CLAUDIOMAR CARDOSO CUNHA

MODELAGEM PARAMÉTRICA DE ABERTURA EM CASCO RESISTENTE DE SUBMARINO

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia.

Área de Concentração:
Engenharia Naval

Orientador:
Carlos Alberto Nunes Dias

São Paulo
1999
Ao grupo de pessoas que, cada um a seu tempo e a seu modo, agiu como o farol da minha vida:

Francisco, Terezinha, Ana Maria, Abdias, Abdias Júnior, Maria Crimehilda, Germano e Sheila.

Muito obrigado.
Agradecimentos

Ao Prof. Dr. Carlos A. Nunes Dias, por sua orientação, amizade e incentivo;

À Fapesp, pelo auxílio despendido;

Aos Engs. Germano Gavarrão de Freitas e Rogério Aversa por sua ajuda e apoio;

Ao Departamento de Engenharia Naval da Escola Politécnica da USP, pelo uso de suas instalações;

E a todos os colegas, engenheiros e técnicos que, de uma forma ou de outra, participaram do desenvolvimento deste trabalho.
Resumo

Há algum tempo, os projetos de aberturas em vasos de pressão eram baseados em formulações empíricas. O grau de incerteza dos resultados obtidos através desta metodologia obrigava a utilização de altos coeficientes de segurança.

A utilização do método dos elementos finitos aumentou consideravelmente a confiabilidade reduzindo coeficientes de segurança e otimizando estruturas. Porém, devido à geometria que normalmente se faz presente em aberturas de cascos resistentes de submarinos, construir o modelo nem sempre é tarefa simples. Sendo necessário um trabalho adicional considerável, cada vez que algum parâmetro precisa ser alterado, durante processos de concepção ou de otimização da estrutura.

Os programas comerciais, que utilizam o método dos elementos finitos são, normalmente, ferramentas abrangentes de modo a poderem ser utilizados para a resolução de grande número de problemas. Esta generalidade tem como preço a complexidade de utilização. Por outro lado, os usuários comuns destes programas normalmente estão envolvidos com uma gama estreita de problemas, na maioria das vezes, com modelos muito parecidos; ainda assim, são obrigados a investir em treinamentos caros para operar os programas com a desenvoltura necessária.

Desenhou-se, então, um programa que gera modelos de elementos finitos de aberturas em cascos resistentes de submarino. Este programa conta com interface amigável e permite a preparação de modelos a custos mais baixos com algum controle de qualidade.
A utilização desta ferramenta aumenta a confiabilidade dos modelos, por viabilizar testes de convergência ao passo que melhora a qualidade do produto final uma vez que viabiliza o teste de um número maior de soluções.
Abstract

Openings in pressure vessels are usually designed based on empiric formulas. The doubts on the results obtained by this method leads to high project safety factors. The use of the finite element method reasonably increases the reliability of the project.

Although the method allows to use lower safety factors, building models of openings in submarine hulls are not always simple tasks. And there is also considerable additional work to be done when a parameter needs to be changed during project or optimization.

The finite element method commercial software available are usually generic; so they can be used to solve a great number of problems of different areas. Being generic the user usually needs time to learn how to use the program to solve his specific problem, which in a great number of times does not vary much.

A program was developed to generate finite element models to study openings in submarines hulls. This program has a friendly user interface and permits the generation of reliable quality models with low man time cost.

The use of this tool can increase the reliability of the models, making it possible to execute convergence tests, and to test a greater number of different solutions.
Errata

Claudiomar Cardoso Cunha

Modelagem Paramétrica de Abertura em Casco Resistente de Submarino.

O arranjo estrutural mostrado na figura 5.1.2 ilustra uma abertura interrompendo três cavernas. Esta configuração junto com o caso que apresenta apenas duas cavernas interrompidas representam mais de 75% dos casos encontrados na prática. A figura abaixo mostra um desenho esquemático de quando se tem duas cavernas interrompidas.

Abertura interrompendo duas cavernas
Sumário

1. Introdução ... 1
2. Objetivos do Trabalho ... 4
3. Justificativas do Trabalho .. 6
4. Revisão Bibliográfica ... 7
5. Análise do Problema ... 9
 5.1. A abertura do casco resistente ... 12
6. Metodologia ... 14
 6.1. A fase de análise ... 14
 6.2. A fase de projeto .. 15
 6.3. Características globais das áreas .. 16
 6.4. Principais características específicas das áreas 16
 6.5. A abordagem do Problema ... 17
6.6. Gerador de Modelos de Grelha Chapeada ... 18
 6.6.1. Análise ... 18
 6.6.2. Projeto .. 20
 6.6.3. Programação ... 23
6.7. Modelo de Junta Tubular .. 24
 6.7.1. Determinação do Comprimento do Modelo 24
 6.7.2. Simetria .. 25
 6.7.3. Geração da malha ... 25
6.8. Entrada Simplificada ... 28
 6.8.1. Geometria ... 28
6.8.2. Geometrias Possíveis .. 32
6.8.3. Carregamento .. 35
6.8.4. Condição de contorno .. 36
6.8.5. O Elemento Escolhido .. 37
6.9. Entrada Completa .. 39
6.9.1. Colar de Reforço ... 39
6.9.2. Reforço longitudinal entre caverna e tubo secundário 40
6.10. Problemas Corrigidos .. 40
6.11. Interfaces ... 41
6.11.1. Estudos iniciais de interfaces gráficas 43
7. Testes ... 44
7.1. Caso exemplo Greilha Chapeada .. 44
7.1.1. Chapa Ortotrópica .. 44
7.1.2. Teste de Convergência ... 47
7.1.3. Chapa Longa Reforçada .. 48
7.1.4. Teste de Convergência ... 51
7.2. Caso exemplo Junta Tubular .. 52
7.2.1. Teste de Convergência ... 53
7.3. Abertura Simplificada .. 55
7.3.1. Dados ... 55
7.3.2. Modelo Gerado ... 56
7.3.3. Resultados Obtidos .. 58
7.3.4. Malhas utilizadas no teste .. 59
8. Abertura Completa ... 60
 8.1. Colar de reforço ... 60
 8.2. Reforço longitudinal .. 61
 8.3. Teste de convergência ... 62
 8.4. Resultados Obtidos ... 63

9. Sugestões para pesquisas futuras ... 66
 9.1.1. Opção para flanges modelados com elementos de treliça 66
 9.1.2. Opção para almas de cavernas trabalhando como membrana 66
 9.1.3. Opção para elementos maiores fora da região de interesse 66
 9.1.4. Melhorar a interface gráfica ... 67

10. Conclusões ... 68

11. Bibliografia ... 70

12. Bibliografia Complementar ... 71
<table>
<thead>
<tr>
<th>Figura</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1 Arranjo estrutural típico</td>
<td>9</td>
</tr>
<tr>
<td>5.1.2 Vistas da Abertura</td>
<td>10</td>
</tr>
<tr>
<td>5.1.3 Geometria base</td>
<td>11</td>
</tr>
<tr>
<td>6.6.2.1 Exemplo de grelha chapeada</td>
<td>21</td>
</tr>
<tr>
<td>6.6.2.2 Desenho esquemático das áreas</td>
<td>22</td>
</tr>
<tr>
<td>6.6.3.1 Fluxograma do programa principal</td>
<td>23</td>
</tr>
<tr>
<td>6.7.3.1 Malha grosseira</td>
<td>25</td>
</tr>
<tr>
<td>6.7.3.2 Malha refinada</td>
<td>26</td>
</tr>
<tr>
<td>6.7.3.3 Vista Planificada do tubo principal</td>
<td>27</td>
</tr>
<tr>
<td>6.8.1.1 Divisão do casco em áreas</td>
<td>29</td>
</tr>
<tr>
<td>6.8.1.2 Área parametrizada</td>
<td>30</td>
</tr>
<tr>
<td>6.8.2.1 Região proibida</td>
<td>33</td>
</tr>
<tr>
<td>6.8.2.2 Modelo sem caverna na simetria</td>
<td>34</td>
</tr>
<tr>
<td>6.8.2.3 Modelo com caverna na simetria</td>
<td>34</td>
</tr>
<tr>
<td>6.8.3.1 Carregamento</td>
<td>35</td>
</tr>
<tr>
<td>6.8.4.1 Condições de Contorno</td>
<td>37</td>
</tr>
<tr>
<td>6.11.1.1 Exemplo de interface gráfica</td>
<td>43</td>
</tr>
<tr>
<td>7.1.1.1 Grelha chapeada</td>
<td>47</td>
</tr>
<tr>
<td>7.1.2.1 Divergência Percentual</td>
<td>47</td>
</tr>
<tr>
<td>7.1.2.2 Tensão máxima na grelha chapeada</td>
<td>48</td>
</tr>
<tr>
<td>7.1.3.1 Chapa longa reforçada</td>
<td>50</td>
</tr>
<tr>
<td>7.1.4.1 Tensão máxima na chapa longa</td>
<td>51</td>
</tr>
</tbody>
</table>
Figura 7.1.4.2 Desvio na chapa longa ... 51
Figura 7.2.1 Modelo de junta tubular .. 53
Figura 7.2.1.1 Comportamento da tensão na junta tubular 54
Figura 7.2.1.2 Desvio relativo na junta tubular 54
Figura 7.3.2.1 Vistas da geometria gerada .. 56
Figura 7.3.2.1 Vistas da Malha .. 57
Figura 7.3.2.2 Detalhes do "Gusset Plate" .. 57
Figura 7.3.3.1 Diagrama de tensões da Abertura Simplificada 58
Figura 7.3.3.2 Detalhe do diagrama de tensões para a Abertura Simplificada 59
Figura 7.3.4.1 Malha mais refinada (esq.) e menos refinadas (dir.) 59
Figura 8.1.2 Colar de Reforço ... 60
Figura 8.2.3 Detalhe do reforço longitudinal 61
Figura 8.3.1 Gráfico de tensão .. 62
Figura 8.3.2 Gráfico do número de equações 63
Figura 8.3.3 Tempo de Processamento .. 63
Figura 8.4.1 Tensões de von Misses .. 64
Figura 8.4.2 Diagrama de tensões com reforço longitudinal e colar 65
Figura 8.4.3 Deformações (escala 5x) ... 65
Lista de Símbolos

R Raio
D Diâmetro
Yc Posição y da caverna
X(t,s) Coordenada nodal X parametrizada
Y(t,s) Coordenada nodal Y parametrizada
Z(t,s) Coordenada nodal Z parametrizada
NroElRad Número de elementos na direção radial.
s parâmetro
t parâmetro
L comprimento
B largura
H altura
LII Comprimento entre momentos nulos.
\(\gamma_{II} \) Coeficiente de redução.
LCC Comprimento da chapa colaborante
\(\sigma_{\text{max}} \) Tensão máxima.
q Carga distribuída
YLN Posição Y da linha neutra
I Momento de inércia à flexão
1. **Introdução**

A peculiaridade dos arranjos estruturais, presentes em um projeto de abertura em cascos resistentes de submarinos, nunca permitiu o desenvolvimento de formulações analíticas para resolver os problemas inerentes ao projeto.

Os projetos eram, então, baseados em formulações empíricas construídas, em grande parte, através da experiência acumulada. Esta metodologia de obtenção de conhecimento tem como principais desvantagens custos elevados e prazos largos, além de níveis nem sempre satisfatórios de precisão que exigem altos coeficientes de segurança.

Não só como alternativa a esta metodologia, na construção do ferramental de cálculo utilizado em projetos, mas também no sentido de complementar a forma de obtenção destes resultados, surge então, o método dos elementos finitos. A utilização deste método oferece redução significativa dos custos e do tempo necessários para avaliar o comportamento de uma configuração estrutural.

Mas o potencial deste método, como ferramenta de projeto, ainda pode ser melhor explorado. A utilização dos programas comerciais de elementos finitos mostra que a interface com o usuário é própria para a análise de pequenas peças. É possível observar-se uma infinidade de facilidades para a criação de pequenos modelos. Entre estas facilidades pode-se notar a geração automática de malhas, formas simplificadas de aplicação de carregamentos e condições de contorno, além de recursos gráficos avançados que permitem
uma boa visualização do que está sendo feito. Entretanto, todas estas facilidades não são suficientes quando o modelo a ser criado atinge grandes proporções.

Uma alternativa para grandes modelos pode ser a construção de programas com bibliotecas de modelos parametrizados de componentes que podem ou não ser utilizados na montagem do modelo final. Como exemplo, pode-se citar um programa gerador de modelos de abertura em casco resistente de submarinos com uma biblioteca de modelos de componentes que a prática julgue necessários. Cada combinação de peças é uma nova solução de engenharia que pode ser analisada sob outros parâmetros como custo e facilidade construtiva.

Desta forma, aproveita-se melhor o potencial da ferramenta pois um número maior de opções pode ser testado. Aumenta-se, ainda, a confiabilidade dos modelos pois testes de convergência tornam-se viáveis e avaliam não mais um modelo, mas, todos os modelos que vierem a ser criados por este programa.

A construção desta ferramenta exige ainda um questionamento mais profundo dos modelos, tanto físicos quanto matemáticos, utilizados na representação do problema. Esse questionamento pode revelar modelos alternativos que resultam em análises mais rápidas e/ou mais precisas. Isto será possível se os modelos utilizarem elementos diferentes e condições de contorno diferentes dependendo do nível de precisão e velocidade desejados. Por exemplo, pode-se gerar, dependendo da fase do projeto, modelos com graus de refinamento diferenciado, modelos com hipótese de simetria ou modelos completos que
podem ser utilizados em fases finais do projeto. Este questionamento quase nunca é possível em um ambiente de produção.
2. **Objetivos do Trabalho**

O programa ideal, com as características citadas na introdução, não é um produto acabado; trata-se de um produto dinâmico que depende de grande interação com o usuário para aumentar sua aplicabilidade. O conhecimento sobre o produto é o embasamento mais importante para sugerir alterações. Em casos de projetos de grandes proporções, as alterações normalmente acontecem em partes localizadas do projeto. O que é sugerido no momento é que a parte que permanece inalterada seja gerada de forma automática. A combinação de peças existentes na biblioteca possibilita o estudo de uma grande quantidade de casos. Quando for necessário a utilização de uma peça não existente na biblioteca constrói-se um modelo paramétrico da mesma e a biblioteca cresce um pouco mais.

É preciso, então, fazer um programa, mesmo que ele não atenda a todos os casos porque espera-se que ele nunca atenda. A utilização da ferramenta mostrará quais novos componentes precisam ser criados.

Um outro objetivo deste trabalho é permitir a utilização do método de elementos finitos por profissionais que trabalham na engenharia do produto. Sem que o mesmo tenha que ser, necessariamente, um analista numérico, o qual muitas vezes conhece pouco do produto apesar de conhecer bastante do método. Desta forma, adquire grande importância no projeto a interface com o usuário. Esta interface deve ser a mais próxima possível dos programas que lhe são familiares para reduzir o impacto inicial que sofre, a maioria dos novos usuários de qualquer programa.
Inicialmente será desenvolvida uma interface, seguindo os padrões windows, contando inclusive com um sistema de ajuda "on line", para facilitar a utilização da ferramenta e reduzir os custos de treinamento. Esta interface poderá, também, sofrer alterações ao longo do desenvolvimento do trabalho.
3. **Justificativas do Trabalho**

Os investimentos necessários para o desenvolvimento desta ferramenta de projeto podem ser justificados se forem consideradas as seguintes vantagens:

a) A existência de uma ferramenta desta natureza aumenta a quantidade de soluções que podem ser testadas. Por exemplo, aquelas que nunca foram modeladas porque a probabilidade de não servirem não justificava os custos de modelagem.

b) O ganho de escala, pressupondo-se que cada modelo de peça possa ser usado em mais de uma análise, viabiliza uma discussão mais aprofundada na criação dos mesmos, permitindo que se discutam hipóteses adotadas, modelos matemáticos e modelos físicos utilizados com uma profundidade sem par em um ambiente produtivo.

c) Uma vez definidas as hipóteses que regem o problema, todos os modelos serão criados com as mesmas hipóteses, garantindo assim um mínimo de controle de qualidade.

d) Há uma redução nos custos de mão de obra, no momento em que se reduz o número de pessoas, com a qualificação necessária, para analisar resultados de programas de elementos finitos ou criar malhas.

e) Torna-se ainda possível realizarem-se testes de convergência. Estes testes permitem otimizar o grau de refinamento de malha reduzindo o tempo de processamento, no caso de malhas muito refinadas, ou a possibilidade de erros, no caso de malhas muito grosseiras.
f) Uma interface amigável possibilita uma maior interação entre profissionais com grande conhecimento do produto, e sem conhecimento do método dos elementos finitos, com profissionais com alto conhecimento no método dos elementos finitos que normalmente não conhecem o produto; o que pode trazer grandes ganhos para o projeto.

4. Revisão Bibliográfica

LEITE, E., Análise de Tensões nas Regiões de Aberturas em Vasos de Pressão Cilíndricos - Aplicação ao Caso de uma Escotilha de Submarino, São Paulo, 1983.

Esta dissertação aborda, com boa profundidade, o comportamento de aberturas em cascos resistentes de submarinos. No trabalho, LEITE, faz um levantamento dos efeitos de concentração de tensões na região de abertura.

Apesar de disponibilizar uma quantidade razoável de informação a cerca do objeto de estudo, LEITE detém-se a estudar os fenômenos relativos à abertura; usando o método dos elementos finitos como ferramenta para este estudo não tendo a preocupação de criar um pré processador para estudar o problema.

Como parte do trabalho na sua tese de Doutorado, MASSAROTI desenvolve um pré processador para modelos de junta tubular. Seu pré processador cria modelos utilizando elementos sólidos para estudar fatores de concentração de tensão em juntas tubulares.
Apesar da geometria mais simples que rege este tipo de problema, há, nesse trabalho, muita informação sobre pré processadores.

Esta obra descreve, detalhadamente, técnicas para descrever superfícies. Tais conceitos têm grande aplicabilidade na criação dos algoritmos responsáveis pelo cálculo das coordenadas nodais de modelos de elementos finitos.

A obra descreve os conceitos envolvidos no projeto do casco do submarino como um todo, mostrando critérios de falha e esclarecendo o momento do projeto onde os parâmetros como espessura do casco e espaçamento entre cavernas são estabelecidos.
5. **Análise do Problema**

O casco de submarino é um vaso de pressão que trabalha normalmente submetido a pressão externa. Normalmente, estas estruturas são constituídas de trechos cónicos, calotas polares e trechos cilíndricos usualmente reforçados, como pode ser visto na Figura 5.1.1.

![Diagrama do casco de submarino]

Figura 5.1.1 Arranjo estrutural típico.

A região de abertura em um casco resistente de um submarino tem uma formação típica como se pode observar na Figura 5.1.2.
Figura 5.1.2 Vistas da Abertura
Normalmente, essa geometria é composta pela união de dois tubos, um deles com reforços que podem ser interrompidos pelo tubo menor. Para um contato inicial com sua nomenclatura, pode-se observar a Figura 5.1.3.

Figura 5.1.3 Geometria base

Existe uma infinidade de opções para se projetar uma abertura num casco resistente de um submarino. Parâmetros como o diâmetro da abertura, o diâmetro do casco, o número de cavernas interrompidas, a espessura das chapas e a forma do “gusset plate”, entre outros, combinam-se formando um universo de opções relativamente grande.
Para automatizar a geração de um modelo, escolheu-se uma geometria como sendo representativa e imaginou-se as variações que esta poderia sofrer. A Figura 5.1.3 mostra uma geometria tomada como base para o desenvolvimento dos modelos.

Por tratar-se de uma etapa do projeto estrutural do submarino, a qual só tem lugar quando alguns outros parâmetros do projeto já estão definidos, o projeto da abertura no casco resistente do submarino usa parâmetros definidos em fases anteriores do projeto. Estes parâmetros são dados de entrada para o pré processador mas não são parâmetros de otimização da estrutura uma vez que já foram definidos. É importante, então, além de levantar os parâmetros relevantes à execução do projeto da abertura no casco resistente, diferenciá-los em: parâmetros de otimização (os quais podem ser alterados na busca de uma solução melhor) e parâmetros já definidos.

5.1. A abertura do casco resistente

O arranjo estrutural típico da abertura em um casco resistente de um submarino é constituída por um tubo que penetra o casco resistente, podendo ou não interromper cavernas.

Nos casos em que não há cavernas interrompidas, o usual é, quando necessário, reforçar a região da abertura simplesmente com colares. Quando cavernas são interrompidas, colares de reforço já não são suficientes, sendo necessário um arranjo estrutural mais elaborado para que estas cavernas não percam suas funções estruturais.
Para se chegar a este arranjo estrutural é preciso conhecer um pouco como a estrutura trabalha.

Uma das principais fontes de altas tensões na abertura do casco resistente é a flexão do casco junto ao cordão de solda que une o tubo de entrada e o casco resistente. Este efeito deve-se à forma como o tubo de entrada transmite ao casco os esforços que a pressão lhe impõe no tampo.

Outro ponto importante é o comportamento das cavernas interrompidas. Quando uma caverna interrompida sofre a pressão externa, sua tendência é fechar-se apoiando-se no tubo da entrada o que pode gerar tensões de flexão no mesmo.

O fechamento da caverna não será de forma homogênea; a rigidez do flange faz com que a extremidade da caverna interrompida tenha deslocamentos maiores no flange e menores nos pontos que estão próximos ao casco. Este comportamento precisa ser evitado para que a caverna continue trabalhando como se não houvesse sido interrompida. Esta é a tarefa do "gusset plate" que também evita concentrações de tensões entre o flange da caverna interrompida e a parede do tubo de entrada.

Esta discussão revela mais alguns parâmetros que regem o problema: diâmetro do tubo de entrada (requisito do armador), espessura do tubo de entrada, espessura do colar de reforço, raio externo do colar de reforço e dimensões do "gusset plate".
6. **Metodologia**

O pré processador será desenvolvido, inicialmente, utilizando-se o programa ALGOR como ferramenta de cálculo. Esta restrição é tênue porque, com um esforço não muito grande, é possível gerar arquivos universais que podem ser resolvidos em uma gama maior de processadores; porém, adotar a simplificação de gerar modelos apenas para o ALGOR pode simplificar bastante o trabalho.

O desenvolvimento do programa envolveu três fases distintas: análise, projeto e programação. Na fase de análise buscou-se uma maior compreensão do problema, conhecer mais a fundo a geometria que seria modelada, suas condições de contorno, como poderia ser feito um modelo de elementos finitos de estruturas com este tipo de geometria, um levantamento inicial dos parâmetros envolvidos no problema além de escolher a abordagem que seria usada na resolução do problema.

Escolhida a abordagem, passou-se à fase de projeto. A importância desta fase estava na idealização dos modelos adotados para executar a fase de programação. Em outras palavras, nesta fase decidiu-se quais rotinas seriam implementadas e o que cada uma delas faria. À fase de programação ficou reservado escrever o código e depurar o programa.

6.1. **A fase de análise**

Divide-se a estrutura, a ser discretizada, em áreas parametrizáveis. Entende-se por áreas parametrizáveis, neste trabalho, aquelas com quatro lados dos quais dois lados opostos são,
necessariamente, retos. Esta exigência foi imposta para facilitar o algoritmo de cálculo das coordenadas nodais; é possível fazer um programa sem essa exigência o que não parece representar ganho no presente caso. Maiores informações sobre este assunto podem ser encontradas em ZEID[6]. Usando esta metodologia serão obtidos apenas elementos quadriláteros.

Para determinar a divisão da estrutura, são consideradas as delimitações de área impostas pelo problema, como por exemplo a presença de cavernas. Algumas vezes, com o objetivo de facilitar a parametrização das áreas, limitações adicionais podem ser adotadas. Além da posição das cavernas, podem ser citadas como limitações geométricas: o fim do casco e a linha de solda entre o casco e o tubo de abertura. Isto é importante porque a presença de uma caverna impõe que exista uma linha de nós com posição muito bem determinada na discretização do casco. Estes são os nós através dos quais a caverna se comunica com o casco.

Além de definir as áreas, também é nesta fase que se determina os principais parâmetros para a discretização da estrutura.

6.2. A fase de projeto

A pergunta a ser respondida nesta fase é como estas áreas serão construídas. Passa-se, então à definição dos modelos matemáticos que descreverão as áreas já definidas. Acha-se as equações paramétricas de cada área. Define-se como será a relação entre o programa
principal e cada uma das áreas bem como a metodologia de aplicação de carregamentos e condições de contorno.

6.3. _Características globais das áreas_

Cada área foi imaginada como sendo uma entidade capaz de prestar os serviços de criação de nós e geração de elementos partindo de alguns parâmetros. Deste modo, tudo o que o programa principal precisa fazer é requisitar os serviços de cada área quando e se precisar. Como vantagens desta metodologia é possível citar: uma quantidade menor de erros, pois cada área pode ser escrita e testada separadamente, reaproveitamento de código e ainda, a facilidade de inclusão de novos modelos de peças.

6.4. _Principais características específicas das áreas_

- Todas as áreas geram nós e elementos.
- Todas as áreas têm equações paramétricas de curvas.
- Quase todas as áreas têm relação com outras áreas precisando, para isso, conhecer os números dos nós das áreas vizinhas.
- Todas as áreas precisam informar o número total de nós e elementos que elas têm.
- Todas as área precisam informar o número de seu nó inicial.

A parte mais importante em cada área é formada por suas funções de geração dos nós e elementos.
6.5. **A abordagem do Problema**

Para uma melhor sistematização optou-se por trabalhar separadamente as dificuldades que seriam encontradas no decorrer do processo. Deste modo, antes de abordar o problema da abertura no casco resistente do submarino, foram abordados outros problemas como a grelha chapeada que trata de reforços sem que seja necessário preocupar-se com curvatura ou interseção entre tubos; a junta tubular para resolver o problema de interseção entre tubos sem que seja necessário preocupar-se com reforços internos inteiros ou interrompidos; a entrada simplificada em cascos resistentes de submarinos no qual a principal preocupação é juntar os conhecimentos adquiridos nos programas anteriores e modelar o "gusset plate" sem preocupar-se com modelagem de colares de reforço e reforços longitudinais. Finalmente implementa-se o pré processador completo para a entrada em cascos resistentes de submarinos.

O trabalho com modelos simples tem outra vantagem: possibilita a comparação de resultados de testes de convergência com resultados obtidos usando-se modelos teóricos. Encontram-se, neste trabalho, dois casos como este: no primeiro utiliza-se a teoria simples de viga para o cálculo de chapas longas e, no segundo, o modelo da placa ortotrópica usado para o cálculo de grelhas chapeadas. Mesmo conhecidas as limitações destas metodologias de cálculo, é muito interessante ter uma forma de comparar resultados.
6.6. **Gerador de Modelos de Grelha Chapeada**

6.6.1. Análise

A principal vantagem de se implementar um programa de grelha chapeada é discutir problemas como aplicação automática de cargas distribuídas, condições de contorno e geração automática de reforços igualmente espaçados em um contexto simplificado.

Devido sua geometria simplificada, a análise, neste caso, tem a missão principal de determinar os parâmetros que regem o problema. Nesta fase não será necessário adotar restrições para as áreas além das naturalmente impostas pela presença dos reforços.

6.6.1.1. Parâmetros:

São parâmetros relevantes para este modelo: largura, altura, comprimento, número de reforços em cada direção, espessura da chapa de face, espessura dos reforços, número de elementos em cada uma das direções; condições de contorno e carga; neste caso pressão constante em toda a chapa de face.

6.6.1.2. Simplificações Adotadas

6.6.1.2.1. Condições de Contorno de Engastamento

A chapa de face da grelha chapeada encontra-se engastada em todos os seus lados apesar dos reforços estarem simplesmente apoiados. Isto foi adotado como simplificação inicial para facilitar a implementação do programa.

Alguém esforço adicional, como implementar alterações que permitissem gerar modelos de grelhas engastadas, combinações de lados engastados e lados apoiados ou, ainda, utilizar
condições de contorno de simetria, poderia aumentar em muito a aplicabilidade deste programa. Mas, estas melhorias foram deixadas como sugestões para futuros projetos por acrescentarem pouco, como passo, na direção do objetivo final.
6.6.1.2.2. Reforço igualmente espaçados

Uma outra simplificação extremamente útil, na fase inicial do trabalho, foi adotar espaços iguais entre reforços. Apesar do trabalho adicional para abrir mão desta simplificação não ser tão grande, também não acrescentará muito para o trabalho final.

6.6.1.3. Peculiaridades do Modelo

6.6.1.3.1. A alma dos reforços trabalham como membrana

Este fato dá a liberdade de utilizar elementos de membrana ao invés de casca para modelar esta parte da estrutura. Tal fato não foi utilizado para a grelha chapeada mas poderá ser explorado nas fases seguintes.

6.6.1.3.2. O trabalho dos flanges

A forma como os flanges são solicitados permite que sejam modelados usando elementos de treliça ao invés de elementos de placa. Este procedimento diminui o custo de processamento aumentando a precisão dos resultados. Tal fenômeno também deverá ser utilizado em etapas posteriores do trabalho.

6.6.2. Projeto

Para melhor ilustrar o projeto, será usada, como exemplo, uma grelha chapeada com três reforços em cada direção, como pode ser visto na Figura 6.6.2.1:
Figura 6.6.2.1 Exemplo de grelha chapeada

Para efeito de programação, observa-se, na Figura 6.6.2.2, quatro tipos diferentes de áreas delimitadas pelas posições dos reforços: A área A1 só precisa gerar seus nós e elementos sem a preocupação de interface com outras áreas. Já as áreas que vão de B1 a D1, além de gerar seus nós e elementos, têm que fazer a interface com as área que se encontram imediatamente a sua esquerda. Sendo necessário, portanto, que a mesma conheça os nós da extremidade direita da sua área vizinha a esquerda. De forma bastante similar, as áreas de A2 a A4 também têm que fazer a interface com apenas uma área; a que lhe está imediatamente acima. O restante das áreas, aquelas que vão de B2 a D4, com uma missão um pouco mais difícil, precisam fazer interface com três áreas diferentes: Com a sua vizinha de cima, com a vizinha da esquerda e com a área que faz interface apenas com seu canto superior esquerdo.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Elementos internos**
- **Elementos de ligação com a área da esquerda**
- **Elementos de ligação com a área de cima**
- **Elementos de ligação com a área de cima e da esquerda**
- **Posição dos reforços**

Figura 6.6.2.2 Desenho esquemático das áreas
6.6.3. Programação

Não cabe aqui entrar em mais detalhes de programação mas vale ressaltar um fluxograma do processo.

Figura 6.6.3.1 Fluxograma do programa principal
O suporte para esta forma modular de pensar a programação é fornecido por linguagens orientadas a objeto; JAMSA [10]. Seguindo a nomenclatura apropriada, cada área seria chamada de classe.

6.7. **Modelo de Junta Tubular**

Entre os principais desafios desta etapa encontram-se trabalhar com curvaturas e com a geometria da interseção entre tubos. A curvatura inclui fatos novos na discussão como o comprimento de tubo a partir do qual a influência da junta tubular não mais é percebida no resto da estrutura; fator que determina o comprimento do modelo.

6.7.1. **Determinação do Comprimento do Modelo**

A curvatura apresentada pela estrutura impõe um amortecimento que dificulta a propagação de efeitos devido a carregamentos e outras perturbações ao longo da estrutura. Isto permite que não seja necessário modelar todo o casco para estudar os efeitos da existência de uma entrada no casco. HARVEY [1] propõe um valor de comprimento além do qual os efeitos de uma perturbação não mais são percebidos pelo restante da estrutura.

\[L = 4.9\sqrt{R.t} \]

Onde:

- \(R \) = raio de curvatura;
- \(t \) = espessura do tubo.

Adota-se, então, este valor como critério para a escolha do comprimento do modelo.
6.7.2. Simetria

A junta tubular apresenta simetria geométrica e de carregamento em relação a dois planos. Um transversal e outro longitudinal. Estes fatos foram aproveitados na elaboração do pré processador para juntas tubulares com restrição aos graus de liberdade de translação para fora do plano dos nós que encontram-se em planos de simetria e restrição aos graus de liberdade de rotação em torno dos eixos contidos nos planos de simetria para estes mesmos nós.

6.7.3. Geração da malha

Um dos objetivos básico deste programa é ser capaz de gerar malhas de forma paramétrica. As Figura 6.7.3.1 e Figura 6.7.3.2 mostram que este objetivo foi atingido.

Figura 6.7.3.1 Malha grosseira
Para uma melhor visualização da malha, imaginou-se uma área planificada como mostrado na Figura 6.7.3.3. As retas (3) e (4) foram consideradas uma única curva oposta à curva (1).

A parametrização destas curvas pode ser vista a seguir:

\[s = \left(\frac{D}{2}\right) \arcsen\left(\frac{d}{D}\right) \sen(\theta) \]

(1)

\[y = \left(\frac{D}{2}\right) \cos(\theta) \]

\[y = L \hspace{1cm} \text{se } \theta < \arctg\left(\pi \frac{D}{2L}\right) \]

(3-4)

ou

\[s = \pi D \sec(\theta) \geq \arctg\left(\pi \frac{D}{2L}\right) \]
Figura 6.7.3.3 Vista Planificada do tubo principal

Onde:

\[D = \text{Diâmetro do Casco.} \]

\[d = \text{Diâmetro do tubo de entrada.} \]

Uma vez parametrizadas as curvas que delimitam a área, os pontos internos podem ser obtido através da interpolação linear das coordenadas dos pontos da periferia.

Para dar a esta área plana a forma tubular, aplica-se uma transformação às coordenadas dos nós gerados; como a seguir:

\[x = \frac{D}{2} \cdot \sin(2.\frac{s}{D}) \]

\[z = \frac{D}{2} \cdot \cos(2.\frac{s}{D}) \]

\[y = y \]

Um problema encontrado, que poderia ser grave se não evitado, é a inversão da incidência seguida para gerar os elementos. Isto poderia resultar em um modelo com pressão aplicada para fora quando espera-se uma pressão para dentro e, ainda, causar inconsistência no cálculo da matriz Jacobiana BATHE [5].
Com os nós sendo gerados usando a técnica supra mencionada, e devido à geometria do problema, a razão de aspecto de alguns elementos não ficou muito boa. Este problema será resolvido sem maiores dificuldades nas próximas fases do trabalho; tal resolução possibilitará a geração de malhas menores e mais concentradas em regiões de maior interesse junto à interseção do tubo.

6.8. *Entrada Simplificada*

6.8.1. Geometria

6.8.1.1. Parametrização das Áreas que Compõem o Casco

Para gerar a malha do casco de forma automática, o mesmo foi dividido em áreas de fácil parametrização de modo a evitar a presença de elementos triangulares. A divisão do casco pode ser vista na Figura 6.8.1.1.

Para melhor compreensão da sistemática de parametrização, descreve-se a parametrização de uma das áreas do casco. Como exemplo, toma-se a área junto ao plano de simetria transversal e ao tubo de entrada.
A área projetada, que pode ser vista na Figura 6.8.1.1 ressaltada na cor verde, é delimitada por duas retas e dois arcos os quais são descritos pelas equações paramétricas a seguir:
Figura 6.8.1.2 Área parametrizada

\[X_i(t) = R_i \cdot \cos(\lambda_i(t)) \]
\[Y_i(t) = R_i \cdot \sin(\lambda_i(t)) \]

onde:
\[\lambda_i(t) = \theta_{or} + \frac{(\theta_h - \theta_{oi})}{\text{NroElC}} \cdot t, \]
\[0 \leq t \leq \text{NroElC}, \]
\[\theta_{oi} = \arcsen(Y_{oi} / R_i) \]
\[\theta_h = \arcsen(Y_{h} / R_i) \]

Para \(i=1,2 \).

Onde \(\text{NroElC} \) pode ser entendido como número de elementos circunferenciais.

As coordenadas de qualquer ponto contido na área parametrizada podem ser obtidas através das equações a seguir:

\[X(t,s) = X_1(t) + s \cdot (X_2(t) - X_1(t)) / \text{NroElRad}, \]
\[Y(t,s) = Y_1(t) + s. (Y_2(t) - Y_1(t))/\text{NroElRad} \]

e

\[Z_4(t,s) = (R_p^2 - X(t,s)^2)^{1/2} \]

Com \(0 \leq s \leq \text{NroElRad}\)

Onde \(\text{NroElRad}\) pode ser entendido como número de elementos na direção radial.

A variável \(\text{NroElC}\) é dado de entrada do programa. Este é o único parâmetro de controle do grau de refinamento da malha neste programa. Uma vez definido o \(\text{NroElC}\), o comprimento de cada elemento é calculado e posteriormente calcula-se \(\text{NroElRad}\) de forma a ter elementos com razão de aspecto próxima da unidade.

Esta metodologia de parametrização mostra-se aceitável nas primeiras etapas de desenvolvimento devido à relação entre o raio do casco e o raio do tubo de entrada. Porém, parametrizar o restante do casco usando a projeção da área é inviável sendo necessário usar uma metodologia mais geral.

Parametrizado o casco passa-se a trabalhar na parametrização das cavernas. As cavernas, por terem seus perfis e espaçamentos estudados em fases anteriores do projeto não devem apresentar pontos de tensões elevadas. Desta forma, deve-se garantir que a rigidez das cavernas esteja representada no modelo; sem que seja necessário uma maior discretização das mesmas. Como exceções óbvias a esta regra deve-se ressaltar aquelas cavernas que, de algum modo, interagem com o tubo de entrada sendo interrompida ou não.
O "gusset plate" tem, entre outra funções, a de evitar concentração de tensões na região de encontro do flange de cavernas interrompidas com o tubo de entrada, além de tornar mais rígida a extremidade do tubo de entrada para receber o esforço que cavernas interrompidas lhe transmitem.

Uma grande quantidade de geometrias poderia desempenhar esta tarefa. Mas, encontrar a melhor, otimizando a equação que considera custo, peso e facilidade construtiva exige um esforço fora do escopo deste trabalho. Deste modo, a escolha da geometria do "gusset plate" foi baseada nos poucos desenhos disponíveis; ficando como recomendação para estudos futuros a otimização desta peça.

6.8.2. Geometrias Possíveis

Há uma região do casco na qual adotou-se que não pode haver cavernas interrompidas. Esta restrição é motivada por razões matemáticas; a existência de cavernas interrompidas nesta região implicaria em elementos muito deformados dentro da região de interesse. O que comprometeria os resultados dos cálculos. Esta zona é chamada de Região Proibida e pode ser vista na Figura 6.8.2.1.

O pré processador de entradas simplificadas é capaz de gerar geometrias de aberturas em cascos resistentes de submarinos com cavernas igualmente espaçadas. O cálculo do número de cavernas interrompidas considera se há ou não caverna no plano de simetria e o espaçamento entre cavernas. Apesar de não haver restrição matemática quanto ao número de cavernas interrompidas, este número tem uma restrição prática pois como o programa
não gera cavernas na região proibida, o espaçamento entre cavernas tem que ser, no mínimo, igual ao comprimento desta região.

Figura 6.8.2.1 Região proibida

Deste modo pode-se dividir as geometrias possíveis em dois grupos, as que têm cavernas no plano de simetria cujo exemplo encontra-se na Figura 6.8.2.3 e as que não têm estas cavernas que pode ser vista na Figura 6.8.2.2.
Figura 6.8.2.2 Modelo sem caverna na simetria

Figura 6.8.2.3 Modelo com caverna na simetria
6.8.3. Carregamento

Como carregamento usou-se carga distribuída em toda região externa do casco para representar a pressão hidrostática. O efeito da pressão exercida nos tampos dos tubos foi considerado através de cargas concentradas nos nós das extremidades dos tubos principal e de entrada. Uma representação do carregamento pode ser vista na Figura 6.8.3.1.

![Carregamento](image)

Figura 6.8.3.1 Carregamento

6.8.3.1. Cargas concentradas na extremidade

A determinação do valor da força aplicada em cada nó da extremidade para representar o efeito causado pela pressão nos tampos baseou-se na seguinte lógica:
O tubo de entrada não apresenta maiores dificuldade porque as dimensões dos seus elementos são todas iguais. No casco, este fato não se repete; pode haver até três dimensões diferentes de elementos o que obriga a calcular o valor de cada uma das forças.

O valor da força foi obtido multiplicando-se a pressão externa pela área projetada da calota. Este valor é dividido de modo proporcional ao comprimento do arco de círculo. O valor da força nodal é então obtido dividindo-se este valor pelo número de elementos em cada trecho. Cada um dos nós do trecho recebe esta carga com exceção dos nós da extremidade que recebem apenas metade. No caso específico dos nós que estão ao mesmo tempo na extremidade de dois círculos, sua carga é formada pela soma da metade proveniente de um arco somada à metade proveniente do outro arco.

6.8.4. Condição de contorno

Como mencionado anteriormente, adotou-se os planos XZ e YZ, ambos passando pela origem como sendo planos de simetria. Para os nós em cada plano de simetria restringiu-se as translações ortogonais ao plano de simetria e as rotações em torno dos eixos de coordenadas contidos no plano de simetria. As extremidades, fora de planos de simetria, bem como os nós internos, foram considerados livres. Ressalta-se que esta região está longe o suficiente para que efeitos presentes na mesma não tenham influência sobre os resultados da região de interesse.

Um único nó teve sua translação na direção Z restrita para evitar movimentos de corpo rígido. Espreita-se uma reação de apoio desprezível neste nó uma vez que a integral da pressão ao longo de toda a área do casco deve ser nula e o peso não é considerado na análise.
6.8.5. O Elemento Escolhido

Apesar de não ser o elemento de maior velocidade de solução por ter cinco graus de liberdade por nó, utilizou-se elemento de casca para todo o modelo, mesmo onde esse elemento poderia ser substituído por elementos sólidos, de treliça ou membrana.

O tubo de entrada tem uma relação entre sua espessura e seu diâmetro que desaconselha o uso de elementos de placa em sua análise. Do ponto de vista teórico, esta região seria melhor analisada se discretizada utilizando-se elementos sólidos uma vez que suas características geométricas não são exatamente de casca fina. Porém, a abordagem utilizando elementos sólidos possui também alguns pontos negativos:

1) O processo de geração de malha fica um pouco mais complicado.
2) O tempo de processamento pode crescer.
3) A compatibilização entre elementos de casca e elementos sólidos exige um estudo um pouco mais aprofundado.

4) Para se obter uma malha razoável, seria preciso uma quantidade bastante superior de elementos. Supondo-se que a face de cada elemento tivesse as mesmas dimensões do elemento de casca, seriam necessários outras camadas de elementos sólidos na direção da espessura.

Cabe aqui fazer a ressalva de que o número adicional de equações a serem resolvidas no modelo utilizando elementos sólidos não é proporcional ao número adicional de elementos uma vez que um nó de um elemento sólido tem dois graus de liberdade a menos que um nó de um elemento de casca. O nó do elemento sólido só possui os três graus de liberdade de translação enquanto o nó do elemento de casca só não possui o movimento de rotação perpendicular ao plano do elemento. Recomenda-se então, que seja feito todo o modelo com elementos de casca; nos casos específicos em que sejam observadas altas tensões nos elementos do tubo de entrada sugere-se uma submodelagem desta região para um estudo mais detalhado.
6.9. **Entrada Completa**

Para fazer o programa gerador de modelos de entrada completa, foi necessário adotar a hipótese de não haver cavernas interrompidas na região de simetria. Esta hipótese foi adotada porque o colar de reforço exigia o tratamento de uma exceção quando há caverna interrompida no plano de simetria. Optou-se então por chegar ao fim do projeto, mesmo que de forma incompleta para posteriormente, já tendo vencido algumas etapas, dependendo da disponibilidade de recursos e da prioridade de cada tópico, percorrer uma segunda volta na espiral deste projeto de modo a torná-lo mais genérico.

Os resultados obtidos das análises feitas com modelos de aberturas simplificadas revelam que os níveis de tensões mais altos concentram-se em uma pequena região próxima ao cordão de solda que fixa o tubo principal ao tubo de entrada.

Este tipo de problema, bastante comum na prática, já é previsto por normas de construção de vasos de pressão. Estas sugerem que sejam usados colares de reforço para reduzir tal efeito.

6.9.1. **Colar de Reforço.**

A solução usual é usar colar de reforço naquela região. Para auxiliar o dimensionamento do colar necessário, implementou-se uma opção que gera modelos com colares de reforço paramétricos, o que permite, através da variação da espessura ou raio externo do colar, atingir configurações mais efetivas.
6.9.2. Reforço longitudinal entre caverna e tubo secundário

Determinadas combinações dos parâmetros, entre eles: Diâmetro do Casco, Diâmetro do Tubo de Entrada e Pressão Externa tornam insuficientes soluções que utilizem somente colares de reforços.

Nestes casos, os esforços impostos pela pressão externa agindo no tampo do tubo de entrada não mais podem ser resistidos às custas da flexão do colar de reforço; é necessário que parte desta carga seja transmitida para as cavernas não interrompidas. Tal solução é viabilizada através de reforço longitudinal ligando o tubo de entrada à primeira caverna não interrompida.

6.10. Problemas Corrigidos

Observou-se um problema de orientação de elementos nos modelos gerados. Este problema foi detectado através da análise das deformações apresentadas pelos modelos. A existência de deformações não esperadas levou a uma desconfiança com relação à carga aplicada que encontrava-se agindo de dentro para fora apenas em um pequeno pedaço do modelo. Este fato obrigou a uma checagem de toda a malha observando-se cada componente em separado para garantir que problemas de orientação não ocorressem principalmente onde não há pressão aplicada (como em componentes internos) onde este erro seria mais perigoso por estar mais escondido.

O problema da razão de aspecto, encontrado no início do trabalho, tornou-se um preocupação constante durante todo o processo de desenvolvimento da atual etapa. Para
não ter este problema, teve-se a preocupação de manter os elementos o mais próximo de um quadrado possível.

6.11. Interfaces

Partindo-se da premissa que as ferramentas baseadas no método dos elementos finitos são meios e não fim, conclui-se que é muito importante reduzir as dificuldades inerentes ao método, aumentando-se a importância dos conceitos físicos que regem o problema a ser estudado em detrimento da importância dos problemas numéricos, contra indicações, até certo ponto inevitáveis inerentes ao método. É desaconselhável a utilização deste método sem o conhecimento de seus conceitos básicos. É porém desejável que a maior parte da energia disponível seja empregada na busca de soluções que melhorem a estrutura estudada e não na resolução de problemas numéricos ou computacionais.

Seguindo esta forma de pensar, a interface com usuário deixa de ser mera porta de entrada de dados e assume importância estratégica na qualidade das soluções e no tempo necessário para obtê-las.

Uma interface eficiente pode fazer com que pessoas com altos conhecimentos sobre os conceitos físicos que regem o problema também possam utilizar o potencial do método dos elementos finitos aumentando a qualidade das soluções obtidas.

A interface desejada exige porém, um projeto que organize os comandos em menus de uma forma clara para que tais comandos possam estar ao alcance do usuário, seguindo algum
tipo de padronização parecida com a utilizada em programas que o mesmo está acostumado a usar. É preciso ainda um sistema de ajuda eficiente, mostrando os parâmetros envolvidos, preferencialmente, com desenhos que esclareçam as possíveis dúvidas do usuário.

Um programa feito desta forma segue a filosofia empregada na programação para o sistema operacional Windows. Orientou-se, então, dois projetos paralelos, o desenvolvimento do programa que efetivamente cria o modelo de elementos finitos e o projeto da interface com o usuário. Este segundo dependia de alguns tópicos relacionados ao primeiro. Era preciso determinar os parâmetros envolvidos em um modelo de elementos finitos da abertura em casco resistente de um submarino. Era preciso, ainda estudar os conceitos relativos à programação para Windows; conceitos como os de programação orientada a objetos e conceitos de manufatura de arquivos de ajuda.
6.11.1. Estudos iniciais de interfaces gráficas

Em uma primeira etapa foram realizados os estudos necessários ao desenvolvimento de uma interface gráfica. Estes estudos envolveram uma iniciação em programação orientada a objeto que é básica à programação para Windows, nesta fase, a principal preocupação era desenvolver os conhecimentos necessários para criar este tipo de programa sem a preocupação de chegar à interface final. Como resultado desta etapa pode-se apresentar uma interface gráfica como a mostrada na Figura 6.11.1.1.

![Figura 6.11.1.1 Exemplo de interface gráfica](image)

Em uma etapa posterior pretende-se realizar um estudo com o objetivo de obter uma interface que considere o que o usuário espera encontrar em cada opção do menu de modo a melhorar sua eficiência. Ainda nesta fase serão estudados os conceitos necessários ao desenvolvimento de um sistema de ajuda ao usuário.
7. Testes

Ao fim de cada processo de desenvolvimento, quando obtinha-se um programa para cada caso, os mesmos eram submetidos a testes. Estes testes consistiam em gerar modelos que foram analisados e tiveram seus resultados comparados, sempre que possível, com resultados provenientes de metodologias alternativas de cálculo. Estes testes nem sempre mostraram resultados satisfatórios. Os resultados são descritos, para cada caso de cálculo, neste capítulo.

Especificamente no programa gerador de grelhas chapeadas foram feitos dois testes. Um com modelos de chapas quadradas igualmente reforçadas nas duas direções e outro com modelos de chapa longa reforçada em sua direção de maior curvatura.

7.1.1. Chapa Ortotrópica

Analisa-se, neste exemplo, uma chapa reforçada de 12m x 12m x 0.01m submetida a uma pressão de 100 Pa e reforçada a cada 3m nos dois sentidos. Os reforços, igualmente espaçados, têm dimensões 12m x 0.5m x 0.01m e a chapa encontra-se simplesmente apoiada.

7.1.1.1. Resolução Analítica

Dimensões da chapa:

\[L = 12 \text{ m}, \ B = 12 \text{ m}. \text{ Espessura: } 10 \text{ mm} \]

Dimensões do reforço:

\[L = 12 \text{m}, \ h = 50 \text{ cm}, \text{ espessura } = 10\text{mm}, \text{ igualmente espaçados a cada } 3 \text{ m}. \]
Hipóteses:

- Cada tramo de viga comporta-se como viga bi-engastada.
- Placa simplesmente apoiada.
- Pressão constante: 100 Pa

Estimativa de Chapa Colaborante:

O comprimento entre momentos nulos para cada tramo de viga é: \(L_\| = 0.577L \). Valor obtido através da equação elástica da viga. Sendo \(2B = 3m \), o espaçamento entre reforços, obtém-se:

\[
\frac{L_\|}{B} = 1.15
\]

Com este valor de \(L_\|/B \), ERBISTE [1] fornece o coeficiente de redução:

\[
\gamma_\| = 0.18
\]

\[L_{cc} = \gamma_\| \cdot 2B. \]

\[L_{cc} = 0.54m. \]

Conhecido o valor de \(L_{cc} \) o problema resume-se a uma viga de perfil T.

Assim tem-se:

Momento de inércia à flexão: \(I = 26.5E-5 m^4 \).

Com raio de geração: \(r_s = 0.54 m \)

A Teoria de Placa Ortotrópica FREITAS [2], fornece a tensão máxima tendo como parâmetros de entrada:

\[
i_s = \frac{I}{s} + 2. \frac{(I_c - I)}{b}
\]
Com:

\[I = \text{momento de inércia à flexão do enrugecedor incluindo chapa colaborante}, \]
\[S = \text{espaçamento entre enrugecedores, } b = \text{largura do retângulo}, \]
\[I_c = \text{momento de inércia à flexão do enrugecedor central incluindo chapa colaborante,} \]
\[\text{neste caso } I = I_c \text{ o que resulta: } i_s = 23.23\times10^{-5}\text{m}^3. \]

Usando-se os parâmetros

\[\eta = 0 \text{ para reforçadores sem flanges e} \]
\[\rho = 1 \text{ para placas quadradas;} \]

FREITAS [2] fornece como valor de tensão máxima:

\[\sigma = 4.25 \text{ MPa} \]

7.1.1.2. Modelo Numérico

Modelos com as mesmas características de carregamento, geometria e condições de contorno foram criados utilizando-se o pré-processador para grelhas chapeadas. Na Figura 7.1.1.1 pode-se observar a geometria do modelo, a malha gerada e ainda o diagrama de tensões para uma das configurações de malha criadas.
7.1.2. Teste de Convergência

O uso de um pré processador facilitou a realização de um teste de convergência cujos resultados são apresentados nos gráficos a seguir.

Figura 7.1.2.1 Divergência Percentual
Figura 7.1.2.2 Tensão máxima na grelha chapeada

Na Figura 7.1.2.1 pode-se notar que o desvio converge para um número menor do que 7% em relação ao modelo analítico. Este resultado pode ser considerado bastante razoável devido às incertezas presentes inclusive no modelo analítico utilizado.

Deve-se neste momento, tecer alguns comentários sobre os resultados obtidos. O comportamento do gráfico mostra uma convergência dos resultados apresentados pelo modelo numérico para um valor em torno de 4,0 MPa.

O modelo analítico apresenta algumas incertezas na escolha do comprimento de chapa colaborante uma vez que adotou-se um comprimento de tramo de 3m como se a rigidez das vigas que estão em uma direção fosse muito maior que a rigidez das vigas perpendiculares às primeiras e isto não é exatamente a verdade.

7.1.3. Chapa Longa Reforçada

Para se ter uma ideia um pouco melhor sobre os modelos gerados pelo pré-processador, foi realizado mais um teste com um outro problema. Este problema consiste em analisar uma chapa reforçada de 10m x 1m x 0,01m submetida a uma pressão de 100 Pa. Foram
colocados reforços a cada 1m no sentido transversal da chapa. A Figura 7.1.3.1 dá maiores detalhes da geometria.

7.1.3.1 Resolução Analítica

Dimensões da chapa:

\[L = 1m, B=10m. \text{ Espessura: } 10 \text{ mm} \]

Dimensões dos reforços:

\[L = 1m, h = 10 \text{ cm}, \text{ espessura } = 10 \text{mm}, \text{ igualmente espaçados de } 1 \text{ m}. \]

Hipóteses:

- Pressão lateral: 100 Pa
- Placa simplesmente apoiada.
- Tensão máxima pode ser calculada pela Teoria Simples de Viga.

Estimativa de Chapa Colaborante:

Sendo \(L \) comprimento da viga e \(B \) espaçamento entre reforços, obtém-se:

\[
\frac{L}{B} = 1
\]

com \(L/B \), FREITAS [2] fornece a largura de chapa colaborante:

\[2b_e = 0.386.B, \]

\[Lcc = 0.386 \text{ m} \]

Conhecido \(Lcc \) pode-se calcular:

\[I = 3.27E-6 \text{ m}^4, \quad \text{inércia à flexão da viga;} \]

\[Y_{LN} = 0.38 \text{ m} \quad \text{Y da linha neutra;} \]

\[q = (100 \text{ Pa}) \cdot (1 \text{ m}) = 100 \text{ N/m}, \quad \text{carga distribuída na viga;} \]
\[m = qL^2/8 = 12.5 \text{ N.m}, \quad \text{máximo momento fletor} \]
e finalmente a tensão máxima:

\[\sigma_{max} = \frac{m.y}{I} \]

\[\sigma_{max} = 0.358 \text{ MPa} \]

7.1.3.2. **Modelo Numérico**

Modelos com as mesmas características de carregamento, geometria e condições de contorno foram criados utilizando-se o pré processador para grelhas chapeadas. Na Figura 7.1.3.1 pode-se observar a geometria do modelo, a malha gerada e ainda o diagrama de tensões para uma das configurações de malha criadas.

![Von Mises](image)

Figura 7.1.3.1 Chapa longa reforçada
7.1.4. Teste de Convergência

Como no problema da grelha chapeada, aqui o Pré processador também foi utilizado para realizar um teste de convergência do modelo construído. A Figura 7.1.4.1 e Figura 7.1.4.2 nos permitem fazer uma análise.

Figura 7.1.4.1 Tensão máxima na chapa longa

Figura 7.1.4.2 Desvio na chapa longa
O método utilizado para encontrar o comprimento de chapa colaborante neste caso é um pouco melhor que no caso anterior apesar de ainda impreciso. Apesar desta discordância, o comportamento apresentado pelo modelo numérico já é um indicativo de problemas no produto do Pré processador. A Figura 7.1.4.1 mostra um comportamento diferente do esperado quando a tensão máxima cresce quase que linearmente com o refinamento da malha enquanto esperava-se uma convergência. Este comportamento é confirmado no Figura 7.1.4.2 que mostra um desvio relativo constante com o refinamento da malha.

7.2. Caso exemplo Junta Tubular.

Foram construídos modelos de juntas tubulares que tinham como características geométricas:

Raio do tubo principal: 10 m.

Raio do tubo secundário: 2 m.

Espessuras do principal e secundário: 10 mm.

Com uma pressão externa de 100 Pa e utilizando elementos de casca.

A Figura 7.2.1 mostra a geometria, malha e o diagrama de tensões associado a este grau de refinamento de malha.
7.2.1. Teste de Convergência

Os resultados observados no teste de convergência não foram satisfatórios pois os modelos gerados pelo pré processador apresentavam problemas. À medida que se refinou a malha, ao invés de observar-se uma convergência de resultados, estes cresciam, como pode ser visto na Figura 7.2.1.1 e Figura 7.2.1.2.
Como se pode notar, observando-se a Figura 7.2.1.1 e a Figura 7.2.1.2, o comportamento não é muito bom. A tensão máxima de von Misses cresce a medida que a malha é refinada.

Em uma análise mais detalhada do modelo de junta tubular observa-se razões de aspecto da ordem de 1/10 nos elementos do tubo principal próximos ao tubo secundário. A presença destes elementos distorcidos na região de maior interesse pode ser a causa desta discrepância de resultados.
Este problema já ocorreu, com intensidade bem menor, em um dos modelos gerados pelo Pré processador de grelha chapeada - o modelo da chapa longa.

7.3. **Abertura Simplificada.**

Para testar o programa foi utilizada a adaptação de um problema estudado por LEITE[8]. A diferença básica entre o problema original e o estudado reside na existência de uma caverna gigante no problema original que não é criada pelo pré processador de abertura simplificada devido à hipótese de simetria.

7.3.1. Dados

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidade de operação:</td>
<td>300m</td>
</tr>
<tr>
<td>Espaçamento entre cavernas:</td>
<td>430 mm</td>
</tr>
<tr>
<td>Raio do tubo principal:</td>
<td>3.1115 m</td>
</tr>
<tr>
<td>Diâmetro do tubo secundário:</td>
<td>0.77m</td>
</tr>
<tr>
<td>Altura da Alma</td>
<td>178 mm</td>
</tr>
<tr>
<td>Espessura da Alma</td>
<td>16 mm</td>
</tr>
<tr>
<td>Largura do Flange</td>
<td>95 mm</td>
</tr>
<tr>
<td>Espessura do flange</td>
<td>30 mm</td>
</tr>
<tr>
<td>Espessura do casco</td>
<td>23 mm</td>
</tr>
<tr>
<td>Espessura do tubo secundário</td>
<td>5.5 mm</td>
</tr>
<tr>
<td>Material:</td>
<td>HY80</td>
</tr>
<tr>
<td>Raio do Gusset Plate</td>
<td>435 mm</td>
</tr>
<tr>
<td>Espessura do Gusset Plate</td>
<td>23 mm</td>
</tr>
</tbody>
</table>
7.3.2. Modelo Gerado

Utilizando os dados da seção anterior, o pré processador gerou um modelo cuja geometria pode ser vista na Figura 7.3.2.1.

Figura 7.3.2.1 Vistas da geometria gerada

7.3.2.1. Malha

Com a vantagem de ter um gerador de modelos, foi possível gerar várias malhas com uma flexibilidade muito boa do grau de refinamento desejado. A Figura 7.3.2.1 e Figura 7.3.2.2 mostram vistas e detalhes das malhas geradas.
Figura 7.3.2.1 Vistas da Malha

Figura 7.3.2.2 Detalhes do "Gusset Plate"
7.3.3. Resultados Obtidos.

Sem entrar na discussão sobre níveis de tensão obtidos, o que foge um pouco ao escopo do trabalho, a Figura 7.3.3.1 e a Figura 7.3.3.2 mostram diagramas de tensões referentes aos resultados das análises destes modelos.

Figura 7.3.3.1 Diagrama de tensões da Abertura Simplificada
Figura 7.3.3.2 Detalhe do diagrama de tensões para a Abertura Simplificada

7.3.4. Malhas utilizadas no teste

A Figura 7.3.4.1 mostra a malha mais grossa; com 12 elementos circunferenciais na região de solda entre o casco e o tubo de entrada, e a malha mais refinada; com 26 elementos na mesma direção.

Figura 7.3.4.1 Malha mais refinada (esq.) e menos refinadas (dir.)
8. **Abertura Completa.**

Os modelos criados com o programa de abertura simplificada mostraram a necessidade de reforços em algumas regiões. Tais regiões normalmente são reforçadas utilizando-se recursos como colares ou reforços longitudinais que transferem os esforços recebidos no tubo de entrada para a primeira caverna não interrompida.

Antes de automatizar a geração destas propostas, foram gerados modelos baseados nas malhas criadas pelo pré processador de aberturas simplificadas. Uma vez tendo o modelo de abertura simplificada, a criação de um modelo completo com cada uma das soluções acima não se fez um desafio intransponível. Deste modo foi possível testar a viabilidade e utilidade de cada solução proposta antes de partir para a implementação.

8.1. **Colar de reforço.**

Figura 8.1.2 Colar de Reforço
Como primeira proposta de solução utiliza-se o colar de reforço. Esta solução é bastante usual já em vasos de pressão comuns. O comportamento desta configuração reduz os níveis de tensão apesar de insuficiente nos casos em que a relação diâmetro do tubo de entrada/diâmetro do tubo principal torna-se pequena. A espessura exigida em algumas configurações quando utiliza-se apenas o colar de reforço pode ser muito grande. Para estes casos pode ser aconselhável a utilização de recursos estruturais adicionais. A Figura 8.1.2 mostra a malha do colar de reforço.

8.2. **Reforço longitudinal.**

Este reforço encontra-se no plano longitudinal de simetria e liga o tubo de entrada à primeira caverna não interrompida. Sua missão é transferir, para esta caverna, parte do esforço que seria resistido apenas pelo casco através de flexão. A Figura 8.2.3 mostra um detalhe do reforço longitudinal.

Figura 8.2.3 Detalhe do reforço longitudinal
8.3. **Teste de convergência**

Realizou-se um teste de convergência com 14, 16, ..., 26 elementos circunferenciais na região da solda. Analisou-se a tensão equivalente de von Misses mais alta apresentada pelo modelo. Tal tensão foi observada sempre no mesmo nó. Aquelle que encontra-se na interseção entre o casco resistente, o tubo de entrada e o plano de simetria transversal.

A Figura 8.3.1 mostra a evolução da tensão de von Misses no nó indicado. A curva descreve um comportamento que mostra a convergência do nível de tensão, à medida que a malha é refinada, para um valor próximo a 665 MPa.

Figura 8.3.1 Gráfico de tensão
8.4. **Resultados Obtidos.**

Comparando-se a Figura 8.4.1 e a Figura 8.4.2 com a Figura 7.3.3.1 e a Figura 7.3.3.2 observa-se uma redução nos valores de tensão devido à presença do reforço longitudinal e colar de reforço apresentados pelo modelo. A Figura 8.4.3 mostra a deformação apresentada pelo modelo. Cabe ressaltar que os deslocamentos foram multiplicados por um fator igual a 5 para facilitar a visualização.
Os valores de tensão ou deformação obtidos com os modelos analisados têm uma importância reduzida no que tange este trabalho. O fato realmente importante, a cerca dos modelos apresentados, é que os mesmos foram criados de forma automática; e que, caso seja necessário alterar a espessura de determinado componente ou posição de determinada caverna, esta operação levará apenas alguns minutos.

Apesar das restrições, quando se faz necessário alterar substancialmente parâmetros geométricos como é o caso de geometria de "gusset plate", o programa apresenta uma flexibilidade muito grande com relação a parâmetros não geométricos como espessura, material ou carregamento. Parâmetros estes que têm grande importância na otimização da estrutura.

Figura 8.4.1 Tensões de von Misses
Figura 8.4.2 Diagrama de tensões com reforço longitudinal e colar

Figura 8.4.3 Deformações (escala 5x)
9. Sugestões para pesquisas futuras

9.1.1. Opção para flanges modelados com elementos de treliça

Na versão de entrada simplificada, o flange das cavernas foi modelado com elementos de casca. Este procedimento foi utilizado para permitir o manuseio de apenas um tipo de elemento. Mas, casca não é o elemento mais apropriado para esta parte da estrutura. Cada dois elementos de flange, que têm juntos seis nós com cinco graus de liberdade cada, poderiam ser substituídos por apenas um elemento de treliça com dois nós que têm três graus de liberdade cada. O tipo de carregamento ao qual o flange está submetido, esforços de tração e compressão permite que a substituição dos elementos leve a resultados mais precisos além de mais baratos.

9.1.2. Opção para almas de cavernas trabalhando como membrana

No regime linear, as almas das cavernas estão submetidas somente a tensões de membrana. Desta forma, restringir os movimentos de translação no sentido ortogonal ao seu plano pode aumentar a eficiência dos modelos gerados reduzindo o tempo de resolução do modelo. Tal restrição deve ser deixada como opcional pois esta hipótese deixa de ser verdadeira quando torna-se necessário estudar outros tipos de problema como no caso de análises de flambagem por exemplo.

9.1.3. Opção para elementos maiores fora da região de interesse.

No programa desenvolvido, há apenas uma transição que dobra a dimensão dos elementos que se encontram fora da região de interesse quando comparados com os elementos desta
mesma região. Tal procedimento gera malhas por demais refinadas em regiões já distantes da região de interesse; fato que aumenta o custo de resolução do modelo. Opções de geração de malha com graus de refinamento diferentes à medida que os elementos afastam-se da região de interesse podem melhoria muito o programa.

9.1.4. Melhorar a interface gráfica

O sistema operacional "Windows" oferece uma capacidade didática muito grande. Ele permite que pessoas façam uma utilização eficiente de sistemas computacionais sem que, para isso, sejam analistas de sistemas. Estas facilidades precisam chegar aos programas de elementos finitos; um caminho, para isso, é a utilização de interfaces gráficas.
10. Conclusões

Observou-se, no decorrer deste processo, que há uma flexibilidade natural de parâmetros como espessura, carregamento e propriedades de material. Quanto a parâmetros que, de algum modo, estão relacionados a coordenadas nodais; principalmente posição de cavernas, esta flexibilidade não é tão grande.

Este comportamento apresentado pelo problema, criar pré processadores para aberturas em cascos resistentes de submarinos, sugere que desenvolver vários programas com escopo reduzido pode ser mais eficiente que tentar criar um programa que, sozinho, seja capaz de cobrir todos os casos de aberturas.

Por outro lado, pode-se desenvolver um programa que disponha de uma biblioteca de componentes. Estes componentes seriam utilizados sempre que a ocasião exigir. Dentro deste contexto, pode ser muito produtivo se o programa for capaz de receber novos componentes na sua biblioteca; de modo que, cada nova solução de engenharia desenvolvida no decorrer do tempo, venha a fazer parte da biblioteca sem que, para isso, seja necessário escrever um novo programa.

Uma ferramenta de projeto com estas características pode ainda ser utilizada para construir, além de modelos acabados, pedaços de modelos aos quais podem ser anexados componentes recém desenvolvidos. Este recurso pode ser bastante útil no desenvolvimento de novos componentes e novas soluções de engenharia.
Deste modo aumenta-se a gama de soluções que podem ser testadas; como novas geometrias de "gusset plate" ou formas mais eficientes de discretizar a malha; bastando, para isso, criar o modelo do ente estrutural que será testado e anexá-lo a um modelo previamente construído.

É possível desenvolver uma cultura que determine, cada vez com maior precisão, o grau de refinamento de malha mais indicado para cada fase do projeto. Desta forma, pode-se ter soluções com a precisão necessária, sem que se tenha que gastar tempo de máquina resolvendo modelos muito refinados ou com precisão insuficiente.
11. Bibliografia

12. Bibliografia Complementar

