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RESUMO 

FRANZOI, R. E. Otimização integrada da programação de produção no refino de 

petróleo: da descarga de óleo à entrega de combustíveis. 2021. 290 p. Tese 

(Doutorado) – Escola Politécnica, Universidade de São Paulo, 2021. 

 

A otimização da programação de produção em refinarias de petróleo é um problema 

complexo e desafiador devido a sua formulação MINLP não convexa em tamanho 

industrial. Três conceitos principais vêm sendo adotados na indústria e academia para 

lidar com esse problema. Primeiro, utiliza-se uma formulação simplificada que não 

inclui todas as unidades de processo, tanques, fluxos e variáveis do problema 

industrial. Segundo, o modelo de programação de produção é dividido em 

subproblemas a serem resolvidos hierarquicamente. Terceiro, ainda se utiliza 

abordagens baseadas em simulação ao invés de otimização devido à complexidade 

de tal formulação. Contudo, avanços recentes em métodos de tomada de decisão, na 

capacidade de processamento dos computadores e nos algoritmos de otimização 

permitem a modelagem e otimização de problemas anteriormente intratáveis, de modo 

a fornecer recursos para novas aplicações industriais em tempo real e gerar 

oportunidades para o desenvolvimento de melhores estratégias de modelagem e 

otimização. Neste trabalho são abordadas formulações complexas baseadas em 

problemas industriais de programação de produção em refinarias de petróleo. A 

novidade desta pesquisa consiste em modelar e otimizar tais modelos, incluindo 

características de design de processo para operações de mistura e processamento; 

abordagens de decomposição para formulações intratáveis; estratégias de 

reprogramação para aplicações em tempo real; e modelos aproximados para sistemas 

de otimização integrados. Abordagens de decomposição permitem construir 

formulações mais simples a partir de problemas complexos e de grande escala. 

Design aprimorados para operações de processamento e mistura fornecem previsões 

mais precisas, flexibilidade de produção e maior valor econômico para o processo. 

Heurísticas são utilizadas para reduzir significativamente o esforço computacional, 

limitando o espaço de busca na otimização através de estratégias em horizonte 

rolante e de técnicas de relaxação iterativas para problemas misto-inteiro lineares. 

Estratégias de reprogramação da produção e de atualização de parâmetros reduzem 

as incompatibilidades entre modelo e planta ao lidar com incertezas e distúrbios de 



 
 

maneira eficaz, reduzindo imprecisões, mantendo o sistema atualizado e fornecendo 

um modo sistemático para aplicações em tempo real. Modelos aproximados 

substituem formulações complexas e permitem a integração de modelos de unidades 

de processo em ambientes de otimização de programação de produção. As 

formulações e metodologias propostas são coerentes com aplicações industriais de 

grande escala em relação a restrições operacionais, valor agregado do processo e 

complexidade e tamanho do problema. Os resultados indicam que formulações MINLP 

não convexas de problemas de programação de produção em refinarias podem ser 

resolvidas eficientemente utilizando estratégias de decomposição, heurísticas e 

machine learning, o que pode potencialmente fornecer metodologias de modelagem 

e otimização adequadas para aplicações em problemas reais em escala industrial. 

Palavras-chave: Refino de Petróleo, Programação de Produção Online, Modelagem e 

Otimização, Estratégias heurísticas, Modelos Surrogados.



 
 

 

ABSTRACT 

FRANZOI, R. E. Integrated scheduling optimization in the crude oil refinery 

industry: from crude oil unloading to fuel deliveries. 2021. 290 p. Tese 

(Doutorado) – Escola Politécnica, Universidade de São Paulo, 2021. 

 

The crude oil refinery scheduling optimization is a complex and challenging problem 

because of its large-scale and complex-scope non-convex MINLP formulation. Three 

main concepts have been adopted in both industry and academia to handle this issue. 

First, a simplified formulation is typically considered, which does not include all the 

processing units, tanks, flows, and variables from the real industrial problem. Second, 

the refinery scheduling formulation is broken down into subproblems to be 

hierarchically solved. Third, simulation-based instead of optimization-based 

approaches are still employed due to the intractability of such formulation. However, 

the recent advancements in decision-making modeling, computer-aided resources, 

and solution algorithms allow the modeling and optimization of previously intractable 

problems, provide resources for novel real-time industrial applications, and open 

opportunities for the development of novel and improved modeling and optimization 

strategies. The research topics addressed herein focus on handling complex 

formulations typically found in crude oil refinery scheduling applications. The novelty 

of this research consists of modeling and optimizing a complete crude oil refinery 

scheduling problem, including decomposition approaches for handling intractable 

formulations, improved network designs for blending and processing operations, 

rescheduling strategies for online applications, and surrogate modeling for integrated 

optimization environments. Decomposition approaches are useful for building simpler 

and tractable formulations from complex and large-scale problems. Improved 

processing and blending designs provide more accurate predictions, production 

flexibility, and increased economic value for the process. Modeling and solving 

heuristics are used to significantly reduce the computational effort by limiting the 

optimization search space in constructive rolling horizon strategies and by introducing 

iterative relaxations on mixed-integer linear programming problems. Rescheduling and 

parameter updating strategies mitigate plant-model mismatches by effectively handling 

uncertainties and disturbances, reducing inaccuracies, maintaining the state of the 

system updated, and providing a systematic fashion for online applications. Surrogate 



 
 

models can effectively replace complex formulations in order to allow the integration of 

unit-operation models within refinery scheduling optimization environments. The 

formulation and methodologies addressed herein are coherent with large-scale and 

complex-scope industrial applications in terms of applicability, operational constraints, 

refinery economics, and problem complexity and size. The results indicate that 

complex non-convex MINLP refinery scheduling formulations can be efficiently solved 

by utilizing decomposition, heuristic, machine learning, and rescheduling strategies, 

which would potentially provide improved modeling and optimization capabilities for 

real industrial applications.  

Keywords: Crude Oil Refining, Online Scheduling, Modeling and Optimization, 

Heuristic approaches, Surrogate Modeling.
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1                                                                                                

General introduction and literature review 
1.1 General Introduction 

Petroleum is a complex mixture of hydrocarbons with diverse applications. It has been 

used since biblical times by many distinct peoples including the Babylonians, 

Egyptians, Greeks, Romans, among others (TRIGGIA et al., 2001). The large-scale 

industrial processing of petroleum dates from the 19th century, and it was initially used 

for the production of kerosene. Since then, technological advances and the increasing 

demand for fuels have led to the expansion of the refineries in terms of both the 

production capacity and the variety and quality of products (AL-QAHTANI and 

ELKAMEL, 2011). 

Petroleum is currently one of the most important and valuable commodities, mostly 

because it can be processed into fuels that contribute to a large amount of the world 

energy generation. That includes fuel gas and natural gas, which are used for the 

heating of residential and commercial buildings, and for generating electricity; and 

gasoline, kerosene, and diesel, which are the mostly consumed fuels for vehicles, such 

as cars, trucks, ships, and aircrafts (SPEIGHT, 2006). 

The production chain of the petrochemical industry begins with the exploration and 

extraction processes, in which the petroleum can be found in sedimentary rocks in 

gaseous (natural gas), liquid (crude oil), semi-solid (bitumen), and solid (wax and 

asphaltite) forms. Among all these forms, the liquid crude oil is the most valuable and 

the most attractive in terms of processing, and hence, it is the raw material processed 

in refineries (RIAZI, 2005). The process of transforming the crude oil into fuels, also 

known as the refining process, aims to split it into smaller molecules and clustering the 

molecules with similar characteristics in crude oil fractions. These fractions undergo 

several conversion and treatment processes in order to enhance their purity and 

improve their quality. The final steps consist of mixing operations whose purpose is to 

guarantee specific characteristics in terms of quality (e.g., maximum sulfur content and 

specific gravity). Subsequently, the products are stored in tanks or pools and are 
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further sold and distributed via logistic operations (AL-QAHTANI and ELKAMEL, 

2011). 

Throughout the entire crude oil refinery network, there are multiple decisions to be 

carried out. This decision-making process is highly important for the refinery 

economics and it is typically referred to as crude oil scheduling. Some of these 

decisions include where to allocate arriving feedstocks, what is the optimal blend of 

crudes to be mixed and processed at a given day and at a given unit, what is the 

optimal blend of final products considering their qualities and market dynamics, where 

to store the final products, what are the quality issues that may arise from the refinery 

operations, etc. (KELLY et al., 2017b). 

Historically, the crude oil scheduling production was carried out using spreadsheets, 

simulators, and rudimentary tools, with most decisions being carried out manually in a 

trial and error procedure (MENEZES et al., 2015a). However, with the recent advances 

in the decision-making modeling, solving algorithms, and computer-aided resources, 

the scheduling decision-making has greatly improved and has become increasingly 

automated. Many opportunities arise from these technological advances, in which a 

proper and efficient scheduling has become essential for the competitiveness of crude 

oil refineries (KELLY and MANN, 2003). In that context, there are open opportunities 

for employing computational tools to obtain better scheduling solutions for real 

industrial applications (REDDY et al., 2004a). The main benefits include finding a wide 

and varied set of feasible (and potentially better) optimal solutions; reducing the 

computational effort within simulation and optimization applications, which leads to 

economic and operational advantages; and adapting the incumbent scheduled 

operations under the occurrence of adverse or unexpected events (e.g., finding new 

feasible and/or optimal solutions whenever any event makes the current scheduling 

operations infeasible or suboptimal) (JIA et al., 2003; KELLY and MANN, 2003). 

Due to economic and operational factors, including market competitiveness, market 

fluctuations (e.g., demand and price of products, demand and quality of feedstocks), 

uncertainties and other operational disturbances, and strict environmental legislation, 

crude oil refineries have to achieve improved and highly efficient operations by using 

advanced technology in addition to exploiting all the opportunities for increasing profit 

and reducing costs. One of these opportunities is to use mathematical modeling and 
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computational algorithms to optimize the crude oil scheduling operations in order to 

find optimal, and potentially better, solutions (LI et al., 2016). Aiming to achieve an 

accurate and reliable modeling and optimization of the process, there are two essential 

considerations to be addressed. First, the mathematical formulation must be properly 

designed to include complete and accurate information from the quantity, logistics, and 

quality processes, and to determine the scope of the problem in terms of both the 

scheduling operations based on the real plant and the modeling aspects related to the 

tuning of parameters such as the future time horizon, time discretization, etc. Second,  

efficient problem solving techniques must be employed to properly optimize the 

mathematical formulation (KELLY et al., 2017b). 

There are three distinct types of information that should be considered in crude oil 

scheduling problems: quantity (amounts and flows), logistics (binary decision 

variables), and quality (properties such as sulfur content, specific gravity, pour point, 

among others). Simultaneously considering the quantity (linear), logistics (mixed-

integer linear), and quality (nonlinear) information leads to a mixed-integer nonlinear 

programming (MINLP) problem. Moreover, the crude oil refining process is highly 

complex, with a large number of continuous and binary variables and linear and 

nonlinear equations. This results in a complex large-scale MINLP problem, which is 

hard to solve and highly time consuming. Thus, several studies in the literature present 

strategies for decomposing this problem, originally an MINLP, into two subproblems, a 

mixed-integer linear programming (MILP) problem and a nonlinear programming (NLP) 

problem, which are solved sequentially (WENKAI et al., 2002 ; MOURET et al., 2009; 

CASTRO and GROSSMANN, 2014; CAFARO et al., 2015; KELLY et al., 2017a). This 

type of strategy helps to reduce the size of the problem and the computational effort in 

simulation/optimization environments. 

Although the crude oil refinery operations are a continuous process, it is necessary to 

establish a finite time horizon for mathematical simulation and optimization purposes. 

Furthermore, it is important to tune the balance between the size (i.e., future time and 

time discretization) and the complexity of the problem so as to provide computational 

tractability, especially for applications that require fast solutions. To achieve scheduling 

solutions that are coherent with industrial applications (i.e., under similar operational 

conditions to those industrially used), with good accuracy, and in reasonable 

computational time (minutes), Kelly et al. (2017b) propose scheduling optimizations for 
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the future seven days with time steps of two hours, with an emphasis on scheduling 

solution towards online applications. 

Aiming to handle the complexity of the refinery scheduling formulation, most studies in 

this literature considers several simplifications, related to either the modeling of specific 

units or to the overall scope of the problem. The former regards the use of simplified 

models for the processing units throughout the refinery, including the atmospheric and 

vacuum distillation towers, hidrotreaters, hidrocrackers, fluid catalytic cracking unit, 

naphtha reformer, etc. Instead of using complex or rigorous models to model these 

units, simplified correlations may be employed, which allows the integration of 

processing unit models in refinery optimization applications. The latter regards 

simplifying the overall scheduling scope to reduce or limit the complexity of the problem 

in terms of the number of variables and constraints. It is worth mentioning that most 

works in the literature simplify the overall scope of the refinery because of the 

complexity and difficulties that arise by including even simplified processing unit 

models in the refinery scheduling optimization, and focus only on the crude oil 

selection, blending, and feeding to the crude distillation unit (CDU). Despite several 

works on crude oil scheduling in terms of both modeling and optimization, to the best 

of our knowledge there are only one study towards integrated industrial-scale 

operations that fully consider the refinery process, including the crude oil blending, the 

processing units (i.e., distillation towers, naphtha reformer, catalytic cracking, delayed 

cooker, hydrotreaters, etc.), and the product blending (XU et al., 2017). However, a 

reduced number of variables is used in a continuous time model (in the order of dozens 

binary variables), which is not coherent with real industrial operations including a 

systematic production with detailed logistics and quality operations. Therefore, 

embedding unit-operation models in refinery scheduling application remains an open 

gap in the literature. 

The refinery unit-operation most studied and discussed in the literature is the distillation 

unit, especially because its crucial and important role for refinery operations. When 

addressing the distillation unit modeling for optimization applications, most works have 

also introduced simplifications so as to build formulations that can be embedded into 

optimization problems. One of the first and most simple methods considers that the 

yields and properties of the outlet fractions from the CDU are fixed and depend 

exclusively on the crude oil assay data (FU and MAHALEC, 2015). Such simplification 
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was widely used for two main reasons. First, if a rigorous simulator or a complex model 

is employed to calculate the yields and properties of the distillates, the resulting 

formulation would be intractable, i.e., the optimization would be too time consuming to 

be used for real industrial applications. Second, the fixed yield method is simple, 

straightforward, and provide reasonable accuracy, which was suitable for some 

applications when better models had not been developed yet. Authors such as Li, Hui, 

and Li (2005), Guerra and Le Roux (2011a, 2011b), Menezes et al. (2013), Fu, 

Sanchez, and Mahalec (2015), and Franzoi et al. (2020), proposed more accurate 

methodologies that improved the predictions of the distillation unit outputs. Moreover, 

some of these models are small in size and have low complexity, therefore they can 

potentially be embedded in scheduling optimization applications with small time steps 

(e.g., two hours) for improved predictions and for broader applications. 

Another important feature related to scheduling operations concerns the integration of 

the modeling, optimization, validation, and implementation towards properly 

determining the optimal schedule. First, the modeling should be coherent, reliable and 

accurate in terms of mathematically representing the real process. That includes 

considering a deep level of details and as much information as possible, but also 

finding a balance between the accuracy and complexity of the model aiming to achieve 

computational tractability. Second, the formulation should be properly optimized 

utilizing computational software, tools, and solving strategies. Third, the scheduling 

solution needs to be validated (i.e., the solution to be implemented must be reliable 

and accurate, and plant-process mismatches should be mitigated) for achieving 

improved operations. If the three previous steps are properly performed, the schedule 

implementation is expected to be as smooth as possible, given that the refinery 

operations are highly complex, in which there are uncertainties, noises, and 

disturbances throughout the entire plant. 

After the schedule is modeled, optimized, validated, and implemented, new information 

becomes available over time and should be considered in the schedule as soon as 

possible (GUPTA et al., 2016a). Moreover, noises, disturbances, and disruptions 

change the incumbent (expected) process conditions, which typically leads to 

suboptimality and to eventual infeasibilities (GUPTA et al., 2016b). Thus, authors such 

as GUPTA et al. (2016a) and GUPTA et al. (2016b) address the need of rescheduling 

to improve and adapt the incumbent schedule to account for uncertainties and 
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disturbances, in addition to considering new available information. That leads to 

sequential re-optimization approaches focused on restoring feasibility and optimality to 

the incumbent solution, in which improved operations are expected. 

Some of the missing gaps on the crude oil refinery scheduling, including the 

mathematical modeling and optimization strategies, are addressed herein. These 

topics encompass: a) the design and development of the mathematical formulation 

based on industrial refinery operations or other relevant industrial processes; b) the 

design and development of optimization strategies employed to solve the mathematical 

formulation; c) developing and/or including simplified formulations for unit-operations 

(e.g., distillation unit) in the refinery modeling and optimization; and d) introducing 

online scheduling features in the formulation. 

1.2 Objectives 

Considering the scope discussed in the General Introduction section, this thesis 

addresses the modeling and optimization aspects for crude oil refinery scheduling 

applications, and aims to contribute for the state-of-the-art literature on the topic. The 

following specific objectives are proposed: 

• Design and build the mathematical formulation for crude oil refinery scheduling 

applications using as modeling platform the software IMPL (Industrial Modeling & 

Programming Language), from Industrial Algorithms Limited. The scope considered 

encompasses the crude oil unloading, blending, and feeding to the CDU, the 

processing units throughout the refinery, and the blending and storage of final 

products. 

• Utilize an MILP-NLP decomposition strategy to reduce the size of the large-scale 

nonconvex MINLP model from the refinery scheduling formulation, which arises due 

to the large number of logistic decisions (binary variables) and nonlinear terms 

(mostly in the blending equations). In this approach, the MILP and the NLP 

subproblems are sequentially and iteratively solved. 

• Utilize a linear reformulation of blending equations to include nonlinear quality 

information (e.g., specific gravity, sulfur content, etc.) in the MILP model, improving 

the accuracy of the MILP solution. By applying this technique, it is expected a lower 
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gap between the MILP and NLP solutions, and hence, better convergence of the 

decomposition strategy. 

• Utilize and/or develop simplified models or correlations for the refinery unit-

operations and embed them in the refinery scheduling optimization. These models 

are typically employed to predict the outputs of the respective units. 

• Implement online scheduling approaches using data feedback and/or simulated 

measurements to provide a systematic approach that handles uncertainties, noises, 

and disturbances in the process in a continuous rescheduling fashion. 

• Employ commercial optimization solvers (e.g., CPLEX and GUROBI) to optimize the 

mathematical formulations. 

1.3 Thesis Novelties and Contributions  

Considering the state-of-the-art literature on process optimization for crude oil refining 

processes, in addition to the objectives presented in Section 1.3, the main contributions 

and novelties of this thesis are highlighted as follows. This thesis focuses on the 

development, modeling, and optimization of complex scope and industrial scale crude 

oil refinery scheduling problems, aiming to solve highly complex, large, and intractable 

models that have never been addressed in such complexity in the scheduling 

optimization literature. The problems are built within a discrete time formulation as non-

convex mixed-integer nonlinear models (MINLP) containing hundreds of thousands of 

variables and constraints. Integrated modeling and optimization approaches are 

developed and embedded in systematic and efficient frameworks, whereby are 

employed decomposition, linearization, heuristic-based, and machine learning 

strategies for handling intractable formulations, the investigation of process design 

features for blending and processing operations, continuous rescheduling strategies 

for mitigating plant-model mismatches and handling uncertainties, noises, and 

disturbances in the process, and surrogate models to efficiently replace rigorous and 

complex formulations in order to allow the integration of unit-operation models within 

refinery scheduling environments. 
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1.4 Thesis Outline 

This PhD thesis is divided in eight chapters: 

(I) General Introduction and Literature Review (Chapter 1). 

(II) Refinery Scheduling: Mathematical Formulation (Chapter 2). 

(III) Refinery Scheduling: Modeling, Configuration, and Optimization (Chapter 3). 

(IV) Refinery Scheduling: Case Studies and Discussion (Chapter 4). 

(V) A Closed-Loop Rescheduling Framework for Continuous Nonlinear 

Processes with Disturbances (Chapter 5). 

(VI) Cutpoint Temperature Surrogate Modeling for Refinery Applications 

(Chapter 6). 

(VII) Online Large-Scale Refinery Scheduling with Surrogate Approximations 

(Chapter 7). 

(VIII) General Conclusions and Future Outlook (Chapter 8). 

 

Chapter 1 presents a general introduction and the literature review on the topics of 

petroleum, crude oil refining, and modeling and solving aspects of crude oil scheduling. 

Chapter 2 introduces a generic mathematical formulation for the crude oil refinery 

scheduling problem. Chapter 3 discusses the modeling, configuration, and optimization 

methodologies applied for tackling and solving the scheduling formulation. Chapter 4 

presents several case studies typically found within crude oil refinery scheduling 

applications, including proper discussions and their respective results. Chapter 5 

introduces the online scheduling topic, in which a rescheduling framework is developed 

for handling uncertainties and disturbances in continuous nonlinear processes. 

Chapter 6 presents a cutpoint temperature surrogate modeling approach in order to 

include unit-operation models in the refinery scheduling optimization environment. 

Chapter 7 discusses online large-scale refinery scheduling applications including the 

use of surrogate modeling. Chapter 8 presents general conclusions of this work and 

highlights the future outlook on the topic of refinery scheduling optimization. 
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1.5 Literature Review 

In this section it will be presented a review on the main topics addressed in this thesis, 

including petroleum, petrochemical industry, crude oil scheduling, mathematical 

modeling and approaches, online scheduling strategies, and refinery processing unit 

modeling. 

1.5.1 Petroleum 

The word petroleum comes from the Latin: petra (stone) and oleum (oil). Petroleum is 

an oily substance in its liquid state, flammable, and less dense than water, it has a 

strong smell and its color varies between black and light brown (TRIGGIA et al., 2001). 

It is considered a fossil fuel because it is formed through the decomposition of plants 

and animals. The remains of dead organisms accumulate on the bottom of lakes and 

seas, mixed with sand and other sediments. Over time, the combination of pressure, 

heating, and bacterial action, transforms this complex organic matter into products 

such as hydrocarbons and water. Due to its chemical process of formation, petroleum 

is a complex mixture of thousands distinct hydrocarbons, in addition to small amounts 

of other elements such as sulfur, nitrogen, oxygen, metals, and some salts. 

(ROBINSON, 2006). 

1.5.2 Petroleum Composition 

The composition of the hydrocarbon mixture that originates petroleum varies 

significantly depending on the source or reservoir, so that there are no identical 

petroleums (MARIANO, 2001). Table 1.1 presents the typical mass fraction ranges of 

the chemical elements that form petroleum, including carbon, hydrogen, nitrogen, 

oxygen, sulfur, and metals. 
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Table 1.1: Mass fraction of chemical elements in petroleum.  

Elements Mass Faction (%) 

C 83.0 – 87.0 

H 10.0 – 14.0 

N 0.1 – 2.0 

O 0.05 – 1.5 

S 0.05 – 6.0 

Metals < 0.1 

Source: Speight (2006). 

 Hydrocarbons elements 

The hydrocarbon molecules present in the petroleum are divided into four classes, 

namely, paraffins, naphthenes, aromatics, and olefins. Paraffins are open and 

saturated hydrocarbon chains, stable and with a generic molecular formula CnH2n+2, 

which may have ramifications. They are named with the suffix “ane” (e.g., methane, 

isopentane). Naphthenes are a class of cyclic aliphatic hydrocarbons characterized by 

having one or more rings of saturated carbon atoms. They have the generic molecular 

formula CnH2n and the prefix “cycle” (cyclopropane). In the aromatics molecules there 

are alternating single and double bonds in rings of six carbon atoms, such as the 

benzene. Olefins are unsaturated hydrocarbons with generic formula CnH2n rarely 

found in nature, as they are highly unstable due to their high reactivity (TRIGGIA et al., 

2001). 

  Non-Hydrocarbons elements 

The non-hydrocarbon elements present in the petroleum consist in organic compounds 

containing nitrogen, oxygen, and sulfur atoms, inorganic compounds (e.g., salts), and 

organometallic compounds. These elements are typically found in most fractions of 

petroleum, especially in the heavier ones because of their large chains. Even in small 

concentrations, they greatly impact the refining operations due to the several risks to 

the process, including corrosion of equipment by organic acids and inorganic salts; 
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disruptions in the process due to the deposit of salts; and poisoning of catalysts by 

organometallic compounds (YAMANISHI, 2007). 

1.5.3 Forms of Petroleum 

In the exploration and extraction petrochemical processes, petroleum can be found in 

sedimentary rocks in gaseous (natural gas), liquid (crude oil), semi-solid (bitumen), 

and solid (wax and asphaltite) forms, depending on the nature of its chemical 

constituents and the temperature and pressure conditions where it exists. The main 

forms of petroleum typically found in the exploration process are the natural gas, which 

does not condense into a liquid at surface conditions; the condensate, which is 

gaseous at the reservoir conditions and condenses into a liquid at the surface; and the 

crude oil, the liquid part of petroleum which is the most valuable and attractive to be 

processed due to the products (distillates) obtained (RIAZI, 2005; DEMBICKI, 2016). 

Therefore, as the crude oil is the feedstock used in the refinery processing operations, 

it will be further discussed herein. 

1.5.4 Crude oil properties 

Some of the main crude oil properties that are economically relevant to the refining 

process are the specific gravity, sulfur content, and the predominant hydrocarbon type 

(MARTÍNEZ, 1999 apud ZYLBERBERG, 2006). Regarding specific gravity, the crude 

oil is classified according to a degree that ranges from light (less dense) to heavy (more 

dense). This classification is defined according to the American Petroleum Institute, 

and is referred to as API degree. Equation 1.1 presents the formula to calculate the 

API degree, in which 𝑆𝐺 (60 °𝐹) is the specific gravity of the crude oil at the 

temperature of 60 °F. The lower the specific gravity, the higher the API degree and 

hence, the greater the commercial value of the crude oil, because it will yield in a larger 

amount of valuable distillates, such as gasoline and diesel. 

°𝐴𝑃𝐼 =  
141.5

𝑆𝐺 (60 °𝐹)
− 131.5 1.1 

 

Crude oil may also be classified according to its predominant type of hydrocarbon, into 

paraffinic, naphthenic, aromatic, and olefins, and according to its sulfur content, as 



38 
 

sweet (less than 0.5% of sulfur in mass) or acid (more than 0.5% of sulfur in mass) 

(MARTINS, 2003). These properties are highly important due to their economic and 

technical impact on the refinery process. Therefore, for improved operations it is 

fundamental to analyze and estimate the quality and the properties of the crude oil 

prior to its processing at the refinery. 

1.5.5 Crude oil characterization  

One of the most well-known and used methods for crude oil characterization are the 

laboratory distillation experiments, in which a sample of crude is distilled at a laboratory 

facility under specific conditions, following methods standardized by organizations 

such as ASTM (Association Society for Testing and Materials) and IP (Institute of 

Petroleum) (YAMANISHI, 2007). One of the most used tests is the TBP (True Boiling 

Point) due to its accuracy and reliability. According to Nedelchev et al. (2011), the TBP 

analysis using the standard test ASTM D-2892 is the best method for crude 

characterization in terms of its boiling points distribution.  

The TBP analysis consists of reproducing a distillation process on a laboratory scale, 

in which samples are taken over time in order to estimate the yields and properties 

(e.g., specific gravity and sulfur content) at distinct boiling temperature ranges 

(YAMANISHI, 2007). This analysis uses an arbitrary number of pseudocomponents, 

also known as cuts, boiling cuts, distillation cuts, or micro-cuts (FAHIM et al., 2009), 

and it is typically performed with a high number of theoretical stages (15 - 100) and a 

high reflux rate (RIAZI, 2005). The TBP experiment generates the TBP curve, which 

provides reliable information to properly estimate the yields and properties of each 

crude oil distilled fraction. This is especially useful for designing the technical, 

operational, and modeling/optimization strategies for crude oil refineries (BATISTELLA 

et al., 2007). However, the TBP analysis is an expensive procedure and requires about 

two days to be completed (PASQUINI and BUENO; 2007).  

1.5.6 Crude oil fractions (distillates) 

The crude oil fractions obtained from the distillation process are also referred to as 

distillates. Table 1.2 presents the crude oil distillates with their respective typical boiling 
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ranges, as well as the main final products (mostly fuels) derived from them at the end 

of the refinery process.  

Table 1.2: Main crude oil fractions obtained from the distillation process. 

Distillate 
Typical boiling 

range (°C) 
Final refinery product 

Liquefied Petroleum 

Gas (LPG) 
-40 – 0 Propane (fuel) 

Light Naphtha (LN) 39 – 85 Gasoline 

Heavy Naphtha (HN) 85 – 200 Gasoline, Aromatics 

Kerosene (K) 170 – 270 Jet fuel, Diesel N° 1 

Gas oil (GO) 180 – 340 Heating Oil, Diesel N° 2 

Vacuum gas oil (VGO) 340 – 566 
Gasoline, Fuel Oil,  

Lubricant, FCC feed 

Vacuum residue (VR) > 540 Coke, Asphalt, FCCU feed 

Source: Adapted from Robinson (2006). 

1.5.7 Petrochemical Industry 

This section discusses the petrochemical industry, including the exploration and 

extraction of petroleum, the crude oil refinery, and the crude oil processing operations. 

 Exploration and Extraction of Petroleum  

The production chain in the petrochemical industry begins with the exploration of 

petroleum. Detailed analyses are carried out on the rocky layers of the soil, which 

provide radiographs of the subsoil and information on the petroleum availability. Some 

candidate sites are then selected to be drilled, and depending on the technical and 
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economic viability analyses, the petroleum is extracted using special equipment and 

pipes, stored in tanks or pools, transported through pipelines to the maritime terminals 

(special ports for loading and unloading), and finally sent to the crude oil refineries to 

be further processed (SILVA, 2009). 

 Crude oil refinery 

The first crude oil refineries date from the 1860s and were predominantly composed of 

batch distillation units whose main objective was the production of kerosene (AL-

QAHTANI and ELKAMEL, 2011). From the 1930s, cracking and coking processing 

units (i.e., for breaking large molecules into smaller molecules so as to increase the 

economic value of the material) began to emerge aiming to meet the growing demand 

for gasoline, both in terms of quality (mostly related to the octane number) and amount 

produced. Since the Second World War, there have been major development on 

refinery operations, increasing the complexity of the refineries, as well as the number 

of different products to meet an increasing and more sophisticated market demand 

(YAMANISHI, 2007). In general, the main objective of crude oil refineries is the 

production of energy products (fuels and gases) due to their large demand and vast 

application, in which the most important and valuable products are gasoline, diesel, 

and kerosene (MARIANO, 2001). 

Crude oil refineries are a complex system network containing multiple unit-operations 

and flows throughout the process. The refinery design highly relies on the 

characteristics of the crude to be processed and the products of interest, so that each 

refinery has its specificities (EPA, 1995). Typically, a crude oil refinery is composed of 

three main segments that are connected to form a continuous production network, 

including the crude oil management, the crude to fuel transformation (process-shops), 

and the product blending and logistic transportation (blend-shops) (AL-QAHTANI and 

ELKAMEL, 2011). Figure 1.1 presents a simplified typical production network of crude 

oil refineries. 
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Figure 1.1: Typical crude oil refinery network. 

 

 Source: Adapted from Kelly et al. (2017b).  

The first segment concerns the crude oil management. It begins with the arrival of 

crude at the refinery, usually via ships or underground pipelines, which is stored in 

storage tanks. From the storage tanks, one or more different types of crude are sent 

to a blender unit, mixed, and sent to the feed tanks. Properly preparing the crude oil 

blend to be used to feed the distillation unit is crucial for the refinery due to the high 

impact in both the economic and technical operations (KELLY et al., 2017b). 

The second segment encompasses the crude to fuel transformation processes, also 

referred to as process-shops, which involve the refinery production units that transform 

the crude oil into intermediate products. The crude oil in the feed tanks feeds the 

distillation unit to produce some output fractions referred to as distillates. These 

fractions undergo multiple conversion and treatment operations to improve their quality 

and to aggregate additional economic value (DO, 2014; MARIANO, 2001). In 

summary, the main objectives of these transformation processes are to fractionate the 

crude oil into more valuable and desired fractions or products, and then improving their 

quality and purity by converting heavy molecules into lighter molecules, which 

increases their economic values. In addition, this segment also provides utilities for the 

refinery, including fuels, electricity, steam, hot water, chilled water, compressed air, 

nitrogen, etc., which are required in the refinery (AL- QAHTANI and ELKAMEL, 2011). 

The third segment including the blending and transportation operations and is referred 

to as blend-shops. The intermediate products incoming from the processing units are 

mixed according to final product specifications in order to meet the market demands 
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or contracts. For example, two or more different diesel streams, incoming from different 

operations in the refinery and with different qualities, can be blended to produce a final 

diesel stream that meets some required quality specifications (e.g., maximum sulfur 

content or minimum cetane number). The final fuels are stored in tanks or pools to be 

later shipped via logistical modes (AL-QAHTANI and ELKAMEL, 2011). 

The operations to transform the crude oil into final fuels are highly complex and present 

a fundamental role in the crude oil refinery. Therefore, the main operations typically 

found in crude oil refineries are described in the following. 

 Crude oil refining process 

There are only a few and not so valuable applications for the raw crude oil. Aiming to 

increase its economic value, it undergoes several chemical and physical refining 

processes, which break it down into simpler and more valuable compounds (DO, 2014; 

MARIANO, 2001). The refining process is typically divided in three categories: 

separation, conversion and treatment, and mixing.  

The separation processes are physical in nature and typically consist of separating one 

or more valuable or desired components among a mix or blend. At crude oil refineries, 

the most important separation process is the distillation unit, in which the crude blend 

is separated into fractions, but maintaining the nature of the molecules unchanged. 

These distilled fractions are sent to conversion units, where they are chemically altered 

by adding energy, pressure, catalysts, and hydrogen. The streams from the separation 

and conversion processes are then treated to eliminate impurities that may reduce or 

compromise the quality of the final product, and are subsequently blended to produce 

the final refinery fuels (BUENO, 2003; DO, 2014). Figure 1.2 presents the flow chart of 

a typical crude oil refining process, including the separation, conversion, treatment, 

and mixing units. 
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Figure 1.2: Flow chart of a typical crude oil refining process. 

 

Source: EPA (1995). 

The most typical and important processes in crude oil refineries are discussed in the 

following. 

 Separation Processes 

The separation processes separate valuable or desired components from a 

multicomponent blend or mixture. They are considered a physical-based process 

because they do not change the structure of the molecules (i.e., breaking chains or 

rearranging atoms). In the crude oil refining field, they are commonly associated with 

the distillation unit, in which the hydrocarbon molecules are separated by the difference 

in their temperature boiling points. The distillation unit can be composed of four 

different towers, including the atmospheric and vacuum distillation units, the pre-flash 

column, and the debutanizer (YAMANISHI, 2007). However, according to Zahedi et al. 

(2011), prior to the distillation process, it is fundamental to treat the feed for the removal 

of contaminants, a separation process referred to as desalination. 
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 Desalination 

Before being processed in the distillation towers, the crude oil undergoes a pre-

treatment for removing contaminants such as dissolved salts that corrodes pipelines 

and units (SPEIGHT, 2006) and metallic ions and suspended solids cause catalyst 

deactivation (EPA, 1995). This pre-treatment is referred to as desalination and consists 

of adding about 3 - 10% water (volumetric base) to the crude oil, and heating that 

mixture to induce the migration and dissolution of the salts to the aqueous phase. Then, 

the crude oil is separated from the aqueous phase in a separation vessel by adding 

demulsifiers or by applying a high electrical potential to coalesce droplets from the 

aqueous phase. The process of desalination of crude oil generates two liquid residues: 

an oily sludge and a stream of residual salt water, at high temperature, which is sent 

to the effluent treatment stations of the refinery (MARIANO, 2001). After the 

desalination process, the crude oil is preheated in heat exchangers and sent to the 

distillation unit (YAMANISHI, 2007). 

 Distillation unit 

Distillation is the process in which a liquid or gaseous mixture of two or more 

components is separated into fractions by applying or removing heat. It relies on the 

fact that the components of the mixture have different boiling points, so that the vapor 

phase formed has a greater number of components with a low boiling point (more 

volatile) than the original liquid phase. The distillation process is widely used in the 

chemical industry and represents key operation for the crude oil refinery because of its 

importance in the production chain. Moreover, it consumes large amounts of energy 

and can contribute with more than 50% of the refinery operating costs. Thus, efficiently 

optimizing and controlling the distillation unit represents a potential cost reduction 

opportunity for the oil refinery (CHEREMISINOFF, 2000). 

The distillation unit has great importance in the refining process because of the need 

to decompose the crude oil into smaller and simpler fractions. Traditionally, two main 

towers form the distillation unit, namely, the atmospheric distillation column, and the 

vacuum distillation column. However, more complex and sophisticated refineries also 

have the pre-fractionating (pre-flash) column and the debutanizer (naphtha stabilizing) 

column (YAMANISHI, 2007). Figure 1.3 shows the flowchart of an entire distillation unit 
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containing the pre-flash, atmospheric distillation, debutanizer, and vacuum distillation 

columns. 

Figure 1.3: Flowchart of the crude oil distillation unit with four towers. 

 

Source: Adapted from Yamanishi (2007). 

Figure 1.4 presents a simplified network of a distillation unit composed of four towers, 

in addition to the heating and desalination systems. Preheated crude oil is fed into the 

pre-flash tower, also referred to as the pre-vaporizing tower, whose main purpose is to 

increase the processing capacity of the distillation unit by processing part of the total 

feed. In this tower, the lighter fractions of crude oil are separated from the main stream, 

reducing the total load of the atmospheric distillation tower (SILVESTRE, 2005). 

According to Cheremisinoff (2000), a secondary objective of the pre-flash tower is to 

improve the energy efficiency of the process. 
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Figure 1.4: Simplified distillation unit network with four towers. 

 

Source: Adapted from Silvestre (2005). 

The top stream of the pre-flash tower, which is basically composed of fuel gas (FG), 

liquefied petroleum gas (LPG), and light naphtha, is sent to the debutanizer tower, 

whose purpose is to “stabilize” the naphtha produced in the distillation towers and 

separate it from the light gases (VENTIN, 2010), in addition to specifying some 

chemical properties, such as naphtha vapor pressure and LPG weathering (SILVA, 

2009). The impure LPG is sent for a treatment to remove sulfurous compounds and it 

is further sold as LPG (cooking gas). The stabilized naphtha is stored in a tank or pool, 

and is further blended with naphtha streams from other units (e.g., catalytic cracking) 

to produce gasoline (SILVA, 2009). 

The bottom product of the debutanizer is sent to an atmospheric distillation column, 

also referred to as the crude distillation unit. However, the CDU can also be fed directly 

with raw crude oil. In this case, the desalinated crude is pre-heated in a furnace to a 

maximum temperature of around 400 °C to avoid thermal decomposition. (MARIANO, 

2001). 
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Inside the towers, there are fractionation trays (plates) that provide the separation of 

the crude oil in various fractions due to the difference in the temperature boiling points 

of the molecules, because the closer to the top of the column, the lower the 

temperature. Thus, the rising steam, when in contact with each tray, undergoes a 

partial condensing. Hydrocarbons whose boiling points are greater than or equal to the 

temperature of a given tray are retained in that tray. The composition of the liquid varies 

in each stage of the tower, in which the liquid becomes heavier as it approaches the 

bottom of the tower (and lighter as it approaches the top). As the fractions condense 

in a given tray, the excess of liquid is spilled on the bottom tray. Upon reaching the 

bottom tray, which is at a higher temperature, the light fractions from the upper tray are 

vaporized. The liquid that overflows from tray to tray is known as internal reflux. The 

light components that have not condensed in any tray leave the top of the column (light 

naphtha and LPG); the side products are heavy naphtha, kerosene, and diesel; and 

the heavier fractions (atmospheric residue, ATR), not vaporized, are sent to the 

vacuum distillation column (EPA, 1995; MARIANO, 2001). 

To decompose the atmospheric residue into distinct fractions, high temperatures would 

be needed inside the distillation column (operating at atmospheric pressure). For 

circumventing this expensive process due to the large amount of energy required to 

achieve high temperatures, the vacuum distillation column is used, which operates at 

low pressures to provide the fractionation of the atmospheric residue fraction while 

operating at temperatures below the formation of coke and the cracking of the crude 

oil (YAMANISHI, 2007). In the vacuum distillation, the heavier fractions of crude are 

distilled again, but under low pressure (0.2 to 0.7 psia) to increase the volatilization of 

the compounds and hence, achieve an efficient fractionation. The vacuum inside the 

tower is typically maintained through steam ejectors and vacuum pumps, in addition to 

injecting superheated steam at the base of the column to reduce the partial pressure 

of hydrocarbons in the tower, facilitating the vaporization and separation (GARY and 

HANDWERK, 1994). The main side stream products are the light and heavy vacuum 

gas oils, while the bottom product is the vacuum residue (YAMANISHI, 2007). 
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 Conversion Processes 

The conversion processes aim to aggregate value to the distillate fractions and to 

improve their qualities. Unlike separation processes, conversion processes are 

chemical in nature and use break down, regrouping, or molecular restructuring 

reactions. Some of the main conversion processes used in the crude oil refining 

includes cracking (thermal and catalytic), coking, alkylation, isomerization, 

polymerization, and catalytic reform (MARIANO, 2001). Some of these conversion 

processes are described in the following. 

 Thermal cracking 

Thermal cracking uses moderate pressure and high temperatures (above 350 °C) to 

break large hydrocarbon chain into smaller and lighter molecules. These reactions are 

thermodynamically favorable at high temperatures and involve breaking carbon-

carbon bonds (HOCKING, 2016; SPEIGHT, 2006). The thermal cracking feed are 

typically heavy diesel and vacuum residue. The outputs fractions are fuel gas, LPG, 

and naphtha. Diesel is also produced in the thermal cracking, but it is typically recycled 

to improve the efficiency of the unit. The thermal cracking process has been 

increasingly replaced by the catalytic cracking (EPA, 1995). 

 Catalytic cracking 

Catalytic cracking utilizes heat, pressure, and a catalyst, to break large hydrocarbon 

molecules into smaller, lighter, and more valuable molecules (BUENO, 2003). Its main 

feed stream is the vacuum gasoil, which when subjected to high pressures and 

temperatures under the presence of a catalyst, is decomposed into several lighter 

fractions, such as fuel gas, liquefied petroleum gas (LPG), cracked naphtha, and light 

cycle oil (LCO). The bottom product is the decanted oil (MOREIRA, 2006). The main 

products are gasoline (50 - 65% by volume) and LPG (25 - 40% by volume) (BUENO, 

2003). 

 Delayed Coking 

The delayed coking unit thermally converts crude oil residues into liquid streams with 

increased economic value. The vacuum residue is fed to the delayed coking unit, 
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heated up to 487 - 520 ° C, and sent to coke drums, where the cracking process occurs 

(ROBINSON, 2006). The main products of this unit include the fuel gas, LPG, naphtha, 

gas oils, and coke (LIMA, 2012). 

 Catalytic reforming 

The main objective of the catalytic reforming is to transform heavy low-octane naphtha 

into high-octane petrochemical products used for the production of gasoline (octane is 

a property that indicates the resistance of the air-fuel mixture under high pressures and 

temperatures, so that the higher the octane the greater the energy efficiency of the 

fuel). These products are referred to as reformates and have a high content of 

benzene, toluene, and xylene, which is an excellent source of aromatics for the refinery 

(ROBINSON, 2006). The catalytic reforming also produces liquefied petroleum gas, 

fuel gas, acid gas, and a stream rich in hydrogen, which can be used in catalytic 

hydrotreatment units that do not require large streams or high purity (BUENO, 2003). 

 Isomerization 

The main application of the isomerization process in the crude oil refining is to increase 

the octane number of paraffins through the conversion of paraffins into iso-paraffins. A 

very common example is the conversion of n-butane into iso-butane, which can later 

be alkylated in liquid hydrocarbons within the gasoline boiling range (SPEIGHT, 2006). 

The isomerization process involves the contact of hydrocarbons in the presence of a 

catalyst and in favorable conditions, with a temperature range of 90 °C - 200 °C 

(MARIANO, 2001). 

 Alkylation 

Alkylation is a process of combining paraffins and olefins to form larger, higher 

molecular weight, and more branched molecules. One of the most common alkylation 

process is the reaction of iso-butane with iso-butene or butene, producing iso-octane. 

A catalyst is typically used to increase the conversion rate of the process. According 

to Mariano (2001), a typical alkylation unit consists of two main sections, for the 

reaction and for the recovery and purification of the catalyst.  
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 Polymerization 

Polymerization is a process in which low molecular weight molecules are transformed 

into higher molecular weight molecules, but maintaining the same molecular 

arrangement (SPEIGHT, 2006). According to Robinson (2006), this process is 

employed to convert C3 and C4 olefins into C6 to C9 olefins (e.g., conversion of iso-

butylene to diisobutylene). These reactions typically occur under high pressure and in 

the presence of a catalyst (MARIANO, 2001). 

  Super Fractionation 

The super fractionation unit aims to separate compounds with similar volatilities, such 

as propane and propylene. A high number of trays and a high reflux rate are typically 

necessary to obtain an efficient separation (GOKHALE, 1995). 

 Treatment Processes 

After the separation and conversion processes, it is typically required to treat the 

intermediate products for the removal of impurities and contaminants, which improves 

both their quality and economic value. In some cases, treatment processes may also 

be performed before specific units in order to treat their feed. One of the most used is 

the hydrotreating. 

 Hydrotreating 

According to Robinson (2006), hydrotreating is not considered a conversion process 

because the breaks in carbon-carbon bonds are minimal. Its main purpose is to remove 

impurities such as sulfur, nitrogen, oxygen, halides, and metals from the product 

stream (which can be either an intermediate or final product, or the feed to a separation 

or conversion unit), in addition to improving the stream quality by converting olefins 

and diolefins into paraffins. Hydrotreating can be used not only for the purification of 

products, but also before processes where catalytic deactivation by sulfur or nitrogen 

can occur, such as catalytic reform and hydrocracking (EPA, 1995; ROBINSON, 2006). 

In this process, fixed bed reactors are generally used with large amounts of hydrogen 

in the presence of catalyst and under high pressure and temperature. Some of the 
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fractions that typically undergo to the hydrotreating are naphtha, kerosene, and diesel 

(EPA, 1995). 

 Blending, Specification, and Logistic Distribution 

After the separation, conversion and treatment processes, the intermediate products 

are sent to mixing units (blenders) to produce the final products according to the market 

demands or contracts to be met. These products have to be specified regarding their 

properties, such as maximum sulfur content, minimum cetane or octane number, etc. 

After the blending operations, the final products are stored and further sent via logistical 

modes (DO, 2014). 

1.5.8 Crude oil refinery scheduling  

For improved, more efficient, and safer operations, the highly complex crude oil 

refinery problem has to be determined or scheduled in advance, prior to the 

implementation in the plant. This is one of the most relevant and important applications 

for the refinery, with great economic and technical impact, and is referred to as the 

crude oil scheduling. This decision-making process consists of determining the 

decisions to be made and the operations to be carried out throughout the entire 

refinery. These decisions include choosing the process variables, which can be either 

binary (e.g., which units and flows are operating) or continuous (e.g., amounts, flows, 

compositions). The decision-making in crude oil refineries typically focuses on the 

processing of crude oil and intermediate products to produce the final fuels, in which 

some of the decisions include which and how much of each crude to process, where 

to store the feedstocks and intermediate products, and when to perform each of these 

decisions. The decision-making for the crude oil scheduling is typically assisted by 

mathematical formulation and problem-solving techniques. 

Modeling the crude oil scheduling within the interval of hours, shifts, or days, is a very 

difficult problem due to the complexity of the process, including the multiple logistics 

decisions and the processing of hydrocarbon streams in liquid and gaseous states. In 

the petroleum refining industry, equipment, tanks, and the physical separation and 

chemical reaction units, operate continuously by processing feedstocks of different 

qualities composed by hydrocarbon streams with heteroatoms (sulfur, nitrogen, and 
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metals) to produce treated fractions formed by similar compounds (i.e., same boiling 

points). After the refining process, the final products or fuels are suitable in terms of 

specifications to be sold and used over multiple applications (KELLY et al., 2017b).  

Due to the complexity of the crude oil refining process, a proper, accurate, and efficient 

modeling requires dozens of thousands of variables and constraints within a non-

convex MINLP formulation (KELLY et al., 2017b). Hence, the crude oil refinery 

scheduling was historically carried out via spreadsheets and simulators in which most 

decisions were made manually in a trial and error procedure (MENEZES et al., 2015a). 

However, with the recent advances in decision-making modeling and optimization, 

solving algorithms, and computer-aided resources (FRANZOI et al., 2018; BRUNAUD 

et al., 2020), the automation of an efficient scheduling decision-making for crude oil 

refinery applications has become possible and essential for the competitiveness of the 

refineries (KELLY and MANN, 2003). 

According to Li et al. (2016), because of the increasing market competitiveness, in 

addition to factors such as the price fluctuations for both the feedstocks and the 

demand of fuels, deterioration of product quality, and strict environmental regulations, 

crude oil refineries have to explore the use of advanced software and tools aiming to 

improve the refinery operations both technically and economically. In that context, the 

use of computational tools for industrial scheduling applications emerges as an 

important field of study (REDDY et al., 2004a). The main benefits include the 

systematic search for optimal solutions, which are typically better than the solutions 

found manually or based on simulation software; significantly reduce the time and effort 

required to build a new or updated schedule; and provide tools for handling adverse or 

unexpected events (e.g., disruptions in the production chain) by automatically updating 

the incumbent schedule (JIA et al., 2003; KELLY and MANN, 2003). 

Due to the complexity of crude oil refining operations, it is common to divide the refining 

process in three sections, namely the crude oil scheduling, the process-shops, and the 

blend-shops (JIA and IERAPETRITOU, 2004; SHAH et al., 2010). The crude oil 

scheduling is the most impactful section for the refinery mostly because both the 

technical operations and the refinery economics depend on the feed to be processed, 

which is determined from the scheduling operations (KARUPPIAH et al., 2008; 

LOTERO et al., 2016; SHAH and IERAPETRITOU, 2015). The potential for optimizing 
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and improving the crude oil refinery operations includes several steps, since the 

beginning of the production chain. Kelly et al. (2017a) state that the crude oil quality 

(i.e., the yields and properties of each crude fraction) significantly affects the yields and 

qualities of the final products. This is enhanced by the large combination of distinct 

crude oil blends that can be chosen. Thus, in addition to its key importance for the 

refinery, the crude oil scheduling is also one of greatest challenges in terms of 

modeling, optimization, and implementation in the plant (SHAH et al., 2010). 

1.5.9 Mathematical Modeling 

Mathematical modeling has been increasingly employed to achieve improved 

operations and to exploit cost reduction opportunities for industrial applications. The 

models are a mathematical representation of the process and are helpful to predict, 

calculate, simulate, and investigate possible scenarios. Thus, the best or desired 

scheduling solutions can be computationally tested and analyzed in advance prior to 

their selection and implementation in the real process. These models are especially 

helpful for allowing simulation and optimization techniques to be applied, in which the 

variables can be estimated and the operational conditions can be analyzed, providing 

better process control and safer, smoother, and more efficient operations.  

The mathematical models are classified over distinct categories according to their 

formulation, including linear programming (LP), nonlinear programming (NLP), mixed-

integer programming (MIP), which englobes the mixed-integer linear programming 

(MILP) and the mixed-integer nonlinear programming (MINLP). The nonlinear models 

include nonlinear information, either in the variables, constraints, or objective function, 

while the mixed-integer models include binary decisions or variables (WINSTON and 

GOLDBERG, 2004). The crude oil refinery scheduling is typically formulated as an 

MINLP problem due to the simultaneous binary decisions and nonlinear information 

(HOU et al., 2016; YÜZGEÇ et al., 2010), and it is one of the most challenging tasks 

for the crude oil refineries. 

 Time horizon and discretization 

When building the mathematical model for a given problem, it is needed to establish 

the time limits or bounds in which the problem is formulated (i.e., defining the initial and 
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final instants of time to be modeled), which is referred to as the time horizon. The time 

horizon length may be in the order of seconds or minutes (e.g., real time optimization 

and control applications), hours or days (e.g., crude oil scheduling), months or years 

(e.g., procurement planning and process design). Aiming to achieve improved and 

more accurate solutions, the time horizon is typically decomposed or discretized into 

time steps, providing additional degrees of freedom in the modeling and optimization. 

There are two distinct approaches for the time discretization. In the discrete time 

formulation, the time is discretized uniformly and all events must begin and end at the 

limit (i.e., beginning or end) of a time step. The continuous time formulation considers 

the time as a continuous variable, so the exact start and end dates of each event can 

be freely specified within the time horizon (HOU et al., 2016; SAHARIDIS et al., 2009; 

MÉNDEZ et al., 2006a). While the main drawback of the discrete time formulation is 

the combinatorial complexity that scales with the number of binary decisions, 

implementation issues arise from continuous time formulations, in which the execution 

of tasks by the operators in the plant cannot be easily performed, in addition to the 

need for defining the time events to be selected to represent the operations in the plant 

(KELLY et al., 2017b). 

Because of the issues for solving mixed-integer industrial problems using discrete time 

formulations given their intractability due to the large number of binary decisions, the 

literature on crude oil scheduling optimization in the last few decades mostly employed 

continuous time approaches. However, with the recent technological advances on 

decision-making modeling, solving algorithms, and computer-aided resources, the 

utilization of discrete time approaches has become possible for large-scale industrial 

applications (KELLY et al., 2017b), although it still requires assistance of additional 

modeling (decomposition) and solving (heuristic) strategies. 

 Heuristic approaches and decomposition algorithms 

Heuristic approaches and decomposition algorithms have been widely used for 

handling intractable problems. For the industrial-sized scheduling of complex 

phenomenological (separating, converting, blending) and procedural (sequences, 

setups, startups) optimizations, the mathematical formulations may be difficult to be 

solved as a full space MINLP model. In order to properly determine the optimal 
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scheduling operations, it is required an accurate modeling including the logistics and 

quality information throughout the process, in addition to utilize efficient problem 

solving techniques via software optimization, which typically uses commercial solvers 

(e.g., CPLEX). However, there are modeling and optimization limitations for handling 

large-scale MINLP formulations such as the crude oil refinery scheduling problem. 

Therefore, several works in the literature have been developed strategies to break 

down the MINLP formulations into smaller, simpler, and less complex subproblems 

(MOURET, GROSSMANN, and PESTIAUX, 2009; LOTERO et al., 2016; ASSIS et al., 

2019) in order to handle such complicated models that vary in a three-dimensional 

MINLP quantity-logic-quality (QLQ) relationship space. Typical decompositions lead to 

MILP-NLP formulations to be sequentially solved until a convergence criterion is met 

(WENKAI et al., 2002; MOURET et al., 2009; CASTRO and GROSSMANN, 2014; 

CAFARO et al., 2015; KELLY et al., 2017a).  

Menezes et al. (2015b) propose a phenomenological decomposition heuristic (PDH) 

approach for a strategic planning problem to determine the refinery configuration and 

the process unit dimensions. The problem is formulated as an MINLP, which is 

decomposed into MILP and NLP sub-models. First, the MILP model is optimized 

considering only logistic and quantity information (i.e., by neglecting the quality 

information in the original MINLP model). Then, the binary variables from the optimal 

MILP solution are fixed in the original MINLP and the resulting NLP model is optimized 

considering only quantity and quality information. The yields and properties from the 

NLP optimal solution are used as the new coefficients or parameters in the MILP 

problem in the next iteration, with logic and quantity variables under consideration. 

Kelly et al. (2017b) applied the same method for scheduling applications, in which 

multiple MILP solution are generated for improved performance and convergence of 

the algorithm. An iterative procedure is performed, in which the best NLP solution (i.e., 

yields and quality information) is retro-fed to the MILP in the next iteration, until a 

convergence criterion is met. Figure 1.5 illustrates the phenomenological 

decomposition heuristic procedure. 
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Figure 1.5: Phenomenological decomposition heuristic. 

 

Source: Author (2021). 

Several other heuristic-based strategies have been developed to reduce the 

computational burden for time-limited applications. Kelly et al. (2017a) develop a 

mixed-integer linear programming model to design pre-assignments of distinct 

feedstocks with different qualities when storing them from supply sources to shared 

storages (i.e., clustering multiple feedstocks in the same pool). This method assigns 

individual units or sources (e.g., crude oils, tanks, feedstocks) to a limited number of 

storage or sinks, and specifies the variables to be clustered (i.e., compound-

properties). This clustering strategy is similar to the concept found in many sequence-

dependent changeover heuristics (e.g., using product-wheels and blocking), in which 

the individuals are grouped in families according to some common criteria. This is 

especially helpful when there is a limited storage space, and for large-scale 

applications typically found in the crude oil, metal, and food processing industries. The 

storage assignment formulation minimizes the quality deviation in the clustering of a 

larger number of feedstocks into a smaller number of pools. This method designs 

simple and straightforward segregation rules in order to achieve better crude oil 
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management, crude oil blend control, and improved blend scheduling optimizations. 

Figure 1.6 illustrates the feedstock storage assignment method, in which the raw 

materials 𝑅𝑀 are assigned to the storage sinks 𝑆𝑇 under distinct clustering groups 𝐶𝐿. 

Figure 1.6: Feedstock storage assignment flowsheet. 

 

Source: Kelly et al. (2017a). 

Kelly (2002) developed the chronological decomposition heuristic (CDH), a 

straightforward time-based strategy used in the search of integer-feasible solutions. 

The CDH is specifically designed for discrete-time scheduling optimization problems 

typically found in the petrochemical, chemical, and pharmaceutical industries. This 

heuristic decomposes the model regarding its time dimension (i.e., the full time horizon 

is discretized or decomposed into smaller steps). Each sub-model is then solved using 

mixed-integer linear programming (MILP) techniques starting from the first model 

onwards. Thus, instead of optimizing one large problem over the entire time horizon, 

multiple sequential time-discretized models are solved. Figure 1.7 illustrates the 

concept of the chronological decomposition heuristic over a rolling horizon. 
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Figure 1.7: Rolling horizon chronological decomposition strategy. 

 

Source: Author (2021). 

Aiming to tackle large-scale MILP problems, Kelly and Mann (2004) developed the 

flowsheet decomposition heuristic (FDH) to reduce the computational time needed to 

find good integer-feasible solutions for industrial applications. This method is a sort of 

relax-and-fix heuristic, which allocates individual units or sources (e.g., feedstocks, 

tanks) into groups, and solves mixed-integer linear programming problems (as many 

as there are groups), given a pre-specified order of importance. In each MILP 

subproblem, a group of units is defined as the core (most important) group. All binary 

variables that are not included in the core group are relaxed, and the MILP is optimized. 

From the optimal solution, the binary variables that are included in the core group are 

fixed to their optimal values, and the algorithm moves to the next iteration until 

convergence is met (i.e., after optimizing as many MILPs as there are groups). At this 

point, all binaries will have been fixed, so that the solution for the last MILP optimization 

is also a feasible solution of the original MILP. Figure 1.8 illustrates the flowsheet 

decomposition heuristic relax-and-fix approach. 
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Figure 1.8: Relax-and-Fix decomposition approach. 

 

Source: Author (2021). 

The phenomenological decomposition heuristic, the feedstock assignment strategy, 

and the Unit-Operation-Port-State Superstructure (UOPSS) (KELLY, 2005) are 

simultaneously applied for the modeling and optimization of an industrial size problem 

for the future 7-day time horizon discretized in 2-hour intervals. The formulation 

includes 5 atmospheric distillation units in 9 operational modes and 35 storage and 

feed tanks. The logistics problem (MILP) has around 30 thousand continuous variables 

and 30 thousand binary variables, 6.5 thousand equations, 80 thousand inequalities, 

and 54 thousand degrees of freedom, and is solved in 128.8 seconds using 8 threads 

in the solver CPLEX 12.6 (International Business Machine IBM, USA). The quality 

problem (NLP) has over 102 thousand continuous variables, 58 equality constraints, 

768 inequality constraints, and 45 thousand degrees of freedom, and is solved in 10.3 

minutes in an sequential linear programming (SLP) approach using the solver CPLEX 

12.6. The MILP-NLP gap between the two solutions is below 3.5% after two iterations 

of the algorithm. 
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1.5.10 Crude oil scheduling optimization  

The first optimization approach for crude oil scheduling problems used a discrete time-

based formulation (LEE et al., 1996). The main advantage of this type of formulation is 

introducing and simplifying how the events are discretized throughout the time horizon, 

so that the decisions and operations to be performed in the real process must belong 

to a specific time period (FLOUDAS and LIN, 2004). That is especially useful to 

facilitate the implementation, execution, and coordination of the schedule by the 

operators and workers in the industrial plant (KELLY et al., 2017a). However, due to 

the combinatorial complexity of discrete time modeling, most of the works in the 

literature addressed the use of continuous time formulations (JIA et al., 2003; REDDY 

et al., 2004a, b; MOURET et al., 2009, CASTRO and GROSSMANN, 2014; CAFARO 

et al ., 2015; XU et al., 2017), although Kelly et al. (2017a) state that technological 

improvements in the last decades have reduced the simulation and optimization 

computational effort by two orders of magnitude in comparison with the 1990s, which 

opens opportunities for large-scale industrial applications using discrete time 

formulations.  

Shah (1996) develop an MILP model for the crude oil scheduling using a discrete time 

formulation, in which the problem is decomposed into two stages to be sequentially 

solved. The first stage defines the refinery operating conditions and the crude oil supply 

to the refinery, while the second stage defines the loading and unloading schedules 

between the refinery and the ports or ships. This approach guarantees feasibility but 

not optimality for the scheduling solution. 

Lee et al. (1996) consider the short-term crude oil scheduling problem, including the 

crude unloading from ships or pipelines to the refinery storage tanks, and the prepare 

of the crude blend to feed the distillation units. The problem is initially formulated as an 

MINLP, in which the nonlinearities arise from the blending equations. However, the 

authors substitute bilinear terms for individual flow component terms, yielding an MILP 

problem. The model is formulated in discrete time and a branch and bound method is 

employed for the solving procedure. 

Wenkai et al. (2002) state that the linearization of bilinear terms proposed by Lee et al. 

(1996) often leads to inconsistent solutions due to the composition discrepancies (i.e., 

the crude oil composition sent from a tank to the CDU is different from the composition 
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of the blend inside the tank). In order to overcome this issue, Wenkai et al. (2002) 

propose an algorithm that iteratively solves two MILP and one NLP problems. Their 

algorithm also reduces the total number of binary variables and uses heuristic 

techniques for large-scale problems, reducing the required computational effort. 

Jia et al. (2003) address the short-term crude oil scheduling problem including the 

crude oil unloading, blending, and processing in the distillation units, and develop an 

MILP continuous time formulation based on the state-task network (STN) 

representation. 

Reddy et al. (2004a) prove the existence of the composition discrepancy in the work 

of Lee et al. (1996) and show that the algorithm proposed by Wenkai et al. (2002) 

eliminates the composition discrepancy but may eventually fail even to obtain feasible 

solutions. Considering the same crude oil scheduling problem, Reddy et al. (2004b) 

propose an MILP continuous time formulation and develop an iterative algorithm that 

eliminates the composition discrepancies and solves the MILP models for time 

horizons of seven days. The authors compare the formulations in continuous and 

discrete time and claim that the former is preferable for complex problems while the 

latter is preferable for simpler and smaller problems. Alternatively, Reddy et al. (2004a) 

propose an MINLP formulation with a hybrid representation of time, in which the time 

horizon is discretized into time steps of 8 hours, but the events do not necessarily need 

to start and the end of a given time interval. The solution algorithm proposed by the 

authors is able to mitigate composition discrepancies, in addition to simultaneously 

solving the entire problem without the need to separately solve MILP and NLP 

subproblems. 

Li et al. (2007) review the algorithm proposed by Reddy et al. (2004a) and Reddy et 

al. (2004b) and develop an improved, faster, more robust, and more efficient algorithm, 

in which the problem is reformulated for the future 20-day time horizon. Van Elzakker 

et al. (2010) review the algorithm proposed by Li et al. (2007) and perform cuts to 

remove infeasible combinations of binary variables so as to reduce the computational 

time. Moreover, their updated algorithm also increases the total profit by including 

inventory costs in the optimization. Li et al. (2012) study the same crude oil scheduling 

problem addressed in Li et al. (2007), and introduce three additional contributions: a 
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MINLP model formulated in continuous time, a linear piecewise estimate of bilinear 

terms, and a global optimization algorithm based on the branch and bound method. 

Méndez et al. (2006b) develop an approach that simultaneously optimizes the crude 

oil scheduling and the gasoline offline blending. The proposed method uses linear 

approximations and an iterative procedure through successive LP or MILP problems 

to estimate the properties of the products, and is flexible to consider both discrete and 

continuous time representations depending on the characteristics of the problem. 

Furman et al. (2007) propose a non-convex MINLP based on a continuous time 

formulation to optimize the transfer of streams between tanks in the crude oil refinery. 

According to the authors, in order to reduce the number of decision events (i.e., binary 

variables) and, consequently, the computational time, the model allows simultaneous 

inlet and outlet flows at the same time step, as long as they are not from the same 

tank. 

Karuppiah et al. (2008) present an outer approximation (OA) algorithm to globally solve 

a non-convex MINLP using a continuous time formulation for the crude oil scheduling 

problem, including the steps from the crude unloading to the distillation unit. The 

proposed algorithm solves a relaxed MILP problem of the initial MINLP, in addition to 

using cutting plane techniques to reduce the computational time. 

Pan et al. (2009) study the crude oil scheduling problem and use heuristic rules to 

linearize bilinear terms and to fix part of the binary variables in order to simplify the 

model by converting it from an MINLP to an MILP. The proposed algorithm is able to 

avoid composition discrepancies without using iterative techniques, and maximizes the 

refinery profit while meeting the product demand. 

Zhang and Xu (2015) study the crude oil scheduling problem and consider additional 

information such as the brine decantation time and multiple crude inlet flows to the 

refinery. The authors implement an iterative outer approximation algorithm based on 

the techniques applied by Karuppiah et al. (2008) to obtain an optimal solution to the 

non-convex MINLP scheduling problem. 

Lotero et al. (2016) address the MINLP blending problem of final distillates from the 

crude oil refinery process, and propose an algorithm that decomposes the original 

MINLP in two levels. In the first level, a relaxed MILP of the original MINLP is solved, 
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and in the second level, a reduced MINLP is solved by fixing some of the binary 

variables of the original model. 

Kelly et al. (2017a) propose a discrete time MILP formulation for the feedstock 

assignment problem, in which the feedstocks arriving at the refinery are clustered in 

groups according to their qualities (i.e., the feedstocks with similar characteristics are 

stored in the same pool). The objective function minimizes the quality deviation when 

mixing two or more different crudes. That provides a significant improvement in the 

control of the properties of the crude oil blends, as well as a reduction in the size of the 

problem (and hence, a reduction in the computational effort for the optimization 

procedure).  

To the best of our knowledge, despite an extensive literature on the crude oil refinery 

scheduling, the works on this topic address a partial modeling of the refining process 

(i.e., the models include either the crude oil scheduling, the blend-shops, or specific 

process units, but do not integrate all of them within a simultaneous solving procedure). 

There is a single study (XU et al., 2017) that models the entire refinery process, 

including the crude oil scheduling, the process-shops, and the blend-shops. However, 

the continuous time model for a time horizon of two weeks considered less than 100 

binary variables, which is not coherent with large-scale industrial operations. 

1.5.11 Online Scheduling 

Although the refinery scheduling represents a network with continuous processes in 

operation, a finite time horizon must be defined so as to build and solve the 

mathematical model for this problem. The time horizon length should be chosen 

according to the desired application and the computational resources available. After 

the modeling and optimization, as the schedule is implemented in the real process, 

uncertainties and disturbances arise, and new information becomes available and 

should be used as soon as possible for achieving improved operations (GUPTA et al., 

2016a), especially because changes as disruptions, delays, and market fluctuations, 

may result in sub-optimality and infeasibilities in the incumbent schedule (GUPTA et 

al., 2016b). The operational data used in the crude oil scheduling are typically out of 

date or not integrated with the production, which leads to inconsistencies in the 

prediction throughout the process (MENEZES et al., 2015c). Thus, a continuous cycle 
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of improvement is required to reduce the deviation between the model predictions and 

the actual values in the plant. Therefore, an efficient online scheduling (rescheduling) 

procedure facilitates the adaptation of the schedule under uncertainties and 

unforeseen events, in addition to considering new information as soon as possible, 

which aims to increase the economic value of the process (GUPTA et al., 2016a). 

The term online scheduling is also referred to as rescheduling and indicates the act of 

updating the incumbent schedule as a corrective action due to changes, uncertainties, 

or disturbances in the process, which may be beneficial (e.g., arrival of new feedstocks, 

new market demands of products) or not (e.g., malfunction of units, disruptions in the 

process) (VIERIA, HERRMANN and LIN, 2003; LI and IERAPETRITOU, 2008). 

According to Gupta et al. (2016b), the rescheduling should be performed not only when 

necessary, but on a regular basis. 

Zhang et al. (2015) develop a full rescheduling strategy (FRS) for the crude oil refinery 

front-end problem (i.e., crude oil management). The refinery production is rescheduled 

whenever there is a malfunction in a tank due to mechanical problems. That mitigates 

operational infeasibilities and achieves a better efficiency and process control. Pattison 

et al. (2016) propose a periodic rescheduling mechanism for an air separation unit that 

includes in the model information regarding prices and demands, as well as 

disturbances such as process disruption. 

1.5.12 Cutpoint temperature modeling 

A fundamental step in the crude oil refinery scheduling optimization is to calculate the 

yields and properties of distillation units (FU and MAHALEC, 2015). For such 

calculation, both rigorous and surrogate representations can be used. The rigorous or 

first principals modeling considers mass (or molar) and energy balances in the 

columns. As a result, compositions and flows of internal and external streams as well 

as operational conditions, such as pressure and temperature of the stages, can be 

determined. However, despite the sufficient robustness and accuracy to predict the 

yields and properties of distillation units, rigorous models demand higher 

computational effort, imposing difficulties for their application in large-scale problems. 

On the other hand, non-rigorous modeling can use surrogate or simplified correlations 

based on measured data to represent the modifications promoted by the mass and 
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energy balances over the hydrocarbon components. Due to their simplicity, 

straightforward application, and relatively good accuracy, they are commonly used for 

process optimization in oil refineries (LI et al., 2005). 

Crude oil is a complex mixture of hydrocarbons with different volatilities. When it is 

processed in a distillation column, which has limitations regarding the number of stages 

and the reflux rate, the non-sharp fractionation or overlaps between adjacent distillates, 

as seen in Figure 1.9, must be considered to properly formulate cutpoint optimization 

methods (LI et al., 2005). According to Fu (2015), this overlap typically occurs with 

properties such as sulfur content, specific density, and viscosity. 

Figure 1.9: Crude oil TBP (true boiling point) distillation curve. 

 

Source: Fu (2015). 

To model such imperfect fractionation in the estimation of product yields and 

properties, the main simplification addressed in the literature considers averaged 

cutpoints to divide the TBP curve into small sections (cuts). These simplified cutpoints 

are commonly defined as the mid-point of the adjacent TBP overlapping temperatures 

(TBP cutpoint = 0.5(EPL + IBPH)), in which EPL is the end boiling point of the lighter 

fraction and the IBPH is the initial boiling point of the adjacent heavier fraction. A 

traditional empirical approach to represent the distillation unit is known as delta-based 

modeling and uses small increments for product deviations in the TBP curve. Common 

types of delta-based models are the swing-cut methods, which require the estimation 

of the swing-cut size and the TBP range for each product. This information, combined 
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with the properties of the crude oil in the corresponding TBP range, is used to calculate 

the distillate properties (FU and MAHALEC, 2015). Due to their simplicity, they are one 

of the most used models in the distillation unit modeling (GUERRA and LE ROUX, 

2011).  

The swing-cut model proposed by Zhang et al. (2001) considers the properties of the 

feed in the distillation unit and the operating conditions of the process as variables and 

optimize the amount produced from each distillate. However, this method considers 

that the properties of adjacent products are fixed throughout the swing-cut, failing to 

represent the high nonlinearity of the distillation process. Li et al. (2005) use an 

empirical procedure to calculate the mass transfer rates of each product in the CDU 

and determine the size of each swing-cut. In addition, the authors use regression 

models based on the properties of the feed load to consider the variation of properties 

in each swing-cut. However, due to the possibility of processing more than one type of 

crude oil simultaneously, the model requires additional procedures to calculate the 

TBP curve of the crude oil mixture. To deal efficiently with the variation of properties 

within the swing-cut, Menezes et al. (2013) improve the traditional swing-cut method 

by separating each swing-cut into two fractions (light and heavy) using 10 °C 

increments as micro cuts. This method adds property information for both fractions, 

and additional variables and nonlinear constraints. The properties of each fraction are 

calculated individually using interpolated quality information regarding their respective 

amounts. This method improves the prediction of distillation unit outputs and provide 

more accurate results. 

Other methods have also been developed to model the distillation unit. Trierwiler and 

Tan (2001) used an iterative procedure referred to as the adherent recursion model, in 

which the cutpoints are sent to a rigorous simulator in order to update the yields and 

properties of the CDU output fractions. However, the high computational time required 

for the convergence of the problem, mainly due to the use of the rigorous simulator, 

limits the application of this method. Li, Hui, and Li (2005) use an empirical procedure 

to calculate the mass transfer rates of each product in the CDU and determine the size 

of each swing-cut. In addition, the authors use regression models based on the 

properties of the feed load to consider the variation of properties in each swing-cut. 

However, due to the possibility of processing more than one type of oil simultaneously, 

the model requires additional procedures for calculating the TBP curve of the mixture 
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fed into the CDU. Guerra and Le Roux (2011a, 2011b) apply a modified swing-cut 

model using volumetric transfer rates in a refinery planning problem. The proposed 

model uses empirical correlations based on the oil TBP curves, failing to deal efficiently 

with the variation of properties within the swing-cut. Alattas et al. (2011) develop a 

simplified nonlinear CDU model for production planning based on a fractionation index 

(FI). They represent the tower as flash units operating in series and the FI for each 

section are computed using characteristics of the columns such as tower configuration 

and temperature distribution. Using FI and molar balances among the units, the model 

predicts the distillation tower operations more accurately than the traditional swing-cut 

models. Mahalec and Sanchez (2012) propose a hybrid model based on first principles 

considering mass and energy balances to optimize distillation unit towers. Surrogate 

correlation using partial least-squares models relates the operating variables to 

product distillation curves in order to predict the vertical deviation between front and 

back sections of the curve. By relying partially on a statistical modeling, the method 

manages to reduce the prediction error of the fractions in the distillation unit (FU and 

MAHALEC, 2015). Fu, Sanchez and Mahalec (2015) propose a simple hybrid model 

with few linearities to optimize a distillation unit containing three towers. The model 

does not assume that the final boiling temperature of a lighter fraction and the initial 

boiling temperature of a heavier fraction are equidistant from the oil TBP curve; and 

that the midpoint of a cut lies on the TBP curve. Hence, a smaller error is achieved for 

the distillation unit predictions. However, the increment used to define the cutpoints 

(that range from approximately 14 to 67 °C) may not be small enough to provide 

sufficiently good accuracy. 

Many authors propose models to predict more efficiently the outputs of the crude 

distillation unit. However, using a crude distillation unit model within a complete 

industrial-sized scheduling optimization is still to be addressed. That would be 

especially helpful when consider time steps in the order of hours (approximating to an 

online scheduling cycle) and a complete distillation tower topology (for a more realistic 

and accurate representation). These features provide a better process accuracy and 

control towards mitigating plant-model mismatches within a more complex and 

accurate crude oil refinery modeling and optimization.  
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2                             
Refinery Scheduling: Mathematical Formulation 
 

In this chapter we present and discuss a generic mathematical formulation used to 

model the refinery scheduling examples developed in the present work. For providing 

a better understating on the mathematical formulation, the simplified network 

presented in Figure 2.1 is employed, which is based on the Unit-Operation-Port-State-

Superstructure (UOPSS) formulation from Kelly et al. (2005). The network is composed 

by the following objects: a) sources and sinks (), tanks, pools, or inventories (), 

continuous processes (⊠) with distinct modes of operation 𝑚; and b) their connectivity 

involving arrows (→), inlet-ports 𝑖 (O) and outlet-ports 𝑗 (). Binary y and continuous x 

variables are engineered to model unit-operations and their connections, where states 

can be set to in-ports and out-ports to add more constraints and continuous (or even 

discrete) variables. In-port and out-port structures are connectors between upstream 

and downstream unit-operations known as internal-streams (the arrows in Figure 2.1), 

whereby inlet and outlet flows of material can still be mixed in the in-port-states or split 

from the out-port-states. In the UOPSS modeling, the arc-flows attached to a port can 

be connected to any unit-operations in different time windows and ports. A connection 

between a unit-operation-port-state to another unit-operation-port-state (up or 

downstream) is managed by binary variables for the unit-operation-port-state to unit-

operation-port-state flows or continuous variables in the following classical semi-

continuous constraints as 𝑦𝑥𝐿 ≤ 𝑥 ≤ 𝑦𝑥𝑈, with 𝑥𝐿 and 𝑥𝑈 as the lower and upper 

bounds of 𝑥. 
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Figure 2.1: Blend scheduling problem network. 

 

Source: Author (2021). 

The objective function in Equation 2.1 maximizes the product revenues by subtracting 

the costs with feedstocks and the performance of the CDU throughputs, defined as the 

difference of the processed crude oil amounts between the previous and the current 

time periods.  

𝑀𝑎𝑥 𝑍 = ∑ ( ∑ 𝑝𝑟𝑖𝑐𝑒𝑚,𝑡

𝑚∈𝑀𝐹𝑈

𝑥𝑚,𝑡 − ∑ 𝑝𝑟𝑖𝑐𝑒𝑚,𝑡

𝑚∈𝑀𝐹𝐸𝐸𝐷

𝑥𝑚,𝑡

𝑡

− ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑚(𝑥𝑚,𝑡
𝐿𝑂𝐷 + 𝑥𝑚,𝑡

𝑈𝑃𝐷)

𝑚∈𝑀𝐶𝐷𝑈

)                                                                 (2.1) 

Where 𝑍 is the objective function to me maximized, and at each time period 𝑡,  𝑝𝑟𝑖𝑐𝑒𝑚,𝑡 

is the selling price of each product (fuels) 𝑚 ∈ 𝑀𝑃 or the cost of each feedstock 𝑚 ∈

𝑀𝐹𝐸𝐸𝐷, 𝑥𝑚,𝑡 are the amounts or flows of the respective feedstocks or products, 𝑤𝑒𝑖𝑔ℎ𝑡𝑚 

is a parameter related to the performance term employed to improve the operating 

conditions in the distillation unit 𝑚 ∈ 𝑀𝐶𝐷𝑈 considering the lower 𝑥𝑚,𝑡
𝐿𝑂𝐷 and upper 

𝑥𝑚,𝑡
𝑈𝑃𝐷 deviation variables of the amount of crude processed in the distillation unit in 

sequential time periods, which is expected to be as constant as possible. This 

performance penalty smooths the CDU throughputs 𝑥𝑚,𝑡 (𝑚 ∈ 𝑀𝐶𝐷𝑈) by calculating the 
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variations of its adjacent amounts and minimizing the 1-norm or linear deviation of the 

flow in consecutive time periods. Then,   

If 𝑥𝑚,𝑡+1  ≤ 𝑥𝑚,𝑡  ⟹   𝑥𝑚,𝑡
𝐿𝑂𝐷 = 𝑥𝑚,𝑡 − 𝑥𝑚,𝑡+1   and   𝑥𝑚,𝑡

𝑈𝑃𝐷 = 0. 

If 𝑥𝑚,𝑡+1  ≥ 𝑥𝑚,𝑡  ⟹   𝑥𝑚,𝑡
𝑈𝑃𝐷 = 𝑥𝑚,𝑡+1 − 𝑥𝑚,𝑡    and   𝑥𝑚,𝑡

𝐿𝑂𝐷 = 0. 

These deviation variables are set as the same as the bounds of the CDU throughputs, 

i.e., 0 ≤ 𝑥𝑚,𝑡
𝐿𝑂𝐷 ≤ �̅�𝑚,𝑡

𝑈  and 0 ≤ 𝑥𝑚,𝑡
𝑈𝑃𝐷 ≤ �̅�𝑚,𝑡

𝑈  for 𝑚 ∈ 𝑀𝐶𝐷𝑈. The smoothing relationship for 

the CDU flow in Equation 2.2 is satisfied if 𝑥𝑚,𝑡+1 = 𝑥𝑚,𝑡, in which 𝑥𝑚,𝑡
𝐿𝑂𝐷 = 𝑥𝑚,𝑡

𝑈𝑃𝐷 = 0. 

𝑥𝑚,𝑡+1 − 𝑥𝑚,𝑡 + 𝑥𝑚,𝑡
𝐿𝑂𝐷 − 𝑥𝑚,𝑡

𝑈𝑃𝐷 = 0  ∀ 𝑚 ∈ 𝑀𝐶𝐷𝑈, 𝑡                                                                     (2.2) 

The UOPSS mathematical formulation is defined in Equations (2.3) to (2.22) and 

involves objects and their connectivity as shown in Figure 2.1. The sets 𝑀𝑇𝐾, 𝑀𝐵𝐿, 

𝑀𝐹𝐸𝐸𝐷, and 𝑀𝑃 are, respectively, for the unit-operations 𝑚 of tanks, blenders, 

feedstocks, and products. The arrows 𝑥𝑗,𝑖,𝑡 represent the quantity-flows of the 

connections between distinct unit-operation-port-states, and 𝑥𝑚,𝑡 (𝑚 ∉ 𝑀𝑇𝐾) 

represents the throughput of unit-operations 𝑚.  

The quantity-flows of the arrows vary between their bounds (𝑥𝑗,𝑖,𝑡
𝐿  and 𝑥𝑗,𝑖,𝑡

𝑈 ) if their 

binary variables 𝑦𝑗,𝑖,𝑡 are active, as shown in Equation (2.3). It is similar for the binary 

variables of unit-operations 𝑦𝑚,𝑡 (𝑚 ∉ 𝑀𝑇𝐾) with respect to their bounds (𝑥𝑚,𝑡
𝐿  and 𝑥𝑚,𝑡

𝑈 ) 

in Equation (2.4), and for the binary variables 𝑦𝑚,𝑡 (𝑚 ∈ 𝑀𝑇𝐾) of tank holdups or 

inventory levels 𝑥ℎ𝑚,𝑡 between their bounds (𝑥ℎ𝑚,𝑡
𝐿  and 𝑥ℎ𝑚,𝑡

𝑈 ) in Equation (2.5). 

Equation (2.3) ensures that the flow 𝑥𝑗,𝑖,𝑡, is between its lower and upper bounds (�̅�𝑗,𝑖,𝑡
𝐿  

e �̅�𝑗,𝑖,𝑡
𝑈 ) if its respective binary variable is active. Similarly, Equation (2.4) imposes 

bounds (�̅�𝑚,𝑡
𝐿  and �̅�𝑚,𝑡

𝑈 ) for the flows of unit-operations 𝑥𝑚,𝑡 (𝑚 ∉ 𝑀𝑇𝐾) with respect to 

their bounds (𝑥𝑚,𝑡
𝐿  and 𝑥𝑚,𝑡

𝑈 ) using binaries 𝑦𝑚,𝑡 (𝑚 ∈ 𝑀𝑇𝐾), and Equation (2.5) imposes 

bounds for the tank holdups or inventory levels 𝑥ℎ𝑚,𝑡 between their bounds (𝑥ℎ𝑚,𝑡
𝐿  and 

𝑥ℎ𝑚,𝑡
𝑈 ) using the binary variables 𝑦𝑚,𝑡 (𝑚 ∈ 𝑀𝑇𝐾). 

�̅�𝑗,𝑖,𝑡
𝐿  𝑦𝑗,𝑖,𝑡 ≤ 𝑥𝑗,𝑖,𝑡 ≤ �̅�𝑗,𝑖,𝑡

𝑈  𝑦𝑗,𝑖,𝑡  ∀  (𝑗, 𝑖), 𝑡                                                                                        (2.3) 

�̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥𝑚,𝑡 ≤ �̅�𝑚,𝑡

𝑈  𝑦𝑚,𝑡  ∀  𝑚 ∉ 𝑀𝑇𝐾, 𝑡                                                                                (2.4) 
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𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥ℎ𝑚,𝑡 ≤ 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈  𝑦𝑚,𝑡  ∀  𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                                                                        (2.5) 

If the binary variable 𝑦𝑚,𝑡 of the unit-operation 𝑚 at the time period 𝑡 is active, Equations 

(2.6) to (2.9) bound (𝑥𝑚,𝑡
𝐿  and 𝑥𝑚,𝑡

𝑈 ) the summation of the quantity-flows (arrows 𝑥𝑗,𝑖,𝑡) 

incoming to or outgoing from its port-states. Thus, Equations (2.6) and (2.7) impose 

bounds for the sum of the 𝑥𝑗,𝑖,𝑡 quantity-flows outgoing from the out-port-states j of 𝑚𝑢𝑝 

(unit upstream of 𝑚) and incoming to the in-port-states 𝑖 of 𝑚. Similarly, Equations 

(2.8) and (2.9) impose bounds for the sum of the 𝑥𝑗,𝑖,𝑡 quantity-flows outgoing from the 

out-port-states j of m and incoming to the in-port-states 𝑖 of 𝑚𝑑𝑜 (unit downstream of 

𝑚). 

∑ 𝑥𝑗,𝑖,𝑡

𝑗

≥ �̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡   ∀ (𝑖, 𝑚, 𝑡)                                                                                                       (2.6) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗

≤ �̅�𝑚,𝑡
𝑈  𝑦𝑚,𝑡    ∀ (𝑖, 𝑚, 𝑡)                                                                                                      (2.7) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖

≥ �̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡    ∀ (𝑚, 𝑗, 𝑡)                                                                                                      (2.8) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖

≤ �̅�𝑚,𝑡
𝑈  𝑦𝑚,𝑡    ∀ (𝑚, 𝑗, 𝑡)                                                                                                      (2.9) 

Equations (2.10) to (2.13) define bounds on yields, which can be inverse/input (𝑟𝑖,𝑡
𝐿  and 

𝑟𝑖,𝑡
𝑈 ) and direct/output (𝑟𝑗,𝑡

𝐿  and 𝑟𝑗,𝑡
𝑈 ) since the unit-operations 𝑚 (𝑚 ∉ 𝑀𝑇𝐾) allow multiple 

streams incoming to or outgoing from their independent connected ports. It is worth 

noting that in industrial operations, tanks typically have only one active inlet flow and 

only one active outlet flow (i.e., tank do not have more than one inlet flow or more than 

one outlet flow simultaneously). Equations (2.10) and (2.11) define bounds of inverse 

yields (𝑟𝑖,𝑡
𝐿  and 𝑟𝑖,𝑡

𝑈 ) while (2.12) and (2.13) define bounds of direct yields (𝑟𝑗,𝑡
𝐿  and 𝑟𝑗,𝑡

𝑈 ) 

for the unit-operation throughputs 𝑥𝑚,𝑡 of unit-operations 𝑚 ∉ 𝑀𝑇𝐾.  

∑ 𝑥𝑗,𝑖,𝑡

𝑗

≥ 𝑟𝑖,𝑡
𝐿  𝑥𝑚,𝑡    ∀ (𝑖, 𝑡), 𝑚 ∉ 𝑀𝑇𝐾                                                                                        (2.10) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗

≤ 𝑟𝑖,𝑡
𝑈  𝑥𝑚,𝑡    ∀ (𝑖, 𝑡), 𝑚 ∉ 𝑀𝑇𝐾                                                                                        (2.11) 
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∑ 𝑥𝑗,𝑖,𝑡

𝑖

≥ 𝑟𝑗,𝑡
𝐿  𝑥𝑚,𝑡   ∀ (𝑗, 𝑡), 𝑚 ∉ 𝑀𝑇𝐾                                                                                          (2.12) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖

≤ 𝑟𝑗,𝑡
𝑈  𝑥𝑚,𝑡   ∀ (𝑗, 𝑡), 𝑚 ∉ 𝑀𝑇𝐾                                                                                          (2.13) 

Equations (2.14) represents the material balance required to calculate the inventory or 

holdup 𝑥ℎ𝑚,𝑡 of storage and feed tanks m ∈ 𝑀𝑇𝐾. The current holdup amount 𝑥ℎ𝑚,𝑡 is 

the remaining amount of material in the past time period plus the amount of material 

incoming to the tank (upstream connections 𝑗𝑢𝑝) minus the outgoing material 

(downstream connections 𝑖𝑑𝑜).  

𝑥ℎ𝑚,𝑡 = 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

 − ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

 ∀ (𝑖, 𝑗, 𝑡), m ∈ 𝑀𝑇𝐾                                            (2.14) 

The material balances to impose no accumulation of material in continuous-processes 

are defined in Equation (2.15) for the unit-operation 𝑚 ∉ 𝑀𝑇𝐾. 

∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

= ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

  ∀ (𝑖, 𝑗, 𝑡), m ∉ 𝑀𝑇𝐾                                                                               (2.15) 

Equation (2.16) defines the non-negative continuous variables 𝑥𝑚,𝑡, 𝑥𝑗,𝑖,𝑡, and 𝑥ℎ𝑚,𝑡, 

and Equation (2.17) defines the binary variables 𝑦𝑗,𝑖,𝑡, 𝑦𝑚,𝑡. 

𝑥𝑚,𝑡, 𝑥𝑗,𝑖,𝑡, 𝑥ℎ𝑚,𝑡 ≥ 0                                                                                                                         (2.16) 

𝑦𝑗,𝑖,𝑡, 𝑦𝑚,𝑡 = {0,1}                                                                                                                              (2.17) 

2.1 Logistics Problem: MILP Refinery Scheduling  

The logistics problem includes Equations (2.1) to (2.17) previously shown in the 

UOPSS flowsheet formulation, in addition to Equations (2.18) to (2.35), which involve: 

a) constraints of structural transitions and selection of operating modes b) temporal 

transitions of unit-operations in sequence-dependent cycles; c) sharing of objects 

(units, ports, etc.) in multi-use constraints; d) operational time or uptime and zero 

downtime of units; and e) fill-draw delay, fill-to-full, and draw-to-empty operations for 

tanks. 
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The structural transition constraint Equation (2.18) coordinates setups of connected 

unit-operations between the out-port-state 𝑗𝑢𝑝 of 𝑚𝑢𝑝 and the in-port-state 𝑖 of 𝑚. If the 

binary variables of the unit-operations 𝑚𝑢𝑝 and 𝑚 are active (i.e., if the units are in 

operation), then the binary variable 𝑦𝑗,𝑖,𝑡 related to the stream connecting them must 

be active (i.e., there might be a flow between them). However, if at least one of the 

units is not operating (binary not active and hence, equal to zero), there cannot be a 

material flow connecting these units. This logic valid cut, forming a group of 4 objects 

(𝑚𝑢𝑝, 𝑗𝑢𝑝, 𝑖, 𝑚), reduces the search in branch-and-bound methods.  

𝑦𝑚𝑢𝑝,𝑡 + 𝑦𝑚,𝑡 ≥ 2𝑦𝑗𝑢𝑝 ,𝑖,𝑡  ∀ (𝑚𝑢𝑝, 𝑗𝑢𝑝, 𝑖, 𝑚, 𝑡)                                                                            (2.18) 

Equation (2.19) ensures that at most one operational mode, procedure, or task 𝑦𝑚,𝑡 is 

simultaneously allowed for each physical unit 𝑚 at each time period 𝑡. 

∑ 𝑦𝑚,𝑡

𝑚

≤ 1  ∀ 𝑡                                                                                                                                (2.19) 

The temporal transition constraints represented by Equations (2.20) to (2.22) 

coordinate the operation of the semi-continuous blender units. The binary variable 𝑦𝑚,𝑡 

manages the variables related to the start-up (𝑧𝑠𝑢𝑚,𝑡), shut-down (𝑧𝑠𝑑𝑚,𝑡), and switch-

over-to-itself (𝑧𝑠𝑤𝑚,𝑡) operations, which are respectively associated with starting, 

shutting down, or changing the operational mode of a unit-operation. These three 

variables are relaxed in the interval [0,1] instead of being considered as logic variables, 

but Equation (2.22) ensures their integrality. 

𝑦𝑚,𝑡 − 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 = 0  ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                               (2.20) 

𝑦𝑚,𝑡 + 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 − 𝑧𝑠𝑑𝑚,𝑡  − 2𝑧𝑠𝑤𝑚,𝑡 = 0    ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                       (2.21) 

𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 + 𝑧𝑠𝑤𝑚,𝑡 ≤ 1  ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                                           (2.22) 

Equations (2.23) and (2.24) are multi-use procedure constraints, in which downstream 

in-port-states 𝑖𝑑𝑜 connected to the out-port-states (𝑗 ∈ 𝐽𝑈𝑆𝐸) are limited by lower and 

upper bounds 𝑈𝑆𝐸𝑗,𝑡
𝐿  and 𝑈𝑆𝐸𝑗,𝑡

𝑈 . This is helpful to avoid simultaneous drawing 

operations from blenders 𝑚 ∈ 𝑀𝐵𝐿 to their downstream tanks. Similarly, (2.25) and 

(2.26) impose bounds 𝑈𝑆𝐸𝑖,𝑡
𝐿  and 𝑈𝑆𝐸𝑖,𝑡

𝑈  for the upstream out-port-states 𝑗𝑢𝑝 connected 
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to the in-port-states (𝑖 ∈ 𝐼𝑈𝑆𝐸). That is helpful to control the maximum number of 

simultaneous filling operations to downstream units such as CDUs (𝑚 ∈ 𝑀𝐶𝐷𝑈). 

∑ 𝑦𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

≥ 𝑈𝑆𝐸𝑗,𝑡
𝐿  𝑦𝑚,𝑡  ∀ 𝑗 ∈ 𝐽𝑈𝑆𝐸 , ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                                   (2.23) 

∑ 𝑦𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

≤ 𝑈𝑆𝐸𝑗,𝑡
𝑈  𝑦𝑚,𝑡 ∀ 𝑗 ∈ 𝐽𝑈𝑆𝐸 , ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                                    (2.24) 

∑ 𝑦𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝

≥ 𝑈𝑆𝐸𝑖,𝑡
𝐿  𝑦𝑚,𝑡  ∀ 𝑖 ∈ 𝐼𝑈𝑆𝐸 , ∀ ∈ 𝑀𝐶𝐷𝑈 , 𝑡                                                                     (2.25) 

∑ 𝑦𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝

≤ 𝑈𝑆𝐸𝑖,𝑡
𝑈  𝑦𝑚,𝑡∀ 𝑖 ∈ 𝐼𝑈𝑆𝐸 , ∀ ∈ 𝑀𝐶𝐷𝑈 , 𝑡                                                                       (2.26) 

Equations (2.27) and (2.28) model the uptime or run-length constraints in which 𝑈𝑃𝑇𝐿 

and 𝑈𝑃𝑇𝑈 are the respective lower and upper bounds of time, 𝑡𝑒𝑛𝑑 is the time horizon 

length, and ∆t is the time step. Equation (2.29) models the unit-operation uptime 

temporal aggregation cut in which 𝑛𝑝 is the number of periods. Additional details on 

Equations (2.27) to (2.29) can be found in Kelly and Zyngier (2007) and Zyngier and 

Kelly (2009). Equation (2.30) is the zero-downtime constraint for the CDU to select at 

least one mode of operation 𝑚 to be continuously operating. 

∑ 𝑧𝑠𝑢𝑚,𝑡−𝑡𝑡|𝑡−𝑡𝑡≥𝑁𝑇𝑃

𝑈𝑃𝑇𝐿−1

𝑡𝑡=1

≤ 𝑦𝑚,𝑡 ∀ m, 𝑡 > 1                                                                             (2.27) 

∑ 𝑦𝑚,𝑡

𝑈𝑃𝑇𝑈

∆𝑡

𝑡𝑡=𝑡

≤
𝑈𝑃𝑇𝑈

∆𝑡
 ∀ 𝑚, (𝑡 < 𝑡𝑒𝑛𝑑 − 𝑈𝑃𝑇𝑈)                                                                             (2.28) 

∆𝑡 ∑ 𝑧𝑠𝑢𝑚,𝑡

𝑡

≤ 𝑛𝑝 ∀ 𝑚 ∈ 𝑀𝐵𝐿                                                                                                      (2.29) 

∑ 𝑦𝑚,𝑡

𝑚

≥ 1    ∀ (m, 𝑡)                                                                                                                     (2.30) 

Equations (2.31) and (2.32) manage the minimum (∆𝐷𝑚𝑖𝑛) and maximum (∆𝐷𝑚𝑎𝑥) time 

between the latest filling and the following drawing operations, referred to as the fill-
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draw delay, for the upstream 𝑗𝑢𝑝 and downstream 𝑖𝑑𝑜 connections of the tank m𝑀𝑇𝐾. 

Additional details can be found in Zyngier and Kelly (2009).  

𝑦𝑚,𝑗𝑢𝑝,𝑖,𝑡 + 𝑦𝑚,𝑗,𝑖𝑑𝑜,𝑡+𝑡𝑡 ≤ 1  ∀ (𝑗𝑢𝑝, 𝑖, 𝑗, 𝑖𝑑𝑜), m𝑀𝑇𝐾 , 𝑡𝑡 = 0. . ∆𝐷𝑚𝑖𝑛,  

𝑡 = 1. . 𝑡, 𝑡 + 𝑡𝑡 < 𝑡𝑒𝑛𝑑      (2.31) 

𝑦𝑚,𝑗𝑢𝑝,𝑖,𝑡−1 − 𝑦𝑚,𝑗𝑢𝑝,𝑖,𝑡 − ∑ 𝑦𝑚,𝑗,𝑖𝑑𝑜,𝑡−1

∆𝐷𝑚𝑎𝑥

𝑡𝑡=1

≤ 0 ∀ (𝑗𝑢𝑝, 𝑖, 𝑗, 𝑖𝑑𝑜), m𝑀𝑇𝐾,  

𝑡 = 1. . 𝑡 − ∆𝐷𝑚𝑎𝑥 , 𝑡 + 𝑡𝑡 < 𝑡𝑒𝑛𝑑      (2.32) 

Equations (2.33) to (2.36) represent the remaining constrains involving tanks, namely, 

the fill-to-full and draw-to-empty operations. They add the logic variable 𝑦𝑑𝑚,𝑡, related 

to the filling and drawing operations, which is active (equal to one) for drawing 

operations and not active (equal to zero) for filling operations, avoiding the use of two 

distinct logic variables. The coefficients 𝑥ℎ𝑚,𝑡
𝐹𝑈𝐿𝐿  and 𝑥ℎ𝑚,𝑡

𝐸𝑀𝑃𝑇𝑌 are, respectively, the fill-

to-full and draw-to-empty inventories to ensure the tank to be filled or drawn at least to 

their respective values. Hence, the filling operation of a tank must be carried out until 

the tank reaches a minimum inventory 𝑥ℎ̅̅ ̅ 𝑚,𝑡
𝐹𝑈𝐿𝐿, and the drawing operations must be 

carried out until the tank reaches a maximum inventory 𝑥ℎ̅̅ ̅
 𝑚,𝑡
 𝐸𝑀𝑃𝑇𝑌. That is helpful to 

reduce the number of operations involving tanks (i.e., for improved industrial 

operations, it is beneficial to perform fewer operations in larger amount rather than 

multiple operations in smaller amount). 

𝑦𝑗𝑢𝑝,𝑖,𝑡 + 𝑦𝑑𝑚,𝑡 ≤ 1  ∀ (𝑗𝑢𝑝, 𝑖, 𝑚) for 𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                                                                      (2.33) 

𝑦𝑗,𝑖𝑑𝑜,𝑡 ≤ 𝑦𝑑𝑚,𝑡  ∀ (𝑚, 𝑗, 𝑖𝑑𝑜) for 𝑚 ∈ 𝑀𝑇𝐾, 𝑡                                                                              (2.34) 

𝑥ℎ𝑚,𝑡 − 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 ( 𝑦𝑑𝑚,𝑡 − 𝑦𝑑𝑚,𝑡−1) + (𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 − 𝑥ℎ𝑚,𝑡

𝐹𝑈𝐿𝐿) ≥ 0  ∀ 𝑚 ∈ 𝑀𝑇𝐾, 𝑡                       (2.35) 

𝑥ℎ𝑚,𝑡 + 𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 ( 𝑦𝑑𝑚,𝑡−1 − 𝑦𝑑𝑚,𝑡) − (𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 + 𝑥ℎ𝑚,𝑡

𝐸𝑀𝑃𝑇𝑌) ≤ 0  ∀ 𝑚 ∈ 𝑀𝑇𝐾, 𝑡                    (2.36) 
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2.2 Quality Problem: NLP Refinery Scheduling 

The quality problem includes Equations (2.1) to (2.17) from the UOPSS flowsheet 

formulation (all binary variables are fixed), Equations (2.37) to (2.42) for the blending 

or pooling constraints, and Equations (2.43) to (2.45) for the transformations from 

crude oil components 𝑐 to amounts and properties of product distillates in fractionators 

(see Kelly and Zyngier (2017) for additional details on the fractionation equations with 

renderings).  

Considering 𝑝 as property (component concentration, specific gravity, sulfur content, 

etc.) in which 𝑣 and 𝑤 are the volume- and weight-based properties, respectively, 

Equation (2.37) defines the volume-based properties (𝑝 ∈ 𝑃𝑣) as components (crude 

oil compositions) and density (specific gravity) in the in-port-states 𝑖 (or mixer) for 𝑖 ∉

𝐼𝑇𝐾. Similarly, Equation (2.38) defines the mass-based properties (𝑝 ∈ 𝑃𝑤) such as 

sulfur concentration, whereby 𝑣𝑗𝑢𝑝,𝑝=𝑠𝑔,𝑡 is the density (𝑝 = 𝑠𝑔) of the upstream flow 

from the out-port-states 𝑗𝑢𝑝 incoming to the in-port-state 𝑖. For the sake of simplicity, 

the subsets in the summations involving the in-port-states 𝑖 in Equations (2.37) and 

(2.38) are omitted, since this is valid for all 𝑖 ∉ 𝐼𝑇𝐾, by which 𝑗𝑢𝑝 represents upstream 

out-port-states of the connected unit-operations 𝑚𝑢𝑝. 

𝑣𝑖,𝑝,𝑡 ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

= ∑ 𝑣𝑗𝑢𝑝 ,𝑝,𝑡𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  ∀ (𝑖, 𝑡) ∉ 𝐼𝑇𝐾, 𝑝 ∈ 𝑃𝑣                                                       (2.37) 

𝑤𝑖,𝑝,𝑡 ∑ 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

= ∑ 𝑤𝑗𝑢𝑝 ,𝑝,𝑡 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  ∀ (𝑖, 𝑡) ∉ 𝐼𝑇𝐾, 𝑝 ∈ 𝑃𝑤            (2.38) 

Equations (2.39) and (2.40) represent the quality balances for volume- and mass-

based properties in tanks. The subsets in the summations involving the in-port-states 

𝑖 and out-port-states 𝑗 in Equations (2.39) and (2.40) are also omitted, since this is 

valid for all (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾, by which 𝑗𝑢𝑝 represents the upstream out-port-states of the 

connected unit-operations 𝑚𝑢𝑝 arriving in the sole in-port-state 𝑖 ∈ 𝐼𝑇𝐾, and 𝑖𝑑𝑜 

represents the downstream in-port-states of the connected unit-operations 𝑚𝑑𝑜 

outgoing from the sole out-port-state 𝑗 ∈ 𝐽𝑇𝐾. The quality variable for the out-port-states 

of a tank unit-operation (𝑚 ∈ 𝑀𝑇𝐾) is the quality of the blend within the tank, as defined 

by Equations (2.41) and (2.42). 
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𝑣𝑚,𝑝,𝑡 𝑥ℎ𝑚,𝑡 = 𝑣𝑚,𝑝,𝑡−1 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑣𝑗𝑢𝑝,𝑝,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

 − 𝑣𝑚,𝑝,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

  

∀ (𝑖, 𝑚, 𝑗, 𝑡) ∈ 𝑀𝑇𝐾 , 𝑝 ∈ 𝑃𝑣                                 (2.39) 

𝑤𝑚,𝑝,𝑡 𝑣𝑚,𝑝=𝑠𝑔,𝑡 𝑥ℎ𝑚,𝑡

= 𝑤𝑚,𝑝,𝑡−1 𝑣𝑚,𝑝=𝑠𝑔,𝑡−1 𝑥ℎ𝑚,𝑡−1 +  ∑ 𝑤𝑗𝑢𝑝,𝑝,𝑡 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  

− 𝑤𝑚,𝑝,𝑡 𝑣𝑚,𝑝=𝑠𝑔,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

 ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾, 𝑝 ∈ 𝑃𝑤 , 𝑡                           (2.40) 

𝑣𝑗,𝑝,𝑡  = 𝑣𝑚,𝑝,𝑡  ∀ (𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑝 ∈ 𝑃𝑣, 𝑡                                                                                     (2.41) 

𝑤𝑗,𝑝,𝑡  = 𝑤𝑚,𝑝,𝑡  ∀ (𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑝 ∈ 𝑃𝑤, 𝑡                                                                                  (2.42) 

For distillation unit operations, Equation (2.43) converts the CDU throughputs 

(∑ 𝑥𝑗𝑢𝑝,𝑖𝐶𝐷𝑈,𝑡𝑗𝑢𝑝
) in the 𝑖𝐶𝐷𝑈 inlet into amounts or yields of distillates (∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡𝑖𝑑𝑜

) 

outgoing from the CDU out-port-states 𝑗 ∈ 𝐽𝐷𝐼𝑆𝑇 to the connected downstream in-port-

states 𝑖𝑑𝑜. Equations (2.44) and (2.45) calculate, respectively, the volume- and weight-

based properties for 𝐽𝐷𝐼𝑆𝑇 considering each crude oil component 𝑐 in the crude oil assay 

with respect to their defined cuts (defined as 𝑐𝑢𝑡). The renderings for yields and 

properties are 𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

 and 𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

 and the upper script 𝑠𝑔 stands for specific gravity. 

The subsets in the summations are omitted for the sake of simplicity. 

∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

= ∑ 𝑥𝑗𝑢𝑝 ,𝑖𝐶𝐷𝑈,𝑡

𝑗𝑢𝑝

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑐𝑢𝑡𝑐

 ∀ 𝑗 ∈ 𝐽𝐷𝐼𝑆𝑇 , 𝑡                                      (2.43) 

𝑣𝑗,𝑝,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

= ∑ 𝑥𝑗𝑢𝑝,𝑖𝐶𝐷𝑈,𝑡

𝑗𝑢𝑝

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

𝑐𝑢𝑡𝑐

 ∀ 𝑗 ∈ 𝐽𝐷𝐼𝑆𝑇 , 𝑡              (2.44) 

𝑣𝑗,𝑝=𝑠𝑔,𝑡𝑤𝑗,𝑝,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

= ∑ 𝑥𝑗𝑢𝑝 ,𝑖𝐶𝐷𝑈,𝑡

𝑗𝑢𝑝

∑ ∑ 𝑣𝑖𝐶𝐷𝑈,𝑝=𝑐,𝑡𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑦𝑖𝑒

𝑐𝑢𝑡

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝=𝑠𝑔

𝑟𝑒𝑗,𝑐,𝑐𝑢𝑡
𝑝

𝑐

 ∀𝑗

∈ 𝐽𝐷𝐼𝑆𝑇 , 𝑡                                                                                                                   (2.45) 
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2.3 Linear Approximation of Blending Equations: MILP Factor Blending 

To improve the accuracy of the MILP formulation and optimization, we utilize an 

approximation strategy in which non-convex NLP blending constraints are formulated 

as LP quantity-quality balances of streams using factors for qualities (KELLY, 

MENEZES, and GROSSMANN, 2018). The extended quality amount of the property 𝑝 

is considered in the constraint as an in-out quantity and quality product or factors 𝑓 

multiplied by volume flows 𝑥 around the blender unit-operations. To close the quantity-

quality balance in the blender, the factor-flows 𝑥𝑗𝐹,𝑝,𝑡 outgoing from the slack or surplus 

out-port-states 𝑗𝐹 (oa_sg, oa_sul) in Figure 2.2 are considered in the proposed factor-

flow balance in Equation (2.46) for the specific gravity and sulfur content properties. 

∑ 𝑓𝑖,𝑝,𝑡 ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝∈𝐽𝑆𝑇𝑖∈𝐼𝐵𝐿

= 𝑓𝑗,𝑝,𝑡  ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜∈𝐼𝐹𝑇

+ 𝑥𝑗𝐹,𝑝,𝑡   ∀ 𝑗, 𝑗𝐹, 𝑝, 𝑡                                      (2.46) 

In the proposed LP approximation to be included in the MILP formulation, for each 

property 𝑝 considered to be calculated in the blender 𝑚 ∈ 𝑀𝐵𝐿, amounts of raw 

materials ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡𝑗𝑢𝑝
 incoming to multiple in-port-states 𝑖 with factors for qualities 𝑓𝑖,𝑝,𝑡, 

in the left side of Equation (2.46) counterbalance the total amount ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡𝑖𝑑𝑜
 of the 

blended material factor or property specification 𝑓𝑗,𝑝,𝑡 added to slacks or surpluses of 

the factor-flow variables 𝑥𝑗𝐹 ,𝑝,𝑡, in the right side of Equation (2.46). From the summation 

∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡𝑖𝑑𝑜
 in Equation (2.46), although there are diverse outlet ports for the blended 

material, operationally there is only one simultaneous outlet stream from the blender. 

The factor in 𝑗𝐹is considered as unitary. Therefore, the value of the slack or surplus 

factor-flows 𝑥𝑗𝐹,𝑝,𝑡 represents the insufficient or exceeded amount of qualities for the 

LP factor flow of each respective property 𝑝.  

The factor-flow variable 𝑥𝑗𝐹,𝑝,𝑡 closes the balance in Equation (2.46) considering the 

blended material amounts and the product factor 𝑓𝑗,𝑝,𝑡. For an upper bound of property 

specification, a slack or negative value is needed, so that 𝑥𝑗𝐹,𝑝,𝑡 ≤ 0. Similarly, for a 

lower bound, a positive factor-flow or surplus (𝑥𝑗𝐹 ,𝑝,𝑡 ≥ 0) applies. Also, as 

transformation from property to property index may change the signal of the number, 

to avoid infeasibilities, the factor-flow is modeled as 𝑥𝑗𝐹,𝑝,𝑡 ≤ 0 and 𝑥𝑗𝐹,𝑝,𝑡 ≥ 0 for 

property indices.  
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Figure 2.2: Blend scheduling problem network including the factors approximation. 

 

Source: Author (2021). 

2.4 References 

KELLY, J. D. The Unit-Operation-Stock Superstructure (UOSS) and the Quantity-

Logic-Quality Paradigm (QLQP) for Production Scheduling in The Process Industries. 

In Multidisciplinary International Scheduling Conference Proceedings:  New York, 

United States, p. 327-333, 2005. 

KELLY, J. D.; MENEZES, B. C.; GROSSMANN, I. E. Successive LP approximation for 

non-convex blending in milp scheduling optimization using factors for qualities in the 

process industry. Industrial & Engineering Chemistry Research, v. 57, n. 32, p. 11076-

11093, 2018. 

KELLY, J. D.; ZYNGIER, D. An Improved MILP Modeling of Sequence-Dependent 

Switchovers for Discrete-Time Scheduling Problems. Industrial & Engineering 

Chemistry Research, v. 46, p. 4964, 2007. 

KELLY, J. D.; ZYNGIER, D. Unit-operation Nonlinear Modeling for Planning and 

Scheduling Applications. Optimization and Engineering, v. 18, n. 1, p. 133–154, 2017. 



89 
 

 

ZYNGIER, D., KELLY, J. D. Multi-product inventory logistics modeling in the process 

industries. In: Wanpracha Chaovalitwongse, Kevin C. Furman, Panos M. Pardalos 

(Eds.) Optimization and logistics challenges in the enterprise. Springer optimization 

and its applications, p. 61-95, 2009. 



90 
 

3                             
Refinery Scheduling: Modeling, Configuration, and Optimization 
 

In this chapter we present a generic overview on the modeling and configuration 

(Section 3.1), and optimization (Section 3.2) procedures used herein to address the 

refinery scheduling problems, including the software, tools, and packages employed.  

3.1 Refinery Scheduling: Modeling and Configuration 

After defining the mathematical formulation (Chapter 2), it has to be properly written 

and built within a modeling platform or software. The modeling platform used to 

address the refinery scheduling problems proposed in this work is the Industrial 

Modeling & Programming Language (IMPL), from Industrial Algorithms Limited, which 

had been previously applied by Kelly et al. (2017b) to solve a highly complex industrial-

scale production scheduling problem.  

There are several features in IMPL that provide the support required to handle complex 

large-scale applications, including the specific formulation for modeling logistics and 

quality processes using the UOPSS superstructure, the Sequential Linear 

Programming (SLP) technology, the calculation of derivatives using complex numbers 

and groups of variables with the same dispersion pattern in the matrix, and the use of 

Reverse Polish notation. 

The modeling and configuration procedures in IMPL can be divided in two main steps 

related to designing and creating the problem superstructure, and coding the 

formulation within IMPL’s specific language. 

3.1.1 Superstructure 

The first step concerns designing and creating the superstructure to be used in the 

modeling. The superstructure is built based on the UOPSS formulation, and in a proper 

format which can be read and understood by IMPL. This is required because the 

information contained in the superstructure (e.g., units, flows, conditions, etc.) is a 
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fundamental part of the formulation, and that information is later converted into a 

programming language code which can be read and understood by IMPL as well. 

The superstructure is created and designed by using the software DIA Diagram Editor 

version 0.97.2 (originally developed by Alexander Larsson for the GNOME desktop 

environment, under general public license). Figure 3.1 presents the blend scheduling 

problem network as an illustrative example of a superstructure built in the DIA software. 

Figure 3.1: Blend scheduling problem network. 

 

Source: Author (2021). 

The superstructure presented in Figure 3.1 is composed of five distinct types of 

components, including triangles (S1, S2, and S3) to represent tanks, diamonds (D1 

and D2) for sources of feedstocks or sinks of products, crossed rectangles (BLENDER 

and CDU) for continuous process units such as blenders and distillation units, and 

crossed and blank circles to represent outlet flows and inlet flows, respectively, which 

are a fundamental part of the UOPSS formulation to establish the material flows 

throughout the process. These circles are respectively referred to as out-ports and in-

ports, and must be included after unit-operations that have outlet flows (e.g., sources, 

tanks, units) and before unit-operations that have inlet flows (e.g., sinks, tanks, units). 

Therefore, the inlet and outlet ports are used to establish the material balances 

throughout the network. 
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The superstructure contains essential information to be used within IMPL to build the 

mathematical model for a given problem, which is first converted from superstructure-

based to code-based information, and is later read by IMPL to build the equation-

oriented mathematical formulation. 

3.1.2 Coding 

The information from the superstructure is part of the coding required for the modeling, 

configuration, and optimization of a given problem in IMPL. The remaining information 

concerns establishing the process parameters and variables with their respective lower 

and upper bounds, modeling the flows, inventories, and capacities of pools, tanks, and 

other unit-operations, defining quality specifications for (intermediate and final) 

streams, products, and units, including additional information on the crude oil assay 

and market prices, defining the objective function and other problem-specific 

constraints, as well as including specific equations of the UOPSS-oriented formulation. 

The coding is software-specific, i.e., it must be written in a proper language to be read 

and understood by IMPL, similarly to any programming languages such as Python and 

C++, or to other optimization tools/software such as Pyomo or GAMS. The problem to 

be modeled and optimized can be coded using either industrial modeling language 

(IML), which directly utilizes the intrinsic configuration of IMPL in a mixture of coding 

and configuration, or industrial programming language (IPL), in which a third-part 

language (e.g., Python or Fortran) or software (e.g., Excel or MATLAB) is employed 

as the main coding platform and interface, and which access IMPL to build the 

mathematical model and to solve the optimization problem. While the IML language is 

more focused on the end-user and hence, is more limited in terms of complexity and 

programming flexibility, the IPL language is more complex and robust, and provides 

the resources required for a high level programming approach. 

The IML language does not provide an interface for the user, so that the text editing 

software Notepad++ version 7.5.6 (developed by Don Ho, under general public 

license) is environment used. Figure 3.2 presents a generic piece of code built using 

the IML language in Notepad++. This simplified piece of code consists of defining some 

parameters, reading the information from the superstructure (which was previously 

stored in another file), and utilizing IMPL-based functions to build the required 
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constraints for the problem. In general, there is no need of defining the variables, 

specifying whether they are logic or continuous, or creating the material balances 

throughout the flowsheet. This information is automatically and implicitly generated by 

IMPL based on the configuration of the problem, mostly obtained from the 

superstructure. Therefore, there is no need to explicitly write the equations and 

constraints that rule a given problem.   

Figure 3.2: Problem coded in the IML language using Notepad++. 

 

Source: Author (2021). 

In the code shown in Figure 3.2, line 9 opens an IMPL function to include parameters, 

which is closed at line 14. Between them, in lines 10 to 13, the parameters are included 

by the user. Lines 20 to 22 are used to add information concerning the time horizon, in 

which the problem is modeled from day 0 to day 5 with time intervals of 8 hours. Lines 
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28 to 30 read a file containing information related to the superstructure, which was 

previously and automatically built by IMPL from the superstructure shown in Figure 

3.1, which establishes the material flows throughout the process. Lines 36 to 39 impose 

lower and upper bounds for flows in continuous blenders units and lines 40 to 45 

impose lower and upper bounds for inventories of tanks. This is a simplified piece of 

code built for the problem shown in Figure 3.1 to clarify and exemplify the coding and 

configuration set up when using the industrial and modeling language within IMPL. The 

remaining of the problem is similarly configured. 

A more sophisticated coding procedure utilizes the so called industrial programming 

language, in which a third-part language or software is employed as the coding and/or 

development interface. In this work, the software Visual Studio 2015 (Microsoft, USA) 

is used for that purpose, which consists of an integrated development environment that 

supports several programming languages. The main advantages of the IPL language 

are the possibility of coding designing and automation, performance improvement, 

development of additional functions and equations, integration with other software and 

platforms, etc. Hence, several interesting and useful features can be used within the 

IPL language, including the possibility of developing complex and systematic 

algorithms and frameworks, performing sequential optimizations of multiple instances 

of the same problem, which is especially useful to handle nonlinearities and non-

convexities of highly nonlinear and non-convex models by multiple optimizations with 

randomized variable initialization, importing data from and exporting results to other 

software, etc. Although the coding automation typically requires higher effort, it 

provides several benefits in terms of coding performance and flexibility, time savings 

in the long-term, and the possibility of implementing programming strategies and 

features. Figure 3.3 presents a piece of an optimization code written in Python 3 as 

programming language and implemented in the Visual Studio 2015 software. 
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Figure 3.3: IPL code written in Python and implemented in Visual Studio 2015. 

 

Source: Author (2021). 

Using the IPL language provides the programming support required for the 

development of advanced and systematic algorithms and frameworks, which are 

essential to handle complex problems and formulations. In Figure 3.3, a strategy 

involving loops is employed to perform sequential and automatic optimizations, which 

encompasses lines 41 to 74. More specifically, line 43 reads a secondary file 

containing information on the problem; lines 49 to 56 specify intern parameters of 

IMPL, mostly related to the type of problem, solver to be used in the optimization, etc.; 

lines 58 to 60 call the internal modeling routine of IMPL (i.e., these are the commands 

for IMPL to build the mathematical model); line 66 calls the optimization routine (i.e., 

IMPL calls the specified commercial solver, such as CPLEX and GUROBI, to optimize 

the mathematical model previously built); and line 72 export the results for a new file. 

In summary, using the IML language is simpler and easier to implement, which is 

typically a good option to learn how to use the IMPL software for modeling and 

optimization purposes, building illustrative and small-scale cases, performing initial 

tests, etc. On the other hand, the IPL language requires more complex and 

sophisticated coding, as well as a software or platform for development and interfacing, 
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but provides several advantages for an improved coding and for the development of 

algorithms and frameworks. Hence, the IPL language is mostly used for the modeling 

and optimization applications addressed herein. It is also worth mentioning that when 

optimizing a model written either in the IML or IPL languages, the exact same solutions 

are expected to be found. 

3.1.3 Crude oil assay data 

Crude oil refinery operations require knowledge on the crude oil information, especially 

regarding the quantities (yields) and qualities (properties). This information is highly 

important for improved industrial operations to provide a better accuracy in the 

estimations and calculations in planning, scheduling, and control environments, among 

others.  

The characterization of crude oils is typically carried out through rigorous experimental 

analysis (the TBP curve is the most common) in order to accurately estimate the 

properties of each component. This is required because when the crude oil is 

fractionated in the distillation unit, there are distinct qualities for each fraction, so that 

the crude characterization is fundamental to properly estimate information such as 

yields and properties of the raw crudes, crude blends, and intermediate and final 

products (MENEZES et al., 2013). In fact, tracking crude information throughout the 

network is not trivial and represents a very challenging an important role in the refinery 

operations.  

However, there are economic and technical limitations and difficulties in carrying out 

this type of analysis, mostly because the relatively large temperature ranges required 

to collect the samples. Therefore, alternative tools have been increasingly used to 

obtain or estimate the crude oil assay data. Menezes et al. (2013) used the software 

for rigorous simulation PetroSIM version 4.1 (KBC Advanced Technologies, England) 

to estimate the properties of crude oil fractions divided in small temperature ranges of 

10 °C, referred to as cutpoints. The data containing the yields and properties of each 

cut (i.e., fraction of crude oil) is referred to as the crude oil assay. Figure 3.4 presents 

an example of a crude oil assay with crude fractions divided in 10 °C, and shows how 

the yield, specific gravity, and sulfur content vary with the TBP temperature. 
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Figure 3.4: Graphical crude oil assay containing the yields, specific gravity, and sulfur 

content variables over the temperature. 

 

Source: Adapted from Menezes et al. (2013). 

In the modeling and optimization of the refinery problems addressed herein, a data set 

containing 28 distinct crude oils is used. A simplified version of this data set is 

presented in Table 3.1. The full crude oil assay data set contains additional information 

regarding the yields, specific gravity, and sulfur content of each fraction of crude oil 

divided in micro cuts or ranges. This full crude assay data was generated by the 

rigorous simulator PetroSIM in Menezes et al. (2013). 

 

 

 

 

 

 

 



98 
 

Table 3.1: Crude oil assay data. 

Crude oil index Crude oil name ° API 
Specific 

gravity (g/cm3) 

Sulfur content 

(% mass-based) 

CO1 (light – medium) RONCADOR52 27.58 0.8894 0.5025 

CO2 (heavy) MARLIM35 20.79 0.9291 0.6077 

CO3 (medium – heavy) PCONCHAS 22.93 0.9162 0.2310 

CO4 (light – medium) LULA 29.90 0.8766 0.3443 

CO5 (extra light) AGBAMI 45.59 0.7990 0.0487 

CO6 (medium – heavy) BARRACUDA 25.48 0.9014 0.5188 

CO7 (light) BRENT 36.58 0.8418 0.3878 

CO8 (heavy) PBALEIAS 20.57 0.9304 0.4303 

CO9 (extra light) SAHARAN 43.82 0.8070 0.0711 

CO10 (heavy) RONCADOR54 17.35 0.9506 0.6860 

CO11 (extra light) OKONO 40.96 0.8204 0.0571 

CO12 (light) PENNINGTON 33.50 0.8575 0.0909 

CO13 (heavy) MARLIM51 21.36 0.9256 0.6390 

CO14 (medium – heavy) MARLIM40 23.30 0.9141 0.6377 

CO15 (medium – heavy) MARLIMLS 23.90 0.9105 0.5991 

CO16 (heavy) MARLIM56 18.31 0.9445 0.7272 

CO17 (medium – heavy) MARLIM53 22.32 0.919 0.5595 

CO18 (heavy) MARLIM47 20.07 0.9335 0.7668 

CO19 (medium – heavy) MARLIM37 23.52 0.9127 0.6804 

CO20 (heavy) MARLIM33 20.88 0.9286 0.7065 

CO21 (heavy) MARLIM32 20.07 0.9335 0.7668 

CO22 (light – medium) JABUTI 28.53 0.8842 0.4939 

CO23 (light – medium) GOLFINHO 27.22 0.8914 0.1520 

CO24 (heavy) ESPADARTE 20.75 0.9293 0.4781 

CO25 (medium – heavy) CARATINGA 23.47 0.9130 0.5057 

CO26 (light – medium) BAZ 28.86 0.8823 0.2714 

CO27 (heavy) ALBACORA 20.56 0.9305 0.5614 

CO28 (extra light) AKPO 45.32 0.8002 0.0655 

Source: Author (2021). 
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3.2 Refinery Scheduling: Optimization 

The modeling and configuration steps include the design and creation of the 

superstructure, as well as the code used by IMPL to build the mathematical model. 

After the code is compiled and the model is built, IMPL calls a commercial optimization 

solver. When working with the IML language, this task can be performed via the prompt 

of command, as shown in Figure 3.5, in which some flags are required and must be 

specified by the user to properly call the main IMPL routine. In the case shown in Figure 

3.5, there are specified the directory where the files are (“fact” flag), the type of 

problem, which can be quantity, logistics, or quality (“filter” flag), the solver to be called 

for optimization purposes (“fork” flag), and the number of sequential optimizations to 

be carried out (“frequency” flag). 

Figure 3.5: Code execution through the prompt of command. 

 

Source: Author (2021). 

The command executed as shown in Figure 3.5 regards a logistics problem (containing 

quantity and logic information) to be optimized by the commercial solver CPLEX. For 

MILP problems, some of the most common solvers are CPLEX, GUROBI, and 

COINMP. For NLP problems, IPOPT can be used, although in this work we employ 

linearization strategies that allow the use of MILP solvers for nonlinear problems. A 

summary of the optimization steps and results is written in the prompt of command, as 

shown in Figure 3.6. Moreover, IMPL creates a set of files containing the solution from 

the optimization procedure, as well as additional information regarding the 

mathematical formulation (e.g., equations, variables, parameters), statistics of the 

problem, etc. 
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Figure 3.6: Results shown in the prompt of command. 

 

Source: Author (2021). 

When the IPL language is used, the development platform or software can be used 

directly to call IMPL in a straightforward fashion. For example, Figure 3.7 shows a 

piece of code developed in Visual Studio 2015. When the code in executed, there is a 

specific command calling the main IMPL routine, in which the mathematical model is 

built and the optimization solver is called in an automatic and systematic fashion, 

according to the commands within the code.    
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Figure 3.7: Code execution through Visual Studio 2015. 

 

Source: Author (2021). 

Similarly, IMPL creates the files containing the solution from the optimization procedure 

and additional files regarding the mathematical formulation, statistics of the problem, 

etc. 
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4                             
Refinery Scheduling: Examples, Discussion, and Results 
 

In this chapter it is presented several examples based on typical crude oil refinery 

problems, including a discussion on their application, the explanation of the problem, 

and their respective results and conclusions. The outline of this chapter is as follows. 

In section 4.1 (Example 1) it is discussed a blending problem typically used for blending 

of crude oils prior to their processing in the distillation unit, or blending of intermediate 

refinery streams to produce specified fuels. An explanation of the phenomenological 

decomposition heuristic used to break down the MINLP model is presented as well. 

Section 4.2 (Example 2) addresses a crude oil distillation problem considering a 

complex towers in cascade network (instead of considering a single tower) for 

improved predictions. 

Section 4.3 (Example 3) utilizes the complex distillation network from Example 2 in a 

blend scheduling problem including the crude oil scheduling to prepare the feed for the 

distillation unit. The phenomenological decomposition is applied to break down the 

MINLP formulation, and the factors linearization strategy is employed to improve the 

accuracy of the MILP solution. 

Section 4.4 (Examples 4 to 7) discusses the design for online processes and blend 

scheduling optimization and investigates the impact on distinct blending designs and 

process designs on crude oil scheduling problems. 

Section 4.5 (Example 8) introduces a complete crude oil refinery scheduling network 

including the entire process-shop in addition to the crude oil scheduling formulation 

presented in Example 3.  

Section 4.6 (Example 9) addresses a case similar to Example 8, and introduces 

modeling strategies with time reduction purposes. Two heuristic strategies are 

employed, namely, a rolling horizon and a relax-and-fix approaches. 
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Section 4.7 (Example 10) discusses the crude oil refinery scheduling optimization 

problem and introduces an online parameter feedback strategy for handling typical 

plant-model mismatches that often happen in crude oil refinery operations. 

All examples addressed herein are modeled using the Industrial Modeling & 

Programming Language (IMPL) and are optimized through commercial optimization 

solvers. The MINLP models are broken down into MILP-NLP sub-models to be solved 

sequentially. The MILP models are optimized by either CPLEX or GUROBI, while the 

NLP models are first linearized through a sequential linear programming (SLP) 

technique to be further optimized through CPLEX or GUROBI. The machine used is 

an Intel Core i7 (Intel, USA) with 2.90 GHz and 16 GB RAM. 

Energy balances are not considered herein. For real applications, the energy balance 

of the furnaces and the network of parallel crude oil feed integrated to product distillates 

inside heat exchangers would have to be coordinated to meet the amounts of distillates 

from the scheduling solution.  

The networks in all examples (Figures 4.1 to 4.19) are constructed using the unit-

operation-port-state superstructure (UOPSS) formulation (KELLY, 2005) composed 

by: a) unit-operations m for sources or sinks (), continuous-processes (⊠) and tanks 

(), and b) their connectivity involving arrows (), in-port-states 𝑖 () and out-port-

states 𝑗 (). Unit-operations and arrows have binary 𝑦 and continuous 𝑥 variables. 

In the first step of the decomposition approach, the MILP optimal solution is found. 

Although the optimization solvers find and save intermediate optimal solutions 

throughout the optimization search, and hence, multiple MILP solutions could be used 

in the sequence of the decomposition algorithm, only the best solution is chosen in 

order to limit the computational time spent on each iteration. In the second step of the 

decomposition approach, multiple optimizations are performed for the NLP problem 

aiming to find better solutions, which is especially helpful given that refinery scheduling 

problems are typically highly nonlinear and non-convex, and are often in large size, so 

that the optimization may converge to poor local optimal solutions. This multiple 

optimization strategy is performed automatically and systematically by a random 

generation toolbox within the modeling software IMPL, which generates initial guesses 



104 
 

for all variables according to the their lower and upper bounds, and by including a 

random number, as shown in Equation 4.1. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑣𝑎𝑟 =
𝑈𝑝𝑣𝑎𝑟 +  𝐿𝑜𝑣𝑎𝑟

2
+ (𝑈𝑝𝑣𝑎𝑟 − 𝐿𝑜𝑣𝑎𝑟) (𝑅𝑎𝑛𝑑𝑜𝑚 − 0.5) (4.1) 

Where 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑣𝑎𝑟 is the initial value of the variable 𝑣𝑎𝑟, 𝐿𝑜𝑣𝑎𝑟 and 𝑈𝑝𝑣𝑎𝑟 represent 

the lower and upper bounds of the variable 𝑣𝑎𝑟, and 𝑅𝑎𝑛𝑑𝑜𝑚 is a random number 

uniformly generated between 0.0 and 1.0. 

It is also required to establish stopping criteria in which the decomposition framework 

is assumed to converge. The criterion used in the examples is typically a maximum 

number of iterations of the algorithm, although several criteria could be employed, such 

as a maximum decomposition gap MILP-NLP, and non-improvement of the solutions 

between successive iterations. 

4.1 Example 1: Blending operations 

The first example consists of a blending problem typically found in the blending of crude 

oils prior to their processing in the distillation unit, or in the blending of intermediate 

refinery streams for the production of fuels with quality specifications (e.g., maximum 

sulfur content, minimum cetane number, etc.). Although it is a small size blending 

problem, there are several nonlinear and non-convex terms due to the blending 

equations, as well as binary variables associated with distinct operating modes of the 

blender unit and from the UOPSS-based formulation (i.e., binary variables for flows 

and units). This results in a non-convex MINLP formulation, which is broken down in 

the form of MILP-NLP subproblems to be sequentially solved. An explanation of the 

phenomenological decomposition heuristic used to break down the MINLP model is 

presented as well. It is worth noting that this blending example was especially helpful 

to learn, develop, and improve the methodology aspects addressed in this thesis. 

In the problem presented in Figure 4.1, there are three feedstocks R1 to R3, which 

contain intermediate diesel coming from multiple distinct refinery processing units. 

Although all of them are diesel streams, their qualities and compositions are slightly 

different (i.e., distinct hydrocarbon compositions, and distinct properties such as sulfur 

content and specific gravity). The objective of this example is to maximize the profit in 
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the production of diesel streams with properties within specified ranges, more 

specifically, maximum values of sulfur content and specific gravity. Therefore, the 

operations need to ensure that all properties of each product are properly specified. 

From the feedstock pools, the distinct diesel streams are sent to intermediate tanks S1 

to S3, and subsequently feed a blender unit (BLENDER). The diesel blend leaves the 

mixer and is stored in final tanks F1 and F2 to be later sold and sent via distribution or 

logistic modes D1 and D2.  

Figure 4.1: Blending operations flowsheet. 

 

Source: Author (2021). 

It is also considered that it is possible to produce distinct products in the same blender 

unit. Thus, the problem is formulated so as to include the operating modes used to 

produce each product, and the superstructure of the problem is modified to account for 

such information. Figure 4.2 presents the updated flowsheet, which contains two 

blender units (both are referred to as BLENDER because they represent the same 

physical unit). However, there are different operating modes, represented by the 

capital letters A and B just below each blender. The UOPSS representation is used in 

Figure 4.2 as well, in which the in-ports and out-ports are included. 
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Figure 4.2: Blending operations flowsheet using the UOPSS representation. 

 

Source: Author (2021). 

There is an increase in the number of variables due to the additional blender unit 

modeled, including its respective additional flows. The problem is modeled such as 

BLENDER (A) and BLENDER (B) are different units, used for the production of 

products D1 and D2, respectively. Then, it is also required to constrain the blenders 

not to operate simultaneously. 

Data on the availability and cost of feedstocks R1 to R3, price of products D1 and D2, 

capacity of tanks and units, and specification properties of the products (specific gravity 

and sulfur content) are included in the formulation. There are binary and continuous 

decision variables, which are associated with the logistic decisions (blender operating 

modes, active units/flows) and flows throughout the network. The problem is modeled 

considering the future 15-day time horizon, with 24-hour intervals, in a total of 15 time 

periods. The problem is formulated as an MINLP and is broken down into two 

subproblems, an MILP and an NLP, to be sequentially solved. The decomposition 

strategy is discussed in Section 1.4.9.2. 

The MILP solution to be saved and fixed for the NLP optimization includes the binary 

variables associated with flows (whether they are active or not) and process units 

(blenders). In the optimal MILP solution after two iterations of the decomposition 

algorithm, the blender operates at maximum capacity, and at only one operating mode 

at each time step. The least expensive feedstock is chosen, as quality information is 

not considered in the formulation. For the best NLP solution (i.e., the NLP model is 
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optimized 10 times using the random generation tool described in Section 1.4.9.2, and 

only the best solution is chosen), all feedstocks are utilized to ensure the quality 

constraints for the proper specification of products. The final objective function for profit 

maximization is around $ 810 for the MILP model and it is around $ 676 for the NLP 

model. The decomposition approach leads to a decomposition gap between the MILP 

and NLP solutions, which is indeed expected. 

4.2 Example 2: Towers in cascade distillation network 

Example 2 considers a complex network of towers in cascade, composed of flash 

distillation (FLASH), debutanizer or naphtha stabilizer (DEBUTANIZER), two 

atmospheric distillation (CDU and CDU2), and vacuum distillation (VDU) towers. The 

main distillates produced are the fuel gas (C1C2), liquefied petroleum gas (C3C4), light 

naphtha (LN), heavy naphtha (HN), kerosene (K), light diesel (LD), heavy diesel (HD), 

and atmospheric residue (ATR). An external feed of ATR is also connected directly to 

the VDU, which produces light vacuum gas oil (LVGO), heavy vacuum gas oil (HVGO), 

and vacuum residue (VR). The crude oil assay or composition defined in micro-cut, 

hypo- or pseudo-component distribution is used to calculate the yields and properties 

of all towers. The production of distillates requires the temperature cutpoints to 

determine the aggregation of the micro-cuts to the final cuts (product distillates). 

Details on micro-cuts calculation and distribution can be found in Menezes et al. 

(2013). Figure 4.3 presents the distillation unit network, which is formulated as a single-

period NLP problem.  
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Figure 4.3: Complex distillation network flowsheet. 

 

Source: Author (2021). 

The six sources CO1 to CO6 supply the operations with distinct types of crude oil, 

which can be either sent to the pre-flash tower or to the distillation unit CDU2. The 

debutanizer and the two atmospheric distillation columns process their respective 

feeds to produce fuel gas, LPG, light naphtha, heavy naphtha, kerosene, light diesel, 

heavy diesel, and atmospheric residue. The atmospheric residue streams are sent to 

the VDU, while the other streams are sent directly to product storage pools. It is also 

assumed that an additional amount of atmospheric residue can be imported and 

processed from the ATR pool. 

There are several operational limitations on this example, especially the absence of 

blender units to prepare the distillation feed. The formulation includes nonlinear terms 

from the quality balances (e.g., the mass flow that enters the pre-flash tower is the 

product between the volumetric flow at the entrance of the tower and the specific 

gravity of the feed, which are both decision variables in the model). The bilinear and 

trilinear terms (i.e., related to the specific gravity sulfur content equations, respectively) 

result in a nonlinear programming (NLP) problem.  
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The decision variables are related to the amounts to be processed of each crude oil 

and of the atmospheric residue imported. Information on availability of feedstocks, 

price of products, processing capacity of the units, in addition to the crude oil quality 

(composition, specific gravity, and sulfur content) are also included in the formulation. 

Binary variables from the UOPSS formulation (i.e., related to whether the flows and 

units are active or not) are considered as active (i.e., set to one) and neglected in the 

model. The objective function maximizes the profit for a single time step for the future 

24-hour time horizon. Data on the availability of feedstocks and the production capacity 

of the units are presented in Table 4.1. 

Table 4.1: Data used in the formulation of Example 2. 

Unit 
Availability 

(𝒎𝟑/𝒅𝒂𝒚) 
Unit 

Processing 

Capacity (𝒎𝟑/𝒅𝒂𝒚) 

CO1 100 CDU 80 

CO2 100 CDU2 80 

CO3 100 FLASH 100 

CO4 100 DEBUTANIZER 20 

CO5 100 VDU 45 

CO6 100   

ATR 20   

Source: Author (2021). 

The example is modeled using IMPL and optimized using the solver CPLEX 12.8.0 via 

a sequential linear programming technique for the linearization of nonlinear terms. The 

optimal solution (i.e., decision variables) of the cascaded distillation towers example is 

shown in Table 4.2. 

 

 

 

 

 



110 
 

Table 4.2: Optimal solution of the cascaded distillation towers example. 

Decision Variable (Flows) Optimal Value (𝑚3/𝑑𝑎𝑦) 

CO1 - FLASH 42.98 

CO1 – CDU2 37.02 

CO2 – FLASH 0.00 

CO2 – CDU2 0.00 

CO3 – FLASH 0.00 

CO3 – CDU2 0.00 

CO4 – FLASH 0.00 

CO4 – CDU2 0.00 

CO5 – FLASH 57.02 

CO5 – CDU2 42.98 

CO6 – FLASH 0.00 

CO6 – CDU2 0.00 

ATR - VDU 5.24 

Source: Author (2021). 

The flowsheet of the cascaded distillation example, including the optimal mass flows 

(𝑚3/𝑑𝑎𝑦), is shown in Figure 4.4. 
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Figure 4.4: Cascaded distillation network with optimal values. 

 

Source: Author (2021). 

The optimal solution indicates that the light crudes (i.e., with better quality), which are 

crudes CO1 and CO5, are most likely to be used due to the quality specification 

constraints. The full availability (100 𝑚3/𝑑𝑎𝑦) of CO5 is used, whereas only 80 𝑚3/𝑑𝑎𝑦 

of CO1 are used due to the bottleneck in the production capacity of the pre-flash tower 

(100 𝑚3/𝑑𝑎𝑦) and CDU2 (80 𝑚3/𝑑𝑎𝑦). The atmospheric residue from the ATR pool is 

also used to complete the processing capacity of the vacuum distillation column. In 

addition, it is worth noting that the CDU and DEBUTANIZER columns operate at 

maximum capacity to maximize the refinery profit.  

The optimal solution achieved is consistent and expected, as it uses mostly the crude 

with best quality, utilizes full capacity of the units, and uses atmospheric residue to 

complete the feed for the vacuum distillation column. 
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4.3 Example 3: Crude oil blend scheduling operations1 

After utilizing the phenomenological decomposition heuristic for a blending problem 

(Example 1), it is applied to the crude oil blend scheduling example, which incorporates 

the blending of crude oils to produce the distillation feed, and a complex towers in 

cascade network to represent the distillation unit (from Example 2). The crude oil blend 

scheduling example is formulated as a discrete-time MINLP problem and the 

phenomenological decomposition heuristic is used to break it down into two sub-

models to be sequentially and iteratively optimized. The crude oil blend scheduling 

flowsheet is presented in Figure 4.5 and considers the blending and processing of six 

crude oil supplies (CO1 to CO6), six storage tanks (S1 to S6), in addition to two mixers 

(BLENDER1, BLENDER2), six feed tanks (T1 to T4, V1 and V2), a flash tower 

(FLASH), a naphtha debutanizer tower (DEBUT), two atmospheric distillation units 

(CDU, CDU2), a vacuum distillation column (VDU) and an atmospheric residue import 

(ATR). The distillation unit is modeled by a detailed series of towers in cascade to 

provide higher accuracy in the predictions. Intermediate hydrocarbon streams, such as 

kerosene (K), light naphtha (LN), light diesel (LD), etc., are also included in the 

formulation.  

 

 

 

 

 

 

 
 

1 This section is based on the following manuscript: 
FRANZOI, R. E.; MENEZES, B. C.; KELLY, J. D.; GUT, J. A. W. Blend scheduling optimization using 
factors for qualities in cascaded distillation towers in crude oil refineries. In Blucher Chemical 
Engineering Proceedings, v. 1, n. 5, p. 1233-1236, 2018. 
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Figure 4.5: Crude oil blend scheduling flowsheet. 

 

Source: Author (2021). 
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Example 3 assumes that there are six crude oils available to be processed at the 

refinery operations, which are supplied by the limited sources CO1 to CO6 and are 

stored in the storage tanks S1 to S6. These crude oils may be used to prepare the feed 

for the distillation unit by any of the two distinct blender units. The crude blend formed 

at BLENDER1 is sent to the feed tanks (T1 and T2) prior to the pre-flash tower. The 

pre-flash tower separates the feed into light and heavy fractions. The lighter fraction, 

composed of fuel gas, LPG, and light naphtha, is sent to the naphtha stabilizing tower 

(also referred to as debutanizer), where the separation and subsequent storage of 

these three streams take place. The heavier output from the pre-flash tower is sent to 

an atmospheric distillation unit, which separates the feed into heavy naphtha, 

kerosene, light diesel, heavy diesel, and atmospheric residue. These streams are 

stored, except the atmospheric residue, which is sent to the vacuum distillation column. 

The blend formed at BLENDER2 is sent to the feed tanks T3 and T4, which feed 

another atmospheric distillation unit (CDU2). In refinery operations, this blend is 

typically a mixture of heavy crudes, as it is not operationally or economically interesting 

to process it in a pre-flash tower prior to the processing in the atmospheric distillation 

column. The CDU2 separates its feed into fuel gas, LPG, light naphtha, heavy naphtha, 

kerosene, light diesel, heavy diesel, and atmospheric residue). All streams are stored 

in pools, except the atmospheric residue, which is sent to the vacuum distillation unit 

(VDU). The VDU receives the atmospheric residue from the two atmospheric 

distillation columns. In addition, there is also the possibility of using the atmospheric 

residue stored in the ATR pool, which is assumed to be imported by the refinery to be 

used as a feedstock in the operations. 

The binary and continuous decision variables are associated with whether and how 

much is processed of each crude oil and of the imported atmospheric residue, the 

operation of tanks and units, and the flows throughout the network, for each period of 

time. Data on the cost and availability of feedstocks, product prices, processing 

capacity of the units, in addition to the crude oil quality (composition, specific gravity, 

and sulfur content) are included in the formulation as well. 

The mathematical formulation is based on a discrete-time grid with a 5-day time-

horizon and time steps of 4 hours, and considers initial inventories of crude oil supply, 

storage, and charging tanks, integrated to the distillation units arranged in the form of 
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cascaded towers. The qualities of the crude oil tanks are assumed to be constant (at 

a given time step) since there are constraints to avoid simultaneous or multiple filling 

to the same tank (as well as to avoid simultaneous drawing from a tank to multiple 

sinks). The yields of the distillation units are calculated from the crude oil assays. There 

are binary variables associated with the logistic decisions (e.g., selection of crudes and 

flows at each time step, operations of units, etc.), as well as nonlinear variables and 

constraints due to the nonlinear nature of the crude oil properties and the blending 

operations. Moreover, the blending equations for qualities or properties (e.g., sulfur 

content) are by nature non-convex, resulting in an non-convex MINLP model. Thus, 

the phenomenological decomposition heuristic (see Section 1.4.9.2) is used to tackle 

such complex problem, which is broken down into an MILP and an NLP sub-models. 

The mathematical MILP model includes only quantity and logic information while the 

NLP model includes quantity and quality information. The heuristic procedure initially 

neglects quality information (variables and constraints) from the original MINLP model. 

This results in an MILP model, which is optimized and its logistics solution (i.e.., binary 

decisions) is fixed back in the original MINLP. This converts the MINLP into an NLP to 

be optimized. The NLP solution is also a feasible solution for the original MINLP. An 

iterative procedure is performed, in which the NLP quality solution (i.e., yields and 

properties) is retro-fed as initial guesses in the MILP model of the next iteration. 

Furthermore, because the NLP problem is highly nonlinear by the blending and 

distillation transformations, multiple NLP optimizations are performed to avoid poor 

optimal solutions. For that, a randomization tool generates initial points to be used in 

the different NLP optimizations. The statistics of the mathematical formulation are 

presented as follows. In the MILP model there are 375 continuous and 672 binary 

variables, 1700 constraints (220 equality) and 546 degrees of freedom. In the NLP 

model there are 4442 continuous variables, 5098 constraints (3328 equality) and 30 

degrees of freedom. The UOPSS formulation is utilized and it is built-in within the 

modeling platform IMPL (Industrial Modeling & Programming Language), in which 

GUROBI 12.7.1 is used as optimization solver in an Intel Core i7 with 2.7 GHz and 16 

GB RAM. 

When the phenomenological decomposition heuristic is applied, that typically leads to 

a MILP-NLP decomposition gap due to the limitations of the method (e.g., neglecting 

quality information). Then, a linear programming approximation of nonlinear 
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constraints is used to improve the accuracy of the MILP modeling. This strategy 

significantly improves the accuracy of the MILP modeling by including linearized (and 

approximated) quality information. Hence, it is expected a better and faster 

convergence of the PDH algorithm in the iterative MILP-NLP procedure by reducing 

the gap between both solutions. Figure 4.6 presents the crude oil blend scheduling 

problem including the linear factor reformulation to approximate nonlinear blend 

streams. Other than the addition of these linear reformulations for the MILP model, the 

problems in Figure 4.5 and 4.6 are similar. In the MILP model, there are 641 continuous 

and 728 binary variables, 2948 constraints (316 equality) and 660 degrees of freedom. 

In the NLP model there are 4470 continuous variables, 5242 constraints (3328 

equality) and 63 degrees of freedom. 

The decomposition heuristic applied in these two examples allows the optimization of 

complex crude oil refinery scheduling problems, whereby the cascaded distillation 

design provides an improved level of detail by considering individual fractionations in 

each column instead of only one black box distillation tower to account for the whole 

distillation system, which improves both the prediction and the control of the towers.  

The computational time spent to run the PDH algorithm (using a total of three MILP-

NLP iterations) is around 6 minutes for each example. The decomposition heuristic 

strategy successfully decomposed the MINLP model to provide acceptable 

optimization times of few minutes instead of what would typically take hours when 

optimizing a non-convex MINLP of this size and complexity. By including the linear 

reformulation of nonlinear constraints (factorizing strategy) in the MILP model, the 

MILP-NLP decomposition gap is effectively reduced whereas improving the MINLP 

objective function, as shown in Table 4.3. 

Table 4.3: Results for the crude oil blend scheduling example. 

 Without Factors With Factors 

MILP Solution (US$) 30,116 29,039 

NLP Solution (US$) 28,076 28,869 

MINLP Solution (US$) 28,076 28,869 

Decomposition Gap (%) 6.77 0.59 

Source: Author (2021). 
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Figure 4.6: Crude oil blend scheduling flowsheet including the factors reformulation. 

 

Source: Author (2021). 
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Table 4.4 presents more detailed results for the crude oil blend scheduling problem 

with and without factors over three iterations of the decomposition heuristic approach. 

Table 4.4: Results for the crude oil blend scheduling example with factors over three 

iterations of the decomposition algorithm. 

 1st Iteration 2nd Iteration 3rd Iteration 

MILP Solution (US$) 28,437 29,272 29,039 

NLP Solution (US$) 25,985 26,439 28,869 

MINLP Solution (US$) 25,985 26,439 28,869 

Decomposition Gap (%) 8.62 9.68 0.59 

Source: Author (2021). 

The linearization strategy improves the quality of the MILP solution by considering the 

proxied information on qualities in the LP factor reformulation, achieving better MINLP 

solutions with an increase of 2.82% in the objective function. This improvement relies 

directly on the increase in the NLP objective function, and indirectly on the lower MILP-

NLP gap (it is expected that a more accurate modeling leads to a lower decomposition 

gap, i.e., if the MILP formulation is more accurate and complete, the MILP solution will 

be more accurate and closer to the NLP solution). Therefore, the results indicate the 

efficiency of this strategy to improve the overall objective function of the MINLP model. 

This strategy may also lead to additional improvements, such as a better convergence 

of the decomposition algorithm by a reduced MILP-NLP gap. Although this example 

represents a medium-scale problem, as the strategy is applied only for blending 

operations, it is expected that the time increase for industrial problems would not limit 

its application. 

The number of NLP optimizations is an important parameter to be tuned and affects 

the performance of the decomposition approach. Therefore, instead of 10 NLP 

optimization per iteration of the framework, additional tests are carried out using 50 

NLP optimizations. The results are presented in Table 4.5. 
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Table 4.5: Results for the crude oil blend scheduling example with factors over three 

iterations of the decomposition algorithm using 50 NLP optimizations. 

 1st Iteration 2nd Iteration 3rd Iteration 

MILP Solution (US$) 29,617 30,338 30,085 

NLP Solution (US$) 27,952 28,895 28,825 

MINLP Solution (US$) 27,952 28,895 28,825 

Decomposition Gap (%) 5.62 4.76 4.19 

Source: Author (2021). 

Increasing the number of NLP optimizations improves the overall MINLP solution but 

at higher computational time. This is a parameter to be tuned in the framework and 

depends on the desired purpose or application, as it significantly affects the total 

computational effort spent by the algorithm.  

4.4 Examples 4 to 7: Design for Online Process and Blend Scheduling 

Optimization2 

In the manufacturing with transformation of natural resources into products, different 

quality raw materials varying in composition are segregated, stocked, and blended to 

prepare the bulk feed quality of the plant. In such blend scheduling problem, the 

topology of the storage and blending operations, as well as the process design 

network, significantly affects the performance of the scheduling decision-making, 

which impacts the intermediate streams and final products. Considering the industrial 

advances toward online scheduling approaches, this section discusses the design 

aspects for improved blending and processing of compositional-level raw materials 

found in the petroleum (fractional), petrochemical (molecular), and metallurgic (atomic) 

industries. There are needs of diverse feed quality due to the highly complex and 

dynamic environment. Hence, a detailed and efficient design of the blend and 

processing scheduling is required for high-performance operations considering 

 
 

2 This section is based on the following manuscript: 

FRANZOI, R. E.; MENEZES, B. C.; KELLY, J. D.; GUT, J. A. Design for Online Process and Blend 

Scheduling Optimization." In Computer Aided Chemical Engineering, v. 47, p. 187-192. Elsevier, 2019. 
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flexibility, responsiveness, management ability, etc. The proposed examples aim to 

compare computational efforts, and modeling and solution efficiency, depending on 

how the blending operations are modeled (using continuous blending or batch mixtures 

between tanks), and on the level of detail considered to model the distillation unit. The 

examples focus on the design for raw material- or feed-edge blend scheduling 

operation into online perspectives, although the same analyses are valid for the 

product-edge.  

4.4.1 Introduction 

The use of blender units in continuous operations is widespread in the product-edge 

manufacturing (i.e., back-end border of a plant), and there are several recent 

publications on blend scheduling applications in the petrochemical industry 

(CASTILLO-CASTILLO and MAHALEC, 2014; KELLY, MENEZES, and 

GROSSMANN, 2018). However, at the raw material- or feed-edge (or front-end border 

of a plant), the blend scheduling operations are commonly designed considering the 

standard topology of storage and feed raw material tanks or piles without a continuous 

blender. Thus, the blending operations of feedstocks and products use batch mixture 

of sequential streams for liquids such as crude oils using pipelines in refineries (LEE 

et al., 1996; JIA, IERAPETRITOU, and KELLY, 2003; CASTRO and GROSSMANN, 

2014). It is similar for solids such as concentrated mineral flowing through conveyor-

belts in metal processing sites (SONG et al., 2018).  

Modeling and optimization of blending problems can be found in Misener and Floudas 

(2009) and considerations on blend scheduling solutions such as a sequential MILP 

approach in product blend-shops is presented in Kelly, Menezes, and Grossmann 

(2018). Towards online scheduling strategies, Franzoi et al. (2018a) shows improved 

operations using continuous blending of crude oils from the storage tanks to prepare 

the feed (charging) tanks for processing in the distillation unit. In the blend scheduling 

problem, the towers are represented as complex as they are designed, and hence, the 

model can include online scheduling aspects to be integrated to the solution, such as 

variable-feedback (GUPTA and MARAVELIAS, 2017a), parameter-feedback 

(FRANZOI et al., 2018b) and gradient-feedback (yet to be addressed within the online 

scheduling topic by the process systems engineering community).  
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The examples proposed in this section address the design for blending and processing 

of raw materials at the compositional level by utilizing a continuous blender unit for 

improved blending predictions and operations, and a detailed fractionation system in 

which the distillation unit is represented by towers in cascade. This is a typical problem 

in the petrochemical industry, in which most crude oil refineries still prepare the crude 

oil blend (feed for the distillation unit) without including a continuous blending unit. 

Industrial refinery operations often design blend scheduling problems by mixing 

batches of streams from the storage inventories to the feed inventories (stream by 

stream), since drawing and filling operations are typically not simultaneously allowed 

within the same tank or pool. 

The research addressed in this section emphasizes the importance of efficient design 

and modeling approaches, and aims to provide information on the need of continuous 

blender units, measurement apparatus, and computational algorithms (such as control 

strategies) at the feed-edge of a plant. The process design, integrated to the proposed 

blend design, is modeled as a complex set of towers in cascade for the distillation unit. 

In previous literature, except by Franzoi et al. (2018a), the complex distillation unit is 

simplified within optimization problems by considering one or mostly two towers. The 

combination of the blend design (without or with a blender) and the process design 

(simplified or real design) demonstrates the operational pros and cons of the 

installation of continuous blending units and the modeling of a complex and detailed 

process design within online scheduling propositions. 

4.4.2 Example 4: Blend scheduling operations 

The blend scheduling operations presented in Figures 4.7 and 4.8 represent a typical 

problem in industries such as the petrochemical and metallurgic, in which the available 

feedstocks have to be blended to produce either a final product or an intermediate 

blend to be further used as the feed of other processing units. The scenarios 

considered in Figures 4.7 and 4.8 represent the same processing operation, but using 

or not a blender unit. The raw materials R1 to R3 are sent to the storage tanks S1 to 

S3, which are either sent directly to the feed tanks F1 to F2 or mixed in the blender 

unit BLENDER. In this case, there are two operating modes for the same physical 

blender unit, which allows to consider distinct conditions for each product or pool to be 
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produced and stored in D1 or D2. Quality specifications on the maximum specific 

gravity and maximum sulfur content for the final products are constrained and must be 

met.  

The blend scheduling problem is a non-convex mixed-integer nonlinear programming 

(MINLP) problem due to the nonlinearities from the blending equations, as well as the 

binary decisions regarding both the flows and the blender operating modes. Therefore, 

efficient modeling and solving techniques should be employed to provide a tractable 

formulation that can be solved in acceptable computational times (KELLY et al., 

2017a). Then, the MILP-NLP phenomenological decomposition heuristic (MENEZES, 

KELLY, and GROSSMANN, 2015) is applied. The logistic constraints considered in 

the MILP formulation are: (a) Fill draw delay (i.e., after any filling operation, drawing 

operations for the same tank are only allowed after a certain amount of time); (b) 

Drawing-empty and filling-full (i.e., there are lower bounds for drawing and filling 

operations); (c) Multi-use (i.e., tanks can only send material to one sink, and can only 

receive material from one source simultaneously). For additional details on the logistic 

constraints, see Zyngier and Kelly (2009).  

Figure 4.7: Blend scheduling problem (with blender) flowsheet. 

 

Source: Author (2021). 
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Figure 4.8: Blend scheduling problem (without blender) flowsheet. 

 

Source: Author (2021). 

Table 4.6 compares the statistics of both cases, with and without using the continuous 

blender unit. The optimization maximizes the total profit and it is performed for the 

future 10-day time horizon with 4-hour time step using GUROBI (8.1.0) for the MILP 

sub-problem and IMPL’s SLP linked to GUROBI (8.1.0) for the NLP sub-problem. The 

NLP objective function, MILP-NLP decomposition gap, and CPU time (s), are also 

presented in Table 4.6.  
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Table 4.6: Statistics of the blend scheduling problem with and without a continuous 

blender. 

  With Blender Without Blender 

MILP 

Binary Variables 1300 956 

Continuous Variables 1552 1068 

Constraints 9188 6664 

(Equality) (1084) (302) 

Degrees of Freedom 2070 1722 

NLP 

Continuous Variables 4018 3701 

Constraints 17704 9904 

(Equality) (3826) (6184) 

Degrees of Freedom 192 196 

Profit ($) 583 430 

Gap MILP-NLP (%) 1.4 13.0 

Total CPU time (s) 200 1100 

Source: Author (2021). 

The continuous blender unit used in the formulation has two operating modes, which 

leads to 8 possible flows connecting the storage to the feed tanks, instead of 6 possible 

flows when there is no continuous blender (i.e., the storage and feed tanks are 

connected directly). Hence, a larger number of variables and constraints is expected 

for the scenario that utilizes the blender unit. However, that does not imply in an 

inefficient or more difficult to solve formulation. The results indicate that including a 

continuous blender in this blend scheduling example achieves improved operations 

with higher profit, smaller decomposition gap MILP-NLP, and lower computational 

effort. The increased economic value of the blending operations is achieved due to the 

limitations imposed by the logistic constraints (i.e., fill draw delay, drawing empty and 

filling full, and multi-use), which have a higher impact when there is no continuous 

blender in the process. Moreover, although including the blender leads to a larger 

model in size, a smaller decomposition gap and a faster optimization are achieved. 

Therefore, including the continuous blender is the preferred modeling and operational 

strategy for this example.  
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4.4.3 Example 5: Distillation unit operations with simplified and complex 

networks 

The processing example in Figure 4.9 presents the supply of crude oil feedstocks 

feeding a simplified set of distillation towers composed of atmospheric distillation 

(CDU) and vacuum distillation (VDU) towers. Similarly, Figure 4.10 considers a 

complex network of towers in cascade, composed of flash distillation (FLASH), 

debutanizer or naphtha stabilizer (DEBUTANIZER), two atmospheric distillation (CDU 

and CDU2), and vacuum distillation (VDU) towers. The main distillates produced are 

the fuel gas (C1C2), liquefied petroleum gas (C3C4), light naphtha (LN), heavy 

naphtha (HN), kerosene (K), light diesel (LD), heavy diesel (HD), and atmospheric 

residue (ATR). An external feed of ATR is also connected directly to the VDU, which 

produces light vacuum gas oil (LVGO), heavy vacuum gas oil (HVGO), and vacuum 

residue (VR). The crude oil assay or composition defined in micro-cut, hypo- or 

pseudo-component distribution is used to calculate the yields and properties of all 

towers. The production of distillates requires the temperature cutpoints to determine 

the aggregation of the micro-cuts to the final cuts (product distillates). Details on micro-

cuts calculation and distribution can be found in Menezes, Kelly, and Grossmann 

(2013). The distillation unit networks in Figures 4.9 and 4.10 are modeled as single-

period NLP problems.  

Figure 4.9: Simplified distillation network flowsheet. 

 

Source: Author (2021). 
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Figure 4.10: Complex distillation network flowsheet. 

 

Source: Author (2021). 

Both problems are optimized within seconds using IMPL’s SLP linked to the solver 

GUROBI (8.1.0). Four distinct optimizations are performed in order to maximize the 

production of each distillate, LN, HN, K, and LD, one at a time (i.e., the objective 

function in each optimization maximizes the production of one of the four distillates 

considered). The objective of these examples is to investigate how flexible are the 

operations to produce the final products and what is the impact on the scheduling 

solution. Depending on market demands and prices, flexible operations in which larger 

amounts can be produced of a given product present several economic and 

operational benefits (i.e., easier to schedule larger productions of specific products, 

and achieving higher economic value as well). Unlimited amounts of raw materials 

(CO1 to CO6) are considered. As the design with towers in cascaded network is more 

detailed in terms of processing flexibility, the optimization search space is wider and 



127 
 

 

yields in a more efficient production, but at higher computational effort. No cutpoint 

optimization was considered for fractionation; therefore, the distillate products were 

calculated by the variations in the crude oils and the networked towers. The maximum 

amount produced of the distillates are shown in Table 4.7, in which Maximum LN refers 

to the maximum amount of LN that can be achieved in each distillation unit, and 

similarly for the other distillates. 

Table 4.7: Maximum product yields (%) for each distillation network. 

 Cascaded Towers Network Simplified Network 

Maximum LN 30.03 27.04 

Maximum HN 15.55 13.48 

Maximum K 34.11 30.82 

Maximum LD 39.51 39.49 

Source: Author (2021). 

When the complex distillation network is used in the formulation, the scheduling 

optimization is more flexible and hence, can achieve a higher production of a specific 

distillate. That is especially helpful if the demand of a given distillate is high, or if there 

is an urgent need to increase the production of a particular distillate. Hence, that may 

significantly affect the economic value of the process. 

4.4.4 Example 6: Blend scheduling with simplified processing operations 

The common design for segregation, stock, and blending of feedstock raw materials 

(CR1 to CR2) for processing operations is represented in Figure 4.11. There are the 

storage (S1 to S4) and feed (F1 to F3) tanks () to temporarily store the raw materials 

with different qualities and compositions (i.e., yields and properties) to be processed 

in the separation and conversion units (e.g., distillation towers for separation of crude 

oils and smelting furnace for conversion of concentrate of minerals). Similarly, Figure 

4.12 represents the same problem but without using a continuous blender unit. In both 

scenarios, a crude distillation unit is included to process the crude oil to produce the 

distillates.  
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Figure 4.11: Crude oil blend scheduling flowsheet with a continuous blender. 

 

Source: Author (2021). 

Figure 4.12: Crude oil blend scheduling flowsheet without a continuous blender. 

 

Source: Author (2021). 

The blend scheduling designs presented in Figures 4.11 and 4.12 utilize a simplified 

processing network composed of a single distillation unit. The problems are formulated 

as an MINLP. The modeling and optimization are performed for a 14-day time horizon 
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with 4-hour time step. The modeling statistics for both scenarios, with and without using 

the continuous blender unit, are presented in Table 4.8. 

Table 4.8. Modeling statistics of the blend scheduling with simplified processing 

problem. 

  With Blender Without Blender 

MILP 

Binary Variables 2,824 3,117 

Continuous Variables 3,331 3,374 

Constraints (equality) 10,841 (2,356) 9,146 (1,430) 

Degrees of Freedom 4,391 5,061 

NLP 

Continuous Variables 11,785 14,389 

Constraints (equality) 12,055 (11,041) 13,819 (13,141) 

Degrees of Freedom 744 1248 

Source: Author (2021). 

In this example, including the continuous blender in the formulation leads to a model 

smaller in size, because there is only one operating mode and hence, there are fewer 

possible flows when the blender is used. Tables 4.9 and 4.10 present the results of the 

MILP-NLP optimization for the blend scheduling with simplified processing problem. 

The results indicate that for both MILP and NLP optimizations the objective functions 

are very close independently on whether the blender unit is used or not. Furthermore, 

the computational times are slightly higher for the case without blender. In Table 4.9, 

the MILP problem is solved with CPLEX (12.8.0) and the NLP problem is solved with 

IMPL’s SLP linked to this solver. It is similar in Table 4.10 but using the solver GUROBI 

(8.1.0) for both optimizations.  

Table 4.9: Optimization results of the blend scheduling with simplified processing 

using CPLEX (12.8.0). 

 MILP NLP 

 Profit ($) CPU (s) Profit ($) CPU (s) 

With Blender 35,387 2.3 35,120 60.2 

Without Blender 35,387 5.1 35,120 65.3 

Source: Author (2021). 



130 
 

Table 4.10: Optimization results of the blend scheduling with simplified processing 

using GUROBI (8.1.0). 

 MILP NLP 

 Profit ($) CPU (s) Profit ($) CPU (s) 

With Blender 35,387 1.6 35,520 69.4 

Without Blender 35,387 6.4 35,520 72.2 

Source: Author (2021). 

Table 4.9 shows that the same objective function is obtained in both scenarios (using 

or not the continuous blender), although a lower computational effort is required for the 

optimization with blender, hence this would be the preferred design for that example. 

Similar results are obtained in Table 4.10, when GUROBI is used instead of CPLEX 

for the optimizations, in which a slightly higher objective function is obtained at a higher 

computational effort.  

4.4.5 Example 7: Blend scheduling with complex processing operations 

The blend scheduling with simplified process design examples (Figures 4.11 and 4.12) 

are merged with the complex towers in cascade distillation (Figure 4.10) to generate 

the blend scheduling with complex processing examples shown in Figures 4.13 and 

4.14. Additional tanks are also included to manage the three different feeds outgoing 

from the VDU unit. These are more realistic examples of real industrial operations, 

which include the blending operations required to prepare the feed for the distillation 

unit, as well as a complex set of towers in cascade to provide a proper and detailed 

modeling of the distillation process. 
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Figure 4.13: Crude oil blend scheduling flowsheet with continuous blender. 

 

Source: Author (2021). 

Figure 4.14: Crude oil blend scheduling flowsheet without continuous blender. 

 

Source: Author (2021). 

The examples are formulated as MINLP problems and are optimized for a 14-day time 

horizon with 4-hour time step. The modeling statistics are shown in Table 4.11.  
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Table 4.11: Modeling statistics of the blend scheduling with complex processing 

problem. 

  With Blender Without Blender 

MILP 

Binary Variables 4,166 4,620 

Continuous Variables 7,647 8,151 

Constraints (equality) 16,519 (3,195) 12,849 (2,859) 

Degrees of Freedom 8,568 9,912 

NLP 

Continuous Variables 20,199 21,331 

Constraints (equality) 21,471 (19,675) 22,779 (21,015) 

Degrees of Freedom 524 484 

Source: Author (2021). 

The MILP problem is solved with CPLEX (12.8.0) and GUROBI (8.1.0), and the NLP 

problem is solved with the IMPL’s SLP tool linked to each solver. The optimization 

results for the optimization with each solver are presented in Tables 4.12 and 4.13.  

Table 4.12: Optimization results of the blend scheduling with complex processing 

problem using CPLEX (12.8.0). 

 MILP NLP 

 Profit ($) CPU (s) Profit ($) CPU (s) 

With Blender 48,618 2.3 42,675 416.8 

Without Blender 47,569 6.6 39,048 1079.1 

Source: Author (2021). 

Table 4.13: Optimization results of the blend scheduling with complex processing 

problem using GUROBI (8.1.0). 

 MILP NLP 

 Profit ($) CPU (s) Profit ($) CPU (s) 

With Blender 48,618 2.1 41,774 421.1 

Without Blender 47,569 3.7 36,377 3316.1 

Source: Author (2021). 
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By the results in Tables 4.12 and 4.13, the complex process design using a blender 

unit for improved blending design achieves higher objective functions at lower CPU 

times in both the MILP and NLP problems, as well as reduced MILP-NLP 

decomposition gaps regarding their objective functions. The continuous blender unit is 

shown to be especially useful when the formulation includes a complex distillation 

network. That indicates potential benefits on the integration of improved blending and 

processing design towards improved operations.  

The processing and blend scheduling optimization are proposed for both blend design 

and process design with the purpose of comparing the simple and the complex network 

structures. The installation of a continuous blender unit for feedstocks (as in Figures 

4.11 and 4.13) is the preferred design for improved blend scheduling operations, as it 

improves the process feed quality matching at the compositional level, leads to a wider 

optimization search space, and provides the possibility of using better advanced 

process control (APC) and real-time optimization (RTO) approaches for blending 

operations. The use of a complex distillation network is the preferred design for 

improved processing operations, which provides improved and more accurate 

predictions, as well as a better processing flexibility. 

The perfect match of blend design and process design must be coherent with the blend 

scheduling optimization of the composition of raw materials. Hence, the installation of 

continuous blender units (better blend design) and the efficient process design 

modeling (better process design) is recommended for high-performance operations. 

Despite the higher computational time due to the more complex blend scheduling and 

process designs, to achieve better solutions of NP-hard scheduling problems in 

acceptable time is becoming possible due to: a) advancements in decision-making 

modeling (with the use of the UOPSS flowsheet and the heuristic decomposition of 

MINLP as MILP+NLP); b) solving algorithms (improvements in commercial solver 

updates); and c) computer-aided resources (more powerful computer processing and 

memory). 
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4.5 Example 8: Crude oil refinery scheduling operations 

Example 8 extends the scope of the crude oil blend scheduling problem to include 

more feedstocks (a total of twelve distinct crude oils), multiple storage tanks, two 

blenders to prepare the feed for the distillation unit, a cascaded distillation unit with five 

towers (two atmospheric distillation units, a vacuum distillation unit, a pre-flash tower, 

and a debutanizer), and the whole process-shops, including additional blenders 

(GBLENDER, DBLENDER, FOBLENDER), fluid catalytic cracker (FCCU), 

hydrotreaters for coke naphtha (CLNHT), cracked light naphtha (LCNHT), and diesel 

(DHT), delayed coker (DCU), debutanizers (DEBUTANIZER1 to DEBUTANIZER3), 

superfractionator (SUPERFRAC), and catalytic reformer (CRU). Figure 4.15 presents 

the flowsheet of the crude oil refinery scheduling problem.  

There are 12 distinct sources of crude oil CO1 to CO12 to feed the refinery operations. 

These crudes are stored in the storage tanks S1 to S12, which are blended through 

the blender units (BLENDER1 and BLENDER2). The crude blend is sent to the feed 

tanks F1 to F4 to further feed the distillation unit composed of a set of five towers. 

The DEBUTANIZER1 tower produces fuel gas, LPG, and light naphtha. The distillation 

column CDU produces heavy naphtha, kerosene, light diesel, heavy diesel, and 

atmospheric residue. The distillation column CDU2 produces fuel gas, LPG, light 

naphtha, heavy naphtha, kerosene, light diesel, heavy diesel, and atmospheric 

residue. The fuel gas and LPG produced in these units are sent to product storage 

tanks (FUELGAS and LPG, respectively). Light naphtha is sent either to a reservoir 

(LN) or to a coke naphtha hydrotreating unit (tank CLNHTTK and hydrotreater CLNHT). 

The heavy naphtha is sent to a diesel mixer (DBLENDER). Kerosene, light diesel, and 

heavy diesel are sent to a diesel hydrotreating unit (tank DHTTK and hydrotreater 

DHT). The atmospheric residue is sent to the vacuum distillation unit (VDU). In the 

diesel hydrotreating unit, kerosene and diesel are hydrotreated and sent to the diesel 

blender (DBLENDER), whose product is sent to a tank (DTK) and later stored in a final 

pool of diesel (DIESEL). The vacuum distillation column produces light vacuum diesel, 

heavy vacuum diesel, and vacuum residue. The two gas oils are sent to the fluidized 

catalytic cracking unit (tank FCCUTK and column FCCU) and the vacuum residue is 

sent to the delayed coking unit (tank DCUTK and column DCU). 



135 
 

 

Figure 4.15: Crude oil refinery scheduling flowsheet. 

 

Source: Author (2021). 
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Light hydrotreated naphtha in the CLNHT is sent to a debutanizer unit for the 

stabilization of naphtha, composed of a tank (STABTK) and a debutanizer column 

(DEBUTANIZER2). The output fractions are light naphtha, which is sent either to a 

naphtha storage tank (LN) or to a gasoline mixer (GBLENDER); heavy naphtha, sent 

to a catalytic reform unit (tank CRUTK and column CRU); and diesel, sent to the diesel 

mixer (DBLENDER). The heavy naphtha is processed in the catalytic reformer unit and 

is subsequently sent to the blender GBLENDER for gasoline production. 

The fluidized catalytic cracking unit (FCCU) produces fuel gas, LPG, cracked light 

naphtha, cracked heavy naphtha, light recycling oil, and decanted oil. Fuel gas and 

liquefied gas are sent to product storage tanks. Cracked light naphtha is sent to a 

hydrotreating unit (tank LCNHTTK and hydrotreater LCNHT). Heavy cracked naphtha 

and light cracked oil are sent to a fuel oil mixer (FOBLENDER). Decanted oil is sent to 

the delayed coking unit (tank DCUTK DCU column DCU). 

In the cracked light naphtha hydrotreatment unit, hydrotreated naphtha is sent to the 

gasoline mixer (GBLENDER), in which ethanol and isooctane (from the pools ETOH 

and ISOOCTANE) are also added. The GBLENDER output is sent to a tank (GTK) and 

later stored in a gasoline tank (GASOLINE). 

The delayed coking unit (DCU) processes vacuum residue and decanted oil, producing 

fuel gas, liquefied gas, light coke naphtha, heavy coke naphtha, light coke diesel, 

medium coke diesel, heavy coke diesel, and coke. Fuel gas and LPG are sent to 

storage tanks. Light coke naphtha is sent to the CLNHT hydrotreatment unit. Heavy 

coke naphtha, light coke diesel, and medium coke diesel are sent to the fuel oil mixer 

(FOBLENDER). Heavy coke diesel is sent to the FCCU. The coke produced is sent to 

a tank (COKETK) and later stored in a coke reservoir (COKE). 

The problem to be optimized maximizes the profit of the refinery operations. Two 

scenarios with time horizons of 5 days and intervals of 12 and 4 hours, with a total of 

10 and 30 time periods, respectively, are proposed and discussed as follows. The 

original crude oil refinery scheduling problem is formulated as an MINLP, which is 

broken down using the phenomenological decomposition heuristic into an MILP 

problem to be solved with CPLEX (12.8.0), and an NLP problem to be solved with the 

IMPL’s SLP built-in linked to CPLEX.  
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4.5.1 Scenario 4.5.1: Time horizon of 5 days and time steps of 12 hours 

In the MILP formulation there are 1,274 equality and 8,474 inequality constraints, 2,039 

continuous variables, 2,178 binary variables, and 2,276 degrees of freedom. In the 

NLP formulation there are 9,724 equality constraints, 6,010 inequality restrictions, 

12,104 continuous variables, and 292 degrees of freedom. Four iterations of the 

decomposition algorithm are performed, and the stopping criterion adopted is the 

maximum number of iterations. Table 4.14 presents the objective functions for the 

MILP solutions in each iteration of the phenomenological decomposition heuristic. 

Table 4.14: Objective functions for the MILP solutions in each iteration. 

1ª iteration 2ª iteration 3ª iteration 4ª iteration 

66,907 62,978 63,964 63,964 

Source: Author (2021). 

Each NLP problem is optimized 10 times by using the automatic and systematic 

random generation tool to randomize the initial values for the decision variables. The 

objective functions for the NLP optimizations in each iteration of the phenomenological 

decomposition heuristic are presented in Table 4.15. 

Table 4.15: Objective functions of the NLP solutions at each iteration. 

1ª iteration 2ª iteration 3ª iteration 4ª iteration 

39.203 39.575 42.893 40.344 

56.152 46.714 57.474 45.728 

46.053 - 43.111 42.912 

53.935 56.864 49.178 49.228 

 - 48.414 47.929 46.253 

57.761 51.004 49.245 51.478 

60.467 49.066 46.714 49.061 

48.242 46.738 46.949 46.909 

57.112 46.398 - - 

58.173 - 55.688 56.576 

Source: Author (2021). 
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The blank spaces in Table 4.15 are infeasible NLP solutions (12.5 %) because the 

optimization solver reached a maximum number of iterations in the optimization routine 

without finding feasible solutions. The best solution is found in the first iteration with a 

decomposition gap MILP-NLP of 9.35%. The computational time spent to run the entire 

algorithm is around 5 minutes. 

4.5.2 Scenario 4.5.2: Time horizon of 5 days and time steps of 4 hours 

In the MILP formulation there are 3,814 equality and 25,594 inequality constraints, 

5,739 continuous variables, 6,138 binary variables, and 6,824 degrees of freedom. In 

the NLP formulation there are 29,164 equality constraints, 18,030 inequality 

restrictions, 34,104 continuous variables, and 771 degrees of freedom. Four iterations 

of the decomposition algorithm are performed, and the stopping criterion adopted is 

the maximum number of iterations. Table 4.16 presents the objective functions 

obtained for MILP problems in each PDH iteration. 

Table 4.16: Objective functions for the MILP solutions in each iteration. 

1ª Iteration 2ª Iteration 3ª Iteration 4ª Iteration 

68.831 75.283 58.417 58.363 

Source: Author (2021). 

Each NLP problem is optimized 10 times using distinct initial values for the variables. 

The objective functions for each PDH iteration are shown in Table 4.17. 
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Table 4.17: Objective functions of the NLP solutions at each iteration. 

1ª Iteration 2ª Iteration 3ª Iteration 4ª Iteration 

- - - - 

47.494 -  43.934 - 

-  45.975  46.266 - 

-  48.626 -  60.544 

46.604 -  51.599  47.272 

53.616 - -  56.058 

- - -  45.811 

55.214  46.246  47.626  56.005 

50.679 - - - 

57.829 - - - 

Source: Author (2021). 

A total of 22 NLP solutions did not converge (55%) due to the optimization solver stop 

criterion regarding the maximum number of iterations. The best objective NLP function 

(60,544) is found in iteration 4 with a deviation of -3.73% regarding its respective MILP 

solution, with the negative sign representing an MILP solution smaller than its 

respective NLP solution. The computational time spent to optimize all MILP and NLP 

iterations was 40 minutes. Reducing the time step from 12 hours to 4 hours improved 

the optimal solution 60.467 to 60.544, although there is an increase in the 

computational time of 300 %. There is a tradeoff between the quality of the solution 

and the computational effort required for the optimization. 
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4.6 Example 9: Refinery scheduling operations using a chronological 

decomposition heuristic approach 

Example 9 extends the scope of the crude oil blend scheduling problem to include 

more feedstocks (a total of twelve distinct crudes), eight storage tanks, two blenders, 

the cascaded distillation unit with five towers (two atmospheric distillation units, a 

vacuum distillation unit, a pre-flash tower, and a debutanizer), and the whole process-

shops, which includes additional blenders, catalytic cracker, hydrotreaters, delayed 

coker, debutanizers, superfractionator, and reformer. Figure 4.16 presents the 

flowsheet of the crude oil refinery scheduling problem.  

A discrete-time model is formulated for the future 15 days with time steps of 8 hours, 

in a total of 45 time periods. Additional modeling strategies are included in the 

formulation to achieve a more efficient modeling and hence, a faster and more efficient 

optimization: a) exclusions in rolling horizon strategies (KELLY, 2002); and b) 

relaxations in relax-and-fix iterations to construct the complete MILP problem by 

integrating the solution of the subproblems. For additional details, see Kelly and Mann 

(2004).  

In the base case scenario (not using the rolling horizon and relax-and-fix approaches), 

the MILP model has around 8000 continuous and 9000 binary variables, 44000 

constraints (5000 equality) and 10000 degrees of freedom, whereas the NLP model 

has around 50000 continuous variables, 70000 constraints (44000 equality) and 1000 

degrees of freedom. To handle such complex model, the phenomenological 

decomposition heuristic (MENEZES, KELLY, and GROSSMANN, 2015) is employed.  
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Figure 4.16: Crude oil refinery scheduling flowsheet. 

 

Source: Author (2021). 
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The chronological decomposition heuristic in Kelly (2002) consists of a rolling horizon 

approach that splits the time horizon in time chunks and optimize the problem in 

successive integrated subproblems with or without crossover between time windows, 

i.e., with recalculation of the time periods in the neighborhood. There are six scenarios 

proposed to investigate the impact of the rolling horizon strategy on the optimal 

solution. Scenario 4.6.1 is the optimization without using the chronological 

decomposition heuristic (i.e., this is the base case scenario in which the problem is 

optimized for the entire time horizon without decomposition). Scenarios 4.6.2 to 4.6.6 

are formulated using the rolling horizon approach, so that multiple sequential 

optimizations are performed for each of them so as to consider the entire time horizon. 

For example, scenario 4.6.2 is composed of three sequential optimizations, whereby 

the first optimizes days 1 to 5, the second optimizes days 6 to 10, and the third 

optimizes days 11 to 15. When crossover is considered, the time horizon within the 

crossover range is optimized twice. For example, there is a crossover from days 6 to 

10 in scenario 4.6.5, which means that the time horizon for the first optimization is from 

day 1 to 10, and the time horizon for the second optimization is from day 6 to 15. The 

optimizations are carried out using the solver CPLEX 12.7.1 in an Intel Core i7 with 2.7 

GHz and 16 GB RAM. Table 4.18 shows the optimization results (objective function 

and computational time) for each scenario. 

Table 4.18: Optimization results for the scenarios using the rolling horizon approach. 

Scenario Rolling Horizon Optimization 1 Optimization 2 Optimization 3 Profit (US$) CPU Time (s) 

4.6.1 No Days 0 – 15 - - 85,558 295 

4.6.2 Yes Days 0 – 5 Days 6 - 10 Days 11 - 15 84,995 115 

4.6.3 Yes Days 0 -5 Days 6 – 15 - 85,348 112 

4.6.4 Yes Days 0 – 10 Days 11 – 15 - 84,232 83 

4.6.5 Yes Days 0 -10 Days 6 - 15 - 85,447 38 

4.6.6 Yes Days 0 -10 Days 8 - 15 - 85,522 40 

Source: Author (2021). 

The results in Table 4.18 indicate that the best rolling horizon configuration among the 

configurations tested are Scenarios 4.6.5 and 4.6.6, which include crossover. Scenario 

4.6.6 achieves a reduction of 86.4 % in the computational time and a reduction of only 

0.042 % in the objective function when compared to the base case, which is expected 

due to the decomposition applied (i.e., decomposition strategies typically lead to 

solving limitations such as smaller search space in the optimization, and hence, to 
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worse solutions). It is worth mentioning that the main objective of this type of strategy 

is achieve faster solutions by allowing acceptable losses in the objective function. This 

is especially useful to provide tractable formulations for the optimization of large-scale 

time-limited applications, such as the crude oil refinery scheduling problem. 

The other heuristic strategy applied for the example shown in Figure 4.16 is the relax-

and-fix approach, which optimizes a relaxed version of the original MINLP refinery 

scheduling problem, fixes all the relaxed variables that are active (i.e., equal to one 

according to certain tolerance), and reoptimizes the MINLP problem. The first 

optimization is much faster because the relaxed MINLP becomes an NLP problem, 

and the second optimization is expected to have a significantly lower number of binary 

variables than the original problem. Therefore, this strategy may be useful to reduce 

the computational time for the optimizations, which is especially helpful for handling 

intractable large-scale formulations. The optimization results for Scenario 4.6.7, which 

uses the relax-and-fix approach, are presented in Table 4.19, and compared to the 

original MINLP results from Scenario 4.6.1.  

Table 4.19: Optimization results for the scenario using the relax-and-fix approach. 

Scenario Relax-and-fix approach Profit ($) CPU Time (s) 

4.6.1 No  85,558 295 

4.6.7 Yes  85,421 37 

Source: Author (2021). 

The results in Table 4.19 indicate that a computational time 85.5 % lower is achieved 

by using the relax-and-fix approach, with a reduction of only 0.16 % in the objective 

function. 

 

 

 

 

 



144 
 

4.7 Example 10: Effective scheduling of complex process-shops using online 

parameter feedback in crude oil refineries3 

Integrated scheduling optimization comprising the battery limits of crude oil refineries 

is a challenging problem to be solved as it includes decisions concerning the quantity 

and quality of the crude oil feedstocks and final products (such as fuels and 

petrochemicals), as well as the refinery production network. So far, the literature on 

crude oil scheduling optimization has covered the problem from the crude oil unloading 

and storage up to the distillation straight-run streams. To go further, this section 

extends the scope of the problem from the raw material deliveries up to product liftings 

through the refinery process-shop by using closed-loop, online and routine process 

feedback data from field and laboratory measurements for better process predictions, 

integrated within the scheduling cycle. For such engine, past routine operating data 

calibrates gains and biases as 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑔𝑎𝑖𝑛 ∗ 𝑦𝑚𝑜𝑑𝑒𝑙 + 𝑏𝑖𝑎𝑠, whereby the data 

updating in 𝑦 considers both process yields and variables such as throughputs, flows, 

holdups, and properties, whose effects propagate throughout the process network. 

Parameter feedback is applied after data reconciliation computation in a complete 

crude oil refinery blend scheduling problem considering real tank topology, cascaded 

distillation towers, process-shops, and blend-shops, so as to effectively optimize the 

complex process system. The feedback strategy is solved within an iterative mixed-

integer linear and nonlinear programming (MILP-NLP) decomposition by updating NLP 

results of process-shop’s yields and properties, and recipes of blend-shops in the next 

MILP solution until convergence is achieved. 

4.7.1 Introduction 

An effective optimization integrating the operations of scheduling in refining of crude 

oils into fuels, lubes, asphalts, and petrochemical feeds is a challenging problem to be 

solved. It involves decisions concerning logistics and storage of crude oil feedstocks 

 
 

3 This section is based on the following manuscript: 

FRANZOI, R. E.; MENEZES, B. C.; KELLY, J. D.; GUT, J. A. W. Effective scheduling of complex 
process-shops using online parameter feedback in crude-oil refineries. In Computer Aided Chemical 
Engineering, v. 44, p. 1279-1284, 2018. 
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and final products as well as the processing and blending in the refinery network. 

Approaches to promote the integration of these multi-entity, multi-activity and multi-

resource decision-making require efficient modeling and solving strategies that 

considers the difficulties posed by these logistics and quality aspects.  

In terms of modeling, previous literature on crude oil scheduling optimization covers 

the scheduling from the crude oil unloading and storage up to the representation of the 

crude oil atmospheric and vacuum distillation towers and their immediate straight-run 

streams (KELLY et al., 2017a). Predictions of product yields and properties from 

process-shops, where the crude oil blend diet feed is separated into straight-run 

distillation intermediate products for further downstream reactions, conversions, 

separations, treatments, and blending throughout the remaining refinery unit-

operations and tanks, remain a substantial limitation for better scheduling operations. 

Modeling such processes reliably and accurately is difficult due to the complexities and 

uncertainties in the feed quality, operating conditions, process measurements, etc. and 

therefore parameter feedback is required. 

In terms of solving, the search for optimized solutions in the crude oil scheduling may 

succeed with an MILP-NLP decomposition strategy instead of a full space MINLP 

approach, since in the latter a binary variable relaxation of the logistics problem is 

solved along with the non-convex blending and processing relationships in the NLP 

steps. Recently, Kelly et al. (2017a) solved a discrete-time benchmark for a 1-week 

time horizon with 2-hour time step involving the logistics details of ship arrivals, tanks, 

and process units in an MILP as well as the quality calculations in an NLP for the 

blending of streams (e.g., feed diet of distillation towers) and for the transformation of 

crude oils into distillates. However, the benchmark excludes further physical and 

chemical transformations in other process units beyond the initial distillation towers. In 

this example, a problem covering the entire refinery scheduling process is modeled, 

from crude oil unloading and storage up to fuel deliveries by including process- and 

blend-shops as well as the fine tune adjustments regarding on online measurement 

updates from the field. 
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With the evolution of solving capabilities determining crude oil blend scheduling 

problems with 1-hour discrete time step, there are reasons to evolve into a more 

complex scope and scale in the modeling frontier by including cascaded distillation 

towers, downstream process-shops and blend-shops (e.g., to specify products at their 

contracted deliveries). Furthermore, an online scheduling algorithm can better predict 

the model by including the valid plant state (measured) by using parameter feedback 

and operational updates from the field. According to Subramanian, Maravelias, and 

Rawlings (2012), disruptions or arrival of new information can make the incumbent 

schedule suboptimal or infeasible, motivating the need for online scheduling. Major 

considerations on strategies (GUPTA and MARAVELIAS, 2016; GUPTA, 

MARAVELIAS, and WASSICK, 2016), design (GUPTA and MARAVELIAS, 2017b) and 

formulations (GUPTA and MARAVELIAS, 2017a) introduce the online scheduling 

modeling aspects, although other essential elements as re-scheduling activation and 

frequency as well as handling of process uncertainty are imperative. 

For such online scheduling improvement, the use of parameter feedback is proposed 

considering the past routine operating data to calibrate gains and biases such as 

𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑔𝑎𝑖𝑛 ∗ 𝑦𝑚𝑜𝑑𝑒𝑙 + 𝑏𝑖𝑎𝑠. Data reconciliation and estimation steps are 

necessary for the next scheduling cycle. The parameter updating is performed by 

offsetting the lower, upper, and target bounds of variables for output-uncertainty, and 

by creating new flow and quality variables for input-uncertainty overriding when these 

variables are propagating in the flowsheet.   

4.7.2 Problem statement 

The flowsheet in Figure 4.17 shows the operational scheduling optimization of a 

refinery with real scale topology considering the crude oil supply, storage and feed tank 

operations, production in cascaded distillation towers, operations of process-shops 

and blend-shops of both crude oils and products. The marine vessels or feedstock 

tanks (CO1 to CO12) supply a crude oil refinery with different quality of raw materials. 

The assignment of crude oil feedstocks to storage tanks (S1 to S12) can be pre-defined 

by clustering similar quality raw materials (KELLY et al., 2017b). Storage tanks are 

connected to crude oil blenders for preparation of distillation tower feeds or diet to be 

stocked temporarily in feed tanks (F1 to F4) before starting the crude oil charging. 
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Figure 4.17: Crude oil refining scheduling flowsheet. 

 

Source: Author (2021). 

The network in Figure 4.17 is constructed in the unit-operation-port-state 

superstructure (UOPSS) formulation (KELLY, 2005). The UOPSS objects are detailed 

in the illustrative example in Figure 4.18 as: a) unit-operations 𝑚 for sources and sinks 

(), tanks () and continuous-processes (⊠) and b) the connectivity involving arrows 

(), inlet-ports 𝑖 () and outlet-ports 𝑗 (). Unit-operations and arrows have binary 

and continuous variables (y and x, respectively) and the ports can hold the states as 

process yields or properties. The port-states 𝑗′ and 𝑖′′ represent upstream and 

downstream ports connected, respectively, to the in-port 𝑖 and out-port 𝑗 of a unit-

operation 𝑚. 
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Figure 4.18: Illustrative example for the parameter feedback approach. 

 

Source: Author (2021). 

4.7.3 Online parameter feedback 

The parameter updating of variables (𝑥𝑚,𝑡, 𝑥ℎ𝑚,𝑡, 𝑥𝑗,𝑖,𝑡, 𝑝𝑗,𝑡) and hard bounds of yields 

(�̅�𝑖,𝑡
𝐿 , �̅�𝑖,𝑡

𝑈 , �̅�𝑗,𝑡
𝐿 , �̅�𝑗,𝑡

𝑈 ) uses real, measured, or valid values defined as 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑔𝑎𝑖𝑛 ∗

𝑦𝑚𝑜𝑑𝑒𝑙 + 𝑏𝑖𝑎𝑠, considering gain and bias as the proportional and the linear deviations 

between the measured and model values. Two sets are defined for the data updating 

in the next scheduling cycle. For variables of unit-operation throughputs 𝑥𝑚,𝑡, tank 

holdups 𝑥ℎ𝑚,𝑡, and parameters of inverse yields (�̅�𝑖,𝑡
𝐿 , �̅�𝑖,𝑡

𝑈 ) and yields (�̅�𝑗,𝑡
𝐿  and �̅�𝑗,𝑡

𝑈 ), there 

is no need to create intermediate variables to update their ordinated values in the 

model since the flowsheet structure is identical (same rows and columns in the 

modeling, although with different coefficients). For this type of updating, gains and 

biases are added directly in their soft bounds (target) and hard bounds of unit-

operations variables (𝑥𝑚,𝑡 and 𝑥ℎ𝑚,𝑡) and their yields, procedure named as offsetting.  

However, for flow of material and properties of unit-operation to unit-operation 

connections (𝑥𝑗,𝑖,𝑡, 𝑝𝑗,𝑡), there is a need to create intermediate variables to update their 

flowsheet propagation that overrides neighbor structures connected by arcs, paths, or 

arrows (). Therefore, the total number of variables increases by the additional flows 

and properties overriding the connected objects for the re-scheduling step with 

parameter feedback, representing new columns in the re-scheduled model. In such 

way, the effects of all measurement updates propagate throughout the network.  

By updating the overriding variables in the illustrative case (Figure 4.18), the number 

of continuous variables increases around 40%, hence for industrial cases this type of 

variable can be applied only in the initial time windows for less complex solving steps. 
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For each scheduling cycle before the parameter feedback updating, a simultaneous 

data reconciliation and parameter estimation is performed considering the raw data 

collected in the past time window. The examples use the reconciled data of the 

measured variables as targets and the gains and bias are feedback in the next re-

scheduling model to be executed continuously.  

Figure 4.19 shows the measured and the optimized values with and without the 

parameter feedback (both using reconciled data as target) for the illustrative case in 

Figure 4.18. A time horizon of 8 hours considers fixed setups of unit-operations and 

arrow flows, resulting in an NLP problem. The plots for flow-in, flow-out, and holdup of 

the tank F2 consider 60 𝑚3/𝑑𝑎𝑦  and 90 𝑚3 as flow and holdup baseline, respectively. 

Figure 4.19: Measured and optimized solutions for tank F2 (see Figure 4.18). 

 

Source: Author (2021). 

For the optimized case with feedback ( ), the flow after the tank F2 (on the right side) 

is the result of the effects of its flow-in (slightly) and holdup (significantly). The 

variations of tank flow-out delay one-time window to follow the new holdup value at 

each re-scheduling step and only the first time-window in the future of the optimized 

values are shown in Figure 4.19, therefore there are 8 scheduling cycles in this case.  

In the industrial-sized example in Figure 4.17, the logistics MILP optimization for 5 days 

of time-horizon with 4 hours as time step (30 time periods) is solved in 86 seconds 

(with GUROBI 7.5.1) at 3.9% MILP gap. There are 12,568 constraints (2,545 

equalities) for 5,777 continuous variables and 3,412 binary variables with 6,664 

degrees-of-freedom. The quality NLP optimization is solved in 184 seconds (with 
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IMPL’s SLPQPE linked to GUROBI 7.5.1). There are 4,103 constraints (3,663 

equalities) for 3,821 continuous variables with 278 degrees-of-freedom. 

4.7.4 Conclusions 

Efficient scheduling solutions in a near online fashion are becoming reality by the virtue 

of all advances in decision-making modeling, solving algorithms, and computer-aided 

resources in terms of faster CPU clock speeds and memory. The major challenge now 

is to integrate proper or correct data (in timeliness and quality) to the decision 

automation core. An online scheduling engine with parameter updating might be useful 

to cope with uncertainties and to reduce the offsets or inaccuracies over the life-time 

of the problem as an effective way to close the gap among predictions and productions. 
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4.8 General conclusions on the crude oil refinery scheduling optimization 

The crude oil refinery scheduling optimization is a complex and challenging problem 

due to the high number of continuous and binary variables, in addition to nonlinear  and 

non-convex terms, which results in a non-convex large-scale MINLP formulation. 

Aiming to study and contribute to the state-of-the-art on the chemical engineering 

optimization literature, the research topics addressed in this chapter focus on handling 

complex formulations typically found in the chemical engineering industry through the 

implementation and development of modeling and optimization approaches, 

decomposition and heuristic strategies, and machine learning techniques  for chemical 

processes with an emphasis on crude oil refinery scheduling applications. This 

includes: a) Mathematical modeling of large-scale discrete-time crude oil refinery 

scheduling problems using the UOPSS representation; b) Phenomenological 

decomposition of the quantity-logic-quality phenomena, which addresses an iterative 

two-step solving procedure of MINLP formulations as sequential MILP and NLP sub-

models; c) Efficient process design regarding both the mathematical formulation and 

the operations in the plant; d) Linearization strategies to approximate nonlinear 

blending terms in a linear programming model, in which the factor-flows of qualities are 

modeled explicitly as slack or surplus variables; e) Exclusions employed to reduce the 

scale of the optimization search space in constructive rolling horizon strategies; f) 

Relaxations in MILP models by using relax-and-fix iterations; g) Parameter feedback 

to minimize plant-model mismatches, to handle process uncertainties and 

disturbances, and to improve the reliability and accuracy of the scheduling solution and 

implementation. 

The crude oil refinery scheduling problems addressed are formulated using the unit-

operation-port-state superstructure and the quantity-logic-quality phenomena (QLQP) 

concepts. That allows the modeling and solving of complex-scope industrial-sized 

scheduling problems using a discrete-time formulation. A phenomenological 

decomposition heuristic is applied to handle the complex MINLP refinery scheduling 

formulations by breaking down the problem to significantly reduce the computational 

burden within optimization approaches. 

A proper design plays a key role on industrial operations, including the methodology 

used to build the mathematical formulation to be solved, as well as the process 
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operations in the real plant. On one hand, the mathematical formulation is expected to 

accurately represent the real process, especially aiming to mitigate plant-model 

mismatches over time. On the other hand, the process design directly impacts the 

economic, technical, and operational conditions. For improved operations, especially 

when addressing online strategies toward smart processing with real-time feedback 

from the plant, both an improved blend design and a complex process design are the 

recommendable networks to be constructed, modeled, and solved, aiming to achieve 

improved solutions in terms of economic value and production flexibility. The blending 

formulation considering a continuous blender unit instead of batch mixtures (without 

the blender), and the processing formulation considering a complex cascaded 

distillation network instead of a simplified one-tower network, are examples of 

improved designs that provide more accurate predictions, production flexibility, and 

increased economic value for the process. This is especially beneficial when the 

formulation simultaneously includes the blending and the processing improved 

designs. 

Modeling strategies such as the linearization of blending constraints within linear 

problems improves the mathematical formulation by considering additional information 

for more accurate predictions, which results in better optimized solutions. This strategy 

includes proxied information on the qualities of streams by using a linear programming 

factor reformulation for the blending operations of crude oil. The benefits include 

improved solutions, with better economic value, and better convergence within the 

optimization procedure. As the formulation remains unchanged, except for the blending 

constraints, the computational effort increase is expected not to be a limiting factor for 

the utilization of this method. 

Modeling, solving, and heuristic strategies are employed for handling complex 

industrial-sized refinery scheduling problems within a discrete-time formulation, 

including decompositions to reduce the optimization search space in constructive 

rolling horizon strategies, and relaxations on mixed-integer linear programming 

problems to  construct the problem by an ad-hoc relax-and-fix approach. Both 

heuristics imply in an expected slight reduction in the objective function, but with great 

benefits in terms of reduced computational effort. Moreover, this reduced effort is 

expected to scale with the size of the problem; therefore, it might be especially useful 

for large-scale applications. 
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Overall, the formulation proposed is coherent with large-scale industrial applications in 

terms of operational constraints, refinery economics, and problem complexity and size. 

The results indicate that complex non-convex MINLP refinery scheduling formulations 

can be efficiently solved by utilizing decomposition, heuristic, and machine learning 

strategies, which potentially provides improved modeling and optimization capabilities 

for real industrial applications. 
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5                                 
A Closed-Loop Rescheduling Framework for Continuous Nonlinear 

Processes with Disturbances4 
At any production manufacturing site, scheduling decision-making is often calculated 

and implemented using unreliable or inaccurate data from the process, therefore 

infeasibilities and inconsistencies are expected. For improved industrial operations, it 

is fundamental to minimize the plant-model mismatches through a re-optimization or 

moving horizon strategy, in which the current state of the system is continuously 

updated. The online closed-loop approach proposed herein is based on a systematic 

bi-layer rescheduling framework that simulates the closed-loop scheduling for 

continuous nonlinear processes within a moving horizon approach. An MINLP blend 

scheduling problem is addressed, and distinct types of disturbances are introduced. 

The proposed framework simulates the entire closed-loop scheduling solution, 

effectively handles the triggered disturbances, reduces inaccuracies and plant-model 

mismatches by maintaining the state of the system updated, and provides a systematic 

fashion to improve the scheduling implementation.  

5.1 Introduction 

Although real-world process industry operations are highly dynamic and fluid 

environments in which data is uncertain and changes over time, online updates of 

information in process operations are usually delayed (in terms of timeliness) or 

incomplete (in their structural and temporal integration) since they are complicated to 

be synchronized and to be implemented algorithmically in a systematic way (LARSEN 

and PRANZO, 2018). However, recent advances in network (flowsheet) optimization 

(BRUNAUD et al., 2020) as well as in solving algorithms and computer-aided 

 
 

4 This chapter is based on the following manuscript: 
FRANZOI, R. E.; MENEZES, B. C.; KELLY, J. D.; GUT, J. A. A Closed-Loop Rescheduling Framework 
for Continuous Nonlinear Processes with Disturbances. Computers & Chemical Engineering, 2020. 
Under review. 
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resources (FRANZOI et al., 2018) allow more complex decision-making solutions in 

scheduling propositions. Moreover, the expansion of information and communication 

technologies can provide an online data measurement of complete process networks 

for the massive volume and variety of information from the plant (MENEZES, KELLY, 

and LEAL, 2019). In this direction, this paper addresses the design of an online 

scheduling framework based on a dynamic or moving horizon rescheduling approach 

for a typical chemical manufacturing process considering: a) data uncertainty and 

disturbances; b) rescheduling cycles to update the state of the modeled system and to 

properly handle the effects of disturbances throughout the network; and c) features for 

open-loop and closed-loop solutions, the former without integration between the 

systematic solutions, and the latter generated by sequentially rescheduling the 

problem using variable feedback (see KELLY and ZYNGIER, 2008).  

An effective scheduling optimization is challenging due to the complexities of data 

updating, modeling re-building or re-formulating of sets, parameters, variables, 

constraints, and derivatives, as well as solving NP-hard mixed-integer problems fast 

enough to be integrated within a discrete-time step of hours or less. If the process data 

used for scheduling is outdated or not properly integrated with the production, there 

may be inconsistencies in the prediction of amounts and properties of intermediate and 

final products. Moreover, when data is uncertain (which is common in all industrial 

fields) it becomes more difficult to reliably and accurately model operational problems 

and to anticipate future outcomes. In the chemical engineering field, some of the most 

common uncertainties are related to untracked feed quality (compositions, properties) 

before the processing, arrival of new information not updated in the current scheduling 

determinations, programmed and executed deviations from both manual and 

automated procedures in the process, mis-measurements in resources flows, 

operational conditions, etc. Exogenous factors such as product demand changes 

(regarding amount and due date), market fluctuations (price volatility, spot contracts), 

and feedstock information (date of arrival, amounts, and properties) are likely to 

happen in the day-to-day production as well. According to Larsen and Pranzo (2019), 

although dynamic environments and uncertainties are frequent in real-world 

operations, new information from the production is usually neglected. Furthermore, 

there might be many unexpected events in real production operations which can 

invalidate the original schedules so that a re-optimization is essential for smoothing 
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eventual negative impacts (KATRAGJINI, VALLADA, and RUIZ, 2013). From Gupta 

and Maravelias (2016), this re-optimization consists basically in revising and updating 

the actual schedule due to disruptions or unexpected events, what is known as reactive 

scheduling or rescheduling. Although arrival of new information and disruptions in the 

process may lead to suboptimality and infeasibilities in the incumbent schedule, what 

by itself motivates the importance of rescheduling (SUBRAMANIAN, MARAVELIAS, 

and RAWLINGS, 2012), it should be performed not only when necessary but rather on 

a regular and systematic basis to account for new information in the optimization stage. 

This potentially contributes to reduced costs and improved economics (GUPTA and 

MARAVELIAS, 2016), and makes rescheduling a proactive mechanism to be 

widespread in industry. Similarly, Zhuge and Ierapetritou (2012) argue that even 

though unexpected events are usually seen negatively, they may not always be 

unfavorable, and rescheduling should be performed on a regular basis to exploit 

favorable disturbances instead of rejecting them to maintain the actual schedule 

(interestingly, there is a similar effect in model predictive control). Therefore, when new 

data is integrated to the scheduling, re-optimizing the problem provides a continuous 

and institutionalized cycle of improvement that reduces the deviation between model-

based and data-based scheduling solutions and real plant values. Such continuous 

data-model updating and re-determination of new schedules mitigates or at least 

reduces the negative effects of uncertainties and disturbances, as well as benefits from 

any favorable changes in the process. 

The rescheduling theory and applications have been emphasized in many works over 

the past decades (COTT and MACCHIETTO, 1989; RODRIGUES et al., 1996; MCKAY 

and WIERS, 1999; VIEIRA, HERRMANN, and LIN, 2003; LI and IERAPETRITOU, 

2008; KATRAGJINI, VALLADA, and RUIZ, 2013), although rescheduling is still 

typically formulated as a static open-loop problem in which the main goal is to restore 

feasibility or optimality. Conversely, when the schedule is revised (and a reschedule is 

then performed) in a consistent and regular basis, it leads to a moving horizon 

approach in which sequential open-loop or feedforward solutions might be 

implemented to generate a closed-loop solution with embedded variable feedback and 

in which parameter feedback (such as bias updating) may be added as required 

(KELLY and ZYNGIER, 2008). This can be part of a systematic framework based on 

an online scheduling algorithm able to handle different types of disturbances in the 
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production system such as a failure or malfunction of a unit or disruption in any link or 

transfer in the production-chain. Gupta and Maravelias (2016) show that the open- and 

closed-loop scheduling are distinct problems even when no uncertainties are 

considered, since in the closed-loop strategy the data is updated in a new model to be 

re-solved and re-iterated into a new forward rolling rescheduling. Recent studies on 

closed-loop strategies (GUPTA, MARAVELIAS, and WASSICK, 2016; GUPTA and 

MARAVELIAS, 2016), formulations (GUPTA and MARAVELIAS, 2017a), and design 

(GUPTA and MARAVELIAS, 2017b) address the importance of rescheduling in 

chemical processes. However, additional features such as rescheduling frequency and 

triggering, approaches to handle uncertainties and disturbances, impact of time 

horizon length in the simulation/optimization, are still imperative.  

The online scheduling framework thus proposed herein is based on a dynamic 

rescheduling and moving horizon approach and can effectively handle disturbances 

(either to mitigate/reduce their effects or to take advantage of new information), 

maintain the state of the system updated, reduce plant-model mismatches, achieve a 

more accurate and reliable representation of the real process, and provide a 

systematic fashion to improve the performance of the scheduling implementation in the 

process. The novelty of this approach relies on developing a systematic bi-layer 

framework to simulate the closed-loop scheduling solution for continuous nonlinear 

processes within a moving horizon fashion, in which noises, disturbances, disruptions, 

and other unforeseen events are assumed to happen with respective triggering 

probabilities. The framework is employed to test multiple scenarios in order to 

investigate the impact of the disturbances in the closed-loop scheduling regarding both 

the economic value and the scheduling operations. Several common types of 

disturbance are considered, and further analyses on the issues caused by neglecting 

them are addressed as well. The proposed methodology is applied to a mixed-integer 

nonlinear programming (MINLP) problem, in which a hierarchical phenomenological 

decomposition is used (see MENEZES, KELLY, and GROSSMANN, 2015). 

The outline of this chapter is as follows. Section 5.2 presents an overview of the online 

scheduling approaches reported in the literature. The importance of the rescheduling 

and closed-loop strategies, including a motivating example, is highlighted in Section 

5.3. The problem statement is described in Section 5.4 and its mathematical 
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formulation is given in the Supplementary Material. Examples using the proposed 

framework, including their respective results, are discussed in Section 5.5. The 

conclusions are highlighted in Section 5.6. 

5.2 Literature Review on Online Scheduling (Rescheduling) 

In the past decades, several works addressed increasingly more complex rescheduling 

topics, mostly related to uncertainties in the process, rescheduling features, and open-

loop and closed-loop solutions. Kanakamedala, Reklaitis, and Venkatasubramanian 

(1994) presented a reactive scheduling problem in multipurpose batch plants in which 

there are unexpected deviations for unit availabilities and processing times, and 

employed a bi-level least impact heuristic to reschedule the model. Huercio, Espuna, 

and Puigjaner (1995) used a heuristic-based rescheduling algorithm to cope with real 

time disturbances through task start time shifting units’ reassignment. Honkomp, 

Mockus, and Reklaitis (1999) proposed a framework to validate and evaluate 

rescheduling strategies under uncertainties such as processing time variations and unit 

breakdowns. Vin and Ierapetritou (2000) rescheduled a multiproduct batch plant 

problem within a continuous time formulation considering as disturbances machine 

breakdowns and rush order arrivals. Vin and Ierapetritou (2001) developed a strategy 

to improve the scheduling performance and flexibility under occurrence of unexpected 

events. Méndez and Cerdá (2003) introduced an MILP formulation for a multiproduct 

batch plant in which rescheduling is performed either under occurrence of unexpected 

events or to improve a non-optimal schedule. Besides, multiple rescheduling 

operations, such as reallocation, resequencing, and reordering, could be performed 

simultaneously. Janak et al. (2006) developed a rescheduling framework to partially 

reschedule the problem by determining which tasks have been affected or not under 

unforeseen events such as unit breakdowns and alteration of orders. Adhitya, 

Srinivasan, and Karimi (2007) proposed a framework to cope with supply chain 

disruptions in which the procedure of continuously and frequently rescheduling the 

problem leads to a closed-loop solution.  

Kelly and Zyngier (2008) studied a production-chain problem involving a simple reactor 

and a tank flowsheet in which the inventory gap between the modeled and the real 

tank could be reduced to zero offset by performing what they called parameter 
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feedback (gain and/or bias updating). According to these authors, differences between 

the planned (model) and the real (measured) values in the process do not necessarily 

result from task execution or operational errors, since the absence of parameter 

feedback data makes it impossible to distinguish between an inadequate model 

representation and implementation failure of the problem result. Katragjini, Vallada, 

and Ruiz (2010) employed three different types of disruptions in a flowshop scheduling 

problem (arrival of new jobs, machine breakdowns, and release time delays) and 

developed rescheduling algorithms to find better trade-offs between the quality and the 

stability of the schedule. Zhuge and Ierapetritou (2012) introduced a closed-loop 

strategy for the simultaneous integration of scheduling and control, and highlighted the 

importance of rescheduling not only to handle negative scenarios but also to exploit 

favorable disturbances in the process. Nie et al. (2014) developed an MILP formulation 

based on a discrete-time resource task network (RTN) to reschedule a mixed 

batch/continuous process, which is reformulated in a state-space form and used for 

continuous rescheduling under process disruption. Kopanos and Postikopoulos (2014) 

presented a rescheduling approach based on state-space representation, moving 

horizon framework and multiparametric programming techniques. Lindholm and 

Nytzén (2014) introduced a bi-level hierarchical approach for a production scheduling 

problem considering disturbances in the supply of utilities. Du et al. (2015) proposed a 

time scale bridging framework to integrate closed-loop scheduling and nonlinear 

control of continuous processes. Gupta, Maravelias, and Wassick (2016) approached 

rescheduling as an online problem (online scheduling) and showed its benefits even 

when no disturbances/trigger events occur; therefore, reschedule should be applied 

whenever new information is available.  

Gupta and Maravelias (2016) addressed features of open- and closed-loop scheduling 

and presented a framework to analyze closed-loop schedules. From an online 

scheduling perspective, Gupta and Maravelias (2017a) introduced a generic state-

space model formulation to routinely handle disturbances and to apply their respective 

counter-decisions to update the state of the system using parameter feedback. Looking 

for more efficient closed-loop implementation to properly integrate planning, 

scheduling and control, Charitopoulos, Papageorgiou, and Dua (2019) introduced a 

framework based on a rigorous rescheduling mechanism to provide online solutions 

under dynamic disturbances, which mitigates their impact on operational decisions of 
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planning and scheduling. Larsen and Pranzo (2019) proposed a generic framework for 

dynamic scheduling problems in which a solver-simulator-controller approach is 

employed to a job shop scheduling problem to evaluate when uncertainties become 

relevant, rescheduling triggering and frequency, and solution quality. Stevenson, 

Fukasawa, and Ricardez-sandoval (2020) evaluated periodic rescheduling policies 

using a rolling horizon framework in an industrial-scale multipurpose plant to 

investigate the effect of plant parameters on the plant performance, and highlighted 

the importance of addressing rescheduling strategies for industrial applications. 

Additionally, Franzoi et al. (2018) addressed an industrial-sized crude oil refinery 

scheduling problem and introduced an online parameter feedback with data 

reconciliation integrated within the scheduling cycle to achieve better process 

determinations. The authors highlighted the importance of properly integrating data to 

the decision automation core to reduce inaccuracies, to handle uncertainties, and to 

reduce the gap between optimized determinations and productions. For better 

performance of industrial operations, high-quality predictive analytics based on near 

past data (validated, reconciled, estimated, etc.) can determine improved near future 

predictions, which may be used in decision-making (prescriptive analytics) to correct 

processes mismatches. This framework relies on better diagnostics to improve 

predictive analytics (by identifying and correcting mismatches) and prescriptive 

analytics (by handling inconsistencies and infeasibilities) (MENEZES et al., 2019). 

For improved industrial scheduling operations, it is fundamental to properly formulate 

and optimize the problem. That includes minimizing the plant-model mismatches so 

that the optimal solution matches the process conditions. Because of the high 

nonlinear and uncertain nature of most industrial problems, unforeseen events are 

likely to happen constantly and repeatedly throughout the entire network. That 

motivates for a continuous optimization cycle, in which the current state of the system 

is updated, and re-optimizations (rescheduling) are performed. The literature on the 

topic has been increasingly discussed the importance of rescheduling for process 

operations, although there are still open questions to be addressed, mostly related to 

open-loop versus closed-loop methods, rescheduling algorithm or framework, tuning 

of rescheduling elements or parameters, impacts of disturbances and uncertainties on 
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the scheduling operations, etc. Some of these topics will be addressed and discussed 

as follows. 

5.3 Problem Statement 

Three main rescheduling topics are addressed herein: a) the framework and the 

elements of the rescheduling approach; b) the occurrence of disturbances in the 

process network, their potential impact, and importance of including them in the 

formulation; and c) open-loop versus closed-loop strategies in the scheduling 

optimization. In this section, the importance of re-calculation cycles as well as their 

contribution towards a better scheduling optimization are highlighted. 

Due to differences between the data used in the scheduling model and the actual data 

from the process, there are inconsistencies between what would theoretically be 

produced (predictions and prescriptions) and what is in fact processed (production). 

These disturbances might arise from the arrival of new information, operational 

deviations (prescriptions versus productions) from manual and automatic procedures, 

equipment failures and malfunctions, uncertainty on data (mainly information 

mismatch), etc. More specifically, common examples of disturbances in chemical 

engineering encompass: a) product demand changes (amount quantities and/or 

release, and due dates); b) non-updated and untracked or untraced feedstock 

information (date of arrival, amounts, and properties); c) uncertainty in the flows and 

properties throughout the process network; d) breakdowns, malfunctions or unplanned 

maintenance in process units, storage vessels (tanks), and in their connections; e) 

uncertainty in the raw material (inlets) to product (outlets) yields and properties in 

complex units (i.e., distillation column). Some of these disturbances are discussed later 

in this section. In the following, a motivating example illustrates the main concept of 

rescheduling and underscores the overall benefits that this type of approach brings to 

the final scheduling solution.  

5.3.1  Motivating Example 

Let us consider a moving horizon scheduling optimization to be performed daily within 

the future 5 days, so that the first optimization is carried out from Day 1 to Day 5 and 
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uses the available past, present, and future information given for that respective time 

horizon. After the schedule for the first day is implemented, the second optimization is 

carried out (from Day 2 to Day 6), and new information might be available for this future 

5 day-horizon. Therefore, there is a new model to be updated for rescheduling of the 

next step or cycle. For instance, this new information could be related to a unit 

breakdown that may cause a future infeasible schedule. It could also be a new future 

demand order, for Day 6, which was not considered in the first cycle of the scheduling 

optimization. Market fluctuations may impact the new scheduled program so that the 

current solution defined in Day 1 does not necessarily meet the product demands and 

specifications. If the actual schedule becomes infeasible with the new scenario 

(regarding the production, demand fulfillment, raw material quality, etc.), rescheduling 

the problem may find a new feasible solution; and even if the schedule is still feasible, 

a re-optimization may find a distinct and updated optimal solution potentially better than 

the previous one. In any case, the sooner the new information is included into the 

modeling and solving, the better in terms of maintaining and/or restoring feasibility or 

optimality. 

By continuously rescheduling the problem, the solution is adapted from an open-loop 

to a closed-loop fashion. Specifically, optimizing an open-loop schedule for the future 

five days requires only one optimization at the beginning of the time horizon; however, 

optimizing the problem in a closed-loop strategy requires a sequence of optimization 

runs. In the example shown in Figure 5.1, the problem is daily optimized for the future 

5 days using time steps of one day. Therefore, there are sequential open-loop 

solutions, and the closed-loop solution is achieved by using the beginning (first day) of 

each open-loop solution. By definition, a closed-loop solution is understood as an 

arrangement of the initial or publishable part of the sequential open-loop solutions 

through a moving horizon strategy, as shown in Figure 5.1. Similarly, to model 

predictive control, there are both a prediction horizon for the outputs and a control 

horizon for the inputs where the initial part of the open-loop schedule is the control 

horizon. 
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Figure 5.1: Moving horizon closed-loop scheduling. 

 

Source: Author (2021). 

From the motivating example, the main features of the closed-loop approach require 

some sophisticated capabilities to: a) periodically or regularly re-optimize the schedule; 

b) properly integrate operations vis the publishable part of the open-loop schedule; and 

c) update new information in the model considering process variables (yields, 

conversion rates, opening inventories, etc.), new process network structures, among 

others (referred to as variable feedback in Kelly and Zyngier, 2008). Without these 

closed-loop features implemented into an online fashion, the rescheduling may be 

unrealistic since the inherent uncertainties and unforeseen disturbances that 

progressively change the incumbent conditions must be continuously considered to 

match the ongoing production scenario and context. 

5.3.2 Blend Scheduling Optimization Example 

To further illustrate the main concepts and advantages of rescheduling approaches, a 

case study is proposed over a typical blend scheduling optimization problem to 

investigate the impact of disturbances in the rescheduling modeling and solving, as 

well as to explain and to discuss the mechanisms of how this framework handles the 

disturbances and systematically generates a new optimal solution. For each scenario 

proposed to test our approach, a closed-loop solution is achieved by the sequential 

integration of the open-loop solutions (similarly as shown in Figure 5.1). In the blend 

scheduling optimization problem shown in Figure 5.2, there are four feedstocks or raw 
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materials R1 to R4 with distinct qualities (the properties considered are the specific 

gravity and sulfur content), which are connected to four feed tanks F1 to F4, and 

sequentially to the mixers BLENDER and BLENDER2. The blended material is sent to 

the storage tanks S1 to S3 to be stocked in final pools to meet the demand for products 

D1 to D3. This is a typical example in many distinct types of industry. This could be a 

problem in which a blend of feedstocks must be prepared for further processing (e.g., 

preparing the crude oil blend to feed the distillation unit in refinery operations), or when 

the intermediate products must be blended to ensure the final product to meet 

specifications in terms of properties or quality control (e.g., mix distinct intermediate 

streams of diesel to produce a final stream with required specifications in terms of 

specific gravity and sulfur content). 

Figure 5.2: Blend scheduling problem flowsheet. 

 

Source: Author (2021). 

The data for this problem are presented in Table 5.1, including the properties of each 

feedstock R1 to R4, the specifications for each product D1 to D3 (i.e., maximum 

specific gravity and maximum sulfur content allowed), and their respective market 

costs or prices. 
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Table 5.1: Data for the blend scheduling optimization problem. 

Unit R1 R2 R3 R4 D1 D2 D3 

Specific Gravity (g/mL) 0.80 0.85 0.95 1.00 0.85 0.90 0.95 

Sulfur Content 

Specification (g/g) 
0.90 1.00 1.25 1.50 1.05 1.20 1.40 

Value (k$/bbl) -23 -20 -17 -15 80 75 70 

Source: Author (2021). 

As there are three distinct products that may be produced in each blender unit, 

operating modes or grades (A, B, and C) are created. Thus, the problem flowsheet is 

extended as shown in Figure 5.3 where a set of multi-use or unit-commitment 

constraints are included to avoid simultaneous operation of different modes for each 

blender unit each time step or time period.  

Figure 5.3: Blend scheduling problem flowsheet using the UOPSS formulation. 

 

Source: Author (2021). 
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The flowsheet shown in Figure 5.3 is based on the UOPSS (Unit-Operation-Port-State 

Superstructure) formulation (KELLY, 2005) and considers six types of UOPSS objects. 

There are unit-operations 𝑚 for tanks (), sources and sinks (), and continuous-

processes (⊠), which are associated with both continuous and binary variables (𝑥 and 

𝑦); and there are connections involving arrows (), inlet-port-states 𝑖 () and outlet-

port-states 𝑗 (), also associated with both continuous and binary variables (𝑥 and 𝑦). 

The capital letters A, B, and C immediately below the blenders (⊠) represent their 

operational modes or grades. Binary variables account for the operational modes as 

well as connection lineups, routes or paths, and the quality blending equations (for 

specific gravity and sulfur content) impose both nonlinearities and non-convexities, 

yielding a non-convex MINLP or what we call a qualogistics problem, as it involves 

quantity, logic (logistics), and quality phenomenological variables and constraints.  

To handle such a complex formulation, the MILP-NLP phenomenological 

decomposition heuristic addressed by Menezes, Kelly, and Grossmann (2015) and 

applied in Kelly, Menezes, and Grossmann (2018) for a similar blend-shop, is 

employed to solve sequential sub-problems in an iterative, sequential, or successive 

fashion. Each iteration consists in: a) neglecting the quality information in the original 

MINLP model, and optimizing the resulting mixed-integer linear problem; and b) fixing 

all the binary variables from the mixed-integer linear problem solution in the original 

MINLP (i.e., setting the binaries to be either 0 or 1 based on their respective values), 

and optimizing the resulting nonlinear problem. Although this phenomenological 

decomposition is an intuitive and straightforward method to tackle the proposed 

problem, it may result in an undesirable MILP-NLP gap. In addition, the high level of 

nonlinearities and non-convexities in this type of problem may hinder the NLP 

optimization to find better optimal solutions (i.e., higher probability to converge to a 

local optimum or even an infeasible solution). To handle such solution complexities, 

two additional strategies have been used to improve the performance of the modeling 

and solving stages within the proposed approach, leading to better convergence 

(optimization) and results (final solution). First, multiple NLP optimizations are 

performed in each iteration by generating different starting points for the variables in 

the modeling stage, which (given the highly nonlinear and non-convex nature of the 

model) typically leads to different local optimal solutions. The starting points generation 

is performed automatically by the standard modeling found in the industrial modeling 
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and solving platform (IMPL, Industrial Modeling and Programming Language). Second, 

the LP approximation for non-convex NLP blending equations proposed by Kelly, 

Menezes, and Grossmann (2018) and referred to as factors is employed, in which slack 

and surplus variables, as well as linearized quality blending information, are included 

in the MILP model. Hence, the flowsheet is updated to account for the hypothetical 

flows related to the slack/surplus variables, in which there are two flows connecting 

each mode of each blender to the hypothetical perimeters, related to the specific 

gravity and sulfur content properties, as shown in Figure 5.4. 

Figure 5.4: Blend scheduling with factors problem flowsheet using the UOPSS 

formulation. 

 

Source: Author (2021). 
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5.3.3 Rescheduling, Open-loop, and Closed-loop Strategies 

There are two approaches addressed herein that can be employed to optimize the 

blend scheduling problem presented in Figure 5.4. An open-loop strategy refers to a 

single optimization for the entire time horizon. Disturbances cannot be considered in 

the formulation because rescheduling is not performed, and plant-model mismatches 

are expected to happen. Moreover, the optimization tends to become suboptimal 

because eventual unforeseen events and infeasibilities are likely to happen. On the 

other hand, a closed-loop approach can be employed to sequentially reschedule the 

incumbent model in a moving horizon fashion. In this strategy, a frequent and 

predetermined rescheduling optimization handles the occurrence of noises, 

disturbances, and unforeseen or unexpected events, and takes advantage of 

additional information (that was not available in the previous optimization). Differences 

between the formulation (model values) and the plant (real values) can be mitigated, 

so that a more accurate and realistic process optimization is carried out. Both the 

formulation and optimization are more reliable in terms of considering the current (real) 

state of the system. Hence, an easier and smoother implementation of the optimal 

scheduling solution in the plant is expected. 

Due to the several advantages of closed-loop approaches, a closed-loop rescheduling 

framework is proposed herein. Prior to each optimization, the state of the system is 

updated so as to consider all available information as well as any impacts or changes 

related to noises, disturbances, disruptions, and unforeseen events. Within a moving 

horizon fashion, the rescheduling are basically re-optimizations for the future 10-days 

using a discrete-time formulation. Disturbances are introduced in the formulation in 

order to simulate a more realistic process system subjected to omnipresent 

uncertainties. The distinct types of disturbance assumed to happen are predefined in 

the framework and are randomly generated upon specific triggering probabilities. The 

framework properly and consistently handles each triggered disturbance by 

rescheduling the problem to find a new optimal solution. For a real process, the closed-

loop strategy is expected to be continuously performed, but for the matter of simulation 

purposes of the re-optimizations, a limited simulated time horizon of 40-days is defined. 

This time horizon length is expected to be large enough to avoid or mitigate 

interferences caused by the end-effects of the simulated horizon. A time step 𝑡𝑠 = 24 
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h is used, so that the formulation and the optimization have a total of 10 time steps and 

40 optimized solutions. Therefore, there are 40 iterations in the simulation of the 

moving horizon strategy. 

5.3.4 Closed-Loop Rescheduling Framework 

The framework proposed to build the closed-loop optimized scheduling solution is 

comprised of two sections. The first is a simulation routine (see Figure 5.5), which is 

the main structure that forms the framework. Its main objective is to simulate the 

closed-loop scheduling in a moving horizon fashion. The second section that forms the 

framework, referred to as optimization routine (see Figure 5.5), is called recursively 

within the simulation routine. It is worth noting that the optimization routine refers to the 

future 10-days open-loop optimization within the closed-loop scheduling, while the 

simulation routine refers to simulate the closed-loop scheduling itself, which is 

performed for the future 40-days. Therefore, the closed-loop simulation sequentially 

aggregates multiple open-loop solutions in order to build the closed-loop solution.   
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Figure 5.5: Moving horizon simulation framework with closed-loop scheduling 

optimizations. 

 

Source: Author (2021). 

The following steps explain how the framework works towards building the closed-loop 

optimized scheduling solution in a sequence of simulated iterations. 

1) The framework initializes pre-defining all the parameters, variables, and other 

elements required for the closed-loop simulation. The simulation time horizon is 

defined as 40-days. 

2) The optimization routine is called to model and to optimize the blend scheduling 

problem within the optimization time horizon (defined as 10-days). That means the 

first optimization (𝑡 = 1) is carried out from Days 1 to 10, so that only the 

information available for that period is considered in the modeling and optimization. 
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Similar for the second optimization (𝑡 = 2), carried out from Days 2 to 11, and so 

on. 

2.1) Within the optimization routine, the blend scheduling problem is formulated as 

an MINLP as there are binary variables related to the operating modes and 

transfers for the blenders, as well as nonlinear terms related to the blending 

equations and properties tracking throughout the process. 

2.2) The MINLP problem is decomposed in two subproblems using the MILP-NLP 

phenomenological decomposition heuristic proposed by Menezes, Kelly, and 

Grossmann (2015). 

2.3) The first subproblem (MILP) arises from neglecting all the quality information 

(variables and constraints) from the original MINLP. Commercial solvers are 

used to optimize this MILP problem. 

2.4) The second subproblem (NLP) arises from setting all the binary variables in 

the original MINLP by using the optimal solution found in the previous MILP. 

Commercial solvers are used to optimize this NLP problem. A linear 

programming (LP) successive linearization technique (found in IMPL) is 

employed to linearize the nonlinear terms in the NLP formulation whereby 

these linearized sub-problems are solved using LP solvers. Extensive testing 

showed that this approach has better performance than applying NLP solvers 

directly. 

2.5) The solution of the NLP problem is a feasible solution of the original MINLP. 

This solution is saved and the framework moves back to the simulation routine. 

3) Disturbances may or may not be considered in the simulation. This is chosen by 

the user. Not considering them would be useful to simulate an ideal or base 

scenario, whereas considering them would be much more realistic for industrial 

operations. Considering and comparing these two possible cases is one of the 

objectives of this work. 

4) When the closed-loop simulation considers disturbances in the process, the 

framework randomly generates them according to some predefined criteria (i.e., 

which types of disturbances are assumed to happen, at which probability, and in 

which size or magnitude).  

5) Whenever any disturbance happens, the state of the system is updated so that the 

simulation is up to date to match the real or ongoing scenario in the plant. For 

example, information such as flows, holdups logics, and properties, are updated. 
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Additional details on the distinct types of disturbances and the possible required 

updates are presented in Section 5.3.5. On the other hand, if disturbances are 

assumed not to happen, the state of the system is already up to date, so that no 

corrections are needed. 

6) If the simulation ends, the closed-loop scheduling solution is built. Otherwise, the 

framework moves to iteration 𝑡 = 𝑡 + 1. The moving horizon is employed to 

perform sequential optimizations. Thus, on iteration 𝑡 = 2 the problem is optimized 

from Days 2 to 11 and so on, until the last optimization, which is carried out from 

Days 40 to 49. The optimal solution is saved at each iteration. 

7) Upon the convergence of the Simulation routine, a total of 40 optimizations are 

carried out and saved. Therefore, a total of 40 optimal solutions have been found. 

The closed-loop scheduling solution is built by aggregating or combining the 

solution of the first day from each of these 40 optimal solutions (i.e., Day 1 at 

iteration 𝑡 = 1, Day 2 at iteration 𝑡 = 2, Day 40 at iteration 𝑡 = 40, and so on). A 

40-days closed-loop solution is then achieved. 

5.3.5 Disturbances 

Uncertainties, noises, and any unforeseen and unexpected events are treated as 

disturbances in the formulation, allowing the use of variable feedback previously 

mentioned. Thus, adjustments in the model parameters (gains, biases, etc.) are not 

required as it remains identical in each scheduling iteration. The disturbances 

considered in this blend scheduling optimization problem are related to flows (incoming 

to and outgoing from the blender), feedstocks (their arrival dates and their qualities, 

such as specify gravity and sulfur content), demands for final products (amounts and 

release or due dates), and blender units (malfunctions or breakdowns). Whenever a 

disturbance occurs, the system is updated before the next re-optimization. Therefore, 

variable feedback is applied to correct the actual status of the plant, as there might be 

differences between the modeled status and the real status of the plant. The required 

updates when distinct types of disturbance happen are discussed in the following. It is 

worth mentioning that we are not interested in what causes or triggers the 

disturbances, as well as what could be done or performed to mitigate or avoid them in 

the plant without rescheduling, although that would be an interesting topic with an 

emphasis on real industrial operations. Rather, it is assumed that the disturbances may 
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eventually happen, and we aim at developing a framework capable of handling them 

and simulating distinct scenarios to investigate their impact on the closed-loop 

schedule. More specifically, the interest is in understanding what the impact of 

disturbances on the schedule are, what are the consequences of neglecting or ignoring 

them, and what can be done to mitigate their negative impact or to take advantage of 

any positive conditions or directions. 

 Flows Incoming to the Blender 

Flow disturbances are essentially noises in the streams throughout the process. It is 

assumed that they may happen in each one of the 24 flows incoming to the blender 

(see Figure 5.4) with a given trigger probability. If there is a noise in any flow, its original 

value is randomly and uniformly changed up to 20% (i.e., if the optimal flow is 10.0 

m3/h, the updated flow, after the noise is computed, is randomly chosen between 8.0 

and 12.0 m3/h). Whenever there are noises in the flows, in order to correct the actual 

status of the plant, it must be updated: 

• Inventory in the feeding tanks (F); 

• Inventory in the storage tanks (S); 

• Inventory in the feedstocks (R); 

• Flows from the storage tanks S to the demand pools D (to check whether the 

product demands were met). 

If the measured (noisy) flow incoming to the blender is lower than the optimal flow, the 

inventory in the S tank must be reduced and the inventory in the F tank must be 

increased by the same value of the respective noise, and vice-versa. Moreover, it is 

necessary to check whether there was sufficient material in the S tank to supply the 

required product demand, as well as whether the disturbance interfered in the lower 

and upper bounds of the F and S tanks (that can also change the flows from the R 

feedstocks to the F tanks, and from the S tanks to the D demands). There are lower 

and upper hard bounds for the holdups of each tank and we consider that they must 

be respected regardless of the disturbance (e.g., a disturbance cannot make the 

holdup of a tank to be lower than its lower hard bound or higher than its upper hard 

bound). 



176 
 

 Flows Outgoing from the Blender 

Similarly, it is assumed that there may be noises in the six flows outgoing from the 

blender (see Figure 5.4) with a given trigger probability. If there is a noise in any flow, 

its original value is randomly and uniformly changed up to 20%. In that case, it must 

be updated: 

• Inventory in the storage tanks (S); 

• Flows from the storage tanks S to the demand pools D (to check whether the 

product demands were met). 

Moreover, whenever there is a noise in one or more flows outgoing from the blender 

to one of the product pools, there might be discrepancies regarding the pool quality of 

the respective product. For instance, consider a hypothetical case in which two 

feedstocks Feed1 (high quality, low sulfur content) and Feed2 (low quality, high sulfur 

content) are mixed, and the sulfur content of this pool is calculated in the optimization 

to enforce some specifications constraints. Without noise or disturbances, the sulfur 

content of that pool in the optimal solution should be the same as the real one in the 

process. However, with noise in these flows, there are three different scenarios. First, 

if the ratio Feed1/Feed2 is higher than expected, the final pool has a better quality and 

a lower sulfur content, therefore the specifications for the final product will still be met 

although it is expected a product giveaway. Second, if the ratio Feed1/Feed2 is lower 

than expected, the final pool has worse quality, so that this product specification is not 

met. In this scenario, we assume that the products can still be sold, but by 90% of their 

original selling price. Third, if noise does exist although the ratio Feed1/Feed2 remains 

unchanged (what is not likely to happen), no differences in the pool quality are 

expected. 

 Arrival of Feedstocks 

There are estimated dates of arrival of each feedstock R1 to R4, with expected 

amounts and properties in terms of specific gravity and sulfur content. The possible 

disturbances assumed to happen in this case are a sudden change in the arrival date 

and/or in the quality of a feedstock. The amount is not considered as a possible 

disturbance because it is typically large enough not to interfere on the short-term 

schedule. When a feedstock is expected to arrive at certain date, but it does not arrive, 
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or if its properties are different from what they were expected to be, the state of the 

system must be updated in the model. To clarify the understanding of these two cases, 

consider a hypothetical example in which the feedstock R2, with specific and known 

properties, is expected to arrive by the end of day 2, so that from the optimization side 

it is expected that the feedstock would be available from day 3 onwards. However, if 

the feedstock R2 does not arrive on the expected date and/or if its properties are 

different than expected, that new information must be updated in the model, and a 

rescheduling should be performed to take it into account. 

 Market Fluctuations: Amount and Due Date of Product Demands 

There are market fluctuations related to the amounts and due dates of product 

demands. There are fixed daily demands for each product (and therefore, up to three 

distinct demands every day), and quality specifications (specific gravity and sulfur 

content) that must be met. It is assumed there is a probability for the amount of each 

product demand to change every day. If that disturbance is triggered, the original value 

of the respective demand is randomly and uniformly changed, which could be either 

increased or decreased. It is similar for the due dates of each demand, in which it is 

assumed a probability that they change (in that case the demand would be either 

preponed to the previous day or postponed to the following day). The exceptions are 

that the product demands of the first (current) day in the optimization cannot have their 

amounts or due dates changed, as it would be too difficult to adapt the incumbent 

schedule. Similarly, it is also valid that the demand of the second day cannot be 

preponed to day one. In each optimization, it is possible that each of the 27 future 

demands (three products times nine days) would be disturbed regarding their amounts 

and due dates. It is worth mentioning that if the daily demand for any product is not 

met, a daily penalty equal to 10% of the product value is applied, and the demand is 

postponed to the following day. Furthermore, we also consider to be possible selling 

up to 20% more than the daily demand for the same price, what gives an additional 

degree of freedom in the optimization. 
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 Blender Breakdown 

Eventual malfunctions and breakdowns are expected to happen in any process at 

some point. It is assumed that each blender is subject to breakdown at a fixed daily 

probability. It is assumed, however, that at least one blender is available to be used at 

all times, otherwise the schedule would be impracticable and infeasibilities would likely 

arise. If a blender breaks down, it cannot be used for a period between 24 h and 96 h 

(randomly and uniformly chosen). Besides, as the breakdown may happen throughout 

the day, it is also considered the exact moment of this event. For instance, if a blender 

with a capacity of 100 m3/day breaks down in the middle of Day 1 and the time needed 

to fix it is 42 h, then it is assumed that the blender can operate for half of Day 1, 

processing at most 50 m3 of material (12 h broken), does not operate in Day 2 (more 

24 h broken), and can operate for 18 h in Day 3, processing at most 75 m3 (more 6 h 

broken). 

5.3.6 Mathematical Formulation 

The blend scheduling problem presented in Figure 5.4 is formulated as a mixed-integer 

nonlinear programming (MINLP) problem. In each optimization, the MINLP model is 

decomposed in two subproblems (MILP-NLP decomposition), which are sequentially 

optimized. The mathematical formulation for the logistics problem (MILP) and for the 

quality problem (NLP) are presented in detail in the Supplementary Material (Appendix 

A). 

5.4 Case Study, Results, and Discussion 

Based on the blend scheduling problem and its respective mathematical formulation 

(presented in Section 5.3 and in the Supplementary Material, respectively), a case 

study has been proposed to simulate multiple optimizable scenarios with and without 

disturbances, to analyze and to compare the results, to investigate the impact of the 

disturbances in the final closed-loop simulated solution, and to understand what the 

consequences are of not considering them in the formulation and optimization. 

Information on the size and complexity of the formulation is presented as follows. In 

the blend scheduling problem optimization for the future 10-days with discrete time 
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steps of one day, and not considering any disturbance in the formulation, in the MILP 

model there are 2,184 constraints (332 equalities), 604 continuous variables, 651 

binary variables and 961 degrees-of-freedom; in the NLP model there are 490 

constraints (410 equalities), 442 continuous variables and 70 degrees-of-freedom. All 

the proposed scenarios for the case study are modeled using the UOPSS formulation 

within the modeling platform IMPL (Kelly and Menezes, 2019) from Industrial 

Algorithms Limited. The optimizations are carried out through the commercial solvers 

GUROBI 9.0.0 and CPLEX 12.10.0 each linked to IMPL. The computer used was an 

Intel Core i7 with 2.90 GHz and 16 GB RAM. 

Multiple scenarios are proposed to investigate the differences between the open-loop 

and closed-loop approaches, and the impact of the disturbances in the operations 

(regarding both the economic value and the operational schedule). The similarities 

among all of them include the optimization time horizon (10 days), the discrete time 

steps (1 day), and the full simulated time horizon (40 days). In the following each 

proposed scenario is presented and discussed, as well as their respective motivation 

towards understanding the relevance of the topics addressed in the proposed re-

scheduling framework. 

5.4.1 Impact of Disturbances on the Operations 

We are interested in investigating how typical disturbances affect both the economic 

value of the process (i.e., profitability) and the operations to be scheduled and carried 

out in the plant. The following scenarios are proposed to simulate the 40-days closed-

loop scheduling:  

• Scenario 5.1: There are no disturbances in the process. 

• Scenario 5.2: Only disturbances 1 and 2 (i.e., flows), presented in sections 5.3.5.1 

and 5.3.5.2, are assumed to happen. There is 50% probability that any flow 

incoming to or outgoing from any blender is subject to a noise, in which the 

respective flow is uniformly randomized to be between ± 20% of its original value.  

• Scenario 5.3: Only disturbance 3 (i.e., feedstock arrival), presented in section 

5.3.5.3, is assumed to happen. The feedstocks R2 and R3 are supposed to arrive 

at the end of Day 2 and Day 25, respectively. However, each arrival is assumed to 
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be delayed by three days, so that the feedstocks arrive at Day 5 and at Day 28, 

respectively. Moreover, the feedstock R2 not only arrives late, but also with 

unexpected properties (sg = 0.86 instead of sg = 0.85, and sul = 1.01 instead of 

sul = 1.00). 

• Scenario 5.4: Only disturbance 4 (i.e., market fluctuations: amounts), presented in 

section 5.3.5.4, is assumed to happen. There is a probability of 5% that any of the 

demands (for each product at any of the ten future days) is subject to market 

fluctuation changes. Whenever there is a demand change, it is assumed a uniform 

fluctuation of ± 20% of its original value. 

• Scenario 5.5: Only disturbance 4 (i.e., market fluctuations: due dates), presented 

in section 5.3.5.4, is assumed to happen. There is a probability of 3% that the due 

date of a given product changes at a given day. In that case, the respective 

demand is preponed or postponed by one day. The only exception is that the 

demand of the current day (first day of the optimized time horizon) cannot change. 

• Scenario 5.6: Only disturbance 5 (i.e., blender breakdown), presented in section 

5.3.5.5, is assumed to happen. There is a probability of 3% that any blender breaks 

down at any day. 

• Scenario 5.7: There are all five disturbances simultaneously. Their respective 

triggering probabilities are such as in Scenarios 5.2 to 5.6. 

When there are no disturbances, there is a unique closed-loop solution because there 

is no randomization in the algorithm. However, whenever any disturbance is assumed 

to happen, they are randomly simulated by the algorithm, so that multiple distinct 

possibilities could happen (e.g., there could be multiple demand peaks of product D1, 

or sequential breakdowns of a blender), depending on the sequence of random 

numbers generated. Thus, aiming at more robust analyses and conclusions, multiple 

closed-loop simulations are performed for each scenario (using distinct seeds for the 

randomization) to improve the reliability of our approach by providing more 

representative results. Figure 5.6 presents a box plot chart to illustrate how the 

disturbances impact the profitability of the process, in which five closed-loop schedules 

were simulated for each scenario (except for Scenario 5.1, as there is no 

randomization). The profit shown regards the entire 40-days closed-loop scheduling. 
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Figure 5.6: Impact of Scenarios 5.1 to 5.7 in the closed-loop scheduling profitability. 

  

Source: Author (2021). 

As expected, although disturbances may eventually lead to an increase in the profit, 

their impact is usually negative. Moreover, disturbances regarding demands amount 

and unit breakdowns typically have a worse effect in the closed-loop simulated 

solution. The worst scenario is when all disturbances are assumed to happen, which 

is indeed the most representative situation in industrial operations.  

Despite the expected economic impact of noises and disturbances to the closed-loop 

solution, another meaningful insight regards the process operations and its respective 

schedule. Not accounting for changes in the process does not only limit the economic 

value of that process and increase the risk of infeasibilities on the model optimization, 

but also leads to significant differences regarding the optimal scheduling to be 

implemented in the real plant. Figures 5.7 to 5.9 present the trend or line plots for the 

flows from the F tanks to the blenders, and the inventories of F and S tanks, 

respectively, over the entire simulated time horizon of 40 days for one case of Scenario 

5.7. The blue dashed line represents the scheduling operations when disturbances are 

not assumed to happen, and the red solid line when all the five types of disturbances 

are considered in the modeling and optimization.  
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Figure 5.7: Closed-loop operational schedule for flows from the F tanks to the 

blenders without (blue dashed line) and with (red solid line) disturbances (Scenario 

5.7). 

  

  

Source: Author (2021). 

Figure 5.8: Closed-loop operational schedule for inventories of F tanks without (blue 

dashed line) and with (red solid line) disturbances (Scenario 5.7). 

  

  

Source: Author (2021). 



183 
 

 

Figure 5.9: Closed-loop operational schedule for inventories of S tanks without (blue 

dashed line) and with (red solid line) disturbances (Scenario 5.7). 

  

 

 

Source: Author (2021). 

Figures 5.7 to 5.9 show that there is a significant difference between the two plotted 

cases (with and without disturbances). The direct impact for industrial operations is 

that not considering noises and disturbances (assuming that they happen) would lead 

to the implementation of a completely different schedule rather than the real optimal 

schedule (considering the real state of the process, which includes all the changes 

resulted from disturbances and unexpected events). It is also worth mentioning that 

even though we do not address inventory costs in the proposed example, it is clear 

that they might be relevant for the topic, as there is a significant difference in the 

inventories of tanks between the closed-loop schedules with and without disturbances, 

as shown in Figures 5.8 and 5.9. In summary, scheduling operations when 

disturbances are or are not considered might be completely different from each other, 

which reinforces the importance of online scheduling strategies for process 

optimization purposes. 
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5.4.2 Impact of Neglecting Disturbances on the Operations 

We also investigate what is the impact of neglecting the disturbances, i.e., assuming 

that disturbances do happen, what would be the consequences of not accounting for 

them in the modeling and optimization in terms of economic value, schedule 

operations, product specifications, infeasibilities, etc. We discuss the impacts of 

neglecting each disturbance individually in the following. 

 Flow Disturbances 

Noises in the flows might affect the mixture ratio, in which more or less amount of each 

material is blended. That changes not only the amounts produced, but more 

importantly, its quality. Besides, it becomes even harder to track the qualities of 

intermediate and final streams, leading to much more unreliable predictions, and 

difficulties to manage the control the operations. Some of the operational issues that 

arise from not accounting for noises in the flows in the blend scheduling problem 

addressed herein are as follows. 

A noise in the flow from tank F1 to the Blender A was considered to happen at Day 1, 

which reduces that flow in about 5.0 𝑚3. That stream (pure feedstock R1) is blended 

with another stream composed of pure feedstock R3. The noise affects the ratio R1/R3 

in the mixture and hence, also affects the quality of the material sent to and stored in 

the storage tank S2. That blend is used in the following days to supply the demand of 

product D2. Not accounting for that noise leads to an incorrect tracking of the properties 

of the blend stored in the tank S2. The calculated properties of that blend are actually 

worse than the real properties, so that when that material is used to supply the demand 

of product D2, that product is unspecified. That implies in operational costs to either 

reprocess that product or in discounts to sell that product at a lower price. Not 

accounting for that noise would make it impossible to capture this information and to 

fix the tank S2 quality as soon as possible (e.g., at Day 2), so that this negative impact 

could be reduced.  

Most importantly, this is just an example regarding one noise that happened at Day 1, 

but multiple noises are actually likely to happen every day. Tracking information 

throughout the process is already a difficult task, and if this tracking is not accurate 
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enough, that may lead to severe plant-model mismatches, in which scheduling 

infeasibilities are highly likely to happen. 

 Arrival of Feedstocks Disturbances 

The feedstock R2 was assumed to arrive in the end of Day 2, so that it would be 

available to be used from Day 3 onwards. Assuming that there is a delay in the arrival 

of feedstock R2 of 3 days (i.e., feedstock R2 arrives at Day 5 instead of at Day 2), the 

following operational issues arise: 

• At Days 4 and 5, the operations were scheduled to use 25.62 m3 and 165.27 m3 of 

feedstock R2, respectively. These operations could not be performed and they 

were postponed because the inventory of feedstock R2 was empty. The feedstock 

R2 was available to be used from Day 6 onwards. Meanwhile, the storage tanks 

had some additional amount of each product, so the demands for Days 4 onwards 

could be partially, but not entirely, met.  

• The main issue here was that the lack of feedstock R2 completely changed the 

blends scheduled to produce the final products, and the incumbent schedules 

could not be carried out. Alternatives would be delaying the processing of that 

blend, or propose a similar blend but using other feedstocks, although that 

information (which feedstocks to use and in which ratio) would have to be 

calculated. 

• The blender units were already scheduled to operate at full capacity from Day 6 to 

Day 13. At Days 14 and 15, they were used to process the blend with feedstock 

R2 that was already late. The delay to process that material was around 10 days. 

However, if rescheduling had been performed, the blenders could have processed 

other feedstocks at Days 4 and 5 (instead of feedstock R2), and could have 

processed feedstock R2.  

• Besides the delay to deliver part of the product demands, which imply in late deliver 

costs and fees, as well as eventual customer dissatisfaction, there were quality 

changes in the final products. The product D1 delivered at Day 4 should be a 

mixture of feedstocks R1, R2, and the material already stocked in the D1 pool. Not 

mixing the feedstock R2 resulted in a higher-quality final product D1, which 

represents a product giveaway, and hence, a decrease in the economic value of 

the process.  
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• These quality issues also arose because the quality of the feedstock R2 was 

different than the expected. Without rescheduling the problem that information 

could not be taken into account, leading to several quality mismatches throughout 

the entire closed-loop schedule. That resulted not only in product giveaways but 

also in unspecified products.  

• There were similar issues regarding the delay in the arrival of feedstock R3. 

 Market Fluctuation Disturbance: Amount of Demands 

Whenever market fluctuations affect the amounts of product demands, there are some 

interesting changes on the process operations:  

• For example, the demand of product D1 at Day 3 was 100 m3, but there was a 

market fluctuation reducing that demand to around 95 m3 (that disturbance was 

randomly generated).  

• The main consequence is that less product D1 is sold, and more product D1 

remains in the storage tank S1.  

• From Day 4 onwards, more product D1 is produced and stored in the tank S1. 

However, that stream sent to tank S1 on Day 4 has a slightly different quality than 

the product already stored, which leads to errors when calculating the properties 

of that final blend.  

• On Day 5 there is another demand of product D1 to be met, and because the 

amount and properties of the blend already stored in the tank S1 are not accurately 

known, there is a giveaway in the product D1 sold on Day 5.  

• Another disturbance was to increase the demand of product D2 at Day 7, resulting 

in the lack of demand of product D2 at Day 10, which implied in costs for delivering 

the product late. 

• Most importantly, not accounting for this type of disturbance would result in several 

plant-model mismatches regarding both the amount and the qualities of final 

products to be stored and sold. The most common issues would be related to 

product giveaways, unspecified products, and inventory limits.  
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 Market Fluctuation Disturbance: Due Date of Demands 

Whenever market fluctuations affect the due date of product demands, there are 

interesting changes on the process operations as well. Some issues found in the 

closed-loop simulations of the optimized scenarios are as follows: 

• A market fluctuation disturbance happened at Day 6, in which the demand of 

product D3 (40 m3), was fully preponed from Day 9 to Day 8. That means there 

were two days for the schedule operations to prepone by one day the product of 

40 m3 of D3.  

• However, if rescheduling is not performed, and hence, the schedule is not updated, 

meeting this preponed demand relies exclusively on having enough product D3 

already produced (which in that case there was only 12 m3 of product D3 stored, 

which was not enough to fully supply the demand).  

• Moreover, the blenders did not operate at full capacity on Day 8, which means a 

rescheduling would have mitigated the impact of the disturbance. Additional costs 

due to the late delivery could have been avoided.  

• It is worth noting that this is just one example of due date disturbance in the closed-

loop simulation, but multiple of them actually happened and introduced issues for 

the schedule operations.  

• Most importantly, depending on the frequency with which market fluctuations 

happen, not rescheduling the problem would likely result to late demands almost 

every day. 

 Blender Breakdown Disturbance 

Rescheduling the problem may also reduce or smooth issues caused by unit 

breakdowns, such as in the following example. 

• The second blender suddenly broke down at Day 11. The consequences are that 

at Days 11 and 12, around 36 m3 and 80 m3 of material (product D1) could not be 

processed, respectively. These productions were postponed to the following days 

and were performed according to the availability of the blenders.  

• Regardless of rescheduling the problem or not, the second blender was not 

available to be used during that time. However, by rescheduling the problem, a 
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new optimal solution was found, in which it was preferred to update (change) the 

scheduled production in the first blender in order to better supply the demand of 

products.  

• More specifically, the first blender was scheduled to produce product D3 at Day 

13, but a better schedule, with higher profitability, was achieved by producing 

product D1 at Day 13 to supply its incumbent demand, whereas product D3 was 

produced at Day 14 by the second blender. In this new optimal schedule, both 

demands were met, without any additional costs. On the other hand, not 

rescheduling the problem would lead to late deliveries and consequent additional 

costs. 

5.4.3 Individual Impact of Disturbances on the Operations 

A key aspect regarding the simulation approach developed herein (and that 

significantly impacts the closed-loop scheduling) is to properly tune or choose the 

parameters and probabilities by which each disturbance is assumed to happen (e.g., 

what is the probability of a random unit to breakdown at a specific day, and if that 

happens, how long will it take to fix the unit). That is especially important in industrial 

operations to understand how a given noise, disturbance, disruption, or unforeseen 

event might impact the incumbent and future schedules regarding their profitability and 

operations. Therefore, Scenarios 5.8 to 5.12 are proposed to investigate how the 

proposed disturbances impact the closed-loop solution depending on their probability 

to be triggered as well as the dimension of the changes. 

 A Deeper Analysis on Flow Disturbances 

Scenario 5.8 further investigates how noises in the main process streams would affect 

the scheduling operations. Let us assume that a given main stream (either incoming 

to or outgoing from the blender) is subject to noises at a fixed probability 𝑑1 ∈

{0.0, 0.2, 0.4, 0.6, 0.8, 1.0). For each one of the six possible values of 𝑑1, the closed-loop 

scheduling was simulated five times (using distinct randomization seeds) to provide 

more robust and reliable results. The average mean closed-loop objective function 

(i.e., the average mean among the five closed-loop simulations) for each distinct value 

of 𝑑1 is represented by a dot in Figure 5.10. 
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Figure 5.10: Impact of the flow disturbances in the closed-loop scheduling. 

   

Source: Author (2021). 

Although there are quality constraints to impose the products to meet some 

specifications in terms of their specific gravity and sulfur content, noises in the flows 

can negatively result in unspecified products. For example, if a disturbance results in 

mixing a lower amount of a high-quality feedstock or a higher amount of a low-quality 

feedstock, the final product may not meet the desired specifications, and would either 

have to be reprocessed or sold by a lower price. For a matter of simplicity, it is 

considered that every product that does not meet all the quality requirements can still 

be sold but for 90% of the original price. 

Another important feature analyzed is the difference on the operational schedule when 

disturbances happen or not in the process. Figure 5.11 presents the line plots 

comparing a case without disturbances (blue dashed line) and a case with flow 

disturbances (𝑑1 = 0.4), represented as a red solid line. For the sake of simplicity, only 

the operations for the inventory of tank F1, the total flow from tank F1 to the blenders, 

and the sulfur content of the tank S1 are shown. It can be noticed from Figure 5.11 that 

the operations when flow disturbances are assumed to happen are completely different 

from the operations without considering any disturbance. That highlights the 

importance of accounting for them in the rescheduling optimization. 
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Figure 5.11: Closed-loop operational schedule without (blue dashed line) and with 

(red solid line) disturbances 1 and 2. 

  

 

Source: Author (2021). 

 A Deeper Analysis on the Arrival of Feedstock Disturbance 

Scenario 5.9 investigates how changes on expected arrival dates of raw materials or 

feedstocks impact the plant operations. For that, it is assumed that the feedstocks R2 

and R3 are expected to arrive at the end of the days 2 and 25, respectively. However, 

there are hypothetical unforeseen delays of 𝑑3 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} days in their 

arrival. Moreover, three possibilities are considered, in which the delay happens only 

for feedstock R2, only for feedstock R3, and for both. The closed-loop objective 

functions for each case and for each value of 𝑑3 are plotted in Figure 5.12. 
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Figure 5.12: Impact of the feedstock arrival disturbance in the closed-loop 

scheduling. 

 

Source: Author (2021). 

When different delays (up to eight days) for each scenario are assumed, there is a 

non-increasing objective function behavior, as shown in Figure 5.12. The highest 

objective function is from the case without delays, and as they occur and increase in 

size, there is typically an expected decrease in the profit. It is important to note, 

however, that a higher delay does not necessarily affect the optimal solution (e.g., in 

the case with delay of feedstock R2, the optimal solution does not change when the 

delay increases from one to two days). In general, delays in the arrival of feedstocks 

decrease the profit because there might be fewer combinations of feedstocks that 

could be used in the process. It is worth mentioning that critical issues may arise if 

there are multiple long delays, resulting in higher reduction in the profit as well as 

eventual infeasibilities.  

Similarly to Scenario 5.8, the line plots representing the operational schedule (holdup 

of tank F1 and total flow from tank F1 to the blenders) for the cases with disturbance 3 

using 𝑑3 = 4 (red solid line), and without disturbances (blue dashed line) are presented 

in Figure 5.13. There are significant differences between the closed-loop operational 

scheduling in these two cases. 

 

 



192 
 

Figure 5.13: Closed-loop operational schedule without (blue dashed line) and with 

(red solid line) disturbance 3. 

  

Source: Author (2021). 

 A Deeper Analysis on Market Fluctuation (Amount) Disturbance 

Scenario 5.10 investigates the impact of market fluctuations on the final product 

demands. It is assumed that at any day (except for the current day, i.e., the first day in 

the optimization time horizon), there is a probability that the expected demand of a 

given product would change. Two main effects are derived from this disturbance. First, 

whether the demand decreases or increases affects the amount of product to be 

produced and sold (which could lead to either a negative or positive effect to the 

profitability). And second, any changes result in the need to review, adapt, or 

reprogram the incumbent schedule (which is typically negative for the operations). It is 

considered three distinct probabilities for the disturbance to be triggered of 𝑑41 ∈

{0.05, 0.10, 0.15}, and in those cases, there is a variation range in the amount of the 

respective demand of 𝑑42 ∈ {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}, which can be 

positive (increasing the demand) or negative (decreasing the demand). The closed-

loop scheduling is built for each case and the objective functions are plotted in Figure 

5.14. 
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Figure 5.14: Impact of the amount of demand disturbance in the closed-loop 

scheduling. 

  

Source: Author (2021). 

It is typically expected that a higher probability of disturbance leads to a lower 

operational profit, although it is worth to be mentioned that the overall change in the 

profit may be positive due to a sufficiently high increase in the amount of demand even 

with the need to adapt against the changes (i.e., the increase in the profit due to a 

higher demand overcome its eventual decrease because of the disturbance in the 

process). In general, however, it is expected a lower profit as the probability of a 

disturbance to happen increases or the more the demand changes. The line plots 

representing the operational schedules (for the holdup of tank F1 and the total flow 

from tank F1 to the blenders) for the cases with disturbance 4 (red solid line) using 

𝑑41 = 0.10 and 𝑑42 = 0.15, and without disturbances (blue dashed line) are presented 

in Figure 5.15. 

 

 

 

 

 



194 
 

Figure 5.15: Closed-loop operational schedule without (blue dashed line) and with 

(red solid line) disturbance 4. 

  

Source: Author (2021). 

 A Deeper Analysis on Market Fluctuation (Due Date) Disturbance 

Scenario 5.11 considers market fluctuations on the due date of the demands. Each 

demand considered in the model (for each product at each day) is subject to a 

probability 𝑑5 ∈ {0.000, 0.025, 0.050, 0.075, 0.100, 0.125, 0.150} in which its respective 

due date changes by one day (the demand can be preponed or postponed, expect for 

the demands of the first or current day, which must stay the same). The closed-loop 

scheduling is simulated five times (using distinct sets of random numbers) and the 

average mean closed-loop objective function (i.e., the average mean among the five 

simulations) for each value of 𝑑5 is represented in Figure 5.16. 

Figure 5.16 : Impact of the demand due date disturbance in the closed-loop 

scheduling. 

 

Source: Author (2021). 
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The demand of each product remains unchanged in these closed-loop simulations, so 

a non-increase behavior in the closed-loop objective function is expected as the 

triggering rate of the respective disturbance increases, as shown in Figure 5.16. The 

line plots representing the operational schedules for the cases with disturbance 5 using 

𝑑5 = 0.075 (red solid line), and without disturbances (blue dashed line) are presented 

in Figure 5.17. 

Figure 5.17: Closed-loop operational schedule without (blue dashed line) and with 

(red solid line) disturbance 5. 

  

Source: Author (2021). 

 A Deeper Analysis on Blender Breakdown Disturbance 

Scenario 5.12 investigates the impact of breakdowns in blender units on the process 

operations. At each day, there is an assumed probability 𝑑6 ∈

{0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} that a blender breaks down (the probability 

𝑑6 is for each blender unit). It was assumed, however, that simultaneous breakdowns 

of both blenders do not happen). Whenever there is a breakdown, the blender cannot 

be used for a (randomly and uniformly chosen) period of one to four days. The closed-

loop scheduling is simulated five times (using distinct sets of random numbers) for 

each value of 𝑑6, and the respective closed-loop objective functions are represented 

by a dot in Figure 5.18. The end of each curve indicates that the closed-loop scheduling 

solution became infeasible at a certain probability of breakdown disturbance (e.g.., 

depending on how often the blender breaks down, the scheduling operations cannot 

meet the product demands).  
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Figure 5.18: Impact of the blender breakdown disturbance in the closed-loop 

scheduling. 

 

Source: Author (2021). 

Breakdowns typically result in negative impacts for the operations, in which a decrease 

in the profit is expected. Furthermore, the higher the probability of breakdown (i.e., 

higher average number of breakdowns), the higher the risk of infeasibilities in both the 

optimization and scheduling operations. The five closed-loop solutions simulated in 

Scenario 5.13 become infeasible when the probability of breakdown becomes around 

5% to 7%, in which the closed-loop objective function is no longer plotted. It is worth 

noting, however, that typical breakdown probabilities on industrial operations are 

expected to be much lower than the worst-case probabilities simulated herein.  

The line plots representing the operational schedules for the cases with disturbance 4 

(red solid line) using 𝑑6 = 3.0, and without disturbances (blue dashed line) are 

presented in Figure 5.19. As in the previous comparisons, there are significant 

differences between the schedules.  
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Figure 5.19: Closed-loop operational schedule without (blue dashed line) and with 

(red solid line) disturbance 6. 

  

Source: Author (2021). 

5.5 Conclusions  

For improved industrial operations, proper mathematical formulation and optimization 

are fundamental. That includes minimizing the plant-model mismatches so that the 

optimal solution is coherent with the actual process conditions and operations as much 

as possible. Because of the high nonlinear and uncertain nature of most industrial 

problems, unforeseen events and uncertainties are likely to happen, motivating a 

continuous optimization cycle, in which the current state of the system is updated, and 

a closed-loop rescheduling is performed in a moving horizon approach.  

The online closed-loop rescheduling approach proposed herein is based on dynamic 

scheduling and relies on a systematic bi-layer framework that simulates the closed-

loop scheduling solution for continuous nonlinear processes within a moving horizon 

strategy, in which noises, disturbances, disruptions, and other unforeseen events are 

assumed to happen with respective triggering probabilities. The framework is 

employed to test multiple scenarios for a MINLP blend scheduling problem in order to 

investigate the impact of the disturbances in the closed-loop scheduling regarding both 

the economic value and the scheduling operations. Several common types of 

disturbance are considered and further analyses on the issues caused by neglecting 

them are addressed.  

Although most unexpected disturbances negatively affect the scheduling operations, 

an efficient rescheduling mechanism might mitigate or minimize issues on the 
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incumbent or official schedule. Moreover, not considering noises and disturbances 

(assuming that they happen) does not only limit the economic value and increase the 

risk of schedule infeasibilities, but may also lead to the implementation of a completely 

different schedule rather than the real optimal schedule (considering the real state of 

the process, which includes all the changes resulted from disturbances and 

unexpected events), which reinforces the importance of online scheduling strategies 

for process optimization and control purposes. Some of the most relevant issues 

detected herein when neglecting disturbances on schedule operations are related to 

process infeasibilities, difficulties in tracking amounts and properties throughout the 

process, unspecified products, product giveaways, and inventory limits.  

The proposed framework simulates an entire closed-loop scheduling solution, and 

effectively handles the triggered disturbances (either to mitigate/reduce their effects or 

to take advantage of new information), reduces inaccuracies and plant-model 

mismatches by maintaining and updating the state of the system, and provides a 

systematic approach to improve the scheduling implementation. We believe this 

approach is suitable for a large variety of problems as it is robust and reliable enough 

to handle several types of disturbances, considers both continuous and binary 

variables as well as nonlinear constraints (in an MINLP formulation) and can perform 

quick re-optimizations. 

5.6 Supplementary Material 

In the following we present the mathematical formulation for the blend scheduling 

problem defined in Figure 5.4. The objective function in Equation (5.1) maximizes the 

gross margin from product revenues by subtracting feedstocks costs. Variables for 

flows in process-units 𝑥𝑚,𝑡 and arrows (between units) 𝑥𝑗,𝑖,𝑡, holdups for tanks 𝑥ℎ𝑚,𝑡, 

and properties 𝑝𝑗,𝑡 are considered in the model. The indices 𝑖 and 𝑗 represent flows for 

inlet and outlet ports, respectively, whereas 𝑡 represents the time steps. The port 

connections establish the material flows throughout the process. The sets 𝐼 and 𝐽 

represent in- and out-port, respectively, while the set 𝐽𝐼 defines connecting flows 

between out- and in-ports. The sets 𝑀𝑅, 𝑀𝑇𝐾, 𝑀𝐵𝐿, and 𝑀𝐷 are used for raw materials 

(feedstocks), tanks, blenders, and product demands, respectively. For 𝑥 ∈ ℝ+ and 𝑦 ∈

{0,1}: 
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  𝑀𝑎𝑥 𝑍 = ∑ ( ∑ 𝑝𝑟𝑖𝑐𝑒𝑚,𝑡

𝑚∈𝑀𝐷

𝑥𝑚,𝑡 − ∑ 𝑐𝑜𝑠𝑡𝑚,𝑡

𝑚∈𝑀𝑅

𝑥𝑚,𝑡)

𝑡

                                                      (5.1) 

s.t. 

�̅�𝑗,𝑖,𝑡
𝐿  𝑦𝑗,𝑖,𝑡 ≤ 𝑥𝑗,𝑖,𝑡 ≤ �̅�𝑗,𝑖,𝑡

𝑈  𝑦𝑗,𝑖,𝑡   ∀  (𝑗, 𝑖) ∈ 𝐽𝐼, 𝑡                                                                               (5.2) 

�̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥𝑚,𝑡 ≤ �̅�𝑚,𝑡

𝑈  𝑦𝑚,𝑡   ∀  𝑚 ∉ 𝑀𝑇𝐾, 𝑡                                                                               (5.3) 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  𝑦𝑚,𝑡 ≤ 𝑥ℎ𝑚,𝑡 ≤ 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈  𝑦𝑚,𝑡   ∀  𝑚 ∈ 𝑀𝑇𝐾 , 𝑡                                                                        (5.4) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗∈𝐽𝑆

≥ �̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡   ∀ (𝑖, 𝑚) ∈ 𝑀𝐷 , 𝑡                                                                                         (5.5) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗∈𝐽𝑆

≤ �̅�𝑚,𝑡
𝑈  𝑦𝑚,𝑡   ∀ (𝑖, 𝑚) ∈ 𝑀𝐷 , 𝑡                                                                                         (5.6) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝐹

≥ �̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝑅 , 𝑡                                                                                           (5.7) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝐹

≤ �̅�𝑚,𝑡
𝑈  𝑦𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝑅 , 𝑡                                                                                           (5.8) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝑆

≥ �̅�𝑚,𝑡
𝐿  𝑦𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                        (5.9) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝑆

≤ �̅�𝑚,𝑡
𝑈  𝑦𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                       (5.10) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗∈𝐽𝐹

≥ �̅�𝑖,𝑡
𝐿  𝑥𝑚,𝑡   ∀ (𝑖, 𝑚) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                         (5.11) 

∑ 𝑥𝑗,𝑖,𝑡

𝑗∈𝐽𝐹

≤ �̅�𝑖,𝑡
𝑈  𝑥𝑚,𝑡   ∀ (𝑖, 𝑚) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                         (5.12) 

∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝑆

≥ �̅�𝑗,𝑡
𝐿  𝑥𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                          (5.13) 
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∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝑆

≤ �̅�𝑗,𝑡
𝑈  𝑥𝑚,𝑡   ∀ (𝑚, 𝑗) ∈ 𝑀𝐵𝐿 , 𝑡                                                                                         (5.14) 

𝑥ℎ𝑚,𝑡 = 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑥𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝∈𝐽𝑇𝐾

 − ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜∈𝐼𝑇𝐾

  ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾, 𝑡                             (5.15) 

∑ ∑ 𝑥𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝∈𝐽𝐹𝑖∈𝐼𝐵𝐿

= ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜∈𝐼𝑆

  ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                                        (5.16) 

𝑥𝑚,𝑡, 𝑥𝑗,𝑖,𝑡, 𝑥ℎ𝑚,𝑡 ≥ 0; 𝑦𝑗,𝑖,𝑡, 𝑦𝑚,𝑡 ∈ {0,1}                                                                                     (5.17) 

Equations (5.2) to (5.4) control the flows 𝑥𝑗,𝑖,𝑡, the yields of units 𝑥𝑚,𝑡 (except tanks), 

and the inventory of tanks 𝑥ℎ𝑚,𝑡. For instance, if the binary variable 𝑦𝑗,𝑖,𝑡 in Equation 

(5.2) is true, then the flow of the arrow 𝑥𝑗,𝑖,𝑡 vary between its bounds (�̅�𝑗,𝑖,𝑡
𝐿  and �̅�𝑗,𝑖,𝑡

𝑈 ). It 

is similar for the binary variables of unit-operations 𝑦𝑚,𝑡 (𝑚 ∉ 𝑀𝑇𝐾) with respect to their 

bounds (�̅�𝑚,𝑡
𝐿  and �̅�𝑚,𝑡

𝑈 ) in Equation (5.3) and for the binary variables 𝑦𝑚,𝑡 (𝑚 ∈ 𝑀𝑇𝐾) 

with their respective bounds (𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿  and 𝑥ℎ̅̅ ̅

𝑚,𝑡
𝑈 ) in Equation (5.4). 

Equations (5.5) to (5.9) establish bounds (�̅�𝑚,𝑡
𝐿  and �̅�𝑚,𝑡

𝑈 ) for the sum of the flows 

incoming to and outgoing from port whenever the respective binary variable 𝑦𝑚,𝑡 is 

active. Equations (5.5) and (5.6) are specific for flows from storage tanks (𝑗 ∈ 𝐽𝑆) to 

demand sinks (𝑖, 𝑚) ∈ 𝑀𝐷, Equations (5.7) and (5.8) define flows from raw material 

sources (𝑚, 𝑗) ∈ 𝑀𝑅 to feed tanks (𝑖 ∈ 𝐼𝐹), and Equations (5.9) and (5.10) represent 

from the blenders (𝑚 ∈ 𝑀𝐵𝐿) to the downstream storage tanks (𝑖 ∈ 𝐼𝑆). 

Equations (5.11) and (5.12) impose bounds for the incoming flows 𝑖 of unit-operation 

𝑚 (𝑚  MTK) by using their respective lower and upper inverse yields (𝑟𝑖,𝑡
𝐿  and 𝑟𝑖,𝑡

𝑈 ). 

Similarly, Equations (5.13) and (5.14) impose bounds for outgoing flows to the unit-

operation 𝑚 (𝑚 𝑀𝐵𝐿) by their lower and upper yields (𝑟𝑗,𝑡
𝐿  and 𝑟𝑗,𝑡

𝑈 ). Besides, although 

a blender can be connected to several sinks, only one outlet flow is typically allowed 

in industrial operations. 

The material balance for tanks (𝑚MTK) in Equation (5.15) considers previous 

holdups 𝑥ℎ𝑚,𝑡−1 and the material inlets and outlets of tanks. Blenders MBL are treated 
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as continuous units so that Equation (5.16) are material balances to enforce no 

accumulation in these units.  

5.6.1 Logistics Problem: MILP Blend Scheduling  

The logistics problem includes Equations (5.1 to 5.17) for the UOPSS flowsheet 

formulation (Figure 5.3), plus Equations (5.18 to 5.32) that involves: a) multi-use of 

objects; b) minimum operational time and zero downtime of units; c) transition 

constraints and selection of operational modes; d) temporal transitions of sequence-

dependent cycles for unit-operations; and e) factor-flow balance (KELLY, MENEZES, 

and GROSSMANN, 2018).  

Equation (5.18) implies that a connecting binary variable 𝑦𝑗,𝑖,𝑡 is active when the 

binaries of their connected unit-operations 𝑚𝑢𝑝 and 𝑚 are also active. Equation (5.19) 

enforces that at most one operational mode for a physical unit-operation 𝑚 (as 𝑦𝑚,𝑡 for 

operational modes) is allowed simultaneously, in which 𝑈𝑚 is the set for distinct unit-

operations 𝑚 within the same physical unit. 

𝑦𝑚𝑢𝑝,𝑡 + 𝑦𝑚,𝑡 ≥ 2𝑦𝑗𝑢𝑝 ,𝑖,𝑡  ∀ (𝑚𝑢𝑝 , 𝑗𝑢𝑝, 𝑖, 𝑚), 𝑡                                                                           (5.18) 

∑ 𝑦𝑚,𝑡

𝑚∈𝑈𝑚

≤ 1  ∀ 𝑡                                                                                                                            (5.19) 

The temporal transition in Equations (5.20) and (5.21) control the operations for semi-

continuous blenders. The binary variable 𝑦𝑚,𝑡 manages the start-up (𝑧𝑠𝑢𝑚,𝑡) switch-

over (𝑧𝑠𝑤𝑚,𝑡) and shut-down variables (𝑧𝑠𝑑𝑚,𝑡), which are relaxed in the interval [0,1]. 

Equation (5.22) guarantees the integrality of the relaxed variables. 

𝑦𝑚,𝑡 − 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 = 0  ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                               (5.20) 

𝑦𝑚,𝑡 + 𝑦𝑚,𝑡−1 − 𝑧𝑠𝑢𝑚,𝑡 − 𝑧𝑠𝑑𝑚,𝑡  − 2𝑧𝑠𝑤𝑚,𝑡 = 0   ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                        (5.21) 

𝑧𝑠𝑢𝑚,𝑡 + 𝑧𝑠𝑑𝑚,𝑡 + 𝑧𝑠𝑤𝑚,𝑡 ≤ 1  ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡                                                                           (5.22) 
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In Equations (5.23) and (5.24), the parameters 𝑈𝑆𝐸𝑗,𝑡
𝐿  e 𝑈𝑆𝐸𝑗,𝑡

𝑈  manage the out-ports (𝑗 

∈ 𝐽𝑈𝑆𝐸) from their respective in-ports 𝑖𝑑𝑜 to avoid simultaneous flow from a blender to 

two or more distinct tanks in the same time step. Equations (5.25) and (5.26) limit 𝑈𝑆𝐸𝑖,𝑡
𝐿  

e 𝑈𝑆𝐸𝑖,𝑡
𝑈  to in-ports (𝑖 ∈ 𝐼𝑈𝑆𝐸) from their respective out-ports 𝑗𝑢𝑝, controlling the number 

of simultaneous flows to the same unit.  

∑ 𝑦𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

≥ 𝑈𝑆𝐸𝑗,𝑡
𝐿  𝑦𝑚,𝑡  ∀ 𝑗 ∈ 𝐽𝑈𝑆𝐸 , 𝑡                                                                                         (5.23) 

∑ 𝑦𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

≤ 𝑈𝑆𝐸𝑗,𝑡
𝑈  𝑦𝑚,𝑡 ∀ 𝑗 ∈ 𝐽𝑈𝑆𝐸 , 𝑡                                                                                          (5.24) 

∑ 𝑦𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝

≥ 𝑈𝑆𝐸𝑖,𝑡
𝐿  𝑦𝑚,𝑡 ∀ 𝑖 ∈ 𝐼𝑈𝑆𝐸 , 𝑡                                                                                          (5.25) 

∑ 𝑦𝑗𝑢𝑝 ,𝑖,𝑡

𝑗𝑢𝑝

≤ 𝑈𝑆𝐸𝑖,𝑡
𝑈  𝑦𝑚,𝑡∀ 𝑖 ∈ 𝐼𝑈𝑆𝐸 , 𝑡                                                                                           (5.26) 

Equations (5.27) to (5.29) model the uptime considering 𝑈𝑃𝑇𝑈as the upper bound, ∆𝑡 

as time step, 𝑡𝑒𝑛𝑑 as the end of the horizon, and 𝑛𝑝 as the number of periods (KELLY 

and ZYNGIER, 2007). 

∑ 𝑧𝑠𝑢𝑚,𝑡−tt

𝑈𝑃𝑇𝐿−1

𝑡𝑡=1

≤ 𝑦𝑚,𝑡 ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡 > 1 | 𝑡 − 𝑡𝑡 ≥ 𝑛𝑝                                                       (5.27) 

∑ 𝑦𝑚,𝑡𝑡

𝑈𝑃𝑇𝑈

∆𝑡

𝑡𝑡=𝑡

≤
𝑈𝑃𝑇𝑈

∆𝑡
 ∀ 𝑚 ∈ 𝑀𝐵𝐿 , 𝑡 < 𝑡𝑒𝑛𝑑 − 𝑈𝑃𝑇𝑈                                                                 (5.28) 

∆𝑡 ∑ 𝑧𝑠𝑢𝑚,𝑡

𝑡

≤ 𝑛𝑝 ∀ 𝑚 ∈ 𝑀𝐵𝐿                                                                                                     (5.29) 

To reduce the MILP-NLP gap in the proposed decomposition and to avoid poor NLP 

results or even infeasibilities in this stage, Equation (5.30) has been used to linearize 

non-convex NLP blending equations in the MILP model by considering the property 
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nonlinear variables as parameters referred to as factors 𝑓𝑖,𝑝,𝑡. For further details please 

see Kelly, Menezes, and Grossmann (2018).  

∑ 𝑓𝑖,𝑝,𝑡 ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝∈𝐽𝑇𝐾𝑖∈𝐼𝐵𝐿

= 𝑓𝑗,𝑝,𝑡  ∑ 𝑥𝑗,𝑖,𝑡

𝑖∈𝐼𝑇𝐾

+ 𝑥𝑗𝐹,𝑝,𝑡   ∀ 𝑗, 𝑗𝐹, 𝑝, 𝑡                                            (5.30) 

5.6.2 Quality Problem: NLP Blend Scheduling 

The NLP mathematical model includes Equations (5.1) to (5.30) from the UOPSS 

flowsheet formulation (by fixing the binary variables from the MILP solution) and 

Equations (5.31) to (5.36) for the blending constraints. Considering 𝑝 as property 

(specific gravity, sulfur content) and 𝑣 and 𝑤 as volume- and weight-based properties, 

respectively, Equation (5.31) defines the volume-based properties (𝑝 ∈ 𝑃𝑣) of in-ports 

𝑖 for 𝑖 ∉ 𝐼𝑇𝐾. Equation (5.32) is used for mass-based properties (𝑝 ∈ 𝑃𝑤) such as sulfur 

concentration. 

𝑣𝑖,𝑝,𝑡 ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

= ∑ 𝑣𝑗𝑢𝑝 ,𝑝,𝑡𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  ∀ 𝑖 ∉ 𝐼𝑇𝐾, 𝑝 ∈ 𝑃𝑣 , 𝑡                                                         (5.31) 

 

𝑤𝑖,𝑝,𝑡 ∑ 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗′,𝑖,𝑡

𝑗𝑢𝑝

= ∑ 𝑤𝑗𝑢𝑝 ,𝑝,𝑡 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  ∀ 𝑖 ∉ 𝐼𝑇𝐾, 𝑝 ∈ 𝑃𝑤 , 𝑡                  (5.32) 

Equations (5.33) and (5.34) represent the quality balances of volume- and mass-based 

properties for tanks, respectively. The quality variable for the out-port of a tank unit-

operation (𝑚 ∈ 𝑀𝑇𝐾) is the quality in the tank itself as defined by Equations (5.35) and 

(5.36). 

𝑣𝑚,𝑝,𝑡 𝑥ℎ𝑚,𝑡 = 𝑣𝑚,𝑝,𝑡−1 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑣𝑗𝑢𝑝,𝑝,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

 − 𝑣𝑚,𝑝,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

 ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑝

∈ 𝑃𝑣 , 𝑡                                                                                                                        (5.33) 
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𝑤𝑚,𝑝,𝑡 𝑣𝑚,𝑝=𝑠𝑔,𝑡 𝑥ℎ𝑚,𝑡

= 𝑤𝑚,𝑝,𝑡−1 𝑣𝑚,𝑝=𝑠𝑔,𝑡−1 𝑥ℎ𝑚,𝑡−1 + ∑ 𝑤𝑗𝑢𝑝,𝑝,𝑡 𝑣𝑗𝑢𝑝 ,𝑝=𝑠𝑔,𝑡 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝

  

− 𝑤𝑚,𝑝,𝑡 𝑣𝑚,𝑝=𝑠𝑔,𝑡 ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

 ∀ (𝑖, 𝑚, 𝑗) ∈ 𝑀𝑇𝐾, 𝑝 ∈ 𝑃𝑤 , 𝑡                            (5.34) 

 

𝑣𝑗,𝑝,𝑡  = 𝑣𝑚,𝑝,𝑡 ∀ (𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑝 ∈ 𝑃𝑣, 𝑡                                                                                      (5.35) 

𝑤𝑗,𝑝,𝑡  = 𝑤𝑚,𝑝,𝑡 ∀ (𝑚, 𝑗) ∈ 𝑀𝑇𝐾 , 𝑝 ∈ 𝑃𝑤, 𝑡                                                                                   (5.36) 

 

5.7 Nomenclature 

Subscripts 

𝑖: in-port  

𝑖𝑑𝑜: in-port 𝑖 downstream to out-port j  

𝑗: out-port 

𝑗𝑢𝑝: out-port upstream to in-port i 

𝑚: unit-operations 

𝑝: properties  

𝑡: time periods  

𝑢: units 

Superscripts 

L: lower bound  

U: upper bound  

Sets 

𝐼𝑇𝐾: in-port of tanks  

𝐼𝑈𝑆𝐸: in-port with multi-use constraint 
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𝐽𝑇𝐾: out-port of tanks  

𝐽: out-port with multi-use constraint 

𝑀𝐵𝐿: unit-operation of blenders 

𝑀𝐹𝐷: unit-operation of feedstocks supply 

𝑀𝐹𝑃: unit-operation of demands (final products)  

𝑀𝑇𝐾: unit-operation of tanks 

𝑃𝑣: volume-base property  

𝑃𝑤: mass-base property 

𝑈𝑚: unit of multiple operations  

Parameters 

∆𝑡: time step 

𝑓𝑗,𝑝,𝑡: factor parameters 

𝑛𝑝: total number of time periods 

𝑟𝑖,𝑡
𝐿 : inverse yield lower bound in the in-port 𝑖 of unit 𝑚 at time 𝑡 

𝑟𝑖,𝑡
𝑈 : inverse yield upper bound in the in-port 𝑖 of unit 𝑚 at time 𝑡 

𝑟𝑗,𝑡
𝐿 : yield lower bound in the out-port 𝑗 of unit 𝑚 at time 𝑡 

𝑟𝑗,𝑡
𝑈 : yield upper bound in the out-port 𝑗 of unit 𝑚 at time 𝑡 

𝑡𝑒𝑛𝑑: end of time horizon 

𝑈𝑆𝐸𝑖,𝑡
𝐿 : lower bound for number of out-ports 𝑖 from the blender at time 𝑡 

𝑈𝑆𝐸𝑖,𝑡
𝑈 : upper bound for number of the out-ports 𝑖 from the blender at time 𝑡 

𝑈𝑆𝐸𝑗,𝑡
𝐿 : lower bound for number of the out-ports 𝑗 to the blender at time 𝑡 

𝑈𝑆𝐸𝑗,𝑡
𝑈 : upper bound for number of the out-ports 𝑗 to the blender at time 𝑡 

𝑈𝑃𝑇𝐿: uptime lower bound for blender 

𝑈𝑃𝑇𝑈: uptime upper bound for blender 

�̅�𝑖,𝑝,𝑡
𝐿 : lower bound for property 𝑝 (volume-based) in the in-port 𝑖 at time 𝑡 
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�̅�𝑖,𝑝,𝑡
𝑈 : upper bound for property 𝑝 (volume-based) in the in-port 𝑖 at time 𝑡 

�̅�𝑗,𝑝,𝑡
𝐿 : lower bound for property 𝑝 (volume-based) in the out-port 𝑗 at time 𝑡 

�̅�𝑗,𝑝,𝑡
𝑈 : upper bound for property 𝑝 (volume-based) in the out-port 𝑗 at time 𝑡 

�̅�𝑖,𝑝,𝑡
𝐿 : lower bound for property 𝑝 (mass-based) in the in-port 𝑖 at time 𝑡 

�̅�𝑖,𝑝,𝑡
𝑈 : upper bound for property 𝑝 (mass-based) in the in-port 𝑖 at time 𝑡 

�̅�𝑗,𝑝,𝑡
𝐿 : lower bound for property 𝑝 (mass-based) in the out-port 𝑗 at time 𝑡 

�̅�𝑗,𝑝,𝑡
𝑈 : upper bound for property 𝑝 (mass-based) in the out-port 𝑗 at time 𝑡 

�̅�𝑚,𝑡
𝐿 : lower bound for flow of unit-operation 𝑚 at time 𝑡 

�̅�𝑚,𝑡
𝑈 : upper bound for flow of unit-operation 𝑚 at time 𝑡 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝐿 : lower bound for flow of unit-operation 𝑚 at time 𝑡 

𝑥ℎ̅̅ ̅
𝑚,𝑡
𝑈 : upper bound for flow of unit-operation 𝑚 at time 𝑡 

𝑥ℎ𝑚,𝑡
𝐸𝑀𝑃𝑇𝑌: lower bound for flow of unit-operation 𝑚 at time 𝑡 

𝑥ℎ𝑚,𝑡
𝐹𝑈𝐿𝐿: upper bound for flow of unit-operation 𝑚 at time 𝑡 

�̅�𝑗,𝑖,𝑡
𝐿 : lower bound for flow from 𝑗 to 𝑖 at time 𝑡 

�̅�𝑗,𝑖,𝑡
𝑈 : upper bound for flow from 𝑗 to 𝑖 at time 𝑡 

Binary Variables 

𝑦𝑚,𝑡: unit-operation setup of 𝑚 at time 𝑡 

𝑦𝑗,𝑖,𝑡: unit-operation-port-unit-operation-port setup between 𝑗 and 𝑖 at time 𝑡 

 

Continuous Variables 

𝑝𝑖,𝑝,𝑡: generic property 𝑝 in the out-port 𝑖 of 𝑚 at time 𝑡 

𝑝𝑗,𝑝,𝑡: generic property 𝑝 in the out-port 𝑗 of 𝑚 at time 𝑡 

𝑝𝑚,𝑝,𝑡: generic property 𝑝 in the unit-operation 𝑚 of tanks at time 𝑡 

𝑣𝑖,𝑝,𝑡: property 𝑝 (volume-based) in the out-port 𝑖 of 𝑚 at time 𝑡 

𝑣𝑗,𝑝,𝑡: property 𝑝 (volume-based) in the out-port 𝑗 of 𝑚 at time 𝑡 
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𝑣𝑚,𝑝,𝑡: property 𝑝 (volume-based) in the unit-operation 𝑚 of tanks at time 𝑡 

𝑤𝑖,𝑝,𝑡: property 𝑝 (mass-based) in the out-port 𝑖 of 𝑚 at time 𝑡 

𝑤𝑗,𝑝,𝑡: property 𝑝 (mass-based) in the out-port 𝑗 of 𝑚 at time 𝑡 

𝑤𝑚,𝑝,𝑡: property 𝑝 (mass-based) in the unit-operation 𝑚 of tanks at time 𝑡 

𝑥𝑚,𝑡: flow of unit-operation 𝑚 at time 𝑡  

𝑥ℎ𝑚,𝑡: holdup of unit-operation 𝑚 at time 𝑡 

𝑥𝑗,𝑖,𝑡: unit-operation-port-unit-operation-port flow between 𝑗 and 𝑖 at time 𝑡 

𝑧𝑠𝑢𝑚,𝑡: start-up of unit-operation 𝑚 at time 𝑡 

𝑧𝑠𝑤𝑚,𝑡t: switchover-to-itself of unit-operation 𝑚 at time 𝑡 

𝑧𝑠𝑑𝑚,𝑡: shutdown of unit-operation 𝑚 at time 𝑡 

Acronyms 

BL: continuous blender unit 

D1 to D3: final products pool 

F1 to F4: feed tanks 

LP: linear programming 

MILP: mixed-integer linear programming 

MINLP: mixed-integer nonlinear programming 

NLP: nonlinear programming 

R1 to R4: feedstock resources 

SG: specific gravity 

S: sulfur 

S1 to S3: storage tanks 

UOPSS: unit-operation-port superstructure 
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6                              
Cutpoint Temperature Surrogate Modeling for Refinery Applications5 
 

For high-performance operations in crude oil refinery processing, it is important to 

properly determine yields and properties of output streams from distillation units. To 

address such complex representation, a cutpoint temperature modeling framework is 

proposed in this Chapter, which uses a coefficient setup MIQP (mixed-integer 

quadratic programming) technique to determine optimizable surrogate models to 

correlate independent X variables (crude oil compositions, temperatures) to dependent 

Y variables (yields and properties of distillates). The X inputs are randomly generated 

by Latin Hypercube Sampling (LHS) and the experiments to obtain the synthetic Y 

outputs are simulated using the well-known conventional and improved swing-cut 

methods. By using these optimizable surrogate models (which are suitable to handle 

continuous data from the process) with measurement feedback (for adjustments and 

improvements), distillation outputs can be continuously updated in an online fashion. 

The proposed approach successfully builds accurate surrogates for the distillation unit, 

which can be embedded into complex planning and scheduling environments. 

Moreover, this MIQP surrogate identification technique may also be applied to other 

types of downstream process optimization problems such as reacting and blending 

unit-operations, as well as other separating processes.  

6.1 Introduction 

Crude oil distillation units (CDUs) are complex sets of towers designed, operated, and 

controlled to separate liquid hydrocarbon feedstocks or crude oil raw materials into 

intermediate fractions or distillates according to boiling range temperatures (RIAZI, 

2005). As these distilled streams are processed in downstream unit-operations and 

 
 

5 This chapter is based on the following manuscript: 
FRANZOI, R. E.; MENEZES, B. C.; KELLY, J. D.; GUT, J. A. W.; GROSSMANN, I. E. Cutpoint 
Temperature Surrogate Modeling for Distillation Yields and Properties. Industrial and Engineering 
Chemistry Research, v. 59, n. 41, p. 18616-18628, 2020. 
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blended into final products, for an overall high-performance operation of the refinery, it 

is important to precisely calculate the distillation unit product yields and properties as 

a function of feed quality and operating conditions (FU and MAHALEC, 2015). Both 

rigorous and surrogate models can be used to predict product amounts and properties 

of distillation processes for planning, scheduling, multi-unit coordinating, and real-time 

optimization (RTO) environments. The rigorous, mechanistic, physics-based, first 

principles, white-box or engineering-based modeling typically consider molar, mass, 

energy, separation, and equilibrium balances in the distillation columns. Compositions, 

flows and processing conditions may be accurately determined, but at a high 

computational cost, and with convergence issues for their application in large-scale 

integrated problems. Conversely, non-rigorous, black-box or empirical-based modeling 

can use surrogate or simplified shortcut correlations based on measured and/or 

synthetic data using regression techniques. Due to their simplicity, effectiveness and 

acceptable accuracy within a localized region, surrogate modeling is commonly used 

for process optimization in crude oil refineries (LI, HUI, and LI, 2005). 

In order to calculate CDU yields and cold-flow properties using non-rigorous models, 

one can use the temperature distribution from the crude oil true boiling point (TBP) 

curve, which represents how the crude oil yields and properties (such as specific 

gravity, sulfur content, etc.) vary with the distillation temperature (FU and MAHALEC, 

2015; KELLY, MENEZES, and GROSSMANN, 2014). The TBP curve is related to the 

crude oil assay, which provides data on the quantities and qualities of each discretized 

temperature cut or micro-cut range through their distillation temperature distribution 

(MENEZES, KELLY, and GROSSMANN). Due to operational limitations and 

inefficiencies regarding reflux and re-circulation rates, number of stages, etc., there is 

a well-known overlap in the TBP boiling ranges of adjacent fractions or compounds in 

any physical distillation column (LI, HUI, and LI, 2005). Therefore, this non-sharp 

fractionation between adjacent distillates should be considered to properly formulate 

cutpoint optimization methods.  

By observational evidence in the oil refinery, the bulk quality of raw material 

composition (assay) of crude oils to be processed typically determines around 80 to 

90% of the amounts and properties of the distillates, whereas the remaining part is 

determined by its operational variables, such as internal reflux rates, system pressure 

profile, steam flows of side-strippers, pump-around re-circulation rates, parallel split 
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ratios of pre-heat exchanger trains, feed and location temperatures in the furnace and 

tower, tray and/or packing characteristics, etc. Moreover, lower and upper bounds of 

quality specifications (circa 30 distinct types of properties, such as specific gravity, 

sulfur concentration, acidity, carbon residue content, etc.) can be considered in the 

cutpoint temperature model. Due to uncertainties in the transformation equations, feed 

compositions and   other processing data, high-fidelity modeling becomes unrealistic 

to be included in problems such as the blend scheduling and processing optimization 

of crude oils.  

In addition to the above considerations, we are currently moving towards a more 

complex process optimization within the well-known Industry 4.0 paradigm (JOLY et 

al., 2018), driven by advancements in decision-making modeling, computer-aided 

capabilities, connectivity and solution algorithms. In this direction, big data (CHEN et 

al., 2014; CHIANG, LU, and CASTILLO, 2017; MAKTOUBIAN, GHASEMPOUR-

MOUZIRAJI, AND NOORI, 2020; WU et al., 2013), data-driven models 

(BOUKOUVALA et al., 2016; LI et al., 2016; YU, 2019; AHMAD et al., 2020; MCBRIDE, 

SANCHES MEDINA, and SUNDMACHER, 2020), and machine learning techniques 

(ANDERSON, 2017; BECK et al., 2016; WILSON and SAHINIDIS, 2017) have been 

used in a wide range of engineering problems: a) handling large, complex, and 

unreliable data sets; b) as a better or more efficient alternative to solve particular 

problems; and c) solving problems which are either intractable or that require faster 

solutions for specific applications. Production and process optimization for the crude 

oil refinery industry typically handle large, complex, nonlinear, and non-convex models. 

Thus, modeling and optimizing a fully integrated petroleum refinery problem is still not 

yet attainable in terms of complexity and uncertainty. Data from the plant is not always 

accurate and contains various noise levels, and model-plant mismatches can often 

impose issues regarding model infeasibilities and solution implementation. Employing 

online measurements in the entire plant can help to mitigate errors and provide better 

fidelity; however, that is typically not as effective as identifying and estimating better 

local models. Hence, error propagation becomes significant, especially because of the 

nonlinearities associated with crude oil refinery problems.  

The framework thus proposed herein establishes surrogate models based on process 

analytics and machine learning techniques to reduce uncertainties around the 

determination of cutpoints in distillation units when incrementally optimizing and 
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controlling the stream flow, yield and properties drawn from the CDU at a certain 

section in the tower. The main contributions of the proposed model are: a) it is as 

representative and accurate as typical models used for planning and scheduling 

environments such as the swing-cut methods (LI, HUI, and LI, 2005; MENEZES, 

KELLY, and GROSSMANN, 2014); b) real data from the plant can be embedded into 

the model to give it self-adjustability and self-improvability over time, minimizing the 

impact of uncertainties and disturbances in the process by correlated parameter 

updating (with re-estimation of coefficients); c) it is small in size, with fewer equations 

and degrees of freedom than the swing-cut models, and can be properly integrated 

into planning, scheduling, coordinating and RTO environments with minimal increase 

in the simulation and optimization effort.  

The novelty of our approach relies on using data available from any reliable source 

(e.g., process measurements, rigorous simulator) to predict distillation unit outputs. 

This is especially helpful to handle plant-model mismatches and uncertainties in the 

process, as the accuracy of the predictions can be continuously improved by using 

new data, so that our method depends on the quality and volume of data available. 

Ideally, it would be as accurate as the original source of data. If a rigorous simulator is 

used to generate high fidelity data, simple yet accurate surrogates built with this 

methodology can be embedded in decision-making control, modeling, and optimization 

environments (which would be computationally too expensive when using the rigorous 

simulator itself). In this work, instead of comparing other methods from the cutpoint 

optimization literature regarding their accuracy, we demonstrate how to build surrogate 

models for the distillation unit that can accurately predict its processing behavior. 

Hence, if that data accurately represents the distillation behavior, so does our model. 

That might be useful for the integration of proxy or surrogate models into large scale 

applications, such as the refinery planning and scheduling problems.  

The outline of this chapter is as follows. Section 6.2 presents an overview of the 

cutpoint optimization approaches reported in the literature. The problem statement is 

described in Section 6.3. The proposed algorithm for identifying surrogate process 

analytics formulae, known as coefficient-setup technique, is presented in Section 6.4, 

whereby the swing-cut modeling (conventional and improved) as well as the inputs-

outputs or X-Y data blocks or sets are given in the Supplementary Material. Examples 

using the proposed algorithm for linear and interaction terms of bilinear correlations of 
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the surrogate model are compared in Section 6.5. The conclusions and future work on 

the topic are discussed in Section 6.6. 

6.2 Previous Shortcut Distillation Methods  

The simplest approach to model a distillation unit is to use fixed yield and property 

values for its outputs, specifying the increments of the discretized CDU fractions and 

using crude oil assay data to calculate these fractions (BROOKS, VAN WALSEM, and 

DRURY, 1999). As this approach uses sharp fractionation to calculate the CDU yields, 

it does not rigorously compute the molecular behavior considering the non-perfect or 

non-sharp separation. A variation in the fixed yield model, known as multiple fixed 

yields, allows multiple and usually hypothetical operational modes in the process, 

whereby each mode is related to a distinct crude oil assay and hence, different yields 

and properties for the final cuts. This method introduces an additional degree of 

freedom, which is represented by binary variables. Such improvement allows only a 

small number of different solutions (equal to the number of operational modes), despite 

the feasibility of intermediate solutions that lie between the range of pre-defined 

modes. Furthermore, crude oil refinery optimization problems are typically highly 

nonlinear and non-convex due to the blending of streams and inventories throughout 

the processing network of unit-operations and intermediate tanks. The introduction of 

binary variables would lead to a non-convex mixed-integer nonlinear programming 

(MINLP) problem, which is difficult to solve for medium to large-scale cases. Brooks et 

al.19 optimized product yields for a crude oil distillation unit by introducing eight pre-

defined modes of operation. Each mode had a distinct choice of cutpoints, and their 

approach allowed blending the outputs of distinct modes to achieve required yields and 

properties of the final distillates. To handle the complex nature of the problem, the 

authors employed tabulated values of yields and properties of intermediate products 

as a linear model for the distillation unit. 

To better predict crude oil distillation unit outputs, there are models that consider non-

sharp fractionation by including volume and/or mass variations in the cutpoints. A 

traditional empirical approach is known as delta-based or shift-vector modeling and 

uses small increments for product deviations in the TBP curve representing only first-

order or linear effects. The swing-cut methods (LI, HUI, and LI, 2005; MENEZES, 
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KELLY, and GROSSMANN, 2013; ZHANG, ZU, and TOWLER, 2001) are examples 

that require both the TBP range for each product and estimating the size of each swing-

cut. This information can be combined with the crude oil quality in the respective TBP 

range to calculate the properties of each distillate (FU and MAHALEC, 2015). In 

addition, the swing-cut method creates additional degrees of freedom by optimizing 

the amount of each swing-cut to the lighter and heavier final distillates. The swing-cut 

methods are commonly used for distillation unit modeling due to their simplicity 

(GUERRA and LE ROUX, 2011) and improvements when compared to the fixed yields 

method.  

Zhang et al. (2001) proposed a swing-cut method that considers operational conditions 

and feed properties in the distillation unit as variables in the optimization. However, 

this method considers the properties of adjacent distilled products fixed regardless of 

the amounts and properties of the swing-cut splits added to the distillates, failing to 

represent the high nonlinearity of the distillation process. The weight transfer ratio 

method (WTR), proposed by Li et al. (2005), considers crude oil characteristics and 

product yields and qualities in simplified empirical nonlinear models. The authors used 

an empirical procedure to calculate the mass transfer rates of each product in the CDU 

and to determine the size of each swing-cut. In addition, the authors used regression 

models based on the properties of the feed load to consider the variation of properties 

in each swing-cut. However, due to the possibility of processing more than one type of 

crude oil simultaneously, additional procedures are required to calculate the TBP curve 

of the crude oil mixture.  

To efficiently deal with the variation of properties within the swing-cut, Menezes et al. 

(2013) improved the traditional or conventional swing-cut (CSW) method by dividing 

each swing-cut into light and heavy fractions with different qualities. The model uses 

arbitrary 10 °C increments for micro-cuts or pseudo-components of crude oil assay 

distributions and given initial and final boiling point temperature ranges of internal 

sections of the distillation columns to calculate the transformation of crude oils micro-

cuts to the tower internal fractions or macro-cuts formed by pre-defined sections (fuel 

gas, LPG, naphtha, swing-cut, etc.). The properties of each light and heavy swing-cuts 

are calculated individually using interpolated quality information regarding their 

respective splits and the hypothetical light and heavy interfaces (blend of the micro-

cuts in neighbor internal fractions or macro-cuts). This method adds property 
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information on both light and heavy split fractions, in addition to the flow variables and 

nonlinear balance constraints to determine the final cuts (final products). The improved 

swing-cut (ISW) method accurately predicts the volumes and properties of distillation 

unit outputs, and can improve the selection of both crude oils and swing-cuts to provide 

specified final products more efficiently. 

Alattas, Grossmann, and Palou-Rivera (2011) proposed a nonlinear model for the 

distillation unit to be used in a production planning environment. The distillation unit is 

represented as two-phase separation flash towers operating in series, using the 

Heaviside step function for modeling the gas-liquid equilibrium in the stripping and 

rectifying sections of the flashes. Fractionation indices (FI) are introduced for both gas 

and liquid layers of the flashes to be calculated with crude oil assay micro-cuts or 

pseudo-component distribution, as well as characteristics of the columns such as 

temperature ranges of the products (as initial and final boiling temperatures of the 

distillates in the bottom stream of the flashes). The model uses the FI values and molar 

balances to determine distillation tower operations and outputs more accurately than 

conventional swing-cut models. Alattas, Grossmann, and Palou-Rivera (2012) 

improved their previous methodology by formulating the disjunction of the fractionation 

index with mixed-integer constraints by formulating the selection of the stripping and 

rectifying sections considering a binary variable for each FI of the flashes, leading to a 

faster and more robust model. The authors also extended the application of their model 

to a multiperiod refinery planning problem based on an MINLP formulation. The 

nonlinearities are related to the blend of streams for crude oil selection and distilled 

product destinations, as well as to the vapor pressure calculation using reduced 

temperature . 

Mahalec and Sanchez (2012) proposed a hybrid model to optimize distillation unit 

towers based on first principles with traditional mass and energy balances per section 

of the towers (THIELE and GEDDES, 1933) and statistical models based on data. In 

this approach, operational variables are correlated to product distillation curves by 

using partial least-square (PLS) models with datasets generated in rigorous simulation 

tools. The results of this procedure are used to estimate the deviation between initial 

and final boiling temperatures of the evaporation curves of the distillates. By partially 

relying on a statistical modeling, the method manages to reduce the prediction error of 
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the fractions in the distillation unit. However, the increment used to set the cutpoints 

(between 14 and 67 °C) may not be small enough to give sufficiently good accuracy. 

With measured values of final distillates, hydraulic amounts and evaporation curves in 

ASTM, TPB (true boiling point), or simulated distillation (SD) distributions, Kelly et al. 

(2014) used a monotonic interpolation method that avoids Runge’s phenomenon 

(oscillation at the edges of an interval when constructing a polynomial interpolant of 

high degree) to define cutpoint optimization by variations in yields and evaporation 

curves of the distillates. First, an initial procedure uses analytical expressions to 

convert experimental methods of ASTM or SD into TBP temperatures. Second, 

monotonic interpolation converts the TBP temperatures into cumulative evaporations. 

Third, a cutpoint temperature optimization is performed to adjust the front and back 

end of each distillation curve component using measured flow and laboratory ASTM 

distillation data. Four case studies were provided, in which good agreement is shown 

between predicted and real blending properties. This distillation blending and cutpoint 

temperature optimization can be used to integrate blend-shops and crude oil distillation 

units whereby interpolated distillation curves of the CDU streams are mixed with other 

streams that blend linearly in TBP by mass (e.g., sulfur concentration) or volume (e.g., 

specific gravity). The blend is then converted back to ASTM using another monotonic 

interpolation to find the initial and final boiling points of each distillate. 

Fu, Sanchez, and Mahalec (2015) proposed a hybrid model to optimize a three-tower 

distillation unit. Partial least squares from the feed TBP curve and operational 

conditions were used to predict product TBP curves. Combined with volumetric and 

energy balances, their approach enables predictions with small discrepancies when 

compared to rigorous simulation. In their model, operating variables are used to 

compute the distances from the middle line of a product TBP curve, instead of relying 

on the internal reflux on selected trays, since tray temperatures are not required for 

monitoring or optimization. This hybrid model is of small size and good convergence, 

being suitable for planning, scheduling, coordinating and RTO environments. 

For better predictions of process-shop yields and properties, Franzoi et al. (2018) use 

predictive analytics techniques by doing constrained and weighted least squares to 

better fit base plus delta or shift-vector sub-models using data reconciliation and 

regression techniques. The reconciliation strengthens the consistency of yields and 
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the regression fits base and delta coefficients simultaneously across all yields. The 

proposed hybrid cutpoint optimization approach can be applied to the online 

optimization of crude oil blend scheduling operations in complex industrial-sized 

refineries to determine the composition-quality feed demands for the volumes and 

properties of distillates in towers in cascade (as a real process equipment design). 

According to Kelly and Zyngier (2008), a continuous cycle of improvements can use 

process measured feedback, which leads to higher accuracy and reliability, and aims 

to reduce the gap between the model predictions and the actual plant values. 

Cutpoint temperature modeling has also been used for energy efficient operations of 

crude oil distillation units. Durrani et al. (2018) proposed a hybrid artificial neural 

network model based on the Taguchi method and genetic algorithm to handle 

uncertainties in the crude oil feed compositions to reduce energy costs. Atmospheric 

distillation units may represent more than 25% of the potential of energy savings in 

crude oil refineries. Therefore, an efficient cutpoint temperature modeling saves a 

substantial amount of energy typically lost during the process. 

Most cutpoint temperature methods presented in the literature do not take into account 

the highly dynamic and uncertain real process environment or the typical plant versus 

model mismatches. In this context, the methodology proposed herein focuses on 

building an accurate cutpoint temperature model, suitable for planning, scheduling, 

coordinating and real time applications, and that uses continuous and real data from 

any reliable sources, such as the production plant or rigorous simulation to improve 

the predictions of crude oil distillation units. 

6.3 Problem Statement 

For the sake of simplicity in the presentation, and to motivate the ideas behind the 

proposed method, we consider a specific case in which there are four crude oils (CO1 

to CO4) feeding a crude distillation unit, which produces seven final cuts: fuel gas (FG), 

liquefied petroleum gas (LPG), naphtha (N), kerosene (K), light diesel (LD), heavy 

diesel (HD), and atmospheric residue (ATR). The yields and properties of the distillates 

are calculated using different methods: a) fixed yield (FY); b) conventional swing-cut 

(CSW); and c) improved swing-cut (ISW). Figure 6.1a shows the process flowsheet 

within a UOPSS (unit-operation-port-state superstructure) representation (KELLY, 
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2005) for the distillation example in which swing-cuts are not considered, while Figure 

6.1b represents a scenario with three swing-cuts between naphtha and kerosene, 

kerosene and light diesel, light diesel and heavy diesel for CSW and ISW. The 

capacities for the crude oil pools and final product pools are 100 Mbbl. The maximum 

flowrate for the distillation unit is 100 Mbbl/day. The crude oil assay data is embedded 

in the optimization problem as well.  

Figure 6.1: Crude oil distillation unit flowsheet a) without swing-cuts and b) with 

swing-cuts. 

a)                 b)  

Source: Author (2021). 

The swing-cuts shown in Figure 6.1b represent hypothetical flows used for modeling 

and optimization purposes only. In real distillation unit operations, variables such as 

flow, temperature and pressure are adjusted in the plant to control the production of 

fuels. For example, decreasing or increasing the trays temperature profile changes the 

production of each distillate which has an important role in the refinery economics. In 

this work, we do not directly model these process variables, but the swing-cuts 

represent the same purpose or degree-of-freedom as an outcome of the operational 

variations within the distillation column.  

For instance, let us consider the hypothetical swing-cut between naphtha and 

kerosene. If this swing-cut splits equally between naphtha and kerosene in the 

optimization problem, the operational conditions in a real process should be chosen to 

meet this condition. In that case, the naphtha/kerosene swing-cut split fraction 𝑠𝑤1 is 

a proxy for the naphtha endpoint cutpoint temperature (final boiling point) and relates 
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the swing-cut naphtha (light-key) flow 𝑄𝑁
𝑠𝑤 to the swing-cut kerosene (heavy-key) flow 

𝑄𝐾
𝑠𝑤. Depending on the value of 𝑠𝑤1 chosen by the optimization, the swing 

naphtha/kerosene cutpoint temperature 𝑇𝑁/𝐾 (to be adjusted in the actual unit in the 

tower) can be calculated as shown in Equations (6.1) and (6.2), in which 𝑇𝑁 and 𝑇𝐾 are 

the final cutpoint temperature of naphtha and the initial cutpoint temperature of 

kerosene, respectively. Although the swing-cut splits (light and heavy streams) go from 

internal swing-cut fractions to their respective neighbor final cut or distillate (lighter 

swing-cut goes to the upper distillate, and the heavier to the lower), due to the 

assumption of perfect- or sharp-separation between internal (cuts) and external (final-

cuts) fractions of the towers in the ISW model, the final naphtha cutpoint is equivalent 

to the initial kerosene cutpoint. 

𝑠𝑤1 =
𝑄𝑁

𝑠𝑤

(𝑄𝑁
𝑠𝑤 + 𝑄𝐾

𝑠𝑤)
=

(𝑇𝑁/𝐾 − 𝑇𝑁)

(𝑇𝐾 − 𝑇𝑁)
 (6.1) 

(1 − 𝑠𝑤1) =
𝑄𝐾

𝑠𝑤

(𝑄𝑁
𝑠𝑤 + 𝑄𝐾

𝑠𝑤)
=

(𝑇𝐾 − 𝑇𝑁/𝐾)

(𝑇𝐾 − 𝑇𝑁)
 

(6.2) 

The final flows for naphtha and kerosene are their outlet CDU flows summed to their 

respective swing-cut parts, as shown in Equations (6.3) and (6.4).  

𝑄𝑁
𝑓𝑖𝑛𝑎𝑙

= 𝑄𝑁
𝑐𝑑𝑢 + 𝑄𝑁

𝑠𝑤  (6.3) 

𝑄𝐾
𝑓𝑖𝑛𝑎𝑙

= 𝑄𝐾
𝑐𝑑𝑢 + 𝑄𝐾

𝑠𝑤  (6.4) 

Substituting Equations (6.1) and (6.2) into Equations (6.3) and (6.4), the naphtha and 

kerosene final flows can be rewritten as a function of the naphtha/kerosene cutpoint 

temperature 𝑇𝑁/𝐾:  

𝑄𝑁
𝑓𝑖𝑛𝑎𝑙

= 𝑄𝑁
𝑐𝑑𝑢 +  

(𝑇𝑁/𝐾 − 𝑇𝑁)

(𝑇𝐾 − 𝑇𝑁)
(𝑄𝑁

𝑠𝑤 + 𝑄𝐾
𝑠𝑤) (6.5) 

𝑄𝐾
𝑓𝑖𝑛𝑎𝑙

= 𝑄𝐾
𝑐𝑑𝑢 +

(𝑇𝐾 − 𝑇𝑁/𝐾)

(𝑇𝐾 − 𝑇𝑁)
(𝑄𝑁

𝑠𝑤 + 𝑄𝐾
𝑠𝑤) 

(6.6) 



223 
 

 

6.4 Proposed distillation cutpoint modeling 

Three crude oil distillation unit models from the literature are reproduced in this work, 

and described in the Supplementary Material (Appendix A) as: a) fixed yield (FY); b) 

conventional swing-cut (CSW); and c) improved swing-cut (ISW). Moreover, a novel 

distillation model, based on data analytics identification and estimation using MIQP 

coefficient setup techniques to determine optimizable surrogate models, is proposed 

in this section. For the proposed distillation cutpoint model, the outputs (yields and 

properties) of the Y dataset are determined using the CSW and ISW models. 

We propose a cutpoint temperature modeling framework using a data-driven 

coefficient setup MIQP technique to determine optimizable surrogate models to 

correlate variations in independent or X variables to dependent or Y variables inferred 

from X-Y datasets. This machine learning linear regression methodology focuses on 

establishing simple yet reliable correlations to estimate the yields and properties 

outputs from actual distillation units. These surrogate models are built from 

experiments, process simulations or any other reliable source of data, and can 

accurately predict the outputs of processes in which there is missing/uncertain data, 

and that are typically very complex and require high effort to be simulated or obtained. 

They can reduce the impact of variations in the crude oil assay and uncertainties in the 

process since they are predicted from a data-driven methodology (that implicitly 

accounts for crude oil assay information), rather than directly based on crude oil assay 

from a very expensive TPB experiment (which can be out-of-date). If experimental or 

actual data from the field is used in real processes, the proposed data-driven machine 

learning approach eliminates the need of distillation curves or distribution of yields and 

properties of the crude oil assays. Then, once the X-Y or input-output correlations are 

identified, the estimation of the parameters or coefficients may be updated using active 

or passive historical data. Moreover, when building the surrogates, all the crudes 

available are considered so that changing the feed of the distillation unit does not 

impact the performance of the method. Besides, the distillation unit feed is assumed 

to have constant properties (i.e., typically a tank feeding the CDU cannot be 

simultaneously filled; therefore, the crude blend composition within this tank can be 

reasonably assumed to be constant). 
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The surrogates take the functional form of low-degree polynomials to keep the model 

simple. Extensive testing showed that high accuracy could be achieved using this type 

of model. Several polynomial-based models are built to test which terms are necessary 

to provide good accuracy while keeping the model as small and simple as possible. 

These terms include intercept, linear terms for the crude oils, linear terms for swing-

cuts, and bilinear terms for the product of each crude oil for each swing-cut. Some of 

the proposed models are linear, which may be more suitable for problems such as 

crude oil planning, that are typically large and may not afford nonlinearities (although 

that has changed recently given the technological improvements in computational 

power, solution algorithms, linearization strategies, etc.). Yet some models are bilinear 

and can provide better accuracy to nonlinear problems such as the crude oil 

scheduling. In order to define the structure of the surrogates, the following assumptions 

are adopted: a) linear terms for crude oils must be used due to the direct correlation 

between feed and distillates; b) bilinear terms between two crudes or two swing-cuts 

are not included to limit the total number of terms, and to avoid terms that are not 

statistically significant; c) the intercept term, the linear term for the crude oils and all 

the bilinear terms may or may not improve accuracy; d) terms that do not provide 

additional accuracy to the model should be avoided (i.e., over two similarly accurate 

models, the simplest or smaller model is recommended); e) terms that do not have a 

physical relation are not used in the surrogates. For instance, the liquefied petroleum 

gas and the atmospheric residue are not related to any swing-cut. Therefore, to 

estimate these variables, we do not use any term related to swing-cuts. Naphtha is 

solely related to the first swing-cut; the variables related to swing-cuts 2 and 3 are 

therefore not used to estimate the naphtha variables. A similar analysis was applied to 

all the variables in the surrogate model estimation. 

The proposed methodology is implemented and tested using the crude oil distillation 

example presented in Figure 6.1b, in which four crude oils feed a distillation unit to 

produce seven final products. The framework for the proposed model, shown in Figure 

6.2, is implemented in Python 3 using the Microsoft Visual Studio 2015 environment, 

and is integrated to Microsoft Excel to provide a more user-friendly approach for data 

manipulation and for better visualization of results. The modeling platform used is IMPL 

(Industrial Modeling & Programming Language), and the MIQP optimizations are 

carried out through the commercial solvers GUROBI 8.1.0 and CPLEX 12.8.0 
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connected to IMPL. The machine used was an Intel Core i7 with 2.90 GHz and 16 GB 

RAM. 

Figure 6.2: Framework for the proposed strategy 

  

Source: Author (2021). 

In summary, this methodology: a) builds a data set using randomly generated data; b) 

calculates or simulates the process variables of interest; in this case, they are the 

outputs of the distillation unit, using this data set; c) checks the feasibility status for the 

optimal solutions previously found; d) builds or identifies a surrogate model that 

properly fits the data; and e) checks the performance of the surrogate model found by 

calculating the average mean square error between the surrogate model and the data 

set. Each step of the framework shown in Figure 6.2 is explained in detail as follows. 

Sample Data Set: The proposed framework uses the well-established Latin Hypercube 

Sampling (LHS) technique to randomly sample 200 points for the independent 

variables for building a data set to be used to train the surrogate, which is divided into 

a training set and a testing set, each containing 100 points. For providing a better 

insight into the reliability and robustness of our methodology, the surrogates are tested 

over both the training (Data Set 1) and the testing data set (Data Set 2). As an example, 

Data Set 1 generated for the independent variables is presented in the Supplementary 

Material (Table 6.4). Each data set is used in both the CSW and the ISW models: 

• Case 1a: Training data set using the CSW method; 

• Case 1b: Testing data set using the CSW method; 
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• Case 2a: Training data set using the ISW method; 

• Case 2b: Testing data set using the ISW method. 

There are seven independent variables, related to the compositions of the four crude 

oils (𝑥1 to 𝑥4) and the three swing-cut splits (𝑥5 to 𝑥7). Variables 𝑥5, 𝑥6 and 𝑥7 represent 

the light fractions for each swing cut, so that information on the heavy fractions is not 

accounted as the light and heavy fractions of each swing-cut, which are 

complementary to the unity. These seven independent variables are randomly 

generated for each sample point, respecting the composition consistency represented 

by Equation (6.7), in which the sum of compositions of all crude oils found in set CR 

must be equal to the unity. 

∑ 𝑥𝑗

𝑗 ∈ 𝐶𝑅

 = 1 (6.7) 

Evaluate Data Set: The initial data sets are evaluated to calculate the yields and 

properties of the final distillation cuts. For that, Equations (6.18) to (6.32), see Appendix 

A in Supplementary Material, are employed in an optimization problem respecting the 

quality constraints (product specifications). The randomly generated independent 

variables, and the crude oil assay data are known. Although we do not need to optimize 

the problem (instead, we could calculate the final variables directly using Equations 

(6.18) to (6.32)), the optimization is useful to detect and to avoid poor selection of 

feedstocks that would eventually result in infeasible solutions, potentially with 

unspecified final products. As an example, the values of the dependent variables 

calculated using the ISW method based on Data Set 1 are shown in the Supplementary 

Material (Table 6.5 for yields, Table 6.6 for specific gravity, and Table 6.7 for sulfur 

content). 

Check Feasibility: A feasibility check is performed over all the optimal solutions from 

the previous step. Infeasible or inconsistent solutions and low-quality sub-optimal 

solutions with objective functions 30% worse than the best solution found, are 

removed.  

Build Surrogate Model: The final pool of solutions is used to train or to build a surrogate 

model for the yields and properties of each distillate stream. Each model is a function 

of the independent variables of crude oils and of its respective swing-cuts. For 
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example, the yields and properties of naphtha stream vary with the crude oil 

composition and with the naphtha-kerosene swing-cut (i.e., swing-cut 1 in Figure 6.1b). 

These surrogate models are intended to be a simple yet accurate correlation to replace 

the swing-cut models (or any other distillation unit model). For that, X basis are 

introduced in the problem to account for the independent variables. For each distillation 

component 𝑖 ∈ 𝐷𝐶 (i.e., any yield or property of a distillation cut), there are four linear 

basis 𝑙𝑗𝑖 to account for each crude oil 𝑗 ∈ 𝐶𝑅 (𝑥1, 𝑥2, 𝑥3, 𝑥4), and three linear basis 𝑙𝑘𝑖 to 

account for each swing cut 𝑘 ∈ 𝑆𝑊 (𝑥5, 𝑥6, 𝑥7). There are twelve bilinear basis 𝑏𝑗𝑘𝑖 for 

the relations between them, i.e., for the products of coefficients of each crude oil by 

each swing-cut: 𝑥1𝑥5, 𝑥1𝑥6, 𝑥1𝑥7, 𝑥2𝑥5, 𝑥2𝑥6, 𝑥2𝑥7, 𝑥3𝑥5, 𝑥3𝑥6,  𝑥3𝑥7, 𝑥4𝑥5, 𝑥4𝑥6,

𝑥4𝑥7, also known as interaction second-order effect terms. Quadratic terms are not 

considered in the model to limit the total number of terms. Other bilinear basis in which 

both coefficients represent crude oils or in which both represent swing-cuts (e.g., 𝑥1𝑥2,

𝑥5𝑥6) are not considered since these have no physical or relatable meaning, although 

they may prove beneficial when regressing with other data sets. An intercept coefficient 

(𝐼𝑖) has also been used to account for any possible behavior not accounted for the 

other terms.  

For each case, ten distinct models are proposed, in which three types of coefficients 

are employed. There are intercept coefficients, which are not associated to any basis; 

linear coefficients, which are multiplied for a linear basis (related to either a crude oil 

or a swing-cut); the bilinear or interaction coefficients, which are multiplied by two 

basis, becoming a second-order term in the equation. We believe these three types of 

coefficient-basis (intercept, linear and bilinear) are enough to accurately represent the 

interactions for the crude oil distillation process addressed herein. 

An intelligent pre-choice or pre-elimination of coefficients is performed so as to be 

representative of real operations. For example, for naphtha components, the 

linear/bilinear coefficients used are related to all the four crude oils, but only to the first 

swing-cut, as there is no relation between naphtha components and swing-cuts 2 and 

3 (as shown in Figure 6.1b). Similarly, kerosene relates to swing-cuts 1 and 2, light 

diesel relates to swing-cuts 2 and 3, and heavy diesel relates to swing-cut 3. Fuel gas, 

liquefied petroleum gas and atmospheric residue are not related to any swing-cut. 

Moreover, one of the independent variables related to the crude oils (𝑥4) is not included 



228 
 

in some models that use the intercept term. That helps to avoid large variances and 

unobservable terms due to multicollinearity issues. We propose four linear models and 

six nonlinear models as follows: 

• Model 1: linear coefficients for the crude oils (including 𝑥4); 

• Model 2: linear coefficients for the crude oils + linear coefficients for the swing-

cuts (including 𝑥4); 

• Model 3: linear coefficients for the crude oils + bilinear coefficients for the 

products between one crude oil and one swing-cut (including 𝑥4); 

• Model 4: linear coefficients for the crude oils + linear coefficients for the swing-

cuts + bilinear coefficients for the products between one crude oil and one 

swing-cut (including 𝑥4); 

• Model 5: intercept coefficient + linear coefficients for the crude oils (not including 

𝑥4); 

• Model 6: intercept coefficient + linear coefficients for the crude oils + linear 

coefficients for the swing-cuts (not including 𝑥4); 

• Model 7: intercept coefficient + linear coefficients for the crude oils + bilinear 

coefficients for the products between one crude oil and one swing-cut (not 

including 𝑥4); 

• Model 8: intercept coefficient + linear coefficients for the crude oils + linear 

coefficients for the swing-cuts + bilinear coefficients for the products between 

one crude oil and one swing-cut (not including 𝑥4); 

• Model 9: intercept coefficient + linear coefficients for the crude oils + bilinear 

coefficients for the products between one crude oil and one swing-cut (including 

𝑥4); 

• Model 10: intercept coefficient + linear coefficients for the crude oils + linear 

coefficients for the swing-cuts + bilinear coefficients for the products between 

one crude oil and one swing-cut (including 𝑥4). 

As an example, Surrogate Model 10 for a dependent variable (𝑌𝑖𝑝) can be 

mathematically written as shown in Equation (6.8), in which 𝐶𝑅 and 𝑆𝑊 are the sets 

for crude oils and swing-cuts, respectively. 



229 
 

 

𝑌𝑖𝑝 = 𝐼𝑖 + ∑ 𝑙𝑗𝑖

𝑗 ∈ 𝐶𝑅

 𝑋𝑗𝑝 +  ∑ 𝑙𝑘𝑖

𝑗 ∈ 𝑆𝑊

 𝑋𝑘𝑝

+ ∑ ∑ 𝑏𝑗𝑘𝑖

𝑘 ∈ 𝑆𝑊

𝑋𝑗𝑝𝑋𝑘𝑝

𝑗 ∈ 𝐶𝑅

             

∀  𝑖 ∈ 𝐷𝐶, 

∀  𝑝 ∈ 𝑃 

(6.8) 

For each point 𝑝 in data set 𝑃 of independent variables (X), and for each dependent 

variable 𝑖 (yields and properties of each output distillate from the distillation unit), 𝑌𝑖𝑝 

are the estimated outputs or dependent variable values, 𝐼𝑖 are the intercept 

coefficients, 𝑙𝑗𝑖 and 𝑙𝑘𝑖 are the linear basis and 𝑏𝑗𝑘𝑖 are the bilinear basis with respect 

to crude oils 𝑗 and swing-cuts 𝑘, respectively, 𝑋𝑗𝑝 are the crude oil compositions, and 

𝑋𝑘𝑝 are the swing-cut yields or split fractions. 

The surrogate models are built using MIQP optimizations for the stream yields of each 

final cut (except fuel gas), for the specific gravity of each final cut (except fuel gas), 

and for the sulfur content of each final cut (except fuel gas and LPG). Therefore, for 

each scenario, a surrogate is built for each one of the 17 variables and hence, a total 

of 17 optimization problems are formulated and optimized, each one with at most 20 

coefficients (one intercept, seven linear and twelve bilinear basis). Each optimal 

solution contains the active basis (binaries equal to one) and its respective coefficients. 

Each optimization leads to a surrogate related to a specific process variable (i.e., yields 

or properties of distillation cuts), which are the dependent variables in our model. As 

an example of process variables of interest in our problem, there is the yield of naphtha 

(𝑌𝐿𝐷𝑁), specific gravity of light diesel (𝑆𝐺𝐿𝐷), sulfur content of atmospheric residue 

(𝑆𝐴𝑇𝑅), etc. The MIQP optimization problems are formulated to minimize the least 

square error in Equation (6.9) subject to Equation (6.8) and to Equations (6.10) to 

(6.14) that limit or bound the values of the coefficients and impose a maximum 

specified number of basis: 

Minimize 𝐸𝑖 =
1

𝑛
 ∑(𝑦𝑖𝑝

𝑛

𝑝=1

− 𝑌𝑖𝑝 )2 (6.9) 

−𝑀𝑧0 ≤ 𝐼𝑖 ≤ 𝑀𝑧0                  ∀  𝑖 ∈ 𝐷𝐶 (6.10) 

−𝑀𝑧𝑗 ≤ 𝑙𝑗𝑖 ≤ 𝑀𝑧𝑗                   ∀  𝑗 ∈ 𝐶𝑅, 𝑖 ∈ 𝐷𝐶 (6.11) 

−𝑀𝑧𝑘 ≤ 𝑙𝑘𝑖 ≤ 𝑀𝑧𝑘                  ∀  𝑘 ∈ 𝑆𝑊, 𝑖 ∈ 𝐷𝐶 (6.12) 
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In 

Equations (6.9) to (6.14), the number of points in the data set is 𝑛 = 100, 𝑀 is a 

sufficiently large number (𝑀 = 1000), 𝑧𝑗 and 𝑧𝑘 are binary variables that correspond to 

the linear basis, 𝑧𝑗𝑘 are binary variables for the bilinear basis, 𝑧0 is the binary variable 

for the intercept, and 𝐵 is the maximum number of basis. The real, physical or actual 

values for the dependent variables (𝑦𝑖𝑝) are calculated using either the conventional or 

the improved swing-cut method to provide acurate approximations. For building a 

surrogate model, we need to identify which basis 𝑙𝑗𝑖, 𝑙𝑗𝑖 , 𝑙𝑘𝑖, and 𝑏𝑗𝑘𝑖 should be used and 

which their respective coefficients are. For that, parameter 𝐵 must be given in the 

optimization problem. In this work, the value of 𝐵 is not limited as the problem to be 

optimized is small in size.  

Check Performance: The surrogate models built for each dependent variable are 

compared to the original data set to calculate the error in the predictions (squared 

difference between the real values and the estimated values, i.e., (𝑦𝑖𝑝 − 𝑌𝑖𝑝)2). To allow 

an easier comparison between distinct models, Equation (6.9) takes the average least 

square error among all 100 points from the data set, and  Equations (6.15) to (6.17) 

take the final average error, in which 𝐷𝑉_𝑌𝐿𝐷, 𝐷𝑉_𝑆𝐺, and 𝐷𝑉_𝑆 are the sets for the 

yield, specific gravity, and sulfur content dependent variables, and 𝑑𝑣𝑦𝑙𝑑 = 6, 𝑑𝑣𝑠𝑔 =

6, and 𝑑𝑣𝑠 = 5 are the number of dependent variables within each category. 

−𝑀𝑧𝑗𝑘 ≤ 𝑏𝑗𝑘𝑖 ≤ 𝑀𝑧𝑗𝑘                  ∀  𝑗 ∈ 𝐶𝑅, 𝑘 ∈ 𝑆𝑊, 𝑖 ∈ 𝐷𝐶  (6.13) 

∑ 𝑧𝑗

𝑗 ∈ 𝐶𝑅

+ ∑ 𝑧𝑘

𝑘 ∈ 𝑆𝑊

+ ∑ 𝑧𝑗𝑘

𝑗 ∈ 𝐶𝑅,𝑘 ∈ 𝑆𝑊

+ 𝑧0 ≤ 𝐵       𝑧𝑗 , 𝑧𝑗𝑘, 𝑧𝑗𝑘, 𝑧0 ∈ {0,1}    (6.14) 

𝑌𝑖𝑒𝑙𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑑𝑣_𝑦𝑙𝑑
 ∑ 𝐸𝑖

𝑖 ∈ 𝐷𝑉_𝑌𝐿𝐷

  (6.15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝐸𝑟𝑟𝑜𝑟 =
1

𝑑𝑣_𝑠𝑔
 ∑ 𝐸𝑖

𝑖 ∈ 𝐷𝑉_𝑆𝐺

  (6.16) 

𝑆𝑢𝑙𝑓𝑢𝑟 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =
1

𝑑𝑣_𝑠
 ∑ 𝐸𝑖

𝑖 ∈ 𝐷𝑉_𝑆

  (6.17) 
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6.5 Results and Discussion 

In this section, the results for each case are presented by using both the CSW and the 

ISW methods. Table 6.1 presents the least square errors for Yields, Specific Gravity 

and Sulfur Content from each surrogate model for each proposed case. Each of them 

is the average least square error among all data points for their respective dependent 

variables, obtained from Equations (6.15) to (6.17). Detailed results for each distillate 

can be found in the Supplementary Material (Tables 6.8 to 6.11). Also note that the 

solution of the MIQPs requires small computational times (less than 3 seconds per 

MIQP). 

Table 6.1: Yield, Specific Gravity and Sulfur Content least square errors for each 

model and case. 

  Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

Data Set 
1 CSW 

Yield Error 1.57E+00 2.22E-03 5.65E-16 5.65E-16 2.55E-02 1.59E+00 2.30E-02 6.67E-02 5.65E-16 5.65E-16 

Specific 
Gravity Error 

1.22E-05 2.48E-07 1.90E-07 1.90E-07 2.57E-07 1.22E-05 1.99E-07 4.98E-07 1.90E-07 1.90E-07 

Sulfur Content 
Error 

1.59E-04 3.02E-06 2.09E-06 2.09E-06 9.36E-06 1.68E-04 8.36E-06 1.77E-05 2.09E-06 2.09E-06 

Data Set 
2 CSW 

Yield Error 1.81E+00 1.77E-03 8.33E-16 8.33E-16 2.26E-02 1.83E+00 2.07E-02 6.75E-02 8.33E-16 8.33E-16 

Specific 
Gravity Error 

1.44E-05 2.87E-07 2.78E-07 2.78E-07 2.94E-07 1.44E-05 2.85E-07 5.37E-07 2.78E-07 2.78E-07 

Sulfur Content 
Error 

1.55E-04 3.30E-06 3.05E-06 3.05E-06 8.66E-06 1.59E-04 8.54E-06 1.74E-05 3.05E-06 3.05E-06 

Data Set 
1 ISW 

Yield Error 1.57E+00 2.22E-03 5.65E-16 5.65E-16 2.55E-02 1.59E+00 2.30E-02 6.67E-02 5.65E-16 5.65E-16 

Specific 
Gravity Error 

1.19E-05 7.38E-08 3.09E-08 3.09E-08 8.25E-08 1.19E-05 3.95E-08 3.30E-07 3.09E-08 3.09E-08 

Sulfur Content 
Error 

1.54E-04 8.55E-07 2.93E-07 2.93E-07 7.15E-06 1.64E-04 6.56E-06 1.60E-05 2.93E-07 2.93E-07 

Data Set 
2 ISW 

Yield Error 1.81E+00 1.77E-03 8.33E-16 8.33E-16 2.26E-02 1.83E+00 2.07E-02 6.75E-02 8.33E-16 8.33E-16 

Specific 
Gravity Error 

1.43E-05 6.53E-08 4.61E-08 4.61E-08 7.25E-08 1.43E-05 5.33E-08 3.51E-07 4.61E-08 4.61E-08 

Sulfur Content 
Error 

1.54E-04 1.09E-06 2.75E-07 2.75E-07 6.54E-06 1.59E-04 5.77E-06 1.54E-05 2.75E-07 2.75E-07 

Source: Author (2021). 

The lower the average error between the swing-cut approach and the surrogate model, 

the better the performance of the surrogate is. The main findings from the results in 

Table 6.1 are summarized as follows: 
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a) As expected, the performance of the linear models (Models 1, 2, 5 and 6) is not 

as good as their nonlinear counterparts. Among them, Model 2 performs better, 

which indicates that including variable 𝑥4 is more important than the intercept 

term.  

b) Including linear variables for swing-cuts improves the predictions in some 

models (e.g., Model 2 performs better than Model 1), but may not be necessary 

for some nonlinear models (e.g., Models 3 and 4 have the same performance). 

c) Not including 𝑥4 in the nonlinear models reduces the accuracy even when an 

intercept term is used (e.g., Models 3 and 4 performs better than Models 7 and 

8). 

d) Models 3, 4, 9 and 10 achieve the same accuracy in all the cases tested. Thus, 

neither the intercept term nor the linear swing-cuts terms were significantly 

useful to improve the performance. We chose the best surrogate as being the 

simplest surrogate with the highest accuracy. Therefore, Model 3 achieves the 

best performance.  

e) Although Models 9 and 10 provide an excellent performance, they use both 

independent variable 𝑥4 and the intercept term, which leads to a multicollinear 

model. That may not be advisable because even if the optimization solver can 

handle the multicollinearities and find an optimal solution, there might be 

unobservable coefficients in the model as well as large variances in the error. 

Note that Model 2 performs fairly well considering it is linear and small in size, it has a 

good accuracy, and it can be easily integrated into large-scale planning environments. 

The trade-off between the accuracy and the increase in the computational effort must 

be evaluated upon the desired purpose or application. It should also be mentioned that 

all of the candidate models require the crude oil compositions to be tracked and traced 

prior to the overall crude oil mixture being charged to the crude distillation unit in order 

to achieve the predicted results presented here. 

For the case studies considered, the yields and properties from our surrogates very 

accurately match the values from both the conventional and improved swing-cut 

model, so that our model is as representative as the swing-cut models. As there is only 

one equation needed to calculate each yield/property of each final cut, our data-driven 

machine learning coefficient-setup model requires fewer equations and fewer degrees 

of freedom than other methods. It can be easily integrated into any planning/scheduling 
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environment without significantly increasing the simulation/optimization effort. As an 

example, we take the results from Model 3 using the ISW model to show the active 

basis and its respective coefficients being used to establish correlations to calculate 

the yields of the final cuts: 

𝑌𝐿𝐷𝐿𝑃𝐺 = 0.9029𝑥𝐶𝑂1 + 0.9762𝑥𝐶𝑂2 + 1.2367𝑥𝐶𝑂3 + 1.0680𝑥𝐶𝑂4 

𝑌𝐿𝐷𝑁 = 7.1934𝑥𝐶𝑂1 + 6.4813𝑥𝐶𝑂2 + 7.0187𝑥𝐶𝑂3 + 4.7761𝑥𝐶𝑂4 + 3.4999𝑥𝐶𝑂1𝑥𝑆𝑊1

+ 3.4137𝑥𝐶𝑂2𝑥𝑆𝑊1 + 2.7201𝑥𝐶𝑂3𝑥𝑆𝑊1 + 2.1239𝑥𝐶𝑂4𝑥𝑆𝑊1 

𝑌𝐿𝐷𝐾 = 9.7963𝑥𝐶𝑂1 + 9.8719𝑥𝐶𝑂2 + 8.1131𝑥𝐶𝑂3 + 6.7589𝑥𝐶𝑂4 − 3.4999𝑥𝐶𝑂1𝑥𝑆𝑊1

− 3.4137𝑥𝐶𝑂2𝑥𝑆𝑊1 − 2.7201𝑥𝐶𝑂3𝑥𝑆𝑊1 − 2.1239𝑥𝐶𝑂4𝑥𝑆𝑊1

+ 5.5787𝑥𝐶𝑂1𝑥𝑆𝑊2 + 6.3726𝑥𝐶𝑂2𝑥𝑆𝑊2  + 5.1732𝑥𝐶𝑂3𝑥𝑆𝑊2

+ 4.7251𝑥𝐶𝑂4𝑥𝑆𝑊2 

𝑌𝐿𝐷𝐿𝐷 = 12.9190𝑥𝐶𝑂1 + 14.5937𝑥𝐶𝑂2 + 12.4719𝑥𝐶𝑂3 + 11.9013𝑥𝐶𝑂4 − 5.5787𝑥𝐶𝑂1𝑥𝑆𝑊2

− 6.3726𝑥𝐶𝑂2𝑥𝑆𝑊2 − 5.1732𝑥𝐶𝑂3𝑥𝑆𝑊2 − 4.7251𝑥𝐶𝑂4𝑥𝑆𝑊2

+ 4.7096𝑥𝐶𝑂1𝑥𝑆𝑊3 + 4.7427𝑥𝐶𝑂2𝑥𝑆𝑊3 + 4.5683𝑥𝐶𝑂3𝑥𝑆𝑊3

+ 4.8972𝑥𝐶𝑂4𝑥𝑆𝑊3 

𝑌𝐿𝐷𝐻𝐷 = 9.4868𝑥𝐶𝑂1 + 9.4351𝑥𝐶𝑂2 + 9.3082𝑥𝐶𝑂3 + 10.0838𝑥𝐶𝑂4 − 4.7096𝑥𝐶𝑂1𝑥𝑆𝑊3

− 4.7427𝑥𝐶𝑂2𝑥𝑆𝑊3 − 4.5683𝑥𝐶𝑂3𝑥𝑆𝑊3 − 4.8972𝑥𝐶𝑂4𝑥𝑆𝑊3 

𝑌𝐿𝐷𝐴𝑇𝑅 = 59.5791𝑥𝐶𝑂1 + 58.5091𝑥𝐶𝑂2 + 61.7528𝑥𝐶𝑂3 + 65.3256𝑥𝐶𝑂4 

Figure 6.3 displays the cross plots (parity charts) for the 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (y axis) versus the 

𝑌𝑟𝑒𝑎𝑙 (x axis) for the yield, specific gravity, and sulfur content of heavy diesel in 

Surrogate Model 3 using the ISW method. The black line represents the 𝑦 = 𝑥 function, 

so that the closer to the line, the better the model adjusts to the real function. The other 

cross plots for the Surrogate Model 3 are presented in the Supplementary Material 

(Figure 6.6). 
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Figure 6.3: Cross plots for the heavy diesel dependent variables in Surrogate Model 

3 

 

Source: Author (2021). 

Surrogate Model 3 provides an excellent fit to the data, as shown in the plots from 

Figure 6.3. Furthermore, even if the bilinear coefficients are not used, the method is 

able to find a fairly good fit. As an example, Figure 6.4 shows the cross plots for the 

sulfur content dependent variable to illustrate the difference 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 versus the 𝑌𝑟𝑒𝑎𝑙 

for Surrogate Model 2 (which is linear) using the ISW method.  

Figure 6.4: Cross plot for the heavy diesel dependent variables in Surrogate Model 2. 

  

Source: Author (2021). 

If the fit to the data is not good, there may be large errors in the predictions. For 

example, Figure 6.5 presents a similar cross plot for Surrogate Model 5, which shows 

a more inaccurate fit. 
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Figure 6.5: Cross plot for the heavy diesel dependent variables in Surrogate Model 5. 

 

Source: Author (2021). 

Discrepancies can be observed between the ISW method and the correlation using 

Surrogate Model 5 (Figure 6.5), which might have a significant impact depending on 

the application of the method. Poor predictions in the sulfur content of distillates may 

underspecify the product, which can potentially imply costs for the refinery, to 

reprocess or blend the product with overspecified streams. As an alternative to mitigate 

off-spec products, the final fuels can be sold at reduced prices and waivers can be 

requested from regulatory agencies, which is not a good practice or sustainable 

procedure. Conversely, overspecifications by poor predictions can produce distillates 

with product giveaways, which typically imply losses at selling higher quality products 

at regular prices. To reduce both under and overspecification in production, a better 

prediction of the inputs and outputs of the distillation process is required, whereby the 

surrogate model methodology proposed herein is an alternative to improve the 

accuracy of predictions under simulation/optimization environments. For the 

predictions of yields and properties of distillation processes using the addressed 

coefficient setup MIQP technique, the use of bilinear terms, in addition to the intercept 

and linear terms (without the need of the linear term for the swing-cuts), is an efficient 

fashion to mathematically represent this type of process.   

The method proposed could potentially be applied to distillation units in problems such 

as crude oil refinery planning and scheduling. Regardless of the application, the CDU 
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outputs must be somehow estimated in any planning or scheduling model. This 

research provides an alternative approach to methods presented in the literature and 

currently used by the industry. The data required to train and to build the surrogates 

can be provided by rigorous simulators to achieve high accuracy and the surrogates 

could be further embedded into planning and scheduling environments. We believe 

these surrogates can be easily integrated into planning, scheduling, or coordinating 

environments for the following reasons: 

i. The surrogates are shown to be very accurate, which means they can simulate 

the behavior of the distillation process fairly well. 

ii. The surrogates are built considering crude oil composition, which indirectly 

accounts for crude assay information. Therefore, embedding the surrogates into 

refinery planning and scheduling environments does not require the complex 

crude assay data.  

iii. The surrogates should be estimated prior to their integration into other 

environments. They are built through MIQP optimizations that require small 

computational times (around 3 seconds). Therefore, they can be re-estimated 

whenever needed (e.g., if new data points are available, if new crudes arrive at 

the refinery, etc.).  

iv. They are simple and small as they use a small number of terms (at most 

bilinear ones). In any case, linear models, such as Model 2, can be used if 

nonlinearities are not afforded in the main optimization environment.  

6.6 Conclusions 

We are moving towards a more complex and detailed process optimization age, mainly 

due to the advancements in decision-making modeling, computer-aided resources, 

and solution algorithms. Big data is becoming a reality and leads to opportunities of 

cost reduction in industrial processes. The surrogate modeling proposed herein to 

estimate compositions and properties of distillates may be considered machine-

learning and predictive analytics techniques, and can use either real (and uncertain) 

data from the plant or rigorous simulated data to improve the predictions of distillation 

units by using measurement feedback. In other words, the proposed surrogate model 

can be self-adjustable and self-improvable, despite requiring engineering supervision. 
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The results show that our model provides accurate predictions when compared to both 

the conventional and the improved swing-cut methods. Due to the small number of 

equations required, our shortcut sub-models can be easily integrated into any planning, 

scheduling, and coordinating environment with minimal increase in the simulation and 

optimization effort and data requirements.  

Future work will focus on gathering real data from crude oil refineries with various crude 

oil compositions, as well as varying distillation tower operating variables considering 

input and output datasets from both physical experiments (taken and estimated using 

field measurements) and synthetical trials (using rigorous process simulation).   

6.7 Supplementary Material 

The supplementary material for the cutpoint temperature surrogate modeling research 

includes a review on distillation unit modeling (fixed yield, swing-cut, and improved 

swing-cut models), the datasets used to build the surrogates, the least squares errors 

calculated by using the surrogates, and the cross plots for the best surrogate model. 

6.7.1 Appendix A: Review on Distillation Unit Modeling  

In this section we present a review on distillation unit modeling, including the fixed 

yield, swing-cut, and improved swing-cut models. 

 Fixed yield modeling (FY) 

A straightforward method to model a crude distillation unit is by using single or multiple 

fixed yield values for the CDU product stream outputs. This approach is largely used 

for strategic, tactical, and operational planning in industry, and consists in specifying 

the final-cuts or product distillates that divide the CDU fractions considering crude oil 

assay information to calculate these fractions. As this method uses perfect (sharp) 

fractionation to calculate the CDU yields, it does not rigorously compute the distillation 

column fractionation. When the fixed-yield formulation is addressed, the crude oil 

assay data and fixed boiling point temperature ranges without overlapping (sharp 

fractionation) are used to calculate the yields and properties for the final cuts. Hence, 
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the distillates in the proposed problem were assigned to a certain range of micro-cuts 

or pseudo-components, as shown in Table 6.2.  

Table 6.2: Micro-cut range for the fixed yield model. 

Distillate 
Initial micro-

cut Final micro-cut 
Number of 
micro-cuts 

FG – Fuel gas CH4 C2H5 02 

LPG – Liquefied petroleum gas C3H8 NC4H10 03 

N – Naphtha IC5H12 CUT150 14 

K – Kerosene CUT160 CUT240 09 

LD – Light diesel CUT250 CUT320 08 

HD – Heavy diesel CUT330 CUT350 03 

ATR – Atmospheric residue CUT360 CUT850 50 

Source: Author (2021). 

In Equation (6.18), the inlet volumetric flows 𝑄𝑐,𝑐𝑑𝑢 for each crude oil 𝑐 incoming to the 

CDU are summed to calculate the overall volumetric feed flow 𝑄𝑐𝑑𝑢 for the CDU. 

𝑄𝑐𝑑𝑢 =  ∑ 𝑄𝑐,𝑐𝑑𝑢

𝑐

 (6.18) 

The volumetric flow rate 𝑄𝑐𝑢𝑡
𝑓𝑐

 for each distillate or final cut 𝑓𝑐 can be calculated as the 

summation of yields of micro-cuts 𝑌𝐿𝐷𝑚𝑐 that flow to the pre-defined boiling point 

temperature ranges, resulting in the product of the overall volumetric flow in the CDU 

and the summation of pre-defined micro-cuts yields to each cut 𝑓𝑐 in Equation (6.19). 

The set 𝑀𝐶𝑓𝑐 can be determined from Table A1 and represents the micro cuts related 

to final cuts of distillates. 

𝑄𝑐𝑢𝑡
𝑓𝑐

=  𝑄𝑐𝑑𝑢 ∑ 𝑌𝐿𝐷𝑚𝑐                                 ∀ 𝑐𝑢𝑡 ∈ 𝐹𝐶

𝑚𝑐 ∈ 𝑀𝐶𝑓𝑐

 (6.19) 

Volume- and mass-based mixing rules are used to calculate the properties of each 

final cut 𝑓𝑐. Equation (6.20) represents the volumetric rules for specific gravity, and 

Equation (6.21) represents the mass rules for sulfur content. Thus, yields and 

properties (volume- and mass-based) for the final cuts can be calculated from the 

crude oil assay data using Equations (6.20) and (6.21).  
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𝑉𝑃𝑐𝑢𝑡
𝑓𝑐

=
∑ 𝑉𝑃𝑚𝑐

𝑓𝑐
𝑄𝑚𝑐𝑚𝑐 ∈ 𝑀𝐶𝑓𝑐

∑ 𝑄𝑚𝑐𝑚𝑐 ∈ 𝑀𝐶𝑓𝑐

                     ∀ 𝑓𝑐 (6.20) 

𝑀𝑃𝑐𝑢𝑡
𝑓𝑐

=
∑ 𝑀𝑃𝑚𝑐

𝑓𝑐
𝑉𝑃𝑚𝑐

𝑓𝑐
𝑄𝑚𝑐𝑚𝑐 ∈𝑀𝐶𝑓𝑐

∑ 𝑉𝑃𝑚𝑐
𝑓𝑐

𝑄𝑚𝑐𝑚𝑐 ∈ 𝑀𝐶𝑓𝑐

      ∀ 𝑓𝑐 (6.21) 

In order to improve the prediction of the crude oil distillation unit outputs, there are 

models that consider non-sharp fractionation by including volume and/or mass 

variations for the CDU products of external distillates by creating hypothetical internal 

streams that can flow to the respective upper and lower final distillates, the so-called 

light and heavy swing-cuts, as shown in the swing-cut modeling as follows. 

 Conventional swing-cut modeling (CSW) 

The swing-cut method creates additional degrees of freedom by allowing the 

optimization of each swing-cut amount flowing to the lighter and heavier final distillates. 

The swing-cuts are hypothetical internal modeling constructs, and do not physically 

exist in the tower. In this work, three swing-cuts 𝑠𝑐 are considered. Table 6.3 shows 

the initial and final micro cuts, and the respective number of micro-cuts related to each 

distillate. 

Table 6.3: Micro-cuts for the swing-cut model. 

Distillate Initial Micro-cut Final Micro-cut 
Number of 
Micro-cuts 

FG – Fuel gas CH4 C2H5 02 

LPG – Liquefied petroleum 
gas 

C3H8 NC4H10 03 

N – Naphtha IC5H12 CUT120 11 

SW1 – Swing-cut 1 CUT130 CUT150 03 

K – Kerosene CUT160 CUT200 05 

SW2 – Swing-cut 2 CUT210 CUT240 04 

LD – Light diesel CUT250 CUT290 05 

SW3 – Swing-cut 3 CUT300 CUT320 03 

HD – Heavy diesel CUT330 CUT360 04 

ATR – Atmospheric residue CUT370 CUT850 49 

Source: Author (2021). 
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The mathematical model for the conventional swing-cut method is given as follows. 

Equations (6.18) to (6.21) are the same as in the fixed yield model, which represent a 

mass balance for the CDU, the flow calculation for each distillate, and the volume- and 

mass-based balances, respectively. However, some of the final cuts in the fixed yield 

model are intermediate cuts in the swing-cut model, which will be further blended with 

the swing-cuts to create the final cuts. Thus, Equation (6.22) represents the mass 

balances for the intermediate cuts (naphtha, kerosene, light diesel, heavy diesel, and 

the three swing-cuts), with 𝑄𝑐𝑢𝑡
𝑖𝑐  as their flows.  

𝑄𝑐𝑢𝑡
𝑖𝑐 =  𝑄𝑐𝑑𝑢 ∑ 𝑌𝐿𝐷𝑚𝑐

𝑚𝑐 ∈ 𝑀𝐶𝑖𝑐

                                       ∀ 𝑐𝑢𝑡 ∈ 𝐼𝐶 (6.22) 

By the definition of swing-cut methods, Equation (6.23) represents the mass balance 

when the swing-cut splits to its light and heavy fractions, which are the additional 

decision variables included in the optimization problem. 

𝑄𝑠𝑤 = 𝑄𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

+  𝑄𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

                                                 ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.23) 

When intermediate cuts are mixed with their respective swing-cuts, we use material 

and property balance constraints to calculate the flows and properties for the final cuts. 

Equations (6.24), (6.25) and (6.26) calculate the flows, the volume-based properties, 

and the mass-based properties, respectively, for the final cuts of each distillate related 

to swing-cuts. 

𝑄𝑁
𝑓𝑐

=  𝑄𝑁
𝑖𝑐 + 𝑄𝑠𝑤1

𝑙𝑖𝑔ℎ𝑡
              (6.24a) 

𝑄𝐾
𝑓𝑐

=  𝑄𝐾
𝑖𝑐 + 𝑄𝑠𝑤1

ℎ𝑒𝑎𝑣𝑦
+ 𝑄𝑠𝑤2

𝑙𝑖𝑔ℎ𝑡
              (6.24b) 

𝑄𝐿𝐷
𝑓𝑐

=  𝑄𝐿𝐷
𝑖𝑐 + 𝑄𝑠𝑤2

ℎ𝑒𝑎𝑣𝑦
+ 𝑄𝑠𝑤3

𝑙𝑖𝑔ℎ𝑡
              (6.24c) 

𝑄𝐻𝐷
𝑓𝑐

=  𝑄𝐻𝐷
𝑖𝑐 + 𝑄𝑠𝑤3

ℎ𝑒𝑎𝑣𝑦
              (6.24d) 

𝑉𝑃𝑁
𝑓𝑐

=
𝑄𝑁

𝑖𝑐𝑉𝑃𝑁
𝑖𝑐 + 𝑄𝑠𝑤1

𝑙𝑖𝑔ℎ𝑡
𝑉𝑃𝑠𝑤1

𝑄𝑁
𝑖𝑐 + 𝑄𝑠𝑤1

𝑙𝑖𝑔ℎ𝑡
 

(6.25a) 

𝑉𝑃𝐾
𝑓𝑐

=
𝑄𝐾

𝑖𝑐𝑉𝑃𝐾
𝑖𝑐 + 𝑄𝑠𝑤1

ℎ𝑒𝑎𝑣𝑦
𝑉𝑃𝑠𝑤1 + 𝑄𝑠𝑤2

𝑙𝑖𝑔ℎ𝑡
𝑉𝑃𝑠𝑤2

𝑄𝐾
𝑖𝑐 + 𝑄𝑠𝑤1

ℎ𝑒𝑎𝑣𝑦
+ 𝑄𝑠𝑤2

𝑙𝑖𝑔ℎ𝑡
 

(6.25b) 
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The conventional swing-cut method creates additional degrees of freedom by allowing 

the optimization of each swing-cut amount flowing to the lighter and heavier final 

distillates. Therefore, the search space for optimization becomes larger and an 

equivalent or better solution is expected when compared to the (multiple) fixed yield 

method. 

 Improved swing-cut modeling (ISW) 

The conventional swing-cut modeling considers fixed properties for the hypothetical 

cuts that swing between adjacent light and heavy distillates, although that may lead to 

inaccuracies in the quantity and quality predictions of the final distillates (MENEZES, 

KELLY, and GROSSMANN, 2013). In the improved swing-cut modeling, each swing-

cut is split into two internal light and heavy streams, similarly to the CSW modeling. 

However, the light and heavy streams are not assumed to have the bulk quality. The 

ISW method proposed by these authors adds a set of interpolations to improve the 

prediction of distillates by considering quality variations for the light and heavy fractions 

of each swing-cut. If the whole swing-cut flows to a specific fraction (either light or 

heavy), the properties of this fraction will be the bulk properties of the swing-cut. 

𝑉𝑃𝐿𝐷
𝑓𝑐

=
𝑄𝐿𝐷

𝑖𝑐 𝑉𝑃𝐿𝐷
𝑖𝑐 + 𝑄𝑠𝑤2

ℎ𝑒𝑎𝑣𝑦
𝑉𝑃𝑠𝑤2 + 𝑄𝑠𝑤3

𝑙𝑖𝑔ℎ𝑡
𝑉𝑃𝑠𝑤3

𝑄𝐿𝐷
𝑖𝑐 + 𝑄𝑠𝑤2

ℎ𝑒𝑎𝑣𝑦
+ 𝑄𝑠𝑤3

𝑙𝑖𝑔ℎ𝑡
 

(6.25c) 

𝑉𝑃𝐻𝐷
𝑓𝑐

=
𝑄𝐻𝐷

𝑖𝑐 𝑉𝑃𝐻𝐷
𝑖𝑐 + 𝑄𝑠𝑤3

ℎ𝑒𝑎𝑣𝑦
𝑉𝑃𝑠𝑤3

𝑄𝐻𝐷
𝑖𝑐 + 𝑄𝑠𝑤3

ℎ𝑒𝑎𝑣𝑦  
(6.25d) 

𝑀𝑃𝑁
𝑓𝑐

=
𝑄𝑁

𝑖𝑐𝑉𝑃𝑁
𝑖𝑐𝑀𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤1
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤1𝑀𝑃𝑠𝑤1

𝑄𝑁
𝑖𝑐𝑉𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤1
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤1

 
(6.26a) 

𝑀𝑃𝐾
𝑓𝑐

=
𝑄𝐾

𝑖𝑐𝑉𝑃𝐾
𝑖𝑐𝑀𝑃𝐾

𝑖𝑐 + 𝑄𝑠𝑤1
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤1𝑀𝑃𝑠𝑤1 + 𝑄𝑠𝑤2
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤2𝑀𝑃𝑠𝑤2

𝑄𝐾
𝑖𝑐𝑉𝑃𝐾

𝑖𝑐 + 𝑄𝑠𝑤1
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤1 + 𝑄𝑠𝑤2
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤2

 
(6.26b) 

𝑀𝑃𝐿𝐷
𝑓𝑐

=
𝑄𝑁

𝑖𝑐𝑉𝑃𝑁
𝑖𝑐𝑀𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤2
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤2𝑀𝑃𝑠𝑤2 + 𝑄𝑠𝑤3
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤3𝑀𝑃𝑠𝑤3

𝑄𝑁
𝑖𝑐𝑉𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤2
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤2 + 𝑄𝑠𝑤3
𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤3

 
(6.26c) 

𝑀𝑃𝐻𝐷
𝑓𝑐

=
𝑄𝑁

𝑖𝑐𝑉𝑃𝑁
𝑖𝑐𝑀𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤3
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤3𝑀𝑃𝑠𝑤3

𝑄𝑁
𝑖𝑐𝑉𝑃𝑁

𝑖𝑐 + 𝑄𝑠𝑤3
ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤3

 
(6.26d) 
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However, whenever the swing-cut splits to both fractions, there is a difference among 

their properties, which are also different from the bulk. Any light swing-cut stream that 

flows to the upper cut will have a lighter property than the swing-cut bulk (lower value 

in the vast majority of the properties, such as density and sulfur concentration), and 

heavier than the interface between the bulk and the upper cut. Similarly, a heavy swing-

cut stream that flows to the lower cut will have a heavier property than the bulk swing-

cut (typically higher value when compared with the bulk) and lighter than the interface 

between the bulk and the lower cut.  

The mathematical model for the improved swing-cut method and a brief explanation 

about how this method mathematically works is given as follows. A complete 

explanation and additional details can be found in Menezes, Kelly, and Grossmann 

(2013). The model for the improved swing-cut uses Equations (6.18) to (6.26) from the 

conventional swing-cut method. The main contribution to the improved swing-cut 

method regards the swing-cut properties calculation. Each swing-cut may be split into 

two internal streams with different qualities, whereas the conventional swing-cut uses 

the bulk quality for both streams. Interpolations are performed to better predict the 

qualities of final distillates, which vary linearly between the properties at their adjacent 

hypothetical interfaces. Besides, new variables are created to represent these 

interfaces between adjacent cuts, 𝑉𝑃𝐼 for volume-based properties and 𝑀𝑃𝐼 for mass-

based properties, and their calculation is performed considering the blending of micro-

cut streams, such as Equations (6.27) and (6.28), in which 𝑚𝑐1 and 𝑚𝑐2 are the lighter 

and heavier adjacent micro cuts to the respective hypothetical interface of the swing-

cut. 

𝑉𝑃𝐼𝑠𝑤 =
𝑉𝑃𝑚𝑐1𝑄𝑚𝑐1 + 𝑉𝑃𝑚𝑐2𝑄𝑚𝑐2

𝑄𝑚𝑐1 + 𝑄𝑚𝑐2
                                                ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.27) 

𝑀𝑃𝐼𝑠𝑤 =
𝑉𝑃𝑚𝑐1𝑀𝑃𝑚𝑐1𝑄𝑚𝑐1 + 𝑉𝑃𝑚𝑐2𝑀𝑃𝑚𝑐2𝑄𝑚𝑐2

𝑉𝑃𝑚𝑐1𝑄𝑚𝑐1 + 𝑉𝑃𝑚𝑐2𝑄𝑚𝑐2
                      ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.28) 

Equations (6.29) and (6.30) use the interface variables and calculate the light and 

heavy swing-cut volume-based properties using linear interpolation around the bulk 

and hypothetical light and heavy interfaces of the swing-cuts. 
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𝑉𝑃𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

= 𝑉𝑃𝐼𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

+
𝑉𝑃𝑠𝑤 − 𝑉𝑃𝐼𝑠𝑤

𝑙𝑖𝑔ℎ𝑡

𝑄𝑠𝑤
 𝑄𝑠𝑤

𝑙𝑖𝑔ℎ𝑡
                      ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.29) 

𝑉𝑃𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

= 𝑉𝑃𝐼𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

+
𝑉𝑃𝑠𝑤 − 𝑉𝑃𝐼𝑠𝑤

ℎ𝑒𝑎𝑣𝑦

𝑄𝑠𝑤
 𝑄𝑠𝑤

ℎ𝑒𝑎𝑣𝑦
                     ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.30) 

Similarly, Equations (6.31) and (6.32) applies linear interpolation to calculate mass-

based properties. 

𝑀𝑃𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

= 𝑀𝑃𝐼𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

+
𝑀𝑃𝑠𝑤 − 𝑀𝑃𝐼𝑠𝑤

𝑙𝑖𝑔ℎ𝑡

𝑉𝑃𝑠𝑤𝑄𝑠𝑤
 𝑉𝑃𝑠𝑤

𝑙𝑖𝑔ℎ𝑡
𝑄𝑠𝑤

𝑙𝑖𝑔ℎ𝑡
                     ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.31) 

𝑀𝑃𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

= 𝑀𝑃𝐼𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

+
𝑀𝑃𝑠𝑤 − 𝑀𝑃𝐼𝑠𝑤

ℎ𝑒𝑎𝑣𝑦

𝑉𝑃𝑠𝑤𝑄𝑠𝑤
 𝑉𝑃𝑠𝑤

ℎ𝑒𝑎𝑣𝑦
𝑄𝑠𝑤

ℎ𝑒𝑎𝑣𝑦
           ∀  𝑠𝑤 ∈ 𝑆𝑊 (6.32) 

These quality interpolation constraints are used for improvements in the predictions of 

the final distillates properties and provide a more accurate modeling for the swing-cut 

method.  
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6.7.2 Appendix B: Data Set 1: Independent and Dependent Variables 

Table 6.4 shows data set 1 used to test the proposed methodology, generated by the 

Latin Hypercube Sampling technique. There are seven independent variables: x1 to 

x4 account for the four crude oils whereas x5 to x7 account for the three swing-cuts. 

Table 6.4: Independent data set 1 generated by Latin Hypercube Sampling. 

x1 x2 x3 x4 x5 x6 x7 

0.115977805 0.033017147 0.398073556 0.452931491 0.150655345 0.244379184 0.250940892 

0.17063455 0.304731891 0.356932792 0.167700766 0.680388327 0.626619307 0.690691442 

0.437511765 0.000262226 0.345845439 0.21638057 0.877668313 0.891336845 0.948349719 

0.06653081 0.297344795 0.275739844 0.360384551 0.410538576 0.111839298 0.983078379 

0.152055211 0.399795334 0.291271843 0.156877611 0.01524906 0.15094929 0.094721638 

0.393300459 0.333894058 0.144234342 0.128571141 0.607306773 0.674940778 0.659651006 

0.010596159 0.165004684 0.442102947 0.38229621 0.712632694 0.327694143 0.735454199 

0.038434607 0.38827486 0.190178029 0.383112504 0.595498137 0.6371853 0.323330144 

0.217176484 0.280328505 0.314511862 0.187983149 0.568093062 0.490090458 0.810325839 

0.109132126 0.104175936 0.499419653 0.287272285 0.391814658 0.818955285 0.791474982 

0.08831644 0.417232906 0.16525176 0.329198894 0.160594948 0.279288916 0.728819599 

0.059161441 0.555996951 0.192046255 0.192795352 0.242507308 0.380317354 0.203769106 

0.631079851 0.241088534 0.114511387 0.013320228 0.999989158 0.217771444 0.924663898 

0.047267418 0.252543914 0.383151728 0.31703694 0.086919631 0.978241615 0.596830213 

0.301732708 0.041790985 0.422001624 0.234474683 0.355744247 0.053566554 0.6430744 

0.162560335 0.356109954 0.083705345 0.397624366 0.429969602 0.859107215 0.934965853 

0.556992807 0.332220876 0.057359512 0.053426805 0.02319535 0.12425503 0.994294199 

0.574136288 0.095049313 0.148851646 0.181962754 0.628285865 0.340537526 0.164196392 

0.092649922 0.312104146 0.381446414 0.213799518 0.537739813 0.953041174 0.573006701 

0.236260597 0.524800342 0.108995724 0.129943337 0.89295066 0.781743732 0.756911513 

0.427723623 0.153049757 0.187589264 0.231637356 0.259666102 0.478175334 0.672836395 

0.31169184 0.26910479 0.212191229 0.207012141 0.889221903 0.732520616 0.523995144 

0.117632609 0.38795601 0.053727691 0.44068369 0.382432681 0.59606146 0.374956835 

0.322007089 0.258974325 0.307061522 0.111957064 0.64803347 0.568529948 0.292840421 

0.273043214 0.220208361 0.473145391 0.033603034 0.971843473 0.373243971 0.621421271 

0.237883639 0.215175385 0.209803636 0.33713734 0.049106146 0.586990483 0.559046003 

0.340726865 0.345626102 0.249014753 0.06463228 0.233591847 0.228178438 0.225002512 

0.477200204 0.202741417 0.246580943 0.073477436 0.58635123 0.105116871 0.2392449 

0.204828615 0.156521522 0.196053062 0.442596801 0.203779618 0.924044133 0.63974291 

0.30480881 0.127817029 0.365191246 0.202182916 0.830288693 0.872068679 0.44828057 

0.225846078 0.13774912 0.289218145 0.347186657 0.077385275 0.904312847 0.036014407 

0.28250372 0.339768573 0.114112391 0.263615315 0.900499748 0.179266455 0.101303877 

0.002539167 0.410328186 0.52547982 0.061652826 0.673991095 0.338332678 0.397317653 

0.557116869 0.402118027 0.002191236 0.038573868 0.48978725 0.83431064 0.218920469 

0.281609622 0.399572796 0.049989996 0.268827586 0.449350636 0.096132998 0.487303161 

0.196046454 0.433687785 0.134227674 0.236038088 0.812327007 0.160011901 0.38001758 

0.316425842 0.33662573 0.050049906 0.296898521 0.213649885 0.50361124 0.114105238 

0.319104695 0.15994204 0.046221621 0.474731643 0.611634752 0.195280097 0.462591437 

0.132824617 0.230353351 0.618761274 0.018060758 0.529043193 0.538950901 0.047797072 

0.071724645 0.095630889 0.710389988 0.122254478 0.745677304 0.578449196 0.605643118 

0.299835468 0.253401121 0.189506118 0.257257293 0.634881085 0.396394522 0.342729099 

0.308821689 0.187756368 0.167864923 0.33555702 0.433154624 0.71975874 0.085143373 

0.0362072 0.406903808 0.149448948 0.407440044 0.703920146 0.455895396 0.853924856 

0.413609157 0.308696295 0.261500574 0.016193975 0.131964333 0.984540154 0.806375558 

0.261570354 0.536580972 0.135339552 0.066509123 0.361078227 0.141759778 0.076593328 

0.075749103 0.276913337 0.375837866 0.271499694 0.177204514 0.606265314 0.711136716 
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0.217669165 0.253620523 0.291287758 0.237422554 0.296214777 0.521762382 0.280361672 

0.240834669 0.594453974 0.018403926 0.146307431 0.108937319 0.869517924 0.897756624 

0.320045522 0.189543543 0.161998148 0.328412787 0.003435683 0.423524738 0.560278727 

0.225603917 0.14154767 0.300618144 0.332230269 0.828803262 0.946431202 0.549208683 

0.230464911 0.190838634 0.140540782 0.438155673 0.519730053 0.073007878 0.173401968 

0.27597789 0.268306593 0.173932071 0.281783447 0.910299011 0.265484195 0.242859578 

0.261702128 0.116741071 0.293340567 0.328216234 0.794934663 0.236879507 0.123880473 

0.130062949 0.254380426 0.464180228 0.151376397 0.194138999 0.434156526 0.268732769 

0.263131768 0.015260785 0.134008205 0.587599241 0.755590235 0.025077255 0.773423579 

0.309993093 0.306674423 0.098405294 0.28492719 0.848066024 0.01565984 0.584933583 

0.075578937 0.159223085 0.287535682 0.477662296 0.181336995 0.290880454 0.667794628 

0.267825028 0.396272588 0.24328753 0.092614854 0.284186397 0.650773226 0.865605778 

0.102212235 0.275506549 0.415182877 0.207098339 0.86018695 0.062075946 0.270419201 

0.29143001 0.368151307 0.096860351 0.243558332 0.953205478 0.464475275 0.065940442 

0.463527356 0.088446431 0.181834004 0.266192209 0.348929792 0.933006231 0.685718848 

0.152557545 0.069329974 0.429506921 0.34860556 0.056623499 0.201149505 0.02973766 

0.385629502 0.441622049 0.008044685 0.164703764 0.577551008 0.139793034 0.361523459 

0.240648997 0.20826862 0.164422086 0.386660297 0.452450138 0.619467113 0.433765516 

0.250463778 0.333763157 0.149350382 0.266422682 0.461057243 0.04908057 0.9071385 

0.367264685 0.131106095 0.045361441 0.45626778 0.038486717 0.88626096 0.147958285 

0.233267688 0.202880328 0.272083179 0.291768806 0.125272405 0.963310069 0.912331421 

0.344916173 0.237902907 0.314987275 0.102193645 0.473519485 0.761987186 0.318638166 

0.269318229 0.038744906 0.408123023 0.283813841 0.772472747 0.809466924 0.130592706 

0.120934507 0.208724113 0.343478556 0.326862824 0.305003105 0.407193157 0.615382281 

0.217846446 0.257689014 0.310000455 0.214464085 0.505135404 0.030727352 0.764611438 

0.270065621 0.409460865 0.18311659 0.137356924 0.337429315 0.824496024 0.47467383 

0.01162043 0.349374611 0.345123337 0.293881622 0.320952772 0.08323987 0.822498898 

0.407398326 0.009558082 0.360509075 0.222534517 0.69035889 0.661870913 0.704437433 

0.145080225 0.307262722 0.442527866 0.105129188 0.805438883 0.701307125 0.158855807 

0.265121486 0.283910615 0.044177925 0.406789975 0.724865479 0.484106826 0.003427587 

0.202870721 0.121065449 0.317291614 0.358772215 0.261406704 0.442476975 0.300526757 

0.293687025 0.284408811 0.374459719 0.047444445 0.657371243 0.51847781 0.356544551 

0.219150784 0.15235821 0.026964449 0.601526558 0.406731957 0.183995822 0.197781205 

0.303318171 0.254919324 0.213692313 0.228070192 0.769101448 0.998033844 0.83480881 

0.268282681 0.309261801 0.41827218 0.004183338 0.942099383 0.644327723 0.506040373 

0.389320368 0.193811382 0.061390148 0.355478103 0.924231289 0.745273259 0.51765643 

0.210047903 0.23487911 0.347124409 0.207948579 0.859826862 0.690064576 0.455322383 

0.041159738 0.593529257 0.157349342 0.207961663 0.542680783 0.285917113 0.878920891 

0.328196369 0.074580152 0.350210192 0.247013286 0.73584936 0.550193165 0.53651673 

0.343546437 0.236163906 0.098295602 0.321994056 0.372635265 0.250906814 0.180828409 

0.32936563 0.233719957 0.205107654 0.231806759 0.938582996 0.364410311 0.784091258 

0.200587377 0.298082185 0.233605482 0.267724956 0.31523557 0.724231425 0.977567324 

0.154625684 0.046087334 0.287853094 0.511433888 0.147223749 0.689544766 0.428890384 

0.137319112 0.453727219 0.326253934 0.082699735 0.091831764 0.006457821 0.966591577 

0.025812305 0.075056895 0.744091365 0.155039435 0.069746495 0.549338193 0.847010612 

0.197615367 0.498781179 0.261374731 0.042228723 0.662790466 0.779361495 0.408638294 

0.201585499 0.307412926 0.090767574 0.400234001 0.223184322 0.318905005 0.746426674 

0.284005445 0.094593526 0.341205532 0.280195497 0.961930765 0.350375465 0.490448101 

0.360018284 0.134038875 0.42028751 0.085655331 0.274743498 0.753969207 0.410455991 

0.314523455 0.032074291 0.286350436 0.367051817 0.78281421 0.30842235 0.014433129 

0.487925509 0.077371378 0.281812535 0.152890578 0.553822529 0.845246878 0.334273906 

0.258761573 0.145742821 0.357453076 0.238042531 0.49860892 0.410119392 0.05662512 

0.283075476 0.111305208 0.089537145 0.516082172 0.98981634 0.913228388 0.959522311 

0.218288194 0.20228937 0.368913784 0.210508652 0.113340986 0.791948651 0.880974726 

Source: Author (2021). 
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Table 6.5 shows the dependent variables for yields calculated using the Improved 

Swing-Cut Method from data set 1. 

Table 6.5: Dependent variables for yields of distillates from data set 1. 

YLPG YN YK YLD YHD YATR 

1.112979447 6.391693324 8.602618808 12.28891701 8.495072666 63.01181936 

1.072063092 8.52572334 10.15903877 12.87892558 6.260683754 60.99258915 

1.054074163 9.183486314 10.66630271 12.32009492 5.095686541 61.57402297 

1.07623991 7.196822774 7.728944012 16.99127767 4.969574266 61.9312527 

1.055327277 6.524707024 9.665623045 12.89293887 9.061538651 60.68594921 

0.996734221 8.551955198 11.08659676 12.56866125 6.404093078 60.27420124 

1.125690764 7.938020818 7.745318478 14.37779963 6.15301811 62.56038903 

1.058098703 7.61963125 10.17338087 11.14224673 8.120014715 61.77857741 

1.059461984 8.172713296 9.730837796 14.1709648 5.711972845 61.04304586 

1.124670153 7.397891996 11.30042447 12.0251454 5.846658475 62.20401675 

1.042996947 6.534520036 9.640285212 15.12597619 6.161733789 61.38359995 

1.039589608 7.034375682 10.39031521 12.33598285 8.573609003 60.50952396 

0.960971704 10.34100461 7.453845096 16.3635732 5.112323854 59.64662111 

1.101652578 6.418704612 13.20576879 10.43029734 6.775577193 61.96357198 

1.08553106 7.535092684 7.645737283 15.30044854 6.529798652 61.79909665 

1.022593064 7.192380609 11.96102912 12.83153224 5.217778601 61.66495477 

0.955199589 6.895456193 10.20221321 17.37354873 4.795714958 59.65534694 

0.989578574 8.623437466 8.888704505 11.75043539 8.787969081 60.846625 

1.088400601 7.937137017 12.21053192 10.51870197 6.833535099 61.30288683 

0.99919678 9.335847523 10.97405095 12.63607316 5.933095033 60.00121078 

1.014967721 7.276365559 10.59868669 13.44456443 6.400065269 61.15421383 

1.027624121 9.155450587 10.19009454 11.49072715 7.081466414 60.94199736 

1.022032553 6.92028075 10.5904758 11.62347288 7.921359896 61.81315452 

1.042852655 8.683317152 10.12380696 11.3131919 8.110306858 60.61282375 

1.08251272 9.852127911 8.000234557 13.87045511 6.517449485 60.56505481 

1.044363394 6.32872795 11.45129764 12.34207674 6.983817804 61.74226927 

1.022013327 7.492017266 9.762434831 13.07786072 8.40600499 60.12198138 

1.012183628 8.698254874 7.889744298 13.61061238 8.352844519 60.32041348 

1.052889202 6.533033405 12.42578254 10.84751199 6.656259231 62.38115796 

1.067541396 8.979218688 10.82166926 10.19718137 7.428687763 61.39799736 

1.066856113 6.421055817 12.8195656 8.068005148 9.464642001 62.05548482 

1.009412928 9.012821496 7.110468593 12.65054505 9.124621232 60.97846203 

1.118558003 8.662090572 8.661621862 13.25242387 7.556871853 60.63655793 

0.939455482 8.483847362 12.92793867 9.695169841 8.453207453 59.37528662 

0.99325345 7.62379369 8.095118599 15.07204295 7.295121014 60.80504191 

1.018460729 8.754408764 7.329153478 14.24308449 7.776520241 60.7632162 

0.993293508 6.873214154 10.99597719 10.89621722 9.09349848 61.03383632 

1.00842928 7.634543497 7.609387652 13.87092432 7.534421349 62.23648023 

1.129300535 8.450302457 10.10635619 10.26954345 9.153735301 60.78140154 

1.167217653 8.770823394 9.215253899 12.4005736 6.620636444 61.72346971 

1.02719793 8.247600964 8.999080984 12.4476089 7.969082747 61.19822196 

1.028091343 7.471550689 11.12386276 9.354329016 9.242577734 61.67136871 

1.04988613 7.854940948 8.880014559 14.69499899 5.601912634 61.80990984 

1.01547338 7.31726776 14.51751985 11.46546974 5.655224767 59.91029087 

0.998378404 7.802788981 9.066539629 13.21559778 9.113041663 59.68134677 

1.093477271 6.772108753 11.14467114 13.0100217 6.213303915 61.65992154 

1.057915816 7.254202798 10.58626509 11.44715604 8.239718295 61.30524393 

0.976765134 6.765418868 14.1596824 12.87943257 5.27208502 59.82379968 

1.025083982 6.24626421 10.81033635 13.21380644 6.980222913 61.61565037 

1.068470165 8.554457461 10.97686061 10.28116189 7.024098738 61.99025382 
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1.036140673 7.413979839 7.190032242 13.17154688 8.884843037 62.19825311 

1.027142583 8.979312144 7.434455899 12.70159097 8.457292774 61.28935773 

1.063558629 8.498998067 7.329992068 11.98686144 9.037918264 61.97791313 

1.101476902 7.129759189 10.38181537 11.86944255 8.223241191 61.18577734 

1.045766035 7.69237437 5.959747772 15.87394637 6.099314121 63.23069724 

1.005262382 8.817260963 6.32697735 15.79577489 6.839592259 61.10220017 

1.089418159 6.347488091 8.908143119 14.2452995 6.531084284 62.77861753 

1.028436956 7.539640271 11.96019817 13.73337341 5.404873619 60.21613773 

1.095872271 8.890606902 6.361174021 13.91623109 8.251379678 61.37687098 

1.00242252 9.240019091 8.618974087 10.94573912 9.282412782 60.79533556 

1.014015914 7.496494068 12.63679079 10.97337412 6.360566234 61.40939982 

1.108905555 6.378048599 8.906360938 11.59024978 9.474361726 62.44178634 

0.965137688 8.344275429 8.259750897 14.39729182 7.842192946 60.07053401 

1.036886299 7.35839801 10.39663499 11.55555871 7.610252995 61.93559703 

1.02119965 7.663310877 7.655903139 17.17586544 5.293440686 61.07761478 

1.002978085 6.097955708 12.91017701 8.688207138 9.035115583 62.15936538 

1.056759543 6.655506809 13.29102632 11.97495408 5.284190519 61.63009152 

1.042340787 8.186617946 11.74004399 10.33668338 7.984174087 60.59649422 

1.088823315 8.56196082 10.30733901 8.916633311 8.966714833 62.05571281 

1.086817937 7.037782097 9.566742935 13.52392911 6.699472605 61.98069044 

1.060669253 7.922869518 7.325259047 16.4303006 5.941343908 61.20963583 

1.016706756 7.594923196 12.75443988 10.91525537 7.273034267 60.32834308 

1.09223416 7.071411188 7.906600289 16.48418815 5.694156821 61.64423809 

1.060667361 8.595859501 9.979065434 12.38383237 6.243405402 61.63131238 

1.09048865 9.046348284 10.24684007 9.97703616 8.711698186 60.81637027 

1.005616894 8.088718103 9.052308162 10.34413049 9.690667343 61.70896346 

1.076917829 6.902969424 9.781734405 11.7195776 8.214735713 62.20093406 

1.056562573 8.860536347 9.903427003 11.93668466 7.766716475 60.36138943 

1.022385609 6.699139449 7.814576274 12.55175983 8.879161303 62.93135445 

1.030562857 8.728609655 11.94669897 11.47854215 5.622440551 61.08144782 

1.065866087 9.849445405 9.784622465 11.96346426 7.039714844 60.18143086 

0.996281131 8.908356793 9.932541886 11.2980744 7.206715947 61.54792782 

1.070313514 8.97598003 9.843726711 11.33019023 7.393457302 61.27729651 

1.033263932 7.890259767 8.955704296 16.14161404 5.380789187 60.48109618 

1.066040356 8.601639737 9.250377252 12.25458692 7.041447152 61.68001465 

1.006176917 7.332667535 8.935538204 12.43652726 8.787808268 61.39041364 

1.026759573 9.247362252 7.94622405 14.69488613 5.86627534 61.10694431 

1.04692494 7.214817472 11.668321 13.69421085 4.959066795 61.30641808 

1.08680523 6.252067351 10.87426511 10.90082523 7.694049976 63.09443462 

1.05870926 6.897405909 8.783295169 17.9490028 4.917252109 60.2780199 

1.18237407 6.823501195 10.74918317 13.62214099 5.515837982 62.00713547 

1.033670553 8.808097534 11.69390639 10.9681638 7.520151985 59.85622293 

1.021810574 6.627677984 9.550778071 14.81917937 6.124179191 61.74740994 

1.069982242 9.12115061 7.494731696 13.10455019 7.274760225 61.82970546 

1.067145032 7.65346854 12.10564878 10.6827651 7.538834432 60.84148183 

1.061430281 8.400732028 7.630416791 10.94356447 9.5847253 62.27648283 

1.027866911 8.41593033 11.72740532 9.778042623 7.952320941 60.98748799 

1.072195178 7.888292967 9.238707596 10.8350439 9.290918311 61.56806037 

1.026151928 8.533766301 10.14352991 12.40361524 5.169856053 62.62029371 

1.075620368 6.805329762 12.50641063 12.73798389 5.392326207 61.37424256 

Source: Author (2021). 
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Table 6.6 shows the dependent variables for specific gravity of distillates calculated 

using the Improved Swing-Cut Method from data set 1. 

Table 6.6: Dependent variables for specific gravity of distillates from data set 1. 

SGLPG SGN SGK SGLD SGHD SGATR 

0.54796633 0.735040789 0.815308475 0.863090005 0.901993516 0.986544204 

0.547453858 0.735038641 0.817945003 0.866821417 0.903237105 0.982389511 

0.545854201 0.73492886 0.823117631 0.867585969 0.900425871 0.980323092 

0.548496209 0.734931687 0.809006285 0.866094934 0.907466353 0.984194701 

0.5477253 0.72259269 0.799885584 0.856787041 0.896259566 0.981421099 

0.546498227 0.724667215 0.810593766 0.860981203 0.894060578 0.976554614 

0.548407103 0.745323105 0.822417424 0.869289582 0.909539017 0.987420366 

0.548929994 0.736673172 0.817894339 0.864776536 0.900025624 0.983396924 

0.547290726 0.731903043 0.8137004 0.865490586 0.902734354 0.981531182 

0.547596734 0.737524474 0.824793092 0.872923513 0.908821582 0.986399229 

0.548640405 0.726991934 0.804508601 0.863398798 0.90229476 0.981972713 

0.548615333 0.726665675 0.804982185 0.860022528 0.897522995 0.981133767 

0.544770604 0.725550471 0.804154603 0.854239613 0.890557673 0.972485391 

0.54828401 0.731785364 0.821400923 0.871846392 0.905993952 0.985530013 

0.546561389 0.730339553 0.808461412 0.860725282 0.901776395 0.982921325 

0.548469986 0.729434971 0.8163856 0.868633429 0.901619468 0.98080165 

0.545475297 0.707755579 0.789664605 0.854341093 0.891860883 0.972733599 

0.54532699 0.723306845 0.80615171 0.852249719 0.886176307 0.975606651 

0.547916108 0.735689358 0.823208482 0.87027003 0.904331538 0.983986773 

0.547638619 0.730676452 0.815482194 0.864462937 0.897441168 0.977457299 

0.546289533 0.720830397 0.806597614 0.859936967 0.894961009 0.978127885 

0.546962125 0.733507994 0.818207174 0.862842097 0.896150658 0.979288425 

0.548887323 0.729727549 0.811910794 0.862404101 0.896710057 0.981225691 

0.54655931 0.729869992 0.813577029 0.860159734 0.894976158 0.979593646 

0.546401851 0.738173968 0.817274334 0.8631616 0.902118814 0.981756683 

0.547583612 0.723303242 0.809615444 0.863538902 0.898599832 0.981383833 

0.546519641 0.720279644 0.800282925 0.855089327 0.892569117 0.977955392 

0.5456325 0.724401714 0.80232196 0.852295225 0.890007769 0.97676243 

0.547937209 0.728675157 0.81871446 0.867811645 0.90031967 0.982623675 

0.546635616 0.736258621 0.823321178 0.865391362 0.898482292 0.981669907 

0.547467475 0.726275804 0.817348852 0.863490218 0.8951283 0.982813033 

0.547466888 0.732807687 0.808174555 0.854048443 0.891080554 0.978668769 

0.547942657 0.739369156 0.816280304 0.865218165 0.906423467 0.985383914 

0.545580426 0.715496607 0.806117016 0.855048964 0.883419079 0.971642445 

0.547651264 0.724156308 0.799323004 0.855301642 0.89358317 0.977730297 

0.547946891 0.732699447 0.80692514 0.857024682 0.895681204 0.979459197 

0.547450107 0.719918 0.804331705 0.856232468 0.88955681 0.97773908 

0.547639107 0.730221679 0.807848393 0.85700626 0.893692172 0.979674029 

0.546909348 0.736156883 0.819098963 0.864001682 0.901520959 0.985137791 

0.547164066 0.745018866 0.827559158 0.871522563 0.911148194 0.9881885 

0.547151916 0.730038672 0.81070598 0.858594386 0.894447509 0.979614405 

0.547235238 0.727559044 0.814530138 0.859676142 0.891769117 0.980079586 

0.549084989 0.737820878 0.815567683 0.867133698 0.904626392 0.983061024 

0.545951664 0.716590272 0.810543801 0.865456313 0.896749215 0.976908812 

0.547329423 0.721309961 0.797216995 0.852665967 0.890584025 0.976892264 

0.548088939 0.731423985 0.815380651 0.86899503 0.90621069 0.984676612 

0.54739806 0.727874184 0.811551317 0.861524756 0.897265673 0.98171722 

0.54787807 0.715721458 0.805931458 0.865190636 0.89701702 0.976157061 

0.547169495 0.719399329 0.804467428 0.860314507 0.896029773 0.97980743 

0.547424882 0.7386593 0.825763114 0.867728051 0.900475451 0.982826267 
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0.547919184 0.731926922 0.806868298 0.855830919 0.894179495 0.981503942 

0.547373022 0.734909057 0.811922238 0.856885599 0.893775774 0.979867168 

0.547213709 0.737262808 0.814967171 0.857845611 0.895312068 0.982345467 

0.5474217 0.730078962 0.812359872 0.863420578 0.90173145 0.984233344 

0.547883582 0.738444938 0.812638135 0.860827337 0.900059039 0.982725455 

0.547350909 0.731624017 0.804523353 0.855660339 0.894988669 0.978417044 

0.54851952 0.734231309 0.813196919 0.866010263 0.905047625 0.985526596 

0.54704078 0.722816675 0.808755073 0.865219367 0.900325025 0.97886485 

0.547766088 0.74114883 0.813871964 0.859843782 0.901635446 0.98434192 

0.54743158 0.732664506 0.812642011 0.85612669 0.890150672 0.97808528 

0.546107375 0.722321351 0.814785199 0.863472661 0.894467335 0.978109912 

0.547568967 0.730974051 0.811314607 0.860258986 0.899013684 0.985601287 

0.546938072 0.721760616 0.798157978 0.852294795 0.888954911 0.974875315 

0.547736903 0.730112478 0.814584468 0.862507497 0.896705639 0.981210642 

0.547585762 0.727238402 0.801604746 0.859831368 0.900179525 0.97954367 

0.54730344 0.718740746 0.811557921 0.859733068 0.889673481 0.979022905 

0.547405903 0.725321692 0.816932223 0.870286917 0.90309608 0.981879924 

0.546382372 0.726574878 0.814418517 0.861835323 0.894880276 0.979395543 

0.546846032 0.738634094 0.825045565 0.863976019 0.897115877 0.983537433 

0.54795332 0.733068978 0.814017444 0.865685515 0.904000052 0.984366444 

0.547325887 0.731301659 0.805687753 0.860771865 0.902328068 0.981749706 

0.547228414 0.723136696 0.811540365 0.863152584 0.895545119 0.978410753 

0.548576958 0.734772581 0.808009524 0.865533067 0.908070999 0.985035704 

0.546021994 0.732612237 0.818956062 0.864308346 0.899017923 0.980890532 

0.547335813 0.738104278 0.821436075 0.864357503 0.899626972 0.983257663 

0.547925822 0.731495747 0.812454535 0.856467458 0.889993031 0.979367464 

0.54755123 0.730810431 0.813863732 0.862269617 0.898860052 0.983570134 

0.546510376 0.730786096 0.813461547 0.860997561 0.897140726 0.980176563 

0.548473402 0.731078065 0.808114301 0.856861931 0.893407158 0.981664976 

0.547036288 0.732165447 0.821216232 0.86777956 0.899483231 0.979628047 

0.546521739 0.735906549 0.818842649 0.863989065 0.89980577 0.980607918 

0.546999969 0.732135728 0.817519795 0.860698575 0.892476856 0.977929524 

0.547275985 0.737841881 0.821254302 0.865017399 0.900109779 0.982321047 

0.548843988 0.73119776 0.806316561 0.864339829 0.903915895 0.980928479 

0.546573321 0.734890714 0.818503213 0.863106473 0.898851461 0.981721914 

0.547171162 0.723929457 0.803800358 0.854748765 0.890677402 0.978534824 

0.546892866 0.734356246 0.813472028 0.861355264 0.898328598 0.979299057 

0.547685017 0.727761366 0.814049069 0.868649877 0.903488401 0.981320031 

0.548073535 0.732800186 0.819646272 0.866531532 0.901292872 0.985174263 

0.547650491 0.723558613 0.797361529 0.862386104 0.905503559 0.981268589 

0.547380104 0.736674454 0.822309805 0.874995588 0.915243171 0.989445949 

0.547392338 0.729682133 0.815000672 0.863701752 0.897358428 0.979218314 

0.54820186 0.725449125 0.805162525 0.861923347 0.899162557 0.980585743 

0.546907489 0.739791786 0.818752857 0.861656246 0.899257802 0.982348929 

0.546032727 0.724943874 0.814450916 0.863447369 0.897458911 0.980716315 

0.546941517 0.736884339 0.816604 0.857266921 0.893240995 0.982184967 

0.545585637 0.725835554 0.815968149 0.860507508 0.891849157 0.978148085 

0.546980519 0.732079824 0.81404134 0.85924871 0.895391102 0.982365572 

0.547800964 0.738956123 0.824990645 0.868165692 0.900267509 0.981110555 

0.547174623 0.726035122 0.815209843 0.869703672 0.904571041 0.982608627 

Source: Author (2021). 
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Table 6.7 shows the dependent variables for sulfur content of distillates calculated 

using the Improved Swing-Cut Method from data set 1. 

Table 6.7: Dependent variables for sulfur content of distillates from data set 1. 

SN SK SLD SHD SATR 

0.004411258 0.078810801 0.249719462 0.491839154 0.78147386 

0.007436213 0.087007962 0.268075388 0.475345327 0.739370276 

0.008048212 0.094645078 0.296470277 0.466698609 0.762040219 

0.005636645 0.071346755 0.270279363 0.51015702 0.752821246 

0.00300331 0.059605458 0.208251784 0.442352556 0.729528048 

0.004822081 0.074093413 0.243294514 0.437838811 0.724537368 

0.009459914 0.092198101 0.283068562 0.517050133 0.769621917 

0.006594057 0.088880619 0.253403561 0.476643144 0.74549309 

0.006235428 0.079281248 0.265361142 0.475686143 0.74080486 

0.006372269 0.099945239 0.30846614 0.505994318 0.767923818 

0.003547224 0.06692128 0.25143622 0.486861917 0.737981524 

0.003985141 0.068756695 0.221470184 0.448987819 0.71837724 

0.005649054 0.059581977 0.219636098 0.412095453 0.718610188 

0.003927444 0.09736525 0.297966857 0.497585627 0.75647206 

0.005195229 0.067238545 0.244611793 0.475545133 0.764181853 

0.004536571 0.087195172 0.290413537 0.49255209 0.744140835 

0.001865701 0.043420762 0.219253192 0.421404348 0.7137375 

0.004525268 0.063803765 0.20115814 0.412227188 0.744672514 

0.006820974 0.099037768 0.285646359 0.48252207 0.743968491 

0.006725762 0.083037516 0.254782948 0.451629071 0.710800511 

0.003386272 0.067247057 0.245136454 0.450240929 0.747027769 

0.007474034 0.08663270 0.251917593 0.451742497 0.738672366 

0.00428800 0.07916523 0.246072326 0.469892773 0.744560861 

0.006277626 0.07845601 0.231553829 0.438170273 0.735156002 

0.009979598 0.082568147 0.248121276 0.459108473 0.738078325 

0.002958545 0.074420166 0.258083378 0.472073887 0.753130184 

0.003506506 0.058632268 0.204638711 0.424019278 0.722782489 

0.005013108 0.058731433 0.196902022 0.417117603 0.732599819 

0.003794354 0.091121588 0.288675912 0.487973019 0.76495521 

0.008293995 0.096127027 0.267038856 0.460223571 0.753740444 

0.003350586 0.088572345 0.252395751 0.455592627 0.762092904 

0.006968032 0.068955924 0.201154186 0.432080309 0.734853605 

0.008789816 0.083757888 0.245721846 0.475302009 0.730887669 

0.002947031 0.066439936 0.206604477 0.38689441 0.705178995 

0.003968902 0.057104217 0.212639315 0.446438002 0.728679575 

0.006817306 0.068126282 0.215710114 0.449812684 0.727384901 

0.002904671 0.065865366 0.212989233 0.429059719 0.735139079 

0.004999775 0.067974849 0.229354272 0.464377758 0.761169682 

0.007551604 0.087926283 0.24005179 0.453962382 0.742491421 

0.010679277 0.101501097 0.288542436 0.499767102 0.763595827 

0.005772092 0.073541495 0.227814943 0.448085942 0.743038418 

0.00454715 0.081591506 0.233217023 0.442091859 0.75290697 

0.007172629 0.08404237 0.273393838 0.504055442 0.744667522 

0.002951201 0.076720014 0.268118764 0.437367825 0.721317403 

0.00378422 0.055243157 0.188679311 0.412163138 0.705381603 

0.004357964 0.084226576 0.280096125 0.495462802 0.750832532 

0.004433617 0.076632007 0.238719474 0.456280839 0.745737692 

0.002425886 0.071192668 0.260531749 0.453347387 0.703581018 

0.002540394 0.065276423 0.243767953 0.461973849 0.751938626 

0.008429633 0.101977641 0.283786107 0.478653056 0.761093183 
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0.005276866 0.066604655 0.214324156 0.459353963 0.760177564 

0.007631097 0.074650888 0.217610221 0.446244075 0.743549355 

0.007949957 0.078490526 0.22239071 0.456173947 0.761979954 

0.004537416 0.077687155 0.242873805 0.465835902 0.745778934 

0.007044075 0.073415447 0.256719956 0.500031888 0.782700088 

0.006448346 0.06295575 0.218186354 0.454424672 0.738110261 

0.004309746 0.077617174 0.270543463 0.508380865 0.771400686 

0.003895143 0.07327659 0.261979925 0.45858863 0.721818937 

0.009740735 0.077527917 0.225707335 0.469537324 0.747125911 

0.007066731 0.076751845 0.209515228 0.426203465 0.730521252 

0.003733428 0.082020124 0.270636335 0.451371761 0.753786105 

0.003764614 0.072890603 0.229983651 0.471056539 0.772178641 

0.00390263 0.054705033 0.196036932 0.41881579 0.714657101 

0.004892805 0.081603519 0.252508821 0.467890181 0.75580581 

0.004651979 0.059921034 0.241225045 0.474335714 0.737035716 

0.002343201 0.07843971 0.242134457 0.444554848 0.761370191 

0.003465849 0.088406424 0.301675111 0.486276841 0.752704892 

0.005129148 0.081079863 0.241692108 0.437424075 0.735980065 

0.008504782 0.098836595 0.256514181 0.460862403 0.767872303 

0.005045393 0.079815843 0.264900852 0.491406442 0.758315537 

0.005820659 0.065159505 0.241673295 0.476398439 0.744318062 

0.003950513 0.078304687 0.247234299 0.442591679 0.722279712 

0.00536381 0.070376248 0.260428971 0.505465164 0.74694303 

0.006886098 0.086244515 0.270666938 0.46416546 0.762597679 

0.00899898 0.093041836 0.245412813 0.453020585 0.737514305 

0.005692476 0.077230865 0.214317447 0.437589037 0.747702767 

0.004518355 0.078938238 0.247061935 0.472974757 0.765241571 

0.006729771 0.078146946 0.233668601 0.441101826 0.730831201 

0.004240159 0.068986401 0.223783154 0.469035025 0.771238522 

0.006745433 0.093621538 0.286470249 0.46729828 0.741467258 

0.00919452 0.087000522 0.248634396 0.447699232 0.727354144 

0.006455914 0.085073804 0.249534382 0.450706046 0.74966158 

0.008763006 0.092182416 0.259101877 0.466035902 0.746789831 

0.005666673 0.069896976 0.251004157 0.484702506 0.715783254 

0.007474459 0.085438725 0.257448111 0.465785954 0.760189341 

0.003773305 0.062873295 0.209367078 0.437462805 0.745740191 

0.007755376 0.076830488 0.249609824 0.46316404 0.742746213 

0.00436595 0.082171006 0.287660197 0.486474161 0.743071962 

0.004000269 0.090149009 0.277549769 0.49532812 0.780936581 

0.003420822 0.056017058 0.24455896 0.477424401 0.721045488 

0.004690323 0.092669264 0.309598181 0.516645074 0.768947238 

0.006323091 0.083135416 0.242379316 0.440084123 0.711476177 

0.003423798 0.066737085 0.251670286 0.481468008 0.747687768 

0.009493388 0.084694984 0.247588223 0.4697824 0.761349578 

0.004366868 0.081086762 0.253036151 0.446804182 0.745730034 

0.007706498 0.080716698 0.221039614 0.451779734 0.770087019 

0.005129455 0.082458119 0.244223766 0.431892253 0.749077181 

0.005969182 0.078463256 0.226075189 0.448970163 0.755335413 

0.008067145 0.100215821 0.303547812 0.496050792 0.769344319 

0.003661800 0.084293562 0.29233006 0.483998843 0.74997722 

Source: Author (2021). 
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6.7.3 Appendix C: Average Errors for each Surrogate Model 

The least squares regression errors of each distillation component for each surrogate 

model are shown in Tables 6.8 to 6.11.  Each error corresponds to the average error 

from the 100 points in the data set. 

Table 6.8: Least Squares errors for Data Set 1 using the CSW model. 

 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

YLDLPG 4.83E-30 4.83E-30 4.83E-30 4.83E-30 1.68E-29 1.68E-29 1.68E-29 1.68E-29 4.43E-30 4.43E-30 

YLDN 6.90E-01 2.85E-03 3.21E-16 3.21E-16 2.85E-03 6.90E-01 3.21E-16 1.14E-02 3.21E-16 3.21E-16 

YLDK 
3.25E+0

0 
6.61E-03 1.62E-15 1.62E-15 6.61E-03 

3.25E+0
0 

1.62E-15 7.66E-02 1.62E-15 1.62E-15 

YLDLD 
3.65E+0

0 
3.75E-03 1.09E-15 1.09E-15 3.75E-03 

3.65E+0
0 

1.09E-15 1.14E-01 1.09E-15 1.09E-15 

YLDHD 
1.84E+0

0 
1.13E-04 3.38E-16 3.38E-16 2.95E-03 

1.84E+0
0 

1.19E-03 6.13E-02 3.38E-16 3.38E-16 

YLDATR 2.62E-17 2.62E-17 2.62E-17 2.62E-17 1.37E-01 1.37E-01 1.37E-01 1.37E-01 2.62E-17 2.62E-17 

SGLPG 1.29E-09 1.29E-09 1.29E-09 1.29E-09 5.32E-08 5.32E-08 5.32E-08 5.32E-08 1.29E-09 1.29E-09 

SGN 2.14E-05 3.09E-07 2.82E-07 2.82E-07 3.09E-07 2.14E-05 2.82E-07 8.35E-07 2.82E-07 2.82E-07 

SGK 3.01E-05 8.00E-07 5.23E-07 5.23E-07 8.00E-07 3.01E-05 5.23E-07 1.25E-06 5.23E-07 5.23E-07 

SGLD 1.42E-05 1.55E-07 1.17E-07 1.17E-07 1.55E-07 1.42E-05 1.17E-07 4.41E-07 1.17E-07 1.17E-07 

SGHD 7.40E-06 2.21E-07 2.16E-07 2.16E-07 2.21E-07 7.40E-06 2.16E-07 4.01E-07 2.16E-07 2.16E-07 

SGATR 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 

SN 3.17E-06 1.82E-07 3.39E-08 3.39E-08 1.82E-07 3.17E-06 3.39E-08 1.61E-07 3.39E-08 3.39E-08 

SK 8.98E-05 2.10E-06 1.76E-06 1.76E-06 2.10E-06 8.98E-05 1.76E-06 5.43E-06 1.76E-06 1.76E-06 

SLD 5.55E-04 6.37E-06 4.49E-06 4.49E-06 6.37E-06 5.55E-04 4.49E-06 2.44E-05 4.49E-06 4.49E-06 

SHD 1.46E-04 6.31E-06 4.05E-06 4.05E-06 6.69E-06 1.62E-04 4.05E-06 2.71E-05 4.05E-06 4.05E-06 

SATR 1.23E-07 1.23E-07 1.23E-07 1.23E-07 3.15E-05 3.15E-05 3.15E-05 3.15E-05 1.23E-07 1.23E-07 

Source: Author (2021). 
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Table 6.9: Least Squares errors for Data Set 2 using the CSW model. 

 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

YLDLPG 1.50E-29 1.50E-29 1.50E-29 1.50E-29 2.39E-29 2.39E-29 2.39E-29 2.39E-29 1.50E-29 1.50E-29 

YLDN 8.20E-01 2.18E-03 7.03E-16 7.03E-16 2.18E-03 8.20E-01 7.03E-16 9.63E-03 7.03E-16 7.03E-16 

YLDK 
3.31E+0

0 
5.76E-03 1.60E-15 1.60E-15 5.76E-03 

3.31E+0
0 

1.60E-15 7.38E-02 1.60E-15 1.60E-15 

YLDLD 
4.82E+0

0 
2.56E-03 1.46E-15 1.46E-15 2.56E-03 

4.82E+0
0 

1.46E-15 1.23E-01 1.46E-15 1.46E-15 

YLDHD 
1.92E+0

0 
1.44E-04 4.04E-16 4.04E-16 3.14E-03 

1.92E+0
0 

1.88E-03 7.59E-02 4.04E-16 4.04E-16 

YLDATR 8.32E-16 8.32E-16 8.32E-16 8.32E-16 1.22E-01 1.22E-01 1.22E-01 1.22E-01 8.32E-16 8.32E-16 

SGLPG 1.73E-09 1.73E-09 1.73E-09 1.73E-09 4.47E-08 4.47E-08 4.47E-08 4.47E-08 1.73E-09 1.73E-09 

SGN 2.60E-05 4.47E-07 3.65E-07 3.65E-07 4.47E-07 2.60E-05 3.65E-07 6.43E-07 3.65E-07 3.65E-07 

SGK 3.95E-05 8.18E-07 8.42E-07 8.42E-07 8.18E-07 3.95E-05 8.42E-07 1.45E-06 8.42E-07 8.42E-07 

SGLD 1.27E-05 1.78E-07 1.85E-07 1.85E-07 1.78E-07 1.27E-05 1.85E-07 6.34E-07 1.85E-07 1.85E-07 

SGHD 8.37E-06 2.75E-07 2.74E-07 2.74E-07 2.75E-07 8.37E-06 2.74E-07 4.52E-07 2.74E-07 2.74E-07 

SGATR 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 

SN 3.69E-06 1.66E-07 4.42E-08 4.42E-08 1.66E-07 3.69E-06 4.42E-08 1.22E-07 4.42E-08 4.42E-08 

SK 1.19E-04 2.76E-06 2.82E-06 2.82E-06 2.76E-06 1.19E-04 2.82E-06 6.11E-06 2.82E-06 2.82E-06 

SLD 4.88E-04 6.79E-06 7.06E-06 7.06E-06 6.79E-06 4.88E-04 7.06E-06 3.50E-05 7.06E-06 7.06E-06 

SHD 1.63E-04 6.67E-06 5.19E-06 5.19E-06 5.98E-06 1.57E-04 5.19E-06 1.82E-05 5.19E-06 5.19E-06 

SATR 1.13E-07 1.13E-07 1.13E-07 1.13E-07 2.76E-05 2.76E-05 2.76E-05 2.76E-05 1.13E-07 1.13E-07 

Source: Author (2021). 
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Table 6.10: Least Squares errors for Data Set 1 using the ISW model. 

 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

YLDLPG 4.83E-30 4.83E-30 4.83E-30 4.83E-30 1.68E-29 1.68E-29 1.68E-29 1.68E-29 4.43E-30 4.43E-30 

YLDN 6.90E-01 2.85E-03 3.21E-16 3.21E-16 2.85E-03 6.90E-01 3.21E-16 1.14E-02 3.21E-16 3.21E-16 

YLDK 
3.25E+0

0 
6.61E-03 1.62E-15 1.62E-15 6.61E-03 

3.25E+0
0 

1.62E-15 7.66E-02 1.62E-15 1.62E-15 

YLDLD 
3.65E+0

0 
3.75E-03 1.09E-15 1.09E-15 3.75E-03 

3.65E+0
0 

1.09E-15 1.14E-01 1.09E-15 1.09E-15 

YLDHD 
1.84E+0

0 
1.13E-04 3.38E-16 3.38E-16 2.95E-03 

1.84E+0
0 

1.19E-03 6.13E-02 3.38E-16 3.38E-16 

YLDATR 2.62E-17 2.62E-17 2.62E-17 2.62E-17 1.37E-01 1.37E-01 1.37E-01 1.37E-01 2.62E-17 2.62E-17 

SGLPG 1.29E-09 1.29E-09 1.29E-09 1.29E-09 5.32E-08 5.32E-08 5.32E-08 5.32E-08 1.29E-09 1.29E-09 

SGN 2.17E-05 1.36E-07 7.89E-08 7.89E-08 1.36E-07 2.17E-05 7.89E-08 5.94E-07 7.89E-08 7.89E-08 

SGK 2.87E-05 2.47E-07 8.51E-08 8.51E-08 2.47E-07 2.87E-05 8.51E-08 7.61E-07 8.51E-08 8.51E-08 

SGLD 1.32E-05 4.52E-08 1.37E-08 1.37E-08 4.52E-08 1.32E-05 1.37E-08 3.22E-07 1.37E-08 1.37E-08 

SGHD 7.94E-06 1.15E-08 3.44E-09 3.44E-09 1.15E-08 7.94E-06 3.44E-09 2.47E-07 3.44E-09 3.44E-09 

SGATR 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 2.70E-09 

SN 3.24E-06 1.30E-07 1.91E-08 1.91E-08 1.30E-07 3.24E-06 1.91E-08 1.34E-07 1.91E-08 1.91E-08 

SK 8.80E-05 3.04E-07 1.18E-07 1.18E-07 3.04E-07 8.80E-05 1.18E-07 3.89E-06 1.18E-07 1.18E-07 

SLD 5.21E-04 1.61E-06 7.40E-07 7.40E-07 1.61E-06 5.21E-04 7.40E-07 1.98E-05 7.40E-07 7.40E-07 

SHD 1.58E-04 2.11E-06 4.66E-07 4.66E-07 2.22E-06 1.74E-04 4.66E-07 2.49E-05 4.66E-07 4.66E-07 

SATR 1.23E-07 1.23E-07 1.23E-07 1.23E-07 3.15E-05 3.15E-05 3.15E-05 3.15E-05 1.23E-07 1.23E-07 

Source: Author (2021). 
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Table 6.11: Least Squares errors for Data Set 2 using the ISW model. 

 Model 
1 

Model 
2 

Model 
3 

Model 
4 

Model 
5 

Model 
6 

Model 
7 

Model 
8 

Model 
9 

Model 
10 

YLDLPG 1.50E-29 1.50E-29 1.50E-29 1.50E-29 2.39E-29 2.39E-29 2.39E-29 2.39E-29 1.50E-29 1.50E-29 

YLDN 8.20E-01 2.18E-03 7.03E-16 7.03E-16 2.18E-03 8.20E-01 7.03E-16 9.63E-03 7.03E-16 7.03E-16 

YLDK 
3.31E+0

0 
5.76E-03 1.60E-15 1.60E-15 5.76E-03 

3.31E+0
0 

1.60E-15 7.38E-02 1.60E-15 1.60E-15 

YLDLD 
4.82E+0

0 
2.56E-03 1.46E-15 1.46E-15 2.56E-03 

4.82E+0
0 

1.46E-15 1.23E-01 1.46E-15 1.46E-15 

YLDHD 
1.92E+0

0 
1.44E-04 4.04E-16 4.04E-16 3.14E-03 

1.92E+0
0 

1.88E-03 7.59E-02 4.04E-16 4.04E-16 

YLDATR 8.32E-16 8.32E-16 8.32E-16 8.32E-16 1.22E-01 1.22E-01 1.22E-01 1.22E-01 8.32E-16 8.32E-16 

SGLPG 1.73E-09 1.73E-09 1.73E-09 1.73E-09 4.47E-08 4.47E-08 4.47E-08 4.47E-08 1.73E-09 1.73E-09 

SGN 2.62E-05 1.61E-07 1.04E-07 1.04E-07 1.61E-07 2.62E-05 1.04E-07 5.16E-07 1.04E-07 1.04E-07 

SGK 3.85E-05 1.67E-07 1.48E-07 1.48E-07 1.67E-07 3.85E-05 1.48E-07 8.09E-07 1.48E-07 1.48E-07 

SGLD 1.27E-05 5.11E-08 1.73E-08 1.73E-08 5.11E-08 1.27E-05 1.73E-08 4.10E-07 1.73E-08 1.73E-08 

SGHD 8.40E-06 9.54E-09 3.99E-09 3.99E-09 9.54E-09 8.40E-06 3.99E-09 3.23E-07 3.99E-09 3.99E-09 

SGATR 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 1.93E-09 

SN 3.89E-06 1.59E-07 2.72E-08 2.72E-08 1.59E-07 3.89E-06 2.72E-08 1.56E-07 2.72E-08 2.72E-08 

SK 1.17E-04 3.19E-07 1.34E-07 1.34E-07 3.19E-07 1.17E-04 1.34E-07 4.56E-06 1.34E-07 1.34E-07 

SLD 4.83E-04 9.96E-07 5.90E-07 5.90E-07 9.96E-07 4.83E-04 5.90E-07 2.63E-05 5.90E-07 5.90E-07 

SHD 1.68E-04 3.87E-06 5.11E-07 5.11E-07 3.62E-06 1.63E-04 5.11E-07 1.86E-05 5.11E-07 5.11E-07 

SATR 1.13E-07 1.13E-07 1.13E-07 1.13E-07 2.76E-05 2.76E-05 2.76E-05 2.76E-05 1.13E-07 1.13E-07 

Source: Author (2021). 
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6.7.4 Appendix D: Cross plots for the best Surrogate Model 

Figure 6.6 presents the cross plots for the 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (y axis) versus the 𝑌𝑟𝑒𝑎𝑙 (x axis) 

for the yield, specific gravity, and sulfur content of all dependent variables in 

Surrogate Model 3 using the ISW method. The black line represents the 𝑦 = 𝑥 

function.  

Figure 6.6: Plots for Surrogate Model 3 using the ISW method. 
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Source: Author (2021). 

6.8 Nomenclature 

Continuous Variables 

𝐵: maximum number allowed of basis 

𝑏𝑗𝑘𝑖: bilinear basis of crude oil 𝑗 and swing-cut 𝑘 for dependent variable 𝑖 

𝑑𝑣: total number of dependent variables  

𝑑𝑣_𝑠: number of sulfur content dependent variables  

𝑑𝑣_𝑠𝑔: number of specific gravity dependent variables  
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𝑑𝑣_𝑦𝑙𝑑: number of yield dependent variables  

𝐸: objective function to be minimized 

𝐼𝑖: intercept basis for dependent variable 𝑖 

𝑙𝑗𝑖: linear basis of crude oil 𝑗 for dependent variable 𝑖 

𝑙𝑘𝑖: linear basis of swing-cut 𝑘 for dependent variable 𝑖 

𝑀𝑃𝑐𝑢𝑡
𝑓𝑐

: mass-based property of final cut 

𝑀𝑃𝑐𝑢𝑡
𝑖𝑐 : mass-based property of intermediate cut   

𝑀𝑃𝐼𝑠𝑤: mass-based property of interface of swing-cut 

𝑀𝑃𝑚𝑐1: mass-based property of adjacent light micro cut  

𝑀𝑃𝑚𝑐2: mass-based property of adjacent heavy micro cut  

𝑀𝑃𝑠𝑤: mass-based property of swing-cut (bulk) 

𝑀𝑃𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

: mass-based property of light fraction of swing-cut 

𝑀𝑃𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

: mass-based property of heavy fraction of swing-cut 

𝑀𝑃𝐼𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

: mass-based property of interface of light fraction of swing-cut 

𝑀𝑃𝐼𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

: mass-based property of interface of heavy fraction of swing-cut 

𝑛: total number of points in the data set 

𝑄𝑐,𝑐𝑑𝑢: inlet volumetric feed flow for crude c incoming to cdu 

𝑄𝑐𝑑𝑢: overall volumetric feed flow for cdu 

𝑄𝑐𝑢𝑡
𝑓𝑐

: volumetric flow of final distillate 𝑐𝑢𝑡 

𝑄𝑚𝑐: volumetric flow of micro cut mc (pseudo-components) 

𝑄𝑐𝑢𝑡
𝑖𝑐 : volumetric flow of intermediate distillate 𝑐𝑢𝑡 

𝑄𝑠𝑤1 𝑡𝑜 𝑄𝑠𝑤3: volumetric flow of swing-cuts (bulk) 

𝑄𝑠𝑤1
𝑙𝑖𝑔ℎ𝑡

  𝑡𝑜  𝑄𝑠𝑤3
𝑙𝑖𝑔ℎ𝑡

: volumetric flow of light fraction of swing-cuts 

𝑄𝑠𝑤1
ℎ𝑒𝑎𝑣𝑦

 𝑡𝑜 𝑄𝑠𝑤3
ℎ𝑒𝑎𝑣𝑦

: volumetric flow of heavy fraction of swing-cuts 

𝑄𝑠𝑤: volumetric flow of swing-cut 

𝑄𝑚𝑐1: volumetric flow of adjacent light micro cut  

𝑄𝑚𝑐2: volumetric flow of adjacent heavy micro cut  

𝑄𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

: volumetric flow of light fraction of swing-cut 

𝑄𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

: volumetric flow of heavy fraction of swing-cut 

𝑄𝐾: final kerosene flow  
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𝑄𝑁: final naphtha flow  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝐸𝑟𝑟𝑜𝑟: average error for the specific gravity dependent variables 

𝑆𝑢𝑙𝑓𝑢𝑟 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟: average error for the sulfur content dependent variables 

𝑉𝑃𝑐𝑢𝑡
𝑓𝑐

: volume-based property of final cut 

𝑉𝑃𝑐𝑢𝑡
𝑖𝑐 : volume-based property of intermediate cut   

𝑉𝑃𝐼𝑠𝑤: volume-based property of interface of swing-cut 

𝑉𝑃𝑚𝑐1: volume-based property of adjacent light micro cut  

𝑉𝑃𝑚𝑐2: volume-based property of adjacent heavy micro cut  

𝑉𝑃𝑠𝑤: volume-based property of swing-cut (bulk) 

𝑉𝑃𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

: volume-based property of light fraction of swing-cut 

𝑉𝑃𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

: volume-based property of heavy fraction of swing-cut 

𝑉𝑃𝐼𝑠𝑤
𝑙𝑖𝑔ℎ𝑡

: volume-based property of interface of light fraction of swing-cut 

𝑉𝑃𝐼𝑠𝑤
ℎ𝑒𝑎𝑣𝑦

: volume-based property of interface of heavy fraction of swing-cut 

𝑇𝑁/𝐾: naphtha/kerosene cutpoint temperature 

𝑇𝐾: end cutpoint temperature of kerosene 

𝑇𝑁: initial cutpoint temperature of naphtha 

𝑥𝑗: generic independent variable for crude oil 𝑗 

𝑥1 to 𝑥4: independent variables for the four crude oils 

𝑥5 to 𝑥7: independent variables for the three swing-cuts 

𝑋𝑗𝑝: value of independent decision variable of crude oil 𝑗 at point 𝑝 

𝑋𝑘𝑝: value of independent decision variable of swing-cut 𝑘 at point 𝑝 

𝑌𝑖𝑝: value of dependent variable 𝑖 at point 𝑝 calculated by the surrogate model 

𝑦𝑖𝑝: value of dependent variable 𝑖 at point 𝑝 calculated by the swing-cut methods 

𝑌𝑚𝑐: yields of micro cut mc 

𝑌𝑖𝑒𝑙𝑑 𝐸𝑟𝑟𝑜𝑟: average error for the yield dependent variables 

𝑌𝐿𝐷𝑚𝑐: yields of micro cut mc 

 

 

Binary Variables 

𝑧0: binary variable for intercept coefficient  
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𝑧𝑗: binary variable for linear coefficient of crude oil 𝑗 

𝑧𝑗𝑘: binary variable for bilinear coefficient of crude oil 𝑗 and swing-cut 𝑘 

𝑧𝑘: binary variable for linear coefficient of swing-cut 𝑘 

 

Parameters 

𝑀: big M parameter 

 

Sets 

𝐶𝑅: crude oils 

𝐷𝐶: distillation component 

𝐷𝑉: dependent variables 

𝐷𝑉_𝑆: sulfur content dependent variables 

𝐷𝑉_𝑆𝐺: specific gravity dependent variables 

𝐷𝑉_𝑌𝐿𝐷: yield dependent variables 

𝐹𝐶: final cuts of distillates 

𝐼𝐶: intermediate cuts of distillates 

𝑀𝐶𝑓𝑐: micro cuts related to final cuts of distillates 

𝑀𝐶𝑖𝑐: micro cuts related to intermediate cuts of distillates 

𝑃: points in the data set 

𝑆𝑊: swing-cuts 

 

Subscripts 

𝐴𝑇𝑅: atmospheric residue 

𝑐: crude oils 

𝐶𝐷𝑈: crude distillation unit 

𝑐𝑢𝑡: final distillate cut 

𝐻𝐷: heavy diesel 

ℎ𝑒𝑎𝑣𝑦: heavy fraction of swing-cut 

𝑖: dependent variable in the identification model 

𝑗: crude oil in the identification model 

𝑘: swing-cut in the identification model 
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𝐾: kerosene 

𝐿𝐷: light diesel 

𝑙𝑖𝑔ℎ𝑡: light fraction of swing-cut 

𝐿𝑃𝐺: liquefied petroleum gas 

𝑁: naphtha 

𝑁/𝐾: naphtha/kerosene 

𝑝: point of data set 

𝑠𝑤: swing-cut 

𝑠𝑤1: swing-cut 1, between naphtha and kerosene 

𝑠𝑤2: swing-cut 2, between kerosene and light diesel 

𝑠𝑤3: swing-cut 3, between light diesel and heavy diesel 

 

Superscripts 

𝑐𝑑𝑢: crude distillation unit 

𝑓𝑐: final cut 

𝑓𝑖𝑛𝑎𝑙: final distillate  

ℎ𝑒𝑎𝑣𝑦: heavy fraction of swing-cut 

𝑖𝑐: intermediate cut 

𝑙𝑖𝑔ℎ𝑡: light fraction of swing-cut 

𝑠𝑤: swing-cut 

 

Abbreviations 

ATR: atmospheric residue 

CDU: crude distillation unit 

CO1 to CO4: crude oils 

CSW: conventional swing-cut 

FG: fuel gas 

FI: fractionation indices 

FY: fixed yields 

HD: heavy diesel 

IMPL: Industrial modeling and programming language 

ISW: improved swing-cut 
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K: kerosene 

LD: light diesel 

LHS: Latin hypercube sampling 

LPG: liquefied petroleum gas 

MINLP: mixed-integer nonlinear programming  

MIQP: mixed-integer quadratic programming 

N: naphtha 

RTO: real time optimization 

S: sulfur content 

SG: specific gravity 

SW1 to SW3: swing-cuts 

TBP: true boiling point 

UOPSS: unit-operation-port-state superstructure 

WTR: weight transfer ratio 

𝑥1 to 𝑥4: independent variables for the four crude oils in the surrogate model 

𝑥5 to 𝑥7: independent variables for the three swing-cuts in the surrogate model 

Y: dependent variable in the surrogate model  

YLD: volume yield percent 
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7                              
Large-Scale Online Refinery Scheduling Optimization with 

Decompositions, Heuristics, and Surrogate Approximations 
 

Optimization of large-scale discrete-time scheduling problems is challenging due to the 

combinatorial complexity of binary or discrete decisions being made. When including 

networks of unit-operations and inventory-tanks to fulfill both the logistics and quality 

balances as found in complex-scope process industries, the decomposition of the 

quantity-logic-quality phenomena (QLQP) paradigm in mixed-integer linear 

programming (MILP) and nonlinear programming (NLP) has been often used to find 

solutions of industrial-sized problems in reasonable computing processing times. 

Furthermore, as these industries manage with procurement of resources and 

production of products, solving a scheduling-type of problem within a time-horizon of a 

planning solution potentially increases the economic value of the process through 

market opportunities and more efficient operations. However, there are open 

challenges to automatically solve complex large-scale discrete-time problems in 

acceptable computing times using time steps within the shift of the operators (e.g., 8 

hours) or even in smaller windows such as 1, 2, or 4 hours. In this direction, this chapter 

discusses strategies for handling and solving large-scale scheduling problems of 

process industry networks considering the unit-operation-port-state superstructure 

(UOPSS) constructs and the semantics of the QLQP concepts in a discrete-time 

formulation. That includes the use of phenomenological decompositions within a two-

step solving procedure of mixed-integer nonlinear programming (MINLP) models, in 

addition to heuristic procedures, including exclusions to reduce the scale of the 

optimization search space in constructive rolling horizon strategies, relaxations to 

employ relax-and-fix iterations for a large-scale MILP formulation, linear reformulations 

to approximate nonlinear blending equations, and surrogate models embedded in 

refinery scheduling environments within a scheduling formulation towards online 

applications. 
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7.1 Introduction 

The optimization of large-scale industrial scheduling problems is challenging because 

of their complexity and size. To build the mathematical formulation for these problems, 

three types of variables and constraints are used, namely, quantity-based (e.g., 

material flows, amounts, yields, and inventories), logic-based (e.g., binary or discrete 

decisions), and quality-based (e.g., nonlinear information of properties such as specific 

gravity, sulfur concentration, pour point, octane number, etc.). Process industry 

scheduling networks manage the integration of these three types of operations by 

considering the simultaneous optimization of the quantity, logistic, and quality 

(qualogistics) problems. Moreover, industrial problems typically involve large-scale 

models with dozens or hundreds of thousands of variables and constraints, including 

non-convex terms. Thus, a large-scale mixed-integer nonlinear programming (MINLP) 

model arises, imposing difficulties for the solution of complex industrial cases primarily 

due to the discrete and nonlinear combination of logic and quality phenomena. In this 

full space approach, due to the relaxation of binary variables in the first stage of the 

algorithm, the optimization of nonlinear problems is initially highly degenerate (many 

undifferentiated solutions) and strongly dependent on good initial points to converge. 

Even pure mixed-integer linear programming (MILP) models using linear programming 

(LP) approximations or reformulations of processing transformations and blending of 

streams and inventories are by themselves challenging problems to be solved.  

Specific-domain modeling and heuristic approaches suitable for operations research 

(OR) and process system engineering (PSE) problems can handle the complexities of 

process industry scheduling via ad hoc representation of the models, whereby both the 

configuration and solution procedures can be constructed iteratively for large-scale and 

complex-scope applications. Even though the advances in computational processing 

and commercial solvers (e.g., CPLEX, GUROBI, XPRESS) have allowed automated 

decision-making of large-scale scheduling problems with much lower computational 

effort (HARJUNKOSKI et al., 2014), academia and industry have mostly addressed 

scheduling optimization within continuous-time approaches to avoid NP-hard discrete-

time formulations. However, to coordinate operational activities for future prescriptions 

of decisions and executions in the production field, most tasks and procedures are still 

carried out manually by operators within discrete-time windows. 
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Aiming to develop large-scale discrete-time formulations and simultaneously overcome 

these overly complex modeling and solving difficulties for decision-making 

applications, Kelly et al. (2017b) effectively solved an industrial-sized refinery 

scheduling formulation by employing the unit-operation-port-state superstructure 

(UOPSS) (KELLY, 2005) constructs and the quantity-logic-quality phenomena (QLQP) 

concepts, in addition to the phenomenological decomposition heuristic (MENEZES et 

al., 2015) and the feedstock assignment strategy (Kelly et al., 2017a). The problem 

was formulated for the future 7-day time horizon discretized in 2-hour intervals (in a 

total of 84 time steps), with dozens of thousands of variables, constraints, and degrees 

of freedom. This breakthrough on discrete-time refinery scheduling optimization was 

achieved due to the recent research and technological advancements in the modeling 

and optimization approaches, computing processing power, and solution algorithms, 

and indicates that there are opportunities for further improvements on the topic, 

especially towards industrial applications.  

However, despite the recent improvements in the decision-making modeling and 

solving capabilities for the process industry, there are still open challenges in industries 

with diverse quality raw materials and products, such as in the crude oil refining, 

manufacturing of petrochemicals, and liquefied natural gas production and processing. 

In such industries, the transformation of raw materials into products is typically 

performed within integrated solutions of the following networks: a) feedstock 

procurement, shipping, unloading, storage, dieting and charging, b) combined 

operations of job-shops, process-shops and blend-shops, c) management of 

intermediate and final product inventories, d) marketing, sales and distribution of the 

final products. Thus, a proper formulation should include the supply, production, and 

demand chains (or value chain) in a decision-making framework considering multiple 

scope as well as multiple scale with discrete-time steps of days or hours (MENEZES, 

GROSSMANN, and KELLY, 2017). In value chains from raw materials to products, the 

planning and scheduling integration from the midstream to the downstream operations 

can be performed by optimizing a scheduling problem within the operational planning 

time-horizon (e.g., weeks to months). From a product standpoint, such a complex 

planning-scheduling solution is considered as spotting, because of the potential profit 

increase by selling in spot markets rather than solely through contract markets. For the 

producer, allowable product delivery service levels offered by the spotting solution is 
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achieved by considering the time-horizon of a month with prescriptions to be executed 

in a scheduling level of detail. By solving such complex planning horizon with 

scheduling complexities, the commercialization teams can sell products in spot 

markets since this requires a quarter to a whole month in advance for time-sensitive 

contracts. From planning and scheduling perspectives to the spotting level of service, 

the benefits of using such optimization-based decision-making for sizing, selecting, 

sequencing, slotting, and spotting are as follows (MENEZES and KELLY, 2019): 

a) Optimized (instead of simulated) schedules where profit and performance are 

maximized within time steps of hours; 

b) Enhanced marketing coordination by the optimized and achievable blend production 

schedules for all future product (and saleable component) shipments; 

c) Improved stewardship or management of the feedstock determination with the 

supply and demand of the processing site production; 

d) Increased capability to explore spot market opportunities after the fulfilment of the 

contracted market; 

e) Improved matching of product quality specifications to avoid property giveaway 

(over-specification) and to reduce off-specification products. 

Several recent works in the literature address modeling and solving strategies to 

handle complex industrial problems. Nevertheless, there are still challenges to solve 

such enterprise-wide optimization problems in a proper and efficient fashion, aiming to 

provide a formulation that is both computationally tractable and coherent with the real 

process or application. In this direction, large-scale industrial scheduling applications 

can be tackled by simultaneously addressing the UOPSS representation within a 

discrete-time formulation, in addition to decompositions and heuristic strategies to 

overcome the current solving barriers that limit an efficient optimization of large-scale 

problems with dozens of thousands of variables and constraints, including: a) 

decomposition strategies to enable the optimization of large scale problems; b) 

linearization procedures to include nonlinear quality information for blending of streams 

in an mixed-integer linear programming model; c) improved processing and blending 

design to provide a proper mathematical representation of the problem; d) exclusion 

heuristics using rolling horizon strategies; e) relaxation heuristics considering relax-
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and-fix iterations to construct the complete MILP problem by the integration of the 

solution of the subproblems; f) surrogate correlations to provide simple yet accurate 

approximations of complex formulas; and g) online scheduling concepts to mitigate 

plant-model mismatches. 

7.2 Modeling and Optimization Strategies for Crude Oil Refinery Scheduling 

Applications: Decompositions, Heuristics, and Surrogate Approximations  

Heuristic approaches and decomposition algorithms have been widely used to handle 

intractable problems. For industrial-sized scheduling production of complex 

phenomenological (separating, converting, blending) and procedural (sequences, 

setups, startups) optimizations, the mathematical formulations may be difficult to be 

solved as full space MINLP problems. In order to properly determine the optimal 

schedule operations, it is required an accurate modeling including the logistics and 

quality information throughout the process, in addition to utilize efficient problem 

solving techniques via software optimization, which typically uses commercial solvers 

(e.g., CPLEX). However, there are modeling and optimization limitations to handle 

large-scale MINLP formulations, including applications on crude oil refinery scheduling.  

Therefore, several works in the literature have been developed strategies to break 

down the MINLP formulations into smaller, simples, and less complex subproblems 

(MOURET, GROSSMANN, and PESTIAUX, 2009; LOTERO et al., 2016; ASSIS et al., 

2019) to handle such complicated models that vary in a three-dimensional MINLP 

quantity-logic-quality (QLQ) relationship space. Typical decompositions lead to MILP-

NLP formulations to be sequentially solved until a convergence criterion is met 

(WENKAI et al., 2002; MOURET et al., 2009; CASTRO and GROSSMANN, 2014; 

CAFARO et al., 2015; KELLY et al., 2017a).  

7.2.1 Phenomenological Decomposition Heuristic 

Menezes et al. (2015b) propose a phenomenological decomposition heuristic (PDH) 

approach for a strategic planning problem to determine the refinery configuration and 

the process unit dimensions. The problem is formulated as an MINLP, which is 

decomposed into an MILP and NLP sub-models. First, the MILP model is optimized 

considering only logistic and quantity information (i.e., by neglecting the quality 
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information in the MINLP model). Then, the binary variables from the optimal MILP 

solution are fixed in the original MINLP and the resulting NLP model is optimized 

considering only quantity and quality information. The yields and properties from the 

NLP optimal solution are used as the new coefficients or parameters in the MILP 

problem in the next iteration, with logic and quantity variables under consideration. 

Kelly et al. (2017b) applied the same method for scheduling applications, in which 

multiple MILP solution are generated for improve performance and convergence of the 

algorithm. An iterative procedure is performed, in which the best NLP solution (i.e., 

yields and quality information) is retro-fed to the MILP in the next iteration, until a 

convergence criterion is met. Figure 7.1 illustrates the phenomenological 

decomposition heuristic procedure. 

Figure 7.1: Phenomenological decomposition heuristic. 

 

Source: Author (2021). 

7.2.2 Linear Approximation of Blending Equations: MILP Factor Blending 

Aiming to reduce the MILP-NLP decomposition gap from the phenomenological 

decomposition heuristic, Kelly et al. (2018) developed a linear programming (LP) 

reformulation for nonlinear blending equations to approximate non-convex quality 
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constraints in linear formulas valid exclusively for a mixing point of streams, such as a 

blender unit. Figure 7.2 illustrates a blend scheduling problem network in which the LP 

reformulation is incorporated to the blender unit. 

Figure 7.2: Blend scheduling problem network including the factors approximation. 

 

Source: Author (2021). 

This strategy considers property variables as invariant coefficients of qualities (referred 

to as factors) in quality material balances of factor-flows that matches the product 

specification by including slack or surplus variables in an equality constraint. The 

extended quality amount of the property 𝑝 is considered in the constraint as an in-out 

quantity and quality product or factors 𝑓 multiplied by volume flows 𝑥 around the 

blender unit-operations. To enforce the quantity-quality balance in the blender, the 

factor-flows 𝑥𝑗𝐹,𝑝,𝑡 outgoing from the slack or surplus out-port-states 𝑗𝐹 (oa_sg, oa_sul) 

in Figure 7.2 are considered within the factor-flow balance in Equation (7.1).  

∑ 𝑓𝑖,𝑝,𝑡 ∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡

𝑗𝑢𝑝𝑖

= 𝑓𝑗,𝑝,𝑡  ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡

𝑖𝑑𝑜

+ 𝑥𝑗𝐹 ,𝑝,𝑡   ∀ 𝑗, 𝑗𝐹 , 𝑝, 𝑡                                      (7.1) 

In this LP approximation included in the MILP formulation, for each property 𝑝 

considered to be calculated in the blender 𝑚 ∈ 𝑀𝐵𝐿, amounts of raw materials 

∑ 𝑥𝑗𝑢𝑝,𝑖,𝑡𝑗𝑢𝑝
 incoming to multiple in-port-states 𝑖 with factors for qualities 𝑓𝑖,𝑝,𝑡, in the left 
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side of Equation (7.1) counterbalance the total amount ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡𝑖𝑑𝑜
 of the blended 

material factor or property specification 𝑓𝑗,𝑝,𝑡 added to slacks or surpluses of the factor-

flow variables 𝑥𝑗𝐹,𝑝,𝑡, in the right side of Equation (7.1). From the summation ∑ 𝑥𝑗,𝑖𝑑𝑜,𝑡𝑖𝑑𝑜
, 

although there are multiple outlet ports considered for the blender, operationally there 

is only one outlet stream. The value of the slack or surplus factor-flows 𝑥𝑗𝐹 ,𝑝,𝑡 

represents the insufficient or exceeded amount of qualities for the LP factor flow of 

each respective property 𝑝. The factor-flow variable 𝑥𝑗𝐹,𝑝,𝑡 closes the balance in 

Equation (7.1) considering the blended material amounts and the product factor 𝑓𝑗,𝑝,𝑡. 

For an upper bound of property specification, a slack or negative value is needed, so 

that 𝑥𝑗𝐹,𝑝,𝑡 ≤ 0. Similarly, for a lower bound, a positive factor-flow or surplus (𝑥𝑗𝐹 ,𝑝,𝑡 ≥

0) applies. Also, as transformation from property to property index may change the 

signal of the number, to avoid infeasibilities, the factor-flow is modeled as 𝑥𝑗𝐹 ,𝑝,𝑡 ≤ 0 

and 𝑥𝑗𝐹 ,𝑝,𝑡 ≥ 0 for property indices. 

7.2.3 Feedstock Storage Assignment 

Kelly, Menezes, and Grossmann (2017a) develop a mixed-integer linear programming 

model to design pre-assignments of distinct feedstocks with different qualities when 

moving them from supply sources to shared storages. Their method assigns individual 

units or sources (e.g., crude oils, tanks, feedstocks) to a limited number of storage or 

sinks, and specifies the variables to be clustered (i.e., compound-properties). This 

clustering strategy is similar to the concept found in many sequence-dependent 

changeover heuristics (e.g., using product-wheels and blocking), in which the 

individuals are grouped in families given some common criteria. This is especially 

helpful when the storage is limited as well as for large-scale applications typically found 

in the crude oil, metal, and food processing industries. The storage assignment 

formulation minimizes the quality deviation in the clustering of a larger number of 

feedstocks into a smaller number of pools. This method designs simple and 

straightforward segregation rules in order to achieve better crude oil management, 

crude oil blend control, and improved blend scheduling optimizations. Figure 7.3 

illustrates the feedstock storage assignment method, in which the raw materials 𝑅𝑀 

are assigned to the storage sinks 𝑆𝑇 under distinct clustering groups 𝐶𝐿. 
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Figure 7.3: Feedstock storage assignment flowsheet. 

 

Source: Kelly et al. (2017a). 

7.2.4 Chronological Decomposition Heuristic 

Kelly (2002) developed the chronological decomposition heuristic (CDH), a 

straightforward time-based strategy used to find integer-feasible solutions. The CDH 

is specifically designed for discrete-time production scheduling optimization problems 

typically found in the petrochemical, chemical, and pharmaceutical industries. This 

heuristic decomposes the model regarding its time dimension (i.e., the full time horizon 

is discretized or decomposed into smaller steps). Each sub-model is then solved using 

mixed-integer linear programming (MILP) techniques starting from the first model 

onwards. Thus, instead of optimizing one large problem over the entire time horizon, 

multiple sequential time-discretized models are solved. Figure 7.4 illustrates the 

concept of the chronological decomposition heuristic over a rolling horizon. 
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Figure 7.4: Rolling horizon chronological decomposition strategy. 

 

Source: Author (2021). 

7.2.5 Relax-and-fix Decomposition 

Aiming to tackle large-scale MILP problems, Kelly and Mann (2004) developed the 

flowsheet decomposition heuristic (FDH) to reduce the computational time needed to 

find good integer-feasible solutions for industrial applications. This method is a sort of 

relax-and-fix heuristic, which allocates individual units or sources (e.g., feedstocks, 

tanks) into groups, and solves mixed-integer linear programming problems (as many 

as there are groups), given a pre-specified order of importance. In each MILP 

subproblem, a group of units is defined as the core (most important) group according 

to the pre-definition. All the binary variables but the ones in this group are relaxed, and 

the MILP is optimized. The core group binaries are fixed to their optimal values (from 

the optimal solution), and the algorithm moves to the next iteration until the 

convergence is met (after optimizing as many MILPs as there are groups). At this point, 

all binaries will have been fixed, so that the solution for the last MILP optimization is 

also a feasible solution of the original MILP. Figure 7.5 illustrates the flowsheet 

decomposition heuristic relax-and-fix approach. 
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Figure 7.5: Relax-and-fix decomposition approach. 

 

Source: Author (2021). 

The phenomenological decomposition heuristic, the feedstock assignment strategy, 

and the Unit-Operation-Port-State Superstructure (UOPSS) (KELLY, 2005) were 

simultaneously applied for the modeling and optimization of an industrial size problem 

for the future 7-day time horizon discretized in 2-hour intervals. The formulation 

includes 5 atmospheric distillation units in 9 operational modes and 35 storage and 

feed tanks. The logistics problem (MILP) had around 30 thousand continuous variables 

and 30 thousand binary variables, 6.5 thousand equations, 80 thousand inequalities, 

and 53802 degrees of freedom, and was solved in 128.8 seconds using 8 threads in 

the solver CPLEX 12.6 (International Business Machine IBM, USA). The quality 

problem (NLP) had over 102 thousand continuous variables, 58 equality constraints, 

768 inequality constraints, and 44520 degrees of freedom, and was solved in 10.3 

minutes in a sequential linear programming (SLP) approach using the solver CPLEX 

12.6. The MILP-NLP gap between the two solutions was below 3.5% after two 

iterations of the algorithm. 
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7.2.6 Surrogate Modeling for Refinery Unit-Operations 

For high-performance operations in crude oil refinery processing, it is important to 

properly estimate the yields and properties of the output streams from unit-operations. 

However, effectively and accurately modeling the refinery processing units involve 

complex formulations and is typically assisted by rigorous simulation tools. Although 

these tools provide highly accurate solutions, they may not be suitable for large scale 

problems and for optimization applications. Looking for alternatives to complex 

formulations that often lead to convergence issues and to time consuming solutions, 

surrogate modeling approaches have been increasingly developed. 

One of the most important processing units in the crude oil refinery network due to its 

economic and operational impact is the crude distillation unit (CDU), which is typically 

compound by a complex set of towers designed, operated, and controlled to separate 

liquid hydrocarbon feedstocks into intermediate distillates according to boiling range 

temperatures (RIAZI, 2005). The CDU operations are controlled by rigorous simulation 

tools, which are time consuming and not suitable for environments such as refinery 

planning and scheduling. Therefore, when solving planning and scheduling problems, 

the CDU calculations are typically estimated by using simplified models or correlations 

(e.g., fixed yield, swing-cuts). Aiming to improve these predictions, the use of surrogate 

formulations built based on data from either the real plant or generated from rigorous 

simulation presents several benefits. Franzoi et al. (2020) proposed a cutpoint 

temperature modeling framework to model the distillation unit through a coefficient 

setup MIQP (mixed-integer quadratic programming) technique to determine 

optimizable surrogate models to correlate independent X variables (crude oil 

compositions, temperatures) to dependent Y variables (yields and properties of 

distillates). These optimizable surrogate models are suitable to handle continuous data 

from the process with measurement feedback for adjustments and improvements, and 

the distillation outputs can be continuously updated in an online fashion by using 

updated data from the process.  

Other refinery unit-operations (e.g., naphtha reformer, fluid catalytic cracker, delayed 

coker) can also be properly and effectively modeled by surrogate formulations, 

although specific methodologies might have to be developed for each type of unit, 

given that they are highly complex and have their own specificities regarding which are 
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the most important output variables to be predicted, which are the most impactful 

variables that affect the predictions, what is the availability and accuracy of the data to 

be used to build or train the surrogates, etc. 

7.2.7 Online Applications within the Crude Oil Refinery Scheduling  

Designing the crude oil refinery scheduling for real applications includes building the 

mathematical formulation (modeling), solving the formulation to find feasible solutions 

(simulation or optimization), and implementing the solution found in the plant 

operations (implementation). As the schedule is implemented in the real process, 

uncertainties and disturbances are likely to arise, and new information becomes 

available and should be used as soon as possible for improved operations (GUPTA et 

al., 2016a), especially because changes as disruptions, delays, and market 

fluctuations, may result in sub-optimality and infeasibilities for the incumbent schedule 

(GUPTA et al., 2016b). The operational data used in the crude oil scheduling are 

typically out of date or not integrated with the production, which leads to 

inconsistencies in the prediction throughout the process (MENEZES et al., 2015c). 

Thus, a continuous cycle of improvement is required to reduce the deviation between 

the model predictions and the actual values in the plant, in which an efficient online 

scheduling (rescheduling) procedure facilitates the adaptation of the schedule under 

uncertainties and unforeseen events, in addition to considering new information as 

soon as possible, which aims to enhance the economic value of the refinery operations 

(GUPTA et al., 2016a). 

This cycle of improvement should synchronize the process operations and the 

mathematical formulation (i.e., modeling and optimization). On one hand, feedback 

from the plant should be directly embedded in the modeling capabilities for new 

rescheduling cycles. On the other hand, continuous rescheduling should be performed 

in a systematic fashion to maintain the state of the system up-to-date and to handle 

changes and disturbances in the process. Towards online applications for refinery 

scheduling problems, efficient modeling and solving capabilities are required to provide 

accurate high-quality scheduling solutions. In this context, it is essential to properly 

handle complex formulations within online applications, in which fast and accurate 
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scheduling solutions are obtained and embedded in a systematic rescheduling 

implementation strategy.  

7.2.8 Future Outlook on Crude Oil Refinery Scheduling Applications 

Industrial scheduling operations are typically based on simulation of discrete 

production scenarios for the sequence, selection, and setups of unit-operations and 

tanks considering a complex continuous-process network within a time-horizon of 

days, weeks, or months. In the past decades, several works in the literature have 

addressed continuous-time modeling for the optimization of scheduling decision-

making. However, the operational activities in the production field are by nature 

discretized in time windows or shifts. Therefore, to coordinate the schedules, which 

are typically carried out by human beings, practitioners in the industry have to adjust 

or adapt the continuous solution to the real discrete problem in the plant. However, 

discrete-time formulations still pose difficulties due to their complexity especially for 

large-scale applications. These open challenges include how to automatically solve 

complex large-scale discrete-time problems in acceptable computing time using time-

steps within the shift of the operators (8 hours) or even in smaller windows such as 1, 

2, or 4 hours. In this direction, this work addresses strategies to handle and solve large-

scale scheduling problems considering the unit-operation-port-state superstructure 

(UOPSS) constructs and the semantics of the QLQP concepts in a discrete-time 

formulation. The examples highlight decompositions as phenomenological heuristics, 

which consist in a two-step solving procedure of mixed-integer nonlinear programming 

(MINLP) models; as factorizing, to approximate nonlinear blending terms in a linear 

programming (LP) model, in which the factor-flows of qualities are modeled explicitly 

as slack or surplus variables; as exclusions, to reduce the scale of the optimization 

search space in constructive rolling horizon strategies; and as relaxations, when MILP 

programs construct a full problem by relax-and-fix iterations. Moreover, surrogate 

models are built and included in the refinery scheduling formulation, and scheduling 

optimizations towards online applications are carried out. 
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7.3 Example and Discussion 

To illustrate some of the decomposition methods and heuristic strategies previously 

introduced, we present a large-scale crude oil refinery scheduling problem that 

considers the blending of twelve crude oil feedstocks, eight storage tanks, two crude 

oil blenders, the cascaded distillation unit with five towers (two atmospheric distillation 

units, a vacuum distillation unit, a pre-flash tower and a debutanizer), and the whole 

process-shops, which includes additional blenders, catalytic cracker, hydrotreaters, 

delayed coker, debutanizers, superfractionator, and reformer. The distillation unit is 

modeled as a series of towers in cascade, and surrogates are embedded in the 

formulation to replace the model for the two atmospheric distillation units. Figure 7.6 

presents the flowsheet of the full crude oil blend scheduling problem.  

Figure 7.6: Crude oil refinery scheduling flowsheet. 

 

Source: Author (2021). 

The PDH strategy is employed to break down the MINLP formulation in a sequential 

MILP-NLP optimization procedure. The chronological decomposition heuristic splits 

the time horizon in time chunks and optimize the problem in successive integrated 

subproblems with or without crossover between time windows, i.e., with recalculation 
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of the time periods in the neighborhood. The UOPSS formulation is used for building 

the mathematical model, and the example is built within the modeling and solving 

platform IMPL. GUROBI 12.7.1 is used as optimization solver in an Intel Core i7 with 

2.7 GHz and 16 GB RAM.  

A total of 9 scenarios are proposed to formulate the crude oil refinery scheduling 

problem presented in Figure 7.6, in which distinct model sizes (in terms of time horizon 

length and time step) are tested. The chronological decomposition heuristic is used in 

some scenarios (b, c, d), in which the time horizon is decomposed in time segments of 

1, 3, or 5 days. The proposed scenarios are presented in Table 7.1.  

The mathematical model for each scenario is formulated in discrete time. The largest 

model is from Scenario 7.9a, which is formulated for the future 30 days with time steps 

of 2 hours, in a total of 460 time periods. In the base case (not using rolling horizon), 

there are around 70,000 continuous and 50,000 binary variables, 180,000 constraints 

and 90,000 degrees of freedom. 

The MINLP formulation is highly complex because of the multiple nonlinearities and 

nonconvexities form the processing units, and it is large in size because of the large 

number of variables and constraints required to represent such complex system. The 

large scenario proposed considers hundreds of thousands of variables and constraints 

in an MINLP formulation, which is successfully solved in reasonable computational 

time by employing the PDH strategy. 

When increasing the time horizon length or reducing the time step, the mathematical 

model increases in size and becomes more time consuming to solve. However, this 

typically results in better solutions and should be employed aiming to improved 

operations. The increase in the computational time and profitability are noticed when 

comparing Scenarios 7.1a to 7.9a, Scenarios 7.1b to 7.9b, etc. 

There are significant improvements when using the chronological decomposition 

heuristic, which can be noticed by comparing Scenarios 7.1a and 7.1b, 7.2a and 7.2b, 

etc. In Scenario 7.9b, the computational time is reduced from 36,000 to around 5,000 

seconds with a gap of only 0.75% from the best solution. Promising results are also 

achieved when coupling the CDH with smaller time steps in the optimization. For 

example, Scenarios 7.5a and 7.9b have similar computational cost but the latter has 
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an increase in the profit of 16.4%, which is possible by the utilization of the 

chronological decomposition heuristic. 

Table 7.1: Scenarios proposed for the crude oil refinery scheduling problem. 

Scenario 

Time 

Horizon 

(days) 

Time Step 

(hours) 

CDH 

Heuristic 

Horizon 

Decomposition 
Profit (US$) Gap (%) CPU (s) 

7.1a 10 24 No - 100,079 - 23 

7.1b 10 24 Yes 5 days (2x) 98,351 1.72 14 

        

7.2a 15 24 No - 130,969 - 551 

7.2b 15 24 Yes 5 days (3x) 123,707 5.54 22 

        

7.3a 20 24 No - 157,786 - 1,346 

7.3b 20 24 Yes 5 days (4x) 150,718 4.48 30 

        

7.4a 25 24 No - 188,103 - 2678 

7.4b 25 24 Yes 5 days (5x) 175,698 6.60 41 

        

7.5a 30 24 No - 218,270 - 4,498 

7.5b 30 24 Yes 5 days (6x) 206,143 5.56 58 

        

7.6a 30 12 No - 233,760 - 36,000+ 

7.6b 30 12 Yes 5 days (6x) 223,060 4.57 851 

        

7.7a 30 8 No - 244,615 - 36,000+ 

7.7b 30 8 Yes 5 days (6x) 239,152 2.23 1,806 

7.7c 30 8 Yes 3 days (10x) 235,800 3.60 730 

        

7.8a 30 4 No - 252,754 - 36,000+ 

7.8b 30 4 Yes 5 days (6x) 245,002 3.07 3,265 

7.8c 30 4 Yes 3 days (10x) 241,780 4.34 2,285 

7.8d 30 4 Yes 1 day (30x) 225,488 10.79 254 

        

7.9a 30 2 No - 255,899 - 36,000+ 

7.9b 30 2 Yes 5 days (6x) 253,990 0.75 5,108 

7.9c 30 2 Yes 3 days (10x) 252,568 1.30 3,734 

7.9d 30 2 Yes 1 day (30x) 234,217 8.4 760 

Source: Author (2021). 



283 

 

7.4 Conclusions 

Decomposition and heuristic approaches for large-scale complex applications have 

been increasingly used due to the recent technological advances, which allows the 

modeling and optimization of problems that were previously intractable, or that require 

fast solution for time-limited applications. In this new reality, the open challenges 

become open opportunities for the development of strategies such as the ones 

addressed in this chapter.  

To handle complex formulations such as the ones found in large-scale discrete-time 

scheduling, modeling methods, decomposition approaches, and heuristic strategies 

are often used to design, model, and solve large-scale problems. That includes: a) 

Mathematical modeling of large-scale scheduling problems using the UOPSS 

superstructure; b) Phenomenological decomposition of the quantity-logic-quality 

phenomena paradigm, which addresses a two-step solving procedure of MINLP 

formulations as MILP and NLP sub-models; c) Iterative procedure within the PDH 

approach to reduce the MILP-NLP gap; d) Exclusions employed to reduce the scale of 

the optimization search space in constructive rolling horizon strategies; e) Relaxations 

in MILP models to by using relax-and-fix iterations; f) Factorizing strategy to 

approximate nonlinear blending terms in a linear programming model, in which the 

factor-flows of qualities are modeled explicitly as slack or surplus variables.   

The example shown in this chapter illustrates the application of decomposition and 

heuristic approaches and highlights their respective improvements in terms of the 

modeling, solving, and solution aspects. These methods are successfully applied to 

reduce the complexity of intractable formulations, and provide much faster solutions 

as well. From Table 7.1 it is shown that MINLP problems with large complexity and 

size can be efficiently solved by employing decomposition and heuristic strategies, and 

the need of properly addressing formulations with larger time horizons and smaller time 

steps towards improved solutions is illustrated as well.  

Future work on the topic will focus on addressing multiple heuristic strategies within a 

systematic framework aiming to achieve improved solutions by solving formulations 

that are even more complex and that address additional processes and distinct 

applications. 
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8                              
General Conclusions and Future Outlook 
 

The crude oil refinery scheduling optimization is a complex and challenging problem 

due to the high number of continuous and binary variables, in addition to nonlinear  and 

non-convex terms, which results in a non-convex large-scale MINLP formulation. 

Hence, three main strategies have been adopted in both industry and academia to 

handle this complex problem. First, modeling and solving crude oil refinery scheduling 

problems often considers a simplified formulation that does not include all the 

processing units, tanks, flows, and variables from the real industrial problem. Second, 

the refinery scheduling model is broken down into sub-problems to be hierarchically 

solved. Third, several industrial processes still use simulation-based instead of 

optimization-based approaches due to the intractability of such formulation. 

However, we are moving towards the Industry 4.0 age, with more complex, detailed, 

accurate, and efficient tools and resources on process optimization. Solving 

challenging industrial problems in a near online fashion is becoming reality mainly due 

to the advancements in decision-making modeling, computer-aided resources, and 

solution algorithms. Improved modeling, solving, and implementation approaches, as 

well as machine learning and big data strategies, increasingly lead to opportunities for 

cost reduction, increased economic value of the process, and improved operations. 

Commercial optimization solvers have become increasingly robust and efficient, in 

addition to the enhancements of computational processing, which have reduced the 

computational time and effort (for both simulation and optimization approaches) in over 

two orders of magnitude in the last decades. Many problem solving and decision-

making strategies have been developed and improved, with an emphasis on 

decomposition and heuristic approaches for large-scale industrial applications, which 

allows the modeling and optimization of previously intractable problems, and provides 

resources for novel real-time industrial applications. In the Industry 4.0 age, the current 

challenges open opportunities for the development of novel and improved modeling 

and optimization strategies.  
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Aiming to study and contribute to the state-of-the-art on the chemical engineering 

optimization literature, the research topics addressed herein are focused on handling 

complex formulations typically found in the chemical engineering industry through the 

implementation and development of modeling and optimization approaches, 

decomposition and heuristic strategies, and machine learning techniques for chemical 

processes with an emphasis on crude oil refinery scheduling applications. This 

includes: a) Mathematical modeling of large-scale discrete-time crude oil refinery 

scheduling problems using the UOPSS representation; b) Phenomenological 

decomposition of the quantity-logic-quality phenomena, which addresses an iterative 

two-step solving procedure of MINLP formulations as sequential MILP and NLP sub-

models; c) Efficient process design regarding both the mathematical formulation and 

the operations in the plant; d) Linearization strategies to approximate nonlinear 

blending terms in a linear programming model, in which the factor-flows of qualities are 

modeled explicitly as slack or surplus variables; e) Exclusions employed to reduce the 

scale of the optimization search space in constructive rolling horizon strategies; f) 

Relaxations in MILP models by using relax-and-fix iterations; g) Parameter feedback 

and rescheduling strategies aiming to minimize plant-model mismatches, to handle 

process uncertainties and disturbances, and to improve the reliability and accuracy of 

the scheduling solution and implementation; h) Surrogate modeling approaches as an 

alternative to complex or rigorous models that often lead to intractable or infeasible 

formulations, and that typically impose limitations for integrated optimization 

environments.  

The crude oil refinery scheduling problems addressed are formulated using the unit-

operation-port-state superstructure and the quantity-logic-quality phenomena (QLQP) 

concepts. That allows the modeling and solving of complex-scope industrial-sized 

scheduling problems using a discrete-time formulation. A phenomenological 

decomposition heuristic is applied to handle the complex MINLP refinery scheduling 

formulations by breaking down the problem to significantly reduce the computational 

burden within optimization approaches. 

A proper design plays a key role on industrial operations, including the methodology 

used to build the mathematical formulation to be solved, as well as the process 

operations in the real plant. On one hand, the mathematical formulation is expected to 

accurately represent the real process, especially aiming to mitigate plant-model 
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mismatches over time. On the other hand, the process design directly impacts the 

economic, technical, and operational conditions. For improved operations, especially 

when addressing online strategies toward smart processing with real-time feedback 

from the plant, both an improved blend design and a complex process design are the 

recommendable networks to be constructed, modeled, and solved, aiming to achieve 

improved solutions in terms of economic value and production flexibility. The blending 

formulation considering a continuous blender unit instead of batch mixtures (without 

the blender), and the processing formulation considering a complex cascaded 

distillation network instead of a simplified one-tower network, are examples of 

improved designs that provide more accurate predictions, production flexibility, and 

increased economic value for the process. This is especially beneficial when the 

formulation simultaneously includes the blending and the processing improved 

designs. 

Modeling strategies such as the linearization of blending constraints within linear 

problems improves the mathematical formulation by considering additional information 

for more accurate predictions, which results in better optimized solutions. This strategy 

includes proxied information on the qualities of streams by using a linear programming 

factor reformulation for the blending operations of crude oil. The benefits include 

improved solutions, with better economic value, and better convergence within the 

optimization procedure. As the formulation remains unchanged, except for the blending 

constraints, the computational effort increase is expected not to be a limiting factor for 

the utilization of this method. 

Modeling, solving, and heuristic strategies are employed for handling complex 

industrial-sized refinery scheduling problems within a discrete-time formulation, 

including decompositions to reduce the optimization search space in constructive 

rolling horizon strategies, and relaxations on mixed-integer linear programming 

problems to  construct the problem by an ad-hoc relax-and-fix approach. Both 

heuristics imply in an expected slight reduction in the objective function, but with great 

benefits in terms of reduced computational effort. Moreover, this reduced effort is 

expected to scale with the size of the problem; therefore, it might be especially useful 

for large-scale applications. 
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For improved industrial operations, efficient mathematical formulation and optimization 

procedures are fundamental. That includes minimizing the plant-model mismatches so 

that the optimal solution is as coherent as possible with the actual process conditions 

and operations. Because of the high nonlinear and uncertain nature of most industrial 

problems, unforeseen events and uncertainties are likely to happen, motivating a 

continuous optimization cycle, in which the current state of the system should be 

updated, and a closed-loop rescheduling should be performed in a moving horizon 

approach. This type of closed-loop rescheduling-based approach can effectively 

handle disturbances (either to mitigate/reduce their effects or to take advantage of new 

information), reduce inaccuracies and plant-model mismatches by maintaining and 

updating the state of the system, and provide a systematic approach for improved 

scheduling implementation. Moreover, parameter updating may also be required to 

reduce the offsets or inaccuracies over the operations life-time as an effective way to 

reduce the plant-model mismatches.  

Surrogate modeling has been increasingly used as an alternative to rigorous or 

complex models that often lead to time consuming solutions, difficulties within 

optimization environments, and infeasibility or convergence issues. Seeking 

alternatives to such complex formulations, especially found in industrial operations 

such as in the crude oil refinery scheduling, the use of surrogates is addressed to build 

relatively simple correlations that significantly reduce the computational burden within 

optimization applications while attempting to maintain a high degree of accuracy or 

fidelity required to provide high quality solutions. A surrogate model building 

methodology is developed to model the distillation unit, which is the most important 

processing unit in crude oil refinery operations. For the distillation unit surrogate 

modeling, the surrogates estimate the yields and properties of distillates using the 

crude oil assay and the hypothetical swing-cuts as input training variables. They are 

built through measurement feedback by using simulated data based on the swing-cut 

methods, although real (and uncertain) data from the plant or rigorous simulated data 

could be used for improved predictions. The results indicate that the surrogates built 

using the proposed methodology provide accurate predictions for the distillation 

process, and due to the small number of equations required, these shortcut sub-

models can be properly integrated into any planning, scheduling, and coordinating 

environment with minimal increase in the simulation and optimization effort and data 
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requirements. Hence, the surrogates are potentially suitable to replace complex or 

rigorous distillation models for several applications, including crude oil refinery 

planning and scheduling. It is worth noting that the proposed surrogate model building 

methodology is self-adjustable and self-improvable by using reliable and up-to-date 

measurements from the plant, so that the surrogates are expected to achieve a good 

and robust performance over time. Future work on the topic includes utilizing either 

real data from crude oil refineries or data simulated via a rigorous process simulator 

for improved predictions, and embedding the surrogates in crude oil refinery 

applications such as planning and scheduling.  

The research developed herein contributes to the state-of-the-art on the crude oil 

refinery scheduling optimization literature by implementing and developing design 

strategies, decomposition and other heuristic approaches, and machine learning 

techniques, in a complete crude oil refinery scheduling optimization problem. The 

formulation proposed is coherent with large-scale industrial applications in terms of 

operational constraints, refinery economics, and problem complexity and size. The 

strategies and approaches addressed have been either applied to the refinery 

scheduling problem or could potentially be applied in future work. The results indicate 

that complex non-convex MINLP refinery scheduling formulations can be efficiently 

solved by utilizing decomposition, heuristic, and machine learning strategies, which 

would potentially provide improved modeling and optimization capabilities for real 

industrial applications. 

The novelty of this research consists of modeling and optimizing a complete crude oil 

refinery scheduling problem, including the investigation of design features for blending 

and processing operations, decomposition approaches for handling intractable 

formulations, rescheduling strategies for mitigating plant-model mismatches and 

handling uncertainties, noises, and disturbances in the process, and surrogate 

modeling approaches to effectively replace complex formulations in order to allow the 

integration of unit-operation models within refinery scheduling environments. 

Future work on the topic includes: a) modeling and optimization of a discrete-time 

refinery scheduling formulation for longer time horizon (e.g., 1-month), with smaller 

time steps (e.g., 1-hour), aiming to achieve improved solutions towards online 

scheduling applications; b) implementation of parameter feedback and rescheduling 
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strategies in the crude oil refinery scheduling optimization for mitigating plant-model 

mismatches and handling uncertainties and disturbances in the process; c) 

development of surrogate-based models for other unit-operations in crude oil refineries 

and their integration to environments such as the refinery planning, scheduling, and 

real-time optimization. 
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