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Abstract 

 

In the last five years, the use of deep learning algorithms for prognostics and health 

management (PHM) has led to a performance increase in fault diagnostics, prognostics, and 

anomaly detection. However, the lack of explanation and interpretability of these models 

results in a resistance towards their credibility and deployment. This means that even though 

deep learning-based models may achieve great performance, the understanding and 

explanation of how a deep learning-based PHM model obtains its results is still an open area 

of research. In this thesis, three techniques for interpretability of deep learning models in the 

context of prognostics and health management are proposed. The first one is comprised of a 

technique for feature selection and a methodology for quantitative evaluation of the 

technique’s performance and comparison with other techniques. The proposed technique 

consists of a hidden layer next to the input layer whose weights determine the importance of 

each feature within the model. These weights are trained jointly with the rest of the network. 

The layer is referred to as feature selection (FS) layer. Moreover, the methodology for 

evaluation proposes the use of a novel metric referred to as ranking quality score (RQS). For 

the second framework, a multi-task neural network, referred to as Sparse Counterfactual 

Generation Neural Network (SCF-Net), is proposed for simultaneous fault diagnosis and 

counterfactual generation. Thus, the network has the ability to diagnose health states and 

deliver information referring to the minimal changes in the input values that lead to a change 

in the predicted health state by the model. In the third framework, the two previous 

approaches are combined in a network architecture referred to as Feature Selection and 

Sparse Counterfactual Generation network (FS-SCF). Also, a methodology is proposed for 

calculation of causality-based values for each feature, such as necessity, sufficiency, 

(necessity or sufficiency) and (necessity and sufficiency). This is used to further analyze the 

model and to interpret the results obtained from the FS layer. For these three frameworks, 

several case studies are used for testing, and compared to other existing techniques. Results 

across the three frameworks show a successful increase in interpretability while keeping task 

performance at the same level. Thus, the accuracy/interpretability tradeoff is successfully 

addressed in this thesis. Future lines of research include testing in other kinds of neural 

networks, such as convolutional neural networks, recurrent neural networks, and 

transformers. In the case of counterfactual-based approaches, future works include their 

adaption for regression tasks, due to the fact that they are limited to classification. This could 
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increase the types of applications in PHM. For example, remaining useful life (RUL) 

prediction. 
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Resumo 

 

Nos últimos cinco anos, o uso de algoritmos de aprendizagem profunda para prognóstico e 

gestão de saúde (PHM) levou a um aumento de desempenho em diagnóstico de falhas, 

prognóstico e detecção de anomalias. No entanto, a falta de explicação e interpretabilidade 

desses modelos resulta em uma baixa credibilidade e uma resistência para sua implementação 

em aplicações da indústria. Isso significa que, embora os modelos baseados em aprendizagem 

profunda possam alcançar um ótimo desempenho, a compreensão e explicação de como um 

modelo de PHM baseado em aprendizagem profunda obtém seus resultados ainda é uma área 

aberta de pesquisa. Nesta tese, são propostos três frameworks de interpretabilidade de 

modelos de aprendizagem profunda no contexto de prognóstico e gestão em saúde. O 

primeiro é composto por uma técnica de seleção de variáveis e uma metodologia para 

avaliação quantitativa do desempenho da técnica e comparação com outras técnicas. A 

técnica proposta consiste em uma camada oculta próxima à camada de entrada cujos pesos 

determinam a importância de cada recurso dentro do modelo. Esses pesos são treinados em 

conjunto com o restante da rede. A camada é chamada de feature selection layer (FS). Além 

disso, a metodologia de avaliação propõe o uso de uma nova métrica denominada ranking 

quality score (RQS). Para o segundo framework, uma rede neural multitarefa, denominada 

Sparse Counterfactual Generation Neural Network (SCF-Net), é proposta para diagnóstico 

de falhas e geração de counterfactuals simultaneamente. Assim, a rede tem a capacidade de 

diagnosticar estados de saúde e entregar informações referentes às mudanças mínimas nos 

valores de entrada que levam a uma mudança no estado de saúde previsto pelo modelo. No 

terceiro framework, as duas abordagens anteriores são combinadas em uma arquitetura de 

rede chamada de Feature Selection e Sparse Counterfactual Generation network (FS-SCF). 

Além disso, é proposta uma metodologia para cálculo de valores baseados em causalidade 

para cada variável, tais como necessidade, suficiência, (necessidade ou suficiência) e 

(necessidade e suficiência). Isto é usado para analisar melhor o modelo e interpretar os 

resultados obtidos da camada FS. Para esses três frameworks, vários estudos de caso são 

usados para teste e comparados com outras técnicas existentes. Os resultados nos três 

frameworks mostram um aumento bem-sucedido na interpretabilidade, mantendo o 

desempenho da tarefa no mesmo nível. Assim, o tradeoff entre a precisão e a 

interpretabilidade é abordado com sucesso nesta tese. As futuras linhas de pesquisa incluem 

testes em outros tipos de redes neurais, como redes neurais convolucionais, redes neurais 
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recorrentes e redes transformers. No caso de abordagens baseadas em counterfactuals, 

trabalhos futuros incluem sua adaptação para tarefas de regressão, pelo fato de, por ora, 

estarem limitadas à classificação. Isso poderia aumentar os tipos de aplicativos em PHM, 

como por exemplo, para previsão de vida útil restante (RUL). 
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1. INTRODUCTION 

1.1. Contextualization 

The current development of the fourth industrial revolution, also referred to as Industry 

4.0 (LASI et al., 2014), aims to the automation of manufacturing and industrial processes 

with the use of Big Data, Internet of Things (IoT) and smart sensors, among other tools. One 

expected impact of this process relates to maintenance. With the improvement of self-

monitoring and techniques able to extract relevant information from large amounts of data 

being collected online, machines are able to diagnose current faults and/or predict failures in 

the future. Thus, maintenance actions are programmed dynamically according to the 

evolution of the asset’s health state. This determines the evolution from preventive 

maintenance policies to predictive maintenance policies. 

Among various industry sectors, the oil and gas (O&G) industry is also affected by 

Industry 4.0 and predictive maintenance. It is considered a capital-intensive industry and one 

where an accident could threaten human lives and even lead to environmental disasters. As 

such, its operations require high availability and safety standards. To do so, O&G facilities 

(e.g. FPSOs, drilling ships, refineries) seek to improve the effectiveness of their operations 

and maintenance policies to reduce downtimes and increase reliability. Corrective and 

preventive maintenance policies have been widely used despite the fact of being suboptimal 

in terms of costs and safety. In the case of the former, unplanned maintenances lead to 

unscheduled repairs, which could be very time consuming and expensive. Also, it does not 

prevent failures from occurring, which increases risks greatly. In turn, preventive 

maintenance policies do not consider variables that could change in time (such as 

environmental conditions or operational settings), requiring a larger or smaller time window 

between scheduled maintenances. Both kinds of policies have issues that reduce equipment’s 

availability. In this sense, predictive maintenance aims to address the previously mentioned 

issues in order to increase safety while reducing maintenance costs and downtimes. As the 

fourth industrial revolution is occurring, the use of predictive maintenance in companies is 

becoming a reality. According to (MURRAY, 2019), important companies in the O&G 

industry such as Shell, Chevron, ExxonMobil, Equinor, Repsol, among others, are using 

predictive maintenance to improve performance and reduce costs. Indeed, from 2017 to 2019, 
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Repsol reduced corrective maintenance activities in a 15% and saved $200 million annually 

in operational expenses. 

To achieve a state in which machines are able to collect and analyze large amounts of 

online sensor data to diagnose its health state and to predict failures, machine learning (ML) 

and deep learning (DL) techniques have gained popularity among researchers. They are 

suitable kinds of techniques as they can handle large amounts of data and, at the same time, 

reach high levels of performance. However, despite existing cases of companies adopting 

predictive maintenance policies, the increasing popularity in research does not reflect in the 

industry to the same level. This is mainly because companies are hesitant to deploy models 

whose results cannot be understood, explained, nor interpreted. Indeed, it is often mentioned 

in the literature there is a trade-off between performance and interpretability. This means that 

models that present the highest performance are less interpretable than those presenting low 

performance. Thus, interpretability for complex ML and DL models (such as neural 

networks) without performance loss is a necessity whose achievement could lead to more 

trust from companies in ML and DL, and consequently, more presence in the industry. This 

is a crucial step towards Industry 4.0. Ultimately, interpretability of ML and DL models and 

their inner dynamics could lead to research improvements, as they could give information 

that could help researchers have better understanding about physics of failure. 

 

1.2. Objectives 

This thesis’ main objective is to develop frameworks for interpretability of deep 

learning models for prognostics and health management (PHM). This objective is 

divided in three contributions: 

• A framework for feature selection of deep neural networks (DNN) in PHM for 

interpretability enhancement. This also includes a proposed metric for 

quantitative evaluation of feature selection techniques. 

• A multi-task inherently interpretable neural network for simultaneous fault 

diagnosis and counterfactual generation. 

• An interpretable neural network for fault diagnosis with embedded feature 

selection and counterfactual generation. This includes a methodology for 
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necessity and sufficiency quantification, creation of causality-based feature 

rankings and comparison between these and feature selection-based rankings. 

To achieve the proposed objective, the proposed frameworks are evaluated using 

different case studies. This determines its feasibility, applicability and flexibility.  

To evaluate the proposed techniques’ performance, they must be compared to other 

approaches. This includes more classical techniques as well as state-of-the-art techniques. 

 

1.3. Literature Review 

During the last decade, Deep Learning (DL) algorithms have gained great popularity in 

various areas. Though their theoretical foundations were developed mostly between the 

1940s and the 1970s (IVAKHNENKO, 1971; IVAKHNENKO; LAPA, 1967; 

MCCULLOCH; PITTS, 1943; MINSKY; PAPERT, 1969; ROSENBLATT, 1958; 

WERBOS; JOHN, 1974), technological limitations presented in (MINSKY; PAPERT, 1969) 

hindered their progress and research went into a hiatus. Nowadays, areas such as natural 

language processing (GOLDBERG, 2017), healthcare (ESTEVA et al., 2017), computer 

vision (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), autonomous driving (DREOSSI et 

al., 2017), among others, have embraced DL-based models in order to reach better 

performance. In prognostics and health management (PHM), DL models have been used for 

diagnostics (BARRAZA et al., 2020; CHEN et al., 2017; COFRE-MARTEL et al., 2019; 

GAN; WANG; ZHU, 2016; SAN MARTIN et al., 2019; VERSTRAETE et al., 2017; YU et 

al., 2019), prognostics (ARIA et al., 2020; BEN ALI et al., 2015; FIGUEROA BARRAZA 

et al., 2020; RUIZ-TAGLE PALAZUELOS; DROGUETT; PASCUAL, 2020; 

VERSTRAETE; DROGUETT; MODARRES, 2020; YUAN; WU; LIN, 2016; ZHANG et 

al., 2018) and anomaly detection (PARK et al., 2019; REDDY et al., 2016), showing 

promising results as well. In (VERSTRAETE et al., 2017), Verstraete et al. use convolutional 

neural networks (CNN) for fault diagnosis in rolling element bearings, feeding the network 

with image representations of the raw vibration signal, thus, leaving the feature extraction 

process to the network. In (BARRAZA et al., 2020), authors use a recently developed DL 

architecture called capsule networks to identify and quantify structural damage using 

transmissibility measures converted to images. They achieve better performance than neural 

networks and CNNs, also achieving better generalization. In (ZHANG et al., 2018), Zhang 
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et al. use long short-term memory networks (LSTM) to calculate the remaining useful life 

(RUL) of turbofan engines, taking advantage of the benefits of LSTM when working with 

time series. 

Despite DL showing promising results, there is hesitance to adopt these models due to 

their black-box nature. Their high level of complexity impedes a proper interpretation of the 

results, which is an important issue in many areas such as safety critical applications. None 

of the PHM related works mentioned above describe tools for interpretability of the model’s 

being utilized nor the results obtained. In Europe, the General Data Protection Regulation 

(GDPR), taking effect as of 2018, includes a right to explanation regarding algorithmic 

decision-making. This means that, in a situation where a decision that significantly affects 

someone is made based on an algorithm, that person has the right to know how and why that 

decision has been made. A clear example of this is loan application. Organizations are 

struggling to comply with this regulation (LI; YU; HE, 2019) because there are only few 

algorithms whose results can be interpreted. Unfortunately, these less complex algorithms do 

not show results as promising as DL-based models. Furthermore, there is no consensus on 

what an appropriate explanation is. To address this last issue, researchers have proposed 

different taxonomies to organize concepts and techniques (CARVALHO; PEREIRA; 

CARDOSO, 2019; DOSHI-VELEZ; KIM, 2017; FAN; XIONG; WANG, 2020). Most 

recently, Fan et. al. (FAN; XIONG; WANG, 2020) propose a taxonomy in which techniques 

are primarily divided according to when are they applied, with respect to the training process. 

They identify techniques that are applied after training using external tools (referred to as 

post-hoc analysis), and those that modify the inner dynamics of the model for it to be more 

easily understood (referred to as ad-hoc modeling). Among post-hoc techniques, they 

identify approaches such as feature analysis, model inspection, saliency maps, proxy models, 

mathematical and/or physical analysis, and explanations by case and by text. In turn, ad-hoc 

techniques are classified into interpretable representation through regularizations and model 

renovations through interpretable parameters. This taxonomy serves as a first step towards a 

concrete definition of interpretability and how to measure it. However, these kinds of analysis 

must be in line with development of new techniques for interpretability. In the context of 

PHM, interpretability is necessary to build trustworthy models. For a company to rely on a 

DL model to diagnose and/or predict a physical asset’s health states, it is natural for people 

to demand not only a satisfactory level of performance, but also an understanding of how the 

model works. In (REZAEIANJOUYBARI; SHANG, 2020), Rezaeianjouybari and Shang do 
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an extensive review of DL in PHM, stating there is a challenge for researchers in the area of 

developing techniques for model interpretation, in order to overcome the unwillingness of 

some companies to adopt DL. 

According to the authors in (CARVALHO; PEREIRA; CARDOSO, 2019), model 

interpretability frameworks can be divided into local and global interpretability. While local 

interpretability aims to explain single predictions, global interpretability aims to give an 

interpretation of how the model features interact to make predictions. Two of the most 

accepted frameworks for local interpretability that can be used in DL models are the Local 

Interpretable Model-agnostic Explanation (LIME) (RIBEIRO; GUESTRIN, 2016) and 

Shapley Additive Explanations (SHAP) (LUNDBERG; LEE, 2017) algorithms. LIME 

attempts to explain a single prediction by approximating the model locally using 

perturbations of the corresponding datapoint. SHAP adapts the Shapley values developed for 

game theory to determine what is the contribution of each feature in a single prediction. Both 

techniques are model agnostic, meaning they can be used for any model, including neural 

networks. However, according to the taxonomy presented in (FAN; XIONG; WANG, 2020), 

they are post-hoc techniques, meaning they require a trained model for analysis, and rely on 

input perturbations. This makes them prone to output misleading results in certain situations, 

such as adversarial attacks, as is discussed in (SLACK; HILGARD; JIA, 2020). Since they 

are algorithms based on perturbations, results can be negatively affected if these perturbations 

come from a source different than the phenomenon trying to be analyzed (for example, 

degradation). Also, the analysis done by these two techniques does not consider the inner 

dynamics of the model and how it treats different features.  

Within interpretability techniques, feature selection is a relevant aspect, as it indicates 

how much participation each variable has within the model. When done before training, 

feature importance calculation is used to select the most relevant features to feed the model. 

Also, it helps detecting irrelevant features, which reduces overfitting and may lead to an 

improvement in performance. Furthermore, a model becomes easier to comprehend when it 

has less variables. There are numerous methods for calculating feature importance, which, 

according to the literature (JOVIĆ; BRKIĆ; BOGUNOVIĆ, 2015) can be divided into three 

categories: wrapper, filter, and embedded methods. Wrapper methods are those where the 

model is trained with different combinations of input features to determine which gives the 

best results. These methods clearly lack scalability due to time consumption (BLUM; 

LANGLEY, 1997). Filter methods use statistical metrics before training to determine feature 
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importance. Examples of these metrics are Pearson correlation coefficient, χ2 test, and mutual 

information. These kinds of models do not relate to the model or its predictions after training. 

Also, they only analyze the dependence of each feature with the output individually, not 

considering the interactions among features (FERREIRA; FIGUEIREDO, 2012).  Embedded 

methods refer to algorithms with built-in techniques for determining feature importance. 

These include Random Forests (RF), Lasso Regression and Ridge Regression, among others 

(HAMEED et al., 2018; MALDONADO; LÓPEZ, 2018; SAHA; SARKAR; MITRA, 2009). 

The drawback of this kind of techniques is that they cannot be detached from the algorithm. 

Also, neural networks do not have an intrinsic feature selection technique. Thus, an 

embedded technique cannot be used in a neural network without training more than one 

model. 

Despite the fact of neural networks not having an embedded technique for calculating 

feature importance, wrapper and filter methods can still be used. However, the objective of 

DL models is to use the least data preprocessing possible. Neural networks have an important 

number of hyperparameters to be tuned which turn the search for an appropriate model into 

a slow and intricate process. A data preprocessing stage makes this process even slower. 

Also, the use of wrapper or filter methods on DL models would amplify their aforementioned 

drawbacks. To address these issues, researchers have studied different ways to adapt DL 

models in order to determine feature importance (CHANG; RAMPASEK; GOLDENBERG, 

2017; FENG et al., 2017; GUI; GE; HU, 2019a; HELLEPUTTE; DUPONT, 2009; 

MBUVHA; BOULKAIBET; MARWALA, 2019; NEZHAD et al., 2017; ROY; MURTY; 

MOHAN, 2015; ŠKRLJ et al., 2020; ZOU et al., 2015). In (CHANG; RAMPASEK; 

GOLDENBERG, 2017), Chang et al. use variational dropout in the input layer as a means to 

determine feature importance. In their approach, the individual dropout rate for each feature 

indicates how much the model is allowed to remove that feature. Thus, features with low 

dropout rate are more relevant than those with a high dropout rate. These values are used to 

build a ranking of features. They test their approach in two simulated datasets and six real-

world datasets from diverse areas (none of them related to PHM), and achieve results similar 

to those using Random Forest for ranking features. In (GUI; GE; HU, 2019a), authors 

propose an approach based on attention mechanisms. It consists of a feature weights 

generation module (also called “attention module”) made of parallel hidden layers 

incorporated to the neural network next to the input layer. Each part of the module outputs a 

value between 0 and 1 which is then multiplied by its corresponding feature to enter the rest 
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of the network, which they call “learning module”. They test their approach using the MNIST 

dataset (LECUN; CORTES; BURGES, 1998), the noisy-MNIST dataset with its three 

variants (BASU et al., 2015) and two other small datasets used for feature selection problems 

(LI et al., 2016). Results show their framework achieves better results when compared with 

other filter and embedded methods. To the best of our knowledge, there are no established 

protocols to compare techniques for feature selection. This results in techniques usually being 

compared through unclear criteria, such as visual analysis (CAI et al., 2018; CHANG; 

RAMPASEK; GOLDENBERG, 2017; NARDONE; CIARAMELLA; STAIANO, 2019; 

ŠKRLJ et al., 2020). This can lead to incorrect results.  

Besides feature selection techniques (BARRAZA; DROGUETT; MARTINS, 2021), 

there are several other kinds of interpretability and explainability techniques for deep 

learning models, including surrogate models (LUNDBERG; LEE, 2017; RIBEIRO; 

GUESTRIN, 2016), saliency methods (SUNDARARAJAN; TALY; YAN, 2017), 

explanation by text (DONG et al., 2017), and model interpretation through counterfactuals. 

Specifically, the idea of counterfactuals (CF) refers to alternative scenarios that may have 

changed the actual course of outcomes. Brought to the field of machine learning by Watcher 

et al. (WACHTER; MITTELSTADT; RUSSELL, 2017), counterfactuals are altered input 

values that generate a change in the model’s output class. Counterfactuals are used for 

interpretability of predictions as they give information on what changes are needed to the 

input feature values to change the prediction’s class. Furthermore, they are related to 

causality (MORGAN; WINSHIP, 2015; PEARL, 2018; PEARL; MACKENZIE, 2018). 

Judea Pearl suggests a division of causation into three hierarchic levels: association, 

intervention, and counterfactuals  (PEARL; MACKENZIE, 2018). Association refers to the 

analysis of each variable in a system individually and how they correlate to other variables 

within the same system. Intervention is the exploration of the system through observation of 

the effects of intervening in the system. Finally, counterfactual reasoning consists in the 

process of imagining different outcomes given different interventions. Through 

counterfactual reasoning, humans identify causal relations by determining if a variation in 

one of the inputs would have changed the current outcome of an experiment or observation. 

Among the desirable properties of counterfactuals (which are described in detail in the 

following section), sparsity is particularly important in the interaction the model has with the 

end-user. A counterfactual generated with the least number of features being modified will 
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more likely be understood by the user, considering that humans have limited capacity to 

process more than three variables simultaneously (HALFORD et al., 2005).     

Recently, counterfactuals have been used to inject interpretability into deep learning 

models (GUO; NGUYEN; YADAV, 2021; LIU et al., 2019; MAKHZANI et al., 2015; 

NEMIROVSKY et al., 2020; SAUER; GEIGER, 2021; YANG et al., 2021). In 

(NEMIROVSKY et al., 2020), authors use a  generative adversarial network (GAN) to 

generate counterfactuals through residuals. Instead of feeding the generator network with 

random noise, they feed it with training data samples. Those samples are then modified 

through the obtained residuals. These modified samples, together with unaltered samples, are 

fed to a discriminator which determines if the input image is real or modified, and to a 

classifier, which determines the class of the input value. In (SAUER; GEIGER, 2021), 

authors propose the use a conditional GAN (cGAN) (MIRZA; OSINDERO, 2014) to 

generate counterfactuals. After training, they feed the network with different class labels to 

generate counterfactuals of such classes. GANs are particularly useful for generating 

counterfactuals, as they were designed to generate new instances as close to the original data 

distribution as possible. This is a requirement of counterfactuals. However, other approaches 

may be used as well. In (GUO; NGUYEN; YADAV, 2021), authors propose a framework 

for simultaneous predictive modeling and counterfactual generation using an encoder, a 

predictor and a counterfactual generator in the same network. Without using GANs, they are 

able to generate valid counterfactuals comparable to other techniques. However, they lack 

the possibility given by GANs of generating several different counterfactuals for the same 

input value, which is a desirable property for counterfactual generation techniques 

(MOTHILAL; SHARMA; TAN, 2020). 

Counterfactuals are particularly useful in the context of prognostics and health 

management. With the information of how the input values must be modified to change from 

a healthy operation state to a failure state, one can get more information on how degradation 

makes a component or system to develop failures. On the contrary, if the model diagnoses a 

failure, a counterfactual could give valuable information on maintenance actions to be taken 

in order for the component or system to be operational again by indicating what feature 

should be altered in order for the diagnosed state to change from failure to healthy operation. 

To the best of our knowledge, there is a lack of counterfactuals-based techniques applied in 

the context of PHM. Furthermore, existing techniques present issues such as being post-hoc 

techniques or lacking diversity, as mentioned in the previous paragraph.  
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Feature selection and counterfactual generation are two approaches to interpretability 

very different from each other. One gives information about what features are more important 

to the model (or to an individual output, in the case of local techniques), while the other 

generates alternative input values that change the class output of the analyzed input. While 

these two approaches seem very different, there is a study in which both are analyzed 

simultaneously. In (KOMMIYA MOTHILAL et al., 2021), authors attempt to unify the two 

approaches. Through the use of actual causality (HALPERN, 2016), the authors are able to 

evaluate the necessity and sufficiency of each input feature when using different post-hoc 

counterfactual generation approaches. With this, they create feature rankings according to 

the obtained values. They compare the obtained rankings with feature rankings obtained from 

post-hoc feature attribution techniques. On the other hand, they evaluate the necessity and 

sufficiency of the most important features according to each feature attribution technique and 

analyze if there is a correlation, i.e., if the most important features are more necessary and/or 

sufficient than less important features. Results show that for techniques such as LIME and 

SHAP, features different from those with higher attribution scores are sometimes more 

necessary and sufficient. Furthermore, they found cases where correlation values between 

feature rankings are close to zero or even negative. They highlight the need of testing several 

explanations methods rather than blindly trusting one of them, because important differences 

can be found, as shown in this study. The need for testing several explanations techniques 

comes from the fact that many machine learning models (particularly, neural networks), are 

not inheritably interpretable. Thus, external techniques are needed for explaining, which 

creates the possibility of reaching different explanations. This is identified and explained by 

Leo Breiman (BREIMAN, 2001), and refers to it as the Rashomon effect. He shows that for 

a determined task, there is a multiplicity of equally accurate models that are different from 

each other. He demonstrates this with linear regressions. With two different sets of feature 

coefficients, the two regressions achieve similar performance. As these coefficients are 

typically interpreted as importance values for the corresponding feature, this shows that 

different models that achieve the same results may generate different explanations. This is 

important to note, as it is a common belief that phenomena have unique associated 

explanations. This shows that in machine learning there is a plurality of explanations for the 

same phenomenon. Because of this, it is important for models to be inherently interpretable, 

rather than using external techniques to interpret black-box models. 
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1.4. Thesis Organization 

The remainder of the thesis is organized as follows: in section 2, the theoretical 

background upon which this thesis is developed is presented. Section 3 presents the proposed 

frameworks for interpretable neural networks in the context of PHM. In section 4, the case 

studies used in this thesis to demonstrate the proposed frameworks are described. Section 5 

shows the results of applying the proposed framework in the case studies, and the discussion 

of such results. Finally, section 6 presents this work’s concluding remarks and future works. 

Since this thesis presents three different frameworks, there is a natural subdivision of the 

sections according to these three frameworks. Specifically, sections 3 and 5 are subdivided 

according to these three frameworks.  
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2. THEORETICAL BACKGROUND 

This section details the concepts and theory needed for the thesis’s development. This 

includes an extension of the literature review presented above, describing relevant research 

that helps to build the theoretical basis of this work, as well as to find gaps that justify this 

work’s existence and development.  

 

2.1. Condition-Based Maintenance (CBM) and Predictive Maintenance 

(PdM) 

 

Although there are several ways to plan and execute maintenance operations, 

maintenance policies have been divided into two main categories (WANG, 2002): corrective 

maintenance (CM) and preventive maintenance (PrM). According to Wang, corrective 

maintenance refers to the set of actions done when an asset has failed in order to restore it to 

a determined operating condition, whereas preventive maintenance refers to actions done in 

order to maintain an operating condition, before the asset fails. While CM consists on letting 

the asset fail before repairing it, PrM establishes maintenance actions over predefined periods 

of time. CM is suboptimal due to increases in downtimes, risks, and costs. On the other hand, 

PrM is suboptimal due to unnecessary maintenance actions. The process of degradation is 

constantly affected by diverse factors, including environmental and operating conditions. 

This could lead to maintenance actions before needed, increasing maintenance costs. 

According to (JARDINE; LIN; BANJEVIC, 2006), physical assets in the industry have 

become more complex with the constant development of new technologies, which leads to 

an increase in reliability requirements. This, in turn, leads to a higher cost in maintenance 

actions. The inefficiency of the two maintenance policies described encourage the 

development of dynamic policies to address the issues mentioned above. 

As an alternative to CM and PrM policies, maintenance can be done based on the asset’s 

health state. Through the use of sensors, assets can be monitored to find indicators of the 

current and future component’s health condition. This results in a dynamic maintenance 

policy that tries to reduce unexpected downtimes and maintenance costs at the same time. In 

the literature, this kind of policy is referred to as either condition-based maintenance (CBM) 

or predictive maintenance (PdM). It is common for the two concepts to be used 
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interchangeably. For example, in (JARDINE; LIN; BANJEVIC, 2006), authors define CBM 

as “a maintenance program that recommends maintenance decisions based on the 

information collected through condition monitoring”. In (SELCUK, 2017), CBM is 

described as “a set of maintenance processes and capabilities derived from real-time 

assessment of weapon system condition obtained from embedded sensors and/or external test 

and measurements using portable equipment. The goal of CBM is to perform maintenance 

only upon evidence of need”. On the other hand, in (MOBLEY, 2001), predictive 

maintenance is defined as “a condition-driven preventive maintenance program. Instead of 

relying on industrial or in-plant average-life statistics (i.e., mean-time-to-failure) to schedule 

maintenance activities, predictive maintenance uses direct monitoring of the mechanical 

condition, system efficiency, and other indicators to determine the actual mean-time-to-

failure or loss of efficiency for each machine-train and system in the plant”. In (SUSTO et 

al., 2015), PdM is described as “where maintenance is performed based on an estimate of the 

health status of a piece of equipment”. In (SELCUK, 2017), PdM is related to maintenance 

actions based on the early detection of  signs of failure. Authors in (HASHEMIAN; BEAN, 

2011) use the two concepts (CBM and PdM) as synonyms. Furthermore, authors in 

(FLORIAN; SGARBOSSA; ZENNARO, 2021) define PdM as a kind of CBM. However, in 

the rest of the thesis, they use both concepts as synonyms. Authors in (BERGHOUT et al., 

2021) follow the same approach. As a contrast, authors in (CARABIN; WEHRLE; VIDONI, 

2020) use the concept of “condition-based predictive maintenance” to refer to the same 

policy. 

Despite the confusion between the two terms, the authors in (VAN HORENBEEK; 

PINTELON, 2013) mention the two terms and describe their differences. According to them, 

PdM allows the planning of maintenance actions according to predictive information the data 

may give about an asset’s health state, whereas CBM uses the information about the current 

state of the asset to determine if maintenance actions must be taken, based on degradation 

thresholds. According to IBM (YARMOLUK; TRUEMPI, 2019), the main difference 

between CBM and PdM is timing. Both are maintenance policies based on the constant 

monitoring of assets through a variety of sensors. However, CBM relates to the assessment 

of the current health condition through predefined thresholds and techniques for diagnosis, 

while PdM focuses on predicting the future behavior of the asset and early detection of 

failures. According to the article, CBM relates to the use of monitoring for maintenance 

before the 2010s, mainly due to the fact that measurements were useful for indicating failure 
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or fault conditions but not for giving predictive information. Thus, due to technological 

constraints, CBM did not allow long-term maintenance planning. On the contrary, PdM is 

described as an evolution of CBM, in which the rise of IoT, Big Data, and new technologies 

allow the collection of more complex kind of data and in larger volume. Together with the 

development of techniques for data analysis and pattern recognition (including ML and DL), 

not only analysis of the current health state of an asset can be made, but also the evolution of 

the current health state can be analyzed in order to find trends and degradation indicators 

which could predict a failure. With this information, failures can be anticipated and thus plan 

future maintenance actions.  

Considering the information presented above, CBM is considered in this work as a 

maintenance policy in which rudimentary monitoring and simple analysis techniques are 

used to aid in the identification of faults and failures, in order to take maintenance actions. 

PdM, on the other hand, is considered as a policy in which high-technology sensors and 

powerful techniques for data analysis are used in order to diagnose and predict faults and 

failures. Even though according to the literature, diagnosis is related to CBM more than to 

PdM, the use of modern techniques for analysis of large amounts of data allows a more 

accurate diagnosis of a health state than that achieved by CBM, which is why it is believed 

that they must be considered.  

 

2.2. Prognostics and Health Management (PHM) 

 

Following the discussion in the previous subsection, prognostics and health management 

(PHM) refers to the set of techniques, processes and approaches needed to implement CBM 

and mainly PdM policies. According to (REZAEIANJOUYBARI; SHANG, 2020), PHM 

uses monitored data from an equipment or system for anomaly detection, fault diagnosis and 

prognostics. The authors state that PHM reduces costs for owners, operators and society. 

PHM encompasses not only data-driven techniques, but also experience-based techniques, 

model-based approaches, and statistical based approaches (BAUR; ALBERTELLI; 

MONNO, 2020). However, in this thesis, PHM is narrowed down to data-driven techniques 

only. According to (ATAMURADOV et al., 2017) PHM consists of seven steps: 
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• Data acquisition: Is the collecting and storage of data. Without data, a PHM 

framework is not possible. 

• Data preprocessing:  Refers to the process of cleaning and analyzing data before 

the main processing step. This step involves the correction of errors that come 

with raw data, as well as feature extraction, evaluation and selection. The idea of 

feature extraction is to find information within the data that relates to degradation 

and/or failure. Feeding a model with this kind of data results in better 

performance, as compared to the use of raw data. Feature extraction techniques 

are divided into time-domain based, frequency based and time-frequency based 

(JARDINE; LIN; BANJEVIC, 2006). 

• Detection: Is the process failure and/or anomaly detection through data analysis 

techniques.   

• Diagnostics: Is the process of not only detecting a failure, but also describing it 

in terms of which component is failed, the failure mode, and the level of failure 

severity.  

• Prognostics: Refers to the process of determining the remaining useful life (RUL) 

of a component or predicting a future health state. 

• Decision making: Is the analysis of the results of a chosen technique for detection, 

diagnosis, and/or prognostics and selecting and maintenance action.  

• Human-machine interface: Refers to the interaction of a technician with the 

machine after or during the execution of the previous steps. This includes the 

interaction through a graphical user interface (GUI) for visualization, analysis and 

task execution.   

Some data-driven techniques used for PHM include artificial neural networks (ANN), 

deep learning-based models, support vector machines (SVM), Bayesian methods, Markov 

models, gaussian processes (GP), random forests (RF), among others. Currently, though, 

PHM is being particularly related to machine learning (ML) and deep learning (DL) 

(BIGGIO; KASTANIS, 2020; FINK et al., 2020; REZAEIANJOUYBARI; SHANG, 2020). 

This is due to the success of these kinds of techniques in many areas and the development of 

industry 4.0. Among other, some of the current challenges of ML and DL for PHM are: 

• Data scarcity 

• Highly specialized models 
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• Model selection 

• Benchmarking 

• Domain adaptation 

• Interpretability 

Interpretability, as mentioned in the Introduction section, presents a challenge for ML and 

DL in PHM. Due to their “black-box” nature, ML and DL are hard to understand, both in 

terms of the model and the results. According to (REZAEIANJOUYBARI; SHANG, 2020), 

explainable DL attempts to “open the black-box” in order for models to be more transparent. 

This challenge is the principal focus of this thesis. 

 

2.3. Machine Learning 

 

Machine learning (ML) refers to a set of algorithms in which data is used to adjust its 

parameters in order to do a predefined task. According to (GOODFELLOW et al., 2016), 

there are three main characteristics in a ML algorithm: task, performance and experience. In 

order to a ML algorithm to learn, it must use experience to improve performance in the 

predefined task. These three characteristics are described in the following subsections. 

 

2.3.1. Task 

 

Task refers to what it is expected for the model to do after training. In the context of 

PHM, the three most commonly used tasks are classification, regression, and anomaly 

detection. 

 

2.3.1.1. Classification 

 

In this kind of task, the algorithm must decide to which of 𝑘 possible categories the input 

belongs. This means the algorithm must generate a function 𝑦 = 𝑓(𝑥), 𝑓: ℝ𝑛 → {1,2, … 𝑘}, 
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referred to as mapping function, that takes the input data and outputs a discrete value. Some 

examples of algorithms used for classification are: 

• Artificial Neural Networks 

• Support Vector Machines (SVM) 

• Decision Trees 

• Naive Bayes 

 In the context of PHM, classification tasks have two main applications: health state 

diagnostics and prognostics. In the former, present and past information is used to identify 

the present health state of a physical asset. In the latter, the same information is used to predict 

the physical asset’s future health state. One example of health state prognosis in the O&G 

industry are presented in (FIGUEROA BARRAZA et al., 2020), in which neural networks-

based algorithms are used to predict the health state of a water injection pump for well 

production stimulation. In this example, there are 𝑘 = 4 classes, which represent the four 

possible health states for the pump: normal, incipient failure, degraded failure, and critical 

failure.   

 

2.3.1.2. Regression 

 

Regression is a task where the mapping function 𝑓(𝑥) outputs continuous values. Thus, 

𝑓: ℝ𝑛 → ℝ𝑚, where 𝑛 is the number of input features and 𝑚 is the dimension of the output 

vector. Some examples of algorithms used for regression are: 

• Artificial Neural Networks 

• Linear regression 

• Polynomial regression 

• Lasso regression 

• Logistic regression 

• Support Vector Machines 

• Random Forests 

In the context of PHM, regression is used for prognostics, diagnostics, and remaining 

useful life (RUL) estimation. In the case of prognostics and diagnostics, regression 
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algorithms are used to measure variables that indicate the health state of the asset. For 

example, authors in (LI et al., 2018) use Random Forest regression to estimate the state of 

health (SoH) of lithium-ion batteries. RUL estimation refers to the amount of time left for 

the physical asset to fail. This is crucial for predictive maintenance actions. As an example, 

authors in (LI; DING; SUN, 2018) use convolutional neural networks (CNN) for RUL 

estimation of a turbofan engine. The dataset used in this work, referred to in the literature as 

Commercial Modular Aero Propulsion System Simulation (C-MAPSS) (FREDERICK; 

DECASTRO; LITT, 2007), has been widely used as benchmark for RUL estimation models. 

This shows how important RUL estimation is within predictive maintenance. 

 

2.3.1.3. Anomaly Detection 

 

Anomaly detection refers to the identification of rare events or observations within the 

data. To do this, data must be analyzed in order to define an expected behavior an identify 

those observations that do not belong to it. Examples of algorithms used for anomaly 

detection are: 

• Artificial Neural Networks (autoencoders) 

• Principal Component Analysis (PCA) 

• Isolation Forests 

• One-class SVM 

• Bayesian networks 

• Hidden Markov Models (HMM) 

In the context of PHM, anomaly detection has an important role. Typically, most of an 

asset’s collected data will correspond to normal operation conditions (i.e. without failure). 

The proportion between this kind of data and data corresponding to failure states commonly 

is unbalanced. This is an issue for a classification model, as it will recognize observations 

corresponding to a normal operation state more easily than those corresponding to failures. 

By using an anomaly detection algorithm, this issue can be tackled, as the expected behavior 

may be defined as that corresponding to the normal operation of the asset. In (FIGUEROA 

BARRAZA et al., 2020), authors use an autoencoder to predict levels of CO2 concentration 

in natural gas after passing through a treatment plant. In this case, the dataset contains less 
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than 5000 observations, with 27.3% of the data corresponding to CO2 levels above the 

normal. In this case, an anomaly detection algorithm is more suitable than a typical 

classification algorithm. 

 

2.3.2. Performance 

 

Performance refers to a measure of the quality with which the defined task is performed. 

Thus, it is directly related to the task to be performed. In the following subsections, some 

performance metrics are described. 

 

2.3.2.1. Confusion Matrix 

 

A confusion matrix is not a performance metric. However, it is a useful tool for 

visualization, evaluation, and definition of other performance metrics in the context of 

classification or anomaly detection. Figure 1 shows a representation of a confusion matrix 

for a model with two classes. Each letter indicates the number of observations belonging to 

each of the possible situations indicated in the matrix. Thus, 

• A: number of observations correctly classified as “Class 1”. Also referred to as 

true positives (TP) 

• B: number of observations classified as “Class 2” that belong to class 1. Also 

referred to as false positives (FP) 

• C: number of observations classified as “Class 1” that belong to class 2. Also 

referred to as false negatives (FN) 

• D: number of observations correctly classified as “Class 2”. Also referred to as 

true negatives (TN) 
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Figure 1 - Confusion matrix representation for a binary classification problem. 

A confusion matrix is suitable for binary classification as well as for multi-class 

classification. The difference lies in the size of the matrix.  

 

Figure 2 - Confusion matrix representation for a multi-class (k=3) classification problem. 

In the context of PHM, classes typically represent health states. In this sense, a confusion 

matrix shows important information about the model’s performance. In the case depicted in 

Figure 1, it is shown that there are different types of mistakes. Assuming Class 1 represents 

a normal operation state and Class 2 represents failure state, B would indicate the number of 
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observations that belong to a normal operation condition being wrongly classified as in 

failure state. In turn, C would indicate the number of observations that belong to a failure 

state being wrongly classified as in normal operation condition. While the former would 

result in a false alarm, the latter would result in a failure being unnoticed, which could lead 

to accidents. In PHM, models should try to avoid these mistakes, with the latter being 

prioritized.  

 

2.3.2.2. Accuracy 

 

Accuracy is a performance metric used in classification tasks. It is defined as 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

 

Following the confusion matrix example shown in Figure 2, accuracy corresponds to: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴 + 𝐸 + 𝐼

𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 + 𝐺 + 𝐻 + 𝐼
 (2) 

 

Accuracy is useful as a performance metric when classes are balanced. If this is not 

the case, accuracy may give misleading information. For example, in a binary classification 

task, if 80% of the data is concentrated in one class, the algorithm could tag every observation 

with that class and achieve an accuracy of 80%, giving a false sense of high performance.  

 

2.3.2.3. Precision 

 

Precision is a performance metric for each class. It indicates the fraction of correctly 

labeled observations among all the observations labeled to the analyzed class by the model. 

Following the example of Figure 2, precision for class 1 is defined as: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 =
𝐴

𝐴 + 𝐷 + 𝐺
 (3) 
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2.3.2.4. Recall 

 

Recall is also a performance metric for each class. It indicates the fraction of correctly 

labeled observations among all the observations truly belonging to the analyzed class. 

Following the example of Figure 2, recall for class 1 is defined as: 

 𝑟𝑒𝑐𝑎𝑙𝑙1 =
𝐴

𝐴 + 𝐵 + 𝐶
 (4) 

 

2.3.2.5. F1-score 

 

F1-score is a metric for classification tasks defined as the harmonic mean of the 

precision and recall metrics defined previously. Following the example of Figure 2, the F1-

score for class 1 is defined as: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 + 𝑟𝑒𝑐𝑎𝑙𝑙1
 (5) 

 

2.3.2.6. Mean Squared Error 

 

Unlike the previously described performance metrics, the mean squared error (MSE) 

is a metric for regression tasks. It is defined as: 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̃�𝑖)

2

𝑛

𝑖=1

 (6) 

 

, where 𝑦𝑖 is the 𝑖-th component of the model’s predicted output, and �̃�𝑖 is the 𝑖-th component 

of the real output.  

 

2.3.3. Experience 
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Experience is what ML models use in order to learn. Experience is presented to a 

model in the form of a dataset. The way the dataset is structured affects the type of model to 

be chosen. There is a division of ML models in terms of dataset characteristics, which is 

presented in the next subsections.  

 

2.3.3.1. Supervised Learning 

 

In supervised learning, each observation in the dataset has an output value to which 

observations relate to. In this way, the model has the objective of generating a mapping 

function. Depending on the kind of output, supervised learning algorithms are divided in two: 

classification and regression, which are explained above. 

 

2.3.3.2. Unsupervised Learning 

 

In unsupervised learning, as opposed to supervised learning, there is no output value 

to which observations are mapped. Thus, there is no mapping function to be generated. In 

this sense, unsupervised learning algorithms are mainly used for more complex tasks than 

supervised learning algorithms. Some examples are: 

• Clustering 

• Denoising 

• Anomaly Detection 

• Dimensionality Reduction 

Regarding anomaly detection, depending on the algorithm, it may be classified as 

unsupervised learning or a hybrid between unsupervised and supervised learning, referred to 

as semi-supervised learning. While unsupervised learning algorithms do not require the use 

of tags, semi-supervised learning algorithms uses tags to determine which kind of data is 

used to train a model. This is further explained in the next section. 

In the context of PHM, unsupervised learning algorithms demand less from the 

dataset, compared to supervised learning algorithms. In the latter, there is a tagging process 
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required that can be time demanding and sometimes even unfeasible. However, the 

information given by a supervised learning model is more valuable regarding predictive 

maintenance than that given by an unsupervised learning model. Even though unsupervised 

learning models are useful for finding complex relations within the dataset, supervised 

learning models are needed for diagnostics and prognostics. 

 

2.3.4. Training process 

 

In the majority of ML models, the same process is used for defining an adequate 

mapping function, which is also used in this thesis. As stated in this chapter, ML models 

learn from experience, presented as a dataset. This dataset is typically divided into train and 

test set. While the train set is used for adjusting the model’s parameters to define the mapping 

function, the test set is used to evaluate the performance of the resulting model. The objective 

of this division is to measure the model’s performance on unseen data. Another objective is 

to overcome overfitting, which will be explained in the following subsection. Some 

algorithms also divide the train set, generating a validation set. This is used for evaluation 

criteria during the training process, which in turn can help to define a stopping criterion. 

For the many of the ML algorithms mentioned in this thesis, the training process itself 

consists of the minimization of a loss function, which must lead to a maximization of 

performance. Some loss functions typically used in ML are the following: 

• Mean Squared Error (MSE): 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̃�𝑖)

2

𝑛

𝑖=1

 (7) 

 

, where 𝑦𝑖 is the 𝑖-th component of the model’s predicted output, and �̃�𝑖 is the 𝑖-th component 

of the real output.  

• Mean Absolute Error (MAE): 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̃�𝑖|

𝑛

𝑖=1

 (8) 
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, where 𝑦𝑖 is the 𝑖-th component of the model’s predicted output, and �̃�𝑖 is the 𝑖-th component 

of the real output.  

 

• Cross-Entropy: 

 𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖 log �̃�𝑖

𝐶

𝑖=1

 (9) 

 

, where 𝑦𝑖 is the 𝑖-th component of the model’s predicted output, and �̃�𝑖 is the 𝑖-th component 

of the real output.  

 

2.3.5. Limitations: Overfitting 

 

Despite the fact of ML algorithms being promising, they have some limitations. The 

three main one relates to overfitting. Overfitting is a situation in which the model has great 

performance in the train set but poor performance in unseen datapoints. In the context of 

PHM, this is a relevant issue. A change in operating conditions may change the kind of data 

being fed to the model. If this change was not present during the training process, an 

overfitted model will present a decrease in performance when evaluating these observations, 

increasing risks. Figure 3 shows an example of overfitting. In it, it can be seen that, at first, 

both the training error (error associated to the training set) and the validation error decrease 

at a fast rate as the training process advances. This relates to the model finding basic relations 

within the data. As training advances, both errors decrease but with a gap. This gap indicates 

that the training process is losing generalization capacity, since the learned dependencies are 

more effective in the training data than in the unobserved datapoints. The red line indicates 

a situation where the generalization error no longer decreases, but starts to increase. After the 

red line, the model is considered to be overfitted, as the dependencies encoded by the model 

are only applicable to the training set and do not relate other observations outside the training 

dataset. 
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Figure 3 – Example of a model training process where overfitting occurs. Source: (GOODFELLOW 

et al., 2016) 

 

2.3.6. Selected Algorithms 

 

This subsection describes two ML algorithms used in this work, namely random forests 

(RF) and artificial neural networks (ANN). 

 

2.3.6.1. Random Forests 

 

A random forest is an algorithm that can be used for classification, regression and 

anomaly detection tasks. It is a composition of several decision trees. A decision tree is an 

algorithm that iteratively splits the data space into different portions according to different 

conditions to associate an output to each of them.  

The structure of a decision tree is depicted in Figure 4. It consists of a root (or root 

node), nodes and leaves. At first, the algorithm decides which input feature will serve as root 

node. This is done by analyzing how good the split is for every feature and every possible 

cutoff value within each feature. For classification and anomaly detection tasks, this is done 

by analyzing a concept called “Gini impurity” (BREIMAN et al., 1984). Gini impurity is a 

measure of the likelihood of doing a random incorrect classification. It is defined as 
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 𝐺 = ∑ Pr (𝑖) ∙ (1 − Pr (𝑖))

𝐶

𝑖=1

 (10) 

 

, where Pr (𝑖) is the probability of choosing an observation corresponding to class 𝑖 

(according the distribution of classes within the dataset), and 𝐶 corresponds to the total 

number of classes. As the impurity value gets higher, the more likely it is to pick a random 

observation and randomly classify it wrongly. For regression tasks, the MSE (as presented 

in equation 7) between the predicted values by the tree and the actual output values is 

analyzed in order to determine the quality of the possible split. Regardless of the task, the 

tree analyzes each possible split, and the one with the least sum of Gini impurity for each 

resulting division (for classification tasks) or least MSE value (for regression tasks) is the 

best split.  

 

Figure 4 – Representation of a decision tree. 

The same process described for the root occurs for the nodes. A node becomes a leaf 

(meaning data is no longer split) if a split is no longer beneficial (there is no decrease in gini 

impurity) or is not permitted due to constraints. For example, in regression tasks it is common 

to stop the splitting of the data when the amount of data to be split is less than a predefined 

threshold. This is done to prevent overfitting.  

Despite decision trees being a useful tool, they are prone to overfitting. According to 

(HASTIE; TIBSHIRANI; FRIEDMAN, 2009), decision trees are not flexible when 

analyzing new samples. To solve this issue, random forests use several decision trees. Each 
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tree in the forest is trained with a dataset created from a bootstrap sample of the original 

dataset. The training process differs from a typical decision tree only in the fact that each 

node in each tree analyzes a random subset of input features, instead of the whole set of 

features. This, along with the use of bootstrap datasets for each tree, leads to a model with 

better generalization capabilities. Finally, results are averaged through all trees in the forest 

to deliver a prediction. 

 

2.3.6.2. Artificial Neural Networks 

 

Within ML algorithms, Artificial Neural Networks (ANN) have stood out in recent 

years due to their state-of-the-art results in many domains and to their processing capabilities. 

An ANN is a data-driven model used to encode a phenomenon. The structure of an ANN is 

presented in Figure 5. It consists of neurons organized into layers, and is inspired in the way 

neurons interact in the brain to process information from the environment. In the figure, each 

node in the input layer represents one feature. They are linearly combined using trainable 

weights (represented by the connections between nodes) to output the values of the neurons 

into the next layer. To add nonlinearity to the model, these values are passed through an 

activation function. Finally, a trainable bias term is added. Thus, the values in each layer 

(except the input layer) are defined as: 

 𝑎𝑖
𝑗

= 𝑓 (∑ 𝑊𝑘,𝑖
𝑗

∙ 𝑎𝑘
𝑗−1

+ 𝑏𝑗

𝑘

) (11) 

 

, where 𝑎𝑖
𝑗
 is the value (also called activation) of the 𝑖-th neuron in the 𝑗-th layer, 𝑤𝑘,𝑖

𝑗
 is the 

trainable weight connecting the 𝑘-th neuron in the previous layer with the 𝑖-th neuron in the 

current layer, 𝑎𝑘
𝑗−1

 is the activation of the 𝑘-th neuron in the previous layer, 𝑏𝑗 is the bias 

term of the previous layer and 𝑓 corresponds to the activation function of the current layer. 

According to (LECUN; BENGIO; HINTON, 2015), linear models can work with the inputs 

in simple regions, hindering their modelling capacity. Thus, activation functions are used in 

the neural networks to overcome this issue. There are several activation functions typically 

used for ANN. Some of them are: 

• Sigmoid: 
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 𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 (12) 

 

• Softmax: 

 𝑓(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐽
𝑗=1

 (13) 

 

• ReLU: 

 𝑓(𝑥) =  {
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

 (14) 

 

• Tanh: 

 𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (15) 

 

• Linear: 

 𝑓(𝑥) = 𝑥 (16) 

 

ANNs can be divided by the type of task: classification or regression. In classification 

tasks, the output layer has one neuron per class. The one with the highest activation value 

indicates the class to which the model associates the corresponding input. In regression tasks, 

the output layer has one neuron per output dimension, which corresponds to the continuous 

value the model calculates. 
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Figure 5 – Artificial neural network representation. 

 

Regarding interpretability, ANNs lack interpretability as the number of neurons 

grows. For a simple model with a low-dimensional input, few neurons in the hidden layer 

(<5) and low-dimensional output, the inputs can be tracked down after training in a way that 

a human with knowledge in calculus and algebra can understand how the combination of the 

input values generates the output. Applying equation 11, the output is calculated as: 

 𝑦𝑖 = 𝑓1 (∑ 𝑊𝑗,𝑖
1 ∙ [𝑓0 (∑ 𝑊𝑘,𝑗

0 𝑥𝑘 + 𝑏0

𝑘

)]

𝑗

+ 𝑏1) (17) 

 

, where 𝑥 refers to the input, 𝑦 is the output, and superscripts 0 and 1 indicate the input layer 

and the hidden layer, respectively. Although possible, it is difficult to understand the equation 

shown above. To quantify the effect of every input is a task that gets more arduous as the 

number of neurons increases. Thus, though interpretability is possible in theory, it is seldom 

achieved in practice.   

 

2.3.6.2.1. Backpropagation and learning process 

 

An ANN is optimized through an algorithm called backpropagation (RUMELHART; 

HINTON; WILLIAMS, 1986), in which the weights and biases in the network are modified 

to minimize a loss function. The basic principle of backpropagation is to use the different 
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partial derivatives of the cost function (also referred to as error function) to propagate the 

error from the output to the inputs to update weights and biases. This is done using the chain 

rule. As an example, for a weight between the hidden layer and the output layer: 

 
𝜕𝐶

𝜕𝑤𝑖,𝑗
=

𝜕𝐶

𝜕𝑜𝑗
∙

𝜕𝑜𝑗

𝜕𝑤𝑖,𝑗
=

𝜕𝐶

𝜕𝑜𝑗
∙

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
∙

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖,𝑗
 (18) 

 

, where 𝐶 is the cost function, 𝑤𝑖,𝑗 is a weight between the hidden and the output layer, 𝑜𝑗 is 

a value in the output layer, and 𝑛𝑒𝑡𝑗 corresponds to the output value before passing through 

the activation function. The three terms in the equation can be further developed using the 

definition of neural networks and the derivatives of the chosen loss function and activation 

functions. After obtaining the partial derivative of the cost function with respect to the desired 

weight, the new weight value is calculated as: 

 𝑤𝑖,𝑗
𝑛𝑒𝑤 = 𝑤𝑖,𝑗

𝑜𝑙𝑑 +  −𝜂
𝜕𝐶

𝜕𝑤𝑖,𝑗
   (19) 

 

, where 𝜂 is an hyperparameter called learning rate. The process of using the calculated 

derivatives to iteratively update weight values is called stochastic gradient descent (SGD) 

(BOTTOU, 2010). This is the basic optimization algorithm used to train neural networks. 

However, there are other algorithms that improve the basic idea under SGD, such as: 

• Momentum (RUMELHART; HINTON; WILLIAMS, 1986): This 

modification accelerates SGD by keeping a fraction of the previous value of 

−𝜂 ∂C 𝜕𝑤𝑖,𝑗⁄   each time a weight is updated. 

• Adagrad (DUCHI; SINGER, 2011): This extension of SGD makes the 

learning rate a varying parameter, which updates its value according to the 

sparsity of the parameters being updated. 

• RMSProp (TIELEMAN; HINTON, 2012): As with Adagrad, RMSProp adds 

an adaptive learning rate, which is updated according to recent gradients for 

the weight being analyzed. 

• ADAM (KINGMA; BA, 2015): Consists of an extension of RMSProp, in 

which not only the gradients are used but also their second moments. 
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2.4. Deep Learning 

 

As stated before in this work, ML algorithms have proven to be a useful tool in many 

areas. They can find relations within data to build mapping functions with great performance 

levels. However, they present some limitations. According to the analysis in (NAJAFABADI 

et al., 2015), ML algorithms struggle in some situations such as large amount of streaming 

data, high dimensionality, noisy data, class imbalance, among others. According to (ZHOU 

et al., 2017) big data challenges ML algorithms in terms of scalability, adaptability and 

usability. In the context of PHM, the authors in (REZAEIANJOUYBARI; SHANG, 2020) 

recognize that, despite the success of some algorithms including support vector machines 

(SVM), random forests (RF) and particle filtering, they depend on experience and knowledge 

from experts to extract relevant features to feed the models. This is referred to as feature 

engineering. 

Deep learning (DL) refers to a specific kind of ML algorithms inspired by ANNs that 

aim to tackle the issues mentioned above. According to (ALOM et al., 2019), an important 

difference between ML and DL is the process of feature engineering. While in ML algorithms 

features must be manually extracted, in DL features are automatically extracted from the raw 

data. This is an important improvement, since the need of experts for manually extracting 

features hindered the process of defining a model from being automated, while generating 

accessibility issues. Another advantage of DL over ML is the use of large amounts of data. 

According to (ALOM et al., 2019), ML algorithms are intrinsically limited with regard of the 

amount of data being fed. As more data is used for training, it is expected for models to find 

more complex relations within the data, have better generalization, and better performance 

overall. However, this does not occur with ML algorithms and massive amounts of data, 

reaching a point where there is no significant improvement. In the context of PHM, this is a 

relevant issue, since technological improvements have led to the possibility of monitoring 

multiple assets with multiple sensors, each with higher acquisition rates. According to 

(REZAEIANJOUYBARI; SHANG, 2020), by learning hierarchical representations of large 

amounts of data, DL algorithms can integrate feature extraction, feature selection and the 

task itself into an end-to-end process. This implies a great advance towards the objectives 

regarding Industry 4.0. 
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Deep learning algorithms receive that name based on the fact that ANNs are extended 

to deeper architectures. Due to this, they are referred to as deep neural networks (DNN). In 

the following subsection, DNNs are described. 

 

2.4.1. Deep Neural Networks 

 

Intrinsically, deep neural networks (DNN) are ANNs with more than one hidden 

layer. A representation of a DNN is shown in Figure 6. As with ANNs, DNNs are composed 

of neurons, layers and weights. Each neuron value (except for those in the input layer) 

represents a characteristic of the values in the previous layer. Thus, each layer extracts useful 

information and/or representations of the previous layer. This results in a network capable of 

extracted more complex information from the input data than neural networks with only one 

hidden layer.  

 

Figure 6 – Graphical representation of a deep neural network with three hidden layers. 

 

Despite the fact of shallow ANNs being universal approximators (HORNIK; 

STINCHCOMBE; WHITE, 1989), meaning they can approximate any function to any level 

of precision, the amount of neurons needed in the hidden layer would make the training of 

the network unfeasible in terms of time and observations needed (BENGIO; LECUN, 2007). 

Instead, authors in (LAROCHELLE et al., 2009) state that neurons can be organized into a 

deep architecture with not one but many hidden layers. Thus, less neurons are needed and 

through the composition of several non-linearities, better modelling capacity is achieved. 
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Despite the theory behind DNNs exists before the 2010s, it is only after that year that 

their use began to gain popularity. This is mainly because of technological reasons. Before 

the 2010s, it was unfeasible to apply a DNN due to time consumption restrictions. With the 

possibility of using graphical processing units (GPU) to train DNNs (BERGSTRA et al., 

2011), training time was reduced drastically, allowing the exploration of this and other kinds 

of related algorithms.  

Due to the stacking of several hidden layers, DNNs are able to model complex and 

rare dependencies in the training data. However, sometimes this ability can lead to 

overfitting, as the model finds relations within the data that cannot be extrapolated to new 

observations. There are several ways to address this issue, which are encompassed within the 

concept of regularization. Some of the techniques used for regularization are detailed in the 

next subsection. 

 

2.4.1.1. Regularization 

 

According to (LECUN; BENGIO; HINTON, 2015), regularization refers to every 

modification of an algorithm with the objective of improving generalization and thus, 

preventing overfitting. In the context of DL, these techniques include parameter penalty 

terms,  dataset augmentation, multi-task learning, early stopping, dropout (SRIVASTAVA 

et al., 2014), among others.  

Regarding techniques based on penalty terms, two of the most used ones are the 𝐿1 

(TIBSHIRANI, 1996) and 𝐿2 (HOERL; KENNARD, 1970a, 1970b) regularization. In DL, 

the 𝐿1 regularization refers to the addition of a penalizing term to the loss function as 

 𝐿1(𝑘) = 𝜆 ∙ ∑|𝑤𝑖
𝑘|

𝑖

  (20) 

 

, where 𝜆 determines the strength of the regularization and 𝑤𝑖
𝑘 is the i-th weight in the k-th 

layer. Thus, when an 𝐿1 regularization is applied to a certain layer of the network, the model, 

along with the primary task, tries to minimize the 𝐿1 norm of the layer’s weights. On the 

other hand, the 𝐿2 regularization applies the same principle but with the 𝐿2 norm: 
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 𝐿2(𝑘) = 𝜆 ∙ √∑|𝑤𝑖
𝑘|

2

𝑖

  (21) 

 

Though these two techniques are similar, their effect on the model and the learning 

process is different. According to (GOODFELLOW; BENGIO; COURVILLE, 2016), due to 

their derivatives, both encourage small weight values, but weights regularized by 𝐿2 seldom 

reach the value zero, whereas 𝐿1 induces solutions where a few number of weights have 

values greater than zero. This is explained in (TIBSHIRANI, 1996). According to the author, 

this is due to the shape of the constrain region of the regularizers. This is shown in Figure 7.   

This sparsity property of the 𝐿1 regularization has been used for feature selection tasks 

(GOODFELLOW et al., 2016; VENKATESH; ANURADHA, 2019). For example, in (NG, 

2004), Ng claims that in the context of logistic regression, a model of less affected by 

irrelevant features when it is regularized using 𝐿1 regularization than when using 𝐿2 

regularization. When 𝐿1 is used, the number of samples needed for an acceptable level of 

performance grows with the number of irrelevant features at a logarithmic rate, whereas with 

𝐿2 regularization, this rate is linear. 

 

Figure 7 – Least squares solution contour for a linear model with 𝑳𝟏 (left) and 𝑳𝟐 (right) 

regularizations. Source: (TIBSHIRANI, 1996) 
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2.4.1.2. Multi-tasking 

 

Neural networks are a kind of algorithm in which a loss function is minimized in 

order to maximize performance over a determined task. However, they have proven to be 

useful for multi-tasking. Multi-task learning (MTL) refers to the sharing of representations 

in order to learn two similar tasks simultaneously. In the context of neural networks, this can 

be achieved by creating separate layers for different tasks, while a portion of the layers is 

shared between the two tasks. An example is shown in Figure 8. In this example, the two first 

hidden layers are shared between the two tasks. This is useful when the two tasks are similar 

but not the same, and both of them can be benefited from the representations learned in those 

layers. Then, two branches are created in which differentiated representations are learned 

corresponding to each task. The kind of MTL shown in the image corresponds to hard 

parameter sharing. The alternative is soft parameter sharing, in which each task has its own 

separate layers, but the distance between the layers’ parameters is regularized with distance 

measures such as L2. This forces the parameters to have similar values. 

 

Figure 8 – Example of multi-task neural network with two tasks, one of them is a binary 

classification task and the other a regression task. 
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MTL is a useful tool against overfitting. In (BAXTER, 1997), the author showed that 

the risk of overfitting decreases with the number of simultaneous tasks being learned 

simultaneously in hard parameter sharing scheme, like the one shown in Figure 8. Overfitting 

occurs when the network learns a representation of the data that is excessively dependent on 

the training data. Thus, the trained model will have an optimal performance on the training 

dataset but poor performance on previously unseen data. Intuitively, MTL is useful for 

avoiding overfitting because the network has to learn a representation of the data able to 

perform well simultaneously in two different tasks. Thus, the shared layers intrinsically have 

a greater capacity for generalization than if they were not shared among different tasks. This 

is also achieved through a soft weight sharing scheme. As an indirect consequence, through 

MTL a model could require less data reach an adequate level of performance.  

When the purpose of MTL is only to reduce overfitting of a single task, an auxiliary 

task is used that is not necessary for the nature of the problem, but nevertheless is used to 

enhance generalization. Alternatively, MTL can be used in order for two tasks to benefit from 

one another (PAN; YANG, 2010). Another reason to use MTL is due to requirements of the 

problem itself. 

In the context of PHM, multi-tasking is used in order to enhance failure diagnosis and 

prognosis. In (KIM; SOHN, 2021), authors use a CNN-based multi-task network for 

simultaneous RUL prediction and health condition identification in order to improve the RUL 

prediction performance. While RUL prediction is a regression task, health condition 

identification is a classification task. According to the authors, the labeling of the data 

according to their health condition is done before training, thus, it is a supervised task. In 

(LIN et al., 2021), the authors propose to enhance RUL prediction with the aid of a 

classification task for fault detection. In a two-stage training process, they use the features 

from the fault detection task as initial values to a main network for RUL prediction, based on 

CNN and LSTM.   

 

2.5. Interpretability of Deep Learning Models 

 

This subsection describes interpretability, with emphasis in DL models. Definitions, 

limitations, and kinds of techniques are described. 
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2.5.1. Definition 

 

Though interpretability is intuitively associated with the ability of understanding 

and/or interpreting a model, there is no clear definition of interpretability in practice. 

According to (LIPTON, 2018), model interpretability is composed of transparency (i.e. how 

does the model work) and explanations (i.e. what additional information can the model give). 

Transparency is a means to solve the “black-box” nature issue with ML models. The author 

states there are three levels of transparency: 

• Simulatability: This level of transparency is achieved when a human can take 

the model inputs and parameters and produce a prediction in a reasonable 

amount of time. The amount of time which defines whether a model is 

transparent or not is subjective, but the definition still allows comparisons 

between models. 

• Decomposability: Refers to the ability of understanding inputs, parameters 

and calculations within the model. 

• Algorithmic transparency: This level of transparency refers to the 

understanding of the algorithm’s learning process. DL algorithms have not 

reached this level of transparency yet. While the optimization processes of DL 

algorithms have proven to be powerful in terms of results, there is no 

consensus to why they work. Furthermore, there is no guarantee if they will 

work on new problems. 

Explanations represent the other component of interpretability. They relate to 

additional information given by the model after training that, even though they do not help 

understand how the model works, they do help understand the phenomenon being modelled.  

 

2.5.2. Goals 

 

According to (BARREDO ARRIETA et al., 2020), interpretability of DL models has 

become a matter of interest in different areas mainly because of two reasons. The first one 
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relates to the existing gap between the research community the different business sectors, 

mainly due to risk issues. This applies to PHM, as companies are reluctant to rely on models 

they do not clearly understand to help them optimize operations while reducing downtimes 

and probability of failure. The other one relates to knowledge. With the potential of DL 

models, relations can be inferred that could help humanity understand different phenomena 

which could not be understood by humans alone, due to cognitive and computation 

limitations. In this sense, interpretability of DL models could define new paths in many 

research areas, including PHM. 

The increasing interest towards interpretability has determined the objectives to be 

achieved with interpretability: 

• Trustworthiness: As mentioned before in this work, the “black-box” nature of 

DL algorithms generates resistance from companies to adopt these algorithms 

in their processes. With the achievement of interpretability in deep learning, 

this issue will be solved by generating trust. As mentioned before in this work, 

this is a relevant issue in PHM. 

• Causality: DL models are exceptionally good at finding patterns within data. 

However, they struggle to deal with causality, as recently discussed in 

(SCHOLKOPF et al., 2021). It is believed that interpretability can help in the 

task of finding causal relations between data. 

• Transferability: When achieved, interpretability will help to find the 

boundaries and constraints of the model. This, in turn, will help to determine 

whether the same model can be applied in other situations. In the context of 

PHM, models are typically trained using historical data from one component 

or system, with its own operating conditions. Interpretability may help to 

determine if the same model can be applied to another component/system with 

different operating conditions. 

• Informativeness: Though the main goal of ML and DL models is to support 

decision making, the model’s output after training is not the only information 

needed for decision making. In this sense, interpretability will further help in 

this process. As an example, in the context of PHM, knowing the RUL of an 

asset gives an indication of when to perform maintenance. However, knowing 
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why and/or how the model associates the input features to a certain RUL 

might give insights to what kind of maintenance action must be taken. 

• Confidence: It is believed that by achieving interpretability, the robustness 

and stability of a model could be measured through the additional information 

it gives. 

• Fairness: As a tool to be used to better understand a model, Other kinds of 

analysis could be made, besides performance. One of them is fairness. It is 

believed that interpretability could help analyze models and results in terms 

of fairness and ethics.  

• Accessibility: It is often believed that only experts and/or highly-technical 

personnel is needed when a deep learning model is being deployed, mainly 

because the aforementioned “black-box” nature issue. By achieving 

interpretability, non-experts and end users will have the possibility to be more 

involved in process of developing and/or evaluating a deep learning model. 

• Interactivity: Similar to the previous objective, it is believed that only experts 

can successfully interact with a deep learning model. In situations where the 

user of the model is relevant, interpretability could help with the interaction 

of the user with the model.   

• Privacy awareness: One objective of interpretability in DL models is privacy 

assessment. As mentioned in (MIRESHGHALLAH et al., 2020), there are 

threats to deep learning which include the exposure of private information, 

whether it is through training data, inferred relations or model parameters and 

hyperparameters. In this sense, interpretability of DL models could help in the 

development of privacy-preserving mechanisms. 

 

2.5.3. Current limitations towards application 

 

Despite interpretability being crucial, there is no widely accepted technique for 

achieving it. According to (FAN; XIONG; WANG, 2020), there are four main issues why 

model interpretability is not easily achievable: 
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• Human limitation: With machines having much more computational power 

than humans, DL models are being used for more complex tasks, where 

humans do not have a vast previous knowledge. This hinders the process of 

understanding results. 

• Commercial barrier: Companies benefit from models that are not 

interpretable. They usually want to hide their models in order to prevent 

reverse engineering from competing companies.  

• Data wildness: To obtain high quality data is unusual. This interferes with 

interpretability. Also, high dimensionality of data makes interpretability a 

difficult task. According to (HALFORD et al., 2005), humans can process up 

to four variables simultaneously in a single problem. This means that a 

problem with more than three input variables cannot be easily understood by 

a human being. Applying this to PHM, where problems have a number of 

input variables much bigger than three, interpretability without any help is 

almost impossible. 

• Algorithmic complexity: As described in the previous chapter, DL algorithms 

involve a large number of complex operations, many of them involving 

nonlinearities in order to capture intricate relations between variables. This 

large amount of operations prevents humans from understanding the inner 

dynamics of DL algorithms. 

 

2.5.4. Taxonomy 

 

As mentioned before, there is no clear definition of interpretability. Consequently, 

there is no consensus towards a taxonomy of the existing techniques.  Researchers have 

proposed different taxonomies for grouping techniques according to different criteria. For 

example, (CARVALHO; PEREIRA; CARDOSO, 2019) state that ML interpretability 

techniques can be categorized according to four criteria: 

• Pre-model vs. In-model vs. Post-model: This criterion refers to when the 

techniques are applied, with respect to the construction of the model.  
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• Intrinsic vs. post-hoc: This refers to whether interpretability is a product of 

model constraints (intrinsic) or occurs after training due to an external 

technique (post-hoc). 

• Model-specific vs. model-agnostic: According to this criterion, 

interpretability techniques can be specific to a type of model (model-specific) 

or applicable to any ML model. 

• Global vs local: According to this criterion, interpretability techniques can be 

divided into those who seek interpretability through explanations of single 

predictions or a group of predictions (local) or those who try to give 

information about the model, its inner dynamics, and/or how predictions are 

affected by its components (global). 

Other taxonomy for interpretability, in this case applied to neural networks, is 

proposed by (FAN; XIONG; WANG, 2020). It is summarized in Figure 9. As it can be seen, 

interpretability techniques are primarily divided into post-hoc interpretability analysis and 

ad-hoc interpretable modeling. While the first one refers to interpretable analysis after the 

model is trained, the second refers to models that are inherently interpretable. Post-hoc 

techniques are further classified into: 

• Feature analysis: This kind of techniques analyzes neuron values in different 

layers to understand what features are being learned by the network.  

• Model inspection: These techniques try to obtain useful information from the 

inner dynamics of neural networks and how they interact with the inputs. 

• Saliency: These techniques build saliency maps to identify how predictions 

are affected by each input variable. 

• Proxy: Results obtained by the model are used to create a proxy model, which 

is much simpler and more interpretable than a neural network. The 

interpretation of the proxy model is used as interpretation of the original more 

complex model. 

• Advanced mathematical/physical analysis: In this kind of techniques, neural 

networks are analyzed through a mathematical/physical framework in order 

to obtain interpretations.  

• Explaining-by-case: These techniques use representative examples to explain 

the general dynamics of the model. 
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• Explaining-by-text: This kind of techniques is restricted to problems 

involving text and images at the same time. They generate text descriptions 

of images.  

On the other hand, ad-hoc techniques are classified into: 

• Interpretable representation: These techniques use regularization techniques 

in neural networks to enhance interpretability. 

• Model renovation: These techniques aim to increase interpretability by 

adjusting the network’s components, such as neurons, activations, layers, etc.   

 

Figure 9 – Taxonomy for interpretability categorization. Source: (FAN; XIONG; WANG, 2020). 

 

2.5.5. Performance-interpretability trade-off 

 

Regarding interpretability in machine learning and deep learning, there is an issue 

commonly mentioned by researchers ((ALVAREZ-MELIS; JAAKKOLA, 2018; 

BARREDO ARRIETA et al., 2020; CARVALHO; PEREIRA; CARDOSO, 2019; 

LUNDBERG; LEE, 2017)), which states that as models get more complex and achieve better 

results in terms of performance, interpretability is harder to achieve. Figure 10 shows a 

graphical representation of this issue. In it, machine learning algorithms are distributed 
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according their interpretability and performance, also indicating future research guidelines. 

It is noteworthy that simpler models such as rule-based learning and linear/logistic regression 

have high interpretability but low performance compared to the rest. Consequently, future 

research guidelines refer to the improvement of these algorithms’ performance. On the other 

hand, DL models have the highest performance levels but the lowest interpretability levels. 

Guidelines refer to an increase in interpretability while increasing performance.  

 

 

Figure 10 – Graphical representation of the trade-off between performance and interpretability. 

Here, accuracy is treated as a synonym for performance. Source: (BARREDO ARRIETA et al., 

2020)  

 

2.6. Feature Importance 

 

As discussed in the previous section, there is no unique definition of interpretability. 

This means there are many ways to interpret a DL model, each of them giving information 

about different aspects. One of these aspects relates to the importance each input feature has 

within the model. Among the input features, there are those that have a bigger influence on 

the objective than others. There may also be features that do not have any influence on the 

objective or add noise to the model. Because of this, it is important to calculate feature 

importance and discard features with negative effects over the model. 
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Another reason why calculating feature importance is important relates to the “curse 

of dimensionality”. Concept first coined by Richard Bellman, it refers to diverse problems 

that arise from problems involving high-dimensional data. In machine learning and deep 

learning, the curse of dimensionality relates to generalization capacity. For a model to be able 

to generalize and have acceptable levels of performance when evaluating a previously unseen 

observation, the train set must contain examples from many possible combinations of feature 

values. Thus, the input feature space is well represented by the train dataset. When the 

problem is low-dimensional, this is not an important issue, since the possible combinations 

are limited by a low number of dimensions. When a problem includes a large number of input 

features, the observations needed to cover all the possible combinations increases 

exponentially. In practice, the more input features a problem has, the more difficult it is for 

the model to generalize to unseen observations. Actually, as the number of input features 

increases, the number of observations needed for the model to have an adequate capacity of 

generalization grows exponentially (BELLMAN, 1966). In this sense, discarding irrelevant 

input features is important to prevent overfitting issues that lower performance.  

Within interpretability, techniques for calculating feature importance1 are very 

versatile, and may correspond to many of the types of techniques listed in the taxonomies 

described above. Regardless of how are they classified within interpretability techniques, 

techniques for calculating feature importance have a more consolidated taxonomy for 

classification. According to (JOVIĆ; BRKIĆ; BOGUNOVIĆ, 2015), techniques for 

calculating feature importance are divided in three: 

• Filter methods: Filter methods calculate the importance of each input feature 

before training, regardless of the algorithm being used for training. Thus, 

input features are filtered and the most important ones are used for training.  

• Wrapper methods: Wrapper methods evaluate different feature subsets to find 

the one that maximizes performance. This is done by training the model with 

the selected feature subset and evaluate its performance. Since the number of 

possible subsets to be evaluated increases rapidly with the number of features, 

wrapper methods use different search algorithms to find the optimal subsets.  

                                                 
1 In the literature, techniques for calculating feature importance are also found as “feature selection” 

techniques. In this work, they are used as synonyms. This is because, despite calculating feature importance 

and selecting features being different processes, the two are executed sequentially in the context of neural 

networks. 
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• Embedded methods: Embedded methods are algorithms that calculate feature 

importance during training, not needing any external technique. 

• Hybrid methods: These methods combine two or more of the methods 

described above. An example is presented in (BEN BRAHIM; LIMAM, 

2016), where the authors use a hybrid filter wrapper approach for feature 

selection. They use a filter method to obtain an initial subset of features. Then, 

the optimal subset is obtained through a cooperative subset search and a 

classifier algorithm. 

All of the three kinds of techniques (excluding hybrid techniques) have advantages and 

disadvantages. These are summarized in Table 1. In the case of filter methods, they use 

statistical analysis prior to the training of the model to rank features according to their 

importance. Some examples include the use of correlation criteria (GUYON; DE, 2003), 

mutual information (BATTITI, 1994), 𝜒2 statistics (DASGUPTA et al., 2007), among others. 

These techniques evaluate features or subsets of features according to their correlation with 

the output. Since they are techniques used before training and do not relate to the training 

algorithm, they can be used in diverse algorithms. Their restrictions arise mainly from the 

type of task the model is used to (classification, regression, anomaly detection, etc.), but not 

the algorithm the model is built upon. This is a positive aspect, since it allows algorithms 

with low interpretability to be analyzed in terms of feature importance. Since training is not 

needed for analyzing features and importance is obtained through statistical metrics, 

implementation is typically not time intensive. One disadvantage of filter methods arises 

from the fact that the training process is not used for calculating importance values. Thus, 

despite features having different relevance values within the model’s training process, this 

information is not considered in filter methods. Another disadvantage comes from the fact 

that some techniques analyze single features only, which means that interactions between 

features are not considered. This may generate misleading results, as the importance of a 

feature may be diminished by the absence of another feature (ROTH, 1988). On the other 

hand, techniques that analyze subsets of features need to create the subsets through a search 

algorithm, which increases the computation time. 
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Table 1 – Advantages and disadvantages of feature selection techniques. 

Technique Advantages Disadvantages 

Filter - Fast implementation. 

- Generally applicable to many 

kinds of algorithms. 

- Calculations do not consider the 

inner dynamics of the algorithm 

involved. 

- Techniques that analyze single 

features do not include the 

interaction with other features. 

- Techniques that analyze subsets 

of features require a search 

algorithm for analyzing all 

possible subsets. 

Wrapper - Model performance indicates 

which is the best subset.   

- Computationally expensive.  

 

Embedded - Implementation as the model is 

being trained. 

- Not applicable to other kinds of 

algorithms. 

 

Wrapper methods train the model with different subsets to find the one that delivers 

the best performance value. Although these techniques solve the issue with filter methods of 

not involving the training process, there is a problem of time consumption. As the number of 

input features grows, the number elements in the power set (set that contains all the possible 

subsets of input features) grows at a faster rate. For an input feature set containing 𝑛 features, 

the number of possible subsets is 2𝑛 − 1. For a dataset with 10 input features, there are 1023 

possible subsets. These means the algorithm should be trained 1023 times to find the optimal 

subset, which is unfeasible. In this sense, different wrapper methods use different approaches 

to define the subsets to be analyzed. Some of them are: 

• Forward feature selection: Starts from analyzing single features and adds 

more features according to their performance. 

• Backward feature elimination: Starts from analyzing the whole set of features 

and eliminates features according to their performance. 
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• Exhaustive feature selection: Analyzes all possible combinations of input 

features. To limit the search process, the maximum number of features 

allowed may be limited.  

• Bidirectional search: Applies forward and backward feature analysis 

simultaneously.  

Though some of the techniques described above try to optimize the search process, the only 

method that guarantees the achievement of the optimal combination of features is the 

exhaustive method.  

Embedded methods are training algorithms that, due to their inner dynamics, there is 

a way of obtaining the importance of each feature without the use of any external technique. 

Since the feature importance values are obtained through the training of the model, there is 

no computational time being added, like in the other two kinds of methods. However, the 

main drawback of embedded methods is that they are restricted to the algorithm they belong 

to. In the context of DL and neural networks, the use of an embedded method requires the 

training of an algorithm that can calculate feature importance values, and use the results to 

train the desired neural network-based model. Examples of algorithms with embedded 

techniques for feature selection include random forests (GENUER; POGGI; TULEAU-

MALOT, 2010), lasso regression and ridge regression (MUTHUKRISHNAN; ROHINI, 

2017). As it can be seen, these are techniques which, when looking at Figure 10, would 

correspond to high interpretability and low performance techniques. As mentioned before, it 

would be necessary to train two separate models in order to apply these techniques in neural 

networks. In terms of automation and time consumption, this is not an ideal scenario. Indeed, 

an ideal scenario would be for neural networks to have an embedded technique for feature 

importance calculation. In this way, alongside training, neural network-based models would 

inform which are the more relevant features and which should be discarded.   

In the next subsections, feature selection techniques used in this work are described.  

 

2.6.1.  Mutual Information 
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Mutual information (MI), also referred to as information gain (IG), measures the 

dependency of two variables using the concept of entropy. According to (SHANNON, 1948), 

the entropy of a discrete random variable 𝑋 is calculated as: 

  

 𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (22) 

 

, where 𝑝(𝑥𝑖) is the probability of every possible outcome. This is also referred to as Shannon 

entropy, and represents a measure of uncertainty or information inherent to the random 

variable’s possible outcomes.  Consequently, mutual information uses this concept to define 

the information shared by two variables 𝑋 and 𝑌: 

 𝑀𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝑌𝑥∈𝑋

𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 (23) 

 

, where 𝑝(𝑥) represents the probability of the possible outcomes of 𝑋, 𝑝(𝑦) represents the 

probability of the possible outcomes of 𝑌, and 𝑝(𝑥, 𝑦) is the joint distribution of 𝑋 and 𝑌. 

Mutual information indicates how much information about 𝑋 can be accessed through 𝑌 and 

vice versa. It relates to Shannon entropy by the following relation: 

 𝑀𝐼 (𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) (24) 

 

, where 𝐻(𝑋|𝑌) and 𝐻(𝑌|𝑋) are the Shannon entropies of the conditioned random variables.  

The technique calculates the mutual information of every input variable with the output 

variable. Since the definition of mutual information involves random variables, it is estimated 

using the available dataset according to approach detailed in (ROSS, 2014). The obtained 

values are interpreted as importance values, and are used to create a ranking of values. It is a 

filter method that analyzes each feature separately. Therefore, it does not consider 

interactions between input features, which can generate misleading results. 

 

2.6.2. Relief, ReliefF and RReliefF 
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Relief (KIRA; RENDELL, 1992) is an algorithm for feature selection that uses the 

variation of feature values in near observations to determine feature importance. The original 

algorithm, created for binary classification tasks, introduces the concepts of nearest hit and 

nearest miss. A nearest hit with respect to an observation 𝑝𝑖 is the nearest neighbor with the 

same class as 𝑝𝑖, whereas the nearest miss is the nearest neighbor with the other class. The 

algorithm is described in Figure 11. In it, a 𝑑𝑖𝑓𝑓() function is used. For numerical values, it 

is defined as: 

 𝑑𝑖𝑓𝑓 (𝑥𝑖, 𝑥𝑗) =
|𝑥𝑖 − 𝑥𝑗|

max(𝑥) − min (𝑥)
 (25) 

 

, where 𝑥𝑖 and 𝑥𝑗 are the values of the same feature for different observations Thus, max(𝑥) 

and min (𝑥) are the maximum and minimum observed values for the analyzed feature. For 

non-numerical values, 𝑑𝑖𝑓𝑓() is defined as: 

 𝑑𝑖𝑓𝑓 (𝑥𝑖 , 𝑥𝑗) = {
1 𝑖𝑓 𝑥𝑖 = 𝑥𝑗  

0 𝑖𝑓 𝑥𝑖 ≠ 𝑥𝑗
 (26) 

 

 

Figure 11 – Relief pseudocode 

The original contribution described (KIRA; RENDELL, 1992) works only for binary 

classification. However, in (KONONENKO, 1994), Kononenko extends the use of the 

algorithm to multi-class classification (ReliefF). Instead of finding one near miss, the 

algorithm finds one near miss for every other class in the model. Thus, the weight update 

step is modified: 

Set all feature values to W(f) = 0 

For 𝑖 = 1 to 𝑚: 

 Select a random observation 𝑝𝑖 

 Find nearest hit 𝐻𝑖 and nearest miss 𝑀𝑖 

 For f in F: 

  𝑊(𝑓) = 𝑊(𝑓) − 𝑑𝑖𝑓𝑓(𝑝𝑖,𝑓 , 𝐻𝑖 ,𝑓 )/𝑚 + 𝑑𝑖𝑓𝑓(𝑝𝑖,𝑓 , 𝑀𝑖 ,𝑓 )/𝑚 
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 𝑊(𝑓) = 𝑊(𝑓) −
𝑑𝑖𝑓𝑓(𝑝𝑖,𝑓 , 𝐻𝑖,𝑓)

𝑚
+ ∑

𝑃𝑟(𝐶) ∙ 𝑑𝑖𝑓𝑓(𝑝𝑖,𝑓 , 𝑀𝑖,𝑓
𝐶 )

𝑚
𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑝𝑖)

 (27) 

 

, where 𝑃𝑟(𝐶) is the prior probability of class 𝐶 (calculated according to the distribution of 

classes within the dataset) and 𝑀𝑖,𝑓
𝐶  corresponds to the 𝑓 feature value for the nearest miss of 

𝑝𝑖 corresponding to class 𝐶. 

In 1997, Robnik-Šikonja and Kononenko extend the ReliefF algorithm for it to be used with 

regression tasks (ROBNIK-ŠIKONJA; KONONENKO, 1997). The algorithm, referred to as 

RReliefF is detailed in Figure 12. Here, they modify the concepts of nearest hit and nearest 

miss, since there are no classes to determine them. Instead, they introduce three different 

intermediate weights which are used to update the weights associated to each feature: a 

weight for different prediction 𝑁𝑑𝐶, a weight for different feature value (also referred to as 

“attribute”) 𝑁𝑑𝐴, and a weight for different prediction and different feature value 𝑁𝑑𝐶&𝑑𝐴. 

Also, a distance function is used, defined as 

 𝑑(𝑖, 𝑗) =
𝑑1(𝑖, 𝑗)

∑ 𝑑1(𝑖, 𝑙)𝑘
𝑙=1

 (28) 

 
𝑑1(𝑖, 𝑗) = exp (− (

𝑟𝑎𝑛𝑘(𝑅𝑖, 𝐼𝑗)

𝜎
)

2

) 
(29) 

 

, where 𝑟𝑎𝑛𝑘(𝑅𝑖, 𝐼𝑗) is the position in a ranking built using the distances of each of the 

selected 𝑘 nearest instances 𝐼𝑗 to 𝑅𝑖. 
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Figure 12 – Pseudocode for the RReliefF algorithm. Here, the word “attribute” is used as a 

synonym for “feature”. Additionally, 𝒇(𝒙) indicates the output value for observation 𝒙. 

  

In this way, Relief-based algorithms are filter methods that iteratively analyze 

features through observations and neighbors to obtain a weight value for each input feature. 

These weights are used to rank features to determine which of them are going to be used for 

training. 

 

2.6.3. Random Forest 

 

As described before, random forests are used for classification and regression. Due 

to the way they are trained, information can be obtained about the importance of each input 

feature, thus, making it an embedded method. When a defining a node, the possible splits are 

analyzed in terms of Gini impurity or MSE. Therefore, a split is characterized by the input 

feature used for splitting and the decrease in Gini impurity or MSE. This is used to obtain the 

relevance of each feature in the model. For each node of each tree, the decrease of impurity 

or MSE is calculated for all input features. The mean decrease in impurity or MSE represents 

the importance value of each feature. These values are used to rank features and select which 

of them are going to be used in deployment.  
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2.6.4. “AFS: An Attention-based mechanism for Supervised Feature 

Selection” 

 

As was mentioned in the Introduction section, there is interest from researchers to 

develop techniques for DNN interpretability. One of them is the work by Gui et. al.  (GUI; 

GE; HU, 2019a). In it, researchers propose the use of attention mechanisms (BAHDANAU; 

CHO; BENGIO, 2015) to build a module for feature selection within DNNs. A representation 

is shown in Figure 13. As seen in the image, the input values enter the attention module 

through a dense layer used to compress the input feature space and keep important 

information. This layer has a 𝑡𝑎𝑛ℎ activation function. The compressed information is then 

passed through a number of attention nets equal to the initial number of input features. These 

attention nets have the objective of determining the importance of each input feature. The 

architecture of each attention net is the same for each input. However, weights are not shared, 

meaning each input feature has its own corresponding attention net with its own different 

weights. While the number of hidden layers, neurons per layer, and activation functions are 

model hyperparameters, the last layer must have two neurons and a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation 

function. The reason of this is for the output layer to represent the probabilities of selection 

and non-selection of the input feature. Each of the probabilities of selection (one for each 

input feature) represents the importance value of its corresponding feature. These values are 

rearranged into an array and used to multiply the input feature vector, resulting in weighted 

feature values that enter the rest of the network, referred to in the original work as learning 

module. According to the authors, the learning module can be a DNN, a convolutional neural 

network (CNN) or a recurrent neural network (RNN). 
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Figure 13 – Attention-based architecture for feature selection. Source: (GUI; GE; HU, 2019a) 

In the paper, authors evaluate their technique using six datasets: 

• MNIST: A widely used dataset for recognizing images hand-written digits 

(LECUN; CORTES; BURGES, 1998).  

• n-MNIST-AWGN: MNIST variant with additive white gaussian noise 

(BASU et al., 2015). 

• n-MNIST-MB: MNIST variant with motion blur (BASU et al., 2015). 

• n-MNIST-RCAWGN: MNIST variant with reduced contrast and additive 

white gaussian noise (BASU et al., 2015). 

• Lung_discrete: A dataset for lung cancer detection (LI et al., 2017). 

• Isolet: A dataset for recognition of spoken letters (LI et al., 2017). 

Results are compared with filter and embedded techniques, including Fisher score 

(HE; CAI; NIYOGI, 2005), ReliefF (KONONENKO, 1994), 𝑙2,1 − 𝑛𝑜𝑟𝑚 minimization 
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through linear models (LIU; JI; YE, 2009), Random Forests and a DNN-based technique 

based on the concept of activation potential, reproduced according to the work in (ROY; 

MURTY; MOHAN, 2015). One way to evaluate and compare the different techniques is to 

obtain the feature importance values, sort them in descending order, create subsets using the 

top 𝑛 features and obtain the performance value for each subset. These values are plotted to 

see how performance evolves as less important features are added to the model. However, 

the comparison is done visually, and it is shown in Figure 14. This is a qualitative 

comparison, meaning it is prone to interpretations. In the image below, performance is 

evaluated with the addition of more features. When compared to other techniques, the authors 

claim their proposed technique achieves better results with respect to accuracy and feature 

selection stability. It can be seen in the images that the curve related to the AFS technique 

presents high performance in relation to the other techniques, with the same number of 

features being evaluated. Intuitively and visually it could be assumed that the AFS technique 

is better than the rest. However, the values are close together and for some numbers of 

features the proposed technique does not reach the highest performance, being surpassed by 

random forest. Considering this, there is no way to determine if the proposed technique is 

better than the rest overall. Even if performance was better for every number of features, 

there is no way of knowing how much better one technique is when compared to another. 

 

Figure 14 – Accuracy evolution for MNIST datasets. Source: (GUI; GE; HU, 2019a) 
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Despite the visual analysis of the results not being accurate, it is commonly used by 

researchers (CAI et al., 2018; CHANG; RAMPASEK; GOLDENBERG, 2017; NARDONE; 

CIARAMELLA; STAIANO, 2019; ŠKRLJ et al., 2020). This shows there is a need for an 

evaluation protocol in which feature selection techniques can be evaluated according to 

quantitative criteria. 

Another aspect of the technique is the fact that its implementation comes with the 

addition of several hyperparameters. Some of them are  

• Size of the first hidden layer 

• Number of layers in the attention networks 

• Size of each layer in the attention networks 

• Activation function for each layer in the attention networks  

Other hyperparameters regarding the attention module include dropout rates and 

regularization terms. Though is not strictly necessary for the attention modules to include 

dropout and/or regularization, these are techniques commonly used to avoid overfitting and, 

thus, increase performance. Their inclusion implies the fine-tuning of hyperparameters. 

Along with the rest of the hyperparameters mentioned before, the use of the AFS technique 

has the drawback of the construction of the attention module. The large amount of 

hyperparameters that must be tuned in order for the technique to be successful makes the 

process more time-demanding and arduous. 

Another drawback of the AFS technique relates to the size of the model. The attention 

module includes an attention network for each input feature. Despite there is a hidden layer 

before the attention networks which compresses the information, the number of attention 

networks is the same as the original number of input features. For a large number of input 

features, a large number of attention networks must be added, each of them with a number 

of hidden layers and neurons per layer. This may increase the training time considerably, and 

could even limit the number of neurons and layers of the attention modules. As mentioned 

before, the inclusion of the attention module could affect the learning module. This is 

particularly notorious when the learning module has much fewer parameters than the 

attention module.   

2.6.5. Drawbacks of Feature Importance Approaches 
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Though feature importance approaches to interpretability are relevant to unveil the 

dynamics of a model and explain its behavior, there are drawbacks. The main problem relates 

to the fact that the information given by these kind of approaches does not give much insights 

as to how the model generates an output. Thus, there is ambiguity towards the definition of 

importance.  

 

2.7.  Counterfactuals 

 

The original concept of counterfactuals comes from the fields of philosophy and 

psychology, and refers to conditional statements in which the antecedent is false 

(GOODMAN, 1947). Thus, through the use of counterfactuals, an alternative scenario is 

imagined in which something is different from reality. This imaginative exercise is useful as 

an explanation. A common example used for explaining the concept of counterfactuals relates 

to bank loans aided by black box models (GRATH et al., 2018). An explanation for a rejected 

loan application presented as a counterfactual could be the following: “If the annual income 

had been $10,000 more than the actual income, the loan application would have been 

accepted”. While this kind of explanation does not give information about the dynamics of 

the model used for making the decision, it does relate inputs with outputs, which is useful for 

the end-user. Indeed, researchers have studied how do humans interact with counterfactuals, 

with positive results being achieved (BYRNE, 2007, 2019; KAHNEMAN; MILLER, 1986; 

WOODWARD, 2005). In (KAHNEMAN; MILLER, 1986), authors argue that humans 

constantly analyze events of reality by imagining counterfactual alternatives, and that we 

even create a notion of distance between counterfactuals and reality. Furthermore, these 

alternatives influence on our emotional response. In the example above, should the difference 

in annual income be $500 instead of $10,000, the end-user would naturally feel much more 

upset than in the original case, despite the outcome being the same. In (BYRNE, 2007), the 

author states that counterfactual thought are triggered constantly by humans, and that they 

follow similar rules to rational thoughts, meaning that humans use imagination to understand 

the rationality of the environment. Thus, the idea of counterfactuals is familiar to humans, 

and using them for explaining black-box models is a suitable option.  

While there is a variety of scenarios that may serve as counterfactuals, the ones that create 

a better explanation are those closer to reality. Following the example above, a difference of 
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$1,000,000 in income would be a valid counterfactual, as the loan would be accepted. 

However, that information is not very useful to the client, since that is not the minimal 

distance from a loan rejection scenario to an accepted loan scenario. The original 

counterfactual, being the minimal value for the loan to be accepted, gives him/her a better 

notion of the decision boundary, and thus, creates a better sense of understanding of the 

reasons why the loan was not accepted. 

In the context of machine learning, counterfactual explanations are alternative input values 

that are close to the original but change the output’s class. In the work by Verma et. al. 

(VERMA; DICKERSON; HINES, 2020), authors describe several other desirable properties 

of counterfactuals, such as: 

• Actionability: There are features that due to problem constraints should not 

be modified. A typical example is a person’s age when requesting a loan to a 

bank. In this case, a counterfactual in which the age of the person is lower 

than the actual value is not actionable. 

• Sparsity: A counterfactual should not only be close to the original value, but 

also should alter the value of a few number of features. This is directly related 

to interpretability, as humans are only capable of understanding phenomena 

involving only a limited number of variables (HALFORD et al., 2005). 

• Data manifold closeness: The proposed counterfactual should be close to the 

training data manifold in order to be more realistic and trustworthy. 

• Treatment of causal relation between input features: Input features may be 

correlated through causality with each other. Thus, the variation of one feature 

may alter the value of a correlated feature. In this sense, a counterfactual 

should acknowledge and maintain these causal relations. 

 

2.7.1. Counterfactual Generation as a Minimization Problem 

 

In the work by Wachter et. al. (WACHTER; MITTELSTADT; RUSSELL, 2017), 

counterfactuals are introduced as an optimization problem in which the distance between the 

original input value and the counterfactual is minimized, given that the counterfactual 
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generates the desired output variation. Thus, the counterfactual value is found by minimizing 

the following expression: 

 𝑎𝑟𝑔 min
𝑥′

max
𝜆

𝜆(𝑓(𝑥′) − 𝑦′)2 + 𝑑(𝑥, 𝑥′) (30) 

 

, where 𝑥′ is the counterfactual value, 𝑥 is the original input value, 𝑦′ is the desired output 

class by the counterfactual, 𝑓() is the trained model and 𝑑(∙,∙) is a distance measure. 𝜆 is a 

value iteratively maximized to find a valid counterfactual value that generates an output value 

close enough to the desired output. Thus, according to this definition, a valid counterfactual 

is an input that not only changes the class output, but also is a value close to the original input 

value. Counterfactuals are limited to classification tasks, since they need class-like outputs 

to evaluate the validity of counterfactuals.  

To enhance certain properties of counterfactuals, the expression to be minimized can be 

altered. For example, to enhance actionability, sparsity and data manifold closeness, the 

minimization problem is modified to the following expression: 

 𝑎𝑟𝑔 min
𝑥′∈𝒜

𝜆(𝑓(𝑥′) − 𝑦′)2 + 𝑑(𝑥, 𝑥′) + 𝑔(𝑥 − 𝑥′) + 𝑙(𝑥′; 𝒳) (31) 

 

, where 𝒜 is the set of actionable features, 𝑔() is a penalty function that encourages sparsity, 

and 𝑙(𝑥′; 𝒳) is a function that measures the closeness of the counterfactual to the training 

data manifold.  

Regarding the distance measure 𝑑(∙,∙), several works have used the following metric 

(DANDL et al., 2020; MOTHILAL; SHARMA; TAN, 2020; RUSSELL, 2019; WACHTER; 

MITTELSTADT; RUSSELL, 2017): 

 𝑑(𝑥, 𝑥′) = ∑
|𝑥𝑗 − 𝑥𝑗′|

𝑀𝐴𝐷𝑗

𝐹

𝑗=1

  (32) 

 

 𝑀𝐴𝐷𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1
𝑁

(|𝑥𝑖,𝑗 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑘=1
𝑁

(𝑥𝑘,𝑗)|) (33) 
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, where 𝐹 is the number of features and 𝑁 is the number of training samples. 𝑀𝐴𝐷 is the 

median absolute deviation. Regarding the penalty function for sparsity 𝑔(), typically L1 and 

L2 norms are used. However, it has been well analyzed that L1 norm is prone to produce 

more sparsity in the results than the L2 norm (NG, 2004). Although not formally a norm, the 

L0 norm has been also considered (VERMA; DICKERSON; HINES, 2020). Finally, 

𝑙(𝑥′; 𝒳) is the term related to the data manifold closeness. However, this could hard to 

implement directly in a neural network ad-hoc approach. Some authors have considered other 

properties for counterfactuals besides the four described in this section, such as diversity 

(MOTHILAL; SHARMA; TAN, 2020; RUSSELL, 2019). This relates to the generation of 

not only one but a set of plausible counterfactuals. This is useful to give the end user a variety 

of actions he or she can take in order to achieve the desired goal. From an interpretability 

perspective, this is useful to differentiate the data manifold of each class.   

Regarding the optimization of equation (30), the authors in (WACHTER; 

MITTELSTADT; RUSSELL, 2017) use the ADAM optimizer (KINGMA; BA, 2015). Since 

the machine learning model represented by 𝑓() is already trained, this is a post-hoc approach. 

Research has shown that post-hoc explanations have inconsistency issues, as different 

techniques may yield different explanations for the same situation (BORDT et al., 2022; 

KOMMIYA MOTHILAL et al., 2021). Thus, the importance of creating interpretable models 

rather than using post-hoc methods to explain black-box models is highlighted. 

 

2.7.2. Counterfactuals Guided by Prototypes 

 

In (VAN LOOVEREN; KLAISE, 2021), the authors present an approach to creating 

counterfactuals with the help of prototypes for each class. They argue that this helps creating 

more interpretable counterfactuals in less time when compared to the previous technique. To 

create the class prototypes, there are two alternatives: the use of k-d trees (BENTLEY, 1975) 

or autoencoders. Furthermore, they use elastic net regularization (ZOU; HASTIE, 2005) to 

enhance sparsity. When using k-d trees, the counterfactual generation process is the 

following: 

1. Extract a sample from the training set and label each datapoint according to 

the prediction function. 



Escola Politécnica da Universidade de São Paulo  

Engenharia Naval e Oceânica  60 

 

____________________________________________________________________________________ 
Frameworks for Interpretability of Deep Learning-Based Prognostics and Health Management 

2. Build one k-d tree per class using the extracted sample. 

3. Find the nearest point to the one to be explained but different from the original 

class, by minimizing the Euclidean distance. This search determines the 

prototype to be used. 

4. Optimize the objective function: 

 𝐿𝑝𝑟𝑒𝑑 + 𝐿1 + 𝐿2 + 𝐿𝑝𝑟𝑜𝑡𝑜 (34) 

 

, where 𝐿𝑝𝑟𝑒𝑑 is the prediction loss, 𝐿1 and 𝐿2 are regularization terms and 

𝐿𝑝𝑟𝑜𝑡𝑜 is the distance from the counterfactual to its prototype. The objective 

function is optimized using a fast iterative shrinkage-thresholding algorithm 

(FISTA) (BECK; TEBOULLE, 2009). 

With this methodology, the authors show that counterfactuals are more interpretable, both 

quantitatively and visually (for image-type data). Furthermore, they find that the use of a 

prototype reduces the number of gradients needed to reach a solution by at least 75%. Also, 

they can induce the generation of actionable counterfactuals by fixing some of the feature 

values according to the problem’s restrictions.  

 

2.8. Counterfactuals, Causality and Machine Learning 

 

While we as humans have a notion of what causality is, it is not simple to put that 

notion into a formal definition. Causality (or causation) broadly refers to the influence of one 

event in another event. It has been studied thousands of years ago. An example is the concept 

of karma, born before c. 1500 BCE (DONIGER; O’FLAHERTY, 1980). This shows that the 

concept of causality has been present in our way of viewing the world.  

As mentioned in the Introduction section, counterfactuals are closely related to 

causation. In humans, counterfactual explanations lead to causal understanding (VERMA; 

DICKERSON; HINES, 2020). In the example above, the counterfactual explanation creates 

a causal understanding in the client. By knowing that the income should be $10,000 higher 

in order for the loan to be approved, the end-user understands that the cause of the rejection 

is in the income variable, and not in any other variables used for evaluation. 
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Among the different approaches to causation, David Lewis elaborates a theory related 

to counterfactuals (LEWIS, 1974). In it, he states that two events are causally dependent of 

each other if the two occur and if one of them does not occur, the other also does not occur. 

Thus, he defines causation in terms of counterfactuals.  

Other theories of causation use counterfactuals as a relevant concept as well. Judea 

Pearl describes the logic of causal reasoning through three hierarchical levels, referred to as 

“ladder of causation” (PEARL; MACKENZIE, 2018): 

1. Association: Refers to the act of observing the environment without any 

interaction. The observation of the environment is used to find correlations 

between variables. Pearl argues that humans and many other animals have this 

ability. 

2. Intervention: Is the analysis of the environment when a variable is deliberately 

modified. Only few species have the ability to understand the consequences 

on their actions on the environment. While some events do not rely on an 

intervention to occur, the difference between this and the previous level is, 

through intervention, there is certainty of the variables being altered. In 

association, variables may be altered due to other variables. 

3. Counterfactuals: This is the higher level in the ladder. It is the analysis of 

events through the imagination of alternative scenarios. Pearl argues that 

conclusions about causality can be achieved through the answering of these 

“what if” queries. 

According to Judea Pearl, machine learning algorithms belong in the first rung. They are 

algorithms that observe the environment through data and draw conclusions without 

interacting with it. Though association is necessary for drawing causal conclusions, it is not 

sufficient. Interacting with the environment through interventions and imagining alternative 

scenarios is necessary for drawing causal conclusions. Thus, typical machine learning 

algorithms (such as the ones described previously) do not capture causal relations, but they 

do give information about correlations. In (PEARL, 2019), Pearl argues that machine 

learning algorithms cannot formulate nor answer causal queries since they are based only in 

statistical tools. However, he proposed the use of seven tools that can overcome this issue in 

machine learning by climbing to levels 2 and 3 in the ladder of causation: 
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1. Encoding causal assumptions: Transparency and testability: Algorithms should 

encode causal assumptions between variables in a way that results can be 

analyzed and understood. Pearl argues that graphical models address this. 

2. Do-calculus and the control of confounding: Confounders are hidden causes of 

two or more variables. This is one of the main reasons why correlation does not 

imply causation. To address this, do-calculus is an operator that estimates the 

effects of interventions whenever possible. Thus, it is known that the effect comes 

from the intervention and not a confounder. However, intervention data is needed 

for do-calculus to be available. 

3. Algorithmization of counterfactuals: Tools for systematic analysis of 

counterfactuals are essential for understanding causation.  

4. Mediation analysis and the assessment of direct and indirect effects: Some cause 

and effects relations are indirect, in that other variables act as mediators. The 

assessment of these situations is important to deal with causality.  

5. Adaptability, external validity and sample selection bias: Through the level of 

association, machine learning algorithms are not adaptable to different domains 

or when environment conditions change. Through causal inference, machine 

learning algorithms can become more adaptable and robust. 

6. Recovering from missing data: By knowing cause and effect relations between 

variables, it will be possible to do better estimates for missing data than, for 

example, interpolation-based approaches. 

7. Causal discovery: While encoding known causal relations is crucial for causal 

inference, discovery of unknown causal relations is important for modifying the 

original causal model, improve performance, an even learn from the model’s 

discoveries. 

Machine learning algorithms such as neural networks do not include these tools. 

However, interpretability is a useful approach for users to understand the dynamics of a 

machine learning model and to take the most information out of it in order to draw more 

conclusions in the association level of Pearl’s ladder, which in turn will be useful for the next 

two levels. While machine learning algorithms cannot be used to draw causal conclusions, 

there is a potential through interpretability to get insights that could lead to information about 

causality, thus, closing the gap between the first level of the ladder and the other two. 
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2.8.1. Necessity and Sufficiency 

 

Necessity and sufficiency are two concepts used to better understand causality. A 

necessary cause is an event that, should it not occur, the effect would never occur. On the 

other hand, a sufficient cause is an event that its occurrence will always lead to the occurrence 

of the effect (SEAWRIGHT, 2002). Thus, an event can have a combination of these two 

causal attributes to determine its connection to the alleged effect. For example, an event can 

be a necessary cause but not sufficient, if another event must occur jointly in order to the 

effect event to occur. On the other hand, an event can be a sufficient cause but not necessary 

if other events also determine the occurrence of the effect.  

In (PEARL, 1999), Pearl defines the probabilities of causation of a variable X with 

relation to a variable Y as a set of three probabilities: probability of necessity (𝑃𝑁(𝑋𝑌)), 

probability of sufficiency (𝑃𝑆(𝑋𝑌)) and probability of necessity and sufficiency (𝑃𝑁𝑆(𝑋𝑌)): 

 𝑃𝑁(𝑋𝑌) = 𝑃(𝑦′
𝑥′  | 𝑥, 𝑦) (35) 

 𝑃𝑆(𝑋𝑌) = 𝑃(𝑦𝑥 | 𝑦′, 𝑥′) (36) 

 𝑃𝑁𝑆(𝑋𝑌) = 𝑃(𝑦𝑥, 𝑦′𝑥′) (37) 

 

, where 𝑥 and 𝑦 are specific values for binary variables 𝑋 and 𝑌 respectively. Here, 𝑥 stands 

for 𝑋 = 𝑡𝑟𝑢𝑒 and 𝑦 for 𝑌 = 𝑡𝑟𝑢𝑒, and 𝑥′ and 𝑦′ are their complements. Furthermore, the 

notation 𝑦′
𝑥′ stands for “Y would have been false if X would had been false”, and 𝑦𝑥 stands 

for “Y would have been true if X would had been true”. Thus, PN is the probability that 𝑌 

would have been false if 𝑋 would have been false, given that 𝑋 and 𝑌 are actually true. PS is 

the probability that 𝑌 would had been true if 𝑋 would had been true, given that actually 𝑋 

and 𝑌  are false. PNS is the probability of 𝑌 being true if 𝑋 is true and being false otherwise.  

According to the author, the three values are related through the following equation: 

 𝑃𝑁𝑆 = 𝑃(𝑥, 𝑦) ∙ 𝑃𝑁 + 𝑃(𝑥′, 𝑦′) ∙ 𝑃𝑆 (38) 
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To calculate the values mentioned above, the seven tools presented by Pearl are 

necessary. Particularly, the algorithmization of counterfactuals. Without an appropriate way 

to generate counterfactuals, probabilities of causation cannot be calculated. In (KOMMIYA 

MOTHILAL et al., 2021), authors operationalize the calculation of necessity and sufficiency 

in the context of machine learning for determining necessity and sufficiency of each input 

feature. By using existing counterfactual generation techniques, they calculate each of the 

input features’ necessity and sufficiency for explaining an output value. In the case of 

necessity, they generate counterfactuals by only modifying the value of the feature of interest 

and measure the proportion of valid counterfactuals, and present it as a percentage value. In 

the case of sufficiency, they use an opposite approach and generate counterfactuals that 

modify the values of all input features but the one of interest. Sufficiency is then quantified 

as the fraction of non-valid counterfactuals generated. By evaluating the whole test set and 

for all input features, they quantify necessity and sufficiency for each of the model’s input 

features. Furthermore, they argue that more necessary and/or sufficient features are more 

important to the model. Thus, this allows the creation of feature rankings based on necessity 

and sufficiency. 
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3. PROPOSED FRAMEWORK 

In this section, the proposed frameworks for interpretability of neural networks for 

PHM are presented. The section is divided according to the three frameworks: Feature 

selection using deep neural networks, counterfactual generation for interpretable fault 

diagnosis, and combining feature selection and counterfactual generation.  

3.1. Feature Selection Using Deep Neural Networks 

In this subsection, the framework for feature selection in deep neural networks is 

presented. It is subdivided in four parts: feature selection layer, ranking quality score, model 

selection and comparison with other techniques.  

 

3.1.1. Feature Selection Layer 

 

The feature importance analysis in DNNs is addressed by adding a feature selection 

layer (FS) after the input layer, in which each feature is multiplied by a trainable weight with 

values constrained to the range of [0,1]. These weights are trained jointly with the rest of the 

network’s weights and represent each feature’s importance. A representation of this approach 

and how it is embedded into the neural network is shown in Figure 15. Since the objective is 

to build a framework in which no preprocessing is needed, it was assumed there is no prior 

information about the features’ importance values. Thus, the weights in the FS layer are 

initialized as 1 𝑛⁄ , where 𝑛 is the number of features. Also, a regularization term is added to 

ensure the interaction between features, which is calculated as: 

 

 𝑟(𝑊𝐹𝑆) = 𝜆 ∙ |∑ 𝑤𝑖
𝐹𝑆 − 1

𝑛

𝑖=1

| (39) 

 

, where 𝑊𝐹𝐼𝐷 represents the weights vector in the FS layer and 𝜆 is a value between 0 and 1 

that determines the strength of the regularization. The addition of this regularization term to 

the loss function enforces the weights to sum 1. Thus, it is assured that the importance of 

each feature is influenced by the interaction with other features, which does not occur in 

methods like random forest or mutual information. This also avoids situations in which 
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weights have the same values. Furthermore, the use of the 𝑙1 norm, instead of the 𝑙2 norm is 

based on the effects of the 𝐿1 and 𝐿2 regularizations in the model related to feature selection, 

as detailed in the previous section. This configuration enforces the model to reach sparse 

solutions, in which irrelevant features are tied to a weight value of zero. The use of the 𝑙2 

would result in irrelevant features having values close to zero. 

The inclusion of an FS layer to a DNN adds two hyperparameters to the network: the 

layer’s activation function and the value of the 𝜆 parameter presented above. Both of them 

must be tuned to reach the highest performance possible, and in unison with the 

hyperparameters in the network. 

 

Figure 15 – An example of a deep neural network with the proposed FS layer. 

 

According to the taxonomy shown in Figure 9, the presented technique corresponds 

to an ad-hoc interpretability modelling technique. Furthermore, it has elements of 

interpretable representation techniques, such as regularization, and model renovation 

techniques, such as the addition of a layer with the purpose of calculating feature importance. 

Within feature importance, this is an embedded technique, as it is a product of the network’s 

configuration. Its application implies the modification of the network’s architecture. 

However, the number of parameters added the model is equal to the number of input features. 

In most DL applications, this number is small in comparison to the total number of trainable 

parameters. This means that the application of the FS layer technique has a low probability 

of altering the results obtained through the original architecture. However, this must be 

demonstrated. 
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3.1.2. Ranking Quality Score (RQS) for Ranking Evaluation 

 

The addition of an FS layer to the network enables the creation of a ranking of input 

features in terms of how relevant they are. This is useful for visualizing the tradeoff between 

number of input features and performance, which is key to determining the number of 

features used in deployment. Here, it is proposed a framework for a quantitative evaluation 

of the obtained ranking, which helps on deciding which model is the most suitable, and what 

features of the input feature space shall be used in the model deployment. This framework is 

presented in Figure 16. It consists of the following steps.  

1. The raw dataset is preprocessed to make it suitable for usage. Since feature selection 

will be done during training, it is not necessary to do any analysis for removing 

variables, besides discarding categorical variables. 

2. The dataset is divided into train and test sets and are normalized. To do this, the scaler 

chosen to normalize the data is fitted to the train set and used in both the training and 

testing set. For example, if the data is standardized, the mean and variance used for 

normalizing both the training and test sets are obtained only with the train set. This is 

done in order not to have any interference in the training process from the test set. 

3. The training set is used for training the network. 

4. When the training process is finished, the FS layer’s weights are used to rank the 

features in decreasing order. The model’s performance is then evaluated in the test 

set using a subset of the top n features, with 𝑛 = {1,2, … , 𝑁}.At first, the subset only 

contains the most relevant input feature. After evaluation, the second most relevant 

feature is added to the subset and performance is evaluated. This process is repeated 

until all the input features available are added to the subset.  

The performance results obtained from these iterative process are presented in a curve 

in order to compare with other methods, as in other works (CHANG; RAMPASEK; 

GOLDENBERG, 2017; GUI; GE; HU, 2019a; ŠKRLJ et al., 2020). However, a visual 

comparison is not as accurate and reliable as a quantitative comparison. To address this issue, 

it is proposed the ranking quality score (RQS), defined as: 
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 𝑅𝑄𝑆 ≡  
∑ 𝑃𝑀𝑛 ∙ 𝑛𝑁

𝑛=1

∑ max(𝑃𝑀) ∙ 𝑛𝑁
𝑛=1

=
2 ∙ ∑ 𝑃𝑀𝑛 ∙ 𝑛𝑁

𝑛=1

max(𝑃𝑀) ∙ 𝑁(𝑁 + 1)
   (40) 

 

, where 𝑃𝑀𝑛 is a performance metric of the choice evaluated using the 𝑛 most relevant 

features and max(𝑃𝑀) is the maximum value reached by the model. The range of values of 

this metric is [0,1] (the proof is presented in Appendix A) and it compares the two scenarios 

exemplified in Figure 17. In the figure, the scenario shown in the blue line represents an 

example case where the performance metric value increases alongside the number of features. 

Then, the numerator of equation 40 is calculated by multiplying each performance metric 

(calculated through step 4 mentioned above) by the number of features used to reach that 

performance value and summing up all of the results. This value is an indicator of the quality 

of the ranking obtained through step 4. However, it is highly dependent on the model. Within 

one model, this value can be used successfully to compare different rankings. Nonetheless, 

this cannot be done when comparing models. To address this issue, the RQS metric has a 

normalization term shown in the denominator of equation (3), represented by a red dotted 

line in Figure 6. It is the same calculation of the numerator, but assuming an ideal case where 

the maximum performance value is reached with the most relevant feature and is unaltered 

by the addition of less relevant features. By using the denominator mentioned above, the 

RQS metric presents values between 0 and 1. To illustrate its behavior, Figure 18 shows six 

different curves with their corresponding RQS value. 
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Figure 16 - Proposed methodology for ranking quality evaluation. 

 

The RQS metric measures the quality of the ranking obtained through the model using 

an FS layer. It is a normalized weighted sum of the chosen performance metric. It gives more 

weight as the number of variables increases. When using one feature, performance typically 

shows a low value. As features are being added, performance increases at a fast rate. After a 

certain number of features, performance reaches a plateau. The RQS metric gives a high 

value to a model in which the plateau is reached with few variables and this plateau is not 

affected by the addition of more features. On the other hand, it gives a low value to a model 

in which more features are needed to reach the plateau, or the addition of features leads to an 

important decrease in performance.  
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Figure 17 - Graphical representation of equation (40). 

 

Besides achieving a high RQS, the proposed technique must, at least, maintain the 

same level of performance compared to the same network without an FS layer. Otherwise, 

there would be a tradeoff between performance and interpretability, which is not desirable. 

As mentioned before, it is expected that the use of the FS layer technique does not affect 

greatly the inner dynamics of the rest of the network, and thus, alter the results. To evaluate 

the influence of the FS layer in the model’s performance, and based in the work presented in 

(ŠKRLJ et al., 2020), relative performance metrics are used, as defined in: 

 

 𝑃𝑀𝑛 = {

𝜌𝑛
𝜌0

⁄ , 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑠𝑘𝑠 𝑜𝑟 𝑃𝑀𝑛 = 𝑅2 
𝜌0

𝜌𝑛
⁄ , 𝑓𝑜𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡𝑎𝑠𝑘𝑠 𝑤𝑖𝑡ℎ 𝑃𝑀𝑛 ≠ 𝑅2

 (41) 

 

, where 𝜌𝑛 is the performance metric of the model trained with the FS layer and tested with 

the 𝑛 more relevant features, and 𝜌0 is the performance metric of the same model but without 

the FS layer and tested with all the set of features. Since typical regression performance 

metrics (except for the 𝑅2 coefficient) show the same behavior as the prediction error, the 

difference in definition is necessary for having the same kind of analysis regardless the task. 

Performance metrics are used as in equation (41) to easily illustrate in this work if the 

inclusion of an FS layer is beneficial or detrimental to the model’s performance. A value >1 

indicates the use of an FS leads to an increase in the model’s performance, whereas a value 
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≤1 indicates the contrary. Despite the fact that this work uses relative performance metrics, 

the proposed framework allows the use of any type of performance metric, relative or 

absolute. The objective of using relative performance metrics in this work is to show how the 

FS layer technique affects performance, compared to a model where no FS layer is used. 

 

Figure 18 - Different ranking situations with their corresponding RQS values. 

 

The proposed methodology involves the evaluation of models in terms of task 

performance (through a chosen performance metric) and their feature ranking quality 

(through the proposed RQS metric) simultaneously. Since the RQS metric quantifies how the 

model reaches its maximum performance and not the performance itself, this simultaneous 

analysis is not only possible but necessary. This is more clearly explained by observing that 

a model may have a good ranking quality (reflected in a high RQS value) but a low task 

performance. Thus, the selection of an appropriate model is determined by its task 

performance and its RQS. 

 

3.1.3. Model Selection 

 

The objective of using an FS layer and the RQS metric is to improve the model 

selection process for DNNs. The RQS metric compares different approaches for feature 

selection. Thus, a model with a higher RQS value should be preferred over one with a lower 

RQS value when performance is similar between them. After choosing the appropriate 
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technique, the number of features used in deployment must be determined. To do this, a 

mathematical-based criterion would be the number of features that yields the maximum 

performance value. While this is a reasonable criterion, it does not consider the fact that some 

features may have little impact on performance. In a real-life application, maximum 

performance may not be the ultimate objective, but rather a performance level above a 

predefined threshold, subject to limitations such as costs or time, among others. Moreover, 

models with a high RQS might benefit from other selection criteria besides maximum 

performance since they achieve high levels of performance with fewer features. 

In this work, two criteria for model selection are analyzed. The first one is maximum 

performance, and the second one is defined as the number of features needed to reach a 95% 

of the maximum performance value. This is done in order to show the performance and 

applicability of the techniques in a scenario where maximum performance is required and 

another one where a 5% decrease in performance is allowed, emulating a real-case scenario. 

However, the application of this framework is not restricted to these two criteria. Other 

criteria can be used for model selection depending on particular objectives and limitations. 

With this, model selection is done not only evaluating a performance value but also the RQS 

value simultaneously. 

 

3.1.4. Comparison with other Techniques 

 

To compare the proposed technique against other approached in terms of RQS and 

task performance, the following techniques were tested: 

• Mutual Information 

• ReliefF (KONONENKO, 1994) 

• Random Forest 

• “AFS: An Attention-based mechanism for Supervised Feature Selection” 

(GUI; GE; HU, 2019a) (AFS) 

In the first method (mutual information), the feature importance is determined 

according to the dependency of each feature with the output feature, as calculated in equation 

23. Thus, features that are more dependent with the output are more relevant. For entropy 
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estimation in this thesis, the number of nearest neighbors is set to three, as it presents a 

balance between variance and bias (ROSS, 2014). In ReliefF, features are analyzed in terms 

of how well they can distinguish classes in instances close to each other. The feature weights 

are calculated by measuring how the feature value varies with respect to a nearest hit (the 

nearest instance with the same class) and with respect to nearest misses (nearest instances 

with different classes). This is repeated for a set of instances. For regression tasks, ReliefF 

algorithm is extended to RReliefF (ROBNIK; KONENKO, 2003). Like in the mutual 

information technique, the number of nearest neighbors used is set to three. In the case of 

Random Forest, feature importance is calculated during training based on how much each 

feature contributes to the decrease in Gini impurity for classification tasks and the variance 

of the result for regression tasks. When using random forests, the number of trees is set to 

200, as it reaches a balance between computation time and performance. The AFS technique, 

as described in the Theoretical Background section, presents a detachable module for feature 

selection based on attention mechanism. An attention net for each feature is trained jointly 

with the rest of the network to determine whether the feature is relevant or not. The output 

of each attention net after training is used to rank features.  

These four techniques cover filter and embedded methods. Wrapper methods are not 

used since it becomes unfeasible for some datasets. Mutual Information and ReliefF 

techniques are filter methods, thus, they are model agnostic. On the other hand, Random 

Forest is a popular ML technique which has an embedded method for feature selection. The 

AFS method is used for comparison because it is a technique embedded in neural networks, 

achieving promising results when compared against other filter and embedded techniques, 

including one used for neural networks as well (ROY; MURTY; MOHAN, 2015). To the 

best of author’s knowledge, it is the most promising technique amongst those embedded in 

neural networks. In this thesis, two different configurations of this model are used to compare 

with the proposed framework, namely AFS and AFS 2. In the first one (AFS), the first hidden 

layer after the input layer (referred to in the paper as 𝐸) has an 𝑁/2 neurons, 𝑁 being the 

number of input features. A graphical representation of an example (with 𝑁 = 4) is shown 

in Figure 19. In AFS 2, the same layer has 𝑁 neurons. Regarding the attention nets, it was 

decided not to include any hidden layers (referred to in their work as {ℎ1
𝑘 … ℎ𝐿

𝑘}) for three 

reasons: First, the authors in (GUI; GE; HU, 2019a) do not specify the number of hidden 

layers and neurons used in their experiments; second, the implementation available in (GUI; 

GE; HU, 2019b) does not include hidden layers in their attention nets; and last, depending 
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on the number of features, the inclusion of hidden layers would increase the model size and, 

thus, its computational cost. Therefore, the 𝐸 layer is connected to 𝑁 softmax-activated layers 

with two neurons, which is used to determine the importance of each feature before entering 

the learning module. 

 

Figure 19 - Example representation of the AFS network. Note that the E layer has 𝑵/𝟐 neurons. In 

the AFS2 configuration, the E layer has 𝑵 features. As described in the original work, the E layer 

has a 𝒕𝒂𝒏𝒉 activation function. It serves as input to 𝑵 attention nets, each of them used to 

determine the importance value of an input feature. Adapted from (GUI; GE; HU, 2019a) 

Regarding the two widely used techniques LIME and SHAP discussed in the 

Introduction section, we do not use them for comparison because their mechanism for 

interpretability uses the model’s predictions. They are post-hoc techniques in which 

explanations depend entirely on the model’s outputs, and therefore, their inputs. In the case 

of LIME, it is a method for local interpretability, while in the case of the SHAP algorithm, 

feature importance for the model is obtained through the mean Shapley values for each 

feature across the dataset. This means that they may eventually vary when evaluating them 

with other datasets (such as using the test set). In contrast, all of the approaches above 

estimate feature importance values that do not change when varying the test set.  

To evaluate the ranking quality of the aforementioned methods, the first step is to 

obtain the features’ importance values using each of the aforementioned techniques. Then, a 

neural network with the same configuration as the main model but without the FS layer is 

trained. Then, similarly to the process depicted in Figure 16, the 𝑛 most relevant features are 
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used to evaluate the network’s performance on the masked test set, with 𝑛 varying from 1 to 

the total number of features 𝑁. The network’s performance evolution across the number of 

features is represented in a curve, and RQS is calculated, as discussed, the in the following 

section. 

 

3.2. SCF-Net: A Sparse Counterfactual Generation Network for 

Interpretable Fault Diagnosis 

 

To achieve interpretability of neural networks-based fault diagnosis using 

counterfactuals, a multi-task architecture is proposed. Thus, a trained model will classify the 

input variables according to their health state and simultaneously generate a counterfactual 

according to a desired class. The architecture for SCF-Net is presented in Figure 20. As 

shown in the figure, the SCF-Net receives three vectors as inputs: a vector X with all the 

input features’ values, a random latent variable (RLV) vector which allows the generation of 

multiple counterfactual values, and a desired class (DC) vector that indicates the objective 

class of the generated counterfactual. Thus, the SCF-Net receives a [𝑋, 𝑅𝐿𝑉, 𝐷𝐶] vector as 

input. This configuration is inspired in InfoGANs (CHEN et al., 2016), where the generator 

receives a random point in space and a class label as inputs. The proposed architecture uses 

these three inputs in two tasks: the first one is a classification network that determines which 

class the X vector belongs to. The second one is a counterfactual generator that uses the three 

inputs to generate a counterfactual for X according to the desired class DC. The generated 

counterfactual X’ then uses the weights of the classification network to generate an output 

class Y’. This is done in order to enhance the generator network to generate a counterfactual 

value that creates the desired output change when passing through the classification network. 

The DC value is necessary in order to specify which class the counterfactual must belong to. 

While this might not be necessary in a binary classification problem, it is necessary in the 

context of multi-class classification. Furthermore, the RLV value addresses the need for 

diversity in counterfactual generation algorithms, as mentioned in the previous section. Thus, 

a different counterfactual will be generated for each forward pass on the same input value. 
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Figure 20 – SCF-Net schematic representation. 

In order for a SCF-Net to succeed at both tasks simultaneously, appropriate loss 

functions must be defined. This work proposes the use of a loss function composed of four 

terms: 

 

𝑙𝑜𝑠𝑠 =  − ∑ 𝑦𝑗 𝑙𝑜𝑔 �̂�𝑗

𝐶

𝑗=1

+  ∑
|𝑋𝑖 − 𝑋′

𝑖|

𝑀𝐴𝐷(𝑋𝑖)

𝐹

𝑖=1

+  ‖𝑋 − 𝑋′‖0

+ − ∑ 𝑦′𝑗 𝑙𝑜𝑔 �̂�′𝑗

𝐶

𝑗=1

 

(42) 

 

, where 𝐶 is the number of classes, 𝐹 is the number of features, 𝑦 is the network’s output 

value, �̂� is the correct label, 𝑋 is the input value, 𝑋′ is the counterfactual value generated by 

the network, 𝑀𝐴𝐷() is the median absolute deviation function described in equation 4, and 

�̂�′ is the correct counterfactual label. The first term corresponds to the categorical cross-

entropy loss function, commonly used for classification problems. The second term is used 

in order to minimize the distance between the original input value and the generated 

counterfactual. According to Wachter et. al. (WACHTER; MITTELSTADT; RUSSELL, 

2017), the feature-wise 𝑀𝐴𝐷() function is used instead of the standard deviation in order to 

enhance robustness against outliers. Furthermore, they test the use of both L1 and L2 norms, 
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concluding that the former is more suitable as it generates sparser results. The third term’s 

purpose is to enhance sparsity, as it gives penalty each time the feature-wise difference 

between 𝑋 and 𝑋′ is greater than zero. Finally, the fourth term is added in order to ensure that 

the generated counterfactual actually belongs to the desired class.  

The architecture presented in this section is trained to simultaneously minimize the 

classification error of the original input values and to generate a counterfactual value that is 

close to the original value, that changes as few variables as possible (sparsity) and that 

satisfies the condition of changing the output class. Due to the fact that neural networks deal 

with continuous values for inputs and outputs, it is virtually impossible for the proposed 

architecture to generate a counterfactual value with any number of features remaining 

unchanged. Thus, the neural network will generate counterfactuals with all of their features 

having a variation in their values. This hinders sparsity and also interpretability, as minor 

changes in all of the features may be difficult for the end user to understand. To circumvent 

this issue, we follow the procedure described in (MOTHILAL; SHARMA; TAN, 2020). 

After generating the counterfactuals, all features whose difference with the original value is 

below a predefined threshold will be restored to their original value. In their work, they 

compare the MAD function value with the 10th percentile value of the absolute distance from 

the median, and use the minimum of the two as the threshold. In this work, it is suggested 

that the percentile value should be treated as an hyperparameter (referred to as 𝜑), for three 

situations may arise. In the first one, no features are restored, thus the procedure is useless at 

enhancing sparsity. The opposite may also occur and all features are restored, thus the 

counterfactual being nullified. Finally, it may occur that due to the procedure, the 

counterfactual does not generate a change in the output class, thus decreasing the 

counterfactual performance. In this work, the percentile value is chosen as the maximum 

value in which no counterfactuals are nullified due to all features being restored. Thus, 

sparsity is enhanced without losing counterfactuals. This restoration process is illustrated in 

Figure 21. 
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Figure 21 – Restoration process for sparsity enhancing. Example for the second feature.  

After training, the model’s performance must be evaluated considering the input 

values’ classification performance, the counterfactual values’ classification performance, and 

the quality of the counterfactuals according to the desirable properties described above. For 

both the original and counterfactual values’ classification performance, accuracy is used. For 

the evaluation of the quality of the generated counterfactuals, there is no consensus for 

standard metrics. However, authors have proposed different metrics for evaluation. In (VAN 

LOOVEREN; KLAISE, 2021), the authors introduce the IM1 and IM2 metrics: 

 

 𝐼𝑀1 =
‖𝑋′ − 𝐴𝐸𝑡(𝑋′)‖2

2

‖𝑋′ − 𝐴𝐸𝑜(𝑋′)‖2
2 + 𝜖

  (43) 

 
𝐼𝑀2 =

‖𝐴𝐸𝑡(𝑋′) − 𝐴𝐸(𝑋′)‖2
2

‖𝑋′‖1 + 𝜖
  

(44) 

 

, where 𝑋′ is the counterfactual value, 𝐴𝐸𝑡 is an autoencoder trained only using data 

belonging to the counterfactual class, 𝐴𝐸𝑜 is an autoencoder trained using data from the 
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original class, and 𝐴𝐸 is the autoencoder trained with all of the classes. In this work, we use 

𝜖 = 1.0 × 10−7. The IM1 metric uses autoencoders trained on different classes to create 

representations of these classes. Thus, if a counterfactual is better reconstructed by 𝐴𝐸𝑡 than 

by 𝐴𝐸𝑜, it means the counterfactual value is closer to the data manifold of the counterfactual 

class than the original class. On the other hand, the IM2 metric measures the closeness of the 

counterfactuals’ data manifold to the general data manifold. In this sense, both metrics 

measure the interpretability of the achieved counterfactuals, with lower values implying more 

interpretability. However, in this thesis only IM1 is used, as IM2 has shown some issues with 

interpretability of its values (MAHAJAN; TAN; SHARMA, 2019). Also, in (SCHUT et al., 

2021), authors compare the values of IM2 with in-distribution and out-of-distribution data, 

achieving no significant difference in their values. 

Besides IM1 and IM2, we measure realism (Re) and sparsity (Sp) through the 

following metrics: 

 𝑅𝑒 = ‖𝐴𝐸(𝑋′) − 𝑋′‖2
2 (45) 

 𝑆𝑝 =  ‖𝑋 − 𝑋′‖0  (46) 

The Re metric is based on the work by Nemirovsky et. al. (NEMIROVSKY et al., 2020). It 

measures how close the counterfactual is from the training set data manifold. The closer it is, 

the more realistic it is assumed to be. In the mentioned work, authors measure sparsity 

through the L1 norm instead of the L0 norm. Though this is a useful measure of sparsity, we 

prefer to use the L0 norm. The main reason is because it is used in the loss function for 

training the model, thus, the metric measures directly the quality of the optimization. Also, 

as some features will most likely be restored to their original value, the L0 norm will directly 

quantify how many features remained unchanged with respect to their original value after 

applying restoration procedure. Furthermore, the L1 norm is affected by how much each 

feature varies. While the L1 norm is a useful metric for evaluating proximity, we believe that 

the L0 norm is more suitable for evaluating sparsity. The L0 norm is also a measure of how 

interpretable the counterfactual is, as interpretability is directly related to the number of 

features altered from the original value. 

The methodology followed for this framework is presented in Figure 22. Its steps are 

the following: 
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1. Preprocess raw data. 

2. Split into train and test data. Train data is used to adjust the networks 

parameters during training and test data is used to measure its performance 

after training. 

3. Train the SCF-Net using backpropagation. 

4. With the trained network, classification performance is measured using the 

test set and counterfactuals are generated for each point in the test set. 

Restoration process is included in this step. 

5. The generated counterfactuals are evaluated using the IM1, sparsity and 

realism metrics.  

6. The set of counterfactuals generated using the test set is fed to the trained 

network. This is done in order to evaluate the validity of the generated 

counterfactuals.  

To calculate the IM1 and realism metrics, one autoencoder must be trained for each 

available class. Also, one autoencoder must be trained with all the classes. In this work, each 

of these autoencoders is trained three times, and results are presented as the mean of the three 

predictions each time the SCF-Net is trained. Furthermore, the proposed classification and 

counterfactual generation model is trained five times. Thus, all performance metrics results 

are calculated as the mean of these five training processes. 
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Figure 22 – Evaluation methodology for the proposed architecture. 

 

3.2.1. Training process 

 

Due to the fact that there are additional values besides 𝑋 that are used as inputs to the 

SCF-Net, the training process is slightly modified. The two main modifications are the 

following: 

1. Data augmentation: The SCF-Net must be able to generate counterfactuals for 

each of the available classes. Thus, it must respond correctly to the DC value. 

To achieve this, the train set is augmented according to the number of classes. 

For each datapoint in the training dataset, one vector is created for each class. 

Thus, during the training process the network will have to use the DC value 

properly to create a counterfactual belonging to that class. If this augmentation 

process was not made, the network would not see enough values to properly 

learn the representations needed for each class. Furthermore, the data is 

augmented for each possible class, including that to which the 𝑋 value 

actually belongs. This is done in order not to give information to the network 

that should not be given. For example, in a binary classification case, not 

including the class that 𝑋 belongs to and only the one that 𝑋 does not belong 

to will give information to the network about the belonging class, and it will 

probably use the DC value to classify 𝑋 in the upper part of the network. In 
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contrast, by including all of the classes in the data augmentation process, the 

network will not get information that can be used in the classification task. 

2. Random latent variable: The RLV value is used to enhance diversity. Without 

its presence, the network will always generate the same counterfactual for 

each value. To use it during training, the random values are recalculated after 

each epoch. This is done to avoid the network to learn any bias from the value 

of the RLV itself, and only use it to generate a different counterfactual each 

time the same value is fed to the network.  

 

3.2.2. Comparison with other techniques 

 

Besides the evaluation of the SCF-Net, a comparison is made with two other 

techniques. The first one (referred to as (1) in this thesis) is based on the work by Wachter 

et. al. (WACHTER; MITTELSTADT; RUSSELL, 2017). The calculation of each 

counterfactual is treated as an optimization problem: 

 
min
𝑋−𝑋′

max
𝜆

(𝑓(𝑋′) − 𝑦′)2 + 𝜆‖𝑋′ − 𝑋‖1 

subject to |𝑓(𝑋′) − 𝑦′| ≤  𝜖′ 
(47) 

 

, where 𝜖′ is a tolerance value. To find the counterfactual values, the ADAM optimizer 

(KINGMA; BA, 2015) is used. The second one (referred to as (2) in this thesis) is based on 

the work by Van Looveren and Klaise (VAN LOOVEREN; KLAISE, 2021) in which class 

prototypes are used as guides for counterfactuals generation. The minimization problem used 

to generate counterfactuals is the following: 

 
min
𝑋−𝑋′

(max ([𝑓(𝑋′)]𝑡0
− max

𝑖≠𝑡0

[𝑓(𝑋′)]𝑖, −𝜅) + 𝛽 ∙ ‖𝑋 − 𝑋′‖1

+ ‖𝑋 − 𝑋′‖2
2 + ‖𝑋′ − 𝑋𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒‖

2

2
) 

(48) 

 

, where 𝑡0 is the original class, 𝑖 corresponds to each class different than 𝑡0, 𝜅 establishes the 

limit for the difference between the prediction values, 𝛽 is a parameter to define the 

predominance of the L1 regularization, and 𝑋𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 is a value that represents a desired 
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class. This value is obtained by using k-d trees (BENTLEY, 1975) for each class and it is 

used to speed up the search for counterfactuals and to avoid out-of-distribution results. 

 

3.3. FS-SCF: Combining Feature Selection and Counterfactual Generation 

for Prognostics and Health Management 

 

To combine both feature selection and counterfactual generation in one algorithm, 

the Feature Selection and Sparse Counterfactual Generation network (FS-SCF) is proposed. 

It incorporates the use of the FS layer into the SCF-Net. Its representation is shown in Figure 

23. As with the SCF-Net architecture, the inputs are a 𝑋 vector containing sensor data 

information, a random latent variable (RLV) for enhancing diversity and a one-hot-encoded 

desired class (DC) vector that determines to what class does the generated counterfactual 

must belong to. The input vector 𝑋 is used in the upper part of Figure 23 as a neural network 

classifier for fault diagnosis. However, before the typical hidden layers there is a feature 

selection layer, whose weights are used to determine the importance of each input feature 

and generate a feature ranking according to these values. In the lower part of the network, 

the [𝑋, 𝑅𝐿𝑉, 𝐷𝐶] vector is used to generate a counterfactual close to 𝑋 and belonging to the 

𝐷𝐶 class. Like in the SCF-Net, the 𝑅𝐿𝑉 value is used in order to enhance diversity. With the 

generated counterfactual, the weights used in the classifier above (including the feature 

selection layer weights) are copied for a forward pass, with the objective of determining the 

validity of the generated counterfactual. Like in the SCF-Net, the whole network is trained 

simultaneously, without pre-training of any layers. Thus, every time the weights are copied 

for a forward pass, their values are the ones obtained in the previous backpropagation step.  

The training process of the FS-SCF network consists on the minimization of the 

following loss function: 

  

𝑙𝑜𝑠𝑠 =  − ∑ 𝑦𝑗 𝑙𝑜𝑔 �̂�𝑗

𝐶

𝑗=1

+  ∑
|𝑋𝑖 − 𝑋′

𝑖|

𝑀𝐴𝐷(𝑋𝑖)
∙ 𝜃𝑖

𝐹

𝑖=1

+  ‖𝑋 − 𝑋′‖0

+ − ∑ 𝑦′𝑗 𝑙𝑜𝑔 �̂�′𝑗

𝐶

𝑗=1

 

(49) 
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This loss function is very similar to the one for the SCF-Net. The only difference is the 𝜃𝑖 

term, which corresponds to the feature importance value of the 𝑖-th input feature, obtained 

from the FS-layer’s corresponding weight. Each time the loss is calculated, the 𝜃𝑖 values 

correspond to layer’s weights in that specific epoch. Thus, these values vary with each epoch. 

The intuition behind the inclusion of the 𝜃𝑖 value in the loss function is that more important 

features should not have their values altered. Thus, there is a higher penalization in the loss 

function for important features. This forces the network to keep the values of those features 

closer to their original values. This was proposed in (GRATH et al., 2018) 

 

Figure 23 – FS-SCF network representation. 

 

With the FS-SCF network, three kinds of information are obtained: task performance, 

counterfactuals, and feature importance values.  While the first one relates to the original 

objective of neural networks (to do predictions with the highest performance possible), the 

two latter are used for interpretability. Thus, no external techniques are needed to analyze the 

trained model, as it is inheritably interpretable. 

 

3.3.1. Necessity and Sufficiency Quantification 
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With the obtained counterfactuals for each value in the test set, this thesis proposes a 

method for necessity and sufficiency quantification. The algorithm proposed in (KOMMIYA 

MOTHILAL et al., 2021) for quantifying necessity and sufficiency relies on the ability to 

restrict what features can be altered and what cannot in the process of counterfactual 

generation. This is not possible in the proposed FS-SCF network, due to the nature of neural 

networks. To circumvent this, a restoration process similar to the one from (MOTHILAL; 

SHARMA; TAN, 2020) is used. The process is straightforward: For necessity quantification, 

all features’ values except the analyzed one are restored to their original value, and the 

analyzed one is kept to the counterfactual value. The resulting vector is then fed to the FS-

SCF network, to evaluate if it is a valid counterfactual or not. If it is, then the analyzed feature 

is necessary for explaining the original output, as a change in its value determines a change 

in the output’s class. For sufficiency, the process is the opposite: The analyzed feature’s value 

is restored to its original value, while all of the other values are kept as the ones in the 

counterfactual vector. If this resulting vector is not a valid counterfactual, then the analyzed 

feature’s value is a sufficient explanation to the original output. This is because even though 

all of the other features’ values where altered, it was not possible to create a valid 

counterfactual. An example of this is shown in Figure 24, for a feature that is both necessary 

and sufficient.  
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Figure 24 – Necessity and sufficiency quantification example. 

 

By applying the necessity and sufficiency quantification method described above, 

users can know what features are necessary and/or sufficient for each generated 

counterfactual. Taking the mean value for all datapoints in the test set, each feature has a 

corresponding value between 0 and 1 indicating its necessity. The same process is followed 

for sufficiency. Besides necessity and sufficiency, two more properties are quantified: 

(necessity AND sufficiency) (NaS), and (necessity OR sufficiency) (NoS). The process of 

quantification is direct: if a feature is necessary and sufficient, the (necessity AND 

sufficiency) value will be 1. Otherwise, its value will be 0. The same process is followed for 

the (necessity OR sufficiency).  

 

3.3.2. Correlation Between FS-based and Causality-based rankings  

 

With the quantification for necessity, sufficiency, NaS and NoS, users can know 

which feature are more relevant regarding all of these properties. This information is used to 

create feature rankings and to compare them with the FS-based ranking obtained through the 
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feature importance values from the FS layer. This is done in order to try to understand why 

the FS-layer technique gives more relevance score to some features rather than others. To do 

this, the correlation between each of the four causality-based rankings and the FS layer is 

measured using the Spearman’s rank correlation coefficient (WINTER; GOSLING; 

POTTER, 2016): 

 

 
𝑅𝑠 =  

∑ 𝑅(𝑥𝑖) ∙ 𝑅(𝑦𝑖)
𝑁
𝑖=1

√∑ 𝑅(𝑥𝑖)2𝑁
𝑖=1 ∑ 𝑅(𝑦𝑖)2𝑁

𝑖=1

 
(50) 

 

, where 𝑅() denotes the conversion of raw values to ranks. The range of its values is from -1 

to 1. A negative value will indicate a negative correlation (the rankings are similar but in 

opposite order) and a positive value indicates a positive correlation (rakings are similar in the 

same order). Table 2 indicates the level of correlation that must be assumed according to the 

𝑅𝑠 value (XIAO et al., 2016).  

The Spearman correlation is a special case of the Pearson correlation in which 

samples are converted into ranks. According to (XIAO et al., 2016), the Spearman correlation 

is able to capture the monotonic relationship between the variables. The Pearson correlation 

focuses in the values rather than the ranks. This may lead to misleading results, as 

exemplified in the work by Xiao et. al. There, they show a case where despite two vectors 

presenting the same order in their values, the Pearson correlation value is equals to 0.88, 

whereas the Spearman correlation value is of 1.0. Thus, the advantage of using the Spearman 

correlation when rankings are being compared.  
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Table 2 – Strength of correlation according to the 𝑅𝑠 value. Adapted from (XIAO et al., 2016). 

𝑹𝒔 Correlation strength 

[-1.0, -0.5] Strong negative correlation 

[-0.5, -0.3] Moderate negative correlation 

[-0.3, -0.1] Weak negative correlation 

[-0.1, 0.0] None or very weak negative correlation 

[0.0, 0.1] None or very weak positive correlation 

[0.1, 0.3] Weak positive correlation 

[0.3, 0.5] Moderate positive correlation 

[0.5, 1.0] Strong positive correlation 

 

3.3.3. FS-SCF Methodology 

 

The FS-SCF network unifies the use of the feature selection layer, the multi-tasking 

SCF network and the proposed necessity and sufficiency quantification methodology. The 

methodology to evaluate this proposed network through different case studies is as follows: 

1. Preprocess raw data. This includes handling missing data and noisy data. 

Feature selection is done in the feature selection layer, thus, any feature 

analysis with the intention of selecting the most appropriate ones is not 

necessary. However, features can be deleted if the number of missing values 

is excessive and hinders the analysis by either deleting too much datapoints 

or using interpolation excessively. That trade-off analysis must be done by the 

user. 

2. Split the dataset into train and test data. Train data is used to adjust the 

network’s parameters during training (including those related to feature 

selection), while test data is used for evaluation of the network’s performance 

and counterfactual generation. 

3. After training, the model’s parameters are obtained. Amongst these, the 

feature selection layer’s weights are used to create a feature ranking according 

to their importance. The trained model is used to evaluate its performance in 

the test set, and to generate counterfactuals for each datapoint in the test set 

and for every class except the original one. 
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4. The generated counterfactuals are evaluated according to quality measures, 

such as 𝐼𝑀1, realism and sparsity. Furthermore, they are re-fed to the trained 

network in order to evaluate whether they achieve the objective of altering the 

output’s class or not. Also, they are used to quantify the necessity and 

sufficiency of each input feature when explaining the original output value. 

This is done according to the process explained above. 

5. With the quantification of necessity and sufficiency, features are ranked 

according to four criteria: necessity, sufficiency, necessity and sufficiency, 

and necessity or sufficiency. 

6. The feature ranking obtained through the feature selection layer is compared 

to the rankings obtained through necessity and sufficiency quantification by 

using the Spearman correlation.    

 

With this process being followed, the FS-SCF is an inherently interpretable neural 

network-based classifier that ranks features according to their importance for the model and 

is able to generate counterfactuals. Furthermore, through the generated counterfactuals, 

necessity and sufficiency are quantified in order to better describe the ranking obtained 

through the model’s feature selection layer. The methodology described above is represented 

graphically in Figure 25. 
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Figure 25 – FS-SCF network methodology. 
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4. CASE STUDIES 

This section presents the case studies used to evaluate the performance of the 

proposed framework for fault diagnosis and prognosis and RUL prediction.    

 

4.1. Case Western Reserve University Bearing Data Center (CWR) 

 

The dataset is provided by the Case Western Reserve University Bearing Data Center, 

and consists of vibrational data collected with accelerometers on an electric motor’s drive-

end ball bearing (LOPARO, 2013). The description of the experiment is detailed in Table 3. 

Twelve health conditions are measured, which determine the bearings’ health classes. 

Similarly to the work presented in (SAN MARTIN et al., 2019), 100 features are manually 

extracted from the data. These are presented in Table 4. The dataset has 8004 samples with 

100 features and 12 classes. The classes’ description and distribution are detailed in Table 5. 

The experiment setup is shown in Figure 26. 

 

 

Figure 26 – CWR experiment setup. Based on (LOPARO, 2013) 

 

Table 3 - CWR experiment settings. 

Bearing Model SKF 6205 2RSJEM 

Sensors Location Drive end bearing housing – 12 o’clock position 

Faults Location Balls, outer ring, or inner ring 

Motor Loads 0-1-2-3 hp 

Motor Speeds [1720,1797] rpm 

Sampling Rates 48 kHz (baseline) – 12 kHz (faults) 
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Table 4 - CWR features' description. 

Type of 

signal 
Feature 

Feature 

Number 

Original 

signal 

Maximum amplitude 1 

Root Mean Square (RMS) 2 

Peak-to-peak amplitude 3 

Crest factor 4 

Arithmetic mean 5 

Variance 6 

Skewness 7 

Kurtosis 8 

Centered moments (𝑘=5-11) 9-15 

Arithmetic mean of the Fourier amplitude, divided in 25 

frequency bands 
16-40 

RMS of the first five IMFs* (empirical mode decomposition) 41-45 

Percent energy of the first five IMFs (empirical mode 

decomposition) 
46-50 

Shannon entropy of the first 5 IMFs (empirical mode 

decomposition) 
51-55 

RMS of the first 5 PFs** (Local Mean Decomposition) 56-60 

Percent energy of the first 5 PFs (Local Mean Decomposition) 61-65 

Shannon entropy of the first 5 PFs (Local Mean Decomposition) 66-70 

Derivative 

of the 

original 

signal 

Maximum amplitude 71 

Root Mean Square (RMS) 72 

Peak-to-peak amplitude 73 

Crest factor 74 

Arithmetic mean 75 

Variance 76 

Skewness 77 

Kurtosis 78 

Centered moments (𝑘=5-11) 79-85 

Integral of 

the 

original 

signal 

Maximum amplitude 86 

Root Mean Square (RMS) 87 

Peak-to-peak amplitude 88 

Crest factor 89 

Arithmetic mean 90 

Variance 91 

Skewness 92 

Kurtosis 93 

Centered moments (𝑘=5-11) 94-100 

*IMF: intrinsic mode functions; **PF: product functions. 
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Table 5 - CWR classes' description. 

Class ID Fault size [mm] Fault location 
Datapoints in 

the train set 

Datapoints in 

the test set 

Baseline - - 496 91 

18BF 0.18 Balls 565 108 

36BF 0.36 Balls 569 107 

53BF 0.53 Balls 583 93 

71BF 0.71 Balls 565 104 

18IR 0.18 Inner race ring 572 104 

36IR 0.36 Inner race ring 590 85 

53IR 0.53 Inner race ring 576 99 

71IR 0.71 Inner race ring 572 99 

18OR 0.18 Outer race ring 565 110 

36OR 0.36 Outer race ring 572 103 

53OR 0.53 Outer race ring 578 98 

 

To diagnose the bearing’s health state, 100 extracted features are used. However, 

there are features that give more information about the health state than others. Furthermore, 

a situation may be presented in which the information of some features is obtained through 

other features, making them irrelevant to the network. Thus, it is necessary to determine the 

importance of each input feature fed to the network. 

 

4.2. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) 

 

The second case study used in this work corresponds to the NASA Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) datasets (SAXENA et al., 2008), 

widely used as benchmark for RUL prediction methods (COFRE-MARTEL; DROGUETT; 

MODARRES, 2020; KONG et al., 2019; RUIZ-TAGLE PALAZUELOS; DROGUETT; 

PASCUAL, 2020; VERSTRAETE; DROGUETT; MODARRES, 2020). They are four 

datasets containing simulated data of turbofans degradation time series. The datasets 

description is shown in Table 6. As it can be noted in the table, data is already divided into 

train and test trajectories, each of them ending in failure. Also, operating conditions in the 

datasets alternate between 1 and 6 and fault modes alternate between 1 and 2, making each 

dataset different from the others. Each dataset is comprised of 21 sensor measurements, 

which are used to train models for RUL prediction. To generate the labels, the same 

procedure shown in (RUIZ-TAGLE PALAZUELOS; DROGUETT; PASCUAL, 2020) is 
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used. Thus, degradation is represented as a piecewise linear function of the time cycles, with 

a maximum RUL number of 125. A diagram of the engine used for creating the datasets is 

shown in Figure 27. The description of the features used for RUL estimation are listed in 

Table 7. 

 

 

Figure 27 - Diagram of engine simulated in the C-MAPSS datasets. The components shown in the 

figure are the fan, the combustor, the nozzle, low-pressure compressor (LPC), high-pressure 

compressor (HPC), low-pressure turbine (LPT), high-pressure turbine (HPT). N1 and N2 indicate 

the low-pressure rotor and high-pressure rotor, respectively. Source: (SAXENA et al., 2008) 

Table 6 - C-MAPSS datasets. 

Dataset Train Trajectories Test Trajectories Conditions 
Fault 

Modes 

FD001 100 100 1 1 

FD002 260 259 6 1 

FD003 100 100 1 2 

FD004 249 248 6 2 

 

Out of the four datasets, this work shows results on datasets FD001 and FD004, since 

this work’s objective is to show the framework’s performance in different scenarios, and 

these two datasets do not share any of the characteristics shown in Table 6. The sizes of the 

two datasets are shown in Table 8. 
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Table 7 - C-MAPSS features' description. 

Feature 

Tag 
Description 

Feature 

Tag 
Description 

1 
Total temperature at LP* 

compressor outlet 
8 

Ratio of fuel flow to HP 

compressor outlet 

2 
Total temperature at HP** 

compressor outlet 
9 Corrected fan speed 

3 
Total temperature at LP 

turbine outlet 
10 Corrected core speed 

4 
Total pressure at HP 

compressor outlet 
11 Bypass Ratio 

5 Physical fan speed 12 Bleed Enthalpy 

6 Physical core speed 13 HP turbine coolant bleed 

7 
Static pressure at HP 

compressor outlet 
14 LP turbine coolant bleed 

*LP: Low Pressure; **HP: High Pressure 

 

Table 8 - C-MAPSS train and test sets. 

Dataset # Training samples # Testing samples 

FD001 20,631 13,096 

FD004 61,249 41,214 

 

Among the input features, there are some more informative about the degradation of 

the turbofan than others. This means that some features (or combination of features) are more 

sensitive to a change in the health state than others. More specifically, there may be features 

that are related to a certain failure mode, that do not relate to another failure mode. Therefore, 

it is relevant to determine the importance of each input feature on both datasets.   

 

4.3. Offshore Natural Gas Treatment Plant (NGTP) 

 

In this case study, data comes from an offshore natural gas treatment plant used to 

remove CO2 from the gas using amines. This process, also known as “gas sweetening” is 

done because CO2 is corrosive and reduces the natural gas’s energetic value. It is also usually 

used to remove H2S, which is toxic and corrosive. Figure 28 shows a schematic 

representation of the plant. The CO2 removal is done in the amine contactor, where non-

treated gas and the amines flow in countercurrent, so that the amines capture CO2. The rest 

of the system has the function of removing the CO2 from the amines, in order to it be used 
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again. To monitor the plant’s performance, 10 variables are measured constantly. Figure 28 

shows a description of the features, which are also identified in Table 9. The objective is to 

reduce the CO2 levels in the treated gas to <2,500 ppm, which is the acceptable level. The 

dataset contains 4,885 points sampled every 20 minutes, divided in four time periods. It is 

used to train models for quantifying the CO2 levels after gas treatment. Throughout this 

thesis, it is also used for classification, using the 2500 ppm threshold as a division between 

two classes describing the quality of the CO2 removal process. Class distribution is shown 

in Table 10. 

 

Figure 28 - CO2 removal process illustration. Source: (FIGUEROA BARRAZA et al., 2020) 
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Table 9 - Monitored data for natural gas treatment plant. Source: (FIGUEROA BARRAZA et al., 

2020) 

Reference Sensor Tag Description Units 

A Fluxo_Gas_A Non-treated gas flow rate kg/h 

B T_Gas Non-treated gas temperature ºC 

C P_Torre_Contactora Amine contactor pressure kPa 

D Delta_T 
Temperature difference between non-

treated gas and amine in the contactor 
ºC 

E T_Torre_Stripper Stripping tower temperature ºC 

F P_Torre_Stripper Stripping tower pressure kPa 

G T_Amina_Reboiler Amine temperature at the reboiler ºC 

H P_Amina_Reboiler Amine pressure at the reboiler kPa 

I Fluxo_Amina Amine flow rate kg/h 

J T_Amina Temperature of amine entering the 

contactor 

ºC 

K CO2_gas Particles per million of CO2 in the treated 

gas 

ppm 

 

In this case study, input features are related to certain equipment acting on the 

process. To identify an irrelevant variable could lead to stop monitoring an equipment that 

does not need monitoring. On the other hand, identifying a feature with high relevance could 

lead to identify an equipment that has more impact on amount of CO2 in the treated gas. This 

could help to improve the process. 

 

Table 10 – Class distribution for the amine treatment plant database. 

Dataset Class 0 (CO2 < 2500 ppm) Class 1 (CO2 > 2500 ppm) 

Train 3674 1058 

Test 906 277 

 

4.4. Water Injection Pump for Production Stimulation in Offshore Wells 

 

The dataset consists of different variables monitored from a water injection pump 

used for production stimulation when the oil well’s pressure is decreasing. Like in most real-

world datasets, this dataset presents some issues that must be addressed to feed a deep 

learning model. In this case, data being collected at different times and missing values are 

the two main issues. Regarding the first issue, values are grouped into 10-minute windows. 

Regarding missing values, a direct solution would be to interpolate. However, when there are 
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large windows of missing values, the achieved results could be misleading. To address this, 

each sensor data is analyzed independently, and values are interpolated if the missing values 

window is smaller than a threshold. Each threshold is determined by analyzing the behavior 

of each variable. After that, variables with a large number of missing values are discarded, 

in order to keep the dataset as large as possible. Finally, rows with missing values that where 

not interpolated are discarded. The remaining variables used in this study are described in 

Table 1. 

 

Figure 29 – Water injection pump representation. 

Table 11 – Feature description for the water injection pump system 

Reference Sensor Tag Description Units 

A FIT-323D Flow m3/h 

B IT-1031 Engine current A 

C PT-305D Suction pressure kPa 

D PT-306D Discharge pressure kPa 

E TIT-305D Lubrification circuit temperature ºC 

F TIT-306D Housing temperature ºC 

G TT-308D Axial (thrust) bearing side temperature ºC 

H VT-301D Non-drive end radial bearing vibration 1 μm 

I VT-302D Non-drive end radial bearing vibration 2 μm 

J VT-303D Drive end radial bearing vibration 1 μm 

K VT-304D Drive end radial bearing vibration 2 μm 

L ZT-301D Axis-bearing spacing 1 mm 

M ZT-302D Axis-bearing spacing 1 mm 
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This dataset can be used for classification, as each datapoint is tagged according to 

its corresponding health state. Four kinds of health states are presented: healthy, incipient 

fault, degraded fault, and critical failure. The distribution of all classes is shown in Table 12. 

Table 12 – Class distribution for the water injection pump dataset. 

Dataset Healthy Incipient Degraded Critical 

Train 53681 17070 2342 1887 

Test 6024 1838 251 219 
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5. RESULTS AND DISCUSSION 

In this section, the results are presented and discussed for the three proposed 

frameworks in this thesis for neural network interpretability. This section is divided in three 

subsections, one subsection for each proposed framework. 

 

5.1. Feature Selection 

 

In this subsection, results obtained for all case studies are presented, including the 

different models’ configuration, RQS values, performance, and comparison with other 

techniques. All models are trained using Python v3.7, Tensorflow v2.1.0 and Keras v2.3.1. 

Hardware configuration is the following: Intel i5-9600K CPU, 16 GB DDR4 RAM and 

NVIDIA 11GB Geforce RTX 2080 Ti GPU. The configurations of the trained models are 

shown in Table 13. For this framework, three case studies are used: the CWR bearing data, 

the CMAPSS dataset, and the amine treatment plant data for CO2 removal. The objective is 

to show the capabilities of the proposed framework for classification (CWR), regression 

(amine treatment plant) and RUL prediction (CMAPSS) tasks. That is why those three cases 

are used for this framework. 

Table 13 - Configuration of the four trained models. 

Case Study 
CWR 

C-MAPSS 
NGTP* 

Dataset FD001 FD004 

Hidden layers 2 

Neurons per hidden 

layer 
64-32 

Activation functions ReLU - ReLU 

Learning rate 1e-3 

FS layer activation 

function 
Tanh Sigmoid Linear Tanh 

Regularization rate 1e-6 1e-5 1e-3 20,000 

Epochs 2000 800 10,000 10,000 
*NGTP: Natural Gas Treatment Plant 

 

5.1.1. Case Western Reserve University Bearing Data Center (CWR) 

 

Figure 30 shows the evolution of the relative F1-score as a function of the number of 

features. As detailed in section 3, features are arranged according to their importance in 
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descending order. Regarding the use of an FS layer, it may be observed that approximately 

30 features are needed for the model to reach performance values close to the maximum. 

After that, performance remains at a high level, reaching its maximum value with 44 

variables, requiring much less variables than the rest of the techniques. When comparing with 

other methods, it is clearly seen that they are outperformed by the proposed technique. The 

difference between the models suggests there is a large number of features with redundant 

information which cannot be easily recognized by traditional methods. However, they are 

identified through the use of an FS layer, achieving a low importance value. It is believed 

that this sparse behavior is encouraged by the regularization term in equation 39. 

 

 

Figure 30 - Comparison of relative F1-score based on six different rankings. The red and green 

dotted lines indicate the number of features needed when using the FS layer technique to reach 

maximum performance and a 95% of this value, respectively. 

Table 14 shows the performance of the different methods in terms of ranking quality 

and task performance. It also shows the number of variables needed to reach the maximum 

performance value and a 95% threshold. The RQS values presented confirm what is seen in 

Figure 30 regarding ranking quality. The FS layer technique achieves the highest RQS value, 

followed by ReliefF, Random Forest, AFS 2, Mutual Information and AFS. At some point, 

all techniques reach a very similar level of performance (shown in the table by max(PM)). 

However, the number of input features required for reaching the neighborhood of that value 

is different for each technique. The proposed technique requires 29 features to reach the 95% 

performance level threshold. In turn, the ReliefF, Random Forest, AFS 2, Mutual Information 

and AFS techniques need 63, 80, 87, 85 and 92 features, respectively. This example shows 
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how the RQS metric favors techniques that require less variables to achieve high levels of 

performance. As can be seen in Figure 30 and Table 14 , those techniques with the highest 

RQS need less input features to achieve a high level of performance. In particular, when 

comparing the AFS 2 technique with the Mutual Information technique, it can be seen that 

both reach high levels of performance needing approximately the same number of features 

(87 and 85, respectively). However, because the AFS 2 technique in most of the cases shows 

higher performance than the Mutual Information technique, it has a higher RQS. 

Overall, it can be seen that those techniques where the RQS value is higher, less 

features are needed to reach the 95% performance threshold. In this case, a high RQS 

indicates that some variables can be discarded without an important performance loss with 

respect to the maximum value. 

Table 14 - Task performance and ranking quality for CWR dataset. 

Approach RQS 𝒎𝒂𝒙(𝑷𝑴) 

Number of 

variables 

for 

𝒎𝒂𝒙(𝑷𝑴) 

PM for 

95% 

threshold 

Number of 

features for 

95% threshold 

FS layer 0.9754 1.0014 44 0.9599 29 

Mutual 

Info. 
0.7215 1.0000 100 0.9626 85 

ReliefF 0.8630 1.0000 95 0.9587 63 

Random 

Forest 
0.8346 1.0000 98 0.9646 80 

AFS 0.7127 0.9997 100 0.9629 92 

AFS 2 0.7466 0.9997 100 0.9545 87 
 

Regarding performance, Table 14 shows that feature selection improves performance 

regardless of the technique. Moreover, the highest improvement in performance is achieved 

when using FS layer, with a 0.14% F1-score improvement, reached with the 44 most relevant 

features. This suggests that the inclusion of an FS layer not only maintains the performance 

level, but also improves it. However, the difference in performance for this case study is not 

high enough as to be conclusive. 

Regarding model selection, the FS layer technique is the most suitable for both 

criteria. In the first one, the highest performance value is reached with this technique, also 

with the least number of features. For the second criterion, the desired threshold is reached 

with only 29 features. For this criterion, the performance value is not as important as the 

number of features needed, because the value is above the determined threshold. 
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Table 15 shows the duration of the feature importance value generation process for 

each technique. It can be seen that the mutual information and random forest techniques 

achieve the best results, followed by the proposed FS layer technique. Furthermore, when the 

latter is compared to other embedded techniques (such as AFS and AFS 2), it can be noted 

that the proposed technique is much less time consuming. This is due to the fact that the FS 

layer technique only adds one parameter per feature. This is not the case for the AFS and 

AFS 2 techniques, as each feature requires an attention module. As the number of features 

grows, the time difference between the proposed technique and the AFS techniques should 

also grow. 

Table 15 - Time duration for feature importance values generation (CWR case). For the embedded 

tech-niques (FS layer, AFS and AFS 2), this value is calculated as the difference between the total 

training time and the training time for a vanilla model without any embedded techniques. For the 

random forest technique, this value corresponds to the total training time, as there is no way to 

identify how much time it takes to obtain the desired values. 

Approach FS layer 
Mutual 

Info. 
ReliefF 

Random 

Forest 
AFS AFS 2 

Time [s] 89.3 5.2 595.3 10.2 2377.0 3026.5 

 

 

5.1.2. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): 

FD001 

 

Figure 31 shows the model’s relative mean squared error (MSE) according to the 

number of features used for testing. The proposed technique is compared to the other five 

techniques. As seen in the figure, the FS layer technique presents better performance than the 

other techniques when using from three up to 12 input features. High performance level is 

reached when using the top nine input features, and the maximum value is reached with 12 

features. In general, the performance evolution when using the FS layer technique appears to 

be more stable and smoother than the others, with a linear rate at the beginning, then 

stabilizing at a performance value close to 1.0. On the other hand, the Mutual Information 

technique shows a stable behavior with low performance until testing with the top 12 features. 

After that, there is a sudden increase in performance. This suggests that the two least 

important features got incorrect weights by this technique. Since it does not include 

relationships between the input features and only the relationship of each feature with the 
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output, it is highly possible that there are codependent features. In contrast, when looking 

back at the FS layer curve, the stability of the curve suggests that the technique successfully 

captures the dependences between input features. 

 

Figure 31 - Comparison of relative MSE according to six different rankings. The red and green 

dotted lines indicate the number of features needed, when using the FS layer technique, to reach 

maximum performance and a 95% of this value, respectively. 

 

To do a more complete analysis about the aforementioned issue regarding the Mutual 

Information-based technique, Table 16 shows the two most relevant features and the two 

least relevant features for each technique. The feature located at the middle of the ranking is 

also shown. Indeed, note that mutual information-based technique gives the least relevance 

to variables 6 (physical core speed) and 10 (corrected core speed), which are among the two 

most relevant features in most of the other techniques. This shows that the core speed features 

alone are not enough for calculating the RUL of the turbine engine. However, alongside the 

rest of the variables, they are highly relevant. Because of this, the mutual information-based 

technique is not able to recognize their importance. It is also noteworthy that the FS layer 

technique is the only one that gives a high importance value to feature 8 (ratio of fuel flow 

to HP compressor outlet), while feature 10 goes to the seventh place. This helps understand 

why the FS layer technique presents a performance evolution curve with a better behavior 

than the others.  
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Table 16 - Features ranked 1st, 2nd, 7th, 13th and 14th in the ranking, for the six compared techniques. 

Ranking FS Layer 
Mutual 

Info. 
RReliefF R. Forest AFS AFS 2 

1st 8 7 10 7 10 10 

2nd 6 3 6 6 7 6 

7th 10 13 8 11 4 12 

13th 5 6 12 5 12 2 

14th 2 10 14 12 8 11 

 

To compare the different approaches quantitatively, Table 17 shows their ranking 

quality and task performance in terms of relative MSE. The results show that the proposed 

model achieves higher RQS, as it can be also seen in Figure 31. Also, along with the AFS 

and AFS 2 techniques, the proposed FS layer technique reaches a maximum performance 

value max (𝑃𝑀) > 1, meaning the use of this technique results in a performance 

improvement. However, as shown in Figure 31 and Table 17, the use of the AFS and AFS 2 

techniques leads to better results in terms of performance. This case serves as an example of 

a situation where, despite having a high RQS, a feature selection technique may lead to a 

maximum performance value lower than other techniques. Thus, the RQS metric does not 

measure performance, but how fast the maximum level of performance is reached, in terms 

of number of input features needed. Indeed, the FS layer technique presents the higher RQS 

value and, consequently, Table 17 shows that out of the 12 features required to achieve 

maximum performance, 3 of those can be discarded in a restricted scenario and still present 

a performance value within above the 95% of the maximum value. The other techniques 

require more features to achieve this threshold. This opens the possibility for a two-fold 

analysis for model selection, by looking at performance and RQS simultaneously. This is 

useful when there is a limitation of input features to use in deployment, when the difference 

between performance is minimal between two models, or when performance level 

requirements are not so demanding. In this case study, despite the AFS techniques leading to 

a higher performance, the FS layer technique could be selected if there is a situation in which 

the number of input features is limited, as shown with the 95% threshold values. For example, 

when using the top 9 features, the FS layer technique leads to a better performance than the 

rest of the techniques, and it is a value close to its maximum. In the case of the AFS 

techniques, the performance value with the top 9 features is considerably lower than its 

maximum, far below the 95% threshold. This kind of information is summed up in the RQS 

metric, which is why it gives useful information for model selection. 
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Table 17 - Task performance and ranking quality for C-MAPSS FD001 dataset. 

Approach RQS 𝒎𝒂𝒙(𝑷𝑴) 

Number of 

features 

for 

𝒎𝒂𝒙(𝑷𝑴) 

PM for 

95% 

threshold 

Number of 

features 

for 95% 

threshold 

FS layer 0.9216 1.0104 12 0.9913 9 

Mutual 

Info. 
0.6786 1.0000 14 1.0000 14 

RReliefF 0.8730 1.0000 14 0.9589 10 

Random 

Forest 
0.8465 1.0000 14 0.9634 12 

AFS 0.7821 1.0515 14 1.0351 13 

AFS 2 0.7560 1.0392 14 1.0007 13 

 

Table 18 shows the time consumption for each technique when calculating the feature 

importance values. As with the previous case, the mutual information and random forest 

techniques achieve the best results, followed by the proposed technique. When comparing 

with the AFS techniques, the difference is not as large as with the previous case. However, 

it is still considerable. The AFS techniques take an order of magnitude more time than the 

proposed FS layer technique. This shows that despite having less variables compared to the 

previous case (100 against 14), the FS layer is still a faster technique. 

 

Table 18 - Time duration for feature importance values generation (C-MAPSS FD001 case). 

Approach FS layer 
Mutual 

Info. 
ReliefF 

Random 

Forest 
AFS AFS 2 

Time [s] 53.9 7.3 503.3 26.7 316.9 322.9 

 

 

5.1.3. Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): 

FD004 

 

Figure 32 shows the relative MSE values depending on the number of variables used, 

based on each ranking technique. The behavior of the curves is similar and unusual, since the 

performance does not increase unless all 14 features are used. This indicates that the 

individual contribution of each feature is almost zero, and none of the evaluated techniques 

was able to identify relations between features that lead to an improved prediction of the 
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remaining useful life. This is opposite to the results shown in section 5.1.2 using the FD001 

dataset, in which performance improves as more features are added. A plausible reason is the 

fact that the FD004 dataset includes six operation conditions and two failure modes, whereas 

the FD001 dataset only includes one of each. Therefore, the FD004 data is substantially more 

heterogeneous. Also, it is possible that features have different importance values depending 

on the operating condition and failure mode, and that there is not a ranking capable of 

integrating the information of all cases within the dataset. It can be concluded that a single 

model for the whole dataset is not an optimal solution, and the division in subsets (and, 

therefore, more homogeneous data) could be a better approach. 

 

Figure 32 - Comparison of relative MSE based on six different rankings for C-MAPSS FD004 

dataset. The green dotted line indicates the minimum number of features needed when using the FS 

layer technique to reach a 95% of the maximum performance value. Since there is an abrupt decay 

in performance when using 13 features, no features can be discarded to keep a performance level 

above 95% of the maximum value.  

Table 19 shows the performance associated to each technique, along with its ranking 

quality. Results show how, despite the FS layer-based model achieves the higher RQS, it 

does not achieve a relative MSE value higher than 1. In this case, the use of an FS layer does 

not imply an improvement in performance. However, the difference is of 0.05%. Thus, it can 

be concluded that the same level of performance is maintained. These results are valid for 

the two criteria for model selection, since discarding a feature results in an important decrease 

in performance, independently of the employed technique. 
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Table 19 - Task performance and ranking quality for C-MAPSS FD004 dataset. 

Approach RQS 𝒎𝒂𝒙(𝑷𝑴) 

Number of 

features for 

𝒎𝒂𝒙(𝑷𝑴) 

PM for 95% 

threshold 

Number of 

features for 

95% 

threshold 

FS layer 0.1750 0.9995 14 0.9995 14 

Mutual Info. 0.1524 1.0000 14 1.0000 14 

RReliefF 0.1545 1.0000 14 1.0000 14 

Random 

Forest 
0.1715 1.0000 14 1.0000 14 

AFS 0.1645 1.0000 14 0.9761 14 

AFS 2 0.1586 1.0000 14 0.9652 14 

 

Table 20 shows how much time each technique takes to calculate the feature’s 

importance values. Like in the two previous cases, the mutual information and random forest 

techniques achieve the best results, followed by the proposed technique. RReliefF, AFS and 

AFS 2 take longer than the rest to calculate these values. When comparing the proposed FS 

technique with the AFS techniques, it can be noted that the AFS techniques take more than 

six times longer than the proposed technique. The difference with the C-MAPSS FD001 case 

comes from the fact that the FD004 dataset has three times more datapoints, and that it is 

trained for 10,000 epochs instead of 800. 

 

Table 20 - Time duration for feature importance values generation (C-MAPSS FD004 case). 

Approach FS layer 
Mutual 

Info. 
ReliefF 

Random 

Forest 
AFS AFS 2 

Time [s] 1435.1 120.0 6347.0 120.7 9083.7 9124.3 

 

5.1.4. Offshore Natural Gas Treatment Plant (NGTP) 

 

Figure 33 shows the evolution in performance when adding less relevant features for 

different techniques. Note that the FS layer technique reaches significantly higher 

performance than the others rest. With 7 out of the 10 variables, relative MSE is >1. However, 

maximum performance is reached when using all 10 features. 
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Figure 33 - Comparison of relative MSE based on six different rankings for NGTP dataset. The red 

and green dotted lines indicate the number of features needed when using the FS layer technique to 

reach maximum performance and a 95% of this value, respectively. 

 

In order to understand how the FS layer model ranks features, Figure 34 shows the 

FS layer weights calculated by the model after training. It can be seen that the most relevant 

features are related to the amine contactor and the reboiler. Important features related to the 

contactor are the non-treated gas temperature, the amine temperature before entering the 

contactor, and the amine pressure at the contactor. This is coherent with the fact that the CO2 

removal process occurs in the contactor and, therefore, these variables directly affect its 

performance. The amine temperature at the reboiler appears as the second most relevant 

feature, higher than stripping tower-related features. Since the heating process that occurs in 

the reboiler comes immediately after the stripping process, there is a correlation between 

them. Results in Figure 34 show that the technique is able to capture this correlation and in 

the correct order. On the other hand, the least important feature is the temperature difference 

between non-treated gas and amine in the contactor. This means that the proposed approach 

can calculate internally that information from other features (i.e., non-treated gas temperature 

and temperature of the amine entering the contactor) and, thus, can dispose that feature. 

Despite the fact of the technique needing all 10 features to reach its maximum relative MSE 

(as seen in Figure 33), performance increments are marginal when adding the two least 

relevant features. A more robust neural network (more layers or neurons per layer) could 

solve this issue and reach maximum performance without the need of these two last features. 
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Figure 34 - Ranking of features according to the FS layer technique. 

Table 21 shows the quantitative comparison of the different techniques. Results show 

that along with the FS layer technique, the AFS techniques (AFS and AFS 2) and the Mutual 

Information technique led to a relative MSE higher than 1. Despite the latter reaching the 

maximum performance with 9 variables, its value is considerably smaller than the one 

reached by the proposed approach. When using an FS layer, there is a performance increase 

of approximately 20%. Regarding ranking quality, the proposed approach has similar RQS 

value to the Mutual Information-based approach. This verifies what it shown in Figure 33. 

Although reaching different maximum values, the two curves show a similar behavior, with 

a performance improvement rate that stabilizes when using more than eight input features. 

On the contrary, the AFS and AFS 2 techniques reach a high maximum performance value, 

but relying heavily on the use of all input features available. For example, when using nine 

out of the ten features, both techniques present the lowest performance values. Thus, despite 

achieving high performance, their RQS values are the lowest of all six techniques presented. 

This emphasizes the fact that the RQS metric does not consider the maximum performance 

reached, but considers how fast that performance is reached in terms of input features 

required. This is also emphasized when looking at the results for the 95% performance 

threshold criterion. The AFS and AFS 2 techniques, which show the lowest RQS values, 

cannot discard any features from the feature set without having a major decrease in 

performance. This is not the case with the other techniques, in which one or two features can 

be discarded. In the particular case of the FS layer technique, 8 features can be used for 

deployment with a performance decrease below 5% with respect to the maximum value and 

still have a better performance value than the rest of the techniques. This shows how the RQS 

metric helps in model selection process even when different criteria are used. The RQS 
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indicates how likely it is to discard features without having an important performance 

decrease. The decision must be made by jointly analyzing performance values and RQS. 

After this, the corresponding criterion must be used to select the appropriate number of 

features. 

Table 21 - Task performance and ranking quality for the NGTP case study. 

Approach RQS 𝒎𝒂𝒙(𝑷𝑴) 

Number 

of features 

for 

𝒎𝒂𝒙(𝑷𝑴) 

PM for 

95% 

threshold 

Number 

of features 

for 95% 

threshold 

FS layer 0.7755 1.1979 10 1.1873 8 

Mutual Info. 0.7582 1.0075 9 0.9767 8 

RReliefF 0.5676 1.0000 10 0.9693 9 

Random 

Forest 
0.6596 1.0000 10 0.9767 8 

AFS 0.4946 1.1664 10 1.1664 10 

AFS 2 0.4126 1.1503 10 1.1503 10 

 

Table 22 shows how much time each technique takes for calculating feature 

importance values. The same trend as the previous cases is shown, with mutual information 

and random forest achieving the best results, followed by the proposed FS layer. Like in the 

other cases, the AFS techniques take similar time to obtain these values. In this case, the AFS 

techniques take much more time for calculating feature importance values than the proposed 

technique, more than five times. Through the comparison of the three embedded ad-hoc 

techniques in the four case studies, it is able to see that the AFS techniques add a larger 

amount of complexity to the model in order to obtain feature importance values, which is 

reflected in the time they take. 

 

Table 22 - Time duration for feature importance values generation (NGTP case). 

Approach FS layer 
Mutual 

Info. 
ReliefF 

Random 

Forest 
AFS AFS 2 

Time [s] 188.2 0.5 237.8 5.4 1059.6 1071.0 

 

5.2. SCF-Net 
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This section presents the results obtained for two case studies. The specifications for 

all models are the following: Python v3.9, Tensorflow v, and Keras v. Both techniques for 

comparison were trained using the Alibi library (KLAISE; LOOVEREN; VACANTI, 2021). 

The hardware configuration is: Intel i5-9600K CPU, 16 GB DDR4 RAM and NVIDIA 11 

GB Geforce RTX 2080 Ti GPU. For this framework, only classification tasks can be 

modelled. Thus, the CMAPSS dataset cannot be used. Furthermore, the amine treatment plant 

case is modified for a classification task. Two classes are used according to the 2500 ppm 

threshold. Thus, datapoints in which the amount of CO2 in the treated gas is <2500 ppm 

belongs to the healthy state condition, and datapoints where CO2 >2500 ppm belong to the 

fault class. Furthermore, in order to use case studies belonging to industrial real-world 

applications, the water injection pump case is used instead of the CWR case, which is not a 

case coming from an industrial application. 

 

5.2.1. Case Study 1: Water Injection Pump 

 

Table 23 shows the mean counterfactual metrics for all three techniques analyzed in 

this thesis. Results show that, through the SCF-Net, the generated counterfactuals show better 

quality than those generated by the two other techniques. In the case of the IM1 metric, the 

proposed technique achieves a lower value than the compared techniques. This means that, 

when comparing the distance to the data manifold of the counterfactual class with the 

distance to the data manifold of the original class, those counterfactuals generated using a 

SCF-Net present the better ratio. When compared to the next best ratio (namely, technique 

(2)), the proposed technique has a 39% reduction in IM1. 
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Table 23 - Counterfactual quality evaluation metrics for the water injection pump case study. 

Technique 
IM1 

(↓) 

Realism 

(↓) 

Sparsity 

(↓) 

Model 

Accuracy 

(↑) 

CF 

Accuracy 

(↑) 

CF 

generation 

success rate 

(↑) 

SCF-Net 1.31 5.60×104 3.28 97.97% 99.50% 100.00% 

Wachter et. al. 

(WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

2.58 3.74×105 12.08 98.20% 88.28% 35.43% 

Counterfactuals 

Guided by 

Prototypes (2) 

2.15 1.51×107 7.67 98.20% 95.40% 67.99% 

 

When looking at the Realism metric, a similar behavior is shown, with the SCF-Net 

having a better metric value. This means that the counterfactuals generated are closer to the 

train set data manifold than those generated by the techniques (1) and (2). In general, the 

proposed technique achieved better results in the two aforementioned metrics because of the 

architecture’s structure. Specifically, because the desired class for the counterfactual is 

informed as an input value, the network learns to generate class-specific counterfactuals. 

Thus, the blue blocks in Figure 20 are able to identify the properties that differentiate each 

class from one another in a more accurate way than the other techniques, and apply them to 

the original values to change their class. Thus, the obtained counterfactuals are more 

interpretable, as they are closer to the corresponding class data manifold. 

Regarding sparsity, Table 23 shows that, on average, the proposed technique needs 

to alter 3.28 input features to generate a counterfactual, leaving the rest unaltered. On the 

other hand, the two compared techniques require more than 7 input features to generate a 

counterfactual. This is because sparsity is directly enforced in the loss function of the 

proposed technique, whereas this does not occur in the other two techniques. While there is 

a ‖𝑋 − 𝑋′‖1 in both techniques (1) and (2), this does not ensure sparsity is been sought. 

Instead, it only ensures the distance between the two values is minimized, regardless of the 

number of variables being altered. Numerically, a small deviation in all of the input features 

gives the same result as if the total deviation is allocated in only one input feature. Thus, 

sparsity is not necessarily being enforced. However, with the ‖𝑋 − 𝑋′‖0 term in the proposed 

technique, the model is penalized for each altered feature, thus, enhancing sparsity. Figure 

35 shows the distribution of altered features to generate a counterfactual. The information in 
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the figure shows that for the SCF-Net, the distribution of altered input features is much more 

left-skewed than the other two distributions. This supports the information shown in Table 

23 about sparsity. Through the proposed technique, approximately 60% of the generated 

counterfactuals modify up to three input features, whereas this percentage is far less in 

techniques (1) and (2). In the case of technique (1), almost 60% of the counterfactuals require 

the modification of all 13 features. While this improves in technique (2), still a large number 

of counterfactuals require a high number of altered features. This shows that the ‖𝑋 − 𝑋′‖0 

term in the SCF-Net’s loss function forces the model to find sparser solutions successfully. 

Besides evaluating the quality of the generated counterfactuals by each of the 

presented techniques, each of the models’ performance is evaluated. According to Table 23, 

the accuracy of the three models is almost the same, with only a 0.23% difference. Since the 

model used for techniques (1) and (2) is a vanilla neural network, the results show that the 

proposed SCF-Net does not fall within the accuracy/interpretability tradeoff (BARRAZA; 

DROGUETT; MARTINS, 2021), as it increases interpretability in neural networks without 

affecting performance. CF accuracy and generation rate are the accuracy of the successfully 

generated counterfactuals when fed to the network and the proportion of counterfactuals that 

are successfully generated. Results show that the SCF-Net achieves higher CF accuracy and 

CF generation rate. When multiplying the two values, it can be noted that the SCF-Net 

successfully generates more correctly-classified counterfactuals than both techniques (1) and 

(2). Furthermore, it can be noted that the SCF-Net guarantees the generation of a 

counterfactual for every value fed to the network.  
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Figure 35 - Distribution of number of features needed for counterfactual generation in case study 

1, for a) SCF-Net, b) technique (1) and c) technique (2). 

 

Table 24 shows the time it takes for the three techniques to train, predict and generate 

a counterfactual. Regarding training time, it can be seen that the SCF-net takes almost ten 

times more time to train per epoch than the vanilla neural network used for the two other 

techniques. This is due to the number of parameters used in the SCF-Net. The complexity of 

the network due to the multi-task configuration increases the number of parameters used for 

training. Furthermore, for the SCF-Net training process, the training dataset is augmented. 
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For each datapoint, a counterfactual is calculated for each available class. Thus, the training 

set is increased according to the number of classes to fit this scenario. Since there are four 

classes in this case, the dataset used for training is four times the original dataset. 

Regarding prediction time, the same tendency as the training time can be seen. This 

is due to the complexity and size of the architecture. However, a notable difference can be 

seen in the counterfactual generation time. The SCF-Net takes four orders of magnitude less 

time than techniques (1) and (2) to generate a single counterfactual. Since the SCF-Net is 

inherently interpretable, the generation of a counterfactual comes from the prediction process 

itself. Thus, the counterfactual generation time for the SCF-Net is calculated as the difference 

between the prediction time and the prediction time of a vanilla neural network. However, it 

could be argued that the whole prediction time is the counterfactual generation time, as 

predictions and counterfactual generation are done simultaneously. In this case, still the 

tendency is kept, with the counterfactual generation time being much less than its 

counterparts. On the other hand, techniques (1) and (2) generate counterfactuals by solving 

an optimization problem, which is naturally more demanding than a neural network 

prediction. 

Table 24 – Time consumption values for all techniques, water injection pump case study. 

Technique 

Training 

time 

[s/epoch] 

Prediction 

time 

[s/datapoint] 

Counterfactual 

generation time 

[s/datapoint] 

SCF-Net 9.90×100 6.16×10-5 3.19×10-5 

Wachter et. al. (WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

7.65×10-1 2.97×10-5 3.74×10-1 

Counterfactuals Guided by 

Prototypes (2) 
7.65×10-1 2.97×10-5 5.22×10-1 

 

5.2.2. Case Study 2: Amine Treatment Plant 

 

Table 25 shows the different metrics used to evaluate the counterfactuals generated 

using each of the analyzed techniques. Results show how the proposed technique generates 

better IM1 and sparsity values than the two other techniques. This means that the 

counterfactuals generated by the proposed technique are closer to the data manifold of the 
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counterfactual class than that of the original class. Also, it means that less altered features 

are needed in order to generate each counterfactual. According to Table 25, technique (1) 

generates counterfactuals with the best Realism metric. This means that the counterfactuals 

generated by (1) are close to the data manifold over all classes. The reason why the proposed 

technique does not achieve a better value than technique (1) is because of the autoencoder 

trained with the whole train set 𝐴𝐸(). This autoencoder is trained in an unsupervised manner, 

thus it is not trained to describe class-specific data manifold, only the whole dataset data 

manifold. This can lead to the autoencoder to describe the whole dataset manifold roughly, 

but fail to describe in detail the class-specific data manifolds. Since the counterfactual class 

is fed to the proposed technique’s model as an input, the network may learn to describe each 

of classes’ space more accurately than 𝐴𝐸(). Thus, it could happen that some of the 

counterfactuals generated by the proposed model are not successfully reconstructed by 𝐴𝐸(), 

as they would not be a part of the autoencoder’s limited description of the data manifold. 

While this explains why the proposed technique has a lower realism value, it also explains 

why it has a higher IM1 value, as it evaluates each counterfactual’s ability to fit in its specific 

class data manifold, described by 𝐴𝐸𝑡(). This confirms that the proposed technique is able to 

describe each class’ data manifold more accurately than the other two techniques.  

Table 25 - Counterfactual quality evaluation metrics for the amine treatment plant case. 

Technique 
IM1 

(↓) 

Realism 

(↓) 

Sparsity 

(↓) 

Model 

Accuracy 

(↑) 

CF 

Accuracy 

(↑) 

CF 

generation 

rate (↑) 

SCF-Net 1.60×103 7.68×105 2.37 91.71% 99.96% 100.00% 

Wachter et. al. 

(WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

4.62×103 2.94×105 8.97 92.35% 50.65% 79.27% 

Counterfactuals 

Guided by 

Prototypes (2) 

3.82×103 1.72×106 4.78 92.35% 99.70% 90.88% 

 

Regarding sparsity, results show that the counterfactuals generated by the proposed 

technique are more likely to be understood by a human, as less variables are altered to 

generate a valid counterfactual. Figure 36 shows a detailed breakdown of the results into 

number of altered features needed for generating a counterfactual. It can be noted that, when 

using the proposed technique, approximately 60% of the generated counterfactuals needed a 

modification of up to two input features. Furthermore, approximately 80% of the 
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counterfactuals needed up to three features to be altered. In contrast, techniques (1) and (2) 

show results that do not favor understanding. In the case of technique (1), almost all 

counterfactuals need a variation of all nine features. For technique (2), results are distributed 

evenly across all variables, with a slight predominance of counterfactuals needing four 

feature modification for being generate. Like detailed in the previous case study, this is due 

to the ‖𝑋 − 𝑋′‖0 term in the loss function in the proposed model, which enforces the 

generation of sparse solutions.  
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Figure 36 - Distribution of number of features needed for counterfactual generation in case study 

2, for a) SCF-Net, b) technique (1) and c) technique (2). 

 

Regarding accuracy, results in Table 25 show similar results than in the previous case 

study. When using a SCF-Net, performance is kept almost the same, with only a 0.64% 

difference with a vanilla neural network. This confirms that the SCF-Net successfully 

bypasses the accuracy/interpretability tradeoff. Regarding CF accuracy, SCF-Net presents 

higher accuracy than techniques (1) and (2). Furthermore, there is a considerable difference 

between the model accuracy and the CF accuracy. This occurs because the SCF-Net receives 



Escola Politécnica da Universidade de São Paulo  

Engenharia Naval e Oceânica  120 

 

____________________________________________________________________________________ 
Frameworks for Interpretability of Deep Learning-Based Prognostics and Health Management 

a desired class value as input. The network is trained in order to create valid counterfactuals 

even in multiclass scenarios. Thus, a high accuracy value is expected. Regarding CF 

generation rate, the SCF-Net presents a 100.00% success rate. This is also expected, as a 

neural network generates a valid output for each valid input fed. This is not the case with 

techniques (1) and (2), where each counterfactual is generated through a separate 

optimization problem with a limited number of search steps. Thus, it is possible that not all 

counterfactuals are successfully generated.  

Table 26 shows the time consumption values for all three techniques. It can be seen 

that due to the number of parameters in the SCF-Net, training takes longer than the other two 

techniques, in which a vanilla neural network is used. However, values are under one second, 

and considering that 2000 epochs where necessary for training, the total amount of time used 

for training is not a restriction. The same tendency is presented in the prediction time, where 

the SCF-Net takes an order of magnitude more than the vanilla neural network to make a 

prediction. However, this value still is not a restriction towards application. Regarding 

counterfactual generation time, it can be seen there is a notable difference between the SCF-

Net and the two techniques used for comparison. The SCF-Net takes approximately four 

orders of magnitude less time than the other techniques. This is due to the fact that the SCF-

Net generates counterfactuals during prediction. Indeed, the counterfactual generation time 

for the SCF-Net is calculated as the difference between its prediction time and the prediction 

time of a vanilla neural network. Regarding the two other techniques, they generate 

counterfactuals through the solving of an optimization problem  

 

Table 26 – Time consumption values for all techniques, amine treatment plant case study. 

Technique 
Training time 

[s/epoch] 

Prediction 

time 

[s/datapoint] 

Counterfactual 

generation time 

[s/datapoint] 

SCF-Net 4.42×10-1 1.22×10-4 5.40×10-5 

Wachter et. al. (WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

5.52×10-2 6.63×10-5 4.83×10-1 

Counterfactuals Guided by 

Prototypes (2) 
5.52×10-2 6.63×10-5 5.15×10-1 

 



Escola Politécnica da Universidade de São Paulo  

Engenharia Naval e Oceânica  121 

 

____________________________________________________________________________________ 
Frameworks for Interpretability of Deep Learning-Based Prognostics and Health Management 

 

5.3. FS-SCF 

 

In this subsection, results for the FS-SCF net are presented and discussed. Like in the 

previous framework, the amine treatment plant and the water injection pump case studies are 

used for evaluation. Hardware specifications are the following: Intel i5-9600K CPU, 16 GB 

DDR4 RAM and NVIDIA 11 GB Geforce RTX 2080 Ti GPU. Like in the SCF-Net 

framework, only real-world industrial applications were used, namely, the water injection 

pump and amine treatment plant cases. 

 

5.3.1. Case Study 1: Water Injection Pump 

 

Table 27 shows the evaluation metrics for the FS-SCF network and how they are 

compared to other techniques for counterfactual generation. Results show the FS-SCF net 

having similar metric values to the SCF-Net, except on realism. According to the IM1 metric, 

the counterfactuals from the FS-SCF net are similarly interpretable to those generated by the 

SCF-Net, with only 0.02 difference in their values. Compared to techniques (1) and (2), the 

FS-SCF generates more interpretable counterfactuals according to IM1, as is the case with 

the SCF-Net. This is not the case with the realism metric. It can be noted that the FS-SCF net 

achieves a better realism metric than technique (1), but not better than (2) nor SCF-Net. With 

the use of the FS layer, the counterfactuals generated by the network are different from the 

training data manifold that considers all classes, as the reconstruction of the counterfactual 

by the 𝐴𝐸() autoencoder is less similar to the original value than those using the SCF-Net 

and (1) (see equation (40)). However, this does not translate in a loss in the IM1 metric nor 

in the CF accuracy metric. Actually, the latter sees a slight improvement. Thus, the realism 

metric is not aligned with the accuracy of the generated counterfactuals, as it occurs with the 

IM1 metric. In this case, a lower value for the IM1 metric is followed by a higher value in 

the generated counterfactuals’ accuracy. In this regard, the realism metric is a less 

informative metric than the IM1. The 𝐴𝐸() autoencoder used for calculating realism captures 

the representation for the whole data manifold, failing to detect the differences between 

classes. In a task where counterfactuals are being generated, it is relevant to capture these 
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differences, as is the case with the IM1. Although the calculation of the metric needs the 

training of one autoencoder for every class in the dataset (in contrast to one autoencoder 

needed for the realism metric), IM1 is a more elaborate metric that gives more useful 

information. By training class-specific autoencoders, interpretability can be measured 

according to the two classes (the original and the counterfactual), rather than an average 

behavior obtained by 𝐴𝐸(). Furthermore, IM1 is likely related to the counterfactual accuracy, 

because a counterfactual closer to the data manifold of the counterfactual class will have an 

increase probability of being classified as that class, thus being a valid counterfactual. 

Other metrics from the table below show that the results achieved by the FS-SCF 

network are similar to those from the SCF-Net. Sparsity shows a slightly better result, while 

the model accuracy presents a 0.05% decline compared to the SCF-Net. When passing the 

generated counterfactuals through the network, their accuracy is 0.14% higher than those 

generated using the SCF-Net. This similarity in results is explained by the fact that the FS-

SCF network has a few number of parameters added with respect to the SCF-Net, one per 

input feature. Thus, the models are similar to each other and similar results were expected. 

 

Table 27 - Counterfactual quality evaluation metrics for the water injection pump case, including 

FS-SCF network. 

Technique 
IM1 

(↓) 

Realism 

(↓) 

Sparsity 

(↓) 

Model 

Accuracy 

(↑) 

CF 

Accuracy 

(↑) 

CF 

generation 

success rate 

(↑) 

FS-SCF Net 1.33 4.67×105 3.06 97.92% 99.64% 100.00% 

SCF-Net 1.31 5.60×104 3.28 97.97% 99.50% 100.00% 

Wachter et. al. 

(WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

2.58 3.74×105 12.08 98.20% 88.28% 35.43% 

Counterfactuals 

Guided by 

Prototypes (2) 

2.15 1.51×107 7.67 98.20% 95.40% 67.99% 

 

Figure 37 shows a comparison between the SCF-Net and the FS-SCF network 

regarding sparsity. Results in Table 27 show that the FS-SCF net generates slightly sparser 

counterfactuals than the SCF-Net. This is confirmed by the figure below. Both distributions 

are very similar, however, there is a slight difference in two and three altered features. 
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Whereas the counterfactuals generated by the SCF-Net mostly need three features to be 

altered followed closely by two, it is the opposite with the FS-SCF network. Furthermore, a 

higher number of counterfactuals need four altered features in the SCF-Net than in the FS-

SCF network. Since the difference is not considerable, the mean values presented in Table 

27 are very close too. 

 

 
 

 
Figure 37 – Distribution of number of features altered for counterfactual generation in case 

study 1, comparison between a) SCF-Net and b) FS-SCF net. 
 

Table 28 shows the correlation between the ranking obtained using the values from 

the FS layer and those using causality measures such as necessity, sufficiency, NaS and NoS. 

Results show that all four correlation values have an associated p-value lower than 0.05. 

Thus, there is a high level of significance of the results at a 0.05 level. This means that it is 

highly unlikely for the obtained correlations to be generated out of chance (XIAO et al., 

2016). Out of the four correlation coefficients, the one with highest value is the one 

corresponding to necessity, with a value of 0.8285. This shows that, when using an FS layer 



Escola Politécnica da Universidade de São Paulo  

Engenharia Naval e Oceânica  124 

 

____________________________________________________________________________________ 
Frameworks for Interpretability of Deep Learning-Based Prognostics and Health Management 

jointly with the SCF-Net configuration, the FS layer will most likely give more importance 

to those features necessary to determine the output of the model. This addresses the issue 

presented in (KOMMIYA MOTHILAL et al., 2021), since there is a connection between the 

feature selection method and the counterfactual generation technique, thus successfully 

unifying both. Furthermore, the correlation with the rest of the causality-based rankings also 

presents high values, strengthening the argument. The NoS ranking presents a correlation to 

the FS layer ranking very similar to the necessity ranking, above 0.82. The NaS and 

sufficiency rankings, despite having lower values, still present a high correlation value with 

a low p-value. The difference between necessity and sufficiency values indicates that 

necessary features are not always sufficient, and vice versa. This is a normal situation, as an 

explanation may need more than one feature to explain its output. In such a situation, all of 

the required features will have their necessity value equals to 1. However, none of them will 

be sufficient, as every one of them alone will not be enough. The opposite case also may 

occur. In a case where two features are independently sufficient to explain an output value, 

they will not be necessary. Thus, only when the outputs are explained by one necessary and 

sufficient feature value, the two corresponding rankings will be the same. In every other case, 

the rankings will be different and will have different correlation values with the FS-layer 

ranking.          

 

Table 28 – Spearman correlation between causality-based rankings and FS-layer ranking, water 

injection pump case. 

Ranking 
Correlation coefficient 

with FS-layer ranking 
p-value 

Necessity 0.8285 6.50×10-4 

Sufficiency 0.6307 3.48×10-2 

Necessity or Sufficiency (NoS) 0.8219 6.90×10-4 

Necessity and Sufficiency (NaS) 0.6641 1.53×10-2 

 

Table 29 shows the time values for training the FS-SCF network, obtaining a 

prediction, generate counterfactuals and calculate necessity and sufficiency values for each 

datapoint. Regarding the first three, values are similar to the SCF-Net, as expected. This is 

because the architectures are very similar, with the only difference being the FS layer. 

Regarding the causality-based values, the FS-SCF network takes 1.04 seconds to calculate 

necessity and sufficiency. This is because several combinations of values must be tested, 

thus, several predictions are made to obtain these values.  
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Table 29 – Time consumption values for the FS-SCF framework, water injection pump case. 

Technique Training 

time 

[s/epoch] 

Prediction 

time 

[s/datapoint] 

Counterfactual 

generation time 

[s/datapoint] 

Causality-based 

values calculation 

time [s/datapoint] 

FS-SCF 8.18×100 5.76×10-5 2.79×10-5 1.04×100 

 

To analyze the results obtained for the FS-SCF net in more detail, two examples of 

separate training processes are shown. Table 30 shows the causality-based values for every 

feature. Results show that features 5 and 9 have an increased importance across all causality 

values, while the rest of the features have low values. It can be noted that features 0,1,3,6,8,11 

and 12 never were sufficient causes for an output value. This creates an issue as the ranking 

has seven out of 13 features with the same value. While the Spearman correlation can be 

calculated in a situation where values are repeated, this is not as informative as to having 

different values for each feature. This issue also occurs with the NaS value.  Thus, the 

importance of calculating not one but several causality-based values. In this scenario, the 

most informative rankings are the necessity and NoS. These are useful to compare with the 

FS-layer ranking and, consequently, obtain a more trustworthy correlation.  

 

Table 30 – Causality-based values for each feature, example #1 for water injection pump case. 

Feature Feature Tag Necessity % 
Sufficiency 

% 
NoS % NaS % 

0 FIT-323D 2.32 0 2.32 0 

1 IT-1031 2.07 0 2.07 0 

2  PT-305D 3.00 0.51 3.49 0.03 

3 PT-306D 2.07 0 2.07 0 

4 TIT-305D 6.27 0.02 6.27 0.02 

5 TIT-306D 29.26 26.65 44.34 11.57 

6 TT-308D 2.32 0 2.32 0 

7 VT-301D 3.70 0.02 3.71 0.01 

8 VT-302D 2.07 0 2.07 0 

9 VT-303D 69.69 70.15 88.89 50.95 

10 VT-304D 3.01 0.02 3.02 0.02 

11 ZT-301D 2.12 0 2.12 0 

12 ZT-302D 2.24 0 2.24 0 

 

Performance evolution according to each feature ranking is shown in Figure 38. 

Results show that the necessity, NoS and FS rankings have similar RQS values and higher 
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than the sufficiency and NaS rankings. This indicates that besides having a strong correlation, 

the first three rankings mentioned above are the ones that reach a maximum level of 

performance with less features. The image shows that with 10 out of 13 features, 

performances reaches its maximum level, being able to discard the three last features with 

almost no loss in performance (features 1, 3 and 8, according to Table 30). However, this is 

not the case with the sufficiency and NaS rankings. The sufficiency and NaS rankings present 

a different evolution from the rest of the rankings, which translates in lower RQS values. 

When analyzing jointly with the results in Table 30, it can be noted that this behavior is 

related to the fact that the sufficiency and NaS rankings are less informative than the others 

due to the repeated values. This makes the performance evolution suboptimal when following 

these rankings. It can also be noted that, despite features 9 and 5 presenting considerably 

higher causality-based values than the rest of the features, more features are needed to reach 

the maximum level of performance. This is due to the fact that features 9 and 5 do not explain 

every output. Looking at the NoS value, it can be noted that 88.89% of the outputs can be 

explained involving feature 9. This means that 11.11% of the outputs are not explained by 

that feature. In turn, this shows that feature 9 alone is not enough to explain 11.11% of the 

outputs, justifying the loss in performance shown in the figure below when only using feature 

9.  
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Figure 38 – Accuracy evolution following different feature rankings, with their corresponding RQS 

value, example #1 for water injection pump case. 

 

Figure 39 shows the relation-between-features (RBF) map for the first example. This 

is useful to better visualize the connections between features. Results show that features 9 

and 5 are highly related to the output feature. This is in line with the NoS value for these 

features. After those two features, feature 4 is the one with the strongest connection with the 

output. Looking at the connections between input features can be noted that there is a strong 

relation between features 9 and 5. This indicates that the two features are simultaneously 

necessary with a higher frequency than the rest of the features. The thinner lines between the 

rest of the features indicates a weaker connection between them. However, there is a 

connection between every input feature, which shows that there are some values whose 

minimal explanation set (MES) contains one of these features. A minimal explanation set is 

composed of the minimal set of features that explain an output. If a feature value alone is a 

sufficient explanation, then it is a minimal explanation set, as no more feature values are 

needed for explaining the output. If several features are necessary, those features are 

considered to be the minimal explanation set. 
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Figure 39 – Relation-between-features (RBF) map, example #1 for water injection pump case. Blue 

circles represent input features and the orange circle represents the output feature. The width of the 

connecting arrows between an input feature and the output is determined by the number of times the 

feature is necessary of sufficient for explaining the output. The connecting arrows between input 

features is determined by the number of times both features are simultaneously necessary for 

explaining the output. 

 

Figure 40 shows the top-15 most frequent MES. It can be seen from the image that 

almost 60% of the MES correspond to feature 9 alone. Next is feature 5, with approximately 

25%. Third place is for [5,9]. This verifies what is shown in the RBF map above regarding 

the relation between features 5 and 9. After that, comes [4], [4,5,9] and [2]. However, after 

[2], there are no combinations of feature 2 and 4, 5 or 9. This shows there is no linear 

combination or pattern that determines the MES. Furthermore, it can be noted that the set 

with all the features is a MES, although with a low frequency. This is why in the previous 

image there are connections between every input feature, because at one point they were all 

necessary for an explanation. 
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Figure 40 – Top-15 most frequent minimal explanation sets, example #1 for water injection pump 

case. 

 

Like in the previous example, Table 31 shows the obtained causality-based values for 

example #2. Results show similar values with the previous example. Features 9 and 5 are the 

most relevant according to the causality-based values, like in the previous example. However, 

there is an ambiguity regarding features 4 and 10. According to necessity and NoS rankings, 

feature 10 is more important than feature 4. However, the opposite occurs when looking at 

sufficiency and NaS. There is no correct answer, as the rankings are obtained according to 

different criteria. Moreover, the same issue with the repeated values shown in the previous 

example occurs in this example. Thus, sufficiency and NaS rankings are less informative than 

the others are. 
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Table 31 – Causality-based values for each feature, example #2 for water injection pump case. 

Feature Feature Tag Necessity % Sufficiency % NoS % NaS % 

0 FIT-323D 2.09 0 2.09 0 

1 IT-1031 1.97 0 1.97 0 

2 PT-305D 2.34 0.01 2.35 0 

3 PT-306D 1.97 0 1.97 0 

4 TIT-305D 4.65 0.89 4.92 0.62 

5 TIT-306D 30.49 26.43 45.31 11.61 

6 TT-308D 2.51 0 2.51 0 

7 VT-301D 2.35 0.01 2.36 0 

8 VT-302D 1.97 0 1.97 0 

9 VT-303D 69.74 66.15 84.81 51.08 

10 VT-304D 6.21 0.01 6.21 0 

11 ZT-301D 2.02 0 2.02 0 

12 ZT-302D 2.12 0 2.13 0 

 

Figure 41 shows the performance evolution when following the rankings presented 

above. As expected, sufficiency and NaS rankings present the lowest RQS values. This is 

because they are less informative. The only way they could achieve a better RQS is randomly 

on the features with the same value, which is unlikely and not representative of the underlying 

process. For the other rankings, it can be noted that, like in the first example, accuracy does 

not vary when using more than 10 variables. 

From the figure below, it can be also noted that the FS ranking achieves a higher RQS 

than the necessity and NoS rankings. Although performance reaches a valley when using six 

features and following the FS ranking, it increases at a faster rate when adding more features. 

This shows the capabilities of the FS layer to find a combination of weight values that 

maximizes performance, as it is a part of the FS-SCF network involved in the classification 

process.  

Looking at the performance evolution curves, it can be seen that the necessity, NoS 

(which are the same curve, see Table 31) and FS rankings follow similar behavior. This is in 

line with the results shown in Table 28 indicating a strong correlation between the two 

rankings. 
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Figure 41 – Accuracy evolution following different feature rankings, with their corresponding RQS 

value, example #2 for water injection pump case. 

 

Figure 42 shows the RBF map for the second example. Results are similar to those in 

the previous example, with a strong relationship between features 9, 5 and the output feature. 

Regarding the rest of the features, as in the previous example, the relationships are not as 

strong, indicating they are not as present in the explanation process.  

The similarities between and Figure 39 and Figure 42 suggest there is a stability in 

the training process. It indicates that the network consistently finds the same path towards 

maximizing performance, regardless of the initial weights. This is due to the quality of the 

data, the size of the dataset and the task itself. Deep neural networks obtain better results 

when a large dataset is being used. Furthermore, the quality of the data is also key. If there is 

too much noisy data, faulty sensors, or missing data that must be repaired by interpolation 

techniques, performance will most likely be affected. Also, the task itself must be suitable. 

Deep neural networks will not find useful associations or patterns within the data if there is 

no existing association. Thus, the problem definition is key. In this case, the health state of a 

pump is diagnosed by using the sensor data from the system itself. Features such as 

temperature, pressure and vibrations contain information about the health state of the system. 
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Thus, it seems appropriate to use deep learning techniques to address the given task. 

However, features like the engine current (feature 1) are not useful for the task. In the two 

examples, the four causality-based values for feature 1 are the minimum when compared to 

the rest of the features. Furthermore, Figure 38 and Figure 41 indicate that the feature can be 

discarded without performance loss. This is consistent with the problem’s nature. The current 

feature can be used as a proxy to determine whether the system’s power is on or off, but not 

to diagnose failures. As shown in this case study, other features are used successfully instead. 

Through the use of feature selection, counterfactuals and causality-based values, it is possible 

to analyze the trained model and obtain valuable information, rather than just trying to 

maximize performance. If the results showed an unusual pattern, corrective actions could be 

taken. For example, if the model’s results where highly reliant on the engine current feature, 

further analysis should be made, as the nature of the problem suggests that this feature is not 

appropriate for diagnosing failures. If after a thorough analysis, the apparently unusual 

behavior proves not to occur due to a mistake, the use of interpretability tools could be useful 

for learning from the trained model. However, the need of an expert opinion is important to 

determine the difference between an error in the model and a novel unseen insight. 
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Figure 42 – Relation-between-features (RBF) map, example #2 for water injection pump case. 

 

Figure 43 shows the top-15 MES for the second example. Results show that the top-

3 MES are in the same order as those shown in Figure 40, accounting for more than 95% of 

all MES. 
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Figure 43 – Top-15 most frequent minimal explanation sets, example #2 for water injection pump 

case. 

 

 

5.3.2. Case Study 2: Amine Treatment Plant 

 

Table 32 presents the results obtained with the FS-SCF network, compared to the 

SCF-Net results and techniques (1) and (2) described before. It can be seen from the table 

that sparsity, CF accuracy and CF generation rate values are kept the same as the ones in the 

SCF-Net.  Regarding counterfactual quality, it can be noted that the IM1 value improves in 

a 59% from the SCF-Net value, while the realism value increases a 68%. The addition of the 

FS layer to the SCF-Net seems to have influenced the generation of counterfactuals by 

making them more interpretable regarding class-specific data manifolds. The network is able 

to recognize more accurately the differences between classes. While the FS layer is not 

present in the encoder part of the FS-SCF network, it is present in the counterfactual 

classification part, where weights are copied in order to do a forward pass. While the intention 

of this forward pass was to ensure and enhance the validity of the generated counterfactuals, 

in this case interpretability was also influenced by this, due to the use of the FS layer. 

However, this is not the case for the realism metric. This might be explained by the fact that 

there is class imbalance and the dataset have few datapoints. A majority of the data 
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corresponds to the healthy class (i.e. CO2 < 2500 ppm). Thus, the 𝐴𝐸() autoencoder (the one 

that is not class-specific, see equation (40)) learns a representation of the data manifold based 

mainly in the healthy data. Because of this, the valid generated counterfactuals will belong 

mostly to the ‘unhealthy’ class, which the 𝐴𝐸() autoencoder will have more trouble to 

reconstruct. In a balanced dataset, this would not occur. Thus, the apparent tradeoff between 

IM1 and realism is explained by class imbalance. This does not occur in the previous case 

because the dataset is larger. Thus, despite being an imbalance between the classes, each of 

them is more numerous than this case, and the 𝐴𝐸() autoencoder learns from more examples. 

Regarding accuracy, it can be noted that it reaches its maximum value, even higher 

than techniques (1) and (2). For this case, the inclusion of the FS layer generates a 

compensation on the accuracy loss from the SCF-Net. However, the relative difference 

between the FS-SCF and SCF-Net is of 1.12%, which is not a significant value. It can be 

argued that performance is kept at a same level. On the other hand, a 1% increase is not 

sufficient to conclude that the FS-SCF network will always be more accurate than the SCF-

Net. Thus, regarding the accuracy-interpretability tradeoff mentioned in Chapter 2, this 

case’s results indicate that interpretability is increased without performance loss, thus 

addressing the tradeoff issue. 

 

Table 32 - Counterfactual quality evaluation metrics for the amine treatment plant case, including 

FS-SCF network. 

Technique 
IM1 

(↓) 

Realism 

(↓) 

Sparsity 

(↓) 

Model 

Accuracy 

(↑) 

CF 

Accuracy 

(↑) 

CF 

generation 

rate (↑) 

FS-SCF Net 6.55×102 2.42×106 2.37 92.74% 99.96% 100.00% 

SCF-Net 1.60×103 7.68×105 2.37 91.71% 99.96% 100.00% 

Wachter et. al. 

(WACHTER; 

MITTELSTADT; 

RUSSELL, 2017) (1) 

4.62×103 2.94×105 8.97 92.35% 50.65% 79.27% 

Counterfactuals 

Guided by 

Prototypes (2) 

3.82×103 1.72×106 4.78 92.35% 99.70% 90.88% 

 

Regarding sparsity, the distribution for the number of altered features used to generate 

a counterfactual when using the FS-SCF network is compared to that of the SCF-Net. Results 

are shown in Figure 44. It can be noted that values are very similar to each other. This is 
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compatible with the fact that mean sparsity value, as shown in Table 32, is the same for both 

techniques. In the case of the FS-SCF network, it can be noted that values corresponding to 

one to three altered features are more equally distributed than those in the SCF-Net. However, 

the difference is not conclusive.  

 

 

 
Figure 44 – Distribution of number of features altered for counterfactual generation in case 

study 2, comparison between a) SCF-Net and b) FS-SCF net 
 

After analyzing the model’s performance and the generated counterfactuals, necessity 

and sufficiency are quantified. With this, features are ranked according to necessity, 

sufficiency, NoS and NaS and compared to the FS-layer ranking using the Spearman 

correlation. Results are shown in Table 33. According to the table, all correlation coefficients 

are above 0.68. This indicates that there is a strong correlation between the FS-layer ranking 

and each of the causality-based rankings. Also, all of the p-values are below 0.05, except that 

for the NaS ranking. This leads to statistical significance of the obtained results. Out of the 

four rankings, the one that is most correlated to the FS-layer ranking is the sufficiency one. 

However, values are similar to NoS and necessity rankings, with the NaS ranking having a 
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lower value. All correlations can be considered strong. However, the NaS correlation 

coefficient is not statistically significant at a 0.05 level. Comparing the results with the 

previous case study, it can be noted that these correlation coefficients are lower than the 

previous case.  

 

Table 33 – Spearman correlation between causality-based rankings and FS-layer ranking. 

Ranking 
Correlation coefficient 

with FS-layer ranking 
p-value 

Necessity 0.7652 0.0303 

Sufficiency 0.7818 0.0306 

Necessity or Sufficiency (NoS) 0.7669 0.0304 

Necessity and Sufficiency (NaS) 0.6882 0.0663 

 

Table 34 shows how much time does the FS-SCF network takes to train, predict, 

generate counterfactuals and calculate causality-based values. As in the previous case, results 

are similar to the SCF-Net, due to the similarities between the two. Furthermore, to calculate 

necessity and sufficiency, 0.74 seconds are needed. Like in the previous case, this is due to 

the several combinations to be tested in order to determine each of the features’ necessity and 

sufficiency. For necessity of one feature, one prediction must be calculated. Thus, in this 

scenario where there are nine features, a total of 18 combinations must be testes to calculate 

necessity and sufficiency. 

 

Table 34 – Time consumption values for the FS-SCF framework, amine treatment plant case. 

Technique Training 

time 

[s/epoch] 

Prediction 

time 

[s/datapoint] 

Counterfactual 

generation time 

[s/datapoint] 

Causality-based 

values calculation 

time [s/datapoint] 

FS-SCF 4.18×10-1 1.02×10-4 4.42×10-1 7.40×10-1 

 

As with the previous case study, two examples are presented from separate training 

processes. Table 35 shows the causality-based values for example #1. Results show a 

repetition of several values between features. In the case of necessity, three features (0, 1 and 

5) have the same value. For sufficiency, five features have the same value (0, 1, 3, 4 and 5). 

In the case of NoS, the same features for necessity have the same values, and for NaS, features 

0, 1, 3, 4, 5 and 6 have the same value. In general, this affects the information that can be 
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obtained from these rankings. This is a reason why the highest correlation value according to 

Table 33 is lower than the highest value in Table 28. It also explains why the p-values are 

higher. According to Table 33, the sufficiency ranking is the one whose correlation with the 

FS ranking is the strongest. However, its p-value is not the smallest, with necessity and NoS 

having slightly better p-values. A possible explanation is what is shown in the table below. 

The higher the number of repeated values, higher is the probability of the correlation value 

be obtained as a result of chance rather than an underlying phenomenon. This highlights the 

importance of calculating more than one causality-based value. Furthermore, the issue of the 

repeated values is presented here more severely than in the previous case study, where the 

dataset is larger. Having a larger dataset does not guarantee that the issue will be solved. For 

example, two features may never be sufficient, regardless of the datapoint being fed. 

However, a large dataset increases the probability of exploring the whole data manifold and 

get more results, potentially avoiding the repetition of values in the rankings.  

It can be also noted from the table below that the NaS ranking has more repeated 

values than the NoS ranking. This is due to the fact that the NaS ranking measures two 

simultaneous conditions, whereas the NoS ranking measures the occurrence of one condition 

from two possibilities. Thus, generally a feature will most likely be (necessary of sufficient) 

than (necessary and sufficient). 

Regarding the most important features, it can be seen from Table 35 that according 

to all rankings, feature 2 is the most important. However, necessity and NaS rankings indicate 

the next most important feature is feature 8, whereas sufficiency and NoS rankings show 

feature 7 as the second most important one. Feature 2 corresponds to the amine temperature 

at the reboiler. This means that in this example the trained model uses that feature’s values 

to determine whether the treated gas will have proper amount of CO2. In (PARK et al., 2017), 

authors analyze the effect of the reboiler temperature in the CO2 removal process from biogas 

using amines. They establish that high temperatures lead to high removal efficiency. This 

indicates that there is no bias from the trained model towards a misleading feature. This 

verification process shows the importance of interpretability of black-box models such as 

deep neural networks. With vanilla neural networks (or CNNs or RNNs), only a performance 

value is obtained, without knowing why different input values are classified according to 

their health state. With the use of counterfactuals, causality-based values can be calculated, 

which give useful insights about the model’s use of the different input features. The obtained 

results can be verified with the previous knowledge about the system, to determine whether 
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the model uses the input features in a coherent way. Furthermore, these values can be used 

to further analyze feature selection techniques.    

 

Table 35 – Causality-based values for each feature, example #1 for amine treatment plant case. 

Feature Feature Tag 
Necessity 

% 

Sufficiency 

% 
NoS % NaS % 

0 T_Torre_Stripper 7.53 0 7.53 0 

1 P_Torre_Stripper 7.53 0 7.53 0 

2 T_Amina_Reboiler 82.74 83.08 94.33 71.49 

3 P_Amina_Reboiler 7.78 0 7.78 0 

4 Fluxo_Gas_A 7.7 0 7.7 0 

5 Fluxo_Amina 7.53 0 7.53 0 

6 P_Torre_Contactora 7.95 0.76 8.71 0 

7 T_gas 10.91 10.41 19.29 2.03 

8 T_Amina 12.27 2.96 12.77 2.45 

 

Figure 45 shows the performance evolution following the five different rankings for 

the first example. It can be noted from the image and Table 35 that all five rankings identify 

the same feature as the most important one, which is feature 2. Furthermore, using this feature 

alone yields an accuracy value close to 0.78, whereas when using all features, accuracy 

reaches a value close to 0.92. This is in line with the values shown in the table above, 

indicating feature 2 is far more relevant than the other features. Regarding RQS values, it can 

be seen that the NoS ranking achieves the highest value, followed by FS, necessity, 

sufficiency and NaS. When using two features, FS, NoS and sufficiency rankings have a 

better performance than necessity and NaS rankings, indicating that the [2,7] feature subset 

leads to a higher performance than the [2,8] subset. Furthermore, it can be noted that all 

features must be used to reach maximum performance, unlike the previous case study. Thus, 

no features can be discarded if maximum performance is to be achieved. However, the 

performance evolution can be fully trusted only until repeated values begin to appear. When 

this occurs, features with equal values can have interchangeable places in the rankings. For 

example, in the case of the NaS ranking, after using the top three features, the remaining 

features have the same value. Thus, they can be ordered according to different ranks.  
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Figure 45 – Accuracy evolution following different feature rankings, with their corresponding RQS 

value, example #1 for amine treatment plant case. 

 

 

Figure 46 shows the RBF map for the first example. Results show a strong connection 

between feature 2 and the output. This is in line with the results shown in the previous image 

and table, indicating that feature 2 is highly important in terms of necessity or sufficiency. 

Feature 7 is the next most relevant feature, and the rest of the features seem to be equally 

important. Furthermore, it can be noted that connections between input features are similar, 

with exemption of features 2, 7 and 8. To complement this result, Figure 47 shows the 

minimal explanation sets for this example. According to the image, features 2 and 7 are the 

most relevant, as they independently explain approximately 90% of the outputs. The next 

most frequent minimal explanation set is [0, l, 2, 3, 4, 5, 6, 7, 8]. This justifies the similar 

connections between input features in Figure 46, remembering that a connection between 

two input features is increased in the figure when the two are part of the minimal explanation 

set for the corresponding input value. It can be noted that an absolute notion of feature 

relevance is difficult to obtain from minimal explanation sets, due to the fact that sets may 

have two or more features. In this case, no feature is more important than the others are; this 
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information must be obtained from other MES. In Figure 47, it can be noted that features 2 

and 7 are more relevant than the rest, as was showed before. However, it is unclear what 

feature comes next in this relevance order. This also shows that it is important to do an 

analysis not only viewing features as independent characteristics, but as parts of a whole.  In 

a real system, as with this case study and the previous one, information from one feature can 

be complementary to another feature. Thus, situations may arise in which a feature by itself 

does not explain outputs, but in conjunction with other specific features, it may explain a 

variety of values. In such a case, it is important to analyze causality-based measures such as 

necessity, but it is also important to analyze whole sets. This is useful also in cases where 

there are repeated values of causality-based measures. For example, when two features have 

the same necessity value (different from zero), it may occur that the two constitute a minimal 

explanation set. Thus, it is not possible to determine which if them is more important. This 

may also be a reason why the FS layer importance values generate a ranking that is similar 

to the causality-based rankings but not the same. As shown before in this thesis, the FS layer 

determines the weights of the different features considering the interactions between them, 

due to the regularization term. This is different from the causality-based values, where each 

feature is analyzed independently. 
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Figure 46 – Relation-between-features (RBF) map, example #1 for amine treatment plant case. 
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Figure 47 – Top-15 most frequent minimal explanation sets, example #1 for amine treatment plant 

case. 

 

Like in the previous case study, two examples are shown for comparison. Table 36 

shows the causality-based values for the second example. Comparing with Table 35, the most 

notable difference is with regard to the most relevant feature. Whereas in the previous 

example feature 2 is the most relevant according to all causality-based values and the FS 

layer, in this example feature 7 is the most relevant, and feature 2 is the next. In contrast with 

the previous case study, results between the two examples are very different. One of the big 

differences between the two case studies is the dataset size. For this case study, 4732 

datapoints are used for training and validation, and 1183 for testing. Testing accuracy reaches 

a mean value of 92.74%. While this is considered a high value, there is room for 

improvement. One alternative would be to increase the dataset’s size. However, this is limited 

to logistic issues, such as the availability of data. Also, performance improvement is not 

guaranteed, as data quality is also a requirement. 

 The link between performance and stability within the two examples shown in this 

case study (and compared with the previous case study) is that there are signs that the size of 

the dataset influences the stability of the results and performance values. In the previous case 

study, the two examples showed similar results, while in this one, results appear to have 

relevant differences. While in this case study, 92.74% accuracy is reached, in the previous 

case study 97.92% accuracy is reached.  
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Regarding necessity, it can be seen that the first four most relevant features are 7, 2, 

8, and 6. Although in different order, they are the same values than in the previous example. 

After that, features 1, 3, 4 and 5 have the same necessity value. Finally, feature 0 presents the 

lowest value. In the case of sufficiency, the same order is followed for the first four most 

relevant features. After that, features 3 and 4 have the next best values, and features 0, 1 and 

5 have equal values. This is very similar to the necessity ranking in the previous example. 

Regarding NoS, the order is the following: [7, 2, (6, 8), 3, 4, (1, 5), 0]. Finally, in the case of 

NaS, the order is the following: [7, 2, 8, 6, (0, 1, 3, 4, 5)]. With regard to the previous example, 

there are more differences between the two examples than in the previous case study’s two 

examples. However, a tendency is still being followed. It can be noted than in both examples 

in this case study, features 2, 6, 7 and 8 are more relevant than the rest, despite the order of 

the rankings being different.  

 

 

Table 36 – Causality-based values for each feature, example #2 for amine treatment plant case. 

Feature Feature Tag 
Necessity 

% 

Sufficiency 

% 
NoS % NaS % 

0 T_Torre_Stripper 7.2 0 7.2 0 

1 P_Torre_Stripper 7.29 0 7.29 0 

2 T_Amina_Reboiler 17.34 8.19 20.85 4.69 

3 P_Amina_Reboiler 7.29 0.34 7.63 0 

4 Fluxo_Gas_A 7.29 0.03 7.32 0 

5 Fluxo_Amina 7.29 0 7.29 0 

6 P_Torre_Contactora 11.3 3.14 14.27 0.17 

7 T_gas 79.86 71.07 87.37 63.56 

8 T_Amina 13.5 3.84 14.27 3.08 

 

Figure 48 shows the accuracy evolution following each of the different feature 

rankings. While all of them follow a similar tendency, it can be noted that the FS ranking has 

a higher RQS. This is mainly influenced by the four first values. It can be noted that the FS 

ranking is different from the causality-based rankings, especially regarding the top-3 

features. While all the causality-based rankings put feature 7 as the most important, the FS 

ranking chooses another feature.  

When looking at the peak performance, it can be noted that eight features are needed. 

Thus, one feature can be discarded. According to the necessity and NoS rankings, the feature 

that can be discarded is feature 0, which is the temperature at the stripping tower.  
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Figure 48 – Accuracy evolution following different feature rankings, with their corresponding RQS 

value, example #2 for amine treatment plant case. 

 

 

Figure 49 shows the RBF map for the second example, while Figure 50 shows the 

top-15 minimal explanation sets. Results show a strong connection between feature 7 and the 

output. This is confirmed by the fact that approximately 70% of the input values in the test 

set are explained by this feature. Regarding the rest of the features, it can be seen from the 

RBF map that there is a similar connection between all the input features, like in the previous 

example. This is in line with the MES distribution, which indicates that the feature subset [0, 

1, 2, 3, 4, 5, 6, 7, 8,] is the third most frequent explanation set. 

Through these two examples in this case study, it can be shown the importance of 

inherently interpretable models, rather than the use of external techniques that generate 

explanations using approximation methods, such as LIME. While LIME is useful when there 

is a black-box model already trained which needs to be analyzed, research must be directed 

towards developing interpretable models with the task performance of black-box models, 

which is the main objective of this thesis. In the case of SHAP, the main drawback for its use 

in neural networks is time consumption due to the extensive search of marginal contributions. 
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In this case study, the two examples reach similar performance values, as seen in 

Figure 45 and Figure 48. However, their dynamics are different. This is an example of the 

mentioned Rashomon effect; two different models achieve similar results. While in the first 

example, approximately 80% of the values are explained by the amine temperature at the 

reboiler, in the second one approximately 70% of the values are explained by the non-treated 

gas temperature.  

 

 

Figure 49 – Relation-between-features (RBF) map, example #2 for amine treatment plant case. 
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Figure 50 – Top-15 most frequent minimal explanation sets, example #2 for amine treatment plant 

case. 
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6. CONCLUSION 

The objective of this thesis was to develop frameworks for interpretability of deep 

neural networks for prognostics and health management in order to address the black-box 

nature of neural networks. This objective has been met in this thesis through three 

frameworks. In the first one, a feature selection layer is embedded in a neural network 

between the input layer and the first hidden layer. This is used to determine the most 

important features for the model and if there are features that can be discarded. Also, a novel 

metric, referred to as ranking quality score (RQS), is proposed for comparison of feature 

rankings. In the second one, a multi-task architecture for simultaneous fault diagnosis and 

counterfactual generation is proposed. With this, the neural network is able to diagnose health 

states and give information about the minimal changes that must be made to the input values 

in order for the health state to change, either from a healthy state condition to a faulty one or 

vice versa. In the third technique, the two approaches for interpretability are merged into one. 

Also, a methodology for calculation of causality-based values using counterfactuals is 

proposed, which is used to generate causality-based feature rankings and to compare them 

with the feature selection-based rankings.  

Regarding the first technique, results across three case studies have shown that the 

technique achieves higher RQS values than the rest of the compared techniques. It identifies 

irrelevant features, allowing the model to reach maximum performance with a subset of the 

input features. Indeed, in the CWR case, maximum performance was reached with 44 out of 

the 100 input features. Regarding performance, it can be concluded that the inclusion of an 

FS layer to a deep neural network at least maintains the same level of performance. Indeed, 

in the NGTP case, performance presents a 19.79% increase in performance. On the other 

hand, results in the C-MAPSS FD004 case indicate a 0.05% decrease in RUL prediction 

MSE. 

For the second technique, results show that the SCF-Net is able to generate a set of 

realistic, highly sparse counterfactuals in both binary and multiclass scenarios. The generated 

counterfactuals are suitable within the corresponding desired class data manifold, and most 

of them require the modification of up to three features to be generated. Indeed, for the water 

injection pump and amine treatment plant cases, the mean number of features required to 

generate valid counterfactuals are 3.28 and 2.37, respectively. This guarantees the generation 

of counterfactuals that can be understood by the human end user. Furthermore, the proposed 
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SCF-Net overcomes the accuracy/interpretability tradeoff. Thus, it can be deployed without 

significant performance loss. 

Results regarding the third proposed technique show a model in which feature 

selection-based rankings are highly correlated to causality-based feature rankings, more 

specifically necessity, sufficiency and NoS. This is useful to give information about why 

some features are given higher importance values than other in the feature selection layer. 

This information was not available when using only the FS layer, in the first proposed 

technique. Furthermore, by combining two approaches for interpretability, trained models 

can be analyzed more thoroughly to reveal previously unseen insights. In this work, accuracy 

evolution plots, relation-between-features maps and minimal explanation sets are the 

techniques used for this analysis.   

This work attempts to improve the interpretability of DL-based PHM models by 

presenting techniques for interpretation of neural networks applied to PHM in order to 

increase transparency while keeping high performance level and thus enable more real-world 

applications in the industry. Through results for different frameworks and case studies, it can 

be concluded that the initial objective has been met. The three novel techniques show that 

inherently interpretable neural networks can be developed, trained and deployed in real-

world applications achieving high performance levels, which is the main novelty of this 

thesis.  

Future works include evaluating the proposed frameworks in other DL algorithms, 

such as autoencoders, convolutional neural networks, transformers, and long short-term 

memory networks. In the case of SCF-Net and FS-SCF network, these two approaches are 

limited to classification tasks only. Thus, an important line of research would be to adjust 

them for regression tasks, in order to be able to assess RUL prediction. In the case of the FS 

layer, the feature importance values can be utilized to aid in data visualization techniques. In 

(GRISCI; KRAUSE; DORN, 2021), the authors propose a technique for 2D visualization 

referred to as “Weighted t-SNE”, which is based in feature importance values and t-

Distributed Stochastic Neighbor Embedding (t-SNE) (DER MAATEN; HINTON, 2008). 

The importance values obtained from the FS layer could be used in the weighted t-SNE to 

analyze if there are improvements in data visualization.  

Regarding transformers (VASWANI et al., 2017), they have been used extensively 

for language recognition tasks. In the context of risk analysis, the authors in (MACÊDO et 
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al., 2022) use transformers to identify risk features from preliminary hazard analysis 

documents in an oil refinery. Interpretability techniques such as the ones developed in this 

thesis could be used in this context to better understand how the model generates its outputs.   
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Appendix A: RQS ≤ 1 

 

To prove that 

 
∑ 𝑃𝑀𝑛 ∙ 𝑛𝑁

𝑛=1

∑ max(𝑃𝑀) ∙ 𝑛𝑁
𝑛=1

≤ 1 ⟺  ∑ 𝑃𝑀𝑛 ∙ 𝑛

𝑁

𝑛=1

≤ ∑ max(𝑃𝑀) ∙ 𝑛

𝑁

𝑛=1

 

 

, mathematical induction is used. We generalize 𝑃𝑀𝑛 to any function 𝛼(𝑛) with values within 

the range [0,1].  

 

Base case (𝒏 = 𝟏): 

∑ 𝛼(𝑛) ∙ 𝑛

1

𝑛=1

=  𝛼(1) ∙ 1 ≤ max
𝑛∈[1,1]

{𝛼(𝑛)} ∙ 1 = ∑ max
𝑛∈[1,1]

{𝛼(𝑛)} ∙ 𝑛

1

𝑛=1

 

Induction step: 

 

∑ 𝛼(𝑛) ∙ 𝑛 ≤

𝐾

𝑛=1

∑ max
𝑛∈[1,𝐾]

{𝛼(𝑛)} ∙ 𝑛

𝐾

𝑛=1

⇒ ∑ 𝛼(𝑛) ∙ 𝑛 ≤

𝐾+1

𝑛=1

∑ max
𝑛∈[1,𝐾+1]

{𝛼(𝑛)} ∙ 𝑛

𝐾+1

𝑛=1

 

Proof: 

∑ 𝛼(𝑛) ∙ 𝑛

𝐾+1

𝑛=1

=  ∑ 𝛼(𝑛) ∙ 𝑛

𝐾

𝑛=1

+  𝛼(𝐾 + 1) ∙ (𝐾 + 1) 

≤ ∑ max
𝑛∈[1,𝐾]

{𝛼(𝑛)} ∙ 𝑛

𝐾

𝑛=1

+  𝛼(𝐾 + 1) ∙ (𝐾 + 1)  

= max
𝑛∈[1,𝐾]

{𝛼(𝑛)} ∙
𝐾(𝐾 + 1)

2
+  𝛼(𝐾 + 1) ∙ (𝐾 + 1) 

 

≤ max
𝑛∈[1,𝐾+1]

{𝛼(𝑛)} ∙
𝐾(𝐾 + 1)

2
+ max

𝑛∈[1,𝐾+1]
{𝛼(𝑛)} ∙ (𝐾 + 1) 
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= max
𝑛∈[1,𝐾+1]

{𝛼(𝑛)} (
𝐾(𝐾 + 1)

2
+  (𝐾 + 1)) 

 

= max
𝑛∈[1,𝐾+1]

{𝛼(𝑛)} (
(𝐾 + 1)(𝐾 + 2)

2
) 

 

= ∑ max
𝑛∈[1,𝐾+1]

{𝛼(𝑛)} ∙ 𝑛

𝐾+1

𝑛=1

 

∎ 

 


