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La machine elle-même, plus elle se perfectionne, plus elle s’efface derrière son rôle. Il semble que tout 

l’effort industriel de l’homme, tous ses calculs, toutes ses nuits de veille sur les épures, n’aboutissent, 

comme signes visibles, qu’a la seule simplicité, comme s’il fallait l’expérience de plusieurs générations 

pour dégager peu à peu la courbe d’une colonne, d’une carène, ou d’un fuselage d’avion, jusqu’à leur 

rendre la pureté élémentaire de la courbe d’un sein ou d’une épaule. Il semble que le travail des 

ingénieurs, des dessinateurs, des calculateurs du bureau d’études ne soit ainsi en apparence, que de 

polir et d’effacer, d’alléger ce raccord, d’équilibrer cette aile, jusqu’à ce qu’on la remarque plus, 

jusqu’à ce qu’il n’y ait plus une aile accrochée à un fuselage, mais une forme parfaitement épanouie, 

enfin dégagée de sa gangue, une sorte d’ensemble spontané, mystérieusement lié, et de la même qualité 

que celle du poème. Il semble que la perfection soit atteinte non quand il n’y a plus rien à ajouter, mais 

quand il n’y a plus rien à retrancher. Au terme de son évolution, la machine se dissimule.  

(Saint-Exupéry, 1939) 

 

(The machine itself, the more it is perfected, the more it effaces behind its role. It seems a man’s whole 

industrial effort, all calculations, all sleepless nights over the blueprints, don’t reach, as visible signs, 

anything but the sole simplicity, as if the experience of several generations were necessary to retrieve, 

little by little, the curve of a column, a fairing, or an airplane fuselage, just to give it the elemental purity 

of a breast or a shoulder’s curve. It seems the craft of engineers, designers, and research office 

calculators is nothing more in appearance than to polish and to obliterate, to alleviate this connection, 

to balance that wing, just as it is no longer noticed, just as there were no longer a wing attached to a 

fuselage, but a perfectly blossomed form, finally relieved from its waste, a sort of spontaneous device, 

bonded mysteriously, and with the same quality of a poem. It seems perfection is reached, not when 

there is nothing more to be added, but when there is nothing more to be suppressed. At the end of its 

evolution, the machine conceals itself.) 

 

 

 



  

RESUMO 

 

Yamamura, C. L. K. (2022). Design dominante e aprendizagem de máquina na previsão de 

novos produtos (Tese de Doutorado). Escola Politécnica da Universidade de São Paulo, São 

Paulo. 

 

Devido à escassez de dados históricos e de ferramentas analíticas adequadas, os gestores 

normalmente recorrem à intuição e a heurísticas para a tomada de decisões sobre novos 

produtos. Ainda assim, as decisões não deveriam ser baseadas unicamente em intuição. 

Técnicas analíticas poderiam trazer consistência e confiabilidade às decisões. A aprendizagem 

de máquina pode capturar relações não lineares presentes em problemas reais, mas geralmente 

apresenta a desvantagem de exigir enorme quantidade de dados. O uso de invariantes presentes 

no conhecimento do especialista pode contornar esse problema, acelerando a convergência de 

problemas a soluções, sem a necessidade de grandes bancos de dados. Este trabalho propõe um 

método de previsão e suporte à tomada de decisões estratégicas sobre novos produtos, 

utilizando o conceito de design dominante e algoritmos de aprendizagem de máquina. O design 

dominante é um conjunto de atributos principais que definem uma categoria de produtos e é 

adotado pela maioria dos participantes no mercado. O período de evolução tecnológica anterior 

à emergência do design dominante é caracterizado por alta incerteza e competição entre 

diferentes conceitos de produto. Previsão nessa fase refere-se a entender os componentes 

tecnológicos principais e mapear suas trajetórias. Com a emergência do design dominante, a 

indústria entre numa fase de relativa estabilidade, com foco no aperfeiçoamento de processos e 

a inovação de produtos passa a ser incremental. A previsão consiste em determinar uma 

combinação de atributos vencedora e medir o tamanho da demanda. Invariantes no design 

dominante, codificadas implicitamente no conhecimento dos profissionais da indústria, são 

utilizadas para reduzir o espaço de possíveis variáveis. Uma hipótese de produto – conjunto dos 

atributos mais relevantes – é esboçada a partir do conhecimento dos especialistas do setor. Um 

banco de dados, a matriz de atributos e valores alvo, modela o mercado. Uma rede neural 

artificial extrai as relações não lineares no banco de dados, simulando o mercado. O método é 

demonstrado por estudos de caso da indústria automobilística, produzindo resultados 

significativos e mostrando que a abordagem pode ser utilizada em estratégia de novos produtos. 

 

Palavras-chave: Previsão de demanda. Design dominante. Aprendizagem de máquina. 

Conhecimento de domínio. Invariantes. 



  

ABSTRACT 

 

Yamamura, C. L. K. (2022). Dominant design and machine learning in new product 

forecasting (Doctoral dissertation). Polytechnic School of the University of São Paulo, São 

Paulo. 

 

Due to the lack of both historical data and adequate analytic tools, managers usually rely on 

intuition and heuristics in new product strategy decision-making. But decisions should not be 

based solely on intuition. Analysis brings consistency to managerial judgment. Machine 

learning can capture nonlinear relations in real-life problems, leading to more sound and 

reliable decisions. However, machine learning usually adds the caveat of requiring significant 

amounts of data. Using invariants from the expert’s domain knowledge can circumvent that 

hurdle, accelerating the convergence of problems to solutions, without the need of significantly 

large datasets. This study proposes a framework to predict and to support new product strategy 

decisions, using the theoretical concept of dominant design and machine learning algorithms. 

A dominant design is the set of core features that define a product category and is adopted by 

the majority of players in a market. The period of technology evolution preceding the 

emergence of a dominant design is characterized by high uncertainty and intense competition 

among different product concepts. Forecasting in this phase concerns understanding core 

technology evolution patterns and mapping their trajectories. After a dominant design emerges, 

the industry shifts to a period of relative stability, with focus on process improvement. Product 

innovation is incremental henceforth. Forecasting centers on assessing winning combinations 

of features and predicting demand size. Invariants in the dominant design, implicitly encoded 

in the industry knowledge, are used to reduce the space of potential feature variables.  A product 

hypothesis – a set of the most relevant features mapped to customer value – is drawn from 

experts’ domain knowledge, research, and analysis. A database is synthesized from the 

hypothesis, consisting of a matrix of feature variables and fitness indicators (target values) 

which models the market. An artificial neural network extracts the complex nonlinear relations 

in the database, simulating the dynamics of the market. The framework is demonstrated with 

cases from the automobile industry, yielding meaningful results and showing the approach can 

assist new product strategy making.  

 

Key words: Demand forecasting. Dominant design. Machine learning. Domain knowledge. 

Invariants. 
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1 INTRODUCTION 

 

Popular culture oftentimes produces witty pearls of wisdom. Countrymen in the state of 

Minas Gerais, Southeast of Brazil, are known for their diligence, affability, and introspection. 

A humorous popular reflection, with a regional colloquial accent, “oncotô? proconvô? 

concovô?” (“where am I? where am I going? how will I get there?”), spontaneously and 

systematically captures the essence of strategic thinking.  

Complex products, like automobiles, take years to be developed (about four or five 

years), and must remain competitive for another few years (about eight years) after they are 

launched (Ulrich, Eppinger, & Yang, 2020). They come in a wide range of segments, prices, 

sizes, usages, customer needs and tastes, geographical conditions, technologies, legal 

requirements, and cultural flavors. Predicting and deciding a new product strategy is an 

overwhelming endeavor, enclosed in fizzle information, fleeting customer aspirations, and a 

protracted time horizons (Weber, 2009).  

Concepts are decided today, but products must be sold in a distant tomorrow. It is not 

uncommon for a recently launched product to be matched or surpassed by new competitors, 

who raise the bar and leave the former behind in both customer value and market performance. 

The overall context of new product strategy is encapsulated in figure 1. 

 
Figure 1 – New product strategy context diagram. 
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New product strategy is a vital activity for a firm’s continuity, competitive advantage, 

and prosperity (Sorli et al., 2010; Ulrich, Eppinger, & Yang, 2020). It is also a notoriously 

difficult task, as it deals with complex (many variables in nonlinear relations) and dynamic 

problems (Simon, 1958; Spangler, 1991). To complicate matters further, some customer needs 

are latent, i.e., customers have difficulty to articulate them, and those needs often remain unmet 

by existing products (Ulrich, Eppinger, & Yang, 2020). Beyond reacting to customer needs, 

product strategy must predict and anticipate them – usually with little or no available data, as 

the new product is not in the market yet (Kahn, 2002).  

Product features are variables that lead to potential customer value. However, according 

to Afrin, Nepal, and Monplaisir (2018), the most difficult task in new product strategy is not to 

identify feature variables, but to estimate their relative weights. Due to the complexity and 

dynamic nonlinearity among features, it is very hard to mentally assess their relative importance. 

The human mind has limited processing capacity and the functions (relations) that generate 

those weights are dauntingly complex and uncertain (Schneider & Leyer, 2019).  

Owing to the scarcity of both data and adequate analytic tools, managers usually rely 

on intuition and heuristics to make decisions. Intuition is driven by the decision-maker’s 

knowledge and perception of the business environment (customers, competitors, and 

technology), and expected changes over time. A common heuristic is reasoning by analogy, 

searching for similarities between present circumstances and past experiences (Spangler, 1991).  

However, even grounded on experience, intuition may lead to wrong decisions. It strives 

to extract meaning from available information on customers and competitors, but the process 

is vague and subjective. There is variability in managers’ individual knowledge, skills, and 

experience (Spangler, 1991). Moreover, businesses may struggle to keep track of existing 

knowledge and to use it effectively. Ideally, judgment in decisions should be supported by 

analysis, for more reliable outputs (Hair, 2007). 

A machine learning (ML) algorithm extracts patterns that are difficult to map mentally 

or heuristically, making it suitable to handle real-life problems in product strategy. However, it 

comes with the caveat of usually requiring significantly large amounts of training data. When 

dealing with large and complex problems, obtaining sufficient data to train algorithms is still a 

major challenge. According to Ng (2016), data hunger is the Achilles’ heel of supervised 

learning – the modality of ML where algorithms are trained with labeled samples. 

A way to mitigate the voracity for data in ML is to use invariants – properties that do 

not change when a system suffers a transformation (Aleksandrov, Kolmogorov & Lavrent’ev, 
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1999) – from the experts’ domain knowledge (Vapnik & Izmailov, 2019, 2020). They use 

knowledge and experience to provide the initial conditions or assumptions – the invariants of 

the problem – for the ML simulation. Those are shortcuts that accelerate the rate of convergence 

of problems to solutions, instead of relying on significantly large datasets to capture patterns in 

data. The manager (domain expert) is an active participant in the whole analytic process, not a 

mere supporter just supplying directives and raw data, as is the case in conventional data 

analytics. 

Summarizing, forecasting a new product’s probability of success is one of the major 

business challenges, due to complex variables in nonlinear relations that are difficult to map 

mentally or by using statistical linear methods. Machine learning algorithms, like artificial 

neural networks, have the capacity to capture those nonlinear relations but usually require 

enormous amounts of data. This research proposes a new product forecasting method that 

precludes the need for huge datasets. The concept of dominant design provides the theoretical 

foundation for the proposed method. 

 

1.1 Industrial Evolution and Dominant Designs  

 

Utterback and Abernathy (1975, 1978) introduced the concept of industrial evolution as 

two out-of-phase wave curves of product and process innovations (figure 2). Initially, there are 

many firms, intense experimentation, variation in products, high growth rates, and high firm 

mortality. Anderson and Tushman (1990) call this phase the era of ferment. Battery electric 

vehicles (BEVs) are an example of industry in such stage of evolution (Brem & Nylund, 2021a). 

When the two innovation curves meet, a dominant design emerges as the amalgamation of prior 

competing and independent product innovations. The dominant design is a set of integrated 

product features (subsystems) that defines a product category and is adopted by the majority of 

players in the industry (Christensen et al., 1996; Brem & Nylund, 2021b).  
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Figure 2 – Model of industrial evolution. 

 
Source: Utterback & Abernathy, 1975; 1978. 

 

The emergence of a dominant design marks the transition of focus from product 

innovation to process innovation (Utterback & Suarez, 1993; Cecere et al., 2015). Although the 

radical product innovation phase is over, there is an increase in incremental product variations 

(figure 3). A key aspect of the emergence of a dominant design is the dramatic reduction in 

product costs (Anderson & Tushman, 1990). The increase in production volumes accelerates 

learning, standardization, and modularization of components (Murmann & Frenken, 2006). 

Prices fall and most potential consumers adopt the new product. There is a parallel between 

technology evolution and consumer adoption processes, as innovation seeks demand from 

customers (Noel et al., 2019). A new technology discontinuity may break the process and start 

a new era of ferment (Anderson & Tushman, 1990).  
Figure 3 – Technology evolution. 

 
Source: Adapted from Anderson & Tushman, 1990; Argyres et al., 2015. 
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Inspired by Kuhn’s model of scientific revolutions (1962), Dosi proposed an analogy 

between science and technology (1982), advancing the notions of technology paradigm and 

technology trajectory. A paradigm is the definition of relevant problems and solutions, existing 

knowledge and procedures for problem-solving, to the exclusion of alternatives. The paradigm 

exhibits momentum and progress occurs by updating its prescriptions from complex technology 

and market feedbacks, setting its trajectory. The trajectory results from the interaction of both 

paradigm and immediate experience (Kuhn, 1962), correcting a stream of imbalances in 

problem solving (Murmann & Frenken, 2006).  

In both science and technology, the core components and principles of a paradigm 

become invariants in a stable knowledge base and are not revisited every time a new research 

or development program is started (Dosi, 1982; Murmann & Frenken, 2006).  Continuous 

change (incremental innovation) occurs along an existing technology paradigm, while 

discontinuous change (radical innovation) is related to the emergence of a new paradigm. 

Unsolved problems can signal the need for a paradigm shift. 

In isolation, neither market nor technology can explain a paradigm. Each technology 

paradigm has a set of economic and technology tradeoffs, related in a complex feedback process. 

Beyond technical and market factors, the selection process is strongly influenced by political 

and social dynamics, making the prediction of a dominant design difficult, if not impossible 

(Dosi, 1982; Anderson & Tushman, 1990). Being a compromise between sociopolitical and 

market forces, a dominant design is usually below the optimum technical performance frontier. 

A technological discontinuity or radical innovation happens when a new technology 

significantly pushes an existing technology frontier (Anderson & Tushman, 1990; Midler & 

Baume, 2010; Brem et al., 2016).  

Technological discontinuities can be competence enhancing or competence destroying 

(Anderson & Tushman, 1990). Battery electric vehicles are competence destroying by making 

the knowledge of incumbent firms obsolete. New entrants usually initiate the obsolescence of 

existing technologies, but the incumbents’ experience also contributes to the creation of a new 

technological order (MacDuffie, 2018). For instance, the combination of new digital 

technologies and traditional manufacturing is necessary to bring BEVs to fruition (Perkins & 

Murmann, 2018; Sovacool et al., 2019).  

Currently, governments of leading economies are strongly influencing the technological 

discontinuity in the automobile industry. However, if there is too much government 

intervention or not enough scale, there is a risk of dominant designs not emerging, or to emerge 

prematurely and the result to be idiosyncratic – from both technical and market points-of-view 
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(Tushman & Murmann, 1998). European railway tracks and the space shuttle are cited as 

examples.  

A systems view provides a better understanding of technology innovation and dominant 

designs (Murmann & Frenken, 2006). Dominant designs do not initially emerge at the product 

system level but first in components or subsystems (Brem & Nylund, 2021a). When dominant 

designs in the set of central or core subsystems consolidate, a dominant design emerges at 

system level. Core components are those that affect the largest number of product 

characteristics or features, i.e., they have many connections (Murmann & Frenken, 2006). 

Peripheral components, affect few characteristics and thus have fewer connections. The larger 

the number of connections in a product, the higher is its complexity (multiplicity of variables).  

Core components have the largest impact in overall product performance. Changes in 

core components have a lower probability of success than changes in peripheral components, 

due to their complexity (Murmann & Frenken, 2006; Brem & Nylund, 2021a). For BEVs, 

central technologies are energy batteries, electric motors, and power control systems 

(MacDuffie, 2018; Enge et al., 2021; Yoshimoto & Hanyu, 2021; Xiong et al., 2022). In the era 

of ferment, companies tend to invest heavily in proprietary core subsystems. Each player fights 

fiercely in an effort to turn their solutions into industry dominant standards – instead of 

cooperating to create common standards – delaying the adoption of global dominant designs.  

An operational principle is the knowledge and definition of how a set of components is 

integrated and works to accomplish its purpose (Murmann & Frenken, 2006). An operational 

principle settles the key dimensions of a system’s design space, making possible to distinguish 

between variation within a dominant design and changes that create a new design. The set of 

all possible variations along the same operational principle defines its design space.  

Architecture is the way components of a system are connected and organized 

(Henderson & Clark, 1990). A dominant design is a family of designs with common and stable 

core subsystems and architecture (Tushman & Murmann, 1998). However, dominant designs 

are unlikely to be present in all components (subsystems). Once the core components of a 

design are settled, development shifts to peripheral components. Core components become 

invariants which are not revisited in a new design (Henderson & Clark, 1990), reducing the 

design space, and restricting variations to peripheral features (Murmann & Frenken, 2006). A 

replacement of core components implies a change in the dominant design and a paradigm shift. 

Core components and features play an important role in product forecasting, first as key 

variables (in the radical innovation phase) and then as invariants (in incremental stage). 
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1.2 New Product Forecasting and Strategy  

 

Decisions are preceded by understanding a problem and predicting their outcomes 

(Kahn, 2002). Effective decision-making implies good forecasting (Weber, 2009). New product 

forecasting is predicting the most likely outcome of a product concept, given a set of 

assumptions (Kahn, 2006). Forecasting existing products is performed using statistical linear 

techniques, like times series and regression methods. But new product forecasting is 

predominantly judgmental and seeks meaningfulness as the performance criterion – instead of 

statistical accuracy – as there is little or no historical data (Kahn, 2014). Even if analytic tools 

were used, the activity is still highly dependent on managerial judgment – for the initial 

assumptions, to fine tune the process, and to make the final decision to act (Bhattacharya, 2018).  

New product forecasting and decisions are based on surveys and managerial judgment, 

sometimes on extrapolations made by assessing similarities with competitor products (Sharma, 

2020). A meaningful forecast is one that can be used for decision-making, providing 

understanding of the problem (Kahn, 2002). The aim is to yield realistic and operationally 

useful approximations in predictions, instead of numerical precision. 

Formulating strategies is a notoriously difficult task, as the problems they tackle are 

complex, unstructured, and fuzzy (Spangler, 1991). More than reacting to customer needs, 

product strategy needs to predict and to anticipate them (Day, 1994). Strategy is driven by 

experience and data, but also by the decision-makers’ perceptions of the environment – 

competition, customers, and technology – and their expectations about the future. Competitors 

may be gauged either by listening and observing their explicit and implicit manifestations, or 

through modeling and simulation of their behavior (Spangler, 1991).  

In predicting new product strategies, accuracy is not as important as approximate ranges 

that allow managers to understand the impacts and risks of their choices. The process starts 

with (usually little) available data and qualitative knowledge – from experience, judgment, and 

research. Human judgment can provide context, which machines would struggle to discern (The 

Economist, 2020). Assumptions are made, mental models are constructed (Nonaka & Takeuchi, 

1995), alternative scenarios are designed and evaluated, considering contingencies. Decisions 

are taken assuming predictions will be numerically wrong, but within a meaningful ballpark 

(Kahn, 2014). 

Kahn (2014) identifies a spectrum of seven possible new product categories: cost 

reduction, improvement (replacing an existing product), extension (addition to an existing 

product line), new usage, new (geographical) market, “new-to-the-company”, and “new-to-the-
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world” products. Products that are new to the world are radical products, as they disrupt an 

existing industry and customer perceptions of the market (Kahn, 2018). The other six types are 

incremental products. Radical products are very challenging and risky (Ching-Chin, 2010), and 

companies must balance a mix of incremental and radical new products for a healthy business 

(Kahn, 2018).  

Forecasting becomes harder and less accurate as products move along the incremental 

to radical scale, and applied techniques tend to drift from statistical to intuitive (Kahn, 2014). 

From a survey of 168 industrial companies (Kahn, 2002, 2014), average prediction accuracies 

are 72% (cost reduction), 65% (improvement), 63% (line extension), 54% (market extension), 

47% (new-to-the-company), and 40% (new-to-the-world). The average accuracy was 58% 

(Kahn, 2002, 2010; Armstrong, 2002), but an acceptable level should be around 76% (Kahn, 

2010; Ching-Chin, 2010) (table 1). 
 

Table 1 – Prediction accuracy by new product category. 

 
Sources: Kahn, 2002, 2014; Ching & Chin, 2010. 

 

1.3 Judgment and Analysis  

 

Product strategy problems are complex, ambiguous, unstructured, and not easy to be 

formulated explicitly and quantitatively (Kahn, 2002; Spangler, 1991). Hence managers usually 

rely on intuition and heuristics to make decisions (Krabuanrati & Phelps, 1998). Intuition is 

driven by the decision-maker’s knowledge and perception of the business environment 

(customers, competitors, technology) and expected changes over time (Spangler, 1991). 

Decision makers usually attribute their confidence on intuitions to experience. But relying 

solely on intuition may be unsatisfactory, as it may lead to wrong decisions (Spangler, 1991; 

Krabuanrati & Phelps, 1998).  Intuition in fact does not (or should not) work independently 
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from analysis (figure 4a), the two being complementary for effective decision-making 

(Schneider & Leyer, 2019; Simon, 1987). 

Conventional analytic techniques for prediction are data-driven, i.e., they start from the 

identification of patterns in data. Then hypotheses are formulated and tested. Theory may be 

part of the process or not, reason why data analytics is sometimes criticized as not being 

sufficiently rigorous and scientific (Hair, 2007). Data scientists use their technical knowledge 

and expertise to select and organize data, and to engineer features in the model; but the focus 

is still on data itself (figure 4b). In most cases, system and domain experts are different persons. 

Domain experts are often the decision makers. Usually, the latter are involved in the initial and 

final stages of the data analytics process, not in intermediate data analysis (Amershi et al., 2014; 

Gil et al., 2019).  

Dealing with large and complex problems usually puts the caveat of requiring 

substantial amounts of data. The volume of required data is proportional to the complexity of 

the model (number of independent variables) and the random variation in data itself (Hyndman 

& Kostenko, 2007). At a minimum, it is necessary to have more observations than variables. 

But usually a much larger quantity of observations is needed because of data randomness.  

On the other hand, big data tends to increase the complexity of strategic decision-

making (Intezari & Gressel, 2017). It is the challenge of information overload (Merendino et 

al., 2018) – to manage and make sense of overwhelming amounts of data. Quantity of data does 

not lead perforce to quality of insight (Merendino et al., 2018). It does not preclude the need 

for rigorous inferential construction (Intezari & Gressel, 2017).  
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Figure 4 – Product forecasting approaches. 

 
Purely inductive managerial approach (data is often limited or not available). 

 
Conventional algorithmic induction (requires significantly large datasets). 

 
Proposed method, using domain knowledge and machine learning simulation  

(domain knowledge reduces the need of very large datasets). 

 

Multiple variables and ambiguous relations are unlikely to fit in simple models such as 

linear, logarithmic, quadratic, and exponential (Feng & Shanthikumar, 2018). Thus, fitting a 

model usually requires more complex models and huge data sets. On the other hand, in most 

business tasks – like in new product strategy – obtaining sufficient data to train algorithms is 

still a major hurdle. It is the Achilles’ heel of machine learning (Ng, 2016). 

 

1.4. Machine Learning 

 

A machine learning algorithm is a computer program that improves its performance 

with data inputs, without being explicitly programmed (Goodfellow, Bengio, and Courville, 

2016). It distinguishes itself from conventional algorithms by its capacity to learn or to improve 

with new data. Most current achievements in machine learning are of the supervised learning 

type, where algorithms improve by processing labeled data (Goodfellow, Bengio and Courville, 

2016).  
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An artificial neural network is a machine learning algorithm that maps functions of 

complex feature variables to target values in nonlinear hierarchical relations (Goodfellow, 

Bengio and Courville, 2016; Aggarwal, 2018). Machine learning methods with multiple levels 

of representation are also called deep learning methods (LeCun, Bengio and Hinton, 2015). 

Data are processed by inputting feature data and adjusting the weights in the connections 

through layers of hidden nodes. The artificial neural network calculates errors by successive 

forward and backward iterations, with the goal of minimizing the derivatives of errors using 

stochastic gradient descent. As data move into higher layers of representation, the algorithm 

processes more abstract relations through the network (Aggarwal, 2018).  

A categorical principal component analysis (CATPCA) reduces dimensions in the space 

of variables into a set of uncorrelated summary variables (principal components), assigning 

metric values to non-metric variables in a dataset with different levels of measures (nominal, 

ordinal, or numeric) and nonlinear relations. The algorithm seeks a small number of linear 

combinations that explain as much of variance in data as possible (Linting & Van Der Kooij, 

2012; Linting et al., 2007). 

 

1.5 Predicates and Invariants  

 

Regularities or invariants in the laws of nature are what make science possible (Wigner, 

1949). Invariants are conditions that do not change (they are constants) while an object suffers 

a transformation (Aleksandrov, Kolmogorov & Lavrent’ev, 1999). Invariants are also referred 

to as initial conditions, assumptions, and constraints (Wigner, 1949; 1960).  They are dependent 

on the circumstances, context, and focus of a problem. Isolating invariants is not a trivial task. 

It is a difficult art and results from the scientist’s knowledge, skill, and ingenuity (Wigner, 

1960).  

Vapnik and Izmailov (2019) proposed the theory of learning using statistical invariants 

(LUSI). Human learning requires far fewer examples than machine learning due to the use of 

intelligence, in contraposition to brute force. Learning has two modes – strong and weak 

convergence. Strong convergence uses observations from data to select a function (from a set 

of admissible functions) that minimizes the probability of error. Besides data, in the form of 

observations, weak convergence uses invariants (unchanging patterns in data) to accelerate the 

rate of convergence to a solution function (Vapnik & Izmailov, 2020).  

Experts provide specialized information in the form of explanations, comments, and 

metaphors. Those are invariants, ubiquitous and found in almost any problem, according to the 
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authors (Vapnik & Izmailov, 2019). In a technology paradigm, invariants are the core 

components, features, and attributes embodied in the dominant design. Incremental innovation 

sets a technology trajectory along the paradigm, generating feature variables in peripheral 

components and attributes (Dosi, 1982; Murmann & Frenken, 2006; Henderson & Clark, 1990).  

In learning theory, a predicate is a logical statement or abstract function (Vapnik, 2020), 

which manifests itself either as a (feature) variable or an invariant. The difference between 

invariants and feature variables is increasing invariants leads to more accurate predictions, 

while the opposite is true for an increase in features, requiring more training data. On the limit, 

if all predicates were invariants, the dependent variable itself would be invariant and there 

would be only one function: the solution to the problem (Vapnik & Izmailov, 2020; Ling, Jones 

& Templeton, 2016).  

Strong convergence occurs in a potentially infinite space of functions and is a “brute 

force” approach. Weak convergence uses “intelligence” for problem solving, in a more 

restricted set of functions (Vapnik & Izmailov, 2019) – the design space in the case of 

technology innovation (Murmann & Frenken, 2006). Many potential feature variables in a 

problem are irrelevant to the task at hand. Based on their knowledge and experience, experts 

construct invariants latent in the problem, instead of initializing from a blank sheet of paper.  

Vapnik and Izmailov (2019) exemplify (jocosely) with the duck test: “if it looks like a 

duck, swims like a duck, and quacks like a duck, it probably is a duck” – just three attributes to 

qualify a duck, instead of many possible variables to qualify birds in general. Learning theory 

handles methods for converging the (potentially infinite) set of admissible functions to a much 

smaller set of desired functions. As there are only two modes of convergence (strong and weak), 

Vapnik and Izmailov (2020) claim their framework is the complete theory of learning. The new 

product forecasting method proposed in this study uses invariants from experts’ domain 

knowledge – imbued in the canon established by the dominant design – reducing the dataset 

needed to capture relations and patterns in market simulation and forecasting (figure 4c). 

 The ultimate learning question is how to design a compact set of predicates 

encompassing the problem. Compact means it is closed (finite number of elements) and 

bounded (within a delimited range) (Aleksandrov, Kolmogorov & Lavrent’ev, 1999). Vapnik 

and Izmailov (2020) offer the analogy of Vladimir Propp’s “Morphology of the Folktale” 

(1968), which summarizes not only Russian fairy tales, but also the narratives of novels, movies, 

theater, television, and games, in just thirty-one structural elements. The work attempts to 

ambitiously condense human life in a compact set of elements.  
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Vapnik and Izmailov (2020) also mention “the Art of War”, from Sun Tzu (1963), who 

prescribes thirty-three rules for effective warfare strategy, and is a widely adopted framework 

in both the military and business. The construction of a set of predicates that captures the 

essence of a problem can only be accomplished through human expertise and ingenuity. 

Predicate selection requires sound domain knowledge and is the foundation of both learning 

and problem-solving (Vapnik & Izmailov, 2020).  

In our model, experts use their domain knowledge and experience to create a hypothesis 

(microtheory or cognitive model), to be tested and validated by a machine learning algorithm. 

It results from exclusion of dominant design core component invariants from the model, 

reducing the design variable space. The product hypothesis is further streamlined by 

handpicking peripheral features and components deemed to be the essential variables from the 

customer point-of-view, in accordance to the experts’ industry knowledge and judgment.  

The hypothesis refer to key customer variables in a product category or segment. From 

a particular manufacturer’s point-of-view, even some of those variables can be invariants at 

certain moments of time, if it is unable to change its customer effects. E.g. brand image can be 

a given in the short term. Fuel economy and performance may be limited by past investments 

in powertrain technology. 
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1.6 Key Definitions 

 
Product Complex set of feature attributes that embody customer value and is 

built in nested hierarchical technology levels (system, subsystem, 

component) that evolve cyclically (Woodruff, 1997; Murmann & 

Frenken, 2006). 

Customer value Expression of the benefits perceived by customers; the capacity to 

satisfy their needs and aspirations (Woodruff, 1997). 

Product concept Unique set of feature variables mapped to customer value (Simon, 1996; 

Woodruff, 1997). Product concepts are embedded in product micro-

theories (Marcus, 2020). 

Micro theory Theory or cognitive model about a small-scale phenomenon or a limited 

area of a wider subject (Marcus, 2020).  

Cognitive model Knowledge or representation about a particular phenomenon and its 

properties (Marcus, 2020). 

Product hypothesis (cognitive 

model, micro theory) 

Function that maps the product concept (set of feature variables) to 

fitness indicators (target variables) (Ng, 2022) 

Feature variable Dependent variable expressing a product characteristic or specification 

(Ng, 2022; Weber, 2006) 

Fitness indicator Independent target variable that expresses the adequacy of a product 

concept (Ng, 2022; Vincent & Brown, 2005) 

Technology Human made system of integrated components with the objective of 

satisfying customer needs and aspirations (Murmann & Frenken, 2006). 

Innovation An invention – new product component or architecture – accepted by 

the market (Nylund et al., 2021). 

Dominant design A set of features that defines the architecture of a product category and 

holds 50% of market share or more for at least four years (Anderson & 

Tushman, 1990; Christensen et al., 1996; Srinivasan et al., 2006). 

Innovation shock / 

discontinuity 

A firm introduces a new product that unexpectedly surges in demand 

and disrupts the existing technology paradigm (Argyres et al., 2015). 

Complexity Multiple integrated components and connections (Nylund et al., 2021). 

Architecture The way components in a system are connected, organized, and 

integrated (Brem & Nylund, 2021a). 

Core subsystem Subsystem with a lot of components and connections to other systems, 

strong impact in the overall system, and high strategic importance 

(Tushman & Murmann, 1998). 
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Peripheral subsystem System with less components, connections, and lower impact and 

strategic significance than a core subsystem (Tushman & Murmann, 

1998). 

Ecosystem Community of multiple actors and activities aligned to create and 

deliver value to customers. It includes producers, suppliers, 

competitors, distributors, customers, and other stakeholders, and adds 

complementors (Adner, 2006; Adner & Kapoor, 2010). 

Domain knowledge Knowledge pertaining to a particular specialized field, as opposed to 

general knowledge (Yu, 2007). In this study, domain knowledge is the 

sum of knowledge, experience and perceptions about customers, 

technologies, and competitors related to specific markets and products.  

Machine learning algorithm Computer program that improves its performance with new data inputs, 

without being explicitly programmed (Mitchell, 1997; Goodfellow, 

Bengio & Courville, 2016).  

Artificial neural network Machine learning algorithm that maps functions of complex feature 

variables to target values in nonlinear hierarchical relations 

(Goodfellow, Bengio & Courville, 2016; Aggarwal, 2018).  

Predicate Logical statement or abstract function of a relation in a phenomenon 

(Vapnik & Izmailov, 2020; Aleksandrov, Kolmogorov & Laurent’ev, 

1999). 

Variable A predicate that can assume distinct (continuous or discreet) values as 

the phenomenon itself changes (Vapnik & Izmailov, 2020; 

Aleksandrov, Kolmogorov & Laurent’ev, 1999). 

Invariant A predicate that colapses into a single value, or constant. In other words, 

it is a condition that does not change when a phenomenon suffers a 

transformation (Vapnik & Izmailov, 2020; Aleksandrov, Kolmogorov 

& Laurent’ev, 1999). 

Game Model of the interaction among players using strategies, in pursuit of 

payoffs (Sharif & Heydari, 2013).  

Players Individuals with the same strategies and payoffs (Vincent & Brown, 

2005; Vincent et al., 2011). 

Minority game Game where the winners are the players who stay in the minority, i.e., 

they play an advantageous strategy that differs from the strategy played 

by the majority (Arthur, 1994, 1997). 

Prediction Construction of hypotheses and analysis of their sensitivity to theory 

and data (Simon, 1996).  
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1.7 Research Aims and Objectives  

 

This study aims to improve new product forecasting and strategy. It provides an 

effective set of principles and tools to add discipline, understanding, and replicability in the 

detection of complex patterns in forecasting problems that are difficult to map mentally. The 

objectives of this research are: 

 

• To identify and assess the role of dominant designs in new product forecasting. 

• To assess and propose a method using dominant design (recorded implicitly in the 

experts’ domain knowledge and experience) and machine learning to forecast complex 

mass products, precluding the need for enormous datasets. 

 

Thus, the hypotheses to be tested in this investigation can be stated as follows: 

 

1. The concept of dominant design is a theoretical connecting thread that explains new 

product forecasting.  

2. Invariants from the dominant design, in combination with a machine learning 

algorithm, enhance the performance of new product forecasting. 
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1.8 Original Contribution  

 

The original contribution of this research lies in using the concept of dominant design 

as a theoretical foundation to explain and guide new product forecasting. A novel method 

for incremental new product forecasting is proposed as a direct consequence of the theoretical 

construction, in combination with machine learning algorithms (figure 5). 

Prior to the emergence of a dominant design (in the radical innovation stage) core 

technology analysis is used to explain the technology evolution process and to map its trajectory.  

After the emergence (in the incremental innovation phase) a dominant design provides the 

canon, in the form of invariants present in experts’ domain knowledge and experience, to reduce 

the design space and streamline the construction of a product hypothesis – a compact set of 

most relevant product features mapped to customer value.  

The use of invariants accelerates the convergence of a set of admissible functions 

(potential solutions) to the desired function, precluding the need for a vast amount of training 

data, as this is usually available in limited supply. A product hypothesis is designed as a 

cognitive model of the market, according to the experts’ knowledge and experience. In the 

proposed method, it is a function that maps product features to fitness indicators (customer 

value, expressed by market share in the experiments). 

A database is synthesized using the features in the product concept and available sales 

data on similar products. Each observation in the sample (a vector in the data matrix) contains 

evaluated features from the concept (predictor variables) and market share (target value) 

calculated from sales figures. The weights of feature variables are estimated by a machine 

learning algorithm. Although the variables themselves are selected using domain knowledge, 

getting adequate weights from expert judgment can be difficult, due to the nonlinear relations 

in variables (Afrin, Nepal & Monplaisir, 2018).  

The combination of database and the trained machine learning algorithm is a model of 

the market and plays the role of an integrated knowledge repository and continuous learning 

tool. New product concepts can be simulated to estimate their market fitness. They are updated 

as decisions are taken and new information is received, being applicable to future new projects.  
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Figure 5 – Proposed new product forecasting method using invariants from the dominant design  

and machine learning. 
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1.9 Method 

 

This study is grounded on literature review, construction of theoretical frameworks, 

machine learning simulation, and case studies. Artificial neural networks (ANNs) were used in 

the experiments to simulate and validate new product concepts. Literature research included 

academic documents, technical reports from government agencies, think-tanks, and 

consultancies, specialized press articles, and books in a wide range of topics, including 

technology evolution, product innovation, forecasting, strategy, decision-making, game theory, 

predictive analytics, machine learning, energy transition, automobile industry, and clean energy 

vehicles. Key constructs were defined, and conceptual frameworks were built from those 

sources. 

The inductive case study is the foundation of the research methodology, seeking 

explanation of complex phenomena under the logic of theory (Eisenhardt et al., 2016). Case 

studies in this investigation refer to electric cars in Brazil, for technology forecasting and 

strategy prior to the emergence of a dominant design, and small SUVs, in the incremental stage 

of product innovation. The cases exhibit both typical and extreme elements of the studied 

phenomena, namely the role of dominant designs in the technology evolution process and their 

implications in new product forecasting and strategy. Typically, a case study allows deep 

understanding and prediction of a particular phenomenon (Eisenhardt, 1989).  The study of an 

extreme case provides a clear vision of the problem and can lead to new insights (Eisenhardt et 

al., 2016).    

We rely on the concept of dominant design as the guidepost to orient the forecasting 

process. The initial step is to understand if there is a dominant design in the industry and, if not, 

whether it will emerge – it does not have to necessarily arise (Srinivasan et al., 2006; Cecere et 

al., 2015; Brem et al., 2016; Chen et al., 2017). A dominant design is present in an industry if 

there has been a standard set of core technology subsystems holding fifty percent or more of a 

market for over three years (Murmann & Frenken, 2006; Srinivasan et al., 2006; Anderson & 

Tushman, 1990).  

Prior to the emergence of a dominant design, an industry is in radical innovation or 

“ferment” stage (Anderson & Tushman, 1990; Chen et al., 2017), and strategists want to know 

the likelihood of a dominant design to emerge, identify its core components, to estimate the 

timing of emergence, and how the emergence process will unfold. To assess the emergence of 

a dominant design, it is necessary to go down in the hierarchical analysis, to the subsystems 

and components level. Core subsystems need to be identified. Those are the subsystems or 
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components with the highest level of variables and connections to other subsystems, and the 

largest impact in the overall product system performance.  

Once core subsystems are identified, strategists need to study the evolution of those 

subsystems. Prediction at this stage consists in understanding behavior patterns and trends in 

the technology, not measuring precise demand (figure 6).  The emergence of dominant designs 

is determined not only by technical and market factors, but also by socio-political variables, 

implying the winner will not always be the “best” technology (Chen et al., 2017).  

 
Figure 6 – Product forecasting in the radical innovation stage, prior to the emergence of a Dominant Design. 

 

 
 

The emergence of a dominant design marks the transition from radical to incremental 

innovation. For this stage, the method proposes using domain knowledge and machine learning 

to new product forecasting and decision making (figure 7). The dominant design contains the 

standard features that must remain constant for a product to be accepted and be successful in 

the market. Among the potentially infinite features in a design space, many are held constant 

and incorporated into the industry knowledge, and taken for granted by experts and 

professionals. Invariants in the dominant design significantly reduce the set of features (design 

space) that defines a new product concept. 
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Figure 7 – Incremental product forecasting, using invariants from the dominant design and a product hypothesis 

extracted from the expert’s domain knowledge. 

 

 
 

Invariants are “negative” elements that are left out, not built-in, to significantly reduce 

the design space. Even after setting invariants in a product concept, there is still a wide range 

of possible variables. It is the experts’ task to further streamline the variables and determine a 

compact set of the most relevant features from the customer’s point-of-view. It is their cognitive 

model or hypothesis, grounded on knowledge, experience, research, and intuition.  

A knowledge database is synthesized from that hypothesis and sales data on similar 

products (there is no direct historical data from a product that was not launched yet). Evaluated 

features and target values (market share calculated from sales) in the observations are vectors 

in a database matrix. The database is processed by a machine learning algorithm (an artificial 

neural network), which captures patterns and estimates the weights of variables. Weights are 

the parameters that set the relative importance of multiple features variables in nonlinear 

hierarchical relations. 

In conventional data analytics, professionals start to tackle problems handling complex 

variables empirically without understanding them properly. They simply try to fit a curve on 

data (Marcus, 2018). The approach is long on data but short on knowledge. In the domain 

knowledge-based approach, experts start from understanding and building a cognitive model 

(also called product hypothesis, micro-theory, or customer narrative) to represent (model) the 

problem.  The convergence of problems to solutions using data only is strong convergence; 

learning using both data and invariants from knowledge is weak convergence. The combination 

of both database and machine learning algorithm works as a knowledge repository and learning 

tool to predict the fitness of alternative product concepts.  

Different professionals may produce different product concepts, based on their 

interpretations of competitive product and customer value. Despite their relativity and 

subjectivity, those concepts are operationally useful and essential ideas that can be improved 
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through learning (Marcus, 2018, 2020). A machine learning algorithm measures the correlation 

between product concepts (sets of feature variables) and fitness indicators (target variables), 

giving objectivity to the initially subjective hypotheses. A cognitive model (product hypothesis) 

suggests causality between the set of feature variables and target values. The better a product 

concept, the higher is its probability of success (Marcus & Davis, 2019). 

We demonstrate the incremental innovation framework with an experiment on small 

SUVs (sport utility vehicles) in the Brazilian market. The experiment shows a machine learning 

algorithm is a useful tool to support new product strategy decisions. The trained artificial neural 

network (ANN) captured the complex nonlinear relations among the variables, producing 

meaningful results: a prediction accuracy of 91% using the full dataset (82% with partial 

datasets coming from different probability distributions) – compared to the standard accuracy 

of 58% achieved by most firms (Kahn, 2002, 2010). 
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1.10 Research Structure 
 
 This PhD thesis adopts the set of research papers model and contains four articles, three 

of them published and one in the first review process. The thesis also comprises four major 

sections. This introduction gave context to the work, presenting the research problem and 

general literature, research aims and objectives, hypotheses, methodology, key definitions, and 

an explanation of its original contribution. 

 The next section summarizes the contents of the four research papers, followed by 

comments and explanation of their integration  as a unified and consistent whole. The 

conclusion section wraps up the work discussing results and presenting implications, 

limitations, and suggestions for future research. The last part of the study contains full texts of 

the research papers. 
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2 SUMMARY OF RESEARCH PAPERS AND INTEGRATION 

 

2.1 Paper #1 

 

 The first article, “electric cars in Brazil: an analysis of core green technologies and the 

transition process” (appendix A), explains the role of dominant designs in the evolution of 

industries and how core technology analysis can lead to understanding and mapping technology 

trajectories. The emergence of a dominant design is the landmark of the transition from product 

innovation to process innovation and it is essential for achieving economies of scale in 

production (Anderson & Tushman, 1990). In the case study, the rise of a dominant design is 

understood as a requirement for the mass dissemination of electric vehicles in emerging 

countries. 

The emergence of a dominant design happens at the technology core subsystem level 

(Brem et al.,  2016). Once dominant designs are established in core subsystems, they integrate 

into a technology system. To understand the process of dominant design emergence, it is 

essential to analyze and understand the process of core technology evolution. Once a dominant 

design is established, its features and components turn into standards that are implicitly encoded 

in the industry’s common knowledge and practice. They are taken for granted among 

professionals in the field and are no longer revisited or questioned when new products are 

designed and developed. In other words, they become invariants in new product development 

(Brem & Nylund, 2021a).  

Manufacturing companies can focus on the improvement of production techniques 

because they just follow the prevailing standards and established designs, and do not have to 

worry about disruptions in core technologies. A technology paradigm is relatively stable, and 

firms also gather attention and resources on the improvement of product details (Nylund et al., 

2021). Traditional automobile manufacturers master incremental product innovation and excel 

in manufacturing technology. On the other hand, relatively new entrants (like Tesla) are agents 

of discontinuity and bring radical product innovation in the form of viable electric cars to the 

automobile industry (MacDuffie, 2018; Perkins & Murmann, 2018). 

The theory and process of dominant design emergence are illustrated with the case study 

of electric cars in Brazil. Core technologies for electric cars are energy batteries, electric motors, 

and power control systems (Enge et al., 2021). Electric vehicle technology is currently in radical 

innovation or “ferment” stage, with intense competition among multiple players, including 
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several new entrants (Brem et al., 2016). There are no established core technology standards, 

and most players invest heavily to achieve dominance with their own technologies.  

Preference for in-house development may delay the emergence of dominant designs. 

Under such circumstances, it is difficult to achieve cost reductions from economies of scale, 

which are necessary to make electric cars affordable to automobile buyers in developing 

economies  (Brem & Nylund, 2021a). For that reason, hybrid technologies will be needed to 

bridge the transition from combustion engine vehicles to pure battery electric vehicles in 

emerging countries. Hybrid vehicles combine internal combustion engines with electric motors 

and batteries.  

Since batteries are the most expensive components in pure battery electric vehicles 

(typically between 30% and 50% of total vehicle cost), hybrid vehicles are less expensive 

because their batteries are smaller (Jetin et al., 2020; Yu et al., 2020). In terms of evolution of 

technologies and their ecosystems, we have a case of robust resilience (Adner, 2006; Adner & 

Kapoor, 2010).  The incumbent technology (internal combustion engines) still exhibits vitality 

while the new technology (battery vehicles) has many obstacles to overcome – cost, range, 

charging infrastructure, vehicle weight, etc. – before coming to fruition (Teixeira et al., 2015). 

Pure battery vehicles capable of covering the full-scale usage range of current internal 

combustion engine vehicles – including three long distance vacation trips a year – can cost 

almost three times as much as equivalent combustion engine counterparts (Arora et al., 2021). 

Without the intermediate development of hybrid electric vehicles, there is the risk of 

exacerbating a social divide, making new cars a privilege of just the most affluent consumers. 

Mainstream consumers would keep their old internal combustion vehicles for longer periods, 

with detrimental impact on global emissions.  

Brazil could focus on developing and manufacturing small biofuel electric hybrid 

vehicles (derived from new global platforms) targeting medium class consumers in emerging 

markets. But clear and ambitious – albeit realistic – industrial strategy and government policies 

are in tall order. The paper provided a case study demonstrating the analysis of core 

technologies in electric vehicles and their ecosystem can lead to a better understanding of the 

technology evolution process and support industrial forecasting and strategy. 

 

2.2 Paper #2 

The second paper, “forecasting new product demand using domain knowledge and 

machine learning”  (appendix B), is the backbone of the paper set, as it elaborates on the 

incremental product forecasting method using invariants and machine learning. Invariants 
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allow a machine learning algorithm to capture complex patterns with a much smaller dataset 

than conventional data analytics. A reduction of two orders of magnitude (100x) in the number 

of observations is possible (Vapnik & Izmailov, 2020). The way to achieve predictive power 

using small data is to use invariants established by the dominant design and encoded in experts’ 

domain knowledge and experience, reducing the space of potential product feature variables 

(Brem & Nylund, 2021a).  

Invariants significantly reduce the design space – the potential set of feature variables 

– which is further reduced to its essentials, still using experts’ domain knowledge. They are 

expressed in a set of product variables mapped to a fitness indicator or target variable. In the 

studied case, it is an expression of customer value quantified as market share. Together, the set 

of features and indicator makes the cognitive model or hypothesis of a product category. But 

the model is still incomplete. The weights of variables in complex nonlinear hierarchical 

relations are missing. They are estimated by an artificial neural network processing the small 

dataset. Once the model is trained (it exhibits a stable set of parameter weights), it can be used 

to predict the fitness of different product concepts. 

The model is demonstrated by the case of small SUVs in the Brazilian market. A 

database was designed using sixteen independent variables, identified as the most relevant 

product features expressing customer value. Industry knowledge, information from specialized 

press, and textbooks were used as proxies for industry domain knowledge to select those feature 

variables. Sales figures from 2003 to 2020 were converted to market share values and used as 

fitness indicators – target dependent variables in the model. The dataset covers the history of 

small SUVs in Brazil, with slightly over 1,500 observations (a smaller subset proved equally 

effective to capture data patterns, as can be seen in paper #4), and act as a knowledge repository 

and continuous learning tool. The algorithm captures customer value and competitive relations, 

assessing the relative importance of features, and simulating market dynamics. 

Initially, the full dataset is shuffled. Training, validation, and test sets are drawn 

stochastically, and separated from the beginning at 70:15:15 ratios. The ML algorithm produced 

predictions with a correlation factor R of 0.96 to the real training data. To test for overfitting, 

i.e., to measure its capacity to capture patterns in new data (not present in the original training 

dataset), six real products were used to test the method. Neural networks were trained with 

portions of the dataset from periods prior to the product launch dates (hence there is no data on 

those products in the training datasets). An average accuracy of 82% (18% error) was observed, 

showing the model has useful predictive power.  
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The experiment proved it is possible to use invariants – defined by the dominant design 

and extracted from the expert’s domain knowledge – to significantly reduce the size of data 

samples to train an algorithmic model and to predict demand for incremental new products. 

The requirements for the application of the proposed forecasting method are: 

 

• Complex products (multiple feature variables) produced in relatively high volumes. 

• Competitive market with a minimum of about seven distinctive players. 

• Presence of a dominant design in the market for at least three years. 

• Domain expertise to extract invariants and to design a product hypothesis (set of most 

relevant product features mapped to fitness indicators). 

• Minimum amount of fitness indicator data, like sales, market share, revenues, profits, 

customer satisfaction etc. – a few hundred observations are needed. 

• Machine learning algorithm (e.g., artificial neural network) to capture the nonlinear 

hierarchical relations in the model. 

 

2.3 Paper #3 

 The next article, “the minority game in product strategy” (appendix C), explains and 

explores the implications of the dominant design and incremental technology evolution in 

competitive market strategy. The minority game happens in two stages or dimensions: 

compliance to the core technologies (invariants) and differentiation in peripheral features. 

Following the canon established by the dominant design is a requirement to be accepted and 

stay competitive in a relatively stable market (Brem & Nylund, 2021a). But once those demands 

(core technologies, product features, and attributes) from the dominant design are met, 

competitive advantage is obtained by adroit differentiation.  

The winners of the minority game are the players who adopt advantageous product 

strategies, not followed by the majority of the market (Arthur, 1994, 1999). In other words, 

products must contain invariant core components to be part of the game, but they need to 

differentiate with unique sets of peripheral features that are particularly attractive to customers 

and are hard to copy. The market is dynamic, competitive strategies evolve continuously, 

players strive to match and outperform their rivals. The minority game tends to equilibrium 

overtime, but it is dynamically unstable. If the majority adopts a supposedly winning strategy, 

it turns into a losing strategy, as they defeat the minority principle by following the same 
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strategy. Players are forced to differ and the game is in continuous flow (Casti, 1996; Challet 

et al., 1997, 1998, 2001, 2004, 2005). 

The method using a knowledge database and an artificial neural network is 

demonstrated simulating the small SUV market in Brazil. Different strategies can be tested and 

their fitness can be estimated using the model. Just sixteen feature variables in a five score 

Likert scale can potentially yield 516 (approximately 150 billion) product strategy combinations. 

Firm and environment constraints significantly reduce the strategy space, but the likelihood of 

two firms adopting the exact same strategy (all sixteen features with the same scores) is still 

very small, meaning competitors are likely to differ.  

In our complex product (small SUV) experiment, fitness is measured by the relative 

presence of a strategy, expressed by share in the total automobile market. If all firms in a 

hypothetical market had the exact same resources, played the same product strategies (e.g., they 

were commodities with no room for differentiation), under the same conditions, their individual 

market share would simply be the market size divided by the number of players. But winners 

in complex markets are the competitors who seize larger than average market share. They are 

part of the winning minority. The study identified eight historical winners in the small SUV 

market, with consistent above average market share. 

A categorical principal component analysis – CATPCA – method (Campos et al., 2020; 

Kuroda et al., 2013; Linting & Van Der Kooij, 2012; Linting et al., 2007) was used to 

understand the relations among the sixteen variables, clustering them, and yielding three main 

groups or components. The first component clusters comfort, convenience, equipment, 

infotainment, and finish. They are attributes related to technology and directly associated with 

price. Expensive vehicles tend to incorporate more technology and convenience features. A 

second axis identified cabin and trunk space inversely associated to agility and economy, all 

related to vehicle size. Large vehicles tend to be more spacious both in the cabin and trunk. 

Smaller vehicles are usually more agile and energy efficient. A third axis related brand and 

robustness. Attributes like durability and reliability tend to be incorporated into a brand’s 

reputation. 

The analysis of winning minority strategies allowed the identification of distinctive 

traits. Winners usually have strong brand reputations and are not necessarily the most affordable 

products. There are winning propositions in affordable, economical, and agile products, but 

also in more expensive, comfortable, and technology rich alternatives. Affordable but spacious 

and reliable is also an attractive formula. Those scenarios were used to illustrate the method 
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applied to competitive strategy analysis, combining the model with invariants from domain 

knowledge, machine learning, and the minority game framework. 

 

2.4 Paper #4 

 The last article in the series (appendix D) explores how the forecasting method using 

experts’ knowledge and machine learning can be applied to the so-called front end of new 

product development – FEPD (Koen et al., 2001). Also known as pre-development, it comprises 

the exploratory new product activities prior to the official approval and budgeting of a project 

(Cooper, 1988). Potential alternative concepts are assessed and evaluated on a preliminary basis. 

Each product concept – set of distinctive product features – is understood as a potential product 

strategy to be pre-evaluated before choosing a project (or a small set of projects) for in-depth 

valuation and then development.  

 Front-end activities in product development usually start with the collection of 

information on existing products, technology, customers, and competitors. But decision-

making is usually fuzzy, vague, and subjective, based on experience, intuition, and heuristics 

(Reinertsen & Smith, 1991). The article proposes the use of micro theory (product hypothesis 

or cognitive model) building and statistical learning (in the article, the expression statistical 

learning was used refering to statistical machine learning) simulation methods to improve the 

front-end of product development.  

 An earlier version of the forecasting method using domain knowledge and machine 

learning was used in the article case. The database contained information on small SUV sales 

in Brazil from 2013 to 2018. The sample contained 715 observations (less than half the sample 

size used in the case study of article #2) but the method was the same and illustrated its 

application in the front-end of product development. It shows how machine learning can 

contribute to add rigor and a systems approach to product strategy and development. The use 

of invariants in the experts’ domain knowledge reduces the space of potential feature variables 

and increases the precision of predictive analytics, significantly reducing the size of data 

samples at the same time. 

 Selecting product concepts at the FEPD means scanning a large number of ideas in a 

short period of time with little or no budget. The simulation of alternative product concepts 

using machine learning increases the performance of predictions with a tool that is analytical, 

have low cost, and is relatively easy to use. While article #3 demonstrates the application of the 

proposed method in competitive strategy, article #4 shows how it can be used by firms 

developing  their own products.  
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2.5 Unification of Papers  

 

 An innovation discontinuity or shock starts a period of intense experimentation and 

uncertainty, with multiple product variations and new competitors (Argyres et al., 2015). In this 

period of “ferment”, the strategist’s task is to understand how the technology is going to evolve 

and try to determine its trajectory (Brem et al., 2016). Analyzing the technology into its core 

components allows strategists to identify evolution trends and map their patterns. Although it 

is not possible to determine which exact solutions will prevail in complex technologies 

(amalgamating into dominant designs), due to sociopolitical variables that act on top of 

technical and market factors, it is possible to estimate the likelihood  of dominant core 

components to emerge, their approximate timing, and how the processes will unfold (Anderson 

& Tushman, 1990).  

 The study on electric cars in article #1 illustrates how the study of core technology 

components can be used to understand and map a technology trajectory. The objective is not to 

determine the precise shape or moment of emergence of a dominant design, but to monitor and 

extrapolate its evolution path, providing elements for on-going decisions in a period of high 

uncertainty prior to the emergence of dominant designs. In the radical innovation period, firms 

are not worried about exact sales volumes. Their priority is to understand where the industry is 

heading, which technologies to invest in (maybe to bet on), and what to do.  

 Once a dominant design is established, the industry moves to the incremental innovation 

phase, with relative stability in core product features, customer profiles, and competitive 

behavior. The core features of the dominant design are implicitly encoded in the knowledge 

and practice of the industry and its professionals (Henderson & Clark, 1990). A technology 

paradigm bounds the trajectories that incremental innovation may take and evolve in.  It is 

possible to perform more accurate product forecasting, strategy, and planning. The market 

exhibits stable patterns, although they may be too complex to be mapped mentally (Schneider 

& Leyer, 2019). Machine learning algorithms can be used to capture the complex nonlinear 

market behavior. Article #2 demonstrates how invariants from the dominant design and a 

machine learning algorithm can be used to model a market in incremental innovation stage. 

 Article #3 shows how the methods and tools presented in the two previous articles can 

be interpreted and used in competitive product strategy, with addition of the minority game 

framework (Arthur, 1994, 1999). A minority game is combination of both compliance and 

differentiation in distinct dimensions or stages. Overall, a new product needs to comply to 
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dominant design prescriptions to be part of the game; its core concepts are sine qua non 

requirements for competitiveness and survival in the market (Argyres et al., 2015). But once 

the dominant design canon is satisfied, there is still considerable leeway in terms of possible 

peripheral product features – incremental innovation – to appeal to customers and distinguish 

a product from its competitors (figure 8). 

 
Figure 8 – The Minority Game. 

 

  

The objective is to differentiate by incremental product innovation, achieving 

competitive advantage by playing the minority game. For instance, a firm may choose to offer 

distinctive product features at a premium or to be competitive in cost, reducing product content. 

But relations among product variables are complex and hard to figure out mentally.  Playing 

the minority game demands both creativity and knowledge. Since good forecasting is a 

condition for good strategy making (Wilson, 1999), the article explores how the proposed 

forecasting method can be applied to successfully play the minority game. The article relies on 

the Brazilian small SUV case to demonstrate the forecasting method, illustrating its application 

in competitive product strategy. Besides the artificial neural network used to model competitive 

strategies and extract relations among the feature variables, Categorical Principal Components 

Analysis (CATPCA) is used to understand the relations in clusters of variables. 

 Article #4 describes how the proposed method can be applied to the initial stage of 

product development. In the “front-end” of product development (FEPD), business ideas are 

identified, product concepts are generated and screened for project approval. As the project is 
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not budgeted yet, this early and often underrated phase of product development needs an 

efficient and succinct method to analyze a wide range of potential product ideas.  

Instead of using heuristics and intuitive guessing, the method adds rigor and systemic 

view to decisions in the FEPD by employing the proposed new product forecasting approach 

to initially screen alternative product concepts. A full-scale technical and economic due 

diligence to evaluate the range of potential product concepts in not feasible at this stage, because 

of both financial and time constraints. There are little resources to study a project that is not 

officially approved yet. Predictive accuracy, speed, low cost, and ease of use are some of the 

requirements addressed by the proposed method using machine learning. 
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3 CONCLUSION 

 

 New product strategy is a challenging task due to complex, nonlinear, and dynamic 

relations among its variables and lack of historical data. Product strategy making encompasses 

understanding a problem, forecasting outcomes, and making a decision. Managers usually rely 

on judgment derived from intuition and experience, and seasoned experts can handle those 

decisions with dexterity. But intuition and experience could still be wrong, and current practices 

may not be adequate. There is too much variability and loss of experience and knowledge. 

There is also a lack of systems-view and integration.  

On the other hand, there used to be a mix of reluctance and perplexity to use machine 

learning to support strategic decision-making. But events are changing, and time may be ripe 

for a better integration between human domain knowledge and machine learning algorithms in 

new product forecasting and strategy.  

In Greek mythology, a centaur was a creature with head, torso and arms of humans, 

body and legs of horses. Nowadays, it refers also to the human-machine combination playing 

freestyle chess against humans and machines alone or other “centaurs”. In 2005, a pair of 

amateur players with three ordinary computers and a well-planned strategy won an international 

freestyle tournament, beating supercomputers and also grandmasters with powerful computers, 

but not so well-structured methods. Kasparov (2017) summarized: “weak human + machine + 

better process was superior to a strong computer alone and, more remarkably, superior to 

“strong human + machine + inferior process”.  

In the same token, a combination of experts’ domain knowledge and machine learning 

can lead to enhanced new product strategy decisions.  A usual caveat of machine learning 

applications is the requirement of large amounts of data to train algorithms. A way to accelerate 

the convergence of a problem to its solution, without the need of large datasets, is to use 

predicates and invariants from the experts’ knowledge and experience.  

Big Data uses hundreds of thousands (sometimes millions) of observations. By selecting 

appropriate invariants and variables to reduce the design space, it is possible to shrink the 

training dataset by up to two orders of magnitude. In our experiment, the full dataset has about 

1,500 observations and sixteen variables, a ratio of about a hundred observations per variable. 

Partial simulations showed about three hundred observations (about twenty observations per 

variable) are sufficient to provide a meaningful prediction.  

 The proposed approach – integrating domain knowledge and machine learning –

effectively supports new product strategy making. Initial conditions, assumptions, and 
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constraints are extracted from the technology paradigm, encoded in the dominant design and 

present in the industry experts’ domain knowledge. The use of invariants accelerates 

algorithmic learning without significantly large datasets. A machine learning algorithm is the 

implementation tool.  

In the proposed method, a database and a neural network model the market, mapping 

product features to customer value. Multiple alternative concepts covering the strategy space 

can be tested simultaneously, early in the development process, and at low cost. As decisions 

are taken, new knowledge is integrated into the model, which is used to support new project 

decisions, and may be shared among different organization areas for continuous learning. The 

added layer of consistency and discipline provided by the approach reduces both uncertainty 

about customer value and the risk of wrong and unused information.  

The combination of theoretical construction and experiments proved the concept of 

dominant design as a theoretical foundation to explain new product forecasting, the 

original contribution of this investigation to the advancement of academic knowledge, yielding 

meaningful results that support new product strategy decision making. A novel method is 

proposed from the theoretical framework, presenting the following distinctive features: 

 

• It uses the theoretical concept of dominant design as the guidepost to both explain and 

improve new product forecasting. 

• Employs the invariants from the dominant design – embodied in the experts’ domain 

knowledge and experience – to reduce the design space, accelerating the learning rate 

and avoiding large datasets. 

• Uses domain knowledge to construct a product hypothesis, selecting a closed set of 

feature variables mapped to target variables. 

• Synthesizes a database from the hypothesis and a limited amount of sales data.  

• Estimates weights directly from data – instead of judgment – using machine learning. 

• Acts as a knowledge repository and continuous learning tool. 

 

The automobile industry has applied artificial intelligence mainly in fields such as 

advanced manufacturing, fleet management, predictive maintenance, and self-driving cars. 

Most of those applications have in common a well-defined and stable environment, a fixed set 

of rules and clear objectives. Strategic decision making, however, is inherently ill-defined, 

complex, and adaptative, and it poses significant challenges. Human intelligence is much better 
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on dealing with ambiguity, making analogies, and grasping the overall picture. A symbiosis 

between humans and machines can produce superior results. The better the expert, the better 

the tool. By continuously learning, the converse is also true: the better the tool, the better the 

expert. This investigation has shown human and machine intelligence interface to simulate, to 

understand, and to predict new product markets is a sound proposition. 

 

3.1 Limitations and Future Research  

 

Currently, the world is experiencing a period of high uncertainty and instability, with 

disruptions in both markets and supply chains caused by the Covid-19 pandemic, wars, inflation,  

and shortage of materials. The panorama of markets after those events is not clear yet. Although 

the theoretical foundations of this research should remain, the tools and operational details of 

the proposed method (like the dataset used to train the models) may need to be re-assessed 

when global markets settle down into possible new circumstances (value chains, price levels, 

consumer behavior, social demands, legislation etc.). It is difficult to appraise if the current 

market dataset will be effective to predict new product concepts under the new scenario. The 

model may need to be retrained with new data from the post crisis era, even if the principles 

stay the same. A review of the method under the new circumstances can bring additional and 

useful insights. 

 This PhD thesis was based on studies about the automobile industry. Conducting 

research on a single industry has the advantage of providing depth of analysis and identification 

of unique patterns and insights that contribute to expand the knowledge in a field of study. The 

logic of the research leads to infer both method and insights from this study are equally 

applicable to other complex mass products and businesses (e.g., digital technologies, 

entertainment, food, apparel, and publishing industries). But extensive investigation of other 

industries, sectors, and contexts will certainly contribute to solidify and deepen the assessments 

of the present work. 

An artificial neural network was used as the default machine learning algorithm in this 

study. Artificial neural networks are among the most popular and capable machine learning 

tools used in a wide range of applications, from financial credit assessment and 

recommendation systems to self-driving cars and robotics. However, there is a wide range of 

other machine learning tools both currently used and under scrutiny, like decision trees, support 

vector machines, and extreme learning machines. Investigations using a variety of algorithmic 
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tools may further enrich research in the field of machine learning applied to new product 

forecasting and strategy. 
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Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition 

Process 

 

Abstract: This paper explores the transition to electric cars in Brazil. The country has been 

successful to reduce its carbon footprint using biofuels, but it is facing a dilemma in vehicle 

electrification. It cannot shift abruptly to battery electric vehicles, as current consumers are 

unable to afford them and investment in recharging infrastructure is uncertain. But it has a 

significant manufacturing base, and it cannot isolate itself from global industrial trends. This 

study relies on the inductive case study method, identifying the core green technologies in 

vehicle electrification and extrapolating their trends, to explain how the transition process is 

feasible. The emergence of a dominant design ( set of core technologies defining a product 

category and adopted by the majority of players in the market) in small and affordable segments 

is essential for the diffusion of electric cars in developing countries. Biofuel hybrid technologies 

may support the transition. The Brazilian industry can engage in electric vehicle development 

by designing small cars based on global architectures, targeting consumers in emerging markets. 

The article contributes by using a dominant design core technologies framework to explain and 

to map the transition to electric vehicles in developing countries, supporting academic research, 

government, and industry planning. 

 

Keywords: electric car; technology transition; dominant design; vehicle electrification; clean 

energy; materials usage; vehicle battery; hybrid car; developing countries; Brazil  
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1. Introduction 

 

Climate change is one of the great challenges of our time. The Paris Agreement – an 

international treaty signed in 2015 by 196 states and the European Union – aims to limit global 

warming to below 2 and preferably 1.5 degrees Celsius compared to pre-industrial levels, to 

mitigate the harmful effects of climate change [1]. Human generated greenhouse gas (GHG) 

emissions must be reduced to close to zero to achieve that objective.  

As the transport sector is one of the major global greenhouse gas emitters (21%) [2], a 

group of national governments, municipalities and regional governments, automobile 

manufacturers and a many other institutions and businesses signed a declaration at COP26 – 

the 2021 United Nations Climate Change Conference – to transition to zero tailpipe emission 

vehicles by 2035 in leading countries and no later than 2040 in emerging countries [3]. Among 

the signatories were the U.K., Sweden, Canada, Mexico, Chile, Ford, General Motors, 

Mercedes-Benz, Volvo, and Jaguar Land Rover. But there were abstentions from the United 

States, China, Germany, Brazil, Volkswagen, Toyota, and BMW, among several others. 

Completely abandoning internal combustion engines is still a significant challenge in many 

parts of the world, considering technical, economic, social, political, and geographic factors. 

 

1.1. Decarbonization of light vehicles in Brazil 

Brazil has a successful history of using biofuels in transport. The 1973 Oil Crisis 

motivated the creation of the National Alcohol Program (Proalcool), establishing ethanol as an 

alternative to oil derived fuels. The program contributed to reduce air pollution by replacing 

lead as an anti-knocking agent, reducing carbon monoxide and hydrocarbon emissions [4]. 

Biofuels are considered carbon neutral on exhaust emissions as the emitted CO2 has been 

previously captured from the atmosphere by photosynthesis. However, there are greenhouse 

gas emissions in fuel production and transportation. The first Brazilian ethanol powered 

automobile was launched in 1979.  

Automotive gasoline in Brazil is a blend of 27.5% anhydrous ethanol (E27). Ethanol for 

vehicles (E100) contains up to 4.5% of water. Flex fuel engines can run on any mixture between 

E27 and E100. There are about 44 million active light vehicles in the domestic fleet and 74% 

of them are flex fuel [5]. It is estimated 70% of flex fuel vehicles run on gasoline. Ethanol 

consumption is influenced mainly by the ethanol to gasoline price ratio. Ethanol prices are 

affected by weather, government policies, international sugar price, crude oil price, and 

transport costs [6].  
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Out of 1.98 million new light vehicles registered in 2021 (79% passenger cars and 21% 

light commercial vehicles), 84% were fitted with flex fuel engines, 3% with gasoline engines, 

and 13% were diesel powered [5]. Only 2,851 electric cars were sold in 2021, just 0.14% of 

light vehicle sales [7]. In 2020, 85% of electric power in Brazil was generated from renewable 

sources (figure 1), led by hydropower 63.8%, followed by wind generation 9.2%, biomass 9.0%, 

and solar energy 1.7% [8].  

 

 
Figure 1. Brazilian sources of electricity in 2020. Source: [8].  

 

The Vehicle Emissions Control Program (PROCONVE) started in 1986, and it 

progressively reduces new vehicle emission targets [9]. Although it sets targets for carbon 

monoxide, nitrogen oxides, hydrocarbons, soot, aldehydes, and sulfur oxides, it does not 

establish CO2 limits directly. New phases in 2022 and 2025 will introduce progressively more 

stringent limits on non-methane organic gas and nitrogen oxides, both ground level ozone 

forming substances [4, 10]. Although there is no current legislation explicitly mentioning 

vehicle electrification as a route to energy efficiency and decarbonization in Brazil [9], the 

PROCONVE requirements will demand improvements in current engine technology and 

possibly the increase in the share of electrified vehicles [4].  

Vehicle electrification is the transition from pure internal combustion engine vehicles 

(ICEVs) to full battery electric vehicles (BEVs), often with intermediate stages of electric 

hybridization – the combination of combustion engines and electric motors [11, 12, 13]. 

Electrification is inevitable for carbon neutrality in transports [4, 11, 12, 13, 14]. Besides 

climate damage, sticking to carbon fuels would isolate a country from the global industry, 

which would seriously affect its competitiveness and access to technology [11, 12, 15, 16]. But 
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Brazil is not ready to shift abruptly to pure battery electric vehicles, as most of its population 

would be unable to afford them, and the massive investment in infrastructure is beyond its 

current capacity [4, 11, 12, 17, 18].  

 

1.2. Technology evolution and dominant design  

Green innovations are technologies and practices that improve the quality of human life 

and reduce the impact on the environment. They minimize the usage of energy and materials, 

as well as reducing pollutant emissions and waste [19]. Incremental innovation (continuous 

change) occurs along an existing technology path, while radical innovation (discontinuous 

change) is related to the emergence of a new technology [20]. A new technology path usually 

starts with an innovation shock, a rupture from the existing technology [21].  

The emergence of a dominant design is a landmark in the transition of technology from 

the stage to radical innovation to incremental innovation [22]. A dominant design is a set of 

product features that defines a product category and is widely adopted by the industry as a de 

facto standard competitors must adhere to [19, 20, 23]. The phase prior to the dominant design 

is called the era of ferment and characterized by discontinuous innovation, many competitors, 

intense experimentation, and high growth rates [22, 24, 25]. Electric cars are in the ferment 

stage of industrial evolution [20].  

A dominant design marks the transition from focus on product innovation to process 

innovation [20]. Although the radical product innovation phase is over, there is an increase in 

incremental product variations. A key aspect of the emergence of a dominant design is the 

dramatic reduction in product costs [22, 24]. The increase in production volumes accelerates 

learning, standardization, and modularization of components [25, 26]. Prices fall and most 

potential consumers adopt the new product.  

A systems view provides a better understanding of technology innovation and dominant 

designs [19, 26]. Dominant designs emerge not at the product system level but first in 

components or subsystems [27]. When dominant designs in the set of central or core subsystems 

consolidate, a system dominant design emerges. Core components are those that affect the 

largest number of product characteristics or features, i.e., they have many connections [19, 26]. 

Peripheral components, affect few characteristics and thus have fewer connections. The larger 

the number of connections in a product, the higher is its complexity (i.e., it has many variables) 

[19].  

Architecture is the way components of a system are connected and organized [27]. A 

dominant design is a family of designs with common and stable core subsystems and 
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architecture [28]. However, dominant designs are unlikely to be present in all components 

(subsystems). Once the core components of a design are settled, development shifts to 

peripheral components. Core components become invariants which are not revisited in a new 

design [27, 29], reducing the design space, and restricting variations to peripheral features [26]. 

A replacement of core components implies a change in the dominant design and a new 

technology.  

Adner and Kapoor [30, 31] expanded the notion of technology evolution by adding the 

ecosystems dimension. Most technologies depend on complementary technologies to come to 

fruition, delivering value. An ecosystem is a community of multiple actors and activities 

aligned to create and to deliver value to customers. It includes producers, suppliers, competitors, 

distributors, customers, and other stakeholders. And adds complementors, like BEV recharging 

infrastructure, energy utilities, battery reutilization and recycling firms [32]. 

Beyond products, competition happens among ecosystems. Substitution depends on the 

capacity of a new technology to overcome its challenges, and on the existing technology to 

keep improving [33, 34, 35]. In creative destruction, the new technology overcomes its 

challenges quickly and the old technology is unable to catch up, being rapidly superseded. The 

illusion of resilience happens when the existing technology is unable to evolve, but it lives a bit 

longer because the new technology struggles to solve its challenges. However, it is a matter of 

time before the old technology is disrupted.  

When a new technology faces significant entry barriers and the incumbent technology 

still has room for significant improvement, substitution tends to be slow, with robust resilience. 

Battery electric vehicles in emerging countries are such a case. There are considerable barriers 

for the dissemination of battery vehicles, and internal combustion engine vehicles can still be 

improved. However, if the new technology surmounts its difficulties quickly but the incumbent 

also improves vigorously, replacement is gradual, in a period of robust coexistence. The relation 

between pure internal combustion engine vehicles and hybrid vehicles is akin to that situation. 

The need to create a new ecosystem for battery vehicles can generate considerable tension and 

resistance. Hybrids may bridge the gap using existing manufacturing and fuel infrastructure 

(figure 2).  
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Figure 2. Technology substitution. Source: [34].  

 

Electric vehicle technology depends on the development of batteries with enough 

energy storage and power delivery, vehicle design (electric motors, control systems, 

architecture), on recharging infrastructure, power supply from the grid, battery reutilization and 

recycling. The competition is not only between technologies but between the ecosystems 

supporting internal combustion vehicles (manufacturers, oil industry, biofuels industry, 

suppliers, dealers) and electric vehicles (manufacturers, battery makers, charging firms, power 

suppliers, battery reuse and recycling firms).  

This paper posits large scale diffusion of electric cars in developing countries is unlikely 

to happen before the emergence of a dominant design for small passenger vehicles. Those 

vehicles should be affordable but practical, comfortable, and safe for small family usage, 

including enough driving range for holiday trips. The significant cost reduction necessary to 

make battery electric vehicles accessible to current automobile buyers can only be achieved 

with the economies of scale that follow the emergence of a dominant design [27]. The transition 

to electric cars promises more efficient use of energy and materials in the automobile industry. 

As the industry moves from fuel intensive to materials and energy intensive [36, 37], battery 

reutilization and recycling – still in early stage and with no established standards and procedures 

– will also be a key element in the transition. 

This article originally contributes by using the dominant design core technology 

framework to analyze, explain, and map a feasible transition process to electric cars, applied to 

the specific case of a developing country. The study provides knowledge to support academic 

research, policy and decision making in both industry and government. The existing literature 

on vehicle electrification in Brazil and the theory of dominant designs was explored in this 

section. Materials and methods are discussed next. The core technologies for vehicle 
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electrification and the convergence to dominant designs are explained after. From the analysis, 

relevant electrification technologies are framed, mapped, and discussed. The study is concluded 

and suggestions for future research are offered. 

 

2. Materials and Methods 

 

We rely on the inductive case study method, seeking relevant factors and the 

explanation of a complex phenomenon under the logic of theory [38]. The case of transition to 

electric vehicles in Brazil combines both extreme and typical elements of the vehicle 

electrification general case. Following Eisenhardt et al. [38], extreme cases provide a broad and 

clear perspective of a problem and can facilitate new insights. This study aims to understand 

the emergence of a dominant design in electric vehicles, their dissemination in developing 

countries, and a potential bridging process using hybrid technologies, to support strategy and 

policy making. 

Our research draws on the academic literature on industrial evolution, product 

innovation, technology transition, and dominant designs. To investigate the Brazilian light 

vehicle electrification case, we relied on secondary data on energy policy, powertrain 

technologies, alternative fuels, vehicle electrification, electric cars, biofuels, clean energy, 

materials reuse, recycling, and value chains, from government agencies, research institutes, and 

think tanks, technical reports and articles from consulting firms and specialized press. From the 

analysis of those documents, we extracted the major trends in the core green technologies 

relevant to the emergence of electric cars – batteries, electric motors, control systems, 

architectures, charging infrastructure, battery reutilization and recycling. Next, we inferred the 

main implications for developing countries and for Brazil in particular, considering the biofuels 

experience. Then we draw a map of the technology transition, with ensuing explanations 

(Figure 3). 

 

 
Figure 3. Summary of method. Source: the authors. 
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The most difficult task is not to understand what will happen but when and how it will 

happen. For instance, will the transition process be gradual or abrupt? Beyond the study of 

competing technologies, it is necessary to explore ecosystems – institutions, customers, 

manufacturers, suppliers, complementors, and infrastructure – in complex interactions, and 

their unfolding dynamics. Since this is an investigation on the emergence of dominant designs, 

following Murmann and Frenkel [26], we make explicit both the level of granularity and the 

unit of time of the study. We focus on the subsystem level (batteries, electric motors, control 

systems) to understand the integration into the overall vehicle architecture, at system level. This 

is an inquiry on the automobile evolution from a developing country’s point-of-view, neither 

from an isolated firm’s nor from the global industry perspective. The time scale of reference is 

in years. 

 This research refers to light-duty four-wheeled land vehicles, to the exclusion of other 

terrestrial transports such as heavy trucks, buses, trains, tractors, and motorcycles. The 

Brazilian National Environment Council (CONAMA) [39] defines two categories of light 

vehicles: light passenger vehicles and light commercial vehicles (LCVs). In Brazil, Diesel 

engines are used in heavy vehicles (trucks and buses) and light commercial vehicles but are not 

allowed in passenger cars. Light commercial vehicles are those: a) with payload over 1,000 kg; 

b) capable of carrying eight passengers or more, plus the driver; or c) with off-road 

characteristics. LCVs fall below heavy trucks and buses in capacity, which are also legally 

defined. Some four-wheel drive SUVs (sport utility vehicles) clear the CONAMA off-road 

vehicle criteria and are Diesel powered – as they are classified as LCVs – although they are 

typically used as private vehicles [10]. Although there is no legal definition or global consensus 

on the concept of SUV, we refer to closed bodywork passenger vehicles that are taller than 

traditional passenger cars, with higher ground clearance and elevated ride height [29]. 
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3. Results 

 

3.1. The emergence of a dominant design in electric cars 

Electric cars are propelled by electric motors fed with energy from batteries, which are 

charged either from the power grid or by brake energy recovery [40]. Electric cars are praised 

for energy efficiency (about 90% compared to 25%~50% for combustion engines), low 

emissions, low operating costs (energy and maintenance), instant torque, smooth linear 

acceleration, and silent operation [41]. Among their weaknesses are high purchasing prices, 

limited real-world driving range, lack of charging infrastructure, long recharging times, and not 

having a charger at home [40, 41]. In emerging countries like Brazil, consumers need affordable 

vehicles that cover their full usage spectrum, not just daily commuting, including three or more 

annual holiday trips [16, 40]. 

The core subsystems in electric vehicles are power batteries, electric motors, and power 

control systems [26, 27, 42, 43, 44, 45]. BEVs are currently in full ferment mode of technology 

evolution and core subsystems are undergoing intense development, in wait for a dominant 

design to emerge (figure 4). 

 

 
Figure 4. Dominant designs in core subsystems – integrated in the vehicle architecture – define a system 

dominant design. Sources: [26, 27, 42, 43, 44, 45]. 

 

3.1.1. Batteries 

Lithium-ion batteries, with their high energy density, durability, and low self-discharge, 

were originally developed in the consumer electronics industry and made electric vehicles 

feasible [46]. The most common lithium-ion batteries are the NMC622-graphite type, with 

nickel, manganese, and cobalt present at 6:2:2 molar ratios in the cathode, and the anode made 

of graphite. Lithium ions flow between the electrodes through a liquid electrolyte and electrons 
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run in the outer circuit, generating electricity. Nickel, manganese, and cobalt contents determine 

a battery’s capacity, safety, and charge/discharge rate, respectively. NMC111-graphite batteries 

are no longer used. By 2030, NMC811-graphite is expected to be the common battery chemistry 

[46, 47]. 

NMC batteries held 71% of the EV battery market in 2020, nickel-manganese-

aluminum (NMA) 25%, and lithium-iron-phosphate (LFP), less than 4% [2]. But LFP batteries 

are increasing their market share, due to their long life, thermal stability, performance, lower 

cost, and no use of cobalt – which is often sourced from strategically sensitive countries [48, 

49, 50]. LFP batteries are about 25% less energy dense at cell level than NMC batteries. Solid-

state lithium batteries – using solid instead of liquid electrolytes – promise significant 

improvements in cost, energy density, safety, packaging, and weight, but manufacturing at 

commercial scale is a challenge, unlikely to be surmounted before 2030 [46]. 

There is a lot of variation in battery chemistry, geometry, and thermal management 

systems [51]. There are battery cells in cylindrical, prismatic, and pouch geometric forms. 

Usually, battery cells are assembled in modules and then in battery packages. Battery packages 

need strong casings to protect them in collisions and to accommodate cooling systems and 

connectors [52]. Some recent LFP batteries skip modules and assemble cells directly in 

packages, reducing their weight and hence the disadvantage in specific energy compared to 

NMC batteries [49]. Structural architectures that eliminate package casings are also being 

developed [53]. Since battery technology is in ferment stage, the industry will need to find the 

right balance between standardization – to achieve economies of scale – and flexibility, making 

room for the fast pace of change and competition [52, 54]. 

Batteries can cost between thirty and fifty percent of an electric vehicle, depending on 

battery and vehicle size [41, 55]. In 2020, the average lithium-ion battery pack cost was $137 

per kWh [2]. The MIT projects battery packs will still cost $124 by 2030 [46], as it foresees an 

increase in the cost of the minerals used to produce batteries. The current energy density of 

lithium-ion batteries is about 220~250 Wh/kg. Solid-state lithium batteries are expected to 

deliver 400 Wh/kg by 2030 [2].  

Battery manufacturing is a logistics conundrum. Batteries are difficult and costly to 

transport in containers because of their bulk and weight. From the logistic point-of-view, 

battery production is better located close to vehicle manufacturing facilities [7, 56]. Local 

battery production – at least at package assembly level – is deemed essential for establishing a 

BEV industry [55]. 
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3.1.2. Electric motors 

Among the electric motors currently applied to vehicle propulsion are the permanent 

magnet synchronous motor (PMSM), AC asynchronous induction motor, and reluctance motor 

[43, 57]. Permanent magnet motors currently hold 90% of the EV market [9], due to their energy 

efficiency and power density. Besides the common radial flux type (magnetic flow 

perpendicular to the output shaft), the axial (parallel to the output shaft) flux permanent magnet 

motor is receiving attention recently, due to its higher torque density and compact packaging 

[58]. However, permanent magnet motors use rare earth metals in their magnets, raising 

concerns about both toxic extraction wastes and sourcing concentrated in few countries [9, 59].  

Induction motors do not use permanent magnets (hence no need for rare earth metals), are less 

costly, but are also less efficient than permanent magnet synchronous motors, due to energy 

losses in their copper windings [9]. A reluctance motor uses imbalances produced in the 

magnetic fields of multiple mismatched poles between the stationary (stator) and rotating 

(rotor) parts of the motor to produce torque. It provides a good power density to cost ratio. But 

they can produce torque ripples and noise, and some applications use small permanent magnets 

in the rotor to mitigate those effects [43, 57]. 

Although some vehicle manufacturers currently outsource electric motors, there is a 

trend to design and to build motors in-house, as a source of efficiency, performance, and 

competitive advantage [59]. However, in-house development can delay the emergence of 

dominant designs [27]. 

 

3.1.3. Control systems 

 Control systems are devices and software that manage battery energy, to provide 

powerful, smooth, silent, and efficient operation of electric motors. Controllers achieve those 

tasks by varying the electricity voltage, shifting from direct current to alternating current, and 

changing the frequency of the alternating current [43]. Control systems are the brains of electric 

vehicles. Superior levels of system refinement and efficiency are achieved only with top notch 

expertise and painstaking development and testing. For instance, it took Nissan ten years to 

perfect the control of motors and batteries [25]. 

Masiero et al. [15] recommend Brazilian suppliers engage in the development of control 

systems, which manage the power from the battery to modulate the electric motor operation. 

Control systems are a core BEV technology, and they tend to be centralized in company R&D 

headquarters. Although Brazil may have the competence, government policy and incentives 



 
 
   

66  

would be needed to encourage global manufacturers to engage their subsidiaries, sharing the 

development of control systems. 

 

3.1.4. Architectures 

 System architecture is the way subsystems are connected and integrated [27]. Battery 

electric vehicle architecture is intimately linked to battery packaging as this is the bulkiest and 

heaviest component in the vehicle. Incumbent vehicle manufacturers usually start the incursion 

in electric cars by adapting existing combustion engine vehicle architectures, to reduce capital 

expenditures, lower volume risks, and time to market. Those manufacturers also tend to adopt 

off-the-shelf modular components and sometimes build electric cars in assembly lines shared 

with conventional vehicles [60].  

Dedicated architectures are expected to replace internal combustion engine vehicle 

derived platforms in the future, to improve vehicle packaging, weight, efficiency, and costs [60, 

61]. Since electric motors are smaller than internal combustion powertrains (engine and 

transmission), wheels can be moved to the corners of the vehicle in native architectures, and 

spaces for transmission tunnels and fuel tank are eliminated, freeing the central floor area for 

batteries and cabin space. Dedicated architectures also improve vehicle dynamics, by locating 

the batteries in positions of low center of gravity. 

 

3.1.5. Charging infrastructure and energy management 

Despite 80%~85% of EV charging being done at home [46], an adequate public 

charging network is essential to meet user requirements [62]. In Brazil, there are only about 

750 public EV charging stations [63] – most of them level 2 chargers with 7.4 kW and 22 kW 

of power. There are very few 100-kW level 3 fast chargers, and no connection standards [64]. 

Building the charging infrastructure is challenging in countries with large territories, like Brazil 

and India [16, 40, 65]. The cost of installing an EV supply equipment is in the $30,000~$80,000 

range [62]. According to the Brazilian Automobile Industry Association (ANFAVEA), Brazil 

will need approximately 150,000 charging points by 2035 [18], requiring between $ 4.5 and 

$12 billions in investment. This will require a joint effort among vehicle manufacturers, 

companies interested in providing charging infrastructure, and the government. Considering the 

history of limited investment capacity from the government, the infrastructure is going to take 

considerably longer than in leading countries [17]. 

 A smart grid incorporates sensing and monitoring technologies to the power network, 

allowing the bidirectional flow of both energy and information [40]. It is an important element 
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in the integration of electric vehicles, as it provides energy supply and demand management 

and can help alleviate the demand for grid expansion [40, 64]. The increase in EV power 

demand generates the risk of system overload – power fluctuations, service degradation, and 

even blackouts [6, 66, 67]. Studies indicate there is an overlap of EV charging and residence 

peak loads between two and six o’clock PM. Machine learning methods are being developed 

to improve charging network management, optimizing the vehicle energy demand side [66, 67]. 

 

3.1.6. Battery echelon utilization and recycling 

 Batteries no longer fit for use in electric vehicles can be reused in less demanding 

applications like powering residences and commercial buildings, as they retain approximately 

80% of the original energy density. The reuse of retired batteries from electric vehicles in other 

applications is known as battery echelon utilization [68]. Among the benefits of echelon 

utilization are extended battery service life, energy efficiency, economic rents, and reduction 

of environmental impacts. 

Since echelon utilization is an intermediate solution, those batteries will still need to be 

eventually disposed and recycled [46, 69, 70]. About 80%~85% of weight content in an internal 

combustion vehicle is currently recycled [71]. Since 30% to 50% of an electric vehicle weight 

is in batteries, adequate battery recycling and disposal are deciding factors to achieve similar 

indices in battery vehicles. It is an arduous task, as there is a diversity of battery chemistries 

and formats, and there is no established recycling procedure – most current batteries are not 

even designed with recycling in mind [46, 69, 72]. 

A lithium-ion battery is composed of several recyclable materials (table 1) [73], and the 

most valuable ones – like nickel and cobalt – are in the cathode. 100% of lithium, nickel, 

manganese, and cobalt, and 90% of aluminum, copper and plastics in a battery can be recycled. 

It is estimated the world will need 250,000~450,000 t of lithium, 1.3~2.4 million ton of nickel, 

and 250,000~420,000 t of cobalt to produce batteries in 2030. Although known reserves are 

sufficient to meet demand for metals in batteries, temporary shortages and prices increases are 

expected, caused by fluctuations in demand, and exporting issues, as extraction of minerals like 

lithium and cobalt is highly concentrated in a few countries [36, 73]. 
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Table 1. Lithium-ion battery materials (% of weight at package level). Source: adapted from [73]. 

 
Among the methods used to separate materials in battery recycling are melting 

(pyrometallurgy) and dissolving them with acids (hydrometallurgy). Direct recycling recovers 

battery cathodes using mechanical and chemical processes, without breaking them down into 

primary materials. It is a promising method, but still in early development stage [10, 46, 69, 

70]. Battery recycling is complex, can be energy intensive, may emit GHGs, and may be hard 

to be compete economically with raw materials mining [69, 72].  

Battery technology is in full ferment mode but reuse and recycling are in infant stages. 

It is important battery and vehicle manufacturers incorporate echelon utilization and recycling 

at design stage, making it easier to identify and to separate battery components and materials. 

Lithium-ion will continue to be the battery chemistry of choice for at least the next ten years 

[73]. But future batteries may require different metals in the cathode, making demand for those 

materials uncertain ten to fifteen years ahead [37, 72]. To find a sweet spot between 

standardization and freedom of innovation is a major ordeal [56, 58]. Machine learning 

techniques are being developed to improve battery echelon utilization, increasing service life, 

energy efficiency, and environmental benefits [68]. 

 

3.2. Hybrid transition 

 Existing firms challenged by radical innovations sometimes choose hybrid strategies to 

fill the gap between traditional and new technologies [74]. Hybrids contain features of the 

emerging innovation combined with others from the existing technology. For instance, hybrid 

cars combine electric motors and internal combustion engines. However, the effect of hybrids 

is controversial, and they are sometimes disliked as inelegant technology adaptations. But they 

can be useful to learn and to bridge transitions under the right circumstances [74]. 
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It is imperious to understand why a hybrid technology is being adopted [75]. Hybrid 

strategies are employed to learn, to shape, to buy time, or to prevent a new technology from 

taking hold. In most cases, they are temporary and a major risk is sticking to a hybrid for too 

long, hoping it will be a permanent solution. 

Biofuel hybrid electric vehicles (HEVs) are a compelling way to bridge the transition 

to battery vehicles in countries like Brazil. They are means to learn some elements of the EV 

technology, to bridge the transition while the new technology and infrastructure is not yet 

economically feasible, and to shape the transition process, accommodating the needs of both 

market and industry. But they should not be a way to block the transition [15]. 

Hybrid electrification is a significant step forward in energy efficiency, compared to the 

conventional internal combustion engine, while still employing most of the existing product 

and production competencies. They can smooth the transition until a battery vehicle dominant 

design emerges and complementary technologies – charging infrastructure, battery reuse and 

recycling, power grid etc. – are ready.  Hybrids can be used to understand EV technology, value 

chain, distribution, and marketing [75]. 

  

3.2.1. Hybrid electric vehicles (HEVs) 

 A hybrid vehicle combines an internal combustion engine with at least one electric 

motor powered by a battery. Electrification improves the efficiency of an internal combustion 

engine vehicle by recovering energy from braking and storing it in batteries, to assist engine 

start and acceleration [47]. The combination of combustion engines and electric motors in 

hybrids broadens the optimal operation range of speed and loads, reducing both energy usage 

and emissions [41]. The battery is charged either by brake energy recovery or by a generator 

driven by the combustion engine. If the combustion engine propels the vehicle with mechanical 

link to the wheels, it is a parallel hybrid. In a series hybrid, the combustion engine works just 

as a battery recharger and it is not connected directly to the wheels [40, 76].  

Plug-in hybrid electric vehicles (PHEVs) can charge the batteries from the grid, besides 

being charged by the combustion engine or by brake regeneration [40]. Their batteries are 

usually larger than in non-plug-in hybrids and they can operate as pure battery electric vehicles 

for short distances [47]. Plug-in hybrid electric vehicles can also have parallel or series 

configurations. A series PHEV is also called a range extender electric vehicle (REEV), as the 

combustion engine supplements energy from the power grid for range increase, operating as an 

energy generator only, without driving the vehicle wheels [40]. 
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 Parallel hybrids usually have larger combustion engines than series hybrids. Conversely, 

series hybrids tend to have larger electric motors than parallel hybrids. In a parallel hybrid, the 

main source of propulsion is still the combustion engine, while in the series hybrid, the electric 

motor is supplemented by a combustion engine. Parallel hybrids tend be more efficient to 

operate at high speeds in highways and series hybrids are cleaner and smoother in urban 

environments [77].  

 

3.2.2. Fuel cell electric vehicles (FCEVs) 

A fuel cell electric vehicle can be understood as a range extender vehicle (series hybrid) 

that uses a fuel cell instead of a combustion engine to power the electric motor. It uses electrical 

energy generated by the chemical reaction between hydrogen and oxygen (from the air) in fuel 

cells, charging batteries and powering electric motors that propel the vehicle [40]. The most 

common fuel cell in vehicles is the proton exchange membrane (PEM) type, which uses 

hydrogen from fuel tanks. The ethanol powered solid oxide fuel cell electric vehicle (SOFCEV) 

extracts hydrogen from ethanol using a device called reformer, eliminating the need for 

hydrogen production and supply infrastructure [78]. The electrodes in solid oxide fuel cells are 

separated by a rigid oxygen ion conducting ceramic membrane [79]. There are no hydrogen 

tanks and no connection to the power grid in solid oxide fuel cell vehicles. Batteries are charged 

by the fuel cells and are smaller than in pure electric car batteries, making solid oxide fuel cell 

vehicles potentially more cost competitive [79].  

If current development obstacles – durability and reliability – are overcome, ethanol 

fuel cell vehicles may reach the market by 2030 [79]. However, direct hydrogen proton 

exchange fuel cell vehicles (PEMFCEVs) are uncompetitive in Brazil. Direct hydrogen fuel 

cell vehicles are considerably more expensive than battery electric vehicles, due to the need of 

precious metals – e.g., platinum – to catalyze reactions (precious metal catalyzers are not 

needed in solid oxide fuel cells because of their higher operating temperatures). Hydrogen 

production and distribution are even more complex, challenging, and expensive than the battery 

charging infrastructure, and Brazil is unlikely to mobilize in that direction [79, 80].  
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4. Discussion 

 

In isolation, neither market nor technology can explain the emergence of a dominant 

design. The selection process is strongly influenced by political and social dynamics, making 

prediction of the exact shape of a dominant design difficult, if not impossible [22, 24]. However, 

it is possible to understand the evolution of the core technologies and the dominant design 

emergence process, to estimate both its probability and timing [81]. It is important to evaluate 

the capabilities and resources needed to accomplish the transition.  

The hybrid strategy life cycle must be mapped to understand the technology transition, 

remembering most hybrids are stopgap solutions and resisting the temptation to stick to them 

for too long. Firms (and countries) that strive to learn and to embrace the future are more 

successful than those that are recalcitrant [75]. Table 2 summarizes major facts and events 

affecting the transition to battery vehicles. 

 
Table 2. Main events affecting the transition to electric cars in Brazil. 

 
 

4.1. Lessons from history 

The competition among battery and combustion engine cars is not new. It happened at 

the beginning of the automobile history, in late nineteenth and early twentieth century [43, 83, 

87]. Electric cars lost because batteries were unable to provide adequate driving range, 

recharging infrastructure was more complex than supplying liquid fuel, and oil was cheap (in 
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the United States), electric cars were more expensive, and electricity was not even available in 

certain regions – especially in rural areas [61].  

The introduction of the steel closed body in the 1920’s increased vehicle comfort, room, 

practicality, and safety, creating the concept of a touring car, and the aspiration for motorized 

traveling on holidays [43, 83]. The touring car was largely responsible for the victory of 

gasoline cars. Touring was not possible with early twentieth century batteries, due to range and 

lack of infrastructure. In 1911, Charles Kettering invented the electric starter, eliminating the 

dangerous operation of hand cranking to start a combustion engine, and removing a major 

disadvantage of the internal combustion engine car [43]. From that event, battery technology 

became subordinate to the combustion engine and used to engine start, ignition, and lighting 

[83]. 

The Ford Model T, made from 1908 to 1927, introduced mass personal motorization to 

both rural and urban populations, and eventually set the dominant design for automobiles [43, 

83]. The automobile was no longer a toy for rich customers. The model T was comfortable, 

useful, versatile, reliable, safe, reasonably powerful, and efficient – a respectable automobile 

that could be used for both commuting and travelling – and still affordable [15, 83]. At the end 

of its life, it incorporated the core elements that defined the dominant design – gasoline powered 

engine, steel closed body, steering wheel (some cars were steered using a tiller), electric starter, 

and electric lighting [83]. 

From the study of 2.6 million patents in a vast range of industries, Brem et al. [20] 

concluded dominant designs take between fifteen and twenty years on average (the mode was 

eighteen years) to emerge from their first applications. It took twenty-two years, between the 

first internal combustion engine car (the 1886 Benz Patent-Motorwagen) and the 1908 Ford 

Model T [43].  But the Model T incorporated the whole set of core elements – like closed steel 

body and electric starter – only eighteen years later, in 1926 [83]. 

 New attempts to make the electric car viable happened in the 1970’s, 1990’s and early 

2000s [59]. After the 2009 great recession, electric cars finally gained traction, in no small 

degree due to achievements in battery technology – lithium-ion chemistry was developed by 

the consumer electronics sector [87]. The first modern era series production BEV was the 

Nissan Leaf, launched in 2010 [25]. Tesla launched the model S in 2012 [43]. 

Innovations are driven not only by cost and performance, but from emotional factors 

such as status and luxury [17, 88]. Some electric vehicle trials of the past, like the Norwegian 

Th!nk (2008-2012), did not take emotional factors into consideration and failed. In contrast, 

Tesla vehicles – largely responsible for the widespread interest in electric cars – sell on 
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attributes like performance and style, while still making their owners feel both intelligent and 

good about themselves, due to smaller carbon footprints than in combustion vehicles [88, 89].  

Products like automobiles and smartphones create experiences that establish emotional 

connections with people’s ethos and culture [83]. It is not possible to change behavior solely 

with technology and policy, without consumers’ acceptance. Research shows the aspiration for 

personal transportation will not vanish [55, 83, 86]. Electric vehicles will need to have the same 

basic capacities as combustion engine vehicles, like range, cost, performance, comfort, space, 

safety, and convenience [83].  

An intriguing assessment from the patent study by Brem et al. [20] is, once a dominant 

design is established, it lasts in the original form for a maximum of only six years. The 

increasing acceleration of technology change in some industries may make the emergence of a 

dominant design ever more difficult and, when it happens, shorten their life spans. 

 

4.2. Stricter emission regulations in Brazil 

 Emission regulations in Brazil (and other emerging countries) will be ever more 

rigorous, following benchmarks in developed countries, albeit with some delay [18]. 

Progressively more stringent emission limits on greenhouse gases and other pollutants will 

make gasoline, diesel, and even flex fuel vehicles struggle to comply and increase the need for 

electrification [4, 10]. Non-flex gasoline and diesel-powered light vehicles may be phased out 

by the middle of next decade, with flex fuel and hybrid vehicles remaining for a little longer.  

Although ethanol powered combustion engine vehicles present low carbon emissions, 

they release other air pollutants (CO, NO2, CXHY, particulate matter). Legislation in 

municipalities may forbid using combustion engines within urban perimeters, allowing traffic 

in electric mode only [4, 77]. This will effectively ban internal combustion engine vehicles and 

conventional hybrids around 2040. Plug in hybrid vehicles will be electronically controlled to 

operate in local zero emissions mode in urban areas and be able to fire combustion engines only 

outside city boundaries. To meet consumer needs, electric mode range must increase from 

current 30~50 km to about 90 km to be practical [77]. 

 

4.3. The global automotive industry 

 Some of world’s major automobile manufacturers have announced plans to stop selling 

internal combustion engine light vehicles between 2030 and 2040, especially in leading 

countries [3, 4, 61, 65]. Although they will continue to offer combustion engines in emerging 

markets for a few additional years, their demise (including hybrids) is most likely by mid-
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century. Although electric car adoption is a challenge in countries with large territorial 

extension, limited purchasing power and modest charging infrastructure, battery technology is 

expected to mature in power, energy content, convenience, and cost to replace other types of 

energy by that time. 

All large automobile manufacturers in Brazil are either subsidiaries of transnational 

companies or local companies that license foreign technology. Most core products are designed 

in engineering centers abroad from global architectures. A few existing derivatives, like small 

SUVs, pickups, and light cargo vans are locally developed, usually based on global 

architectures. Most incumbent global manufacturers currently adapt battery vehicles from 

existing combustion engine vehicle architectures, to reduce investments, risk, and time to 

market. In the future, they will be developed from dedicated architectures and R&D activities 

tend to be even more centralized than they are today, seeking optimal returns on investment 

[87]. It will be hard for countries in the periphery to engage in the core technologies of the 

battery vehicle industry.  

 

4.4. Developing countries 

 Competitive advantage is the set of skills, knowledge, and resources to create value that 

is superior to what competitors are offering [30, 83]. It is unlikely that two companies or 

countries starting at different points in time will achieve the same results in the battery electric 

vehicle industry. The United States, Europe, China, Japan, and Korea are likely to concentrate 

the technology as they have a significant head start and have been investing heavily in research 

and development. It will be difficult for emerging countries to catch up without government 

intervention. Access to the knowledge is likely to happen only after a dominant design is 

consolidated globally [17, 19, 86]. 

Brazil may consider the development of region-specific applications. One venue is the 

exploration of biofuel hybrids to bridge the transition to battery vehicles [15]. Another is to 

develop vehicles for emerging markets based on global battery vehicle architectures (small 

SUVs, light duty small pickup trucks, and cargo vans), as it currently happens in a few 

combustion engine vehicle cases. However, designing small and affordable electric cars with 

bona fide driving range, comfort, safety, and practicality attributes is challenging because of 

the cost, size, and weight of batteries.  

Mass market electric cars will need to accommodate four people with luggage, offer a 

real-world driving range over 400km (about 250 miles), and to be priced around $20,000. 

Currently battery vehicles are almost three times more expensive than equivalent combustion 
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engine vehicles [90]. For instance, an electric Peugeot e-208 (a small hatchback) costs 

R$265,900 (US$51,700; 16 March 2022 exchange rate) in Brazil – a comparably equipped 

combustion engine version costs R$90,990 (US$18,100) [91]. Electric car prices will need to 

decrease a lot to be affordable to current vehicle buyers [64]. Considering batteries may account 

for half the cost of a small car [41, 55], electric vehicles will take significantly longer than the 

2030’s (projected for the leading countries) to disseminate in emerging markets. In the 

meantime, hybrids will be needed to fill the gap (figure 6), helping to mitigate climate change. 

 

 
Figure 6. Plausible technology transition map of Brazilian light vehicles. Source: the authors. 
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5. Conclusions 

 

The objective of this investigation was to analyze current policy, legislation, market, 

and technology developments in light vehicles, to explain the transition to electric cars in Brazil. 

It was accomplished with a case study, analysis and interpretation of both academic literature 

and secondary documents. Flex fuel hybrids can bridge the transition process from combustion 

engines to fully electric vehicles. Ever more stringent emission standards may demand hybrids 

to operate only in electric mode in urban settings. As batteries improve in both energy density 

and cost, and infrastructure is built, pure electric vehicles will eventually take over, but with a 

considerable delay compared to advanced economies.  

Mass diffusion of electric cars in developing countries is unlikely to happen before the 

emergence of dominant designs in core vehicle technologies – batteries, electric motors, control 

systems, and architectural integration – and the advent of affordable and practical vehicles that 

can replace current vehicles in the full spectrum of needs and usages. Dominant designs are not 

necessarily performance optimal in all core components, but they are satisficing value 

propositions that accommodate technical, economic, and sociopolitical requirements. The 

success of a design is determined not by its technical performance but by cost. Brazil can 

support the development and manufacturing of relatively affordable light electric vehicles 

(small SUVs, light pickup trucks and cargo vans) based on global architectures, catering to both 

domestic and export emerging markets.  

The transition involves both biofuels and gradual electrification, but it should not lose 

sight of electrification for the sake of biofuels. Although biofuels will bridge the transition, 

simultaneous development of both series hybrids and battery vehicles will be needed to build 

technical knowledge and competencies. Hybrids and parallel plug-in hybrids may be adapted 

from combustion engine vehicle platforms, but a battery vehicle is better deployed from a native 

architecture. The onboard use of biofuels to extract hydrogen and to power fuel cells is also 

being actively investigated and shows promise.  

The emergence of dominant design may take about twenty years (if it emerges at all) 

but may last in its original form for only six years. That is approximately a single life cycle or 

generation of an automobile. It is also close to an individual product development cycle. It 

means once a dominant design emerges, its successor is already in gestation. Among the 

promising emerging core technologies are solid state batteries, axial motors, structural 

architectures, direct battery recycling, and machine learning technologies to optimize both 

charging network management and battery echelon utilization. The supply chain crisis triggered 
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by the Covid 19 pandemic exacerbated some challenges such as strategic dependence on some 

materials sourcing for batteries (cobalt, lithium) and permanent magnets in electric motors (rare 

earth metals), as the industry moves from fuel intense to materials intense. The vehicle 

electrification process is extremely dynamic and hard to follow. The window of opportunity 

may be very narrow. Clear government policy, support, and investment are essential to develop 

the skills and resources needed to do a successful transition to electric cars. 

 

Future research 

Since the objective of innovation is to deliver value to customers, market acceptance is 

a natural mirror image of technology. Dominant designs may emerge in certain regional 

markets without converging to a global dominant design. It is equally plausible dominant 

designs emerge at specific market segment level, reflecting customers’ economic and 

psychological profiles. As the global automobile industry transitions to battery electric vehicles, 

to understand how dominant designs are ramified and delineated in both geographic regions 

and market segments – and their impact on transport decarbonization – is an important and 

fertile field for further investigation. 

 Batteries are the heaviest and more expensive components in electric vehicles, and they 

need specific attention. Battery echelon utilization and recycling are in early experimental 

stages and achieving a balance between standardization and flexibility is a distant and uncertain 

goal. Despite intense ongoing research, it is still an issue waiting for answers, especially in 

developing countries. 
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Forecasting New Product Demand Using Domain Knowledge and Machine Learning  

 

Overview: Forecasting demand for new products is a challenging task, as it involves capturing 

relations of complex variables in markets where little or no historical data exist. Managers 

usually rely on surveys, intuition, and heuristics to forecast new products. Linear statistical 

tools used to predict demand for existing products are not suitable, as there is not enough data 

to capture complex nonlinear relations in yet-to-be launched products. Other tools are 

appropriate for aggregate new categories but not for incremental company-specific products. 

Machine learning can capture complex nonlinear relations, but it usually requires significant 

amounts of data. Using an expert’s domain knowledge can circumvent the need for vast training 

datasets. To support product development activities, we propose a framework that combines 

domain knowledge and machine learning to forecast market share of complex incremental new 

products. An experiment from the automobile industry shows the approach yields expressive 

results (82 percent forecast accuracy).  

 

Keywords: New product forecasting, Domain knowledge, Machine learning, Product 

concept, Artificial neural network 
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For the last 50 years, automobiles have experienced rapid incremental innovations—in 

energy efficiency, costs, safety, performance, comfort, convenience—that have kept them from 

experiencing an industry life-cycle decline (Fujimoto 2013). It takes three to five years to 

develop a new automobile (Ulrich, Eppinger, and Yang 2020), and it must remain competitive 

in the market for six to eight years after it is launched. Rather than reacting to customer demands, 

automotive companies must anticipate what customers want and do so usually with little or no 

historical data since the new product is not in the market yet (Kahn 2002).  

Given the scarcity of both data and adequate analytical tools to forecast demand for yet-

to-be developed products, managers usually rely on surveys, intuition, and heuristics to make 

decisions. The decision-maker’s knowledge and perception of the business environment 

(customers, competitors, technology), and expected changes over time (Dane and Pratt 2007) 

drive intuition. Intuitive decision-making strives to extract meaning from available information, 

but that process is usually vague and subjective (Spangler 1991).  

Among the existing analytical methods, linear models are easy to interpret and explain, 

but they rarely capture the complexity of real-world problems with accuracy (Shrestha et al. 

2020). Some analytical approaches rely on diffusion theory (Linton 2002; Ching-Chin et al. 

2010; Lee et al. 2014; Yin et al. 2020) from microeconomics. For instance, a Bass model 

contemplates the initial stages of new product adoption by a population (Linton 2002). 

Although diffusion models are applicable to aggregate product categories, they are not adequate 

for incremental company-specific products (Kahn 2002), which are the scope of this study.  

Machine learning algorithms can capture patterns that are difficult to delineate mentally 

or heuristically. But those algorithms are data driven (Yu 2007; Yu et al. 2010) and require 

significantly large amounts of training data. Lack of sufficient data is a major challenge in data 

analytics (Ng 2016; Yang et al. 2019). This study proposes using the manager’s domain 

knowledge to partially mitigate the lack of data for machine learning simulations (Vapnik and 

Izmailov 2019, 2020). Domain knowledge can accelerate the development of solutions. 

Our study offers a framework practitioners can use to predict market share of new 

product concepts (sets of features), and thereby support and enhance new product development. 

Our method combines domain knowledge and machine learning, precluding the need for vast 

amounts of training data. The domain expert (manager or market specialist) synthesizes a 

database from his/her knowledge, combined with some competitor sales data. An artificial 

neural network processes the database, simulating the market by capturing the nonlinear 

relations among the variables, which are expressed in the weights of the connections in the 

stable machine learning algorithm (an artificial neural network models the market). 
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We demonstrate our method with an experiment—namely, to predict the market share 

of small SUVs (sport utility vehicles) in the Brazilian market. The experiment shows a machine 

learning algorithm is useful to support new product development. The trained artificial neural 

network captured the complex nonlinear relations in the variables, producing meaningful 

results: a forecast accuracy of 82 percent, which is to be compared to the standard accuracy of 

58 percent achieved by most firms (Kahn 2002, 2010). We conducted an additional smaller 

scale experiment on medium-size pickup trucks. Machine learning usually requires tens of 

thousands of observations to capture patterns in data (Allen 2019). In our study, the 

combination of machine learning and domain knowledge was able to reduce data size 

requirements to a much smaller number of observations (Shrestha et al. 2020) while getting 

superior results. The SUV dataset contains 1,563 observations and we achieved a correlation 

factor (R) of 0.96 between predictions and real market share. 

 

New Product Forecasting  

A product is a bundle of features (attributes and characteristics) that customers perceive 

as having “value”—that is, which satisfy their needs and aspirations (Woodruff 1997; Ulrich, 

Eppinger, and Yang 2015). A product concept is a set of the most relevant customer features, 

as interpreted by a company. Effective product decision-making implies good forecasting 

(Weber 2009). Successful new product forecasting predicts the most likely outcome of a 

product concept given a set of assumptions (Kahn 2006).  

Companies use statistical techniques, like time series and regression methods, to 

forecast existing products. By contrast, new product forecasting is predominantly judgmental 

and seek meaningfulness as the performance criterion, instead of statistical accuracy, because 

little or no historical data exist (Kahn 2014). The forecasting process for new products relies 

on surveys, managerial judgment, and sometimes on extrapolations made by assessing 

similarities with competitor products (Sharma et al. 2020). A meaningful forecast can be used 

for decision-making because it provides deeper understanding of the problem (Kahn 2002). 

Due to the lack of data, new product forecasting usually aims to produce realistic and 

operationally useful approximations in predictions, instead of numerical precision. Our method 

proposes using machine learning and domain knowledge to enhance the accuracy of new 

product predictions. 

Kahn (2014) identifies seven possible new product categories: cost reduction, product 

improvement (replaces an existing product), product line extension (addition to the existing 

product line), new usage, new (geographical) market, “new-to-the-company” products, and 
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“new-to-the-world” products. Products that are new to the world are also called radical products, 

as they disrupt existing industries, technologies, and customer perceptions of the market 

(Henderson and Clark 1990; Rice et al. 1998; Kahn 2018; Veryzer 1998; Leifer et al. 2001). 

We do not consider radical products in this analysis. The other six categories fall within 

incremental or continuous product innovation (Veryzer 1998). Note that product innovation 

requires the convergence of both technical capabilities and customer perceptions to succeed 

(Veryzer 1998; Leifer et al. 2001) and those modest technical innovations may sometimes 

produce significant competitive advantage (Henderson and Clark 1990).  

Companies usually need to balance a mix of incremental and radical new products for 

a healthy business (Rice et al. 1998; Leifer et al. 2001; Veryzer 1998; Kahn 2018). Forecasting 

becomes harder and less accurate as products move from the incremental to radical scale, and 

applied techniques tend to shift from statistical to intuitive (Kahn 2014). Machine learning 

performs best when simulating relatively stable phenomena (Shrestha et al. 2020). Our 

proposed framework is not suitable to predict radical products, as no data exist to extract 

patterns and trends. But “new-to-the-world” products are rare (Ching-Chin 2010) and 

forecasting them is still an exercise of vision and brainstorming (Linton 2002).  

From a survey of 168 industrial companies (Kahn 2002, 2014), average prediction 

accuracies are 72 percent (cost reduction), 65 percent (improvement), 63 percent (line 

extension), 54 percent (market extension), 47 percent (new-to-the-company), and 40 percent 

(new to the world). The average accuracy was 58 percent (Kahn 2002, 2010; Armstrong 2002), 

but an acceptable level should be around 76 percent (Kahn 2010; Ching-Chin et al. 2010). 

 

Machine Learning 

A machine learning algorithm is a computer program that improves its performance 

with data inputs, without being explicitly programmed (Mitchell 1997; Goodfellow, Bengio, 

and Courville 2016; Yu 2007; Shrestha et al. 2020). It distinguishes itself from conventional 

algorithms by its capacity to learn or to improve with new data. Most current achievements in 

machine learning are of the supervised learning type, where algorithms improve by processing 

labeled data (Ng 2018; Goodfellow, Bengio and Courville 2016).  

An artificial neural network is a machine learning algorithm that maps functions of 

complex feature variables to target values in nonlinear hierarchical relations (Goodfellow, 

Bengio and Courville 2016; Aggarwal 2018). Machine learning methods with multiple levels 

of representation are also called deep learning methods (LeCun, Bengio and Hinton 2015). 

Data are processed by inputting feature data and adjusting the weights in the connections 
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through layers of hidden nodes. The artificial neural network calculates errors by successive 

forward and backward iterations, with the goal of minimizing the derivatives of errors (figure 

1). As data move into higher layers of representation, the algorithm processes more abstract 

relations through the network (Aggarwal 2018).  

 
Figure 1. An artificial neural network 

 

Domain Knowledge 

People possess knowledge in the forms of information on facts, ideas, perceptions, and 

processes, that enable them to take effective action (Alavi and Leidner 2001). Domain 

knowledge is the knowledge pertaining to a particular specialized field, in opposition to general 

knowledge (Yu 2007). In this study, domain knowledge is the sum of the manager’s experience 

and perceptions about customers, technologies, and competitors related to certain markets and 

products. Domain knowledge is usually informal and ill-structured (Yu 2007; Yu et al. 2010).  

The initial conditions, assumptions, and context make the invariants of a problem (Gil 

et al. 2019). Invariants do not change when an object suffers a transformation (Aleksandrov, 

Kolmogorov, and Lavrent’ev 1999). In the product design context, invariants are the variables 

the expert takes for granted in a problem – they assume those variables have fixed values in a 

given context – and does not revisit them every time they handle that problem. Isolating 

invariants is a difficult task and requires an expert’s skill and ingenuity (Wigner 1949; 1960). 

Due to their use of intelligence, human learning requires far fewer examples compared to 

machine learning, which uses brute force in data analytics (Vapnik and Izmailov 2019, 2020). 

Many potential variables in a problem are irrelevant to a task at hand. Based on their knowledge 

and experience, experts identify the invariants latent in the problem and put them aside, leaving 

the relevant variables. Vapnik and Izmailov (2019) exemplify jocosely with the duck test: “if it 

looks like a duck, swims like a duck and quacks like a duck, it probably is a duck”—just three 

features to qualify a duck, instead of many possible variables that characterize birds in general.  
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As an industry matures, innovation becomes predominantly incremental and experts 

accumulate knowledge on solving specific problems that emerge from established designs and 

architectures, which are not revisited every time a new task arises. Innovation occurs at 

component level, not in the overall design (the way components are coordinated as a system) 

(Henderson and Clark 1990). Fixed features in a product design are examples of invariants, 

although not the whole set of invariants, which is further skimmed by the expert by crafting the 

partial product hypothesis. 

An increase in invariants diminishes the size of training data and leads to more accurate 

predictions, while an increase in variables requires more training data (Vapnik and Izmailov 

2019, 2020).  

 

Proposed forecasting method 

Conventional data analytics is data driven, and an algorithm discovers patterns in that 

data (Yu 2007; Yu et al 2010). The domain expert only provides project guidelines and 

interprets the results from the trained model. The domain expert formulates a market hypothesis 

only after reviewing simulation results (Figure 2a). In the proposed method, the manager is 

involved in the entire process, including the formulation of an initial hypothesis and 

synthesizing data, not only in inference and judgment (Shrestha et al. 2020). A partial 

hypothesis using the manager’s domain knowledge precedes the simulation (Figure 2b). 

 
Figure 2. New product forecasting: a) conventional data analytics; b) proposal integrating DK and ML. 

 

The proposed forecasting tool is based on algorithmic machine learning simulation 

guided by an expert’s domain knowledge, which they use to formulate the initial hypothesis 

and to pre-process the training examples (Yu 2007; Yu et al. 2010). The initial hypothesis 

comes from the expert’s knowledge and experience related to a specific market. Pre-processing 
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involves selecting, cleaning, formatting, and synthesizing the training data. The simulation 

refines the hypothesis and converges to an optimal model by capturing the relations (weights) 

among multiple nonlinear variables. The stable set of variables and weights in the algorithm is 

used to predict the market share of new product concepts (feature sets). Domain knowledge 

guides the algorithmic training process, improving its performance, and making it more 

explainable (Yang et al. 2019). 

The quality of new product forecasting depends on the quality of assumptions—coming 

from managerial judgment—and the quality of data (Kahn 2014). The initial hypothesis is a set 

of the relevant product features (Simon 1996) from the customer point-of-view (Woodruff 

1997); it contains the independent variables of the machine learning model. A company usually 

relies on staff expertise, market research, static and dynamic testing, competitor benchmarking, 

distributor feedback, literature, and other sources to elaborate the hypothesis.  

A manufacturer of complex products handles and defines hundreds (sometimes 

thousands) of feature variables, as they are elements of the overall product design and 

development (Weber 2009). But fewer variables comprise the key determinants of customer 

value (Weber 2009), and too many redundant features introduce noise and can harm the 

machine learning algorithm’s performance (Yu et al. 2010). Identifying a compact set of 

relevant features to model the simulation is a challenge and prior domain knowledge is required 

to set the partial hypothesis (initial hypothesis space). Features that get left out are invariants in 

the model. The set of feature variables is a “partial” hypothesis, but it still misses important 

information—namely, weights estimated by the machine learning algorithm. The simulation 

converges the hypothesis space (potentially infinite sets of possible weights) to an optimum 

hypothesis (a stable set of variables and weights in the trained model). 

Database construction starts with the hypothesis of product features. Then data on 

company and competitor product sales is collected by the expert and converted to market share. 

A relatively modest amount (in the order of a few hundred observations) of sales data are 

sufficient. Sample data are synthesized by evaluating the features of each product in the sample. 

A machine learning algorithm (an artificial neural network) processes the features and target 

values (market share calculated from sales), capturing patterns and estimating the weights of 

the variables. The trained model can then be used to forecast the market share of potential new 

products. 
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Experiment Using Data from the Brazilian SUV Market 

To demonstrate the method, we present an experiment on small sport utility vehicles 

(SUVs) in the Brazilian market. Although there is no global consensus on the definition of an 

SUV, it refers to a closed passenger vehicle with a “two-box” styling bodywork, which is taller 

than a conventional automobile. By “small,” we mean vehicles shorter than 4.5 meters (177 in) 

in overall length. 

In this small-scale experiment, we formulated a hypothesis of key product features using 

industry knowledge and experience, comparing the feature set with specialized magazines and 

websites (Quatro Rodas 2020a; UOL Carros 2020), and validating them with prescriptions from 

an automobile development text (Weber 2009). We identified 16 primary product attributes: 

novelty, brand, style, robustness, comfort, space, trunk, convenience, finish, equipment, 

infotainment, economy, performance, agility, safety, and price. In reality, a large manufacturer 

would rely on multiple resources, including the experience of its executives and staff, market 

research, product testing, distributor surveys, and competitor benchmarking.  

We collected monthly sales data of twenty-two small SUV products—from March 2003 

to December 2020—from the National Federation of Brazilian Vehicle Distributors website 

(FENABRAVE 2021) and converted it to market share. It covers the entire small SUV history 

in Brazil and generated 1,563 observations (Yamamura 2020). We used market share to 

mitigate seasonal effects. As companies regularly forecast overall market volumes, it is easy to 

convert market share forecasts back to sales figures. 

We used reviews from an automobile magazine (Quatro Rodas 2020a) and customer 

evaluations from a specialized website (UOL Carros 2020) to measure product features. Some 

vectors (observations) are repetitive; their feature values are constant over a certain period (like 

a few months). However, other vectors differ for the same product at different times in its 

product life. For example, novelty decreases as time passes: a new product scores five for 

novelty in its launch year, but one point is deducted every year after. We based brand strength 

on a survey from a Brazilian automobile magazine (Quatro Rodas 2020b). Although some 

variables are quantitative—like price, fuel economy, and performance—others are subjective, 

like brand and style. To normalize all features, we evaluated them using a one-to-five point 

Likert scale, a level of granularity that was sufficient to capture relations in the database (Table 

1). 
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Table 1. A sample section of the database. 

 
 

We split the whole dataset in 70:15:15 ratios among training, test, and validation sets—

shuffled, drawn stochastically, and set apart from the beginning. The artificial neural network 

input layer contains 16 “neurons,” corresponding to the feature variables. The output layer has 

just one node, predicting the target value. The model in the experiment presents a single hidden 

layer, adequate for a relatively small dataset (Goodfellow, Bengio, and Courville 2016).  

No consensus exists regarding an appropriate number of units in a hidden layer. A 

common heuristic is between half and twice the input layer size (between n/2 and 2n), from 8 

to 32 in the experiment. The neural network achieved the highest correlation between real and 

predicted data (R=0.96) with 10 hidden units. The algorithm estimates the weights of hidden 

and output layer neurons using activation functions. The model optimizes the weights using a 

function that minimizes the output (market share estimation) errors (Goodfellow, Bengio, and 

Courville 2016; Aggarwal 2018). We ran the algorithm on MATLAB™ R2019b, in a MacBook 

with 1.2 GHz Intel Core M processor.  

We tested the method using real data, predicting market share of the six most significant 

(largest sales volume) new small SUVs launched in Brazil between 2016 and 2020. We used 

mean absolute percent error (MAPE) to measure the accuracy of those predictions. MAPE is 

an indicator commonly used in companies to measure the accuracy of predictions (Ching-Chin 

et al. 2010). MAPE is calculated by subtracting actual demand from the forecast; dividing by 

actual demand; taking its absolute value; and multiplying by one hundred: 

 

𝑀𝐴𝑃𝐸 = &
𝑓𝑐𝑠𝑡 − 𝑎𝑐𝑡𝑙

𝑎𝑐𝑡𝑙 & ∗ 100 

 

Overfitting tends to be a major issue in machine learning algorithms (Shrestha et al. 

2018). It consists of low bias but high variance in errors. In other words, an algorithm could 

perform well on the dataset used for training but could struggle to generalize to new data 

(Shrestha et al. 2020). Increasing the size of the sample or decreasing the size of the model 
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(number of variables) are procedures used to handle overfitting. Machine learning algorithms 

have built-in procedures like regularization (penalization of variables with small effect) and 

cross-validation (splitting data in random subsamples for test and validation) to mitigate 

overfitting (Yu 2007; Yu et al. 2010). Since overfitting is not an absolute issue, but relative to 

comparison (Hawkins 2004), it can also be handled by testing, calibrating, and comparing new 

dataset results, and by interpreting and understanding the circumstances, limitations, and 

contingencies of the predictions (Hawkins 2004; Ng 2018; Shrestha et al. 2020).  

In our experiment, we limited the number of feature variables (sixteen), using domain 

knowledge, and made sure the sample size of the original dataset (1,563 observations) was 

sufficient to generalize to new data. We conducted the MAPE analysis of six real products 

using data prior to each product’s launch time, to assess the capacity of the algorithm to 

generalize to new data.  

 

Results 

In the six real products case, predictions were made with neural networks using the 

portion of the dataset prior to a new product launch. The results come from artificial neural 

networks trained only once (not after several trials), which is a reason why the errors were 

spread out for new data not in the training set. For instance, the neural network did a remarkable 

job at predicting the Renault Duster facelift (product improvement), which was likely easier 

because it was an improvement and not strictly new. In other words, the facelift was an 

enhanced version of an existing product, with some features values that were common to the 

previous version (i.e., present in the training dataset).  The neural network did a relatively poor 

job of predicting the Captur, a completely new product also from Renault, with more new 

feature values.  

Still the model presented meaningful predictions overall, being able to fit new data not 

present in the training dataset. The estimated MAPE ranged from 2 percent to 48 percent—with 

average of 18 percent, or accuracy of 82 percent (Table 2). According to Kahn (2010, 2002), 

the average forecasting accuracy commonly achieved by firms is 58 percent. Ching-Chin et al. 

(2010) suggest an adequate performance should be about 76 percent. As mentioned, overfitting 

is relative to understanding the circumstances of the prediction. In this case, a benchmark from 

the literature was used to reference and to confirm the model generalizes to new data.  
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Table 2. Six new product market share predictions, using ANNs trained with data prior to launch date.  

 

 
 

Second Experiment on Brazil’s Medium-Size Pickup Market 

For confirmation, we conducted an additional experiment on Brazil’s medium-size 

pickup market in Brazil. The model is less elaborate as there were some limitations. For 

example, there is a smaller number of players (seven) and product life cycles tend to be longer 

than the small SUV segment—more than 10 years in some cases, like the Volkswagen Amarok, 

which was launched in 2010 and is still in the market).  

The dataset contains the history of medium-size pickup trucks between January 2015 

and December 2020, with 491 observations. We identified seven key feature variables—brand, 

robustness, style, engine power, cabin, price, and size—once gain based on industry experience 

from the authors and validation from specialized press documents and Weber’s textbook (2009). 

We present a database extract (Table 3). 

 
Table 3. A section of the pickup database.  

 
 

There were no recent product launches in the segment, but historical data includes 

product facelifts, content changes, and engine improvements. Since there were no “new-to-the-

company” products in the given time period, we used data from three consecutive years to 

predict the market share in the following year. For instance, we predicted products in 2020 with 
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a neural network trained with data from 2017 to 2019. The average forecast accuracy yielded 

was 78 percent (Table 4), confirming useful predictive power.  

 
Table 4. Prediction of market share using ANNs trained with data from three previous years. 

 
 

Discussion and Managerial Implications 

 

New product forecasting with small data––Our method demonstrates it is possible to forecast 

market share of incremental but complex new products using expert domain knowledge and 

small datasets. The manager uses domain knowledge to set the initial conditions for the product 

hypothesis, by pre-selecting the relevant product feature variables (and isolating the invariants). 

The machine learning algorithm simulates the market and estimates the weights of feature 

variables. The proposed method builds on strengths of the managerial profession—market 

knowledge and experience—to enhance new product development. It sharpens decision-

making, as good decisions imply good forecasting.  

By providing understanding and reducing uncertainty (Ganguly and Euchner 2018), it 

is also a learning tool. As new knowledge is acquired or market conditions change, the model 

needs to be updated and improved. For instance, market, technology, or legislation may dictate 

the emergence of new relevant customer features, like powertrain electrification (hybridization), 

barely present in current small SUVs in Brazil. The diffusion of that technology will require 

the introduction of a new feature variable in the database and hence in future algorithmic model. 

On the other hand, “infotainment” technology may become so common and undifferentiated 

that customers simply take it for granted and it is no longer a relevant variable for the method. 

In that case, it becomes an invariant and it is no longer explicit in the model. Those changes 

will demand both redesigning the database and re-training the algorithm, which simultaneously 

generate new learning for decision-makers and raise product development performance. 
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Constructing the hypothesis with domain knowledge––Constructing an appropriate set of 

features to frame the new product concept is a major challenge. Regrettably, there is no 

established formula to do it. As Wigner (1949) suggests, setting the initial conditions of an 

experiment is an art. Vapnik (2020) suggests it is the intelligence part of learning. But 

experienced managers have competence, understanding, and insight into their businesses. They 

have knowledge and intuition of what is relevant in those markets, and their skills are routinely 

used in their work, albeit not always in a structured way.  

The initial hypothesis is a set of the most relevant feature variables in the market under 

consideration. The domain expert (manager) creates a hypothesis by separating key feature 

variables from invariants (unchanging features) in the pool of potentially infinite variables. The 

compact set of feature variables left is the product concept to be modeled and refined. The 

model is complete when the algorithm approximates the weights of the variables and is stable. 

To avoid potential bias, it is important the domain expert validates the partial hypothesis using 

surveys, press information, literature, and maybe a second expert’s opinion.  

Forecasting new products designs––The trained algorithm, with a fixed set of variables and 

weights, models the market to be investigated for new product development. New product 

concepts—vectors with evaluated features—can be inputted to predict market share. Our 

method can test both alternative company product proposals and potential competitor responses. 

Market experts can predict a new product demand by introducing a new feature vector in the 

trained algorithm. They may feed alternative variable sets (product concepts), testing their 

market sensitivity. Or they can input a set of features from a hypothetical competitor product, 

based on competitive intelligence, predicting its potential market strength and guiding the 

company’s future pre-emptive actions. 

Our proposed method is robust and reproducible for incremental new products in 

complex but relatively stable markets, but we do not recommend it to forecast “new-to-the-

world” products because as the machine learning algorithm identifies nonlinear patterns in data, 

it assumes probability distributions that are constant over time, which is not the case for radical 

products.  

Domain and data experts—Usually, domain and data experts are different people (Crews 

2019; Amersh et al. 2014). Pure managerial judgment relies on intuition and experience, and a 

data expert is usually not involved. In data analytics, however, the algorithm is responsible for 

discovering patterns. The domain expert (manager) participates initially to provide general 

requirements for the project, and returns later in the process, when the model is ready. The 

domain expert’s involvement is collateral and subsidiary (Amersh et al. 2014).  
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Our proposed approach requires that the domain expert and data scientist work closely 

throughout the process; otherwise, the domain specialist must possess some systems knowledge 

to handle both database and algorithm development. The domain expert is responsible for 

creating the initial product hypothesis (set of feature variables mapped to target indicators) and 

guiding data synthesis. Once the model is trained, the domain expert will interpret the results 

and explain them for new product development action. 

With recent commercially available software, the manager does not need to be a full-

fledged data expert (Gil et al. 2019; Amersh et al. 2014). In the next few years, using machine 

learning to support business decisions may become as common as manipulating spreadsheets 

and databases is today (Allen 2019, Euchner 2019).  

 

Limitations 

One limitation is that this is a single-industry study. The logic of the proposed approach 

(machine learning algorithms just read numbers and capture relations among them) is extensible 

to other sectors and contexts. Still, studies exploring the application in different domains could 

be valuable contributions. Also, further research exploring alternative machine learning 

techniques, such as regression SVMs or extreme learning machine (ELM), to new product 

strategy is a promising venue.  

 

Conclusion 

New product forecasting supported by machine learning is an emerging and fertile field 

of investigation. Our proposed forecasting method, which uses a machine learning algorithm 

combined with domain knowledge, can yield meaningful predictions. Our method precludes 

the need for huge datasets, which is important for new product development where little or no 

historical data exist. Narrowing the range of potential research variables increases efficiency 

and speed. Our method also reduces training data size and trades data quantity for quality. Our 

model explains and predicts, thereby supporting new product development and creating 

knowledge that can be abstracted and transferred to other projects. 
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The minority game in competitive product strategy 

 

Abstract 

The competitive interaction among product strategies in complex markets is an evolutionary 

game, where players engage using strategies that are forced to differ and there is no optimum 

solution. It is a network of multiple nonlinear relations, operating at the edge between stability 

and instability. Information is incomplete, settings change continuously, and outcomes in the 

long run are unpredictable. However, it is possible to understand patterns of behavior to make 

better decisions. Winners are the minority players, exhibiting differing strategies but also 

common patterns – despite flickering settings and constraints. This paper proposes a framework 

to understand competitive product strategy behavior, illustrating with a case from the 

automobile industry in Brazil, validated by an artificial neural network model. Categorical 

principal component analysis (CATPCA) was used to analyze relations among the attributes. 

The experiment yielded meaningful results, showing the framework provides valuable insights 

for deciding how and where to focus on product strategy. 

 

Keywords 

Product strategy; evolutionary game; competitive strategy; minority rule; machine learning; 

CATPCA. 
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1. Introduction 

 

In Cost Rica, choruses of male frogs sing to attract females, despite the risk of being caught by 

frog-eating bats. It is a competitive game, by advertising to attract mates away from rival males. 

If a frog sings louder than its competitors, it increases its chance of mating but decreases its 

odds of survival; the reverse is true also. If most males are quiet, a male is better off being 

louder. If most rivals are loud, it benefits from being quiet. Over time, the strategies tend to 

converge towards the same volume for all males. 

 (Adapted from Vincent and Brown, 2005) 

 

Product strategy in dynamic markets is a challenging endeavor, with uncertainty about 

both customers and competitors (Sorenson, 2000a). Competitive dynamic markets are 

characterized by multiple players, complex strategies, and incomplete information, with 

variables changing over time. Most firms have leeway to choose among different product 

strategies. However, there are many constraints – from the market, technology, economics, 

corporate policy, history, tradition, legislation – making it difficult to yield optimal strategies. 

In addition, the best strategy does not depend only on what a firm does, but also on what 

competitors do. The minority rule states winners play differing strategies, achieving a superior 

balance in attributes despite the constraints (Devetag et al. 2014). This paper explains how the 

minority rule works in competitive product strategies and how it can enhance decisions in 

complex environments. The framework is illustrated with an automobile industry case. A 

database is engineered as the repository of market history, contemplating customers, product 

attributes, competitors, pricing, and brands. The strategy space is hard to map mentally or 

heuristically, hence an artificial neural network traces those relations. The experiment confirms 

winners adopt distinctive strategies, command higher than average market share and enjoy 

stability; but they also exhibit common patterns. The proposed framework and method are 

original contributions to understand competitive product markets and provide practical insights 

for managerial decision-making. 
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2. Theoretical background 

 

Evolutionary game theory was formulated by Smith and Price (1973, 1976, 1982) and 

elaborated further by Vincent and Brown (1985, 1987, 2005, 2011). A game is a model of the 

interaction among players using strategies, in pursuit of payoffs (Sharif and Heydari 2013). 

Evolution implies changes in the strategies over time, under selection and adaptation to the 

current situation (Li et al. 2019). Evolutionary games are composed of players, strategies, 

payoffs, and a solution concept (Vincent and Brown 2005; Vincent et al. 2011). Players are sets 

of individuals with the same strategies and payoffs. A strategic group is a set of players who 

perceive themselves as being part of the same game (Camerer 1991). Strategies are unique and 

inheritable sets of attributes; different players act with different strategies. A product strategy 

is a set of attributes, mapped to customer value (Simon 1996, Woodruff 1997). Value is the 

expression of benefits perceived by customers (Woodruff 1997).  

A strategy set comprises all evolutionary strategies that are feasible for a player. 

Possible strategies are constrained by genetic, physical, and environmental factors. Other 

constraints can be derived from inter-dependencies among the attributes. Some attributes are 

fixed, or invariants; others are changeable. Companies are constrained in the range of feasible 

product strategies; but they still enjoy significant leeway, depending on perceptions and 

resources. Ratneshwar et al. (1999) recommend a broad vision of strategic groups, since product 

innovation and changes in pricing policies may reshape the market and affect consumer 

considerations.  

Payoffs are expressions of fitness – the relative presence of a strategy at a particular 

time (Vincent et al. 2011). While classical games focus on strategies to optimize payoffs, 

evolutionary games look for persistence in time. The solution concept is a function that maps 

the strategies to fitness. Since fitness results from the interaction of strategies, evolution by 

natural selection is an emerging evolutionary game (Vincent and Brown 2005). Natural 

selection is an optimization problem, seeking the best fitness in a given time and space. But 

optimum is an unstable state. By seeking persistence of strategies, evolution is a game – not 

just a problem of optimization. Players may disappear, but strategies persist through inheritance. 

New strategies occasionally emerge through mutation or invasion. The former is a heritable 

change in the attributes; the later occurs when a new player enters the strategic group. 

Sorenson (2000b) observed competition and legitimation are the two forces that shape 

a market; the number of players (fitness) is their measurement. Legitimacy happens when a 

player is taken for granted in an industry, the degree of acceptance by both customers and 
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industry peers. It determines a player’s resilience in the market; once established legitimate 

players tend to exhibit a certain inertia in the market – expressed by a steady market share. New 

entrants have a hard time to acquire legitimacy. The complexity (number of interactions) of a 

market grows by the square of its density (number of players). Competition will increase with 

the number of players, unless the market expands at the same rate as the number of interactions 

(Sorensen 2000b).  

The “El Farol bar” model is a game of adaptive players with incomplete information. 

Players win by being in the minority: going to the bar, if it is relatively empty; staying home, if 

it is crowded (Arthur 1994, 1999). Nobody knows what others are doing but they have 

information about past attendance. Players learn by inductive reasoning. Attendance converges 

to a threshold value over time; but it is dynamically unstable, continuously fluctuating around 

that value. The El Farol problem was mathematically solved by Challet, Zhang and Marsili 

(1997, 1998, 2001, 2004, 2005), in the minority game. Convergence itself is a consequence of 

the law of large numbers (Challet et al. 2004). But there is no winning strategy – if there were 

such a strategy, all players would adopt it and then they would all lose (Casti 1996; Ranadheera 

et al. 2017). Strategies are forced to differ, to fluctuate, and to evolve quickly (Casti 1996; 

Bischi and Merlone 2017). A larger minority or a variety of differing strategies imply smaller 

fluctuations and a more efficient overall system (Bottazzi and Devetag 2007; Ranadheera et al. 

2017). Success in real life situations, as in financial trading, is often a composite of majority 

and minority decisions (Bischi and Merlone 2017). Up to a point, it is convenient to follow 

trends – players tend to be conservative and there are benefits from collective experience (Sharif 

and Heydari 2013). But deviating at the right time is a successful strategy (Devetag et al. 2014; 

Challet, Marsili and Zhang 2005).  

Game theory models the competition among alternative strategies, attempting to predict 

the actions of rival players (Kleindl 1999). Competition is the pursuit of market space by players 

with strategies contending for similar target customers (Hoffmann et al. 2018). Despite its name, 

game theory is a set of tools for disciplining model construction, not a substantive theory by 

itself (Postrel 1991; Kleindl 1999). It is neither normative nor descriptive; it is analytic, seeking 

the implications of strategic situations (Camerer 1991). Strategic settings are complex nonlinear 

networks that operate at the edge of stability and instability, exhibiting both at the same time. 

They are unpredictable in the long-run and the task of strategy making is to understand behavior 

patterns, not outcomes by themselves (Stacey 1995). Business strategy is a practical field and 

game theory comes into existence by being applied to real strategy situations (Camerer 1991; 

Saloner 1991; Stacey 1995). Chatterjee (1986) urged the confluence of abstraction from game 
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theory and empiricism of marketing science, to design robust competition models with practical 

reach. To gain legitimacy, game theory needs a corroborating case-specific theory. It links 

supporting theory and managerial actions, providing a decision framework for choosing 

strategies based on predictions of competitor actions. Since strategy implies a view of the future, 

some form of prediction is necessary (Wilson 1999). Prediction should not be understood as 

forecasting, but as the construction of hypotheses and the analysis of their sensitivity to theory 

and data (Simon 1996). From Mintzberg (1994), strategy making is a process of learning from 

all available resources – including experience and data – and synthesizing them into a vision of 

the future. 

 Porter’s five forces – customers, suppliers, existing competitors, new entrants, and 

substitutes – are a well-known framework (1979, 2008). The minority game implies intense 

rivalry and positioning for differentiation from competitors. Among the reasons for intense 

rivalry, Porter cites multiple committed competitors and imperfect information. This 

investigation elaborates on the interactions among heterogenous and complex strategies, 

contending in evolving markets. It confirms winners are the minority players. Although all 

players are forced to differ in their strategies, minority players exhibit some common patterns. 

The framework assists decision-makers to both understand the product strategy game and to 

guide their actions. 
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3. Method 

 

This study is grounded on theoretical review, conceptual framework, and a case study 

with simulation. Key constructs were defined, and a conceptual framework was built. In the 

experiment, an artificial neural network (ANN) simulated and validated the competitive 

strategy dynamics of an automobile segment. Attribute dimensions were identified using a 

nonlinear principal components analysis (PCA) technique. The investigation is based on a 

single industry and does not seek statistical generalization. However, from Eisenhardt (1989), 

a case study can provide in-depth understanding of a particular phenomenon, providing 

explanation and prediction. Slater (1995) extolls the control of market influences in single 

industry research, enhancing internal validity. It is preferable to go narrow and deeper in the 

investigation, relating it to a specific performance criterion. 

 

Case study 

Small SUVs are the fastest growing automobile segment in Brazil, currently accounting 

for 30% of the market (Fig. 1). Although there were small off-road vehicles in the market before, 

the Ford Ecosport is recognized as the product that inaugurated the segment in 2003 (Bazanini 

and Berton 2011). In its first year of production, the Ecosport held 2% of the overall automobile 

market, growing to almost 3%, a couple of years later – significant figures for a single model. 

It remained without a strong direct competitor until 2011, when Renault launched the Duster. 

Currently, there are twenty-seven players in the small SUV segment.  

 

 
Fig. 1 Total automobile sales and small SUV market share in Brazil. Source: FENABRAVE. 
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Modeling and simulation 

 A database summarizing product strategy in the small SUV segment, from years 2003 

to 2020, was crafted. Year 2021 was not included in the model due distortions from the Covid-

19 pandemic, which affected the supply of electronic components and sales of several vehicles.  

We relied on specialized publications, customer evaluation websites (Quatro Rodas 2021; UOL 

Carros 2021), and industry experience to identify the key product features (customer attributes). 

The initial feature assessment yielded sixteen product attributes, which were then confronted 

with the prescriptions from Weber’s automobile development text (2009) - for validation. 

Novelty, brand, style, robustness, space, trunk, comfort, agility, convenience, finish, equipment, 

infotainment, performance, economy, safety, and price were the selected features. There is a 

parallel between strong product attributes and USPs - unique selling propositions (distinctive 

innovations for product marketing) (Weber 2009). Although USPs are tools for advertising and 

attributes are elements for strategy, they are aligned since the later are mapped to customer 

value. 

Market share is the fitness indicator adopted in this study to anchor the model to reality 

and to validate its accuracy. It is a proxy for customer value, as customers vote with their 

pockets. Monthly sales data (vehicle registration figures) were collected from the Brazilian 

Federation of Vehicle Distributors website (FENABRAVE 2021), generating 1,571 

observations. Market share is the ratio between product sales and market size. Using market 

share instead of straight sales figures purges market seasonality and effects of fluctuations in 

the economy, when comparing data from different moments. As the SUV market has been 

growing continuously and it is receiving new entrants, share of the overall automobile market 

was adopted, instead of share of the SUV segment.  

A product strategy is a vector of features (product attributes). Each attribute in the 

observations was evaluated to synthesize the vectors in the matrix database. Most sample 

vectors are recursive as their attribute values are constant over time. However, some attributes 

may differ for the same product in different moments of time. For instance, one point was 

deducted in novelty for every year from launch time to account for product ageing. It recovers 

one or two points if it receives a styling update, depending on the intensity of the refreshening 

action. Product specifications may also be updated, receiving improvements along its life cycle. 

An automobile manufacturer would rely on sources like expert knowledge, proprietary research, 

static and dynamic testing, competitor benchmarking and tear down, to evaluate products. For 

this experiment, customer evaluations from a website (UOL Carros 2021) and reviews from a 
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specialized automobile magazine (Quatro Rodas 2021) were used. The objective was to find 

satisficing solutions, not necessarily optimal ones (Simon 1996), not numerical precision but 

adequate representations for information processing. A discreet scale of values from one to five 

was used to evaluate the attributes.  

The second stage of the process is to find a fitness generating function (Vincent and 

Brown 2005), modeling game rules and minimizing the conditional probabilities of error. A 

shallow artificial neural network (ANN) was chosen because of its capacity to handle variables 

in complex, nonlinear and hierarchical levels of abstraction. It is a two-stage hierarchical 

function that maps linear combinations of input features into nonlinear representations of target 

values. Data is processed by inputting feature data and adjusting the parameter weights in the 

connections through layers of hidden nodes. Errors are calculated in a loss function and learning 

occurs by feed-forward and back propagation iterations, minimizing errors by seeking global 

minima through stochastic gradient descent. As data moves through higher layers, more abstract 

representations are processed through the network.   

Data was split among training, validation, and testing sets in 70:15:15 ratios. About the 

number of neurons in the hidden layer, the best result was achieved with ten units - activated 

by the hyperbolic tangent function g(z) = tanh(z). Target values are activated by the rectified 

linear unit (ReLU) function f = max (0, x). For optimization, the Levenberg-Marquardt method 

was used to find the minimum of the sum of squared errors in the functions (Marquardt 1963). 

Predictions were compared with real market share data (target values) and a correlation R = 

0.96 was obtained (Fig.2), showing a high level of explanation. Those figures suggested the 

model was an adequate representation of competitive product strategies mapped to fitness. It 

was run on MATLAB™ R2021a, in a MacBook™ with 1.2 GHz Intel™ Core M processor. 
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Fig. 2 Correlation between real data and predictions - 0.96 (MATLAB™). 

 

For the analysis of attribute clusters, the categorical principal component analysis 

(CATPCA) was performed, which reduces data dimension assigning metric values to non-

metric variables in a dataset with different levels of measures and nonlinear relations. The 

ordinal level of optimal scaling, variable principal normalization and varimax rotation 

methods were selected for the analysis (IBM 2020). Dimensions were defined according to the 

Kaiser Criterion (eigenvalue greater than 1), total variance explained and interpretability. For 

technical information, see Kuroda et al. (2013), Linting and Van Der Kooij (2012), Campos et 

al. (2020) and Linting et al. (2007). Analysis was run in the IBM SPSS 25 statistical software 

package.   

The framework used for evolutionary product strategy analysis is summarized in Fig. 3. 

 



 
 
   

115  

 
Fig. 3 Evolutionary product strategy framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Construct a hypothesis of the strategic 
group, players, strategies, payoffs, and rules of 

the product strategy game

2. A player’s strategy space is the set of all 
possible combinations of strategy attributes. 
But the real spaces are considerably smaller, 
since firms face several “genetic”, physical 

and environmental constraints;

3. When the number of possible strategies is 
considerably larger than the number of 

players, strategies tend be heterogeneous. 
Those strategies are stable over time and are 

inherited through product generations. 
However, some attributes suffer mutations

related to updates, ageing or changes in 
perception. New strategies are also introduced 

by invasion of new entrants in the strategic 
group

4. The objective of 
evolutionary games is 
persistence over time. 
Fitness of a strategy is 
expressed by consistent 
and continued market 

share

5. The winners of the 
game are the minority 
players, which enjoy 

higher than the average 
market fitness

6. Although there may be 
several product attributes, 

some of them may be 
clustered and identifying 

the clusters allows to 
understand and to focus 

actions

7. Some attributes are 
pliable for immediate 

action, others (e.g. 
brand) demand long 
term effort and are 

invariant in the short 
run

8. Players seek 
optimization and 

equilibrium, but the 
game is moving 

constantly. There is 
no stable state and 

strategies are forced 
to evolve 

continuously, 
demanding constant 

learning and 
adaptation
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4. Results 

 
 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 avg 

Ecosport 2.02 2.61 2.80 2.38 2.01 1.65 1.45 1.29 1.12 1.05 1.85 1.63 1.37 1.41 1.44 1.40 1.29 1.23 1.67 
Tucson  0.03 0.19 0.53 0.74 0.96 0.84 0.53 0.58 0.45 0.55 0.46 0.56 0.23 0.21 0.13 0.12 0.44 
Sportage  0.01 0.02 0.09 0.27 0.26 0.22 0.24 0.25 0.26 0.31 0.27 0.23 0.17 0.23 0.16 0.08 0.19 
iX35        0.20 0.40 0.30 0.29 0.46 0.59 0.51 0.47 0.35 0.22 0.13 0.36 
ASX        0.01 0.32 0.30 0.28 0.36 0.39 0.24 0.23 0.22 0.14 0.06 0.23 
Duster        0.27 1.29 1.40 1.47 1.39 1.28 0.81 0.95 0.98 1.00 1.08 
Tracker          0.07 0.43 0.45 0.43 0.56 1.06 0.61 2.53 0.77 
HRV             2.07 2.81 2.20 1.94 1.86 1.67 2.09 
Renegade            1.58 2.60 1.76 1.88 2.58 2.91 2.22 
2008             0.25 0.54 0.49 0.39 0.33 0.24 0.37 
Kicks              0.54 1.54 1.89 2.11 1.87 1.59 
Compass              2.26 2.44 2.27 2.71 2.42 
Creta               1.92 1.98 2.16 2.45 2.13 
WRV               0.71 0.60 0.46 0.54 0.58 
Captur              0.63 1.07 1.08 0.56 0.84 
Tiggo                0.21 0.24 0.24 0.23 
Cactus               0.14 0.62 0.49 0.41 
TCross                1.78 3.08 2.43 
Tiggo5X                0.32 0.45 0.39 
Tiggo7                0.15 0.13 0.14 
Eclipse                0.09 0.13 0.11 
Nivus                  0.83 0.83 
Territory                 0.08 0.08 

avg 2.02 2.61 0.95 0.86 0.88 0.88 0.89 0.51 0.48 0.63 0.66 0.74 0.88 1.01 1.03 1.00 0.93 1.02 0.94 

 
Table 1 Market share (%) by model, between 2003 and 2019. Source: FENABRAVE. 

 

 The small SUV market model is an evolutionary game with twenty-three distinct players 

in 2020 (Table 1). Strategies are vectors of sixteen product attributes, each with five score 

levels; hence each player has a potential strategy space of 516, or S = ~ 1.5 × 10!! possible 

strategies. In principle, the probability of someone playing a certain strategy is !
!.#×!%!!

. 

However, effective strategy space is smaller because of firm and environment constraints. Still, 

the probability of two players playing the exact same strategy is very low, if the strategy space 

is considerably larger than the strategic group size (𝑆 ≫ 𝑁 = 23 ). The examination of 

strategies in the small SUV model, confirms there are no players with identical strategies (Table 

2). 
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model new brand style robust comf space trunk conv finish equip info econ perf agile safe price mkt% 

TCross 5 4 4 4 4 4 2 4 4 5 5 4 5 5 5 3 2.43 
Compass 3 5 5 5 5 4 3 4 5 5 5 1 3 4 4 1 2.42 
Renegade 1 5 5 5 4 2 1 4 5 4 5 1 1 3 4 3 2.22 
Creta 2 5 3 4 4 3 4 3 3 3 4 2 2 4 2 4 2.13 
HRV 2 4 4 3 3 3 4 5 3 1 2 4 3 5 5 3 2.09 
Ecosport 1 3 2 2 3 1 2 3 4 4 5 3 2 5 3 5 1.67 
Kicks 2 3 3 2 1 2 4 2 2 2 1 4 4 4 3 4 1.59 
Duster 3 2 2 5 2 5 5 2 2 2 4 1 2 2 2 5 1.08 
Captur 2 2 4 5 1 5 4 2 1 2 3 1 1 2 3 4 0.84 
Nivus 5 4 5 3 3 2 3 3 4 5 5 4 5 5 5 4 0.83 
Tracker 5 4 4 3 4 2 3 4 3 5 5 3 5 5 4 3 0.77 
WRV 3 4 1 3 2 2 2 5 2 1 1 4 3 4 4 5 0.58 
Tucson 3 5 4 4 5 5 5 5 5 5 4 3 5 3 5 1 0.44 
Cactus 4 1 2 1 4 2 1 2 3 4 3 2 2 2 2 5 0.41 
Tiggo5X 4 1 3 1 3 3 1 2 3 4 4 3 4 1 2 3 0.39 
2008 2 1 1 1 3 1 2 1 1 3 3 3 1 4 3 4 0.37 
iX35 1 5 3 3 4 4 5 2 4 3 4 1 3 1 2 2 0.36 
ASX 1 3 2 5 2 4 3 3 2 2 3 1 3 2 3 3 0.23 
Tiggo 3 1 2 1 1 1 3 1 1 2 2 1 1 2 1 5 0.23 
Sportage 3 2 5 4 5 5 5 5 5 3 1 1 4 3 5 2 0.19 
Tiggo7 4 1 4 1 5 4 3 3 4 5 5 3 4 1 2 2 0.14 
Eclipse 4 3 5 3 5 4 5 5 5 2 3 1 5 3 4 1 0.11 
Territory 5 3 2 2 3 5 3 3 4 5 4 2 3 3 3 1 0.08 

                avg 0.94 

 

Table 2 Product strategies and average market share. Sources: FENABRAVE; Quatro Rodas; UOL Carros; the 

authors. 

 

 In biology, strategies are called phenotypes and they are constrained by genetic, physical, 

and environmental factors. In business, “genetic” constraints are linked to a firm’s history, 

culture, brand policy and image. For instance, styling decisions are influenced by a firm’s DNA 

(identity) and history. Physical constraints are related to the possession of material, technical, 

and economic resources. Environmental restraints can have legal, social, ecological and market 

origins. Some attributes are harder to change in the short run. For instance, brand building 

demands continuous and long-lasting technical and marketing efforts – it is a short-term 

invariant. On the other hand, prices can be adjusted in a relatively short time. 

Strategic attributes are elements of a product’s phenotype, they tend to be stable over 

its life cycle, and are transmitted by inheritance. But some attributes can suffer mutations, like 

modifications or updates in product content. Some mutations are almost imperceptible – e.g., 

model-year detail updates, small running changes; others have significant impact in market 

fitness, like mid-life actions with substantial changes in styling and content. The Ecosport, 

launched in January 2003, was strong in attributes like novelty, styling, agility, and relatively 

affordable price. It received a mid-life facelift in October 2007, changing its front styling. In 

September 2012, a second generation was launched – a descendant that superseded the previous 

Ecosport. Most attributes, like comfort, convenience, agility, and price positioning, were 
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inherited. The first generation disappeared as a player, but strategy persisted in the next 

generation. However, the styling was mutated, and its impact was enough for a 75% increase 

in market share, from 2012 to 2013 (table 1). A mid-life update in August 2018 brought a 

significant mutation in several previously weak attributes – equipment, finish, and infotainment 

technology – to face the invasion of new entrants in the strategic group (Honda HRV, Jeep 

Renegade, Nissan Kicks, and others). The Ecosport was discontinued in 2021, becoming extinct 

in the marketplace, as Ford Motor Company ceased automobile production in Brazil. 

Fitness is the relative density of a product strategy and is expressed by stable and 

persistent market share. Competition for customer preference is the natural selection 

mechanism that determines fitness. The small SUV segment has been growing continuously 

and the entrance of new players have expanded the segment size - participation in the 

automobile market has been roughly proportional to the number of players (Fig. 4). However, 

players do not have an “easy life”. The intensity of competition is not a function of the number 

of players, but of the number of interactions – i.e., it increases by the square of the number of 

players (N2) (Sorensen 2000b). This explains some players experiencing significant decline in 

market share, despite the expansion in the overall segment size (table 1). 

 

 
Fig. 4 Number of small SUV models vs market share. Source: FENABRAVE. 

 

 If all players adopted the exact same strategies (under the same conditions), market 

share should be the same for each player. They would all be equal in the majority, with 

individual market share m𝑠 = &
'

  (ms = market share; m = market size; N = number of players). 

Historical data shows a small SUV holds 0.94% of the automobile market on average (Table 
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1). Players acting with different and advantageous strategies should enjoy 𝑚𝑠 > 0.94%. From 

table 1, winners in the small SUV game (the minority) are Ecosport, Duster, HRV, Renegade, 

Kicks, Compass, Creta, and TCross. 

Strong attributes are scored four or five points in the simulation. Close examination of 

minority strategies reveals differentiation, but also common traits. The CATPCA analysis 

resulted in attributes clustered into three major dimensions (Fig. 5), explaining 76,0% of data 

variance. Minority players are strong in attributes like comfort, convenience, finish, equipment, 

and infotainment (table 2), which are clustered in dimension 1. Equipment and infotainment 

technology are closely linked and related to price – more expensive vehicles tend to be better 

fitted. The same is valid for comfort, finish, and safety – distinction in those attributes tends to 

be followed by higher prices. Space and trunk go in direction opposite to economy and agility 

(dimension 2): small vehicles tend to be more fuel efficient and agile, while losing in passenger 

and luggage space in comparison to larger products. Those attributes are not particular to 

minority players. However, combinations of affordable prices, space, and trunk (e.g., Duster), 

or economy and agility (Ecosport, Kicks), seem to be winning propositions. A strong brand is 

an expression of legitimacy, and a long time is needed to gain recognition (Sorensen 2000a). 

Five of the eight minority players exhibit strong brands; small market share is related to less 

endowed brands (Table 2). Robustness goes beyond physical sturdiness, being also related to 

brand image (dimension 3). It is not just resistance to wearing and breaking, or off-roading 

capability, but it is linked to reliability (although the Jeep brand is strongly associated with off-

road vehicles).   

The analysis could go further. However, the above explanation should be sufficient as 

the objective of the automobile case study was merely to exemplify and to illustrate how the 

evolutionary game and minority rule frameworks can assist to understand strategic patterns and 

behavior. 
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Fig. 5 Categorical Principal Component Analysis (CATPCA) rotated component loadings (left) and dimensions 

biplot (right). 
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5. Conclusion and future research 

 

 The evolutionary game framework applied to an automobile market case provided 

valuable insights. Among the several product strategy features, some can be enhanced in short 

or medium terms, like pricing. Others are much harder – they can be invariant for a single 

product generation, like styling, interior space, and others. Brand is an expression of legitimacy, 

not easy to be acquired. Once possessed, it tends to persist. It is worth to invest in an image of 

robustness – which tends to be associated with reliability – for a firm’s long-term product 

success. Multiple attributes tend to be related in clusters (e.g., comfort, convenience, equipment, 

and infotainment technology) and – by selecting and focusing on them – firms benefit from 

synergies and efficient use of resources.  

 The case study was an illustration of both evolutionary games and the minority rule. It 

showed the framework is a useful tool to analyze an industry systematically, extracting focal 

points for product strategy making. It highlights the attributes a firm should pay attention to, in 

different time frames. Some actions can be specific to a single product, but others will require 

a continued effort that spans several product generations. It is worth remembering the aim of 

evolutionary games is the long-run persistence of market fitness. 

 The investigation was based on a single industry, limiting its capacity of generalization. 

But it showed the approach – identifying the elements from an evolutionary game perspective 

and constructing the theoretical framework – is meaningful to assist strategy decisions. 

Investigations involving other business settings and a variety of other algorithmic tools to 

generate the fitness functions would be valuable future research contributions.  
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Abstract 

Designing a new product, to be attractive to customers several years from its inception, is a 

major business challenge. The front-end of product development (the set of exploratory 

activities prior to project approval) is usually vague, unstructured, and based on heuristics. Most 

supporting tools and methods interpolate data and are anchored in the present and the past. 

However, new product decisions are made for the future: predictive knowledge should be 

extrapolated from current information. This paper proposes the front-end should be akin to a 

scientific inquiry, with systems thinking and predictive learning as mainstays to create customer 

value and reduce its “fuzziness”. 

 

Keywords: fuzzy front-end, predevelopment, concept design, systems thinking, prediction, 

statistical learning, machine learning, strategic decision making, set-based concurrent 

engineering, lean product development. 
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1. Introduction 

 

The front-end of product development (FEPD) comprises the activities preceding 

official approval and funding of a project – opportunity identification, idea generation and 

concept development [1]. It is often qualified as “fuzzy” because, in contrast to product 

development per se – clear, specific, systematic, and deterministic – the front-end is vague, 

ambiguous, unstructured, and probabilistic [2]. They are also called predevelopment activities 

and are often neglected, even if the fate of new products may be decided at this early stage [3]. 

Concept design is a key challenge in the FEPD. Product concept is a description of the 

technology, performance, features, and form of a product, or how it will satisfy customer needs 

[4]. It is an exclusive set of features (instances) – collectively they do not belong to other sets 

(concepts) [5]. It is difficult to map variables (concept features) and to make sense of them into 

coherent and integrated concepts. Product strategy is usually performed based on heuristics and 

businesses struggle to keep track of knowledge and to use it effectively. Relying on heuristics 

can sometimes bring reasonable judgment but may also produce systematic errors [6]. There is 

variability in the staff’s individual knowledge, skills, and experience. Often, a firm’s knowledge 

may not be available, be inaccessible or even be forgotten and lost [7].  

It is not uncommon for a recently launched product to be matched or surpassed by a 

new competitor, raising the bar, and leaving the former behind in customer value, sales, and 

profitability. There may be a contradiction in the product strategy process. Most supporting 

tools are rooted in the present and the past – competitor benchmarking, QFD (Quality Function 

Deployment), conventional market research, brainstorming and others. They are analytical 

techniques to interpolate data. But new product development needs to create value for the 

future: it should be predictive and extrapolate from data [8].  

Although there is an extensive literature on the FEPD, there are few studies on how 

knowledge is created in the process [9]. Most articles tend to focus on organizational aspects, 

tools, process models and competencies [10] [11]. Knowledge creation is usually assumed to 

be implicit in the formal process. This paper investigates the FEPD as a set of activities to create 

knowledge to understand and to predict customer needs and aspirations, using systems thinking 

and data-based simulation.   
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2. Method 

 

This study is grounded in literature review, theoretical model construction and 

simulation. With the question “knowledge creation in the front-end of product development” 

in mind, a literature review on fuzzy front-end, front-end, predevelopment, front-end of 

innovation and variations was performed. A Scopus query yielded 920 documents and Web-of-

Science, 362. Initial screening, based on title and abstract content, reduced the set to 308 items. 

Additional review on systems engineering, decision theory, knowledge creation, theory 

construction, set-based concurrent engineering, lean product development and statistical 

learning added 134 potentially relevant works. Detailed content analysis, according to rigor, 

relevance and alignment to the research topic, lead to the documents on which this work is 

based. 

Once literature was scrutinized, key concepts related to the front-end knowledge 

creation and decision-making were identified and defined. Definitions were compiled for 

theoretical fit, rigor and conciseness. A central proposition was made and a theoretical model 

showing both conventional and systemic approaches were built. The usefulness of a theory is 

subsumed by its capacity to predict a behavior. A computer experiment using an artificial neural 

network was conducted to simulate predictive learning in an automobile development case.  As 

previously stated, the aim was to understand the role of systematic predictive learning in the 

front-end of product development and to explain why and how it can lead to customer value 

creation. 
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3. Theoretical background 

 

The expression fuzzy front end (FFE) was coined by Reinertsen in 1985 [12]. FFE is the 

phase from the emergence of a new product need to the decision to commit resources in the 

development [13].  Its purpose – in economic terms – is to maximize the expected value (EV) 

of betting in the project [12], which is determined by its probability of success p, the upside of 

success U and the downside of failure D: . The FFE can increase EV by 

increasing the probability of success, increasing the upside, and reducing the downside. The 

latter can be accomplished by reducing uncertainty, getting better information about possible 

outcomes from existing information. Upside is increased by augmenting customer value.  

Woodroof [14] defines customer value as the evaluation of product features and 

performance, leading to the satisfaction of customer needs. Customer learning is the process of 

reducing the gap between what the company knows about customers and what they really value. 

The scholar remarks new learning tools are needed for predicting customer value. Tools such 

as QFD and conjoint analysis are too narrowly focused on current design decisions and are 

lacking in predictive power. Cooper and Edgett [15] also identified compelling customer value 

as the most important reason for new product development success, others being “front loading” 

(anticipating problems early), spiral development (learning loops), holistic approach, 

continuous learning, portfolio management and an evolved stage-gate system.  

Geyer, Lehnen, and Herstatt [16] conducted a survey to determine the most used FEPD 

support methods and why companies prefer or avoid certain methods. The selection criteria 

were more related to familiarity and ease of use than to pure efficiency. Companies tend to stick 

to traditional methods, such as internal data (e.g., sales reports), external reports (from 

consulting, technical associations etc.) and customer observation, whereas they should consider 

different methodologies to seek optimal results.  

Khurana and Rosenthal [17] cautioned product concept is a hard-to-reach moving 

target: a prediction challenge. Most companies do not have a clear understanding of customer 

needs. However, success in the marketplace depends on how well the product concept matches 

customer value. Kim and Wilemon [18] remark well-defined concepts are essential to 

understand project requirements and risks, as well as to avoid ill-informed decisions. Since FFE 

conditions are vague and ambiguous, it is better to consider a comprehensive set of alternative 

solutions and to build a good information system on customers, competitors, technology, and 

market conditions. Murphy and Kumar [19] point out the dynamic and unstructured nature of 

the front end as a challenge to generalize research findings. A project investment decision is 
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still largely guided by “gut feel”, suggesting firms are not fully aware of the evaluation methods 

available.  

Jetter [8] also remarked companies relied on guessing instead of structured methods for 

handling the fuzzy front-end. The author accentuates a product concept will affect future 

customer experience not only at a still coming launch time but till the end of its disposal (a time 

span of about twenty years for some products, like automobiles). There is also uncertainty about 

future competitor moves. Tools such as QFD and market surveys are insufficient because they 

rely on historic knowledge and experience. She cites scenario building, knowledge mapping 

and system thinking as alternatives.  

In a subsequent article, Schroeder and Jetter [20] continued to elaborate on FFE 

supporting tools. Among requirements for effective tools: capacity to handle uncertain, 

imprecise, and changing information; to process diverse information, turning tacit into explicit 

knowledge; to enhance information processing, avoiding oversimplification and decision bias. 

They emphasize a holistic systems-view as fundamental to provide critical understanding of 

dynamic relations and to encourage systemic learning and knowledge transfer among projects. 

The authors remark it is almost impossible to attribute an observed result (such as sales) to a 

certain decision (like a concept choice). Also impossible is to learn from decisions not chosen. 

Hence the role of simulation techniques, which support systemic learning by evaluating 

different decisions and their parameters. They encourage early information collection and 

problem solving through a wide range of hypotheses testing. They proposed systemic and 

holistic tools, capable of mapping fuzzy dynamic relations and extrapolating then into 

information about the future. 

Eling and Herstatt [21] conducted a comprehensive literature review on the FFE state-

of-art and concluded it still lacks a well-established conceptual framework and vocabulary, 

despite over three decades of existence. They identified the need for “a more holistic view on 

the topic of formalization”. 
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4. Conceptual definitions 

 

System: a set of elements, such as products, people, information, knowledge, and other assets, 

combined to meet a need (adapted from NASA – National Aeronautics and Space 

Administration [22]). Elements within a system have mutual relations among them and with 

the environment [23]. Complex systems exhibit properties absent in the mere sum of their parts, 

the emergent phenomena [23]; 

Theory: system of concepts integrated into propositions, within a defined domain [24]. The 

goal of theory is to reduce the complexity of the world (i.e., reduce uncertainty), based on 

explanation and prediction [25]; 

Systems theory: a level of theoretical model-building that lies between pure mathematical 

constructions and theories in specialized disciplines. It allows moving back and forth from both 

worlds of Platonic theory and fuzzy practice and facilitates interdisciplinary communication 

[26]; 

Systems engineering: a logical way of thinking to design, operate, manage and dispose a 

system (adapted from [22]); 

Concept: formally defined idea, capturing the essence of its meaning [25]. A unique mapping 

of arguments into values of a function (adapted from [5]); 

Proposition: causal relationship explaining how and why concepts are related [25]; 

Domain: context of application (when and where) of a concept [25]; 

Data: raw facts and numbers [7]; 

Information: interpreted data [7]; 

Knowledge: information assimilated by a person [7]; 

Uncertainty: gap between information needed to perform a task and information that is 

available. It is a function of number of outputs, number of inputs and the level of performance 

necessary for the task [27]; 

Judgment: process of determining payoffs of decisions in particular situations. Without 

prediction, the decision maker is forced to a blind decision (heuristic). In the absence of 

prediction, the value of judgment decreases. As the cost of predictions decreases with the 

development of statistical learning algorithms, demand for decision making will increase and 

so will the value of human judgment [28]; 

Prediction: rigorous extrapolation of new information from existing information [28]. Good 

predictions require sound theoretical understanding and reliable data on initial conditions. The 
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objective of prediction is “not to forecast but to construct alternative scenarios for the future 

and to analyze their sensitivity to error in both theory and data” [5]; 

Simulation: technique for understanding and predicting the behaviour of a system. Simulations 

are only as good as their assumptions [5]; 

Decision: choice derived from a judgment [28]; 

Learning: reduction in the gap between needed and available knowledge [14]; 

Statistical learning: techniques for inferring, modeling, and predicting from complex data sets 

[29] [30]. It covers the disciplines of statistics, data mining, and predictive analytics [31] [32]; 

Supervised statistical learning: building statistical models for prediction, based on examples 

(data labels) [30]; 

Data mining: divided into two phases: exploratory, where data is used to create knowledge, to 

improve decision-making and to provide customer value; and testing, to confirm relationships 

discovered in the previous step [32]; 

Predictive analytics: uses relations confirmed from data mining to predict future customer 

behavior, an event involving many variables [32]; 

Value: capability to satisfy a stakeholder’s need, created by the interaction of system elements 

in addition to their individual contributions (adapted from [22]). Better understanding of data 

leads to higher decision-making accuracy and to superior customer satisfaction [32]; 

Product development: process of transforming market and technology data into information 

that reduces uncertainty about customer needs, competition, and technology, raising the 

likelihood of success [33]. 
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5. Proposition and model 

 

Scientific management is a systematic way or a set of methods for understanding and 

solving business problems [34]. It is the application of analytic techniques to processes, analysis 

of activities, splitting the problem into smaller blocks, elimination of unnecessary ones, 

grouping and sequencing those activities. In the axiomatic modality, research is driven by an 

idealized model. Assumptions, variables, derived solutions, and insights are delimited within 

the scope of a model. Axiomatic research is usually normative, aiming at creating strategies, 

policies, and actions, or to optimize a newly defined problem [34].  

 

 

Fig.1. Conventional FEPD. 

Managers usually interpret information and rely on “gut feel” to make product decisions 

[17] [19] (fig.1). They certainly strive to extract meaning from data and information on 

customers, competitors, and technology, but the process is usually vague, subjective, and 

heuristic. On the other hand, a systems approach can discipline the FEPD [8] [20] [35]. More 

than a single problem-solving event, it turns into theory-building, a knowledge creation activity 

[35] not unlike the work of a scientist in the laboratory [36]. Learning is an iterative process 

that produces knowledge that can be abstracted and transferred into future projects [37] [36]. A 

judgment without prediction is mere “guessing” [28]. Simulation and prediction (extrapolation 

of new information using simulation) increase the value of decision-making [28]. Fig. 2 shows 

the model integrating both theory and prediction in product strategy decision-making.  

 

 

Fig.2. Systemic FEPD. 

 

Proposition: systems-thinking and predictive learning can reduce the uncertainty of the front-

end and drive customer value creation in product development. 
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6. Simulation 

 

Vapnik and Izmailov [38] proposed using the intelligence of a “teacher” to accelerate 

statistical learning. Human learning requires far fewer examples than machine learning, due to 

the use of “intelligence” (in this case, teacher’s intelligence) - in contraposition to brute force. 

A teacher provides privileged information - explanations, comments, and metaphors. The 

authors claim privileged information is ubiquitous and can be found in almost any problem. 

They propose using both data and statistical invariants to drive learning [39]. The idea of 

invariants finds an analogy in the role of a good instructor or expert to guide the learning process.  

Many potential variables or features of a problem are irrelevant for the task at hand. An 

expert (teacher) helps to construct statistical invariants latent in the problem. Based on their 

knowledge and experience, experts offer “shortcuts”, called predicates. Instead of initializing 

from a blank sheet of paper, the procedure starts by building on the expert’s wisdom. Vapnik 

and Izmailov [39] exemplify (jocosely) with the “duck test”: if it looks like a duck, swims like 

a duck and quacks like a duck, it probably is a duck (three predicates to qualify a duck, instead 

of many variables). The difference between invariants and features is that increasing invariants 

leads to more accurate predictions while the opposite is true for an increase in features, in this 

case requiring more training data.  

For the experiment, a Brazilian automobile market segment was chosen: small SUVs 

(sport utility vehicles). Customer data collection started with semi-structured interviews and 

“storytelling”. Six SUV owners were surveyed (three interviews, three storytelling). The 

interviews followed a predesigned script but were relatively flexible and lasted for about an 

hour each. In storytelling, users were asked to freely write an essay on their impressions and 

experiences. Interpretation of insights from those techniques yielded thirteen key value 

attributes, or independent variables (concept features): style, “ruggedness”, space, trunk, 

comfort, “nimbleness”, versatility, finish, features, connectivity, performance, economy, and 

safety. Although not explicitly mentioned, three features - novelty, brand, and price perception 

– were added. The selection of features, according to a researcher’s domain knowledge and 

experience plays the role of the expert’s invariant selection.  

Usually, additional data implies better learning, provided enough processing power and 

adequate algorithms are available. But data hunger is a problem in many real-life applications. 

The volume of data required is roughly proportional to the complexity of the model (number 

of independent variables). Sometimes, enough samples may not be available to model the 

problem. Hence, handling data should start with strategy and intelligence, using invariants and 
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predicates. First, identifying the problem; then, judiciously selecting the model features and 

determining which data is needed. Human judgment partially substitutes for data scarcity, by 

carefully selecting the features most likely to be relevant.  

Market share was chosen as the product competitiveness indicator (dependent variable). 

Sales data (vehicle registrations) were collected from the FENABRAVE - National Federation 

of Brazilian Vehicle Distributors - website (www3.fenabrave.org.br). The seventeen most 

representative products were selected for monthly sales figures from January 2013 to December 

2018. Market share is the ratio between product sales and total market size. Using market share 

instead of straight sales purges (or at least reduces) effects of market seasonality and economic 

fluctuations, when comparing data from different points in time. Market share is the target value 

y, to be compared to estimated value y-prime for calculating errors (residuals) in the functions.  

To synthesize the sample vectors, each product was evaluated according to the sixteen 

attributes (independent variables). Most sample vectors are recursive since their feature values 

are constant over time. However, some vectors may differ for the same product in different 

moments of time. For instance, “novelty” will decrease as time passes by. A product may be 

upgraded or customer perception may change over its life cycle. In a large company (e.g., an 

automobile manufacturer), such evaluation would rely on several resources: expert knowledge, 

proprietary research, static and dynamic testing, “tear down” etc. For this small-scale 

experiment, reviews from a specialized automobile magazine (https://quatrorodas.abril.com.br) 

were used as a proxy for part of the “expert knowledge and judgment”. A scale from one to five 

was used to evaluate attributes. Small SUV market share (target variable y) between 2013 and 

2018 has ranged from about 0.002 to 0.029. For normalization, they were scaled by a factor of 

200 to bring them close to the independent variable x range.  

The configuration of vector x, with features  is the product concept proposition from 

the “expert”. They represent a selected a priori finite set of predicates, which replace a 

potentially infinite set of functions (all possible product features, attributes, and combinations). 

Selected predicates are also invariants in the creation of customer value: they are not 

individually affected in importance for the customers (which is not the same as the technical 

compromises among product attributes that sometimes occur in practice).  

Every concept feature must be clearly defined (e.g., “economy” means fuel autonomy 

in kilometers per liter, split between 70% of urban and 30% of road use; “trunk” stands for 

volumetric luggage capacity and easy loading access, etc.). A concept is given by , 

where x is the feature variable,  is the expert’s privileged information and a , variable 
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parameter weight (calculated by the algorithm). As far as experts study customers, analyze 

relations among predicates, understand how they meet customers’ needs and aspirations and 

make those propositions clear and explicit, they are constructing a theory of customer value, to 

be tested in simulations, to predict the market acceptance (measured by market share) of a 

hypothetical product.  

In the process, 765 vector samples with sixteen independent feature variables (concept 

attributes) and target dependent values were synthesized. They were split in an 80:10:10 

proportion among training, test, and validation sets (they yielded slightly better performance 

than the default 70:15:15). Due to the relatively small sample size, a “shallow” neural network 

with one hidden layer was used.  

There is no consensus in the literature concerning the number of units in a hidden layer. 

A common bounding heuristic is between the ratio of input and output layer sizes and less than 

twice the input layer size (p). In the experiment, architectures ranging from p/2 to 2p nodes (8, 

10, 12, 16, 20, 30) were tried, yielding correlations between 0.89 and 0.95 - the best result was 

achieved with ten units. The hidden layer was activated by a hyperbolic tangent function g(z) 

= tanh(z). Target values are activated by the ReLU (rectified linear unit) function f = max (0, 

x).  

As most nonlinear optimization techniques, the Levenberg-Marquardt method iterates 

to find the minimum of a multivariate function. It seeks to minimize the sum of squared errors 

in the nonlinear function and acts as a combination of a Taylor series approximation (Newton) 

and the steepest descent methods [40]. The experiment was run on MATLAB™ R2018a, in a 

MacBook™ with 1.2 GHz Intel™ Core M processor. 
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7. Results 

 

The quality of result in a computer simulation is determined by its optimality – the 

extent a result achieved is the best possible [34]. The experiment yielded overall correlation 

coefficient R = 0.9485, after 15 epochs of 1,500 iterations. The correlation R for testing was 

0.9612 and for validation, 0.9579. It was a small-scale experiment, with sixteen independent 

variables, 765 samples and a relatively coarse evaluation scale with discreet values. 

Nevertheless, it shows a customer-centered approach using expert knowledge and product 

concept simulation can produce significant results. 

The combination of qualitative market research, evaluations from a specialized 

magazine and the researcher’s judgment and experience were used to generate features , 

which played the role of predicates and invariants (“privileged information” [39]) supplied by 

an expert. Features  were combined into a vector design x. The functions  are the 

set of hypotheses or the customer value theory in the project. The learning algorithm provided 

simulation and prediction based on that theory and yielded statistical validity. The acquired 

knowledge from the specific case can be abstracted to application in other settings (projects).  

 

 
 
Fig 3. Correlation fits (MATLAB™). 
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8. Conclusion 

 

Current product predevelopment practice may not be adequate. There is too much 

variability and loss of experience and knowledge. There is also lack of systems-view and 

integration. This article tackles a shortfall in the FEPD and suggests a systems approach 

supported by predictive learning. It integrates methodological rigor, human judgment, 

statistical learning, and customer-centered view. The human expert is an active participant in 

the learning process, neither a mere “guesser” nor just a data provider. A stable set of functions 

(the artificial neural network) becomes a knowledge repository and a tool for market 

simulation: customer value, product attributes, technical features and specs, sales, prices, 

competitive data, market history, technology evolution are contemplated.  

Machine learning extracts relationships that are difficult to map mentally or 

heuristically, but usually needs large amounts of training data. Data hunger is the Achilles’ heel 

of supervised learning [41]. Manufacturing turned-digital companies usually do not have access 

to the huge volume of data native digital companies do. This study suggests a way to partially 

reduce the substantial need for data, by substituting human judgment. By feeding qualitative 

information and expert domain knowledge, it is possible to preclude the need for massive 

amounts of data, which would be required in the case of blind data feeding. The objective was 

to pre-select key customer values and use statistical learning to weigh and to refine the relations 

among concept attributes. Narrowing the range of potential research features - which would 

otherwise be extensive and demand a proportionally larger amount of training data - leads to 

increased efficiency and speed. In a certain way, data quality was traded for quantity.  

The proposed model is an extension of substantive existing literature. It contributes by 

offering a holistic problem-solving framework, integrating both systems thinking and statistical 

learning, to explain and to predict in the FEPD. The learning process produces knowledge that 

can abstracted and transferred to other projects. However, the simulation was based on a single 

industry (automobile manufacturing) – a limitation. An artificial neural network was chosen as 

the simulation algorithm. However, that does not mean other tools - such as SVMs (support 

vector machines) - could not be equally or more effective. Future studies comparing the 

efficiency of alternative methods could be useful contributions. Overall, there is a need for more 

research on the FEPD as a knowledge creation process, more systemic and less fuzzy: a 

customer value creation laboratory. 
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