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Abstract
Esteves, F. R. L. Design of a Floating Offshore Structure by a Deep Neural
Network. 2022. Dissertação (Mestrado) – Escola Politécnica, Universidade de São Paulo,
São Paulo, 2022

The Deep Neural Network (DNN) is a machine learning algorithm that principle is to
concatenate nonlinear operations involving matrices. These artificial networks can achieve
reasonable transformations of input to output data by updating a matrix of randomly
initialized weights. It is necessary to provide a training dataset to minimize a loss function
during the network training. Validation and test procedures guarantee the quality of the
trained network. The offshore design requires complex modeling that reflects the nature
of the ocean environment. To produce a mapping of the hydrodynamic response of the
offshore system, an extensive volume of simulations is often necessary, which elevates
the computational cost of the design process. At this point, the opportunity to converge
the deep learning potentialities and the challenges of offshore design emerges. This work
proposes a framework to assess deep neural networks used as response surfaces of the
semi-submersible platform dynamic models in waves: a mass-spring-damper model and
an analytical hydrodynamic model validated with reference data. The low computation
cost of these models allowed the generation of large datasets. The N-dimensional response
hypersurface in each case is a combination of input parameters. An appropriate study
elucidated the correct parameters definition of the DNN: the number of layers and the
number of neurons per layer, targeting the configuration that provides the minimum
mean squared error. The response surface represented by the DNN can easily be coupled
to an optimization algorithm that evaluates hundreds of viable solutions and finds the
optimal design. Using neural networks as a response surface has excellent cost-benefit
in preliminary design dynamic modeling, in cases where the available time before the
optimization tasks is long enough to prepare a training dataset, and in cases subjected to
requisites updates throughout the conceptual design phase.

Keywords: Deep Neural Networks. Offshore Design. Response Surface.





Resumo
Esteves, F. R. L. Design of a Floating Offshore Structure by a Deep Neural
Network. 2022. Dissertação (Mestrado) – Escola Politécnica, Universidade de São Paulo,
São Paulo, 2022

As Redes Neurais Profundas são um algoritmo de aprendizado de máquina que tem como
princípio concatenar operações não lineares envolvendo matrizes. Essas redes artificiais
podem realizar transformações entre dados de entrada e de saída atualizando uma matriz
de pesos, inicializados aleatoriamente. É necessário fornecer um conjunto de dados de
treinamento para minimizar uma função de perda, durante o treinamento da rede. Os
procedimentos de validação e teste garantem a qualidade da rede treinada. O projeto
offshore requer uma modelagem complexa que reflete a natureza do ambiente oceânico.
Para produzir um mapeamento da resposta hidrodinâmica do sistema offshore, muitas
vezes é necessário um grande volume de simulações, o que eleva o custo computacional do
projeto. Neste ponto, surge a oportunidade de convergir as potencialidades do deep learning
e os desafios do projeto offshore. Assim sendo, este trabalho propõe um método para avaliar
redes neurais profundas, usadas como superfícies de resposta dos modelos dinâmicos de
plataforma semissubmersível em ondas: um modelo massa-mola-amortecedor e um modelo
hidrodinâmico analítico, validado com dados de referência. O baixo custo computacional
desses modelos permitiu a geração de grandes conjuntos de dados. A hipersuperfície de
resposta N-dimensional em cada caso é uma combinação de parâmetros de entrada. Um
estudo adequado permitiu a correta definição dos parâmetros da rede neural: o número
de camadas e o número de neurônios por camada, visando a configuração que fornecesse
o mínimo erro quadrático médio. A superfície de resposta representada pela rede neural
pode ser facilmente acoplada a um algoritmo de otimização que avalie centenas de soluções
viáveis e encontre o projeto ótimo. O uso de redes neurais como superfície de resposta
tem excelente custo-benefício na modelagem dinâmica durante o projeto preliminar de
plataformas offshore, nos casos em que o tempo disponível antes das tarefas de otimização
é longo o suficiente para preparar um conjunto de dados de treinamento e nos casos sujeitos
a atualizações de requisitos ao longo da fase de projeto conceitual.

Palavras chave: Redes Neurais. Projeto Oceânico. Superfície de Resposta.
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1 Introduction

1.1 Artificial Intelligence and Ocean Engineering
Machine learning algorithms can process arbitrarily large and complex datasets

to automate human intellectual tasks through mathematical statistics and computer
science. The industry and researchers had been skeptical about the new developments
in machine learning, driven by deep learning (DL) maturation since the 2000s. This
skepticism reflects the past artificial intelligence (AI) winters: during the 1970s and
between the late 1980s and early 1990s when failed attempts occured. In opposition to
other exciting moments in the AI community, there are currently more resources to support
the development of these algorithms. Big data and higher computing capacity, including
Graphical Processing Units (GPU) and Tensor Processing Units (TPU), stand out as the
supporting resources for new developments on deep neural networks (DNNs) (BRUNTON;
NOACK; KOUMOUTSAKOS, 2019). For five years, skepticism has turned into real
applications, and artificial intelligence is even more present in simple daily applications
such as digital human resources and lawyers, virtual assistants, medical diagnosis, and Q&A
bots. But AI is also leading the most advanced engineering applications: the autopilots
for Tesla electric vehicles (Tesla. . . , 2021), the Boston Dynamics highly-mobile robots
(Boston. . . , 2021), the Emirates Team New Zealand maneuvering simulator that afforded
them America’s Cup 2021 (America’s. . . , 2021), generative design applications for images,
voice, and 3D objects generation (NVIDIA, 2021).

The principle of this learning process is to update a randomly initialized matrix of
weights until the dot product of the weights to the input data can reasonably represent a
known output after being subjected to a nonlinear function. These product operations are
successively repeated in many layers adding the "deep" characteristic of the neural network.
The numbers of layers and elements inside them are closely related to the order of the
learned problem. This technique is a powerful tool for automatic feature identification,
much simpler to use than the sophisticated methods used before the introduction of DNNs.
It is necessary to provide a training dataset with known inputs and outputs, used to
minimize a pre-defined loss function using an optimizer. Validation and test procedures
guarantee the quality of the network and prevent overfitting.

State-of-the-art AI applications are variations of Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), and Deep Reinforcement Learning (DRL). An
expressive part of AI algorithms currently employs convolutional networks as a strategy
to feature extraction in computer vision (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).
Recurrent neural networks are used in natural language processing (MIKOLOV et al.,
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2010), and reinforcement learning is naturally related to robotics (KOBER; BAGNELL;
PETERS, 2013). In the field of engineering design, Yonekura and Hattori (2019) combined
the image processing capabilities from deep learning (using Convolutional Neural Networks
on CFD contours) and reinforcement learning (updating the angle of attack of foils using
the Deep Q-Networks algorithm) to propose an optimization framework for industrial
turbine design. The authors affirm that the framework is task-independent, only requiring
objective and design variables updates to extend it to other optimization tasks. For fluid
dynamics applications, Wang and Wang (2021) observed that there are three notable
uses of Artificial Neural Networks (ANN): provide a direct input-output response surface,
optimize the existing physical models, or a combination of both strategies. Brunton, Noack
and Koumoutsakos (2019) enumerate possible applications of different machine learning
techniques to fluid mechanics fundamental research: experimental data processing, reduced-
order modeling, shape optimization, turbulence closure models, and flow control. Baiges
et al. (2020) and Haghighat et al. (2020) also present the use of ANN for reduced-order
modeling and solutions in solid mechanics. Chaves, Tancredi and Andrade (2013) develop
a framework to find the optimal structural design of small vessels, making use of the ANN
as response surfaces.

In ocean engineering, researchers have worked with Deep Neural Networks as
response surfaces to represent the system performance during the conceptual phase. The
offshore design divides into three traditional phases of the so-called design spiral: conceptual
design, basic design, and detailed design (API, 2007). An early estimation of the main
geometric characteristics occurs during the conceptual design when the engineer employs
complex models that reflect the nature of the ocean environment to predict the platform
behavior. To map the hydrodynamic response of the offshore system, an extensive volume
of simulations is often necessary during both the conceptual and basic design phases. It
elevates the computational cost of the design process as a penalty for achieving the best
hydrodynamic and economical solutions in the early design stages. Complex engineering
has modified the conceptual design during the past decade by considering operational
aspects and value perception along the whole life-cycle of the system. More recently, a
large volume of operational data from sensors installed in similar platforms has impacted
the early design, introducing the digital twin concept. At this point, the opportunity to
converge the deep learning potentialities and the challenges of modern offshore design
emerges.

An example of the application of Deep Neural Networks in ocean engineering is the
building up of a neural network to represent the response of a Floating, Production, Storage,
and Offloading unit (FPSO) due to the action of waves, winds, and current (SAEID, 2006).
Zhang et al. (2017) presented a similar development for a semi-submersible unit but using
a traditional response surface method instead. Lønnum (2018) assessed the application
of deep learning in foreseeing the stochastic met-ocean generators for simulation-driven
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design. Christiansen et al. (2013) proposed a hybrid method that combines finite element
analysis (FEM) and artificial neural networks to perform dynamic analyses of mooring line
systems. Venzon, Tancredi and Andrade (2014) employed the artificial neural network as a
response surface to speed up the optimization of a semi-submersible hull in multidirectional
waves.

1.2 Objectives
The objective of this work is to investigate the application of Deep Learning

algorithms to represent the hydrodynamic response of an offshore platform during the
conceptual design phase. This assessment includes an evaluation of the method, including
its benefits, drawbacks, and challenges.

1.3 Document Outline
This thesis is organized as follows: Chapter 1 provides a brief introduction to

Deep Learning and a general understanding of the state of art, specifically for engineering
design. Chapter 2 introduces the main advances in offshore systems design along the
past fifty years and connects the actual needs of offshore engineering to the artificial
intelligence potentialities. Chapter 3 reviews Deep Learning: its fundamentals, general
structure, and algorithms. Chapter 4 introduces the case study, presents the physical
modeling of the system and the generation of the dataset. Appendix A shows the numerical
experiments that corroborates the hydrodynamic model. Chapter 5 shows the training,
validation, and testing methods used to build the deep learning model and results in the
response hypersurface. Finally, chapter 6 discusses the benefits, drawbacks, and challenges
of the Deep Learning application in offshore design, formalizes a framework for this AI
application, and suggests future work and research.
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2 Offshore Systems Design

Engineering design is a decision process dedicated to finding a solution in a set of
alternatives. Chernoff and Moses (1986) established the basis of the modern decision theory,
a formal model that employs statistics over observations and experiments about the state
of nature. Other relevant design schools: Catalogue Design, which uses data of various
proven solutions (PAHL; BEITZ, 1984); Robust Design which can accommodate extreme
variations in design parameters and process variables via Information Axiom (SUH, 1998);
Decision-Based Design, which embodies the concept of concurrent engineering design for
the life cycle (MISTREE; MUSTER, 1990), Building-Block Design, an integrated approach
to ship synthesis (ANDREWS, 2006) and; Risk-Based Design (PAPANIKOLAOU, 2009).
More recently, optimization techniques have gained importance, and the decision process
can deal with multi-objective models (NOWACKI, 2019). There is not only a single solution
but a Pareto boundary that introduces a set of viable and optimal solutions. Cost and
risk are also relevant, especially for large and expensive projects like offshore systems. In
this way, the initial design has to fulfill the technical requirements and to set up from a
perspective of the economic balance. There are also techniques to deal with uncertainty
and complexity in early design.

Offshore structures are large platforms providing the necessary facilities and equip-
ment for the exploration and production of oil and natural gas in a marine environment;
wind, wave, and tidal energy farms; or seafood confined production (aquaculture). The
design of these systems depends on the size, location, and water depth of the development.
The O&G production facilities are either floating platforms or platforms placed directly
on the seabed.

The platforms placed on the seabed can be fixed (rigidly or elastically), bottom
supported (with or without skirts and piles, providing transverse resistance), or compliantly
restrained, according to Dhanak and Xiros (2016). The use of these platforms is restricted
by the water depth. The floating offshore platforms consist of SPARS, Tension Leg
Platforms (TLPs), Semi-Submersibles (SS), and FPSOs.

2.1 Conceptual design
The conceptual design of an offshore structure defines its preliminary dimensions

and capabilities, a process similar to the conceptual design of a ship. The cost of wrong
decisions during this phase is comparatively high, considering the possibility of inefficient
performance and the risk involved in each system’s life cycle. A poor-quality design can
reflect negatively on operational expenditures (OPEX) as the downtime increases in
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production units. Other expensive consequences of mistakes in the preliminary design are
catastrophic situations like sinking, explosions, oil spills, and fire on a production unit.
These accidents represent losses of millions of dollars, damage to the environment, and
risk to human lives. For this reason, special attention is given to the operational aspects
and behavior of an offshore system: Traditional literature, for instance, Patel (1989) and
Mccormick (2009), discusses the dynamics of different types of offshore structures with a
high level of formalization from fluid mechanics and structural analysis. The stochastic
nature of the sea environment leads to complex relations between the hull form and the
behavior of the offshore system. The behavior, in turn, impacts the performance of the
system in different circumstances, mainly governed by environmental aspects as waves,
winds, sea currents, and the occurrence of storms. It is particularly difficult to choose the
best concept during the preliminary design phase because there is a limited knowledge
supporting decisions at this point (GASPAR, 2013), and the available time to work on
this solution is limited, once it is often just a pre-contract phase (HALKYARD, 2005).
The conceptual or preliminary design is a dynamic discipline that has developed from a
rational selection of the main dimensions to simulation-driven and systems engineering
approaches in the last decades.

The offshore industry keeps some particularities, differing from the marine industry
in various aspects. For example, the offshore design tends to be more customized than the
ship design, which occasionally works with standardized developments. Halkyard (2005)
classifies the floating structures into permanent or mobile facilities. Permanent facilities
are structures moored in place for a few decades (typically, 30 years) and demand a higher
surviving capacity in harsh environmental conditions. The mobile units are suitable for
temporary functions like drilling and construction after moving to different places.

As mentioned before, the floating systems are employed to support oil and gas
production factories, drilling and construction units, wind energy generators, wave and
tidal energy systems, aquaculture cages. Halkyard (2005) highlights that the ocean engineer
"must understand all of the systems supported by the hull, and be prepared to include
their effects in his modeling and design". It includes subsea equipment like O&G risers
and umbilicals that depend on the subsea field architecture. El-Reedy (2012) relates the
offshore structure design to the field development of an O&G project via multi-criteria
selection techniques, considering for it the type of the platform, the topside facilities
layout, well locations, subsea equipment, reservoir engineering, storage, and offloading
systems. Clauss, Lehmann and Östergaard (1992) emphasize that the main parameters
in the design of offshore structures for oil production are the reservoir size, the water
depth, and the environmental conditions. They present the conceptual design together
with hydromechanical analysis targeting transparent structures in wave conditions. Clauss,
Lehmann and Östergaard (1988) expanded the design to arrangements dimensioning,
structural evaluation, and analysis. Chakrabarti (2005) suggests statistical analysis for
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floating systems, dividing it into short-crest and long-crest responses. Summarily, opera-
tional parameters for offshore engineering are closely related to environmental conditions
and the type of equipment connected to the system.

According to Watson (1998), the isolated treatment of these different disciplines
belongs to naval architecture. The designer must preserve the essence of all these subjects
to synthesize a vessel concept that satisfies all the shipowner’s requirements. Then, the
design is a separate field of study among the many disciplines that develop along its
pipeline. Regarding the offshore design, Clauss and Birk (1996) presented the shape
optimization of different structures: gravity base, TLP, and semi-submersible. In Birk and
Clauss (2001) and Birk (2008), rational seakeeping criteria provided the objectives set for
the optimization of the pontoon section of a semi-submersible. Tancredi (2009) introduced
the use of surface responses in the optimization of marine systems. Using artificial neural
networks as response surfaces reduced the time spent processing several simulations. The
author simulated the physical models in distributed systems.

The most common activities during the conceptual design phase of offshore struc-
tures are the weight and stability definition, the calculation of dynamic responses of the
offshore platform, and fatigue in the mooring system. Academia has published different
levels of modeling and design of ocean systems. Most works present the improvement
of concepts of semi-submersible platforms using simplified models. For example, Leite,
Vasconcellos and Nishimoto (1992) developed a method to generate and compare hull
forms, Leite and Nishimoto (1992) studied the heave minimization considering the instal-
lation of rigid risers, Nishimoto et al. (1992) also worked on the design of a minimum
heave platform, Nishimoto and Leite (1993) studied the influence of lateral keels and
blisters to minimize heave. Conti, Andrade and Birk (2008) studied the effect of lower and
upper parts of semi-submersible columns for heave response improvement, and Venzon,
Tancredi and Andrade (2014) optimized a semi-submersible hull to improve the seakeeping
in multidirectional waves. Deep and ultra-deep developments also present installation
and mooring challenges as much as local environmental conditions (HOLMAGER, 2014).
Therefore, Nishimoto, Fucatu and Masetti (2001) developed a time domain simulator for
anchored FPSO units. In this work, we are particularly interested on the dynamics topic
of the first spiral loop, i.e., the preliminary design.

2.2 The role of AI in the Offshore Design

As highlighted by Brunton, Noack and Koumoutsakos (2019), machine learning
can support fluid dynamics in experimental/numerical data processing and reduced-order
modeling. It is valuable in model-based design. Tancredi (2009) presents multiple examples
of engineering design applications: from structural analysis of simple beams to a catamaran
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hull. The advanced capability of computational processing and the possibility of using
modern neural networks improved the quality of response surfaces produced by these
algorithms.

The most advanced neural networks can train an agent to perform optimized
operations that can be desirable to a high-level design, as in America’s. . . (2021). These
networks can learn policies to design strategies and help in shape optimization, for example.
Table 1 shows multi-level applications of AI in ocean engineering, for different hydrodynamic
models and types of neural networks. This table provides a general understanding of the AI
potentialities on the offshore design subject. It also clarifies the choice of the thesis adopted
pathway, described in the next sections of this document. The first column on the left
side refers to the scope of this work, replacing the dynamic model of the semi-submersible
platform with a deep neural network. This can also be done for FPSO designs, as mentioned
in the second column. The processing cost of these options is variable, depending on the
chosen analysis method. The next column refers to cases where CFD results are the basis of
the analysis method, for example, to determine the airgap. Convolutional Neural Networks
can represent the velocity and pressure fields. In the fourth column, it is proposed that the
Reinforcement Learning algorithm could act as the agent looking for optimal and innovative
designs, changing the floating system geometry iteratively. The last column merges all
these ideas in a Deep Reinforcement Learning strategy. Dozens of other strategies could
join AI and offshore design together. The brainstorming presented in table 1 is merely
illustrative and portrays the range of applications at different challenging levels.

Table 1 – AI applications in ocean engineering.

Type Model/Value Model/Value Value Value/Policy
ANN Deep Learning Deep Learning Reinforcement DRL

Method Dense Layers CNN Q-Learning Q, CNN,
Dense

Structure Semi-sub FPSO Air-gap All All

Input Geometry,
met-ocean

Geometry,
met-ocean CFD contour Geometry,

met-ocean All

Output
Heave,
GM,
airgap

Heading,
excursion

Min airgap,
efficiency

6 DoF
response All

Extra Output 6 DoF
response

6 DoF
response - - -

Hydrodynamic
models –
Basic

Response
model 1st order - - -

Hydrodynamic
models –
Advanced

Panel Method,
Morison,
Wamit,
Current,
Wind,
Mooring

Strip Theory,
Jones,

2nd order
Finite-Volume Wamit,

Finite-Volume
Wamit,

Finite-Volume

Validation
Cross- validation,

Iterations,
N layers

Cross- validation,
Iterations,
N layers

Verification & Validation,
Cross-validation

Verification & Validation,
Cross-validation

Verification & Validation,
Cross-validation

Source: Author
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3 Artificial Intelligence

The idea behind artificial intelligence (AI) is to automate intellectual tasks that
were exclusively performed by humans. These tasks are essentially "think" and "act". In
some cases, it is desirable to perform thinking activities, such as learning, decision-making,
and problem-solving. In other circumstances, the intelligent algorithm has to act in order
to operate autonomously, pursue or create a goal, perceive its environment, and often adapt
to new changes. Artificial intelligence is able not only to reproduce human performance
but also to surpass it, achieving ideal/rational levels of functionality (RUSSELL; NORVIG,
2010). This rational approach is a combination of mathematics, physics, computer science,
and engineering.

The fact of algorithms reach ideal levels of functionality is a great revolution
in its paradigms, since by the beginning of the AI research, during the 1950s, experts
believe that the so-called symbolic AI could achieve human-level performance only with
the implementation of a large set of rules to manipulate data. In this approach, achieve
the solution of well-defined and logical problems is the easiest task, once traditional
computer programs are designed to perform fast arithmetic and explicitly follow instructions
(BUDUMA; LOCASCIO, 2017).

Artificial intelligence congregates the machine learning algorithms that can learn
to perform a specific task. While classical AI programs receive rules and data to output
answers, in machine learning algorithms, the engineer inputs data and answers to output
a model of the world, as shown in figure 1. Thus, a machine-learning system is trained
rather than explicitly programmed (CHOLLET, 2017).

Figure 1 – Comparison between classical AI program and machine learning schemes.
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data
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Machine
learning
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Source: Adapted from Chollet (2017)
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3.1 Machine Learning
Supervised learning is a mapping of input data to known targets or annotations

informed by humans, as stated by Chollet (2017). It represents most part of the problems
in machine learning: Binary classification, multiclass classification, and scalar regression
(CHOLLET, 2017). It is also possible to create self-supervised models (for example,
autoencoders) by generating the labels from the input data. Another approach is to find
transformations of the input data without the help of any target, it is unsupervised learning.
The main applications of unsupervised learning are dimensionality reduction, clustering,
data visualization, data compression, data denoising, and the search for correlations in
data analytics (CHOLLET, 2017). Finally, in reinforcement learning, an agent receives
information about its environment and learns to choose actions that will maximize a
pre-determined reward (CHOLLET, 2017).

All of these machine learning strategies are related to mathematical statistics
and deal with large and complex datasets. The classical statistics becomes impracticable
considering the data size and complexity, leading machine learning to be less theoretical
and more oriented to engineering problems.

To represent or encode data using machine learning it is required: input data points,
examples of expected outputs, and a measure of the distance between the predicted and
expected outputs, that is the feedback signal. In this context, the automatic search for a
good representation is the learning process of the model. The representation is selected in
a predefined space of possibilities. A pioneering method to verify the quality of learning
and originality of an AI code is the Turing test, in which a human player enters into a
conversation, in natural language, with another human and a machine, separately. If the
judge is unable to safely distinguish them, the machine passes the test.

Figure 2 – AI, machine learning and deep learning sets.
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   learning

Artificial intelligence

Source: Adapted from Chollet (2017)

According to Chollet (2017), one of the most popular types of machine learning in
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present days is deep learning. The author points out that just as machine learning is a
subset of artificial intelligence techniques, deep learning is one of the machine learning
algorithms (see figure 2). However, most part of industrial machine learning algorithms are
not deep learning, because it is not the best-suited model for a great part of applications.
Probabilistic models, as the Naive Bayes and the logistic regression, have useful classification
applications. Kernel method, Support Vector Machine (SVM), Decision Trees, and Random
Forest are also classification algorithms.

3.2 Deep Learning

Figure 3 – Traditional representation of the deep learning pipeline
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Source: Author

Deep learning is a type of machine learning. Its strategy is to add multiple operations
layers to successively increase the representations meaning. The deep neural network possess
multiple information stages that act as filters, reducing large amounts of vector data. There
are always input and output layers in this type of model, while intermediary layers are
named hidden layers. The input is parametrized in each hidden layer by a dot product to
the weights matrix. Initially, these weights are assigned to random values. A loss/objective
function is defined to compute the distance score between the target and the predicted
outputs. The learning process is related to a back-propagation algorithm that adjusts the
values of the weights with an optimizer. The distance score is used as a feedback signal in
this process, which is represented in the figure 3 flowchart. A variation with only one or
two hidden layers is called shallow learning. Previous machine learning methods required
manual representations of the data features. Deep learning automates this step and allows
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a joint learning process for all layers, in the opposite of a greedy process. Finally, the
application of deep learning is particularly recommended for perceptual problems, like
computer vision and natural language problems.

In figure 3 we can see the traditional representation of the matrix operations
performed by a deep neural network and the data flow inside it. Each circle represents
a neuron as the one presented in figure 5. In the next subsections we describe in details
the foundation elements of these networks and some algorithms developed to improve
training efficiency and the quality of final results. The whole procedure is summarized in
the flowchart presented in figure 4.

Figure 4 – Deep learning algorithm with two hidden layers
Input

Weights Hidden layer

Weights Hidden layer

Predictions True targets

Loss function

Loss score

Optimizer

Weights
update

Source: Adapted from Chollet (2017)

According to Russell and Norvig (2010), the main tasks performed by AI systems
are natural language processing, knowledge representation, automated reasoning, machine
learning to fit and extrapolate patterns, computer vision, and robotics. In these examples,
all the combinations between think/act and human-level/ideal level oppositions are well
represented. Most of these problems are quite easy to solve for human brains but require
complex computations of intelligent machines. The learning process for humans occurs in
most cases by example or by reinforcement, that is a reward or correction. Deep learning
is likewise a subset of artificial intelligence in that learning occurs from example, not by
formula.
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3.2.1 Neuron

A neuron is a basic unit of the neural network, "optimized to receive information
from other neurons, process this information, and send it in a unique way" (BUDUMA;
LOCASCIO, 2017). The sum of these signals, strengthened or weakened according to some
criteria (activation function), constitutes the new propagated signal. This unit can be
understood as a biomimetic model, compared to a biological neuron that performs similar
operations in human brains. Actually, McCulloch and Pitts (1990) proposed the artificial
neuron taking a number of vectorized inputs x1, x2, ..., xn and multiplying by weights
w1, w2, ..., wn. The problem can include a bias b1, b2, ..., bn, producing a logit y given by
equation 3.1. The outputs are also vectorized representations. A graphical representation
of the neuron can be visualized in figure 5.

y = f(
n∑
i=0

wixi + bi) (3.1)

An early type of neural network was the perceptron. Used for classification problems,
it employs a binary function to divide a Cartesian coordinate plane in two. A linear
perceptron is composed of a single neuron, but single neurons are more powerful when
using different activation functions (BUDUMA; LOCASCIO, 2017). As indicated in the
previous chapter, a deep neural network is composed by multiple layers of multiple neurons.
The layers between the input and output layers are the hidden layers, that automatically
learn the data features, when submitted to the optimizer. There must have fewer neurons
in hidden layers than the number of inputs when it is desirable to force a compressed
representation of the data. It is not necessary to connect all inputs to an output of a prior
layer (see the Dropout technique in section 3.2.12).

Figure 5 – The neuron model
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3.2.2 Activation

Nonlinearity is imposed on the model by activation functions. The most common
are the sigmoid, tanh, and rectified linear unit (ReLU), although the linear perceptron
activates in a binary function, as exposed before. The sigmoid neuron has equation f as
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3.2. This imposes output close to zero for small logit and output close to one for very large
logit. It is an S-shape function ranging from 0 to 1, as shown in figure 6.

f(z) = 1
1 + e−z

=⇒ f ′(z) = f(z)(1− f(z)) (3.2)

tf.math.sigmoid(z)

Another S-shape function is the hyperbolic tangent, differing the range from sigmoid.
f(z) = tanh (z) ranges from −1 to 1 and the expression is 3.3.

f(z) = ez − e−z

ez + e−z
=⇒ f ′(z) = 1− f(z)2 (3.3)

tf.math.tanh(z)

The neuron containing a rectified linear unit (ReLU) uses the function 3.4 and is
valuable for multiple tasks, especially computer vision.

f(z) = max(0, z) =⇒ g′(z) =

1 if z > 0

0 otherwise
(3.4)

tf.nn.relu(z)

Representation of the sigmoid, tanh and ReLU activation functions are plotted in
figure 6.

Figure 6 – Sigmoid, tanh and ReLU activation functions
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3.2.3 Feed-Forward Neural Networks

The training process consists in optimize the parameter vectors (weights). The
intelligent selection of a training set provides effectiveness to the neural network, but it
is necessary an accurate approach to train the ANN. The first choice, considering the
linear neurons, could be the inclusion of the error function in the problem and treat all of
them as a system of equations. Although it is a theoretically adequate approach, there is
a generalization loss when we include the nonlinear functions. A better strategy to tackle
the training process is the gradient descend.

E = 1
2
∑
i

(
t(i) − y(i)

)2
(3.5)

3.2.4 Gradient descend

To minimize the squared error function in equation 3.5 we employ the gradient
(calculus concept) once the steepest descent is perpendicular to the contours in the plot
of the error as a function of the weights. The strategy consists of randomly initialize the
weights; evaluate error and gradient at the current position, and change it value in the
direction of the steepest descend (BUDUMA; LOCASCIO, 2017).

Figure 7 – Graphic representation of the gradient descend

Source: Adapted from Buduma and Locascio (2017)

The algorithm requires an additional parameter to carry out the training process,
the learning rate. The definition of this hyperparameter depends on the steepness of
the surface. If we underestimate the learning rate, the training process longs more than
necessary. On the other hand, taking a too large learning rate, the solution may diverge
away from the minimum (BUDUMA; LOCASCIO, 2017). At this point, it is possible to
adopt adaptive learning rates. The evaluation of the gradient provides the step size to
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update each weight. The partial derivative of the error function shown in equation 3.6 is
called the delta rule. It concerns each of the weights.

∆wk = −εx(i)
k

(
t(i) − y(i)

)2
(3.6)

3.2.5 Back-propagation

The training of a multilayer neural network is better performed with the algorithm
of backpropagation, proposed by Rumelhart, Hinton and Williams (1986). By definition,
deep layers introduce the black-box modeling, suppressing the previous feature engineering.
The features represented in hidden layers are unknown, so the backpropagation algorithm
aims to compute the change velocity of the error by evaluating the error derivatives
along with a single training. The knowledge of all the partial derivatives leads to the
determination of the error change concerning each weight.

∆wij = −
∑

k ε dataset

εy
(k)
i y

(k)
j

(
1− y(k)

j

) ∂E(k)]

∂y
(k)
j

(3.7)

Where the subindex j refers to layer j and the subindex i refers to layer i that is
below j.

3.2.6 Stochastic gradient descend

For more complex error surfaces, the batch gradient descend can lead to saddle
points. It produces erroneous results. The Stochastic Gradient Descend (SGD) arises as an
alternative that estimates dynamic error surfaces with respect to a single example once.

Figure 8 – Convergence of the minibatch gradient descend
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The minibatch gradient descent improves the algorithm by computing the error
surface from multiple subsets of the complete dataset (minibatch), which is more efficient
than a single sample evaluation.

∆wij = −
∑

k ε minibatch

εy
(k)
i y

(k)
j

(
1− y(k)

j

) ∂E(k)]

∂y
(k)
j

(3.8)

3.2.7 Local minima and flat regions

An issue when dealing with error surfaces is that the local minimum is not necessarily
the global minimum. Usually, this local information can extrapolate the global response.
This extrapolation relates to the concept of model identifiability (BUDUMA; LOCASCIO,
2017).

Error surfaces in deep models have several local minima due to two influential
reasons: Rearranging neurons in a layer results in equivalent configurations, and the
possibility of infinite configurations result in equivalent networks after the ReLU activation.
The behavior of nonidentifiable configurations is independent of the inputs, achieving the
same error for training, validation, and testing data sets.

However, error rates and generalization characteristics are equivalent for local and
global minima. The exceptions are the spurious local minima. This statement corroborates
by the evidence that the distance of a randomly initialized error surface and its stochastic
gradient descend solution is not affected in the local minima region (GOODFELLOW;
VINYALS, 2015). The challenge is not the existence of a local minimum but to find the
appropriate direction to reach it. Other difficulties for optimization algorithms are flat
regions that slow down the learning process. It can be critical or saddle points.

In many circumstances it is also desirable to measure gradient changes between two
positions of the calculation step, computing the second derivatives of the error (BUDUMA;
LOCASCIO, 2017). The Hessian matrix (H) allows us to determine the second derivative
when moving in a specific direction and limits the gradient descend optimization process.
The second derivative is dHd in the direction of the unit vector d. Using second-order
Taylor series approximation and stating that the optimizer is moving ε units in the gradient
direction Buduma and Locascio (2017) write three terms for an expression that updates
the error (equation 3.9): the error at the previous parameter, the error improvement due to
the magnitude of the gradient and a correction term that incorporates the Hessian surface
curvature. The computing of the Hessian matrix exactly is not a trivial task (BUDUMA;
LOCASCIO, 2017).

E(x(t) − εg) = E(x(t))− εgTg + 1
2ε

2gTHg (3.9)
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3.2.8 Momentum-based optimization and second-order methods

It is desirable to achieve a velocity-driven motion in gradient descend to prevent
large effects of wide fluctuations. Velocity smooths the trajectory, working as a memory that
accumulates the movement in the minimum direction and cancels orthogonal accelerations
(SUTSKEVER et al., 2013).

Introducing the momentum hyperparameter m in equation 3.10, the momentum
term increases the step size and reduces the volatility of the model. It may require a
reduction of the learning rate when compared to vanilla SGD (m = 0).

vi = mvi−1 − εgi
θi = θi−1 + vi

(3.10)

Second-order methods come to directly approximate the Hessian. One of these
methods is the conjugate gradient descend that successively computes the gradient direc-
tion and finds the minimum along that direction (MØLLER, 1993). Instead of moving
to the steepest descend, a step in a conjugate direction can prevent oscillation. The
conjugate direction is selected by operating a linear combination of the gradient and
the prior direction (BUDUMA; LOCASCIO, 2017). Another second-order method is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, introduced by Broyden (1969).
It optimizes the parameter vector with the inverse Hessian matrix, computed iteratively
(BUDUMA; LOCASCIO, 2017).

3.2.9 Learning Rate Adaption

The selection of the learning rate is both important and challenging. There are
some different algorithms, where "mini-batch gradient descent, mini-batch gradient with
momentum, RMSProp, RMSProp with momentum, Adam, AdaGrad, and AdaDelta" are
the most popular (BUDUMA; LOCASCIO, 2017). Adagrad/Adadelta have the advantage
of not depending too much on learning rates settings, but well-tuned SGD+Momentum
almost always converges faster to better final values (ZEILER, 2012).

AdaGrad adapts the global learning rate over time inversely to the square root of
the sum of all the squared gradients. Because of that, parameters with large gradients
cause a fast reduction in their learning rate, while small gradients experience a small
decrease in learning rates. The algorithm presents practical difficulties in model training.

ri = ri−1 + gi · gi
θi = θi−1 −

ε

10−7 +√ri
· g (3.11)
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The exponentially weighted moving average of gradients (RMSProp) enables a more
recent representation of the gradient accumulation once it imposes exponential weights to
historical gradients. The decay factor ρ determines the influence time of previous gradients.

ri = ρri−1 + (1− ρ)gi · gi (3.12)

The Adam algorithm combines the core concepts behind RMSProp and momentum:
The first moment of the gradient keeps the convergence momentum and the second
moment maintains the RMSProp of the historical gradients (BUDUMA; LOCASCIO,
2017). The second moment is recurrently represented as a function of past gradients and
some simplifications are made using the algebraic identity. The final Adam update is given
by equation 3.13.

θi = θi−1 −
ε

10−7 +
√
vi
·mi (3.13)

Where vi = vi
1−βi2

and mi = mi
1−βi1

.

3.2.10 Input Data - Preprocessing

As we move for more complex engineering problems, data become high dimensional.
Then, the relations we want to represent become increasingly nonlinear. These data must
be vectorized or standardized, once neural networks do not process raw data, like text,
image, or CSV files.

It is desirable to preprocess the input data inside the model. Using an external
pipeline makes the models less portable, once it is not so simple to export an end-to-end
model for production uses without including preprocessing in it. The input is much close
to raw data, once the consumer of the exported model is not necessarily advised about
the preprocessing pipeline (CHOLLET et al., 2015).

The preprocessing includes normalization and rescaling for numerical data. Input
values should be in the [0, 1] range or zero-mean and unit-variance type. This implies that
all features must range similarly. If there are missing values in the dataset it is usually
safe to input missing values as 0.

3.2.11 Model generalization - Overfitting, Validation and Test

Modern neural networks can extract features from raw data to ease a problem
by expressing it simpler. This process is known as feature engineering. Specifically, deep
learning is suitable for highly nondimensional problems, once the great numbers of neurons
and layers can represent this nonlinearity by features that are not intelligible for the data
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engineer. By providing a dataset for the neural network training, it is possible to reduce
errors in the network model if it has enough degrees of freedom (number of layers and
neurons). In opposition, the model can perform poorly to different input data, when it
is excessively large compared to the problem order. It may suggest that the model is
overfitting.

Overfitting is a phenomenon related to a loss of generalization in the model. It
means that our modeling is excessively nonlinear and represents only the specific input
data. According to Buduma and Locascio (2017), there is a "direct trade-off between
overfitting and model complexity". Figure 9 shows two examples of trained models for the
same dataset, one is well representing the data and the other one is overfitting. If more
points of the same dataset (for example a training set) were added to the plot, the linear
model could represent it better. To assure the model generalization, all available data is
divided into a training and a test set.

Figure 9 – Example of overfitting model
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The training process is divided into epochs, that is an iteration over the entire
training set. Considering the mini-batch gradient descend, the number of epochs will be
the size of the training set over the mini-batch size. To measure the model generalization at
the end of each epoch, a validation step is performed. The model has a good generalization
if both the accuracy of training, and validation sets are increasing or in a steady state. If
one of them is decreasing, the model is overfitting.
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The trained model is subjected to unseen data, i.e., the test set to measure the
model’s performance. If the performance is adequate, the model is finished and can be
deployed and used for production. However, if the model is not performing well during the
training, validation, or test steps, it may be necessary to reconsider the architecture of the
network once it is not been capable of capturing important features on the data.

3.2.12 Techniques for overfitting prevention

Some different methods can be used to prevent overfitting during the neural network
training step. The most trivial is to reduce the model size to achieve a better relationship
between the number of coefficients and the number of training samples. Alternatively,
create more training samples from the existing one through geometrical transformations
(translation, scaling, rotation. . . ) or filters (blur) can tilt the ratio between coefficients
and training samples. During the validation step, it is observable a performance drop at
some point in the graph. Another possible approach is to "early stop" the training when
such inflection is detected.

Regularization or penalization sums additional terms to objective function, penaliz-
ing large errors, as expressed in equation 3.14. The hyperparameter regularization strength
λ is now defined and f(θ) is proportional to weights θ.

Errorreg = Error + λf(θ) (3.14)

The most common machine learning regularization is the L2 regularization or
"weight decay", that is a sum of 1

2λw
2 to the error, forcing every weight to decay linearly

to zero (TIKHONOV; GLASKO, 1965). The L1 regularization adds λ|w| to each weight
w. It turns weight vectors sparse during optimization and benefits the understand of each
feature contribution.

Finally, a random portion of the outputs can be dropped out in each batch, to avoid
strong dependencies between portions of adjacent layers. To perform a dropout (figure 10)
it is necessary to define the hyperparameter p that is the probability from that a neuron
is kept active during the network training (usually set to 0.5 for training, and 1 for model
evaluation). Otherwise, it is set to zero. The method prevents excessive dependency on
small combinations of neurons. It is preferable to scale any active neuron before passing
to the next layer, dividing by p during training time. It is the so-called inverted dropout
that contributes to test-time performance (BUDUMA; LOCASCIO, 2017).
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Figure 10 – Dropout

Source: Adapted from Buduma and Locascio (2017)

3.3 TensorFlow

Tensorflow is an open-source software used to develop deep learning models (ABADI
et al., 2016). It works with data flows as tensors that are operated via graph structures.
Constants are represented with a 0D tensor, vectors with a 1D tensor, matrices with a
2D tensor and the higher dimensional tensor are also available. The tensor representation
allows the speed-up of computations, using parallel operations in GPUs and TPUs, for
example.

Tensorflow has been released by Google since 2015. Other software options for
building neural networks are available, including Theano, Torch, Caffe, Neon and Keras.
The last one is an useful complement for TensorFlow and will be presented in the end of
this section. Figure 11 shows the evolution of the use of these software in recent years.
The criteria to select TensorFlow and Keras were the production oriented characteristics
and ease of use of both software.

Figure 11 – Searchs of the main deep learning engines in Google Trends
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3.3.1 Variables

TensorFlow variables are tensors hold by in-memory buffers that are explicitly
initialized before the graph use. The performance of a deep neural network is highly
impacted by the quality of parameters initialization. After each iteration, gradient methods
modify the variables and store their values, searching for optimal parameters. Variables
that are jointly instantiate in one place can be reused and shared to build more complex
models (ABADI et al., 2016).

3.3.2 Operations

Operations are abstract transformations in the computational graph, applied to
tensors. They are composed of one or more kernels, allowing the separation in CPU and
GPU tasks. Tensorflow allows multiple computing devices to build and train deep models.
Mathematical operations include element-wise, array and matrix options. Other classes
are related to stateful, neural network building, checkpointing, queue, syncronization and
control flow operations (ABADI et al., 2016).

3.3.3 Placeholders

Every time the computational graph runs, it populates a placeholder that is the
way to input data into the deep learning model both during training time and test time.

3.3.4 Session

The Tensorflow session builds the initial graph, initialize all variables and run the
computational graph. It is the interaction between the program and the graph model.
During the session Tensorflow allows to monitor the minibatch cost, validation error, and
the distribution of parameters, as much as save the model parameters.

3.3.5 Initialization

As the number of layers in a deep neural network increases, the complexity of
error surfaces increases together and it makes model optimization using vanilla stochastic
gradient descent more difficult. As commented before, the initialization procedure is a
manner to smooth this problem. For ReLU units, the variance of weights should be 2

ninput
,

where ninput is the number of inputs reaching the neuron. The most common initialization
strategies are the random normal and random uniform algorithms, although it is still
possible to initialize all variables to zeros, ones, or other constants (HE et al., 2015).
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3.3.6 Keras

Keras is a deep learning API written in Python (CHOLLET et al., 2015), running on
top of the machine learning platform TensorFlow. Figure 12 illustrates the relation between
Python, TensorFlow and Keras. The main strengths of Keras are the fast experimentation,
scalability and cross-platform capabilities (It is possible to run the model in a browser,
mobile device, GPU or TPU). Keras models accept three types of inputs: NumPy arrays
that are a good option if the data is not too extensive, TensorFlow Dataset objects that
are recommended for large datasets (with memory issues), and Python generators that
groups data in batches (CHOLLET et al., 2015).

Figure 12 – TensorFlow and Keras: A high level deep learning environment
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Source: Author

The Functional API is the main tool in Keras to build models. A model is a
directed acyclic graph of layers. Each layer in that is a simple input-output transformation
(CHOLLET et al., 2015). In practice, dense or fully connected layers are operations in that
all inputs are densely connected to all outputs with a linear projection. Multiple layers
can also be grouped together in a sequential structure. A sequential model is defined with:

model = tf..keras.models.Sequential()

Each dense layer is instantiated as follows, where the arguments provide the input
shape, activation function, kernel initializer, kernel regularizer and bias regularizer. For
varying input dimensions the shape must be specified as None.

model.add(
Dense(

units=1, input_shape=(n_samples,), activation = ’relu’,
kernel_initializer = tf.keras.initializers.RandomUniform(seed=1),
kernel_regularizer=’l2’, bias_regularizer=’l2’

)
)

A good practice is to check the sizes of each layer’s inputs/output with the summary
of the model. The Functional API is still capable to build multiple inputs or multiple
output models.
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The Model class allows the definition of the optimizer and the loss function via
the built-in function compile(). Both of them can have their arguments defined as shown
below. The main argument in the optimizer definition is the learning rate. Otherwise, if
the functions were specified via their string identifiers, the default argument values will be
used.

model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
loss=keras.losses.MeanSquaredError()

)

Another built-in function of the Model class is the fit() method. After compile the
model, Dataset objects or NumPy arrays are used as inputs to train the model. To do
that, it is necessary to specify the batch size and the number of epochs (CHOLLET et al.,
2015), if it is not previously defined. The batch size can be defined with an int value or set
to None, which indicates the possibility of process batches of any size.

model.fit(
train_X, train_y,
batch_size=Nbatch,epochs=Nepochs

)

During the training/validation step, the dictionary history.history stores per-epoch
timeseries of the training/validation metrics values such as classification accuracy, precision,
recall, AUC (CHOLLET et al., 2015).
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4 Semi-submersible FPU Design Model

The semi-submersible unit is traditionally a concept of floating O&G platforms,
suitable for deepwater production and drilling (HALKYARD, 2005). Its applicability for
deep-water developments inspired extensive research on the physical modeling, heave
motion reduction, and new concept designs of this type of platforms. Zhang et al. (2017)
proposed a traditional design of a semi-submersible floating production unit (SS-FPU),
which geometry is shown in figure 13 and main dimensions reproduced in table 2.

This chapter presents the implementation and validation of the hydrodynamic
model for heave response of a semi-submersible floating production unit under wave
excitation, by means of reduced order formulations. The base geometry is presented by
Zhang et al. (2017), that estimate the airgap and platform motions employing a panel
method software for the computation of diffraction and Morison’s theory equations. The
space of solutions presented at the end of this chapter represents the systematic variation
of the total draft, column spacing, column width, and pontoon height, following the design
of Experiments presented by Qiu et al. (2019). The obtained space of solutions was used
to train, validate and test a deep neural network in chapter 5.

Figure 13 – Schematics of the Semi-submersible FPU
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Source: Author’s simplification of the geometry presented by Zhang et al. (2017)

In this case study, analytical formulations replaced the more sophisticated models
adopted by Zhang et al. (2017). The computational cost of the trained ANN present a
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considerable reduction, when compared to the direct computation from the reduced-order
hydrodynamic model. However, the savings on computational cost would be higher if the
DNN was replacing panel method or finite volume software.

Table 2 – SS-FPU Platform Dimensions
Description Unit Value
Length m 94.72
Beam m 94.72
Draft m 31
Freeboard m 20
Number of columns - 4
Column width m 21.76
Column length m 21.76
Column spacing (center to center) m 72.96
Column corner radius m 5.045
Pontoon width m 21.76
Pontoon height m 10.88
Pontoon corner radius m 1.28
Width of cakepiece m 5.12
Displacement metric ton 108,031
Radius of gyration about x-axis m 34.68
Radius of gyration about y-axis m 34.68
Radius of gyration about z-axis m 39.23
Transverse metacentric height m 1
Longitudinal metacentric height m 1

Source: Zhang et al. (2017)

4.1 Preliminary Design
The preliminary design of an offshore system requires the use of simplified functions

that compute the platform stability criteria, the natural frequencies, and the response
in waves. The ocean engineer can include simplified models to design an initial mooring
system, the structural arrangement, estimate weights, provide fatigue analysis, select
the positioning of risers and the field architecture. The light weight of the platform, for
example, is often calculated by multiplying the surface area by a fixed thickness and
the steel density, or given by a function of the structure volume. Additionally, the risers,
marine equipment and topside weights can be fixed. The ballast weight is the difference
between buoyancy and weight. It means that the total weight of the platform is equal to
mass displacement for given geometric characteristics, i. e., considering the hydrostatic
equilibrium of the platform.

For stability criteria, the metacentric radius is defined from the classical formulation
of naval architecture and must be greater than zero to ensure a stable behaviour in calm
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waters. In this study was kept in 1m, as described by Zhang et al. (2017).

BM = KB + I

∇
−KG (4.1)

Where KB is the vertical position of the buoyancy center from the keel, I is the
moment of inertia of the water-plane area, ∇ the displaced volume and KG the vertical
position of the center of mass from the keel. The moments of inertia in roll and pitch are
equal, and were described by Zhang et al. (2017) as function of the gyradius Rg = 34.68
and the displaced mass ∆:

I = ∆×R2
g (4.2)

The added masses were calculated following the DNV (2017) reccomendations,
in which the individual added masses of the structure elements are summed. For the
pontoons it was calculated considering the aspect ratio between pontoon height and width
Hp
Wp

= 2b
2a = 0.5. The references Kaneko, Nakamura and Inada (2008) and Newman (1977)

present tabulated values for it, in this case the added mass coefficient is CM,p = 1.36.
Considering the reference area Ap for the added mass model, the number of pontoons
equal to four, and each pontoon length Lp:

ma,pontoons = 4ρCM,pLpAp (4.3)

To compute the added mass of the columns, the coefficient CM,c = 0.47 is related
to a square plate of side equal to the column width (Wc

Wc
= 2d

2c = 1) oscillating in its normal
direction (KANEKO; NAKAMURA; INADA, 2008). Once the columns cross the free
surface, the added mass is compared to the volume of the hemisphere originated from the
reference disk (ZHU; LIM, 2017). These components showed to be less relevant than the
added mass on the pontoons.

ma,columns = 4ρCM,cπ
(
Wc

2

)3
(4.4)

Where Wc is the column width. The total added mass ma is the sum of ma,pontoons

and ma,columns.

The natural frequency in heave become:

ωn,heave =
√
ρgAWL

M +ma

(4.5)
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Where AWL is the waterline area.The natural period is:

Tn = 2π
ωn

(4.6)

4.2 Hydrodynamic Modeling

Modeling the dynamics of offshore structures is a complex issue yet for simple
geometries due to the random nature of the ocean waves. By considering the random
seas as a superposition of sinusoidal waves, the linear model introduces the Response
Amplitude Operator (RAO), the transfer function of a floating system that represents its
response in each degree of freedom (DoF). The product of the squared RAO to the wave
energy spectrum provides the response spectrum of the system in waves. The offshore
design requires the modeling of multiple phenomena to consider the loads on the structure
and its respective responses, given the wave condition. The choice of the hydrodynamic
model is essentially related to the dimensions of the platform and to the sea state (PATEL,
1989).

During the preliminary/conceptual design of semi-submersible platforms, the Mori-
son, Johnson and Schaaf (1950) equation returns suitable approximations for the inertia
and drag loads. Depending on the dimensions of the structural elements that compose the
semi-submersible platforms, it may be necessary to consider the diffraction forces using
boundary integral, or boundary element (BANERJEE, 1994) numerical methods, once
an analytical solution is only available for vertical cylinders (PATEL, 1989). However,
diffraction and viscous terms were neglected in this work.

Two simplified dynamic models represented the offshore structure at different
levels of accuracy. Firstly, the expression of the 1 DoF mass-spring-damper system in the
non-dimensional form reduced the input parameters to two. After, a hydrodynamic model
represented the problem, considering wave excitation and waves radiation terms for heave
loads. For this case, the offshore system is defined by its geometric characteristics.

All the equations presented in this chapter were implemented in Python language,
using a Google Colab notebook in the web browser. The tool is fully compatible to
TensorFlow and Keras, allowing the continuity of the deep learning training in the same
pipeline. See chapter 5.

4.2.1 1 DoF Dynamic Model

An offshore structure is essentially a forced mass-spring-damper (MSD) system
(RAO, 2011), with the harmonic variation of the external force, due to wave excitation
(PATEL, 1989). The equations for each component derived from the physics of the problem:
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the mass term includes the inertia and added mass (PATEL, 1989) (FALTINSEN, 1993)
of the platform components (pontoons and columns), the spring term arises from the
hydrostatics, and the damping from both potential and viscous effects. This section
introduces a general formulation for forced MSD dynamic systems, varying the frequency
ratio r and the damping factor ζ, as a more comprehensive model than the complex
hydrodynamic model of the platform.

The solution of the damped system under harmonic forces is a function of the
amplitude of the external force F0, the spring constant k, the mass of the system m,
the damping coefficient c, and the oscillation frequency ω (RAO, 2011). Considering
the natural frequency ωn =

√
k/m, the damping factor ζ = c/cc = c/2

√
km, the static

deflection δst = F0/k and the frequency ratio r = ω/ωn, we can write the non-dimensional
response amplitude and phase of a generic system:

X

δst
= 1√

(1− r2)2 + (2ζr)2
, Φ = tg−1

(
2ζr

1− r2

)
. (4.7)

Where X is the response’s amplitude, and Φ is its phase.

Figure 14 – Response magnification and phase of a forced MSD system
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4.2.1.1 Space of Solutions

For generalization, the space of solutions has examples of critically damped, over-
damped, and underdamped systems, obtained by varying the damping factor ζ between
0.05 and 10. Offshore systems are usually underdamped. The frequency ratio is in the
[0, 3.5] interval, assuming 701 different values for each damping factor to provide a suitable
resolution for resonant cases. Within this interval, solutions are around the resonance
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(r = 1), and it is possible to note the different effects of damping factors (figure 14). All
the system’s amplitudes series tend to zero as r grows infinitely large and to one when r
approaches zero. The number of solutions to compose the dataset is 5608 dynamic systems,
combining ζ and r variations.

4.2.2 Heave response of a semi-submersible Platform

Hooft (1972) described the following dimensionless approach to compute the heave
response of a semi-submersible platform, this method shows good adherence to several
RAO results. The procedure consists of dividing the offshore platform into its columns and
pontoons and is described in detail by Assi et al. (2016), Newman (1977), and Kaneko,
Nakamura and Inada (2008). These forces are a composition of the Froude-Krilov wave
excitation force and the radiated wave force. The Froude-Krilov component (PATEL, 1989)
considers no perturbation in waves due to the presence of the platform. It is analog to
the buoyancy calculation for a two-dimensional section of the pontoon but using the wave
acceleration in a vertical plane instead of gravity (PATEL, 1989). The diffraction wave
and viscous forces were neglected for simplicity. The Froude-Krilov force component is:

fFroude−Krilovζ,2Dpontoon = ρasẇ(x, χs, ζs, α) (4.8)

Where ρ is the salt-water density, as is the two-dimensional pontoon section area,
ẇ the vertical acceleration, in the pontoon center of area (χs , ζs). A similar account is
taken for the correction imposed to the reactive force: the platform moving without waves.
This invokes the added mass ma concept, which is related to forces of inertial nature of
the fluid around a moving body, to consider the effect of the platform movement.

fAdded massζ,2Dpontoon = maẇ(x, χs, ζs, α) (4.9)

Where ma is the added mass. The integration of the sectional forces results in
the total force acting on pontoons. The wave incidence angle α must be considered in
the integration. For columns, both the Froude-Krilov and the radiated wave forces are
punctual, in the center of the buoyancy plane. The heave excitation forces of the pontoons
Fpontoon and columns Fcolumn are parcels of the equation 4.12, which is the total force Fζ
acting on the platform. The restoring forces depend on the heave added mass coefficient
Ca = ma

ρaS
of all the structures that compose the platform. The derivation of this equation,

considering the incidence angle, results in a dependence on factors Q (equation 4.13) and
P (equation 4.14).

By defining the wave incidence angle α, we can write the vertical acceleration
as ẇA(χ, ψ, ZS, α, t) = IRe(−ω2Aeik Zsek (χcosα+ψsinα)e−iωt), since χcosα + ψsinα is the
wave propagation. The formulation also considers the exponential decaying of the wave
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orbitals with the water depth Z. Fujarra (2009) proposes the integration of the heave
excitation forces on the pontoons Fpontoon and columns Fcolumn. Here, we kept separated
the Froud-Krilov and radiation terms using the reference area of Kaneko, Nakamura and
Inada (2008) for the calculation of the added mass, as can be seen in equations 4.10 and
4.11.

Fpontoon = −(ρ∇+ 4ρCa,pLpAp)ω2Ae
−k
(
T−

Hp
2

)
e−iωt×

1
2

(
sin(kLpcosα)cos(kLpsinα)

kLpcosα
+ sin(kLpsinα)cos(kLpcosα)

kLpsinα

) (4.10)

Fcolumn = AWLAρge
−kHe−iωt×

cos
(
kLp+Wc

2 sinα
)
cos

(
kLp+Wc

2 cosα
) (4.11)

Here, Lp is the pontoon length, WC is the column width, T is the total draft, HP

is the pontoon height, AWL is the waterline area, ∇ the displaced volume of the platform,
the pontoon added mass coefficient Ca,p was obtained for a section of aspect ratio a

b
= 2

(DNV, 2010), ρ is the water density, g the gravitational acceleration, t the time, ω the
wave frequency, A the wave amplitude, and k is the dispersion relation. Thus, the total
excitation force in heave is a composition of the terms referring to pontoons and columns.
The final expression remains:

Fζ = |Fpontoon + Fcolumn| =

− (1 + Ca,p)ρ∇ω2Ae
−k
(
H−

Hp
2

)
Qe−iωt + AWLAρge

−kHPe−iωt
(4.12)

Where:

Q = 1
2

(
sin(kLpcosα)cos(kLpsinα)

kLpcosα
+ sin(kLpsinα)cos(kLpcosα)

kLpsinα

)
(4.13)

P = cos
(
kLp+Wc

2 sinα
)
cos

(
kLp+Wc

2 cosα
)

(4.14)

The figure 15 shows the magnitude of heave forces. In some points, the column
force equals the pontoon force in magnitude, but in opposite directions. These zero points
can be seen in total force series.
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Figure 15 – Total force in heave, incidence α = 0 degrees
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According to Conti (2017), the dynamic equilibrium of vertical forces on the platform
is composed of the inertial force, incident wave forces (Froude-Krilov and diffraction),
restoring forces (gravity) and irradiation.

m(−z̈0(t))︸ ︷︷ ︸
Inertia

= Fζ(t)︸ ︷︷ ︸
Waves

− ρgAWL(−z0(t))︸ ︷︷ ︸
Buoyancy - Weight

−mazz|pontoons(−z̈0(t))︸ ︷︷ ︸
Irradiation

(4.15)

Considering the heave motion as an harmonic motion, we obtain the complex
amplitude z0A:

−z0(t) = IRe (−z0Ae
−iωt) (4.16)

What allow us to replace the amplitude in the vertical dynamic equilibrium:

(m+mazz|pontoons)(iω)2(−z0A) + ρgAWL(−z0A) = FζA

=⇒ −z0A = 1
−ω2(m+mazz|pontoons) + ρgAWL

· FζA
(4.17)

Considering the dimensionless forms:

−z′0A = −z0A

ζwA
, F ′ζA = FζA

ρgAWLζwA
, ω′ = ω

wn,heave
(4.18)

Where ζwA is the wave elevation. ω is a frequency and ωn,heave is the heave natural
frequency. The dimensionless response amplitude operator (RAO) remains as product of
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the dimensionless excitation force and a magnification/attenuation factor Λ:

−z′0A = 1
−ω′2 + 1︸ ︷︷ ︸

Λ(ω′)

·F ′ζA (4.19)

The linearized viscous damping must be considered in these computations to avoid
infinite heave response near the natural frequency. In this study case, the viscous damping
was considered equal to 7% of the critical damping, i. e., an underdamped case as mentioned
before. The −z0A equation remains:

z′0A = FζA

ρgAWL

√
(−ω′2 + 1)2 + (2ζvω′)2

(4.20)

The graph of the heave RAO as a function of the heave period is shown in figure 16.
Note that the natural period is about 23.37 s and the RAO is close to those presented by
Zhang et al. (2017). Once the analytical method did not consider the cakepiece geometry,
the appendix A presents a numerical experiment using Ansys Aqwa, with the simplified
geometry considered in this chapter. The result of this experiment is also plotted in figure
16, further discussions on this result are in appendix A.

Figure 16 – Response Amplitude Operator (RAO) with damping
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The Response Amplitude Operators (RAOs) are transfer functions to the unit
wave amplitude. It is convenient to obtain the energy spectra of movements (also called
response spectra) for any sea spectrum. The JONSWAP (HASSELMANN et al., 1973) is
one of the most common sea spectra, requiring as inputs the significant wave height and
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period (obtained as the average height and period of the highest third waves in a certain
record). This spectrum is expressed as a function of the frequency:

A = e
−
(

ω
ωp
−1

τ
√

2

)2

(4.21)

S = 320H2
s

T 4
p

ω−5 e
−1950
T4
p

ω−4

γA (4.22)

Where γ = −3.3 and τ = 0.07 for ω ≤ ωp or τ = 0.09 for ω > ωp. Hs and Tp are
the significant wave-height and the significant wave-period, respectively. For validation
purposes, these values were set as Hs = 15.8m and Tp = 15.4 s, equivalent to the survival
condition of the validation platform in the Gulf of Mexico, reported by Zhang et al. (2017).

H = S|z′0A|2 (4.23)

The heave response spectrum of the validation platform was obtained in the time
domain (figure 17). The upper graphs represent the platform RAO (left) and the wave
spectrum for the survival conditions mentioned above (right). The energy spectrum of
heave movement, computed by equation 4.23, is plotted in the lower graph.

It can be observed that the heave natural period is out of the high energy peak of
the JONSWAP spectrum, for the survival condition. Although system resonance occurs
around 23.37 s, only the tail end of the wave spectrum is located in this region. There is a
small peak near the heave natural period on the energy density spectrum, however the
most critical region is the one with the highest wave energy, around the 15.4 s peak.

The response statistics are calculated from the zeroth moment of the spectrum,
given by the integration 4.24 that is the area under the energy density spectrum:

m0 =
∫ ∞

0
H(ω)dω (4.24)

In short-term statistics, the significant height (of the response, in this case) is:

Hs = 4√m0 (4.25)

By considering multiple incidence angles, we can obtain the variance σ2 integrating
the equation 4.24 in the incidence angle α. The variance allows the comparison of the
response in different wave headings (CHAKRABARTI, 1987). No spreading function was
employed at this part of the work.

σ2 =
∫ 2π

0

∫ ∞
0

H(ω)dωdα (4.26)



4.2. Hydrodynamic Modeling 59

Figure 17 – Spectral crossing: Damped RAO, JONSWAP spectra and the heave response,
as function of the period THeave
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The most probable largest response, based on the assumption that the response
follows a Rayleigh distribution is:

Amax =
√

2σ2log
(
Ds

TA

)
(4.27)

Where σ2 is the variance of the responses, Ds is the duration of short term sea
state (set to 3 hours by Qiu et al. (2019)), and TA is the mean-zero-upcrossing response
period (assumed equal to the significant period).

4.2.2.1 Space of Solutions

The validated hydrodynamic model was used to produce a space of solutions with
225 samples, i.e., different platform geometries: ranging the draft between 27.90 m and
34.10 m, the column spacing between 65.66 m and 80.26 m, the column width between
19.58 m and 23.94 m, and pontoon height between 9.79 m and 11.97 m. The Design of
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Experiments (DOE) procedure proposed by Qiu et al. (2019) provided the sample values
to each geometric parameter. We neglected the cakepiece width, whose effect was not
considered in the dynamic model. The four input variables were linearly varied between
the maximum and minimum limits shown in the table 3.

Table 3 – Bounds for each variable in the space of solutions
Variable Lower bound Upper bound N Samples
Draft 27.9 m 34.1 m 5
Column spacing 65.664 m 80.256 m 5
Column width 19.584 m 23.936 m 3
Pontoon height 9.792 m 11.968 m 3

Source: Author

The dataset also included a period discretization with 170 elements. The total
number of samples provided to the neural network was 38250 dataset elements, each
one containing the five inputs and one output: the heave response. Figure 18 presents
all heave responses as a function of the excitation period, considering all the geometric
combinations.

Figure 18 – Heave response dispersion as function of the excitation period, for all geometric
combinations
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With the proposed hydrodynamic model, it was possible to obtain the MPM of the
heave response (Amax), which is one of the objectives of the multi-objective optimization
performed by Qiu et al. (2019). The total mass is the second objective and was obtained
with complementary functions in our code. The GM and the airgap are constraints in
the optimization algorithm, respectively obtained with the complementary functions and
hydrodynamic model.
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5 Response Surface of the SS-FPU Dynamic
Model with Deep Learning

The reduction of the computation time during the early design is the central
motivation of this chapter. To enhance delivery pace in the conceptual design phase, it is
necessary to tackle its most time demanding activity: the dynamic model computation.
The idea is to use a surface response that can be a deep neural network (DNN), among
other techniques, instead of direct calculations. Faster results are valuable to performing
optimization algorithms, for example. Following the main applications of deep learning in
engineering design, the method consists of an assessment to reach acceptable representation
levels of the hydrodynamic model using a deep neural network. The investigation aims to
ensure that the engineer can replace the model with a neural network, not compromising
the quality of the response.

To understand the use of two DNN parameters: the number of layers and the
number of neurons per layer, the assessment is a sensitive analysis of the DNN system in
TensorFlow (ABADI et al., 2016) using the sequential API in Keras (CHOLLET et al.,
2015). Seventy percent of the space of solutions was employed for the neural network (NN)
training, with ten percent internally dedicated to validation, while the remaining thirty
percent was used for testing.

5.1 1 DoF Dynamic Model

For this study, we considered two inputs - damping factor ζ and frequency ratio r -
and one output - Amplitude ratio X

δst
. The initialization of the weights followed a random

uniform distribution, the regularization employed the L2 term, and the activation function
is the Rectified Linear Unit (ReLU). The training process employed the Adam optimizer
for 250 epochs and the mean absolute error as a loss function. The learning rate was
0.00005, and the batch size equal to 50.

Systematically varying the number of layers and the number of neurons per layer,
it was possible to study how sensitive is neural network training regarding these two
parameters. This study can be seen in figure 19, in which the x-axis of each graph is the
expected value of the transfer function provided by the dataset. The values in the y-axis
were predicted by the neural network, varying from 3 to 7 hidden layers (rows) and from
25 to 125 neurons per layer (columns).

During the DNN testing phase, we computed the mean squared error (MSE) of
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Figure 19 – MSD analytical model: Sensitivity analysis of the neural network to the number
of layers and neurons per layer
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all the testing cases for each trained neural network. Figure 20 shows that the best
performance, i.e., the minimum error, was obtained with five hidden layers of 125 neurons
each. The MSE for this case is approximately 2.47 E-3.

MSE = 1
n

∑
(xexpected − xpredicted)2. (5.1)

It is important to highlight that the DNN quality is directly associated with its
convergence level that can be influenced by the random weights and bias initialization.
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Figure 20 – MSD analytical model: MSE during testing phase of the NN, as a function of
the number of hidden layers and number of neurons in each hidden layer
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5.2 Heave Response of a semi-submersible Platform
The analytical model for SS platform response allowed the generation of 225 cases

by varying the draft, the column spacing, the column width, and the pontoon height. For
each case, we computed the RAO considering 170 wave periods to produce a 38250 elements
dataset, as described in chapter 4. As mentioned before, the complete dataset consists
of five inputs (column spacing, draft, pontoon width, column width, and the excitation
frequency ω = 2π/T ) and one output (heave RAO). The data pre-processing resulted in
two sets, one for training with 70% of the samples and another for testing with 30%. In the
training dataset, 10% was destined internally for validation. Data normalization ensured
that each output value was within the range of zero to one.

Again, the author assessed five different numbers of layers (two to ten) and five
numbers of neurons per layer (25 to 125). The study employed a ReLU activation function
and random uniform weights initialization. Both kernel and bias regularizers were L2 types.
During compilation, the Adam optimizer had a learning rate equal to 0.00005 and the
mean absolute error as the loss function (CHOLLET et al., 2015). Convergent training was
achieved with 250 epochs when using a batch size of 500. The reduction of the computed
loss along the epochs expresses a convergence of the model training.

For test purposes, the author evaluated the predictions capabilities of the trained
model with the 30% of the dataset selected to test. The trained model received the
five inputs for each test sample and computed the output. The predicted outputs were
compared to the known responses, as shown in figure 21. The measure of the mean squared
error for each DNN model, i.e., each combination of the number of layers and number
of neurons per layer, showed that a six-layered DNN, with 100 neurons in each layer,
performed better (see figure 22). The MSE for this case is about 4.78 E-3, and the expected
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vs. predicted plot suits better to the diagonal (figure 21) than in the other cases.

Figure 21 – SS analytical model: Sensitivity analysis of the neural network to the number
of layers and neurons per layer
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This exercise reveals the implementation challenges of the Artificial Neural Network
(ANN) in the dynamic modeling of an offshore platform. The proposed method uses the
evaluation of some hyperparameters during the traditional training, validation, and testing
steps. The literature shows that the response surface obtained from a trained ANN is often
a faster way to compute physical models in engineering problems that require repetitive
tasks to compose a large sample (YONEKURA; HATTORI, 2019). The response surface
represented by the DNN can easily be coupled to an optimization algorithm that evaluates
hundreds of viable solutions and finds the optimal design. If the number of platforms
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Figure 22 – SS analytical model: MSE during testing phase of the NN, as function of the
number of hidden layers and number of neurons in each hidden layer
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necessary for the optimization algorithm evaluation is higher than the samples provided
to train a neural network, it is less expensive to employ the response surface. Moreover, if
the offshore design changes requisites throughout the conceptual design phase, the number
of cases evaluated is more substantial than the number of samples needed to train the
network.
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6 Conclusion

Artificial neural networks are robust response surfaces, representing the dynamics
of floating systems. In this work, two different analysis methods produced distinct datasets:
a one-degree-of-freedom mass-spring-damper system and an analytical model of the
hydrodynamic response of a semi-submersible platform. They were individually trained,
validated, and tested. The minimum mean square error for the mass-spring-damper system
is relative to a DNN with five hidden layers of 125 neurons each. For the semi-submersible
analytical model, a six-layer neural network with 100 neurons in each layer achieved
the best result. When assembling the same dataset used in the analytical model for the
numerical experiment carried out in appendix A, the same network configuration (6 hidden
layers with 100 neurons each) gave the best result. The best-trained DNN accurately
reproduced the RAO in the validation case.

Although these ANN usually represent relatively more extensive and complex
problems than those presented in this work, the degree of generalization of the method is
satisfactory, allowing it to handle data from multiple inputs in a vast range of applications.
The same framework would process and reduce larger datasets like CFD simulations
and experimental results in which neural networks could be a method for reduced-order
modeling. Specifically for the simulations, it is known that they generally compute contin-
uous solutions. The continuity of numerical solutions represents a benefit for the engineer
allowing to use of a response surface with great assertiveness in the output, especially in
the early design phases.

As the main objective of this application was to learn the data pattern using the
neural network and not make a data reduction, successive layers of an equal number of
neurons are enough. The great challenge was to define the number of layers, the number of
neurons per layer, the learning rate, the batch size, and the number of epochs to train the
DNN. A logical procedure can pursue acceptable levels of convergence and quality of the
solutions. The result of a properly trained neural network reproduces the validation data
effectively. Although the rational procedure consumes some training and testing time for
the different combinations of parameters to compose a neural network, the single training
time is negligible compared to the processing time of the analysis methods.

It is important to emphasize that an adequate volume of data is necessary to
perform the correct training process of the neural network. Thus, the analysis methods
require extensive computer processing before response surface preparation. Intelligent
algorithms can define the appropriate sampling of experiments. In some applications,
generating the samples can be more expensive than the process itself. Given this drawback,
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neural networks are advantageous when the optimization task requires a larger sample
space than the DNN training. The same consideration may be valid when running the
optimization function more than once. For example, when changing design requirements
along the process.

Future works include the extension of dynamic models, mainly considering the
inclusion of the 6 DoF in the analysis. However, a mooring model is necessary to add surge,
sway, and yaw movements to the model. Another consideration is that the complete wave
statistics simulation will return a result considering the downtime of the platform and not
the single analysis of a critical condition. Adding multiple ocean data and wave directions
improves the comprehension of the different operational scenarios. Both analytical and
panel-method are possible approaches for this attempt.

As mentioned in chapter 2, this work focuses on the more straightforward applica-
tions in offshore design. Vanguard applications combine deep learning with reinforcement
learning to explore better design policies. The newest trend, Physics Informed Neural Net-
works, can model highly complex physical phenomena such as turbulence and separation
points that take a long time to calculate in CFD solvers and have no analytical solution.
The method applies to physical phenomena whose governing equations are PDEs (Partial
Differential Equations). In these cases, deep learning helps to approximate high-dimensional
functions.
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APPENDIX A – Numerical experiment
using Ansys Aqwa

A suitable method for platform analysis is the frequency domain model for 6 DoF
motions, based on the panel method and potential theory. This appendix presents the
numerical experiment that validates the reduced-order model using Ansys Aqwa. The
dynamic model of the platform introduced in chapter 4 was entirely built in the Ansys
Workbench toolbox. The parameterized geometry was prepared with the aid of Design-
Modeler, and the model setup using the Hydrodynamic Diffraction and Hydrodynamic
Response utilities in Ansys Aqwa.

Aqwa can simulate linearized hydrodynamic fluid wave loading on floating
or fixed rigid bodies. This is accomplished by employing three-dimensional
radiation/diffraction theory and/or Morison’s equation in regular waves in
the frequency domain. Unidirectional or multiple directional second-order
drift forces are evaluated by the far-field, or near-field solution, or full
quadratic transfer function (QTF) matrix. Free floating hydrostatic and
hydrodynamic analyses in the frequency domain can also be performed.
(ANSYS, 2022)

The water surface size was set to 500 m, and the mass properties were defined
according to Zhang et al. (2017). The surface mesh counted 8868 elements with maximum
element size equal to 4.16m (figure 23). The wave period ranges from 3.5 s to 35 s, with 46
wave period values. The results obtained for a base case compared well to those presented
by Zhang et al. (2017) and to the analytical method presented in chapter 4.

Figure 23 – Surface mesh in Ansys Aqwa model

Source: Author
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The graph of the heave RAO as a function of the heave period is shown in figure
16. Both the numerical experiment using Ansys Aqwa and the analytical method did not
consider the cakepiece geometry.

A.1 DNN with the numerical experiment using Ansys Aqwa

Figure 24 – SS Aqwa model: Sensitivity analysis of the neural network to the number of
layers and neurons per layer
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The assessment of DNNs containing from 2 to 8 layers and from 25 to 100 neurons
per layer replicated the chapter 5 study. Esteves, Andrade and Nishimoto (2022) evaluated
the predictions capabilities of the trained model with 30% of the dataset selected to test.
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The trained model received the six inputs for each test sample and computed the output.
The predicted outputs were compared to the known responses, as shown in figure 24. The
measure of the mean squared error for each DNN model, i.e., each combination of the
number of layers and number of neurons per layer, showed that a six-layered DNN, with
100 neurons in each layer, performed better. The MSE for this case is about 1.23 E-2
(figure 25), and the expected vs. predicted plot suits better to the diagonal (figure 24) than
in the other cases. It is worth highlighting that the DNN quality is directly associated
with its convergence level. The convergence can be influenced by the random initialization
of weights and bias.

Figure 25 – SS Aqwa model: MSE during testing phase of the NN, as function of the
number of hidden layers and number of neurons in each hidden layer
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The study shows that the computation cost saving is more significant when the
model is evaluated in Ansys Aqwa since each case lasts from 30 to 50 minutes with two
Intel Xeon E5-2687W v3 @ 3.10 GHz processors (total: 20 cores). The computation time
of the 225 cases presented in chapter 4 using the panel method software is in the order
of 150 hours. It is needed less than 2 minutes using the free cloud service of Google
Colaboratory to train the neural network with this number of parameters and design
points. The complete response of an arbitrary platform can be generated instantaneously,
with geometric parameters inside the training interval. However, the use of the DNN
requires some input platforms that need to be previously simulated in Ansys Aqwa. The
use of the neural network as a response surface has excellent cost-benefit in preliminary
design dynamic modeling, in cases where the available time before the optimization tasks
is long enough to prepare a training dataset, and in cases subjected to requisites updates
throughout the conceptual design phase.

Although the base case was not considered in the training dataset, the selected
DNN could reproduce its results proficiently. The exclusion of the base case from the
dataset prevented overfitting. Figure 26 left shows that the RAO predicted by de DNN
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fits well with the RAO computed by Ansys Aqwa for the same platform. The differences
between them are below 7 percent, as shown in figure 26, right.

Figure 26 – Response magnification and phase of a forced MSD system
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