ∗θt(xθt,0,∆u∗0, y∗sp,0) ≤ Vθt(xθt,0,∆ũ0, ysp,0) = ‖xd,θt(0|0)‖2
Pθt

+ ‖ys,θt(0|0)− ysp,0‖2
S

= ‖xθt,0 − xs,θt,0‖2
Z (4.36)
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in which xs,θt,0 = (ys,θt(0|0), 0) and

Z = ζInx , ζ =
‖xd,θt(0|0)‖2

Pθt
+ ‖ys,θt(0|0)− ysp,0‖2

S

‖xθt,0 − xs,θt,0‖2

Note that, from the definition of the control cost at a given time step k, the
following relationship holds:

‖xθt,k − xs,θt,k‖2
Q ≤ V ∗θt(xθt,k,∆u∗k, y∗sp,k) (4.37)

Now, from the combination of (4.35), (4.36) and (4.37), it follows that:

‖xθt,k − xs,θt,k‖2
Q ≤ ‖xθt,0 − xs,θt,0‖2

Z , ∀k > 0 (4.38)

Since Q and Z are positive definite matrices, we have that:

λmin(Q)‖xθt,k − xs,θt,k‖2 ≤ ζ‖xθt,0 − xs,θt,0‖2, ∀k > 0 (4.39)

Then, for a given ρ > 0 such that ‖xθt,0 − xs,θt,0‖ ≤ ρ, the following relationship
holds:

‖xθt,k − xs,θt,k‖ ≤ ε, ∀k > 0 (4.40)

in which ε = ρ
√
ζ/λmin(Q). Therefore, the closed-loop system is stable.

From the combination of stability and convergences xθt,k → xs,θt,k, xd,θt,k → 0 and
ys,θt(N |k) → ysp,k as k → ∞, it follows that xs,θt = (ysp, 0) is an asymptotically stable
equilibrium point of system (4.7).

4.4 Case study 1: high-purity distillation column

To test the proposed algorithm, we here consider the following model of a high-
purity distillation column (RALHAN; BADGWELL, 2000) that has been modified to
obtain multiple models with different values of process gains and time constants:

y1(s)
y2(s)

 =


0.7868(1 + γ1)

(22.98 + β1) s+ 1
−0.6147(1 + γ2)

(22.98 + β1) s+ 1

0.8098(1 + γ1)
(22.98 + β2) s+ 1

−0.982(1 + γ2)
(22.98 + β2) s+ 1


u1(s)
u2(s)

 (4.41)

The set of models Ω is built considering different values of uncertainty parameters
γ1, γ2, β1 and β2 as given in Table 3.
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Table 3 – Parameters of model uncertainty

Model γ1 γ2 β1 β2

1 0 0 0 0
2 −0.4 −0.4 10 0
3 −0.4 0.4 10 −10
4 0.4 −0.4 −10 10
5 0.4 0.4 0 −10

All the models have been converted to state-space models, which were discretized
using the zero-order hold method with sampling time Ts = 2. The system is constrained
to ‖u‖∞ ≤ 1.5 and ‖∆u‖∞ ≤ 0.3. The controller parameters are N = 2, Qy = 10Iny ,
Q = CTQyC + 10−4 × Inx , R = 0.2 × Inu and S = 10Qy. The simulation starts with
y = (0, 0), u = (0, 0) and ysp,min = ysp,max = ysp = (0, 0) and, at time step k = 5, the
output setpoint changes to ysp = (0.1, 0.13). The subsystems are (y1, u1) and (y2, u2), with
weights w1 = w2 = 0.5. Model 2 is chosen to be the nominal model, while model 5 is the
one that represents the true plant.

Remark 8. Note that, since ysp,min = ysp,max = ysp, only the setpoint tracking problem is
simulated here. This is performed to compare different system responses with respect to
the same operating point. The zone control problem will be addressed in the case study
presented in Section 4.7.

The results of the proposed robust DMPC (RDMPC) algorithm are compared
with the ones obtained by the application of a single-model DMPC that considers only
the nominal model. As usual in the DMPC literature, we also present the results of a
centralized scheme, corresponding to the robust MPC (RMPC) based on the following
optimization problem:

(∆u∗, y∗sp) = arg min
∆u,ysp

Vθn (xθn ,∆u, ysp) (4.42)

subject to:

xθ(0) = xθn , θ ∈ Ω (4.43)
xθ(j + 1) = Aθxθ(j) +Bθ∆u(j), j ∈ I0:N−1, θ ∈ Ω (4.44)
u(j) ∈ U , j ∈ I0:N−1 (4.45)
∆u(j) ∈ U∆, j ∈ I0:N−1 (4.46)
ysp ∈ Ysp (4.47)
Vθ(xθ,∆u, ysp) ≤ Vθ(xθ,∆ũ, ysp), θ ∈ Ω (4.48)

in which ∆ũ is computed in the same way as ∆u[0] in (4.29).
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Figure 17 – Outputs of the high-purity distillation column controlled by RMPC, RDMPC
and DMPC. Dotted black lines are output setpoints and the remaining lines
are described in the legend
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Figure 18 – Inputs of the high-purity distillation column controlled by RMPC, RDMPC
and DMPC. The lines are described in the legend
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The proposed RDMPC has been applied considering p̄ = 1 and p̄ = 10 iterations
per time step, while p̄ = 10 is used in the nominal DMPC. In Figure 17, black dotted lines
are the output setpoints and the remaining lines are the system output responses obtained
from the application of different controllers, as described in the legend. System inputs are
depicted in Figure 18. While the system is steered to the setpoint by the proposed RDMPC
for both p̄ = 1 and p̄ = 10, it becomes only marginally stable under the application of the
nominal DMPC. In fact, the closed-loop system would be unstable under the DMPC if
there were no constraints on the control movements, which are clearly active after k = 10
(see Figure 18). In comparison with the RDMPC using p̄ = 1, the RDMPC with p̄ = 10
produced system responses that are closer to the ones obtained by the centralized RMPC,
as expected.

Figure 19 shows the non-increasing behavior of the true plant performance criterion.
Note that, unlike nominal DMPC approaches whose performance index should be no better
than the one of the centralized MPC, the control cost of the true plant produced by the
RDMPC with p̄ = 10 is sometimes lower. This may occur because, over iterations, the
proposed RDMPC improves the performance index computed with the nominal model,
which can either improve or worsen the true plant performance. In other words, although
Vθn is always non-increasing over iterations, Vθt may have different trends. As observed in
Figure 20, while both nominal and true plant performance criteria are in general improved
at k = 5, the true plant performance index increases over iterations at k = 7.
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Figure 19 – Performance indexes of the true high-purity distillation column controlled by
RMPC and RDMPC. The lines are described in the legend
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Figure 20 – Nominal and true plant performance criteria produced by RDMPC (p̄ = 10)

4.5 Improving convergence over iterations

Due to distinct dynamics and magnitude of process gains or even weights in the
performance criterion, each subsystem can improve the plantwide performance index to a
different extent. This suggests that one can choose the contribution of each subsystem to the
global solution such that the resulting performance index of the nominal model is optimized.
For this purpose, one can perform the convex combination of (∆ū∗i , y∗sp,i), i ∈ I1:M through
an optimization problem in which w = (w1, . . . , wM) is the minimizer of the control cost
Vθn(xθn ,∆u[p], y[p]

sp ). This can be posed as the QP problem Pw(∆ū∗i , y∗sp,i, i ∈ I1:M) defined
as follows:

w∗ = arg min
w

Vθn(xθn ,∆u[p], y[p]
sp ) (4.49)

subject to:

xθn(0) = xθt (4.50)

xθn(j + 1) = Aθnxθn(j) +
M∑
i=1

Bθn,i∆ui(j), j ∈ I0:N−1 (4.51)

(∆u[p], y[p]
sp ) =

M∑
i=1

wi(∆ū∗i , y∗sp,i) (4.52)

M∑
i=1

wi = 1 (4.53)

wi ≥ wi,min, ∀i ∈ I1:M (4.54)
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in which wi,min ≥ 0, ∀i ∈ I1:M with ∑M
i=1wi,min < 1. Note that wi,min can be chosen to

ensure that the solution of subsystem i always has a contribution to the global solution.

Problem Pw(∆ū∗i , y∗sp,i, i ∈ I1:M) has M decision variables and, substituting (4.50),
(4.51), (4.52) into the objective function, the number of constraints is reduced to one
equality and M inequalities. Therefore, since M is typically not very large, the proposed
additional QP problem represents a small increase in the required computational cost in
comparison to Algorithm 1. Moreover, as in explicit MPC approaches (BEMPORAD et
al., 2002), multiparametric quadratic programming tools (OBERDIECK et al., 2016) may
be employed so that the computation effort needed to solve the additional QP problem is
transferred offline.

We can thus modify Algorithm 1 as follows:

Algorithm 2: Robust cooperative DMPC with improved convergence
Input: (∆u[0], y[0]

sp ) and Ysp
1 Set x = xθt(k) and p = 1;
2 while stop criteria are not met do
3 for i ∈ I1:M do
4 Obtain (∆u∗i , y∗sp,i) by solving Pi(x; ∆u[p−1], y[p−1]

sp );
5 end
6 Compute w by solving Pw(∆ū∗i , y∗sp,i, i ∈ I1:M);
7 Compute (∆u[p], y[p]

sp ) through (4.52);
8 p← p+ 1;
9 end

10 Set (∆uk, ysp,k) = (∆u[p], y[p]
sp );

11 Compute (∆u[0], y[0]
sp ) through (4.29) and (4.30);

12 Implement ∆u(0|k);
13 k ← k + 1;
14 Return to line 1.

Since the difference between Algorithm 1 and 2 relies on the weights used in the
convex combination defined in (4.28), all the properties proved for Algorithm 1 are retained.
Also, because Lemma 6 holds for any convex combination of subsystem solutions and
Algorithm 2 has a second optimization step that allows Vθn(xθn ,∆u[p], y[p]

sp ) to decrease, it
is easy to see that it improves the convergence of the algorithm.

Remark 9. After the agents communicate their solutions, the computation of w can be
performed in two ways: (i) a single coordinating agent computes w and then communicates
it to the others, requiring one more communication step or (ii) every agent computes w
locally (obviously yielding the same result), which avoids further communication, but
requires solving the same problem M times. The choice of strategy may depend on many
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factors such as the available time to perform iterations, the computing power on hand,
the technology employed in the communication between subsystems, etc. For instance,
case (ii) may be preferred for time-constrained applications. The reason is that, while
the elapsed time for solving the additional QP problem is the same in both cases (i) and
(ii) because w is computed in parallel by each agent in (ii), case (i) spends more time
during communications. On the other hand, if the time for subsystems to communicate
is negligible, case (i) represents the simplest strategy since the additional QP problem is
implemented only in a single subsystem.

4.6 Robustifying a nominal cooperative distributed
MPC

Note that the problem Pi(x; ∆u[p−1], y[p−1]
sp ) given in (4.20)-(4.27) consists of a

QCQP problem since constraint (4.27) is quadratic in the decision variables. In order to
reduce subsystems’ computational cost required to solve their optimal control problems, we
propose enforcing the robustness constraint (4.27) not in the MPC problem of each agent,
but rather in the last combination of their solutions, i.e. after iterations terminate. This
approach allows each agent to account only for the nominal model, resulting in a control
scheme that is equivalent to having a nominal cooperative distributed MPC whose solution
is robustified before it is applied to the system. Then, provided a feasible initial condition
(∆u[0], y[0]

sp ) is available, each agent i ∈ I1:M solves the QP problem PQP
i (x; ∆u[p−1], y[p−1]

sp )
defined as follows:

(∆u∗i , y∗sp,i) = arg min
∆ui,ysp,i

Vθn (xθn ,∆u, ysp) (4.55)

subject to:

xθn(0) = xθt (4.56)

xθn(j + 1) = Aθnxθn(j) +
M∑
i=1

Bθn,i∆ui(j), j ∈ I0:N−1 (4.57)

∆ul = ∆u[p−1]
l , l ∈ I1:M \ i (4.58)

u(j) ∈ U , j ∈ I0:N−1 (4.59)
∆u(j) ∈ U∆, j ∈ I0:N−1 (4.60)
ysp ∈ Ysp (4.61)

In the same manner as in Algorithm 2, convergence can be improved by solving
problem Pw(∆ū∗i , y∗sp,i, i ∈ I1:M ) defined in (4.49)-(4.52) to perform the convex combination
of agents’ solutions, producing (∆u[p], y[p]

sp ). When the maximum number of iterations is
achieved or some other stop criterion is met, the agents use their last shared solutions
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(∆ū∗i , y∗sp,i), i ∈ I1:M to recompute (∆u[p], y[p]
sp ) through the following convex combination:

(∆u[p], y[p]
sp ) = w0(∆u[0], y[0]

sp ) +
M∑
i=1

wi(∆ū∗i , y∗sp,i) (4.62)

in which the vector w̃ = (w0, w1, . . . , wM) is computed as a solution of the following
problem Pw̃(∆u[0], y[0]

sp ,∆ū∗i , y∗sp,i, i ∈ I1:M):

w̃∗ = arg min
w̃

Vθn(xθn ,∆u[p], y[p]
sp ) (4.63)

subject to (4.62) and to:

xθ(0) = xθt , ∀θ ∈ Ω (4.64)

xθ(j + 1) = Aθxθ(j) +
M∑
i=1

Bθ,i∆ui(j), j ∈ I0:N−1, ∀θ ∈ Ω (4.65)

M∑
i=0

wi = 1 (4.66)

wi ≥ 0, ∀i ∈ I0:M (4.67)
Vθ(xθ,∆u[p], y[p]

sp ) ≤ Vθ(xθ,∆u[0], y[0]
sp ), ∀θ ∈ Ω (4.68)

Note that the computation of w̃ can also be performed in two ways, as discussed
in Remark 9.

Algorithm 3: Robust cooperative DMPC with reduced computational cost
Input: (∆u[0], y[0]

sp ) and Ysp
1 Set x = xθt(k) and p = 1;
2 while stop criteria are not met do
3 for i ∈ I1:M do
4 Obtain (∆u∗i , y∗sp,i) by solving PQP

i (x; ∆u[p−1], y[p−1]
sp );

5 end
6 Compute w by solving Pw(∆ū∗i , y∗sp,i, i ∈ I1:M);
7 Compute (∆u[p], y[p]

sp ) through (4.50);
8 p← p+ 1;
9 end

10 Compute w̃ by solving Pw̃(∆u[0], y[0]
sp ,∆ū∗i , y∗sp,i, i ∈ I1:M);

11 Recompute (∆u[p], y[p]
sp ) through (4.62);

12 Set (∆uk, ysp,k) = (∆u[p], y[p]
sp );

13 Compute (∆u[0], y[0]
sp ) through (4.29) and (4.30);

14 Implement ∆u(0|k);
15 k ← k + 1;
16 Return to line 1.
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In the same way as in Algorithm 1 and 2, after the iterative process is terminated,
only the first control movement of ∆uk is injected into the plant and this procedure is
repeated at the next time step with an initial solution given by (4.29) and (4.30). This is
summarized in Algorithm 3.

Note that, if we remove lines 10 and 11, Algorithm 3 reduces to a nominal cooper-
ative distributed MPC in which optimal weights w are computed to improve algorithm
convergence. If line 6 is also removed, one obtains a standard nominal cooperative dis-
tributed MPC with fixed weights w. This fact suggests that the proposed algorithm can
serve as a plug-and-play robustifier module that may be smoothly deployed in a control
structure with a running nominal cooperative distributed MPC. Such a feature not only
requires minimally invasive and low-cost commissioning, but is also more likely to be
accepted by plant operators.

4.6.1 Analyses of the modified algorithm

In what follows, we provide recursive feasibility and convergence analyses of the
proposed robust cooperative distributed MPC with reduced computational cost.

Lemma 9 (Recursive feasibility over iterations). Assume that the initial condition
(∆u[0], y[0]

sp ) is feasible and consider the application of Algorithm 3. Then, problems
PQP
i (x; ∆u[p−1], y[p−1]

sp ) with i ∈ I1:M and Pw(∆ū∗i , y∗sp,i, i ∈ I1:M) are feasible at iteration
p = 1 and they will remain feasible at any subsequent iteration p+ j, j ∈ I≥1. Moreover,
after the iterative procedure terminates, problem Pw̃(∆u[0], y[0]

sp ,∆ū∗i , y∗sp,i, i ∈ I1:M ) will also
be feasible.

Proof. As in the proof of Lemma 5, the feasible initial condition is also a feasible solution
to PQP

i (x; ∆u[0], y[0]
sp ) and, thus, every agent i ∈ I1:M will have a solution at p = 1.

Then, (∆u[1], y[1]
sp ) is obtained through the convex combination defined in (4.50) with w

computed as solution of problem Pw(∆ū∗i , y∗sp,i, i ∈ I1:M), which is always feasible since
wi,min ≥ 0, ∀i ∈ I1:M with ∑M

i=1wi,min < 1.

Next, the computed (∆u[1], y[1]
sp ) is the initial condition for iteration p = 2 that

satisfies constrains (4.59)-(4.61) because U , U∆ and Ysp are convex sets. Consequently,
(∆u[1], y[1]

sp ) serves as a feasible solution to all agents i ∈ I1:M . Therefore, by induction, we
conclude that PQP

i (x; ∆u[p−1], y[p−1]
sp ),∀i ∈ I1:M and Pw(∆ū∗i , y∗sp,i, i ∈ I1:M ) will be feasible

at any subsequent iteration p+ j, j ∈ I≥1.

After the iteration procedure ends, a robust convex combination is performed by
solving problem Pw̃(∆u[0], y[0]

sp ,∆ū∗i , y∗sp,i, i ∈ I1:M). Observe that this problem always has
a suboptimal solution w̃ = (1, 0, . . . , 0) that clearly satisfy constraints (4.64)-(4.68), which
finishes the proof.
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Corollary 3 (Recursive feasibility over time steps). Consider the application of Algorithm
3. The feasibility of PQP

i (x; ∆u[p−1], y[p−1]
sp ) at iteration p = 1 implies the feasibility at every

time step k + j, j ∈ I≥1.

Proof. This is a direct result from Lemma 9 and the construction of a feasible initial
condition (∆u[0], y[0]

sp ) given in (4.29) and (4.30).

Lemma 10 (Convergence of the algorithm). In the application of Algorithm 3, the
plantwide performance criterion Vθn(xθn ,∆u[p], y[p]

sp ) of the nominal model θn ∈ Ω is non-
increasing and converges as p→∞.

Proof. Since problem Pw̃(∆u[0], y[0]
sp ,∆ū∗i , y∗sp,i, i ∈ I1:M) is not solved during itera-

tions, it does not affect the algorithm convergence. Then, we can follow the same
steps of the proof of Lemma 6. At an iteration p + 1, each agent i ∈ I1:M solves
problem PQP

i (x; ∆u[p], y[p]
sp ), resulting in a value function Vθn

(
xθn ,∆ū∗i , y∗sp,i

)
such that

Vθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤ Vθn

(
xθn ,∆u[p], y[p]

sp

)
. From the convex combination defined in (4.50),

it follows that:
M∑
i=1

wiVθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤

M∑
i=1

wiVθn
(
xθn ,∆u[p], y[p]

sp

)
= Vθn

(
xθn ,∆u[p], y[p]

sp

)

Now, by the convexity of the performance index, we have that:

Vθn
(
xθn ,∆u[p+1], y[p+1]

sp

)
≤

M∑
i=1

wiVθn
(
xθn ,∆ū∗i , y∗sp,i

)
≤ Vθn

(
xθn ,∆u[p], y[p]

sp

)

Since the performance index of the nominal model is non-increasing over iterations
and given that it is non-negative by construction, it implies that it is bounded below by
zero and, therefore, converges.

Lemma 11 (Auxiliary results). Consider an admissible output setpoint ysp ∈ Ysp, an
initial solution (∆u[0], ysp) with ∆u[0] = {0, . . . , 0} and a given initial state x = (ys, 0) with
ys 6= ysp, and predecessor input u− = us ∈ int (U). Then, there exists an admissible control
movement ∆u such that:

(i) it steers ys to y+
s,θ such that the following relationship holds for a positive definite

matrix S:

‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − ysp‖2

S < ‖ys − ysp‖2
S, ∀θ ∈ Ω (4.69)

in which y+
s,θ = ys +Bs,θ∆u and x+

d,θ = Bd,θ∆u;

(ii) it can be produced by Algorithm 3, which consists of iteratively solving problems
PQP
i (x; ∆u[p], y[p]

sp ) and Pw(∆ū∗i , y∗sp,i, i ∈ I1:M) followed by the solution of problem
Pw̃(∆u[0], y[0]

sp ,∆ū∗i , y∗sp,i, i ∈ I1:M).
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Proof. The proof of (i) is the same as in Lemma 7. Then, since there exists an admissible
control movement ∆u that satisfies (i), all the agents i ∈ I1:M will have a nontrivial solution
for problem PQP

i (x; ∆u[0], ysp) which will be combined using optimal weights computed
through Pw(∆ū∗i , y∗sp,i, i ∈ I1:M). These solutions are then improved over iterations until
some stop criterion is met. At this point, observe that the last agents’ solutions do not
necessarily satisfies (4.69) for any model θ ∈ Ω other than the nominal one θn.

Now, consider a suboptimal sequence of control movements ∆ui = {∆ui, 0, . . . , 0}
that forms the pair (∆ūi, ysp), i ∈ I1:M and suppose that w̃ = (1− β, β/M, . . . , β/M) with
β ∈ (0, 1). Then, from (4.62), we have that:

∆u[1] = (1− β)∆u[0] + β/M
M∑
i=1

∆ūi = β/M
M∑
i=1

∆ūi = {∆u, 0, . . . , 0}

Thus, assuming Bs,θ, ∀θ ∈ Ω, has full rank, there exists a sufficiently small β ∈ (0, 1) such
that the resulting ∆u produces a steady output given as y+

s,θ = ys + Bs,θ∆u such that
αmin‖ys− ysp‖ < ‖y+

s,θ− ysp‖ < ‖ys− ysp‖ ∀θ ∈ Ω, which satisfies (4.69) and, consequently,
constraint (4.68) is also satisfied because Vθ(xθ,∆u[0], y[0]

sp ) = ‖ys − ysp‖2
S, ∀θ ∈ Ω. This

means that problem Pw̃(∆u[0], ysp,∆ū∗i , ysp, i ∈ I1:M ) can generate a vector w̃ that produces
an admissible ∆u such that (4.69) holds, which finishes the proof of (ii).

Lemma 12 (Convergence of ys to ysp). Consider an admissible output setpoint y∗sp ∈ Ysp
and a given initial state xθ = xθt , ∀θ ∈ Ω, with predecessor input u− = us ∈ int (U). If
the combined solutions resulting from (4.62) is (∆u∗, y∗sp) such that ‖xθ − xs,θ‖2

Q = 0, then
‖ys,θ(N)− y∗sp‖2

S = 0, ∀θ ∈ Ω.

Proof. We here follow the same steps as in the proof of Lemma 8. Since ‖xθ − xs,θ‖2
Q = 0,

∀θ ∈ Ω, we have that xθ = xs,θ = (ys,θ(N), 0) ∀θ ∈ Ω, which implies that ys,θ = ys,θ(N),
xd,θ = 0 ∀θ ∈ Ω and that ∆u∗ = {0, . . . , 0}. Now, to prove by contradiction, assume
that ys 6= y∗sp. Thus, the performance index associated with the solution (∆u∗, y∗sp) is
V ∗θ (xθt ,∆u∗, y∗sp) = ‖ys − y∗sp‖2

S, ∀θ ∈ Ω.

Then, by virtue of Lemma 11, since ys 6= y∗sp and u− ∈ int (U), there exists an ad-
missible control movement ∆u such that the predicted steady output of every model θ ∈ Ω
can be steered closer to the setpoint by a feasible control sequence ∆ũ = {∆u, 0, . . . , 0}.
As also shown in Lemma 11, such a ∆ũ can be produced by a convex combination
with weights w̃ computed through problem Pw̃(∆u[0], y[0]

sp ,∆ū∗i , ysp, i ∈ I1:M), in which
(∆u[0], y[0]

sp ) = (∆u∗, y∗sp). Then, it can be shown that:

V ∗θ (xθt ,∆u∗, y∗sp) ≤ ‖ys − y+
s,θ‖2

Qs + ‖∆u‖2
R + ‖x+

d,θ‖2
Pθ

+ ‖y+
s,θ − y∗sp‖2

S

< ‖ys − y∗sp‖2
S

= V ∗θ (xθt ,∆u∗, y∗sp)
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The strict inequality contradicts the optimality of V ∗θ (xθt ,∆u∗, y∗sp) and, therefore,
the predicted steady output is such that ys,θ(N) = ys = y∗sp, ∀θ ∈ Ω.

Theorem 4 (Asymptotic stability). Consider positive definite matrices Q, R, S and
Pθ ∀θ ∈ Ω, a feasible initial solution (∆u[0], y[0]

sp ) and an admissible output setpoint
ysp ∈ Ysp. Then, the application of Algorithm 3 admissibly steers the plantwide state of
the true plant to xs,θt = (ys, xd) = (ysp, 0), which implies that the output of the true plant
is steered to ysp. Moreover, the state xs,θt is an asymptotically stable equilibrium point of
system (4.7).

Proof. Convergence: We proceed by following the same arguments as in the proof of
Theorem 3. In virtue of Lemma 9, the existence of a feasible initial condition (∆u[0], y[0]

sp )
at time step k implies that a plantwide solution (∆u∗k, y∗sp,k) can be obtained, which
corresponds to V ∗θ (xk,∆u∗k, y∗sp,k), ∀θ ∈ Ω. Also, from (4.29) and (4.30), one obtains a
feasible initial condition (∆u[0]

k+1, y
[0]
sp,k+1) to be used in the next time step.

By following the receding horizon principle, only the first control movement of
∆u∗k is injected into the plant and we move to time step k + 1, at which problems
PQP
i (xk+1; ∆u[0]

k+1, y
[0]
sp,k+1) and Pw̃(∆u[0]

k+1, y
[0]
sp,k+1,∆ū∗i,k+1, y

∗
sp,i,k+1, i ∈ I1:M) are feasible

by virtue of Corollary 3. Considering w̃ = {1, 0, . . . , 0}, a plantwide suboptimal so-
lution is (∆ũk+1, ỹsp,k+1) = (∆u[0]

k+1, y
[0]
sp,k+1), corresponding to the performance index

Ṽθ(xθ,k+1,∆ũk+1, ỹsp,k+1), ∀θ ∈ Ω. Note that, from (4.64), the predictions of all mod-
els θ ∈ Ω start from the state of the true plant θt and, consequently, for the true
plant, the suboptimal solution (∆ũk+1, ỹsp,k+1) leads to ys,θt(j|k + 1) = ys,θt(j + 1|k) and
xd,θt(j|k + 1) = xd,θt(j + 1|k), as already shown in the proof of Theorem 3. Thus, the
following relationship holds:

Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1)− V ∗θt(xθt,k,∆u∗k, y∗sp,k) =− ‖xθt(0|k)− xs,θt,k‖2
Q

− ‖∆u(0|k)‖2
R (4.70)

Then, since Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) ≤ V ∗θt(xθt,k,∆u∗k, y∗sp,k) and noting that
V ∗θt(xθt,k+1,∆u∗k+1, y

∗
sp,k+1) ≤ Ṽθt(xθt,k+1,∆ũk+1, ỹsp,k+1) is ensured by the robustness con-

straint (4.68), we have that:

V ∗θt(xθt,k+1,∆u∗k+1, y
∗
sp,k+1)− V ∗θt(xθt,k,∆u∗k, y∗sp,k) ≤− ‖xθt(0|k)− xs,θt,k‖2

Q

− ‖∆u(0|k)‖2
R (4.71)

Consequently, the sequence that comprises optimal value functions of subsequent
time instants is non-increasing, which means that:

V ∗θt(xθt,k+1,∆u∗k+1, y
∗
sp,k+1) ≤ V ∗θt(xθt,k,∆u∗k, y∗sp,k), ∀k (4.72)
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Now, since the control cost is non-increasing and bounded below by
zero, it converges, which implies that both sides of (4.71) tend to zero as
k →∞. Consequently, by the positiveness of matrices Q and R, we have that
limk→∞‖xθt(k)− xs,θt,k‖ = 0 and limk→∞‖∆u(k)‖ = 0. Since limk→∞‖xθt(k)−xs,θt,k‖ = 0,
it follows that limk→∞‖ys,θt(k)− ys,θt(N |k)‖ = 0 and limk→∞‖xd,θt(k)‖ = 0, implying that
limk→∞ yθt(k) = ys,θt(N |k).

Now, in virtue of Lemma 12, we can finally conclude that the plantwide output
converges to yθt(k) = ys,θt(N |k) = y∗sp,k as k →∞.

Stability: Consider an initial state of the true plant xθt,0 = xθt(0) and a suboptimal
control cost Vθt(xθt,0,∆ũ0, ysp,0) computed for ∆ũ0 = {0, . . . , 0} and a given ysp,0 ∈ Ysp.
Then, by following the same steps as in the proof of Theorem 3, we can state that, for
a given ρ > 0 such that ‖xθt,0 − xs,θt,0‖ ≤ ρ with xs,θt,0 = (ys,θt(0|0), 0), the following
relationship holds:

‖xθt,k − xs,θt,k‖ ≤ ε, ∀k > 0 (4.73)

in which ε = ρ
√
ζ/λmin(Q) and

ζ =
‖xd,θt(0|0)‖2

Pθt
+ ‖ys,θt(0|0)− ysp,0‖2

S

‖xθt,0 − xs,θt,0‖2

Therefore, the closed-loop system is stable and, from the combination of stability
and convergences xθt,k → xs,θt,k, xd,θt,k → 0 and ys,θt(N |k)→ ysp,k as k →∞, we conclude
that xs,θt = (ysp, 0) is an asymptotically stable equilibrium point of system (4.7).

4.7 Case study 2: two reactors-separator process

In this case study, we consider the three-unit process represented in the schematic
diagram depicted in Figure 21. This plant consists of two continuous stirred-tank reactors
and a flash tank (separator) (LIU; de la PEÑA; CHRISTOFIDES, 2009). The CSTRs
operate in series and are fed with pure reactant A through streams F10 and F20. The
reactions A→ B and B → C take place in the reactors, in which B is the desired product
and C is an undesired side-product. The effluent from the second CSTR is fed to the
flash tank whose overhead vapor is condensed and partially recycled to the first CSTR.
The remaining condensed overhead vapor is purged and the bottom stream is the purified
product.
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Figure 21 – Schematic diagram of the two reactors-separator process

Under the assumption of static holdup in the three vessels, the overall dynamics
of this system are described by 9 differential equations presented in Liu, de la Peña and
Christofides (2009). In this work, we use the model parameters given in Li and Swartz
(2019, Table 4). The model has been linearized in the operating points corresponding to
the steady states and inputs given in Tables 4 and 5, respectively.

Table 4 – Steady-state values for different operating points of the two reactors-separator
process

Steady states Operating point
OP1 OP2 OP3

xA1 0.2628 0.2266 0.3028
xB1 0.3968 0.3747 0.4055
T1 337.04 344.57 335.96
xA2 0.1049 0.0816 0.1364
xB2 0.4043 0.3623 0.4401
T2 344.45 353.52 342.35
xA3 0.0569 0.0413 0.0740
xB3 0.4755 0.4349 0.5208
T3 346.53 356.35 344.39

Table 5 – Steady-input values for different operating points of the two reactors-separator
process

Steady inputs Operating point
OP1 OP2 OP3

F10 8.3 7 10
Q1 10 20 14
F20 0.5 0.3 0.7
Q2 10 16 8
Fr 4 4 5
Q3 10 12 12
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The obtained linear state-space models have been discretized using the zero-order
hold method and sampling time Ts = 2. In this case study, we use the nonlinear model to
simulate the real plant with perfect state measurement and consider the nominal model as
the one obtained in the operating point OP1. Upper and lower bounds of inputs are, in
absolute values, umax = (15, 15, 5, 15, 7, 15) and umin = (0, 0, 0, 0, 0, 0), respectively, and the
input increments are limited to ∆umax = 0.1umax. The parameters used in the controllers
are N = 4, Qy = diag(104, 104, 1, 104, 104, 1, 104, 104, 1), Q = CTQyC + 10−4 × Inx ,
R = Inu and S = 102 × Iny . Distributed models are obtaining by considering each unit
as a subsystem, resulting in y1 = (xA1, xB1, T1), u1 = (F10, Q1), y2 = (xA2, xB2, T2),
u2 = (F20, Q2), y3 = (xA3, xB3, T3), u3 = (Fr, Q3). Throughout the subsequent discussions
of results, for conciseness, A1, A2 and A3 will refer to Algorithms 1, 2 and 3, respectively.
During the simulations, A1, A2 and A3 perform only a single iteration per time step.
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Figure 22 – Concentrations of the two reactors-separator process controlled by RMPC and
RDMPC algorithms A1, A2 and A3. Dotted black lines are output setpoints
and control zones. The remaining lines are described in the legend
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Figure 23 – Temperatures of the two reactors-separator process controlled by RMPC and
RDMPC algorithms A1, A2 and A3. Dotted black lines are output setpoints
and control zones. The remaining lines are described in the legend

The system is initially at operating point OP1 and the output setpoint corresponds
to the steady state of OP3 (see Table 4). Output responses are shown in Figures 22
and 23 in which black dotted lines represents either output setpoints or limits of control
zones. Computed manipulated variables are given in Figure 24 in which black dotted-lines
corresponds to input constraints. At time instant k = 70, an unmeasured step input
disturbance of amplitude -3 is introduced in Fr, which makes Fr and Q1 saturate at
their upper limits, leading to an offset in the controlled variables. Then, we switch to
the zone control mode with ymin = (0.29, 0.40, 334.5, 0.13, 0.43, 341, 0.07, 0.5208, 344.39)
and ymax = (0.32, 0.42, 336.5, 0.16, 0.46, 343, 0.10, 0.5208, 344.39). Note that xB3 is still
controlled at a setpoint to simulate a potential desired product specification. By increasing
the degrees of freedom, the zone control mode rejects the disturbance and allows important
variables to return to their setpoints, while the others are steered into the control zone,
in which there is no preference for a specific setpoint. Compared with A1, algorithms A2
and A3 produced system responses that are closer to the ones obtained by the centralized
controller only during the setpoint tracking mode. This was not the case under the zone
control strategy because A2 and A3 allow for different combinations of agents’ solutions,
which generates setpoints that are only required to be inside the control zones.
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Unlike A1 which performs the convex combination of solutions with fixed weights at
each iteration, optimizing weights are computed in A2 and A3, allowing the performance
criterion of the nominal model to decrease. To illustrate the difference of convergence
between the proposed algorithms, we show in Figure 25 the performance criteria obtained
with A1, A2 and A3 at time step k = 0. Here, we simulated 50 iterations instead of a
single one. Note that, for a given iteration p before convergence, the performance criteria
of the nominal model produced by A2 and A3 are the closest to the one obtained with the
centralized controller. Moreover, for all the algorithms, Vθn is non-increasing over iterations
and converges, as stated in Lemma 6.

To compare the computational burden of the proposed algorithms, the CPU time
spent by all the agents has been measured at each time step and an average has been
taken to represent the CPU time spent per agent. In A2 and A3, we have considered the
worst case in which all the agents solve the optimization problem to compute the weights
for the convex combination of solutions (see Remark 9). Simulations have been performed
using MATLAB® in a computer equipped with a 2.00 GHz Intel® Core™ i7-4510U CPU.
All optimal control problems have been built using CasADi (ANDERSSON et al., 2019)
and QP and NLP problems have been solved with qpOASES (FERREAU et al., 2014)
and Ipopt (WÄCHTER; BIEGLER, 2006), respectively. Since implementations were not
intended to minimize computational cost, QCQP problems were solved via NLP. Also, the
time that agents would spend communicating their solutions is not considered here. In this
sense, the analysis of results will be focused on the type and dimension of the optimization
problems that each algorithm solves.
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Figure 26 – CPU time spent over the simulation for different N and p̄
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Table 6 – Total CPU time for different N and p̄

Controller Total CPU time (s)
N = 4 N = 10

RMPC 35.87 99.91
RDMPC-A1 (p̄ = 1) 23.06 69.62
RDMPC-A2 (p̄ = 1) 25.12 73.76
RDMPC-A3 (p̄ = 1) 19.95 26.54
RDMPC-A1 (p̄ = 5) 124.29 323.92
RDMPC-A2 (p̄ = 5) 119.03 315.37
RDMPC-A3 (p̄ = 5) 25.10 32.68

Figure 26 shows CPU times for different prediction horizons and number of itera-
tions, while Table 6 gives the total amount of CPU time spent throughout simulations. As
expected, CPU time increases with both the prediction horizon length and the number of
iterations. Hence, the differences between the CPU times spent by the proposed algorithms
are related to the extent that each one is affected by N and p̄. For instance, A1 and A2
have the optimal control problem posed as an NLP problem and, thus, are more sensitive
to N in comparison to A3, whose control problem is posed as a QP problem. Compared
with the convex NLP problems solved by the agents in A1 and A2, the QP problems
solved in A3 account only for the nominal model and have a much lower computational
cost. This also explains why the difference between the CPU times spent by A1 and A2 is
very small. The additional QP problem solved in A2 has a relatively low computational
cost, especially for this small-size example with only 3 subsystems.

As observed in Table 6, while A1 produced a lower total CPU time in comparison
to A2 for p̄ = 1, the opposite holds for p̄ = 5. This may occur when the optimal convex
combination computed in A2 results in a plantwide solution that improves the initial guess
provided to the NLP solver at the next iteration. Concerning the effect of the number of
iterations, while the amount of NLP problems solved in A1 and A2 increases with p̄, A3
solves only one NLP problem per time step, no matter how many iterations are performed.
Beside the fact that the NLP problem is solved in A3 to robustify the convex combination
of agents’ solutions only after iterations terminate, it consists of a much simpler problem
with only M + 1 scalars as decision variables. This explains why A3 is less sensitive to the
control horizon length N in comparison with A1 and A2.

4.8 Conclusion

In this chapter, we presented three algorithms for a robust cooperative distributed
MPC based on a multi-model approach. The proposed strategies are built upon a finite
family of OPOM models and are suitable for dealing with both setpoint tracking and
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the zone control problem. The use of velocity-form models avoids the need for estimating
disturbances and an upper layer that computes reachable steady states to be used as
references by the MPC. From a practical point of view, a multi-model plant description
may represent a more tractable and implementable strategy since a set of models obtained
at different operating conditions can fairly cover the dynamics of moderately nonlinear
systems. Also, they are easier to obtain in comparison to other approaches that are based
on polytopic plants or employ robust invariant sets.

In Algorithm 1, the plantwide solution is obtained by means of a conventional
convex combination with fixed weights, while optimal ones are computed in Algorithm
2, which improves convergence over iterations. Regarding Algorithm 3, it can be viewed
as a usual nominal distributed MPC with improved convergence through optimal convex
combinations and with a solution robustification step after the iterative procedure. All
these algorithms enjoy properties such as recursive feasibility, convergence, and asymptotic
stability.

In case study 1, it was shown an example in which a nominal DMPC could not
drive the system to the desired setpoint, which, in contrast, was accomplished by the
proposed Algorithm 1. Due to active constraints on input increments, only marginal
stability is achieved under the application of the nominal DMPC, which would lead to an
unstable closed-loop behavior in the absence of these constraints. Results also showed that
optimizing for the nominal model can either decrease or increase the performance index of
the true plant over iterations. This means that, in case of a large difference between the
nominal model and the true plant, the suboptimal (from the nominal model viewpoint)
robust DMPC with a single iteration may perform better than a robust centralized MPC,
which does not occur in nominal DMPC formulations. However, since we do not know which
model represents the true plant, this conservative and suboptimal closed-loop performance
is expected, which is, in fact, the trade-off that most robust MPC approaches exhibit.

Both setpoint tracking and zone control problems were explored in case study 2,
showing the extended applicability of the proposed algorithms in comparison to robust
DMPC approaches available in the literature that usually do not account for the zone
control problem, very common in the process industry. This case study also shows that
Algorithms 2 and 3 benefit from the computation of optimal convex combinations and
have faster convergences of the nominal performance index over Algorithm 1. Moreover,
measurements of CPU time spent by the algorithms along simulations suggest that
Algorithm 3 is the least sensitive to the increase of the prediction horizon length and
number of iterations. Considering these results and that Algorithm 3 can be viewed as a
robustification module applied to a nominal DMPC, it can be said that Algorithm 3 is the
most advantageous for a practical application.
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Chapter 5

Conclusions and future work
directions

5.1 Summary of contributions

In this work, stabilizing MPC approaches based on the output prediction-oriented
model are proposed. With the purpose of reducing the complexity involved in the construc-
tion of the OPOM model, a straightforward method for building an OPOM-like model
is proposed. The resulting state-space model in the velocity form of inputs is named as
the new OPOM since the main feature of OPOM is retained, namely the output predic-
tion at steady state embedded in the state vector. Unlike the traditional OPOM whose
construction is based on transfer functions, the new OPOM is built from a conventional
state-space model, which corresponds to a more usual representation of MIMO systems.
Representing a generalization of the traditional OPOM, the approach presented in this
work deals with systems containing stable, integrating and unstable poles as well as time
delays and pole multiplicity.

The proposed new OPOM has additional features that are potentially interesting
for practical applications. For instance, by using the final formulas to compute system
matrices, one can easily automate the construction of the new OPOM in a computer
program, which is an advantage for building an industrial package. Moreover, it was shown
that the state vector of the new OPOM can be easily obtained when the model used
to build the new OPOM has measured states. This property allows a straightforward
integration between the realigned model and the new OPOM to obtain output feedback.
In case only a state estimate of the original model is available, it can be converted to
produce an estimate of the state vector of the new OPOM. This avoids the need for a state
observer specifically designed for the new OPOM, representing an important advantage
over the traditional OPOM, which requires a tailor-designed state observer. In addition
to its applicability to existing IHMPC formulations with OPOM, the new OPOM can
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also serve as a general framework for future developments of IHMPC controllers based on
velocity models.

Another contribution of this work concerns the proposal of a dual-mode MPC
with OPOM that results from the combination of the approaches presented in Rodrigues
and Odloak (2003b) and Limon et al. (2008). In the proposed controller, either the new
OPOM or the traditional one can be used. Since an MPC with OPOM that employs a
terminal control law (apart from the trivial one) was still lacking, the proposed dual-mode
strategy fills this gap. A terminal control law stabilizes the dynamic part of OPOM,
which is then used in the characterization of steady outputs and inputs. This approach
avoids the parametrization of system equilibria proposed by Limon et al. (2008), which
is usually very sensitive to model errors. Hence, even in the presence of plant-model
mismatch and constant unmeasured disturbances, the method proposed in this work
produces artificial references that are consistent with the real plant steady state. Such
a feature allows establishing a well-posed performance index that, allied to an unbiased
prediction at steady state through the use of a velocity model, results in dual-mode MPC
with embedded integral action. Theoretical properties such as recursive feasibility and
closed-loop convergence were proved by means of standard methods.

From an application viewpoint, the dual-mode MPC with OPOM presented here
explicitly deals with constrained input increments and allows for a simpler out-of-the-box
implementation since, unlike the MPC proposed by Limon et al. (2008), no extra ingredient
to produce offset-free control is required. Moreover, if the new OPOM is used and built
from the realigned model, it provides an easy way towards obtaining an output-feedback
controller. Still considering practical aspects and following the same philosophy adopted
in most MPC formulations with OPOM, the proposed dual-mode MPC is also extended
for dealing with output control zones and input targets. In this approach, steady-state
objectives are translated into an offset cost function. It is proved that the proposed control
strategy steers the outputs into their control zones and the inputs to their desired targets
if this is an admissible plant equilibrium. Otherwise, the system is steered to the operating
point corresponding to the minimum of the offset cost function. Unlike existing works
of MPC with OPOM that establishes minimum values for Sy and Su (corresponding to
weighting matrices of offset in the outputs and inputs, respectively) for ensuring system
convergence to the desired operating point (assumed admissible), here we prove that this
convergence is guaranteed for Sy and Su being only positive definite weighting matrices.
This represents a way more relaxed requirement.

Motivated by recently published cooperative distributed MPC formulations with
OPOM (SANTANA; MARTINS; ODLOAK, 2020b; SARAPKA; MARTINS; ODLOAK,
2021) and inspired by the robust IHMPC of Odloak (2004), this work also presents three
different algorithms for a robust cooperative distributed MPC. The proposed distributed
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control strategies are based on the multi-model uncertainty paradigm and are suitable
for dealing with both setpoint and zone control problems. Algorithm 1 can be viewed as
a distributed version of the robust IHMPC proposed in Odloak (2004) but with some
modifications in the performance index regarding the penalization of states and the explicit
use of artificial references, which is equivalent to the inclusion of slack variables. Recursive
problem feasibility, algorithm convergence and asymptotic stability are proved. As in the
dual-mode MPC with OPOM, the convergence of system output to the setpoint (assumed
admissible) is ensured by simply using a positive-definite offset weighting matrix.

As an enhanced version of Algorithm 1, the idea presented in Algorithm 2 consists of
computing optimizing weights to perform the convex combination of subsystems’ solutions.
The additional optimization problem produces the best performance index out of the
available solutions of agents, which improves algorithm convergence, possibly reducing the
number of iterations. To the author’s knowledge, this approach had not been proposed
in the literature so far and, thus, may represent a promising strategy to speed up the
convergence of existing distributed MPCs.

A different approach concerning the robust cooperative distributed MPC is proposed
in Algorithm 3. In this control strategy, the robustness constraint is removed from the
control problem solved by the agents and transferred to an optimization problem responsible
for computing optimizing weights after the last iteration. By following this approach, the
control problem solved by each agent is simplified to a nominal distributed MPC, which
thus can be posed as a QP problem, reducing the computational burden. Consequently,
while Algorithms 1 and 2 solve NLP problems at every single iteration, in the proposed
Algorithm 3, an NLP problem is solved only when the iteration procedure terminates.
As discussed, optimizing convex combination weights can be computed either locally by
each agent or by a single coordinating agent that further communicates the result to the
others. Therefore, due to the nature and number of optimizations solved by each algorithm,
CPU time spent by Algorithm 3 tends to be less sensitive to problem dimension and
number of iterations, as was in fact observed in the simulated results. This represents an
important advantage in practical applications with limited computation time, in which
solving various NLP problems can be prohibitive.

Finally, an interesting feature of Algorithm 3 should be highlighted. In this proposed
strategy, suitable weights used to combine agents’ solutions are computed so that the
robustness property is enforced only after the very last iteration. In this sense, Algorithm 3
can be viewed as a robustifier module coupled to a nominal distributed MPC. Such a feature
paves the way for designing an update package that robustifies a running distributed MPC,
which represents a less invasive implementation and possibly favors industrial applications
since practitioners are usually reluctant to change functional existing control structures.
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5.2 Suggestions for future works

The following ideas can be considered for future research:

• Problem infeasibilities may arise when the dual-mode MPC with OPOM is applied in
the presence of plant-model mismatch or disturbances since, in this case, the property
of nominal recursive feasibility is lost. Hence, the use of soft terminal constraints
represents a useful tool for improving the feasibility of the proposed controller.
However, instead of penalizing slack variables using only quadratic norms, this can
be performed by applying the concept of exact penalty functions (ZEILINGER;
MORARI; JONES, 2014). Such a strategy guarantees the minimum use of slack
variables, recovering stability properties whenever the hard terminal constraint can
be enforced.

• Although optimizing input targets are handled by the proposed dual-mode MPC with
OPOM, this represents only a steady-state economic objective. Thus, the dual-mode
MPC with OPOM proposed in this work can be further extended for coping with
economic objectives during transients as well. This can be performed by considering
the one-layer MPC + RTO strategy based on the gradient of the economic function
(ALVAREZ; ODLOAK, 2014; SANTANA; MARTINS; ODLOAK, 2020a).

• In Chapter 3, the invariant set for tracking was computed using the method proposed
in Gilbert and Tan (1991). However, since a maximal admissible invariant set is not
required, any method can be used to compute such invariant set (BLANCHINI, 1999),
which can possibly enhance the applicability of the proposed controller. For instance,
one can look into approaches suitable for designing invariant sets for large-scale
systems (HENNET; CASTELAN, 2001).

• Robust stability can be addressed by extending the dual-mode MPC with OPOM
for the case of multi-plant uncertainty (BADGWELL, 1997), polytopic uncertainty
(KOTHARE; BALAKRISHNAN; MORARI, 1996) as well as considering bounded
disturbances (CHISCI; ROSSITER; ZAPPA, 2001).

• A cooperative distributed MPC for dealing with unstable systems can be proposed
by deploying the dual-mode framework with invariant set for tracking presented in
Chapter 3. However, in order to avoid the design of a plantwide invariant set as
employed in the cooperative distributed MPC presented in Ferramosca et al. (2013),
one can explore the ideas of separable terminal cost and time-varying local invariant
sets proposed in Conte et al. (2016).
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• The robust cooperative distributed MPC algorithms proposed in this work consider
the multi-plant uncertainty representation. The major limitation of this approach is
the assumption that the true plant is represented by one of the models contained in
the set Ω. Although this simplifies the problem and favors practical implementations,
such an approach can be enhanced from a theoretical viewpoint. For instance, one
may extend the proposed algorithms considering a polytopic description of the system
(KOTHARE; BALAKRISHNAN; MORARI, 1996), which represents a more general
form of uncertainty.

• A robustly stabilizing cooperative distributed gradient-based economic MPC can
be proposed by combining the algorithms presented in Chapter 4 with a recently
published cooperative distributed gradient-based economic MPC formulation (SAN-
TANA et al., 2022).
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Appendix A

System decomposition into stable,
integrating and unstable subsystems

Consider the following discrete-time linear system with nst stable, nin integrating
and nun unstable poles, nu inputs and ny outputs:

x+ = Ax+Bu (A.1)
y = Cx (A.2)

A real Schur decomposition of A is given as follows:

UTAU =


Ãst Ãc1 Ãc2

0 Ãin Ãc3

0 0 Ãun

 (A.3)

in which U is an orthogonal matrix (UTU = UUT = I), and, without loss of generality, the
transformed matrix is arranged such that the submatrices Ãst ∈ Rnst×nst , Ãin ∈ Rnin×nin ,
Ãun ∈ Rnun×nun contain only stable, integrating and unstable eigenvalues, respectively.

A block diagonal matrix can be obtained by applying the Roth’s removal rule
(GERRISH; WARD, 1998; NAGAR; SINGH, 2004):

W−1


Ãst Ãc1 Ãc2

0 Ãin Ãc3

0 0 Ãun

W =


Ãst 0 0
0 Ãin 0
0 0 Ãun

 (A.4)

with W =


W11 W12 W13

W21 W22 W23

W31 W32 W33

.
To determine the submatrices of W , let us rewrite (A.4) as follows:

Ãst Ãc1 Ãc2

0 Ãin Ãc3

0 0 Ãun

W = W


Ãst 0 0
0 Ãin 0
0 0 Ãun

 (A.5)
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Then, the left-hand side of (A.5) is given as follows:
Ãst Ãc1 Ãc2

0 Ãin Ãc3

0 0 Ãun

W =


ÃstW11 + Ãc1W21 + Ãc2W31 ÃstW12 + Ãc1W22 + Ãc2W32 ÃstW13 + Ãc1W23 + Ãc2W33

ÃinW21 + Ãc3W31 ÃinW22 + Ãc3W32 ÃinW23 + Ãc3W33

ÃunW31 ÃunW32 ÃunW33


(A.6)

and the right-hand side is:

W


Ãst 0 0
0 Ãin 0
0 0 Ãun

 =


W11Ãst W12Ãin W13Ãun

W21Ãst W22Ãin W23Ãun

W31Ãst W32Ãin W33Ãun

 (A.7)

From the right-hand side of (A.6) and (A.7), we can write the following equations:

ÃstW11 + Ãc1W21 + Ãc2W31 = W11Ãst (A.8)
ÃstW12 + Ãc1W22 + Ãc2W32 = W12Ãin (A.9)
ÃstW13 + Ãc1W23 + Ãc2W33 = W13Ãun (A.10)
ÃinW21 + Ãc3W31 = W21Ãst (A.11)
ÃinW22 + Ãc3W32 = W22Ãin (A.12)
ÃinW23 + Ãc3W33 = W23Ãun (A.13)
ÃunW31 = W31Ãst (A.14)
ÃunW32 = W32Ãin (A.15)
ÃunW33 = W33Ãun (A.16)

Note that these 9 equations (A.8)-(A.16) can be used to obtain the submatrices of
W . From (A.14), we have that:

W31 = 0 (A.17)

From (A.15):
W32 = 0 (A.18)

From (A.16):
W33 = I (A.19)

From (A.11) and (A.17):
W21 = 0 (A.20)
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From (A.12) and (A.18):
W22 = I (A.21)

From (A.13) and (A.19):

ÃinW23 −W23Ãun + Ãc3 = 0 (A.22)

From (A.8), (A.17) and (A.20):

W11 = I (A.23)

From (A.9), (A.18) and (A.21):

ÃstW12 −W12Ãin + Ãc1 = 0 (A.24)

From (A.10), (A.19) and (A.22):

ÃstW13 −W13Ãun + Ãc1W23 + Ãc2 = 0 (A.25)

in which W23 can be computed from (A.22).

Equations (A.23), (A.24) and (A.25) are Sylvester equations since they have the
form of MX +XN = Q, in which matrices M , N and Q are of dimensions m×m, n× n
and m×n, respectively. A unique solution X exists if and only if the spectra ofM and −N
are disjoint (DATTA, 2004).

Since Ãst, Ãin and Ãun have no eigenvalues in common, equations (A.22), (A.24)
and (A.25) can be solved to obtain W23, W12 and W13, respectively. Therefore, matrix W
has the following form:

W =


I W12 W13

0 I W23

0 0 I

 (A.26)

Now, let us compute W−1 = W̃ using the fact that WW̃ = I. In terms of
submatrices, we have that:

I W12 W13

0 I W23

0 0 I



W̃11 W̃12 W̃13

W̃21 W̃22 W̃23

W̃31 W̃32 W̃33

 =


I 0 0
0 I 0
0 0 I

 (A.27)

which is equivalent to
W̃11 +W12W̃21 +W13W̃31 W̃12 +W12W̃22 +W13W̃32 W̃13 +W12W̃23 +W13W̃33

W̃21 +W23W̃31 W̃22 +W23W̃32 W̃23 +W23W̃33

W̃31 W̃32 W̃33



=


I 0 0
0 I 0
0 0 I


(A.28)
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From (A.28), the following equations can be written:

W̃11 +W12W̃21 +W13W̃31 = I (A.29)
W̃12 +W12W̃22 +W13W̃32 = 0 (A.30)
W̃13 +W12W̃23 +W13W̃33 = 0 (A.31)
W̃21 +W23W̃31 = 0 (A.32)
W̃22 +W23W̃32 = I (A.33)
W̃23 +W23W̃33 = 0 (A.34)
W̃31 = 0 (A.35)
W̃32 = 0 (A.36)
W̃33 = I (A.37)

Then, from (A.32) and (A.35):

W̃21 = 0 (A.38)

From (A.33) and (A.36):
W̃22 = 0 (A.39)

From (A.34) and (A.37):
W̃23 = −W23 (A.40)

From (A.29), (A.35) and (A.38):

W̃11 = I (A.41)

From (A.30), (A.36) and (A.39):

W̃12 = −W12 (A.42)

From (A.31), (A.37) and (A.40):

W̃13 = W12W23 −W13 (A.43)

Therefore, we have that W−1 = W̃ is given as follows:

W−1 =


I −W12 W12W23 −W13

0 I −W23

0 0 I

 (A.44)

Note that no matrix inversion is required since W−1 was computed analytically.
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Now, let T = UW and T−1 = W−1UT . Then, the following similarity transfor-
mations decompose the original system (A.1)-(A.2) into stable, integrating and unstable
subsystems:

T−1x =


x̃st

x̃in

x̃un

 , T−1AT =


Ãst 0 0
0 Ãin 0
0 0 Ãun

 , T−1B =


B̃st

B̃in

B̃un


CT =

[
C̃st C̃in C̃un

]

This results in the following decomposed system:
x̃st

x̃in

x̃un


+

=


Ãst 0 0
0 Ãin 0
0 0 Ãun



x̃st

x̃in

x̃un

+


B̃st

B̃in

B̃un

u

y =
[
C̃st C̃in C̃un

] 
x̃st

x̃in

x̃un


in which x̃st ∈ Rnst , x̃in ∈ Rnin , x̃un ∈ Rnun , Ãst ∈ Rnst×nst , Ãin ∈ Rnin×nin ,
Ãun ∈ Rnun×nun , B̃st ∈ Rnst×nu , B̃in ∈ Rnin×nu , B̃un ∈ Rnun×nu , C̃st ∈ Rny×nst ,
C̃in ∈ Rny×nin and C̃un ∈ Rny×nun .
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