EMBARACOÇÕES GUINNDASTE
ESTUDIO DA OPERAÇONALIDADE DE

JOÃO CARLOS CANTITANI MAZZUCO
A RAPÉSP cupo auxílio financeiro possibilitou a realização do trabalho.

O trabalho consultou a biblioteca e pela revisão bibliográfica deseja
punhantar a Naval, por seu semper bom atendimento e auxílio na
A Sra. Josefa N. Westuka, bibliotecária da biblioteca de

O PROF. Kauê Nishimoto para atendimento, apoio e

AGRADECIMENTOS
ANEXO

REVISÃO E COMENTÁRIOS FINAIS À DILATADA

O presente anexo objetiva tecer alguns comentários finais no sentido de melhor esclarecer certos aspectos do texto do trabalho, bem como efetuar uma revisão de alguns conceitos apresentados.

Este anexo é posterior à apresentação da dissertação aos examinadores, tendo sido efetuado por solicitação dos mesmos, a partir do exame do trabalho e das discussões efetuadas durante a apresentação.

A fim de melhor situar o leitor, os comentários são indexados pelas páginas do texto, às quais os mesmos se referem.

Pag. 24 - É importante notar que a equação que representa a dinâmica do movimento da embarcação, representado pelos seus graus de liberdade, corresponente à equação (1.1), é uma equação linearizada válida quando se considera pequenos deslocamentos da embarcação. A definição dos movimentos de roll, pitch e yaw para um sistema não linear deveria partir da consideração dos ângulos de Euler do movimento.

Pag. 28 - Com referência aos métodos de obtenção do movimento de embarcações, para melhor entender a perturbação que a presença de um corpo causa no escoamento do fluido, tal perturbação é representada pelas ondas incidentes no corpo, tal perturbação ocorre de duas maneiras: A primeira através das ondas...
Força de tração no cabo, deve ser ao movimento do sistema, a
Pag. 56 - Quando se trata da determinação da força dinâmica ou
ser considerada a dinâmica do sistema acoplado.

dinâmica. Neste caso, a interação propícia do momento de verter
ter comportamentos de cabo pegues e modulos de grandezas
basta que grande, porque se fizer considerar em caso de se
pegue magnitude seja o comportamento do cabo de forma an-
comparada com a interação de rotação em torno de A, deve ser de
interação própria do momento no caso do considerar. Para
para movimentos de pegues sem qualquer, o eixo de pente de
quintas,

E

em torno ao ponto A, que representa a extremidade do
Pag. 51 - A representação do movimento ao módulo por forças

torno ao eixo transversal, conforme a Pág. 41.
coordenadas, ao passo que o segundo ao sistema de
rotação em torno ao eixo longitudinal do sistema de
roll e pitch para sua semelhança da prancheta ao

Pag. 41 - Para melhor caracterizar a deformação dos movimentos de
como incompreensível e nem o escomento como oscilatório,

um fútilo seja potencial não necessariamente admiire o fútilo
de um escomento potencial. A hipótese de que o escomento de

Pag. 31 - Uma correção deve ser feita quanto às considerações
em que o corpo se movimenta.

outras tralhadas pelo corpo, estas ocorrem apenas no caso

diferentes, pelo simples pressão de corpo, A segunda pelas
consequentemente o espectro de energia médio. Estando-se com os valores de um determinado eixo no intervalo de um determinado eixo "H" e "I", o intuito de se referenciar a apenas um determinado eixo de um dado por variações podem ser tratadas como independentes, se faz período característica de uma grandeza mencionada que as tabelas das distribuições o conjunta de alínea significativa e distribuições do produto para conjunta, mas a partir das presentes distribuições, não ao nível de uma função de variáveis apresentam uma dependência que e necessários. Se sabido que essas independentes de "H" e "I" e necessários. Se sabido que essas.

pg. 146 - Um melhor esclarecimento a respeito da fenômeno pela popa de embarcação.

pg. 115 - As Figuras 5.13 a 5.24 representam as respostas teórica linear.

pg. 109 - A consideração da elevação da superfície da mar, fenômenos deslocamentos do movimento angular do modelo, aceitar-se vertical do modelo, é acorde com a hipótese de uma mesma ponde ser aproximademente produto entre a massa e a
o desenvolvimento de um modelo mais compreensivo e abrangente.

Entre o modelo e a emparcagem do ponto de vista caraterísticas hidrogeométricas do modelo e a intervenção as possibilidades de encontrar soluções mais modernas podem ser estudadas. A dinâmica do campo de mudanças quanto caracterizar o acoplaramento entre modelo e emparcagem, também desempenham o papel dos modelos mais complexos, que possam diversas fases da operação de BG, assim como o valor, recentemente a este aspecto estaria o estudo das estruturas de operações para BG seria grande e como recomendação a tradições futuras, um método onde a emparcagem deve ser operado.

Uma missão das emparcagens.

O acoplaramento da emparcagem é para a missão específica e para o local operacionalidade para uma missão específica como recomendação deve ser aplicada ao projeto de emparcagem no sentido de se poder-se notar também que a metodologia de desenvolvimento

Alguns aspectos importantes a serem observados e que o

Conclusões e recomendações
da mecânica analítica.

Ser feito mais facilmente com base nas equações de Lagrange.

Considerá-remos um número maior de grupos de liberdade poderão.
Mazzuco, João Carlos Cantisani
Estudo da operacionalidade de embarcações-quin-
179p.

Dissertação (Mestrado) – Escola Politécnica da
Universidade de São Paulo. Departamento de En-
genharia Naval.

1. Embarcações-quinande I. Universidade de
São Paulo. Escola Politécnica. Departamento de En-
genharia Naval. II. Título
SUMÁRIO

1. INTRODUÇÃO 49

2. ANÁLISE DO MOVIMENTO DE EMBARCAÇÕES-GABINETE 36

3. MOVIMENTO CAUCIONÁRIO DO TRANSPORTE FRANCA DO 23

3.1. Metodos de obtenção do movimento de embarcações 23

3.2. Equação do movimento 23

3.3. Cálculo das funções de transferência do movimento 23

3.4. Representação do movimento das embarcações em ondas 23

4. RESULTADOS DO MOVIMENTO DA SEMISSUBMERGÊNCIA 76

4.1. INTRODUÇÃO 49

4.2. MOVIMENTO ACÚSTICO DAS EMBARCAÇÕES ANÁLISES 69

4.3. RESULTADOS PARA VALIDAÇÃO DO MODELO 50

4.4. MOVIMENTO ACÚSTICO DAS EMBARCAÇÕES À MODULO 70

4.4.1. RESULTADOS DO MOVIMENTO DA BARCAÇA 70

4.4.2. RESULTADOS DO MOVIMENTO DA SEMISSUBMERGÊNCIA 76
5 DETERMINAÇÃO DO MOVIMENTO DAS EMBARCACÕES EM MAR

GULAR

5.1 REPRESENTAÇÃO DA SUPERFÍCIE DO MAR

5.1.1 ESPECTRO DE ONDAS

5.1.2 MODELOS MATEMÁTICOS DE ESPECTRO DE ONDAS

5.2 ESTATÍSTICA DE ONDAS

5.3 RESPOSTA DE UMA EMBARCACÃO NO CURTO PRAZO

5.3.1 CRUZAMENTO ESPECTRAL

5.3.2 ESPECTRO DE ONDA DIRECIONAL - FUNÇÃO DE ESPALHAMENTO

5.4 RESULTADOS

6 DETERMINAÇÃO DA OPERACIONALIDADE

6.1 INTRODUÇÃO

6.2 DESCRICÃO DE LONGO PRAZO DE ESTADOS DE MAR

6.3 CRITÉRIOS DE OPERACÃO

6.4 MODELO DE OPERACIONALIDADE

6.4.1 CONSIDERAÇÃO SOBRE A VARIAÇÃO NA FORMA DO ESPECTRO

6.5 RESULTADOS

7 CONCLUSÕES E RECOMENDAÇÕES

APÊNDICE A REPRESENTAÇÃO DOS TERMOS DE MASSA ADICIONAL, AMORTECIMENTO, RESTAURAÇÃO HIDROSTÁTICA E FORÇAS DE EXCITAÇÃO DE UMA EMBARCACÃO
4.2. Barcaça Norzit - Funcão de Transcrença de Pitch
4.2a Barcaça Norzit - Funcão de Transcrença de Roll
4.2b Barcaça Norzit - Funcão de Transcrença de Roll
5.1 Representação do Movimento do Modulo

3.16 Funcão de Transcrença de Pitch da SS
3.15 Funcão de Transcrença de Roll da SS
3.14 Funcão de Transcrença do Heave da SS
3.13 Funcão de Transcrença do Swing da SS
3.12 Funcão de Transcrença do Yaw da Barcaça
3.11 Funcão de Transcrença do Pitch da Barcaça
3.10 Funcão de Transcrença do Roll da Barcaça
9.8 Funcão de Transcrença do Heave da Barcaça
9.7 Funcão de Transcrença do Swing da Barcaça
9.6 Funcão de Transcrença do Yaw da Barcaça
9.5 Descretação da Semisubmergível
9.4 Descretação da Barcaça
9.3 Geometria e Dimensões Princípals da Semisubmergível
9.2 Geometria e Dimensões Princípals da Barcaça
9.1 Movimento das Barcaças para Representação do
9.0 Representação do Sistema de Coordenadas para Representação do
9.1 Evolução da Capacidade de Armazenamento das BC
9.2 Comparação do Peço de Convese Interno e Modulo de
9.1 Comparação do Peço de Convese Interno e Modulo de
8.3 Comparação das Características de Carcaça, Integrais
8.2 Comparação das Características de Carcaça, Integrais
8.1 Comparação das Características de Carcaça, Integrais
7.3 Comparação das Características de Carcaça, Integrais
7.2 Comparação das Características de Carcaça, Integrais
7.1 Comparação das Características de Carcaça, Integrais
6.3 Comparação das Características de Carcaça, Integrais
6.2 Comparação das Características de Carcaça, Integrais
6.1 Comparação das Características de Carcaça, Integrais
5.3 Comparação das Características de Carcaça, Integrais
5.2 Comparação das Características de Carcaça, Integrais
5.1 Comparação das Características de Carcaça, Integrais
4.3 Comparação das Características de Carcaça, Integrais
4.2 Comparação das Características de Carcaça, Integrais
4.1 Comparação das Características de Carcaça, Integrais
3.3 Comparação das Características de Carcaça, Integrais
3.2 Comparação das Características de Carcaça, Integrais
3.1 Comparação das Características de Carcaça, Integrais
2.3 Comparação das Características de Carcaça, Integrais
2.2 Comparação das Características de Carcaça, Integrais
2.1 Comparação das Características de Carcaça, Integrais
1.3 Comparação das Características de Carcaça, Integrais
1.2 Comparação das Características de Carcaça, Integrais
1.1 Comparação das Características de Carcaça, Integrais

LISTA DE FIGURAS
4.29 Barcaça -延误的后面;Fundação de Transferência
4.28 Barcaça -阴天无雨;Cabo de Igamento
4.27 Barcaça -阴天无雨;Cabo de Igamento
4.26 Barcaça - Mover verticalem da Ponta de Langeta
4.25 Barcaça - Mover verticalem da Ponta de Langeta
4.24 Barcaça - Mover verticalem da Ponta de Langeta
4.23 Barcaça - Fundação de Transferência do Whay Acoplado
4.22 Barcaça - Fundação de Transferência do Whay Acoplado
4.21 Barcaça - Rotação do Modulo na Direção X
4.20 Barcaça - Rotação do Modulo na Direção Y
4.19 Barcaça - Fundação de Transferência do Pitch Acoplado
4.18 Barcaça - Fundação de Transferência do Pitch Acoplado
4.17 Barcaça - Fundação de Transferência do Roll Acoplado
4.16 Barcaça - Fundação de Transferência do Roll Acoplado
4.15 Barcaça - Fundação de Transferência do Roll Acoplado
4.14 BGT 1 - Aceleragem Verticalem da Ponta de Langeta
4.13 BGT 1 - Movimento Verticalem da Ponta de Langeta
4.12 BGT 1 - Fundação de Transferência do Pitch
4.11 BGT 1 - Fundação de Transferência do Roll
4.10 BGT 1 - Aceleragem Verticalem da Ponta de Langeta
4.09 BGT 1 - Movimento Verticalem da Ponta de Langeta
4.08 BGT 1 - Fundação de Transferência do Pitch
4.07 BGT 1 - Aceleragem Verticalem da Ponta de Langeta
4.06 BGT 1 - Movimento Verticalem da Ponta de Langeta
4.05 BGT 1 - Fundação de Transferência do Pitch
4.04 BGT 1 - Fundação de Transferência do Pitch
4.03 BGT 1 - Fundação de Transferência do Pitch
4.02 BGT 1 - Fundação de Transferência do Pitch
4.01 BGT 1 - Fundação de Transferência do Pitch
4.00 BGT 1 - Fundação de Transferência do Pitch
4.49 Barcaça Notiz - Fundação de Transferência da Força
4.48 Barcaça Notiz - Fundação de Transferência da Força
4.47 Barcaça Notiz - Fundação de Transferência da Força
4.46 Barcaça Notiz - Fundação de Transferência da Força
4.45 Barcaça Notiz - Fundação de Transferência da Força
4.44 Barcaça Notiz - Fundação de Transferência da Força
4.43 Barcaça Notiz - Fundação de Transferência da Força
4.42 Barcaça Notiz - Fundação de Transferência da Força
4.41 Barcaça Notiz - Fundação de Transferência da Força
4.40 Barcaça Notiz - Fundação de Transferência da Força
5.6 Representação do espectro ISSC
5.5 Distribuição de Rayleigh
5.4 Exemplo de um histograma de altura de ondas
5.3 Registro da superfície do mar
5.2 Representação do espectro de ondas superficiais
5.1 Ondas oceânicas obliquas pela superposição de ondas de lângua
4.45 SS - Iluminação lateral; Movimento Vertical da
4.44 SS - Iluminação lateral; Funcão de Transfereência
4.43 SS - Porção dinâmica no cabo de iluminação
4.42 SS - Movimento Vertical da porção de lângua
4.41 SS - Movimento Vertical da porção de lângua
4.40 SS - Funcão de Transfereência da superfície acoplada
4.39 SS - Funcão de Transfereência da superfície acoplado
4.38 SS - Rotação do modulo na direção y (ϕ)
4.37 SS - Rotação do modulo na direção x (ϕ)
4.36 SS - Funcão de Transfereência do pitch acoplado
4.35 SS - Funcão de Transfereência do pitch acoplado
4.34 SS - Funcão de Transfereência do roll acoplado
4.33 SS - Funcão de Transfereência do roll acoplado
4.32 SS - Funcão de Transfereência do roll acoplado
4.31 Barcaza - Iluminação lateral; Movimento Vertical da
4.30 Barcaza - Iluminação lateral; Funcão de Transfereência
171
6.15 SS - Operação de parte do mar do Norte:

6.14 SS - Operação de parte do mar do Norte:

6.13 Barcare - Operação de parte do mar do Norte:

6.12 SS - Operação de parte do mar do Norte:

6.11 SS - Operação de parte do mar do Norte:

6.10 SS - Operação de parte do mar do Norte:

6.9 Barcare - Operação de parte do mar do Norte:

6.8 Barcare - Operação de parte do mar do Norte:

6.7 Barcare - Operação de parte do mar do Norte:

6.6 SS - Estados de mar limites para operações:

6.5 SS - Estados de mar limites para operações:
6.3 Valores Limítenses Para Operações
6.2 Porcentagem de ocorrência de altura significativa de
6.1 Porcentagem media anual de ocorrência conjunta de
5.2 Resposta significativa do movimento das embarcações
4.4 Características da SS durante o ígameneto
4.3 Características da Barcaça Durance o ígameneto
4.2 Características da Barcaça BCL-1
4.1 Características da Barcaça "Notiz" (No1)
3.2 Características da semissubmersível
3.1 Características da Barcaça

LISTA DE TABELAS
Lista de Símbolos
s_{ij} \text{ amplitude do movimento na direção } j

S(\omega) \text{ espectro de energia de onda }

S_{r}(\omega) \text{ espectro de energia da resposta }

T_{x}, T_{y}, T_{z} \text{ componentes da força de tração no cabo de ondas }

T_{x}, T_{y}, T_{z} \text{ momentos resultantes da força de tração no cabo de ondas }

T_{p} \text{ período de pico de ondas }

T_{p} \text{ período de pico de ondas }

T_{p} \text{ período médio de ondas }

T_{0,1} \text{ período de zero ascendente de ondas }

(x_{X}, y_{Y}, z_{Z}) \text{ coordenadas da extremidade do guindaste em relação aos eixos X, Y, Z }

(x_{0}, y_{0}, z_{0}) \text{ coordenadas do módulo içado em relação aos eixos X, Y, Z }

(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}) \text{ coordenadas do módulo içado em relação aos eixos X, Y, Z abaixo da linha de referência }

T_{e} \text{ frequência de onda }

\phi_{1}, \phi_{2} \text{ variação e desvio padrão da elevação de onda }

\phi_{r} \text{ rotação do módulo içado na direção i }

\phi, \theta, \psi \text{ movimentos de roll, pitch e yaw respectivamente }

\sigma_{r} \text{ variação e desvio padrão da resposta }

\lambda \text{ comprimento de onda }
Sua operacionalidade. Embreacagens, podem influenciar o comportamento de uma empresa a de têxteis e petróleo, e a natureza do quotidiano, comportamento do cabo operacional, tais como peso do mercado, têxteis, e como variáveis de certos parâmetros de um efeito que o mercado têxteis exerce no movimento das empresas, mostram a importância de se considerar as reatilizações e embreacagens.

Embreacagens: bancadas e sembancadas.

Relação uma embreacação entre a performance de dois tipos de reedição de estados de mercados de operações, sendo o movimento das embreacagens e a distribuição de longo prazo do ambiente, o modelo de base na resposta de cada embreacação, as condições para reeditalização e operações de têxteis, a partir das determinações da operacionalidade de embreacagens-quadradade e do presente trabalho apresenta um modelo de resposta às condições ambientais.

Resumo mais profunda do comportamento dinâmico dessas embreacagens e para reedição offshore, torna necessária uma investigação crescente de importância no desenvolvimento de campos avançado de embreacagens tipo sembancadas-embreacagens, atingidas a sua capacidade de têxteis de embreacagens-quadradade com o avanço ocorrido na última década nas características.
RESUMO
Influence of those parameters in the operability.

Relative position of the crane and the vessel, and the weight of the module, length of the hosting wire, and under variation of some parameters of the operation, such as the results show the different behaviour of the vessels types of vessels, a barge and a semi-submersible is obtained.

monthly basis. A comparison of the performance of two different operation. A joint probability distribution of wave height and which establishes the limiting sea states for performing the wave model to obtain the wave height experience probability method. The environmental data is derived from a spectrums ocean wave data are obtained through a 3D sink-source distribution transport barge, hydrodynamic characteristics of the stationary pendulum condition of the load after lifting off the coupled motions of the load and the vessels during the 2D operations is analyzed and emphasis is given to the through a linear frequency-domain analyses. The dynamics of semi-submersible vessels are investigated in a comparative basis crane vessels and related weather downtime, barge and a method is presented for the operability evaluation of

ABSTRACT
1. INTRODUÇÃO

O fim dos anos 70 e a década de 80 experimentaram um extraordinário avanço no desenvolvimento e aplicação de embarcações equipadas com guindastes para instalações offshore, conhecidas como embarcações-guindaste (EG). Por instalções offshore entende-se aquelas que se realizam em locais distantes da costa, se constituinte normalmente em mar natural.

Ao contrário de navios convencionais equipados com guindaste para manuseio de cargas em portos com capacidade raramente atingindo 200 ton, as EG são estruturas flutuantes que se aplicam especificamente à transferência de cargas pesadas no mar, sujeitas às mais diversas condições ambientais. Inicialmente, as EG foram desenvolvidas para aplicações em águas costeiras, normalmente águas abrigadas de pequena profundidade e condições de mar calmas, constituindo-se de cascos em forma de barcaças convencionais de fundo chato, com guindastes cuja capacidade raramente excedia 500 ton. Os aspectos mais relevantes no projeto de tais embarcações, além da estabilidade, eram a resistência e estrutural e o sistema de lastreamento. Já as limitações operacionais eram ditadas basicamente pelo alcance e capacidade dos guindastes, de modo que características como comportamento no mar e resposta às condições climáticas não se constituíam em fatores significativos para o projeto.
características um excepcional comportamento no mar, um convés através de colinas, e tem como principal
característica por dota de muitos casos superiores e secundários a má normatizante, para quem utilizadores de
transportadores das DC tipo semisubmersível (SS), com transporte ao adversário das DC operações offshore no Mar do Norte.
uma terceira geração das DC surpreende no final dos anos
embarcagens de tal tipo estão sujeitas.
transportadores devido ao grande movimento de balanço a gue
éram extremamente limitadas pela má normatizante, em instalações de offshore, e os embarcadores a
embarcagens formam especificamente projetados para serem
dos casos, navios-tanques convencionais para essa função, possuem
serviços como navios-guardiões, no meio desta
instalação, navios estes especificamente projetados para
mais de 2000 ton, ao lado das embarcagens tipo barcaça, surgiram os
navios do tipo convencional aplicados a este tipo de
como capacidade de transporte variando de 800 até
geração de DC com capacidade de transporte, fazem a
serem instalações, fez surgir a decada de setenta uma se
mais severas, mas também o aumento do tamanho dos modulos, a
Nas DC as conduturas espantosas, que se apresentavam
Evolução dos tipos de características de DC,
a observando e características, hotzmann e Fitzgerald (1978) descrevem a
operações extraterras. Hotzmann e Fitzgerald (1978) descrevem a
armamento das mesmas para que se adequasse a conduturas de
é um exemplo clássico, o tipo e capacidade de
possibilitar formas surpreendentes novas aplicações para as
mais produzidas, novas concepções de desenvolvimento de campos
A medida que as operações offshore tendem a augas
Fig. 1.1: Evolução da capacidade de armazenamento das BQs.

A Fig. 1.1 reproduzida de Michelsen et al. (1987) ilustra a evolução das BQs até sua capacidade máxima atingida. A Fig. 1.1 mostra que a capacidade de armazenamento atingiu um pico entre 1980 e 1990, com capacidades DBTOS e MICOPR de 7000 e 7000 ton, respectivamente. A partir de 1990, tanto DBTOS quanto MICOPR começaram a diminuir, atingindo valores menores que 5000 ton por volta de 2000. Em 2000, DBTOS e MICOPR tinham capacidades de 5000 e 6000 ton, respectivamente.

Os pontos de armazenamento foram adaptados para 7000 ton (BALDER) e 9000 ton amontoados em um acerto entre 1985 e 1990, com capacidades DBTOS e MICOPR de 7000 e 9000 ton, respectivamente. A partir de então, as capacidades de armazenamento diminuíram progressivamente, atingindo valores menores que 5000 ton por volta de 2000. Em 2000, DBTOS e MICOPR tinham capacidades de 5000 e 6000 ton, respectivamente.

As capacidades de armazenamento foram adaptadas a partir de 1990, com capacidades DBTOS e MICOPR de 7000 e 7000 ton, respectivamente. A partir de então, as capacidades de armazenamento diminuíram progressivamente, atingindo valores menores que 5000 ton por volta de 2000. Em 2000, DBTOS e MICOPR tinham capacidades de 5000 e 6000 ton, respectivamente.

Tais capacidades de armazenamento e sua evolução foram adaptadas a partir de 1990, com capacidades DBTOS e MICOPR de 7000 e 7000 ton, respectivamente. A partir de então, as capacidades de armazenamento diminuíram progressivamente, atingindo valores menores que 5000 ton por volta de 2000. Em 2000, DBTOS e MICOPR tinham capacidades de 5000 e 6000 ton, respectivamente.

As capacidades de armazenamento foram adaptadas a partir de 1990, com capacidades DBTOS e MICOPR de 7000 e 7000 ton, respectivamente. A partir de então, as capacidades de armazenamento diminuíram progressivamente, atingindo valores menores que 5000 ton por volta de 2000. Em 2000, DBTOS e MICOPR tinham capacidades de 5000 e 6000 ton, respectivamente.
mais compreendidos.

requerer o desenvolvimento de modelos teóricos para analisar e
explicar as atividades de instalação, e a partir de
considerações que poderiam ser tratadas simultaneamente.

Tais instalações, durante as diversas fases de operação,
formam um processo dinâmico entre a empresa e a
empresa, mas que atingem a passagem de um certo
estado de desenvolvimento. Além disso, tal processo
resulta em uma nova necessidade de questões e
problemas de comportamento e consequentes
sucessivas condições da empresa de mercado,
em que as questões de crescimento da
tendência e questões de atuação em processos
dos tais operadores são levantados em discussões e
respostas às condições ambientais, práticas
prativas, discutidas nas empresas em
processos de comportamento dinâmico. A
necessidade de investigação
em atos custos operacionais, além de atos custo das empresas e
o crescente da capacidade de
homem das decisões.

Importante.

O desenvolvimento de novos campos de
aplicações e no uso da
para tais tipos de empreendimentos, de modo que sua
unificação no
seja (SSC)
fornecendo novas
Aplicações
A medida que a de atuação da capacidade do...
reaisizações em tange de provas. Barr (1967) apresenta os
características de operações de DC baseado em ensaios
causas e fatores (1969) apresentam um estudo das práticas
mente por Sherrington et al. (1969) e Jang et al. (1969).
form realizações por van den Boom et al. (1970) e Poste et al.
autópsie de dinâmica de operações de DC no domínio do tempo,
de suas operações, estudos mais complexos, como modo de
dem o ambiente da capacidade das DC e da complexidade
comprovando o modelo experimentalmente através de ensaios.
interação dinâmica entre a carga suspensa e a embarecagem,
mar de DC no domínio da frequência, que consideravam a
apresentações um modelo teórico de estudo do comportamento no
form motas e Sasaki (1983) que a que primeiro vez
não descobrem como tal efeito foi determinado.
do pendúnculo representado pela carga suspensa no quintoeste.
determinação do operacionalidade de DC, consideram o efeito
Hoffman e Fitzgerald (1978), em um modelo de
ambientes.
em a caraterísticas da resposta das embarecagens e condições
apenas um modelo de operacionalidade a partir de pressupostos
poderia ser no comportamento de embarecagem, embarecamento
considereavam o efeito que uma carga suspensa no quintoeste
no 1376), Burke (1977) e Rason et al. (1978), no
DC e o comportamento no mar, realizações por secta et al.
Os primeiros estudos referentes a análise de operação
consequentemente acrescento nosso cursos projetados.
cronograma de instalação de um campo petroleiro e
realizações de operação, a fim de se evitar atrasos no
ser realizações produzirem melhor época e condições de
Para que seja desenvolvido um modelo de operacionalização
comparativa e semântico:

1. Comparar a performance de dois tipos de DC: barreira
 que o operador possa ser realçada;
2. Estabelecer uma probabilidade de contágio de contágio de
 partir da identificação de contágio de contágio de DC.
 a. Estabelecer um modelo do operacionalidade de DC.

Parâmetros e:
caracterizado como um movimento pendular, os objetivos
embaraçados com o movimento da carga suspensa, entre os
guarante e considerar os efeitos associados ao movimento da
se detém na etapa em que a carga se encontra suspensa para
comportamento dinâmico de DC durante a operação. O trabalho
A proposta de presenças traçando e efetuar um estudo do

Dias dos despojados referentes a etapas de mar.
dos métodos de análise de operacionalidade e
planejamento de operações oficiais, apresentam uma consideração
Chern e Rawston (1987), ao descreverem um modelo de

e período característico para diversas regiões e épocas de
de estudos de mar e tomam de altura significativa de ondas
alem os modelos que descrevem a probabilidade de ocorrer, en
envolve o determinismo de novo comportamento em mar
o estudo da operacionalidade de guateper e marcas

ao longo dos últimos anos.
O capítulo 7 apresenta as principais conclusões e
embaraços estudados.

se de lâado à abordagem compartilhada que em meio a momento de
base mensal, deve-se ressaltar que sem um momento de contato
o desenvolvimento e criação da operacionalidade das embarradas em
mar com a apresentação do modelo de operacionalidade
apresentado de gc e distrofia na forma de embarrado de
atualidade uma análise de condutas de
comportamento de gc em mar irregulares e em seguida, no

No capítulo 5 será apresentada um estudo do

quintas, a ser estudada no capítulo 4.

específico de gc com destaque acordado na carregue suspeita no
conformismo tal análise seja estudada para o caso
no mar de praticadores sensibilizadores e bancadas para que
no capítulo 3 será feita uma análise do comportamento

envolvidas em uma operação completa de tratamento.

apreciados, além de uma descrição das propriedades e
princípios característicos de uma gc e de suas propriedades
o capítulo 2 cria uma análise de descritivo das

envolvidas na operação.

trequência de modo que se admiite imeediate das denominações

dade, o comportamento do sistema e analisado no domínio da
A primeira parte deixa claro a instalação dos conceitos diversos fúngicos que desempenham uma destacável das et al. (1987) e Wicquart (1989) apresentam uma descrição das produtos, passando a ser eficientes através de DC, Mchleusen remendo de parâmetros e demais estudos e detalhes, sugerindo instalação, instalação de fábricas e seus modos de instalação, pregue-se fazer uso de plana gafandade das DC, formando un apreço adequado em suas caracteristicas de compactamento como a evolução da gafandade de jomamente de DC e como

2. PRINCÍPIOS APLICÁVEIS DE EMBARCAÇÕES-CONTINENTE

Tais operações.

Considerações sobre as diferentes abordagens de análise de praticantes aspectos das operações de DC juntamente com embarcações convencionais. São discutidos também os DC e suas características peculiares e as diferentes de este capítulo apresenta as praticantes aplicáveis das referências em suas características básicas e aplicáveis.

Vem se incorporando aos novos processos de embarcações e que do, senão natural que tal evolução transparem e outras ditas devido de apresentarmos uma evolução muito grande conforme apresentado na introdução desse trabalho, as

SUSAS OPERAÇÕES.

2. CARACTERÍSTICAS PRINCIPAIS DE EMBARCAÇÕES-CONTINENTE E DE
Fig. 2.1. Comparação do peso de converses integrados e modulos de

O peso integrado em converses integradas é um total que considera o peso do próprio módulo e do peso estrutural do mesmo. Este peso pode ser reduzido em um fator de redução, como descrito em offshore estrutura, mostrando que a Fig. 2.1 representa a redução dos custos de construção e instalação, ao limitar a capacidade de armazenamento do mesmo para um projeto de estruturas offshore desenvolvido na sua referência no projeto de estruturas offshore, passa a ser um apêndice da montagem de integrado. A redução do peso, através de converses integradas são elementos que permitem a separação e acoplam a de kg, representando para as companhias de petróleo, engenheiros de converses integradas que altera a redução dos serviços de converses integradas surgem da necessidade de uma montagem de converses integradas, como substituição aos modulos.
Fig. 2.2: Ilustração do Igamamento de um Módulo.

Fig. 2.2: Ilustração do Igamamento de um Módulo.

Projeto, construção e instalação de tales estruturas.

vetor gerar as figuras, leve e procedimento a um projeto.

Figura em substituição ao procedimento de Igamamento. Ele

uma seqüência função para a Fig. 2: a instalação da estrutura de

conceguerem uma função, menor utitizaçao de aço e menor peso. Surge

traduzindo-se a redução de seus recursos estruturais e

impacto em melhor dimensionamento da estrutura de Jaguar.

A redução do peso encontrado nos componentes.

Fig. 2.2, optima da mesma referência Ilustra a

Exemplos de campos petrolíferos no mar produziram superestruturas como "temporários", e a remoção de plataformas anteriores, se referem a instalações de equipamentos outras aplicadas a que se preserva ao DC, mencionadas.

Na instalação convencional o início da década de 80, via instalação convencional ou instalação de superfície de platéia temido como referência. O custo do tipo de instalação, ao longo dos anos, os custos operacionais de custo de instalações no mar do Norte e estimação do custo de instalações.

Fig. 2.3. Estimação de custo de instalações no mar do Norte.

Lançamento para utilização de DC.

Já que, leves, uma parte da instalação da operação de DC, alcançadas pelo advento do convés integrado e das superestruturas de barreiras (1990), instalação uma redução dos custos de instalação de offshore engenharia (1989). A Fig. 2.3. Exemplos de instalações no mar do Norte em uma dupla operação de estruturas de instalações ultrapassando a 9000 ton.
octavo aspecto importante a ser considerado referente convencional.

A guinładesteres, dirigirlas de se conseguir em parcaias ao navios necesaria para se garantir espago de trabalhos para ambas os apénsas ser, pois somente estas apresentam a largura arzanzo de dons guinładesteres em uma embarcação e convencido diritteudades para serem traduzir por apénsas um guinładester. O de uma embarcação de transporte, e que apresentam grandes determinadas directo posiccionados longituadnamente e a longo quando se considera modulos de tamanho excessivo em uma guinładesteres operando simultaneamente parece ser um arbítrio segundo Michelsen (1987), o fato de se ter dito tanto na lateral da embarcação como na sua extremidade. aance dos guinładesteres para o jaçamento de cargas posicional

Micoperi (1989), 'a vantagem dessa conturçagão e o maior como na prova, como e o caso da SS MICOPERI 7000, conforme o posicionalamento nas laterais da embarcação, tanto na popa caso de haverem ao dos guinładesteres, a conturçagão encontrada e proximo a segue mestra na nas extremidades da embarcação. No de haver um único guinładester, a mesmo pode ser posicional
estas podem ser equipadas com um dos guinładesteres. No caso, conforme a capacidade de jaçamento instalação em DC, dos guinładesteres na embarcação.

reposito a capacidade de jaçamento, número e posicionalamento pelo tipo de operação que essas embarcações realizam, diz.

A primeira característica de DC é a ser considerada.

2.2 PRINCIPAL CARACTERÍSTICAS DE EMBARCADORES-GUINLÁDASTERE
correção do ângulo de inclinação, segundo Melbourne (1987), é necessário para responder prontamente à necessidade de estar na destruição de um sistema delastro dinâmico como modo que o desespero de um sistema de lastro dinâmico como compreender a variação do momento gerado pela carrega de audiência, além de efeitos, e necessidade umidificação transferência de lastro que desvios da segurança estabelecidos. Para evitar tais angústias de inclinação excessivo na direção oposta, para atravesar o caminho em sua posição final, o ato de peso pode gerar um colhedor e uma posição final, de manter a angular, quando a carrega e embarcaçã, a tensão que se está seja desenvolvimento, para atravesar a jarda deve causar grandes angústias de inclinação da posição retatiza do gôndola, o momento gerado pela ação das diversas estruturas de lastros. Funcão de seu peso e da pare manter gerado do equilíbrio e da estabilidade da embarcaçã, outros tipos de embarcaçã e o sistema de lastro, respondendo uma das partículas e o compare suas com instalações em uma unidade operacional.

Acoplamos na costa e transportamos para propria e para serem no caso de modulos de menor dimensionao os mesmos poder ser numero de viagens necessarias para a completer a instalação. maior quantidade de modulos, e consegue se renovar ao modificar um grande espaço de convés permitir o transporte grande que uma outra pode ser ser continua, em instalações em transporte de convés de transporte de convés, será possivel que gomemias a parti do convés do convés na mare, em straçales adversas para outros compartimentos no mar, e se este espaço para convés do convés ser, o seu excedente beneficiar em ser ter grande espaço disponível no convés e so
Microcer (1898), a capacidade total de bombeamento de látex ulterior passa 200 ton/seg. No caso da Microcer 7000, segundo descrição de Järasso e Hafskjold cerca de 1987, o mecanismo que é exato de látex é seguido de consequência da mesma quantidade da DC de até 14,5 metros em apenas 90 segundos, segundo classe (1990), apenas com auxílio de uma desaceleração que, para justificar algumas datas, pode-se realizar tal retarda, para apenas 40 a 60 segundos em se tratando de um desaceleração verticale da DC de até 10 metros em apenas 90 segundos, segundo classe (1987), o modulo e retarda um barreira de transporte de igual, em grande parte das operações, conforme Michelsen et al. (1987), é que a massa com peso maior que o peso da carga de uma descarga de látex, como físico major que o peso da carga de um descarga de látex, ao contrário do que se devem esperar, resultados diminuir, ao contrario do que se devem esperar, resultados encontrados nas DC. Ao mesmo tempo em que se retira o modulo conseguido pela atra capacidade de transporte de um barreira de separação entre ambas as corpos. Isto pode ser visto como o transporte durante o jugamento desenvolve-se separar um barreira e surgem forças de impacto entre o modulo e o convés da barreira de transporte do modulo, observar-se a massa com peso maior que o peso da carga de um descarga de látex, que se devem esperar, resultados encontrados nas DC e o auxílio ao jugamento dos modulos e em consecução do sistema de látex da outra função importante do sistema de látex da mesma operação.

Em equilíbrio durante todo o ciclo de uma operação, modulos, assentando-se e em equilíbrio durante todo o jugamento permanecem móveis de trêmulo e banha causados pelo jugamento de grandes momentos de trêmulo e banha causado...
de 70 % do peso final do produto. Em tal situação o capso, desejado de pre-transportamento aos capso, normatamente é tornado
quinatelas de origens distantes que sejam articulados um
outro.

b. Pre-transportamento:
Após serem conectados os capso, os

100 centros.

e a conexão dos capso ao modulado, nas deleções possíveis para
iniciais envolta o posicionamento reatrativo de DC e da parcage
através de uma parcage da qual o mesmo será tradado, uma
fase

c. Contágio Inicial:
Considerando o transporte do modulado

100 centros e segurança estéticos:

100 centros como tipicos de uma operação de
Bunck (1979), considerarem como tipicos de uma operação de

100 centros no tocante a aspectos dinâmicos, Bart (1979) e Tong e

100 centros por diversas etapas distínticas, cada qual com suas particularidades.

uma operação de igualma atrás de DC de características

2.3 Princípios Aspecoss de Operações de Ignamento

tendências futuras.

de DC, destacando suas prácitas caracteristicas e

de plataformas, destacasse um desenho articulados em instalações

Michelsen et al. (1979), e destacarem métodos de instalação

100 centros sobre o aumento da capacidade da empresa.

100 centros que abordam as características de DC e as características

100 centros desenvoldo em parcerias em particular as características da
características de uma DC e as características por Microper (1989)
características de uma DC e as características das práticas

uma desértico maus completas das práticas

3. Testo totalizando uma capacidade de 109.000 m³.

6 de 24000 ton/hora. A embarcação é dotada de 54 tanques de
transporte e a embarcação devem ser de tal amplitude que não
e o moduljo, os movimentos relativos entre a barcaça de
durante o estação inicial, quando se acoplam os caías

Requerem especial atenção.

adequados de segurança, alguns aspectos referentes a meias
para se garantir a viabilidade da operação a níveis

já que a estação de posição do corpo de
abstração para sua posição final, se o corpo for um moduljo de
participar uma superesa e posterromente verticalizada para ser
já que, esta é abstração horizontemente até estar
abstração para sua posição final, se a estação final para uma

I. Abarxamentu e Acoplementu: Nesta etapa o modulado e

III. Nesta sobre a local onde será instalado.

pendulo. Nesta situação o modulado é levado para a posição
movimento caracterizado uma situação semelhante a um
modulado estação suspensa pelo guinastes, totalmente livre para se

e, conduto do pendulo: uma vez retardado a barcaça, o

sistema de Lastro dinâmico.

barcaça através da água simultaneamente dos guinastes e do

a. Içamento: nesta fase o modulado é totalmente retardado da

sistema de corpos acopladão através do guinastes.

parte pelo guinastes, a barcaça, o modulado e a DC formam um
parte do peso do modulado e posteriormente ao convés da barcaça e
embarcação para se poder iniciar o içamento do modulado, como

Nesta situação é necessária um pegamento fastamento da

extração dos poros artrúrgico o estação do pre-revestimento.

b. Condição de pré-revestimento: o sistema e mantido em situação

de esses dos movimentos da barcaça e da DC.

Fim sujeito a uma tensão oscilatório, consequência da
Junção do quinhentos e vinte e assinatura entreme amboas.

Apesar da disso, tentos e os respectivos defeitos de lesão e dano aos materiais e o mesmo pode ser reparado.

A tentativa de seca em tábuas de modulação que o mesmo pode ser reparado.

Por fim, durante a condutação de pendente, o nivel de

Jaqueira.

...se que toda a energia contínua do movimento e absorvida para
componentes horizontais e verticais respectivamente, admitindo-
struturas de acordo de 5 a 10% de peso do modulado para as
sustentação que às cargas dinâmicas aceitáveis em tal
quando da colheita do modulado na sua posição total, barrar
ocorrer por exemplo entre o modulado e a convec de uma Jacquesa,
struturas de impacto semelhante a descrita acima pode

atacs ocorre...

...análise teórica de problema para evitar que valores muito
tenso espe drod dos sejam ser estabelecidos através de uma
tradição em serros danos para as estruturas, as nuvens de
impacto entre estes e onde da barcaça, o que pode se
inclusion um levantamento pormenor do modulado, causando
das embarcações form e elevadas. Em tal caso pode ocorrer
embarcações e pode ser critica se as aceleradas verticais
mesmos. Tal situação se deve a defasagem dos movimentos dos
un continuar acompanhamento e posteriores testamentos dos
tenso no cabo podem chegar a níveis indispensáveis e ocorrer
(pre-reconhecimento de cabo na in uninicação do lançamento, o
Além disso, durante tal fase e até as instâncias o
se o testagens princiapamente ao movimento de rolê da barcaça,
componentes e interações do modulado, restrições menos etapa
Pequena magnitude de modo que se possa admitir linearidade
hipótese que os movimentos e as forças envolvidas são de
comportamento do sistema no domínio da frequência, parte de
sistema sujeito a excitadores aleatórios. A análise do
análise espectral, pode-se determinar o comportamento do
amplitude e frequência complexas. Razendo-se uso da
transferência do sistema sujeito a ágeis de ondas reais
todos linearizes. Neste caso poderão ser obtidas as
frequências admittindo-se que os fenômenos considerados são
A primeira se refere a um tratamento no domínio da
aproximações podem ser consideradas.

Frequência sujeito a ágeis de ondas, bastando então
para estudo do comportamento dinâmico de um sistema
separar a da operação em um inteiramente dos efeitos
fatores distintos análogos que possam comportar
nos casos de longo e nas situações e para todos os demais
os movimentos que embarcações, movimento do modulo, tensões
de tais análises, deve-se determinar valores espectrais para
proveres condições amperíferas e serem encontráveis. Por meio
prevendo o comportamento de todo o sistema em função das
restritos que possam simular as diversas faises da operação,
operações semelhantes, e praticamente por meio de métodos
justagladiadores que considerem características análogas
prevista bastante determinada de toda a operação, por meio de
ve-se charmeante a necessidade de se proceder a uma análise
pavonam geral de processo de instalação através da RC,
Dessa considerações, que vislumbrar apresenta um
que não desenvolvido a sua dimensão excessiva.
Isso é particularmente critico quando se trata de longo de
das tensões dinâmicas e comparados com o valor da tenso

de se assumir iluminação pode ser verificado pelo comput

corretor e o sistema pode ser tratado como linear. A valia

tade da pre-tratamento no domínio do tempo para sua análise. Da

uma simulação no domínio do tempo para sua análise. A na

uma solução pode ser considerado como linear. O caracter

eutrals nos mesmos são de tal ordem que tal renomeia
e

uma vez que os cabos de transporte são conectados ao

Frequeuncia.

por um modelo linear e analítico simétricamente no domínio da

segundo a DC. O comportamento do sistema pode ser decriti

acoplados sendo o primeiro o conjunto parceria-modulo e o

unico corpo e o comportamento do sistema origina do sistema

posição inicial de convos da que, devem ser considerados como um

inicialemente uma barcaça de transporte e reduzido quando

seguir.

métodos adequados para cada fase da operação, destacados a

Tang e Duncam (1991) fazem algumas considerações sobre os

antigas poderem variar com os diversos estágios da operação.

No caso de antigas de operações com DC, os métodos de

subjetos a variação aleatória.

dos tecnicos de simulação do comportamento do sistema quando

caso, a uma antiga do renomeio no domínio do tempo atingir

possam ser admitidas como lineares. Deve-se proceder em tal

resultantes, formar considerações de movimentos forças ou tensões

A segunda abordagem é necessária quando os resultados

A segunda abordagem é necessária quando os resultados
potencial em reagir a freque
cucia. Incluída na dependência das matrizes de massa e amortecimento, caso a análise
no domínio da frequência tenha considerações de
anta. A análise dos problemas de
qadrago e radiação de ondas. Neste
módulo híbrido de programação, normalmente opta-se por
anta no domínio da frequência, dependendo da
forma correta
fluência, a simulação no domínio do tempo, assim como a

NO caso da análise do comportamento de estruturas
determinado nível de severidade das condições ambientais.

Determinemos envio
e por consecuencia se é

Com menção
adequada, tal análise deve admi
ter interessante dos

e de forma aberta e
funcionalidade de
considereando-se os efeitos de
acoplamento entre módulo
penduro, pode-se fazer uma análise no domínio da
frequência
por fim, com o módulo suspenso na chama da condutância de
guidantes e de seus casos.

Os efeitos (barcada, módulo e DM, acoplados através dos

sistema de tal caso deve ser considerado como constitutivo por

modelo Inter
não mais pode ser considerado como válido. O

forças de impacto podem ocorrer entre ambas as corpos e o

do módulo e a diferença entre módulo e
conven
e igual a zero.

impunidade do
timento de uma
força estatística no cabo ignora o

da colocação do módulo em sua posição inicial, quando na
caso da fase de retardo do módulo do convés (Hilf-Off) e
no domínio do tempo e faz necessária, entre e extrapolado o

prematuridade de tal modo que seja esperada uma separação

tenso estatística de tal modo que seja esperada uma separação

dinâmica devido aos movimentos da barcaça e que ultrapassa a

estrutura sustentada pelo guidance, se o valor da tenso
pendurou quando o módulo estava suspenso pelos cabos dos
análise da interação entre módulo e DC durante a contigüidade de
sob tal aspecto e pressente trabalho a determinar por exemplo.

Proporbiotectos, como tecnica se devem tratar como fenômenos
sociedades para serem tratados como fenômenos
envolvem fenômenos que interessam requerem técnicas mais
estruturas que envolvem fenômenos interações, questões-estruturais
embrague offshore desenvolver-se ter em mente que apenas os
quando se produz determinar a operacionalidade de quatro
análise spectral no domínio da freqüência. Desse modo,
enbraque offshore e gerorgemete baseada em tecnica de
corespondência. A análise de operacionalidade de uma
condições de operação, como ser discurrido no capítulo
análise de operacionalidade de DC que consideze diverseăs
operacionalidade de DC que considera diversas períodos de
uma introdução, e apresentar um modelo de análise de
um dos objetos de pressente trabalho, já mencionado

achanhada para substantação no tempo.

freqüentemente produz uma compreensão dos fenômenos títulos no
comportamento do sistema visto através do domínio da
condições de fenômeno. Deve-se considerar também que a
diversas condições intuitivas para uma análise estratificação
requerem numerosas quantidades de processamento sujeitas a
tempo envolver custos computacionais bem maiores, além de
baseante existente. Por outro lado estimações no domínio do
comportamento do sistema em diversas condições de manter a
espectral podem ser utilizadas para estudar o
guindastes. Além de procurar uma compreensão dos fenômenos envolvidos em tal situação, a análise de operacionalidade poderia ser estendida para qualquer um dos demais estágios que possam ser tratados no domínio da frequência.
3.1 EQUAÇÃO DO MOVIMENTO

REGULARES - OBTENÇÃO DAS FUNÇÕES DE TRANSFERÊNCIA

3. REPRESENTAÇÃO DO MOVIMENTO DAS EMBARCAÇÕES EM ONDAS

...
torno de o parâ $t = 4.5 \cdot 6$. Para forças devem representar os respectivos momentos em $\mathbf{x}'\mathbf{y}'\mathbf{z}'$. O torção é a superposição das duas interações em $\mathbf{x}'\mathbf{y}'\mathbf{z}'$. Para ter a matriz de momentos de onde m é a massa da embarradura.

\[
\begin{bmatrix}
9d \\
8d \\
9d
\end{bmatrix} =
\begin{bmatrix}
9s \\
8s \\
9s
\end{bmatrix}
\begin{bmatrix}
(b \mathbf{X} + b \mathbf{Z}) \\
(b \mathbf{X} - b \mathbf{Z}) \\
(b \mathbf{X} - b \mathbf{Z})
\end{bmatrix}
\begin{bmatrix}
\mathbf{z} \mathbf{A} \\
\mathbf{z} \mathbf{A} \\
\mathbf{z} \mathbf{A}
\end{bmatrix}
+ \begin{bmatrix}
9s \\
8s \\
9s
\end{bmatrix}
\begin{bmatrix}
(c \mathbf{Z} + c \mathbf{X}) \\
(c \mathbf{Z} - c \mathbf{X}) \\
(c \mathbf{Z} - c \mathbf{X})
\end{bmatrix}
\begin{bmatrix}
\mathbf{z} \mathbf{A} \\
\mathbf{z} \mathbf{A} \\
\mathbf{z} \mathbf{A}
\end{bmatrix}
\]

(1.3)

\[
\begin{bmatrix}
\varepsilon 3 \\
\varepsilon 2 \\
\varepsilon 1
\end{bmatrix} =
\begin{bmatrix}
9s \\
8s \\
9s
\end{bmatrix}
\begin{bmatrix}
0 & b \mathbf{X} & b \mathbf{A} \\
b \mathbf{X} & 0 & b \mathbf{Z} \\
b \mathbf{A} & b \mathbf{Z} & 0
\end{bmatrix}
\begin{bmatrix}
9s \\
8s \\
9s
\end{bmatrix}
+ \begin{bmatrix}
\varepsilon 3 \\
\varepsilon 2 \\
\varepsilon 1
\end{bmatrix}
\]

Podemos expressar essas equações matriciais de acordo para o equilíbrio da massa, a dinâmica do movimento de Newton para o equilíbrio da massa, a dinâmica do movimento. Sejam coordenadas no sistema \mathbf{OXYZ}, aplicando-se a lei de Snell e o centro de gravidade da embarradura e \mathbf{X}', \mathbf{Y}', \mathbf{Z}' sistema de coordenadas para descrever o movimento.

Fig. 3.1 Sistema de coordenadas para descrever o movimento.
As forças de reação hidrostática e de momento do movimento dos movimentos, do processo de reação hidrostática e de momento do processo de reação hidrostática são associadas ao efeito da variação da pressão.

O efeito de reação hidrostática e de momento do movimento são conhecidos como os efeitos de reação hidrostática e de momento do movimento dos movimentos, do processo de reação hidrostática e de momento do processo de reação hidrostática são associados ao efeito da variação da pressão.

O efeito de reação hidrostática e de momento do movimento são conhecidos como os efeitos de reação hidrostática e de momento do movimento dos movimentos, do processo de reação hidrostática e de momento do processo de reação hidrostática são associados ao efeito da variação da pressão.

O efeito de reação hidrostática e de momento do movimento são conhecidos como os efeitos de reação hidrostática e de momento do movimento dos movimentos, do processo de reação hidrostática e de momento do processo de reação hidrostática são associados ao efeito da variação da pressão.
Com as equações das forças hidrostáticas e

t e η representam a diferença de fase em relação a onda.

onde F_η representa a amplitude da força na direção gênérica

$$F_\eta (t) = \Re \{ F_\eta e^{-i(\omega t + \phi)} \} $$

no em notação complexa,

$$F_\eta (t) = F_\eta \cos(\omega t + \phi)$$

Reagido a elevação da onda. Existe-se deslocamento pela expressão

considerações harmonivas e apresentam uma diferença de fase em

as forças de onda agente na embreacação.

frequência do movimento oscilatório.

direção ξ, η e β são funções da forma da embreacação e da
direção gênérica de devido ao movimento da embreacação na
adotando a amostragem potencial representando estes na

onde $\eta = 1, \ldots, 6$, onde $\eta = 1, \ldots, 6$, são os coeficientes de massa

$$\phi^{(\alpha, \beta)}_{\eta} = \frac{1}{6} \sum_{\alpha=1}^{6} \phi_{\alpha, \beta}^{(\alpha, \beta)}$$

como:

adotando a amostragem potencial, podendo ser expressas

embreacágo, e são representadas pelos coeficientes de massa

velocidade da embreacágo, e outra em fase com a aceleração da na
considerações como tendo uma componente em fase com a
oscilatório da embreacágo em suas camas. Eles são o

onde irredutível na superfície do mar devido ao movimento

As forças de reação hidrodinâmica são associadas a

para $t = 1, \ldots, 6$.

$$\phi^{(\alpha, \beta)}_{\eta} = \frac{1}{6} \sum_{\alpha=1}^{6} \phi_{\alpha, \beta}^{(\alpha, \beta)}$$

hidrostática, ξ, sendo expressas por:

e são representadas pelos coeficientes de reação

posição de equilíbrio. Eles são função da geometria do casco

centro de flutuação quando a embreacação é retida de sua
A equação do movimento reescrita com as expressões acima fica:

\[
\left\{ \begin{array}{l}
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = - (c + \tau) \cos \left(\frac{\theta}{s} \right) \\
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = (c + \tau) \theta
\end{array} \right.
\]

Expressa como:

A equação do movimento reescrita com as expressões acima fica:

\[
\left\{ \begin{array}{l}
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = - (c + \tau) \cos \left(\frac{\theta}{s} \right) \\
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = (c + \tau) \theta
\end{array} \right.
\]

expréssua como:

A equação do movimento reescrita com as expressões acima fica:

\[
\left\{ \begin{array}{l}
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = - (c + \tau) \cos \left(\frac{\theta}{s} \right) \\
\frac{d}{dt} \left(\frac{m}{s} \right) + c \left(\frac{m}{s} \right) = (c + \tau) \theta
\end{array} \right.
\]
os efeitos viscosos são considerados como significativos.

A magnitude de tal perturbação, diretamente

corpo, como tridimensionais pelo seu movimento.

incidência, gerando ondas tanto tridimensionais pela presença do

perturbação no escoamento do fluido, representando pela onda

fixo na superfície, atendendo ao seu movimento, causam uma

ação de ondas, a sua síntese desencadeia, se o mesmo estiver

considerado-se um corpo quadrado, fixado em uma

encountrated em Sarakhaya (1987) e Chakrabarti

hidrodinâmicas. Em tratamento matemático completo pode ser

escamando ao redor de um corpo para determinação das forças

se-a dar uma visão sintética sobre a condutividade do

hidrodinâmicas da uma embarrada. No presente item procurar-

para obter-se das forças de extensão de onda e coerência

estrutura ocupante, tem-se diferenças tratamentos teóricos

conforme o regime de escoamento ao redor de uma

3.2 Métodos de Obtenção do Movimento de Embarrados

uma embarradura.

obtendo-se das forças de onda e coerências hidrodinâmicas de

o item seguinte trata das metodologia extensão para

embrarrágio.

sob derrames representando as velocidades e acelerações da
When discussing the effects of forces and their distribution on the structure of a compound, as described by the equation of motion, we see that the forces acting on a structure can be understood as a result of the interplay between the forces exerted and the distribution of these forces across the structure. The equation of motion, which relates the forces to the acceleration of the structure, is given by

\[\sum F = ma \]

where \(\sum F \) is the sum of all forces acting on the structure, \(m \) is the mass of the structure, and \(a \) is the acceleration of the structure. This equation shows that the forces exerted on a structure will depend on its mass and the acceleration desired.

In the context of the equation of motion, the forces exerted on a structure can be understood as a result of the interplay between the forces exerted and the distribution of these forces across the structure. The equation of motion, which relates the forces to the acceleration of the structure, is given by

\[\sum F = ma \]

where \(\sum F \) is the sum of all forces acting on the structure, \(m \) is the mass of the structure, and \(a \) is the acceleration of the structure. This equation shows that the forces exerted on a structure will depend on its mass and the acceleration desired.

In the context of the equation of motion, the forces exerted on a structure can be understood as a result of the interplay between the forces exerted and the distribution of these forces across the structure. The equation of motion, which relates the forces to the acceleration of the structure, is given by

\[\sum F = ma \]

where \(\sum F \) is the sum of all forces acting on the structure, \(m \) is the mass of the structure, and \(a \) is the acceleration of the structure. This equation shows that the forces exerted on a structure will depend on its mass and the acceleration desired.
\[p = F R \]

\[C = I + X \]

Encontre a massa adicional e do deslocamento do corpo termo que

potencial da uma intensidade. Perturbando-se \(K \) como a reação
depende de perturbação no escoamento. \(\eta \) e a acelerografia de
onde \(F \) representa a força do Ponde-Krötz e \(p \) a força

\[F = F + p \]

como

Ocorre um corpo de volume \(V \), a força de interação pode ser escrita

\[c^2 = 1 + \text{massa adicional/deslocamento} \]

corre-\(\text{corre} \)temente ao trifogo da forma do corpo e derivado como

interação para que se leve em conta a perturbação da onda. Esses

considerações um corretamente como correto enunto de

terme de um corretamente de massa adicional do corpo.

forma desenvolvido assentamento perdo corpo por considerações bem

das partes da teoria da teoria do corpo. A partir do

um corpo de pengues dimensionais e dado pelo produto da massa

força de Punde-Krötz, como apresentadas por Hoot (1970), em

tando o potencial da uma distância para pengue do corpo.

forza que o trifogo exerceria sobre o corpo no se considera-

força e considerada como força de Punde-Krötz e diz respeto
do potencial de velocidades apenas da uma intensidade. E

e a força de uma pode ser considerada conforme adotados os efeitos

próxima ao corpo, causada pela presença do mesmo, e pengue na
diz que a perturbação no campo de pressões na região.
representando algumas soluções para corpos de formas teóricas potenciais para ecossistemas plástico-titrometrações, teoria potencial para ecossistemas plástico-titrometrações da difusidade, Chakraborty (1987) apresentou o desenvolvimento de uma função potencial e um potencial de ondas potenciais, o potencial de velocidades e o potencial de ondas de deserto. Por uma função potencial, a partir da teoria de ondas de deserto, se o campo de velocidades pode ser assumido como um campo como ictocientifico, inconformista e soluções do problema de ecossistemas a redor de um corpo e soluções do problema de ecossistemas a redor de um corpo e de difusidade. O princípio básico da teoria de difusidade para a condução não conduz ao fato físico do fator de condução como teoria conduzidas na determinação das forças auentes. A teoria conduzida desempenha um papel na condução de ondas de velocidades de ondas de condução, e conduzida de ondas em ondas de condução, de modo que na estrutura de onda conduzida, quando o tamanho da estrutura for comparável ao

sen a presença do corpo.

Kritzen considera o campo de pressões derivado de uma onda ictociente, representada pelo coeficiente K, pelos dois de fruição-
se e conduzidas é em conduzida de onda, que é conduzida conduzido da corojo

\[\dot{\eta} + \nabla \cdot (\nabla \cdot \dot{\eta}) = 0 \]

velocidade de onda de onda de condução de onda acelerando com

Huguen e Sardany (1974), para um corpo acelerando com
acceleração retativa entre o corpo e uma onda, como conduziu por

stimplesmente a aceleração da partícula ligeira, mas sim a
parametros físicos, às forças de onda envolvente no modelo mais
no caso de corpo estar em movimento conduzido, como navios e

O expoente acima de aplicação ao caso de estruturas físicas.
Considerando que a área do retângulo e o triângulo formam um processo reforça o então um triângulo de mortecimento no domínio do tempo de obtenção ser obtida em tal caso, o que se

vem ter de maior latitude, numa solução numérica das equações no conjunto da frequência expressão (3.2) significa que de mortecimento no mesmo sentido

até que não mais poderá ser resolvido de acordo com a

conjunto das equações do movimento em sua forma descrita devido a natureza quadrática da força viscosa, o

expressa como

\[P = \frac{S \cdot \cos(\psi + \theta)}{F} \]

expressa como

movimentando, damos pela expressão (3.2), uma equação pode ser introduzindo-se a expressão da força viscosa na equação do

veoleicidade quadrática da estrutura, a de uma expressão como
correlacionante de mortecimento viscosa B \[^{11}B \]

vezes o termo de na direção \(\uparrow \) de uma força acústica de estrutura em termos de um
gemétrisa do corpo e \(\gamma \) a área projetada no momento de área

onde \(^{11}C \) representa o correlacionante de arrestra, função da

\[P_1 = \frac{1}{1 + 2 + \cdots + n} \]

movimentando-se expressos como

correspondentes momentos nos zeros gerais de inércia de

do corpo na direção considerada. As forças viscosas e as

mortecimento viscosa, proporcionais ao quadrado da veoliceidade

ao movimento do mesmo, são expressos através de uma força de

pressão de ondas, os efeitos viscosos aguentos, associados

para um corpo oscilando em águas calmas, ou seja, sem

simplicidade como condições e sem-estrês.
formulário hidrodinâmico de um corpo fluente e subjetão à
Téorica de Diferença, talvez termos sejam determinados para
solução da equação do movimento. Nós casos de interesse para a
ação de forças de extracção de condens, é necessário para a
massa aditiva an, amortecimento e restabelecimento hidrodinâmico,
dos e determinados os corretores de hidrodinâmicos

alcançada uma convecção numérica.

expressão (4.3), novas soluções são obtidas a que se
adicionar úteis e, como valores substitutos na
expressão (3.2) e obtida a partir da expressão (4.3) e
ser resolvidas de maneira iterativa. Uma solução
iterativa dos movimentos, de modo a que a equação de
amortecimento como o termo úteis sejam novas
expressões que representam a deriva do Kronecker. A
solução da

\[
\begin{array}{c}
\frac{\partial t}{\partial x} = \\
\frac{\partial \Phi}{\partial t}
\end{array}
\]

Incorporando a expressão acima, seriam resolvidas como

e as equações do movimento na forma da expressão (4.3)

\[
\frac{\partial \Phi}{\partial t} + \frac{\partial \Psi}{\partial x} = 0
\]

o termo de amortecimento úteis e é rigorosa aproximada por
vitrado como fez et al. (1979). A expressão linearizada para
amortecimento pode ser encontrada em diversos livros de
amortecimento no domínio da frequência. A linearização de
dos movimentos, pode-se obter uma solução das equações do
embarreço, pode-se obter uma solução da
com o amortecimento linear, proporciona a velocidade da
too o amortecimento em embarreço, em uma certa do movimento.
Vogel et al. (1970) e Saltveit e al. (1970) e por outros.

Para a representação de movimento de náus formam faixas para o cálculo do movimento. Aplicações do método de marota dos náus contornos. Aplicações de formas de meios de faixas, aplicação do esboço ao chamado método de faixas. Primitivo caso de seu ortogonal ao primitivo caso do tratamento no tratamento. O es es tratamentos do esboço extra com pr. 3 no tratamento.

Para a representação do caso do esboço e embreacção distingue.

Frequência igual a frequência da outra incertidão.

Intrinsecas em formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros.

Intrinsecas em formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros.

Intrinsecas em formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros.

Intrinsecas em formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros, palavras como formas e sorveteros.
Visto que o estudo sempre apresenta características próprias, é importante considerar as potencialidades que possam ser extragidas para a teoria de baseia em que se processa o movimento de uma força de detruição da onda e corpos trif-dimensionais.

Para a terceira etapa, é importante mensurar a força de detruição de uma onda ou corpos trif-dimensionais. A medida da superfície do casco, uma função de verde, para a terceira etapa, são referências de uma integral geral de superfície. Um dos principais potenciais de resistência é a determinação da superfície de interferência constante. Entretanto, o estudo de uma força pulsante de interferência constante, sendo a superfície de casco e aproximação por um gênero de espaço, de detruição para cascos de embarcações, onde um número de superfície de casco e aproximada por um gênero de espaço, de detruição para cascos de embarcações, temos superestruturas. Nos casos de superestruturas, o que se forma retangular, que não possui uma característica de forta retangular, como exemplo tem-se o caso de barcaças de casco e sua verteadora e compactação de contornos e estruturas. Em detruição, um caso é poder calcular a resposta de grande método desenvolvido ser considerado para a detruição da superfície, o qual mais poder ser considerado como bifurcação, outros métodos utilizam na técnica de detruição de.

Solução do escamamento ao redor da medida.

Comетe para detruição na superfície de detruição de ambas as métodos utilizam na técnica de detruição de.
3.3 Cálculo das Funções de Transfereência do Movimento

seus movimentos, serem apresentados e discutidos o cálculo e características de danos e verdade a presenças de características e características de

No item seguinte serão apresentadas as características e características e apresentações e discutidas o cálculo e características de danos e verdade a presenças de características e características de

Para o estudo e intuição de base, não apresentações e discutidas o cálculo e características de danos e verdade a presenças de características e características de

A embaraço é a forma de corte de tecidos viscosos, como já

amortecimento são serem consideradas na equação do movimento

sozinhos e construções que tem que serem apresentadas na equação do movimento

de restrições as outras formações, por exemplo segredos

formas secundárias e provocam-se os conhecimentos para corte de tecidos viscosos e normalmente cálculos de devem ser propostos por

amortecimento viscoso para o caso de plataformas comuns de pesquisas, os problemas de

waterneal (1977) para amortecimento é o caso de plataformas comuns de pesquisas, os problemas de

em experimentos experimentais e tais casos por estimação dos
translação de plataformas comuns de pesquisas, métodos básicos de

naivos conhecimentos e bancadas e dos movimentos de

construções e o caso por exemplo do movimento de rotl de

em determinações movimentos e desenvolvido ser levados em

embaraços e fazendo terão a intuição de base que granda
m	KG	Centro de Gravidade
7.32	Longitudinal	Alt. Metacentrisca
320.00	Transversal	
36.58		
24.40	Ver	Ráios de Estagio
24.40	Pitch	
11.70	Roll	
	2120.00 ton	Deslocamento
5.61	Ponto	
4.11	Cauda	
44.50	Borda	
122.00	Comprimento	Dimensões Principais

Tab. 3.1 Características da Barcaça

Paulo
<table>
<thead>
<tr>
<th>Centro de Gravedad</th>
<th>Alt. Metacentros</th>
<th>Desplazamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>Yaw</td>
<td>40.183 ton</td>
</tr>
<tr>
<td>Transversal</td>
<td>Pitch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roll</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.2 - Características de Semitráiler

Fig. 3.2 Geometría e Dimensiones Princiaples de Barcaza

[Diagrama de Barcaza]
Para o movimento de roll da barcaça e para os movimentos de prateleiras de amortecimento viscoso formam considerações de esforços hidrodinâmicos e forças de excitação de onda, A representações hidrodinâmicas das embarcações e operações dos planos, nos quais são consideradas forças superficiais do meio, de eternidade quadrillares e embarcações formam representações através da discretização de forças, para se utilizar o método de distribuição de forças.

Fig. 3.3. Geometria e dimensões projetadas da semissubmersível.
Fig. 3.4. Discretizaçáo da Barreira.

características geométricas da seção transversal deesses de Formuláério das Regras de DNV (1977), conforme a semelhante para a colunas e os casos submersos, através amortecimento viscoso para a água e nevee form arbitários amortecimento viscoso da rold form arbitários através do método transvase do a SS. No primeiro caso, os amortecentes de
Nota-se nas figuras uma grande diferença no movimento da seção e reta nas figs. 3.12 a 3.16.

As figs. 3.6 a 3.11 representam as funções de transferência.

Fig. 3.5 - Descrençação da semicircularidade
segundos, o que corresponde a um período médio de ondas.
Fig. 3.8 Fução de Transferência do Roll da Barcaça

Fig. 3.9 Fução de Transferência do Heave da Barcaça
Fig. 3.16 Função de Transferência do Pitch da SS
transientes.

No item seguinte será descrito o modelo adotado para a análise de DC, considerando o efeito acoplado com o modulio domínio da frequência através de ensaios com ondas experiementais. Através de ensaios em tanges de prova, chamou-se os autores à considerar o problema com seletividade e efeitos análogos. O estudo do tempo, tanto em domínio da frequência como temporanemente, outra vez e Zeng e Moberger (1988), Schettini, Shunara e Zhang (1989) e Nofziger (1983) postergaram o movimento da embarcação. O efeito que o modulio suspenso teria sobre a dinâmica de operações com DC é uma vertigem da mente aos diferentes traumas violados e analítica do cabo e posição do guinastes.

seria investigada, tais como, o peso do modulio, comportamento do suspensso pelo guinastes. A influencia de alguns parametos com o modulio tirado, durante a fase em que este se encontrava no módulo de movimento de DC, considerando os efeitos acoplados o preseente capturou apresenta o modelo adotado para a diversas fases da operação.

da operação de DC, destacando-se as particularidades das operações e ajustes que ocorreu a serem considerados na análise de DC. (item 2.3) formam textos consideráveis gerais.

4.1 INTRODUÇÃO

4. ANÁLISE DO MOVIMENTO DE EMBARCAÇÕES-GUINDESTÉ

\[\begin{bmatrix}
 1 & \phi & \Theta \\
 \phi & 1 & \phi \\
 \Theta & \phi & 1
\end{bmatrix} = \mathcal{C} \]

onde

\[\begin{bmatrix}
 0_x \\
 0_y \\
 0_z
\end{bmatrix} = \begin{bmatrix}
 0_x \\
 0_y \\
 0_z
\end{bmatrix} + \begin{bmatrix}
 0_x \\
 0_y \\
 0_z
\end{bmatrix} \]

4.2 MOVIMENTO ACORRIDO DA EMBARCAÇÃO E DO MÓDULO SUSPENSO

O módulo suspenso, baseado no modelo desenvolvido por Mott (1983),
Considerar as seguintes relações:

da carga são de pequenas amplitude de modo que se pode descrever a análise, adotando-se que os movimentos

Fig. 4.1. Representação do movimento de Modulo

\[\ddot{\phi} \approx \dot{\phi} \]
\[\ddot{\phi} \approx \dot{\phi} \]

Distância entre os pontos A e B.

onde \(L \) é o comprimento do cabo de ligamento representado a

\[I - \dot{\phi}^2 = \frac{d}{2} \]

(3.4)

\[\dot{\phi} \text{ sen } \theta + \dot{\phi}^2 \text{ sen } \theta - \dot{\phi}^2 = \dot{\phi}^2 \]

\[\ddot{\phi} \text{ sen } \theta - \dot{\phi}^2 = \dot{\phi}^2 \]

A anteriores referidos se deram por:

Sendo \(P \) o ponto de localização do centro de massa do

sendo \(\dot{\phi} \) e \(\ddot{\phi} \) como ilustrado na Fig. 4.1.
Assim sendo, a parcela do peso do módulo na direção do

cabo tem magnitude próxima ao peso que corresponderia ao

estorço de tração estática no cabo. Pode-se admitir desse

modo, que o cabo estaria sempre distendido. Admitindo-se que

sejam pequenas, o comprimento do cabo pode ser admitido como

constante e as forças agentes no cabo devido à aceleração do

módulo são integralmente transmitidas ao guindaste e

embaceração, o mesmo acontecendo com as forças no módulo
devido ao movimento da embarcação.

As velocidades do módulo nas direções \(x \), \(y \), e \(z \) são
dadas pelas derivadas temporais de \(x \), \(y \), e \(z \) expressas como

derivadas temporais de \(x \), \(y \), e \(z \) em relação às

temporais da velocidade, e suas componentes podem ser

expressas por

\[
\begin{align*}
\dot{x} &= \dot{x}^A - L_2 \\
\dot{y} &= \dot{y}^A + L_1 \\
\dot{z} &= \dot{z}^A \\
\end{align*}
\]

\[
\begin{align*}
\dot{x}^P &= \dot{x} \odot \dot{y}^A - z^A \odot L_2 \\
\dot{y}^P &= \dot{y} + \dot{z}^A \odot z^A \\
\dot{z}^P &= z_0 = \dot{z} \\
\end{align*}
\]

A aceleração do módulo por sua vez, é dada pela derivada

temporal da velocidade, e suas componentes podem ser

expressas por

\[
\begin{align*}
\ddot{x} &= \ddot{x}^A - \dot{L}_2 \\
\ddot{y} &= \ddot{y}^A + \dot{L}_1 \\
\ddot{z} &= \ddot{z}^A \\
\end{align*}
\]

\[
\begin{align*}
\ddot{x}^P &= \ddot{x} \odot \ddot{y}^A - \ddot{z}^A \odot L_2 \\
\ddot{y}^P &= \ddot{y} + \ddot{z}^A \odot z^A \\
\ddot{z}^P &= z_0 = \ddot{z} \\
\end{align*}
\]

Como os movimentos da embarcação também são admitidos

de pequenas amplitudes, as expressões para as

componentes da velocidade e aceleração do guindaste podem ser

expressas a partir das relações 4.1 e 4.2, de modo que para a

aceleração do módulo as expressões 4.5 são reescritas como
expressadas em forma apresentadas pela expressão 3.2,
exercendo-se a equação de movimento da formulação do equilíbrio dinâmico de massa, dando assim
momentos agente na embaraçado e desenvolver ser consideradas nas
as equações 3.6 e 4.8 representam forças exteriores e
\[\mathbf{T}_\alpha = \mathbf{T} \phi \mathbf{d} \mathbf{w} \]
(9.4)
\[\mathbf{T}_\alpha = \mathbf{T} \phi \mathbf{d} \mathbf{w} \]

Teorema geral:

.4.
\[\mathbf{v}_x - \mathbf{v}_y = \mathbf{v}_z \]
\[\mathbf{v}_y - \mathbf{v}_x = \mathbf{v}_z \]
\[\mathbf{v}_z - \mathbf{v}_x = \mathbf{v}_y \]
(8.4)

e, entre eles obtidos e de modo e representativas nas direções e
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]

Teorema geral:

.4.
\[\phi \mathbf{v}_x + \varepsilon \mathbf{v}_y - \mathbf{v}_z = \mathbf{v}_z \mathbf{d} \mathbf{w} = \mathbf{v}_z \mathbf{L} \]
(7.4)
\[(\mathbf{L} \mathbf{T} - \theta \mathbf{v}_z + \mathbf{v}_x + \phi \mathbf{v}_x) \mathbf{d} \mathbf{w} = \mathbf{v}_x \mathbf{d} \mathbf{w} = \mathbf{v}_x \]

Teorema geral:

.4.
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]

Teorema geral:

.4.
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]

Teorema geral:

.4.
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]

Teorema geral:

.4.
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]

Teorema geral:

.4.
\[\mathbf{v}_x \mathbf{L} - \mathbf{v}_y \mathbf{L} = \mathbf{v}_z \mathbf{L} \]
Nas equações acima, \(\mathfrak{d} \) representa a
interseção da

\[
0 = g_s \mathfrak{d} + g_s \mathfrak{d} + g_s \mathfrak{d} - g_s \mathfrak{d} + g_s \mathfrak{d} + g_s \mathfrak{d}
\]

\[
0 = g_s \mathfrak{d} + g_s \mathfrak{d} - g_s \mathfrak{d} + g_s \mathfrak{d} + g_s \mathfrak{d} + g_s \mathfrak{d}
\]

\[
g_s = g_s \mathfrak{d} + g_s \mathfrak{d} + \left[f_s^a + f_s^b + f_s^c \right]^i \mathfrak{d}
\]

\[
s_s = g_s \mathfrak{d} - \left[f_s^a + f_s^b + f_s^c \right]^i \mathfrak{d}
\]

\[
\phi = g_s \mathfrak{d} - \left[f_s^a + f_s^b + f_s^c \right]^i \mathfrak{d}
\]

\[
\varepsilon = g_s \mathfrak{d} + \left[f_s^a + f_s^b + f_s^c \right]^i \mathfrak{d}
\]

\[
\varphi = g_s \mathfrak{d} - \left[f_s^a + f_s^b + f_s^c \right]^i \mathfrak{d}
\]

Mantém-se

de lembre de que o movimento pode ser expresso da seguinte forma as equações 4.7, 4.8 e 4.9, representando os oito grupos \(\varphi \) e \(\psi \). As equações do movimento da transformação simultânea de é mergulho do movimento do sistema de \(\theta \), de é mergulho de \(\theta \). Daí que as equações do sistema de movimento, com seis grupos de lembre de que o movimento com as expressões 4.9, tem-se a representação das
A aceleeração vetorial, a extensidade do guinándeze deve
embracrângulo "\(\alpha \)" e "\(\beta \)" suas amplitudes,

\[
\begin{align*}
\dot{z} & = (t) \theta
\end{align*}
\]

de onde

\[
(4.70)
\]

\[
(t) \gamma \hat{x} + (t) \theta \hat{y} = (t) \gamma \hat{x} + (t) \theta \hat{y} z
\]

regulariza serem calibradas a partir da retagâo
transcrência do movimento verticcal do ponto A numa ondas
o, ortêngon do sistema de coordenadas. A função de
roll e pitch em retagâo ao cen tro do roçado, porto
calculado a partir de contrapunção dos movimentos de neve,'

o movimento verticcal do quântico ponto da emissâo e
durante realiçação de operações de DC no mar do plate.
A aceleeração vetorial, a extensidade, optâus de médição
apresenta históricas na forma de ponte de caracterização
uma operação de tomamento. Como exemplo, Gavston (1978)
uma operação de tomamento. Como exemplar, Gavston (1978)
critério para se estabelecer a valâvitade de realiçação de
ponta de junção. Em que o mesmo é adotado como importância
extensidade do guinândeze, também referido como movimento da
A importância de se determinar o movimento verticcal da

Movimento Verticcal da Extensidade do Guinândeze

sistemâa.

embracrângulo aditâonadas da massa e das intercâes do modulâo no
embracrângulo quândo o modulâo e encuenta suspensâo pelo
4.3 RESULTADOS PARA VALIDAÇÃO DO MODELO

Verificado o modelo, calculadas como o produto entre a massa e a aceleração das forças dinâmicas agente no cabo pode ser representada pela derivada segundo a expressão 4.10.

Para uma vez, a força dinâmica agente de instabilidade e 6 caracterizações de instabilidade retas anteverimento e 6
<table>
<thead>
<tr>
<th>Peso do Modulo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>24.39,00 ton</td>
</tr>
<tr>
<td>Y</td>
<td>61,63 m</td>
</tr>
<tr>
<td>X</td>
<td>0,00 m</td>
</tr>
<tr>
<td>X</td>
<td>75,00</td>
</tr>
<tr>
<td>KG</td>
<td>19,07</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>170,80 m</td>
</tr>
<tr>
<td>Transversal</td>
<td>10,40</td>
</tr>
<tr>
<td>Roll - Yaw</td>
<td>27,00</td>
</tr>
<tr>
<td>Yaw</td>
<td>4,10</td>
</tr>
<tr>
<td>Pitch</td>
<td>48,85</td>
</tr>
<tr>
<td>Roll</td>
<td>24,05</td>
</tr>
<tr>
<td>Deslocamento</td>
<td>17310,00 ton</td>
</tr>
<tr>
<td>Calado</td>
<td>4,87</td>
</tr>
<tr>
<td>Boca</td>
<td>38,00</td>
</tr>
<tr>
<td>Comprimento</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tabela 4.1 Características da Barcaça "Nótil"
encotrada na referência citada.

características do movimento da barcaça durante o lançamento e.

transformação, uma análise detalhada sobre os resultados e.

barcaça foram obtidas pelo método de distriuição do conter.

exercícios de ondas e os coeficientes hidrodinâmicos da.

desenvolvimento e descripte na presença desse e. Horas de 4.

4.15 representam os resultados obtidos pelo modelo 4.

_4.4 e reproduzidas de Ref. (1983) e as FIG. 4.2b, 4.2d e 4.

_tensão dinâmica no cabo de lançamento, as FIG. 4.2a, 4.3a e 4.

_fungíveis de transferência dos movimentos de roll e pitch e da.

os resultados obtidos para comparar a se referem às.
Fig. 4.2b Barcaça Nostt - Funcão de Transferência do Roll

Fig. 4.2a Barcaça Nostt - Funcão de Transferência do Roll
adaptado para o cálculo e a interça do modelo estudado. Permanece discrepante entre o valor do momento para direção de onda de 45 graus, provenientes de desenvolvimentos de ressonância do rol e da aceleração vertical do modulo 4.14. Uma pequena diferença ocorre em relação às frequências resultados experimentais e apresentados nas Fig. 4.5. A correspondência dos movimentos calculados e a comparado com os resultados dos níveis de transmissibilidade do movimento. Ocorrerem à correspondência de frequências positivas de carga e apresentado uma correspondência conforme indicado nas curvas embarecimento formam considerações conforme indicado no embarecimento da carga até o de 400 ton e tipos condutivos de instalação encontrado na Tab. 4.2. A carga uttizada para instalação de se (1984). As princípios característicos de embareçamento e reduzido do ensaio de ensaio de e apresentados em IP é o embareçâmetro ordem tecerçamento forma comparadas com apenas 800 ton, as reduções de transmissibilidade dos movimentos da reduzido, desenvolvido a sua capacidade máxima de transmissão ser de uttizada para a embareçamento de cargas com pesos.

A segunda embarelcação se trata da barcaça "BCL-1".
<table>
<thead>
<tr>
<th>Peso do Modulo</th>
<th>400,00 ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.50 m</td>
<td>KC</td>
</tr>
<tr>
<td>14.03 m</td>
<td>Longitudinal</td>
</tr>
<tr>
<td>14.03 m</td>
<td>Transversal</td>
</tr>
<tr>
<td>30.10 m</td>
<td>Alt. Metacentro</td>
</tr>
<tr>
<td>13.10 m</td>
<td>Roli - Yaw</td>
</tr>
<tr>
<td>40.10 m</td>
<td>Yaw</td>
</tr>
<tr>
<td>16.84 m</td>
<td>Pitch</td>
</tr>
<tr>
<td>13580.00 ton</td>
<td>Rolo de Giraço²</td>
</tr>
<tr>
<td></td>
<td>Deslocamento</td>
</tr>
<tr>
<td>4.33 m</td>
<td>Calado</td>
</tr>
<tr>
<td>30.48 m</td>
<td>Bocca</td>
</tr>
<tr>
<td>120.00 m</td>
<td>Comprimento</td>
</tr>
<tr>
<td></td>
<td>Dimensões Princípales</td>
</tr>
</tbody>
</table>

Táb. 4.2 Características da Barcaça BCL-1
Fig. 4.8 BGL I - Função de Transferência do Pitch

Fig. 4.7 BGL I - Aceleração Vertical da Ponta de Lança
4. MOVIMENTO ACOPLADO DAS EMBARCAÇÕES ANALISADAS

...
serem discutidos a seguir.

operações são apresentadas na Tab. 4.3 e se referem aos casos a

As principais características da barcaça durante a

4.4.1 RESULTADOS DO MOVIMENTO DA BARCAÇA

embarcações, discutidas nos sub-itens que se seguem.

alguns parâmetros do sistema podem ter uma resposta das

exercer nos movimentos, produzindo-se vertiçar e influência que

deteriores, que justifica a influência que o modulo suspenso

cap. 3, notar-se uma característica do movimento bastante

condicionada de operações com os ressaltos apresentados em

quando se comparar os movimentos das embarcações em
<table>
<thead>
<tr>
<th>R (m)</th>
<th>X (m)</th>
<th>IG amente na Popa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-14.40</td>
<td>800 ton</td>
</tr>
<tr>
<td>0.00</td>
<td>-19.70</td>
<td>1500 ton</td>
</tr>
<tr>
<td>15.30</td>
<td>-11.20</td>
<td>2000 ton</td>
</tr>
<tr>
<td>0.00</td>
<td>-22.70</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>18.80</td>
<td>800 ton</td>
</tr>
<tr>
<td>32.00</td>
<td>37.60</td>
<td>1500 ton</td>
</tr>
<tr>
<td>29.90</td>
<td>36.80</td>
<td>2000 ton</td>
</tr>
<tr>
<td>33.90</td>
<td>40.90</td>
<td></td>
</tr>
<tr>
<td>25.80</td>
<td>10.00</td>
<td>800 ton</td>
</tr>
<tr>
<td>31.70</td>
<td>33.90</td>
<td>1500 ton</td>
</tr>
<tr>
<td>31.30</td>
<td>29.90</td>
<td>2000 ton</td>
</tr>
<tr>
<td>31.30</td>
<td>29.90</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>74.30</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4.3 Características da Barcaça Durante o IG amente
transfereência dos movimentos.

poder ser aproximadamente determinados a partir de função de comportamento de sistema com oito graus de liberdade, no
acima e poder ser determinados pela análise modal do
natureza de ver os valores obtidos para expressões
no caso dos movimentos estruturados, os períodos
sendo o comportamento do cabo de tierno.

\[
\frac{6}{7} \mu = 2\mu
\]

natural de um pendente simples dada pela relação

e para os movimentos angulares de modulo, a partir do período

\[
\frac{11\pi}{W} = 2\mu
\]

partir da relação

movimentos de rotação pitch desacopladados, são determinados a
movimentos do sistema acoplado. Os períodos naturais do
períodos de uma correspondência das para movimentos, em
pôs pocos tendem a aparecer para ambos os movimentos, em
pitch, uma notável interferência existe em suas características.
com referência aos movimentos angulares de rotação

embragues.

correspondem a alterações muito pequenas no regime da
alterações que alterações no movimento de pitch
um acoplamento entre o hveve e o pitch, tal acoplamento e
ser correspondido pelo conjunto de equações 4.9. Apesar de haver
que participam nesse sorte influência do modulo, como pode
acoplada com o modulo suspensão, o hveve e o chute movimento

As fig. 4.15 a 4.17 ilustram o movimento da barcaça.
quanto menor for o comprimento do cabo, isso deve-se ao fato de ter ocorrido um efeito de ressonância do pendulo, tendo se formado uma circunferência de pequena magnitude dos movimentos, percebendo-se que, para períodos de uma menor ou movimento dos comprimentos de um e mais, ou seja, se ele se estende de mais memores, o efeito do comprimento do cabo e sentido de duas tendem a deslocar a região de ressonância para períodos como se poderia esperar, memores correspondentes do cabo como de gravidade e atitudes metafísicas das embarcações, centro de gravidade e atitudes metafísicas das embarcações no apenas o acesso ao meio e o que corresponde a uma embarcação no acoplando entre o medidor e a embarcação a consistência do efeito embarcados durante o que representará o comprimento de 0 métros, tal curva corresponde a uma curva representativa como comprimento de 00 apresentará ainda uma curva representativa de 0, 45 e 60 metros. As figuras correspondem ao comprimento dos pendulós, formam correspondentes três efeito de ressonância do pendulo. Formam correspondentes três movimento de uma embarcação (total ou pitch), e o segundo ao princípio pitch corresponde a região de ressonância do para ambas os movimentos, pode-se perceber que o dos nus figs. 4.18 e 4.19.

contas de 45 graus e 180 graus (mar de prad), são representadas 45 e 90 graus. Os movimentos de pitch para inclinações de 45 e 90 graus, os resultados de sistema, para outras
Ressomnação do penelujo.

As alterações nos períodos próximos ao período da mutação ocorrem de forma de armazenamento ou movimento do modulio e, tal como importante, é a que no caso de considerar gráus, percebe-se o acompanhamento com as rotas para o empacotamento do gráus, percebe-se o acompanhamento com as rotas para o empacotamento da embalagem do produto nas direções x e y para umas de 45, 90 e 180 grus. Fig. 4.20 e 4.21 ilustram o movimento de rotas nos períodos de empacotamento.

Isto pode ser percebido nos figs. 4.19 e 4.18.

Embora essas considerações sejam úteis, não se pode considerar como um modulio da embalagem sem considerar o efeito ao movimento de armazenamento a qual o modulio, em comparação ao movimentos da embalagem, quando a considerar o função do comportamento do cafo, gráus, em termos de Patty poder apresentar amplitudes bem maiores em um aspecto bastante relevante o ser considerado, o

na embalagem.

movimento mais sensível a alterações na restauração e inércia

apresentado na fig. 4.17 referente ao 111, por ser esse o

e inércias da embalagem. O efeito de diferentes posse e

principais resistentes de armazenagem apresentações de alterações nas alturas metacentricas

executem nas embalagens pode ser considerada pequena, e deve-se

A influência que as diferentes de peso desemodulio

desta maneira do ressomas de ressonância.

muhandana nas características do comportamento da embalagem e

comportamento do cafo igual a zero percebem-se características

quando se compara ao movimento com o caso de

modulio e menor o efeito causado no movimento da embalagem.

extremidade do quato de umidade, portanto menor são as rotas ao

interação do modulio em relação ao centro de rotacao,

de que quanto maior for o comportamento do cafo, maior e a
torno de 20000 kg.

tenso estrutural equivalentemente ao peso do módulo, ou seja, em
de 0,300 para 1,30 m, e da ordem de apenas 10.\% da
tenso dinâmica, que corresponde a um valor próximo e torna
alterar consideravelmente. No entanto o valor máximo da
tenso máxima para diferentes comportamentos de cabo (T) podem
notar-se da comparação de amostras que são valores de
relatório ao peso da embaraçado e número de ondas,$\frac{1}{2}$ de
metro$. A tensão é apresentada na forma adimensionais em
formas. A tensão é apresentada no cabo de 0 e 45
mas Fig. 4.27 e 4.28 para comportamentos do cabo de 30 e 45
nesa região.

releve a relação de ressonância e a magnitude do movimento
45 e 180 graus o movimento como comportamento com o pitch no gue se
45 a 180 graus o movimento do pitch e o de pitch. Em todos os grãus de 90
compostos na linha de centro da embaraçado. Para onda de 90
graus. Nota-se que o movimento de pitch é a 4.24 a 4.26 para instância de onda de 45, 90 e 180
o movimento vertical da ponta de tanga e apresentação

Ilustrados nas Fig. 4.22 e 4.23.

Os comportamentos acoplações de surfe e sway da barcaça são

75
characterísticas de inércia e posição do centro de gravidade.

4.4.2 RESULTADOS DO MOVIMENTO DA SEMISUBMERGIBLE

4.4.2.1 Resultados como e ilustrados na Fig. 4.31.

Anteriores como e ilustrado na Fig. 4.31 apresentam caracteristicas bem diferentes dos casos anteriores caracteristicas da embarcação. O movimento vertical e passa a seção metade da embarcação. O movimento devido a maior proximidade da carga em relação contribui para o movimento ao passo que a contrapartida do movimento vertical ao quantamente apresenta alterações em sua forma e os resultados ilustrados nas Figs. 4.29 e 4.30. O movimento da embarcação pode ocorrer até mesmo para ondas de 90 graus, o mesmo efeito ocorre ao pitch para o mesmo para ondas de 180
<table>
<thead>
<tr>
<th>(w)²</th>
<th>(w)²</th>
<th>(w)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>14.20</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>32.40</td>
<td>36.90</td>
<td>34.70</td>
</tr>
<tr>
<td>32.40</td>
<td>36.80</td>
<td>37.50</td>
</tr>
<tr>
<td>33.20</td>
<td>39.00</td>
<td>36.20</td>
</tr>
<tr>
<td>34.70</td>
<td>39.00</td>
<td>36.20</td>
</tr>
<tr>
<td>3.70</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>90.50</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4.4 Características da SS Durante a Igrometro.
As rotasções do módulo e torno dos tacos X e Y são formas bastante angulares.

Formas que o ponto dos movimentos de apontamento de penumbra, de modo que o ponto dos movimentos e apontamentos de frequência bem determinados, procura na frequência do oscilador do emparelhamento a maior taxa de amortecimento e expansão do efeito de degradação dos movimentos e deslocamentos do sinistro do módulo de tempo que desempenha a necessidade de ressonância. O efeito de movimento menos na região de ressonância, e com próximos movimentos, mantém-se angulares a barcaçãos, isto é, com próximos movimentos, e efeito de variações de pitch e fases. Ajustados nas figs. 4.7 e 4.8, onde se observa o efeito de variações de pitch e fases nos dois próximos movimentos, que são comparados com barcaçãos na região de formas convencionais.

Com certeza, a efeito de variações de pitch e fases, quando o módulo e torno dos tacos X e Y são formas bastante angulares, de próximos movimentos, são formas convencionais.
A 4.46.

Figura e reta para ilustrar o que apresentamos nas Figas 4.44 e 4.46.

Referência ao valor numérico de 0,60 da Fig. 4.43.

Peso do medidor, que corresponde a tensão estatística no cabo.

Resonância desse movimento. Este pode ser a ordem de 33% do

tensão, com valores máximos correspondentes nas regiões de

Resonância a mesma tendência do movimento vertical da ponta de

A tensão dinâmica no cabo, ilustrada na Fig. 4.42,

nas Figas 4.41 e 4.42.

Não há, às características desse movimento e/ou

Resonância do pendulo no pitch e no período natural do

Graves, dots pitch ocorrem, correspondentes ao efeito de

Acoplamonto com o movimento do medidor. Para onde de 45 e 180

embranchamento, este por sua vez não sofrendo a influência do

ordem de 90 grãos o movimento conjunto, com a heave da

Tensão de uma, e uma composta de heave e de pitch. Para

o movimento vertical da extremidade do guinilade para

operação normal.
Fig. 4.16 FUNÇÃO DE TRANSFERÊNCIA DO ROLL ACOPLADO

Barcarena

PERÍODO (s)

GRAUS / M

30m --
45m --
60m --
80m --

5000 Ton 2000 Ton

80 GRAUS

Fig. 4.15 FUNÇÃO DE TRANSFERÊNCIA DO ROLL ACOPLADO

Barcarena

PERÍODO (s)

GRAUS / M

30m --
45m --
60m --
80m --

45 GRAUS

2000 Ton
Fig. 4.34 - SS - Prego de Transferência do Roll Acoplado

Fig. 4.33 - SS - Prego de Transferência do Roll Acoplado
Fig. 4.36 SS - Função de transferência do Pitch Acoplado

Período (s)

GRAUS / M

45 m
37 m
10 cm
100 m

180 graus

2000 ton

Pitch Acoplado

SS

Fig. 4.35 SS - Função de transferência do Pitch Acoplado

Período (s)

GRAUS / M

45 m
37 m
10 cm
100 m

45 graus

2000 ton

Pitch Acoplado

SS
Fig. 4.38 SS - Rotacao do Modulo na Direcao y (°)

Fig. 4.37 SS - Rotacao do Modulo na Direcao x (°)
Fig. 4.42 SS - Movimento Vertical da Ponta de Lânca

Movimento Vertical - Ponta de Lânca SS

Fig. 4.43 SS - Movimento Vertical da Ponta de Lânca

Movimento Vertical - Ponta de Lânca SS
Fig. 4.46 Movimento Vertical da Ponta de Lança SS

Movimento Vertical - Ponta de Lança SS

Fig. 4.45 Funcão de Transferência do Pitch Acolpado SS - Igmemento Lateral

Pitch Acolpado SS

Graus / M

M / M

Periodo (s)

4.5 Groups
90 Groups
180 Groups

45 m
2000 Ton

45 m
2000 Ton
5.1.1 ESPECTRO DE ONDAS

5.1 REPRESENTAÇÃO DA SUPERFÍCIE DO MAR

IRREGULAR

5. DETECCÕES DO MOVIMENTO DAS EMBARCACÕES EM MAR
O resultado final: 0
Fig. 5.2 Representação do Espectro de Ondas Superpostas

Fig. 5.1 Ondas Irregulares Obtidas Pela Superposição de Ondas

Para serem estatisticamente apresentados no Apêndice B.

Parâmetros estatísticos e apresentados em termos de suas características do processo analisado em termos de Fourier. A essa que se basa no conceito da Análise de Fourier, procura se expressar em termos de frequência de um processo analisado, teoría...
Características do espetro de frequência da mar form

5.1.2 Modelos Matemáticos de Espectro de Ondas

...
se constriemem um dados estatisticos, e descritico do mar pelos tempes. Como a altura significativa de ondas e o periodo medio de adepssas como constancce durante um determinado periodo de observacão que as propriidade das estatisticas do mar podem ser facio de se considerar como o mar como estacionario. Os condicoes do mar como um fenomeno aleatorio estacionario. O cunento de curto periodo para que se possa descobrir a determinacao de curto prazo. A determinacao de curto prazo e um periodo de tempo que sem chamadas respostas de uma embarcacao no curto prazo. Chamara de descrepao de curto prazo do mar, e consequentemente condicoes de mar irregular, tais modelos representam o que se passa para se determinar a resposta de uma embarcacao em bicos de espectros de onda representam os dados modelos de espectros de onda representam os que outros.

Mais representaciones do que outros.

Dos estudos do mar a serem descritos, alguns modelos serao apenas uma representacao da realidade, de modo que em funcão fungeis matematicas os modelos de espectro de ondas serao tais parametros serao definidos no proximo item, para serem geradas possiveis outras ocorrnas em suas regiões de forma.

Verificando do vento, baseados na interpretação de que as ondas serao caracteristicas das ondas, alguns modelos tem como parametro a mar, os principais sendo a altura significativa e um periodo no mais parametros estatisticos para descrito dos estudos de os modelos matematicos são normalmente baseados em um espectro de espectrom assim como modos estatisticos de espectros de ondas, conhecidos como modelos matematicos de ondas geram diversas formulações para representacao de extensions geram diversas variaveis relacionadas ao oceano. Tais regras de ondas obtidos em varitas regias do oceano. Tais espectaculos atraves da analise de uma grande quantidade de
do período característico tem-se:

periódico característico de ondas. Em função da representação

\[A \exp(-\omega t) \]

\[S(t) \]

característico das ondas. Sua forma geral é dada por:

\[S(t) = \text{constante} \times \exp(-\omega t) \]

um dos modelos de espectro mobs utiizados atualmente

\[\omega \text{ ISSC} \]

onde \(\omega \) é o período de vento e \(\omega \) uma altura de 19,5 metros.

\[S(t) = \left(\frac{8,1 \times 10^{-3}}{9,1} \right) \exp(-0,74 t) \]

expressa por:

sua formação é baseada na velocidade do vento e pode se

mar totalemente desenvolvidas na região do arquipélago norte.

empatirem e baseado na análise extensiva de condutas de

o espectro de Pearson-Moskovitz (PM) foi obtido

A. Pearson-Moskovitz

e ISSC.

seguinte a formação dos espectros de Pearson-Moskovitz, ISSC

para representar das condutas de mar, apresenta-se a

modelos de espectro. Para ilustrar os modelos mais utilizados

chamaráss (1977) apresenta uma descrição de diversos

exemplos para um curto período em que as medidas se mantêm

modelos espectrais baseados nessas parametrizações, e valida

101
durente periodo bastante extenso, o cro (1978) presenta un de espectros de mar basados en mediciones del conductos de mar en espectral no en mar, produciendo de devenir formas "sedentado" se verificando en el, dentro otoño. El mismo tendedo, presenta de decomposición de condensados severos como temperaturas, presencia de localizacién geográfica, efectuando de desenrollamiento e espectros verta el acorde con diversos factores tales como, formulariedades matemáticas de espectros, poul a forma dos pude-se prever a respuesta de uma embarcadero através das
da que se apresenta no grafo realimentamento

B = 3,11 H
A = 8,1 x 10-2

coefficientes a e b da formularião do espectro são dados por:

como unico parametro a altura significativa de ondas e os formulariogáo que o espectro ISSC. A diferença e que o termo "conferência" e relacionado como espectro ITTC e segue a mesma o modelo proposto pela "Intemational Towing Tank (C. ITTC)

B = 1948,18 H
A = 466,26 H

(1) - Período de Pico

B = 498,73 H
A = 1231,12 H

(2) - Período de Zero Acenunhete

B = 685,76 H
A = 171,41 H

(3) - Período Médico

10
20
30
40
50
60
70
80
90
100
Para a determinação dos parâmetros e espectros que registra.

Estão diretamente relacionados ao espectro que descobre esse efeatro de ondas optica durante certo intervalo de tempo, efeatro da onda optica durante certo intervalo de tempo, que a variação do espectro do mar no da mostra por exemplo, que a variação do espectro que descobre tal mar, pode-se de fato a variação entre os diversos parâmetros estatísticos que descobri e descobri através de espectros de onda de diferentes parâmetros estatísticos, pode-se considerar entre que, se a fenômeno acontecer e acontecer ao espectro de de em componentes de onda, e que funciona das frequências das componentes de onda, que funciona a energia total do mar em energia de suas deslocamentos de onda, que consta em se dizer uma maneira de se representar a superfície do mar e através de uma maneira de se representar a superfície do mar e através de uma maneira de se representar a superfície do mar e através de uma maneira de se representar a superfície do mar.

A efeatro da superfície do mar, que e determinado pelo modelo de curto prazo de descoração de estatícos do mar.

(1983), "Alternas para principais incertezas recentes ao influenciar a ambos na resposta de embalagens, haver e manter a Influencia de um e de formular consenso, e investigar a apresentar uma comparação entre espectros medidos em partículas de ópticos em diversas regiões do mar do Norte, Hollman (1974) e modelo de espectro de seis parâmetros baseados em registros modelo de espectro de seis parâmetros baseados em registros
A altura significativa de ondas e derivação como a:

\[
\begin{bmatrix}
\mathbb{I}^\frac{1}{N}
\end{bmatrix}
\]

Sua raiz quadrada e convecção como \(H \) e data por

\[
\mathbb{I}^\frac{1}{N}
\]

partir do registro de ondas e dados por

\[
\mathbb{I}^\frac{1}{N}
\]

A altura média de ondas e derivação como a média das alturas de todas as ondas do registro e podem ser dados por

\[
\mathbb{I}^\frac{1}{N}
\]

A altura média de ondas e derivação como a média das

espectro de onda correspondente.

determinem os registros de ondas no domínio do tempo, ou do

do parametrizações estatísticas podem ser obtidas

Fig. 5.3 Registro da Superfície do Mar

De acordo com o período médio, o período de cruzamento ascende e o período

proveniente. O período característico das ondas pode ser o

altruna, a altura significativa e a altura máxima das

para a altura tem-se a altura média, o desvio padrão da

utiliza-se para descobrir a altura e o período das ondas.

do tempo, gerado por \(n(t) \). Diferenças graduadas são

elevações da superfície do mar em um ponto qualquer ao longo
descrevem as ondas, considerando-se a **Fig. 5.3** representando a
obtidos a partir da distribuição de alturas de onda. A
aleação média dos quadrados das alturas, \(H^2 \), é a
frequência
o valor médio da altura de onda ou altura média.
Encontrase desenvolvida no Apêndice C.
outras descrevem a seguinte, a partir do espetro do mar,
o encontro de alguns parâmetros estatísticos das
onde e encontro dado por \(o = \frac{\varphi}{\psi} \)
variaçao de elevação de onda, o desvio padrão da elevação de
área sob a curva do espetro de energia e equívalente a
o momento de ordem zero denotado por \(m_0 \) representa

\[S(m) \int_0^\psi m^o \ dm \]

em termos da frequência circular \(\psi \) é dado por
momento de ordem \(n \) em um espetro representado por uma função
momento dos momentos do espetro. Uma definição genérica do
partir dos momentos do espetro, \(\psi \) a equilíbrio, e possivel a
um espetro de seu espetro de energia, e possível a
A obtendo dos parâmetros estatísticos de um espetro de

sucessivas.

considerando-se a média do intervalo de coocorrência de picos
medido o período de pico por exemplo, e obtido
período dos momentos o espetro e obtendo-se a média dos valores
para outras sucessivas e simplesmente medindo-se os períodos
do espetro de ondas, simplificando-se o período a partir

ou

como

onde os valores de \(\psi \) são obtidos da maneira das monterias

\[\frac{1}{2} \sum_{N=\varepsilon}^{H} \frac{N}{\varepsilon/N} = \frac{\varepsilon/H}{H} \]

como

H \(\psi \) ou \(\varepsilon/H \) que a partir de um espetro pode ser expressa
particular. Compartilha-se referenciado a altura significativa por
medida das alturas do terço maior de ondas em um espetro de mar.
em termos da frequência de ocorrência das alturas

um histograma das alturas de onda pode ser apresentado
representando-se um histograma e encontrando-se Fig. 5.4,
se o número dessas ondas contras o valor da altura. Uma
altura estabelecida dentro de um determinado intervalo e plotando-
de um registro e obtendo contornos-se toma as ondas cuja
condição como histograma das alturas de ondas. Um histograma
obtendo a distribuição das alturas indicateis de usa tempos,
uma importância características da tal registro e ser
considerando um registro de onda obtido no domínio do

termos da frequência circular, e

as relações acima são válidas, se o espectro for expresso em

\[\Omega = 2 \pi \left(\frac{m}{m} \right)^{2/3} \]

e expresso como

Por sua vez, \(\Omega \) é o período de curva exponencial e

\[\Omega = 2 \pi \left(\frac{m}{m} \right)^{1/3} \]

onde, pela seguinte relação:

referenciado por \(\Omega \) é obtido da razão entre o momento \(m \)
e períodos característicos do estudo de mar. O período médio e
diversos períodos de onda podem ser considerados como

\[H = \left(\frac{m}{m} \right)^{1/3} \]

ergênia total contra a esquerda, e pode ser expressa como

uma altura significativa de ondas está relacionada com a

\[H = \left(\frac{m}{m} \right)^{1/3} \]

não expresso e o valor de \(H \) não dominar a frequência pode ser obtido

\[H = \left(\frac{m}{m} \right)^{1/3} \]

expressado em \(H \) em termos do momento \(m \) do espectro e domínio

106
A função densidade de probabilidade associada é dada por:

\[
\frac{\text{d}p}{\text{d}H^2} = \exp\left(-\frac{H^2}{2}\right)
\]

Termos de \(\text{d}p / \text{d}H^2 \) e \(\text{d}H^2 \)

Representação da distribuição de Rayleigh, normalizada em representação da distribuição de Rayleigh, uma das formas de marte e cada uma da distribuição de Rayleigh, uma das formas de adquire e distribuição de alturas de onda para uma condição de vento de se verificou que uma função de distribuição que se

Fig. 5.4 Exemplo de um histograma de altura de onda

Os gráficos de altura de ondas, interpretados como uma função densidade de probabilidade de

manter a mesma área sob uma curva igual à unidade e pode ser representado um histograma representando essa

representa o número total de ondas e no número de ocorrencia e a ordem de frequência relativa \(n / N \) e n\% de onda no \(H / (H/H) \) no histograma de representação. A ordem de

exemplo \(H / (H/H) \) no \(H / (H/H) \) no histograma de representação característica, por normalizadas em termos de altura característica.
Diversos outros parâmetros podem ser obtidos da demonstração no Apêndice C de a presença de martelo,
estatísticas expostas e pequenas capturam a de certas propriedades
geralmente bem como a derivação de certas propriedades
considerada por Lottin e de Kast (1975). Sua formação
aproximação na prática dos movimentos de náuseas form
propriedades matemáticas da distribuição de Rayleigh e sua
controle de mar em que uma empregação pode operar. As
faixas prévias são importantes para se considerar as
resposta em função do período de duração ao estado de mar.
uma empregação do mesmo o máximo valor esperado para a
grande quando sua prever valores máximos da resposta de
a distribuição de Rayleigh tem uma importância muito

Fig. 5.5 Histograma de altura de onda e comparado com

\[\int_{0}^{\infty} \exp(-t) \, dt = (1/H)p \]

expressão:

distribuição de Rayleigh também em termos de \(H \) para
específico que descreve a conduta de mar, pode-se expressar a
como \(H \) pode ser expresso em termos de momento \(w \) do

108
o estudo do comportamento de uma embarradura em mar.

5.3 Resposta De Uma Embarradura No Cúrtro Prazo

da largura de um espectro é tão distorcida por causa (1987).

for menor do que 0,60, outros parâmetros extremamente para média
o espectro pode ser considerado razoavelmente estreito se c
proximos a 1 indicam o contrário. Segundo charakberat (1987)
indicam um espectro de banda estreita, enquanto valores
Os valores c variam entre 0 e 1, sendo que valores pequenos
2w - 0w
w

w

dada pelo coeficiente de derretimento por

A medida da largura da banda de um espectro pode ser

Interpretação gráfica da frequência

de banda larga tem sua densidade de energia distribuição em um
uma faixa estreita de frequência, ao passo que um espectro
estreita representa a maior parte de sua energia concentrada
densidade de energia do espectro. Um espectro, que em outros termos mede o desvio padrão da
espectro, que em outros termos mede o desvio padrão da
ser considerado e a medida de largura da banda de um
na análise espectral, um dos parâmetros importantes a

Discussão semelhante pode ser encontrada em charakberat.

proporção bastante de unidade de período e período de ondas de de
alguns modelos de distribuição de período de ondas de mar, além de discutir
princípios parâmetros estatísticos de mar, além de discutir
(1985), apresenta de maneira extensiva a obtenção dos
análise espectral, que caracterizem o estado de mar. Goda
domínio da frequência são principalmente relacionados ao

quantum conceitos de mar. As desvantagens em relação ao

emprego, possibilitando de tal modo a simulação de
dos fenômenos não lineares envolvendo na resposta da

a antítese no domínio do tempo permite a consideração

frequência.

as funções de transferência de sua resposta, no domínio da

linhagens da resposta da embaraçado e admittida ao se

para obtenção do espectro de energia, por sua vez, a

delimitações ondas com diferentes frequências e admittíveis,

considerar a superfície do mar como resultando da superfície

a linhagens das condições do mar e admittida quando se

fenômenos envolvendo para obtenção da resposta da embaraçado.

pressione superfiçial linhagens tanto das condições do mar, como

dos

a antítese do movimento no domínio da frequência

obtenção do espectro de energia da resposta da embaraçado.

transferência dos movimentos da embaraçado, permitindo

espectros de energia que junta-se com as funções de

neste caso, as condições do mar são representadas por seres

embaraçado às vezes a antítese no domínio da frequência.

o segundo caso de representação dos movimentos de uma

temporadas dos diversos movimentos.

também é obtida ao longo do tempo na forma de sértes

tecnica de simulação. A resposta da embaraçado em tal caso

obtidos em relação ao mar, no representação do mar através de

as ondas incêndias podem ser tanto registros de ondas

resposta da embaraçado, simulando-se a incêndiação de ondas

domínio da frequência. No primeiro caso, vertíces-e a

5.3.1 CRUZAMENTO ESPECCÍAL

conseqüente, da resposta da embaraçação, contudo, estatísticas das condições de mar e por
parte da análise espectral que fornece direcionamento
contra o ângulo espectral e da fonte direcionamento
através de técnicas de estimativa de demarcadores de
inúmeras condições de mar, deven alí expressões de
para se ter uma representação estatística da resposta
an embaraçamento com cada instante estimado. Além disto
estimado das condições do mar, para que se obtenha a
solução para cada instante de tempo construído na
tempo computacional necessário para obtenção da resposta da
As funções de transference do movimento de uma

determinado valor tipo como critério para operação,
por exemplo, a probabilidade da resposta exceeder um
distribuição da resposta de uma embreacão podendo-se oter
simples, que é uma distribuição de Rayleigh, tem-se a
de grande variações para um artérias que têm a resposta. Tal fato é
também um artérias ao contrário de uma, a área de ondas, a aplicação
dos momentos do espectro de resposta, a e uma distribuição do
e o desvio padrão podem ser obtidos da mesma maneira a partir
representa a variação da resposta. A resposta singlicacional
bessa modo, por exemplo, a área sob a curva do espectro
detc. do mar e aplicando-se um artérias ao espectro de resposta.
espectro de um artérias considerando os parâmetros estatísticos considerados no
uma vez obtido o espectro de resposta de uma

vezes tempos (w, s, quatro, Newt, s, etc.).
espectro de resposta tend semelhante de resposta quadrática
espectro de resposta tend semelhante de resposta quadrática
forças, etc.) por altura unitária de ondas, consagremento, o
unidade igual a dimensão da resposta (descomentado, enguio,
vezes tempo. Por sua vez, a função de transference tem
o espectro de onda tem umidade de altura quadrática

\[
(m) S \left[(m) H \right] = (m)^S
\]

resposta dado por

e o espectro de onda por S do espectro de
espectro de onda. Decontando-se a função de transference por
transference na frequeunca considerada, multiplicão pelo

22
Para estudar a expressão:

\[\frac{\sum}{n} \left\{ \begin{array}{l}
 n \leq 1 : 0 \\
 n \geq 1 : \theta \cos \frac{n}{2}
\end{array} \right\} = c(\theta) = c(\theta, \phi) = (c(\theta, \phi))^2 \]

uma das fórmulas mais adotadas por descobrir o
energia a partir de observações do mar.

energia, um eu, o espalhamento direcional de
espalhamento, além de discutir o espalhamento direcional de

cada (1985) apresenta um esboço das fórmulas gerais para um
função de

\[\int_{-\infty}^{\infty} g(x) dx = 1 \]

Relembro

representar uma distribuição de energia de uma
saturação por

função de espalhamento e adotamento por

de energias direcionais.

chamada de função de espalhamento e representa uma
distribuição

\[\text{onde } S(m) \text{ e } \phi \text{ o espectro de onda direcional } e \]

\[(\theta, \phi) S(m) = (\theta, \phi) \]

direção. Sua forma geral é expressa por

energia tanto no domínio da frequência, como em
o espectro direcional, representa uma distribuição de

Suponho que introduzir-se o conceito de espectro direcional
se desejar descobrir o estado das diferenças componentes direcional
espalhamento, normalmente em toro de uma direção prática. Para
existência de componentes de onda progradando-se em direções

ao ser considerar um mar irregular, vertica-se e

considerado.

espectro de resposta da embarracado, para a direção de onda
espectral como o espectro de frequência, a que se chamam e o
espectro de embarracado. Desse modo, ao se fazer o cruzamento
embarracado são obtidos em função da direção da onda em
5.4 RESULTADOS

5.4.1 Principais de Propagação da Onda.
para os experimentos ISS considerados.
A movimentação vertical da ponta do Jangá 'Justiçado nas
segundos.' apresenta períodos médios justamente na faixa de 4 a 7
caracterízticas 50 pm pouco severas a 25 cm temporárias e cujo mar triplo
cuando se considera regiões como o Brasil, cujas
de mar mais calmas. Ésse aspecto tem importância especial
uma grande diferença no comportamento das mesmas em condições
para a barcaça & segundos para a SS, que pode representar
por metro de onda. Tal período gira em torno de 6 segundos
repositorias tendem a tornar maiores critérios, on proxitmas a
importância a ser notado é o período a partir do qual as
quando se comparar com a barcaça, um factor de cerca
de pitch tende a apresentar as mesmas características gêne o
de movimento 'Justiçado nas Figas. 5.19 & 5.22, o movimento
conforme 'Justiçado nas Figas. 5.19 & 5.22, o movimento
ondas, não se caracterizam como valores críticos.
encescendentes, em torno de 3, por altura sintomática de
mais longas. De quarquer maneira as máximas respectivas
metier, por desechar o período de ressonância um rendimento
os comportamentos maiores tendem a apresentar semelhante
nota-se característica, especialmente para ondas de 90 grados, que
só desenvolva ao ereto de ressonância do movimento do modulor,
de embarcação. As máximas respectivas injustiçadas nas figuras,
roll tendem a apresentar magnitudes pequenas para esse tipo
para ondas de 45° e 90°. Como já discutido, movimentos de
As Figas. 5.19 & 5.20 injustam o movimento de roll da SS
características do pitch.
empiricamente ao movimento tende a se agitar e mesmas
a ser uma composição do move e do pitch de embarcação. A
no modulor, e em ondas de 45° e 180° quando o movimento passa
de até 10 segundos, devendo ao período de ressonância estar
com comprimento de 75 m, para mares de período médio na latitude
a apresentar valores relativamente altos quando comparados
segundos. Para comprimento do cabo de 45 m, o movimento tende
como 74 vitos, tem seu período natural em torno de 20
modulo não e sentido. Isto se deve ao efeito da ressonância do
onda de 90° quando o efeito da ressonância de movimento do
de período médio maiores, especialmente para incidência de
figs. 5.23 e 5.24, apresenta valores bem maiores para mares
Fig. 5.7 - Barreira: Espectro da Resposta de Rolê

Fig. 5.6 - Representação do Espectro ISSC
Fig. 5.15 Barcaza – Response Spectra for Pitch

Fig. 5.14 Barcaza – Response Spectra for Roll
Fig. 5.17: Responda significativa - Mov. Vert. Ponta de Lança

Fig. 5.16: Barcaça - Responda significativa do Pitch

Barcaça

Movimento Vertical - Ponta de Lança

Pitch Significativo
FIG. 5.21 SS - Responsa Significantiae do Pitch

Pitch Significantiae SS

FIG. 5.20 SS - Responsa Significantiae do Roll

Roll Significantiae SS
Fig. 5.23 Resp. Significant - Mov. Vert. Ponta de Lança

M/M 1.60
2000 Ton

Movimento Vertical Ponta de Lança

Fig. 5.22 SS - Resp. Significant do Pitch

Pitch Significant

2000 Ton
150Fpns

PERÍODO (s)
FIG. 5.24 Risposta sinusoidale - Mov. Vert. Porta de Langa

Movimento Verticale - Porta de Langa

Periodo (s)

10 20 30 40 50 60 70 80 90 100

0.2 0.4 0.6 0.8 1.0

21/3 / Hs

M / M' 0.6

10 M 20 M 30 M 40 M

2000 ton
condições ambiêntais são representadas pelos números de
as características da resposta da embarracação nos
tipos de operação a ser realizada.
conhecendo como critérios de operação e variáveis conforme o
específicos em termos de resposta da embarracação, são
interagindo dos equipamentos. Esses limites, quando
embarracagem e a resposta, e também sem comprometer a
fazer que a operação possa ser realizada sem risco para a
as condições ambiêntais ou para a resposta da embarracagem,
se determina esta o estabelecimento dos limites aceitáveis para
determinar o que para um quadrado embarracagem

diversos períodos availability.

das condições ambiêntais a serem encontradas durante os
embarracagem pode operar para diversas épocas do ano, torna
essa representada em termos de porcentagem de tempo que a
uma embarracagem para realizar determinada tarefa, imitação
específica. Por operacionalização entender-se a imitação de
operacionalização de uma embarracagem para uma missão
pessoas, tarefas em conjunto trigo determinar a
locais onde a estrutura de vida operar.
condições ambiêntais, e da propria característica desse nos
devida, das características da resposta da estrutura as
depende especificamente da embarracagem que um quadrado estrutura se
seja e a uma navio de carrega ou uma plataforma de petróleo,
a via para embarracamento de uma estrutura marítima,

6.1 INTRODUÇÃO

6. DETERMINAÇÃO DA OPERACIONALIDADE

128
operacionalização para operadores offshore. Nas seções que se

de longo prazo.

ocorrência de estudos de mar se constitui na chave para

pelo menos um período. Tal evento é um

terreno e estudos durante várias amostras de ter

ocorrência de estudos de mar para diversos épocas e ano e

terminar os estudos de campo. A frequência de

análise da resposta de curto prazo da embarcação e dos

que um operação possa ser realçada, estas ordens uma

terminar uma frequência de ocorrência dos estudos de mar e

modelo de ocorrência de estudos de mar, para onde se possa

para diversos períodos do ano e necessário que seja tentar um

Para se analisar uma operacionalização de uma embarcação

períodos de calmaria e tempestade.

Persistência desse efeito de frequência de ocorrência de

determinado período e região do mar. Por outro lado, a

termos de distribuição conjunta de probabilidades em

esses dos parâmetros normatizantes e apresentações em

características pela altura estátisticamente e período médio das

persistências de estudos de mar. A severidade normatizante e

de se normatizante representações em termos de severidade e

as condições ambientais para estudo de operacionalização.

anteriores da presença de estatísticas.

específico. Ambos os casos já foram destacados nas capturas
da embarcação em mar irregulares, obrigando ares de controle

transferência da resposta em ondas regulares e para resposta
caso se recaçãor se confotgés de mar e que e embaraçágo
da estraçãor pode ser comprometida, ao passo que o segundo
determinamento das condições em mar para que a integridade
e análise de operacionalidade, o primeiro caso se recaçãor se
ser adotadas quando se tratar do projeto da embarcação ou da
resposta de uma embarcação, abordagens distintas deem
A rigor, quando se considera a previsão de longo prazo
resposta.
embaraçágo semble levadas em conta para a previsão de sua
possíveis de serem encontradas durante o período útil da
mudança sempre consideradas e já em que todavia se consideram
de uma embaraçágo ou qualquer estrutura equilibrada, tais
determinam-se exté gue, a e estudar o comportamento no mar
e caso das características do mar e temos mundo
um período restrito a algumas horas.
processos acidentais com propriedades estacionárias, durante
ondas, admitindo-se que o mar e a resposta da embaraçágo são
dezado e mar e representando por um espectro de
como a distração antecedente, a conduta de curto

6.2 Descrição de longo prazo de estádios de mar

avaliação de desempenho de diversas embarcações.

de RC, e também sua aplicação como um método comparativo para
determinação de operacionalidade e sua aplicação na análise
desenvolvido para a partir da ser apresentado o modelo de desenvolvimento do
posteriormente os critérios de operação para operações de RC;
em des contóges em mar e a resposta da embaraçágo,
e seguem serem igualmente distração e análise de longo prazo
A resposta de curto prazo pode ser embarcada de forma de parte da resposta de curto prazo para a determinação da resposta de longo prazo de uma determinação no Item 6.3 da presente capítulo para o caso de operações e aquisições de estações offshore, para o projeto e operações de aquisições de condutos e armazenamento determinante nos critérios de ventos e correntes para se exemplificar, Hottman (1997) descreve determinantes abordagens para se basear no desenho do caso o projeto aquisições de longo prazo são avanços operacionais específicos, os períodos de retorno são avanços previstos de valores extremos da resposta. Ao se anotar mar ralavreus e operações no desenho ser os mesmos que para os critérios para previsto da orientação de estações de aghy apresentadas.

por não serem no interesse do presente tratamento não serão outras distinções, como distinções por características (1987) e outros distinções, como distinções de um público de metódica. Por suas junta mente como modelos de distinções de longo prazo delongo prazo a distinção da diálogo entre uma parte de dados extrapolação para a vida útil da embarcação e parte de dados outros distinções de longo prazo de atuários de uma te em níveis, e que uma conduta extremamente excepcionais. As distinções, devido ao intervalo de tempo médio, normalmente- retorno, determinar como a resposta de conduto de período de tempo ser prevista de uma parte de conduto ao conhecimento do período de um longo prazo, se realização de determinação dos projetos de valores extremos dos condutos e mar e da resposta a serem encontrados durante a vida útil da embarcação. Esses valores extremos são condutos de mar e da resposta de longo prazo se realização de determinação dos projetos de valores extremos de

No caso de projeto de uma embarcação, a previsto de de

pode ser operar.
Interesa, que para una muestra crítica detales, considerando-se
ser determinado para todas las funciones de distribución de
ρexo par (H. T. I) correspondencia, o espectro de respuesta deve
resposta a curto prazo para cada um dos estados derivados
distribuição do correspondente aos estados de mar, computando-se a
uma vez tendo-se para a região de operação a
exemplo por Haver (1985).

primeiramente no Artigo pelo como apresentado por
registros de dados pode ser encontrado para algumas regiões
observações. Distribuição do par consertado e o número total de
observações do par consertado pelo razão entre o número de
mar, pode ser determinada pela
- T ñ caractereza ou estaco de
baixa de campos se encontrar na Tab. 6.1. A probabilidade de
un exemplo de a distribuição conjunta de H e T para a
limp (1987) a partir de observações de navios mercantes.

diversas regiões do mundo formam apresentações para Hopen
durante diversos anos. Distribuição de estacos de mar para
observações das condições de mar ou de registros de ondas,
apresentadas na forma de tabelas obtidas a partir de
região considerada. Essas distribuições são normaismente
álteras significativas e período característico das ondas, para
coincidência de estacos de mar, dá-se para distribuição do
resposta de uma embarcação deve-se conhecer a distribuição do
para se determinar a distribuição de longo prazo da

região.

intervalos de alterações significativas e obtidas para diferentes
partes de famílias de espectro derivadas para diferentes
edeterminada a partir de um modelo matemático de espectro ou a
Por exemplo, Intervallos de 0,3 m para a altura significativa.

Períodos característicos são dados em termos de intervalos, os normalmente se apresentam como altura significativa. A
forma em que a distribuição de ocorrência de estádios de mar
excede um determinado valor estabelecido como critério. Na
longo prazo a probabilidade de que a resposta da embarcação
no processo de determinar altura produto determinar no

onde N é o número total de estádios de mar considerados no

\[(0^0 Z < Z) \delta \]

Para cada direção de cada e cada porta,

todos os possíveis estádios de mar, para uma especificação
resposta excede o valor critério estabelecido considerando-se
uma determinada por \(\phi' \) de tal modo que a probabilidade de que a
pode ser

\[\left(\frac{y}{Z} - 0^0 \right) \delta \exp = (0^0 Z < Z) \delta \]

Razão através da expressão

resposta e pode ser determinada a partir da distribuição de
o de mar considerada que depende apenas do desvio padrão da
probabilidade de que esse valor seja excedido para o estádio
Tendo-se estabelecido um valor critério para a resposta, a

\[\int_{0}^{\phi'} \delta \left(\phi \right)^{\delta} \]

do desvio padrão da resposta e determinada por:

\[(0^0 S (0^0 \delta)^{\delta} \]

Resposta e dado por:

diferentes direções de onda ou do mesmo modo, a
Operação.

A questão a ser posta é que as respostas a

Questões que possam ajustar o seu

A resposta de longo prazo, espetacularmente no caso de embargar

Questão que pode ser considerada na determinação da

Tal distribuição normalmente depende da

Respeito a distriuição de correntes de direção de

Outra questão importante a ser considerada é

espetável.

Obteve-se a resposta de níveis altos de

que descreveu (1990) apuração o estudo dessas questões, para a

como os modelos matemáticos de espetáculo do ISSC e JONSWAP.

espetáculo orttópsico no mar do Norte e compararam tais variações

espetáculo. O caso dos espetáculos orttópsicos por exemplo por conti

espetáculo medidos, e de uma variância em termo desse

espetáculos orttópsicos para a questão de todas as

até então em espetáculo medito, orttópsico de parte de todos os

espetáculos gerados a partir de registros de ondas na região de

Quando se considera um estado de mar ativos de famílias de

representar a maior ocurrence possível de estados de mar.

determinar a resposta de embaraçoso, de modo a se poder

curto prazo, devem ser levadas em consideração quando se

estado, essas variações, que se constatam em variações do

esforço variáveis na forma do espetáculo representativo do

para um número par de ‘H-7” representando um estado de mar,

embaraçado. A rigor, devido a ambiente de estado, em respostas

espetáculo do mar, que resultaram em variações na forma do

cada intervale considerado ocorrem variações na forma do

e de 1 ou 2 seg para o perodo medio. Portanto, dentro de
6.3 CRITÉRIOS DE OPERAÇÃO

De operacionalidade, embarcações e desenvolvimento de condutas e determinação de operacionalidade fundamentais para a tomada de decisões estratégicas para a equação do projeto, existem várias etapas que devem ser consideradas. As etapas de operacionalidade envolvem várias etapas estratégicas para o projeto, as quais devem ser consideradas como parte de um projeto offshore ser realizado com sucesso dentro do período alocado para tal.

Para um projeto que parte de um projeto offshore ser
condições de uma operação offshore, diz respeito ao fato de
se proceder de uma metodologia para a análise das
uma das principais questões a ser considerada quando
de operacionalização para qualquer caso de operação offshore.
se determinar os critérios de operação e se chegar a um modelo
perso no contexto desse modo em fatores fundamentais para
aproxo ao contexto de predição de curto prazo e longo
grandes que podem gerar figuras de mercado para a análise da
estatísticas para poder ser expressas em termos simbólicos
as condições de operação segundo algumas extrapolações
deste, mesmo para um determinado escopo do mar, a desafort
entre 30 kg de estudos do mar ocorrem em locais. Além
uma operação de poder ser determinadas estatisticamente, pois
as condições a serem encontradas para a realização de
ejaculaciones com a operação.
movimentos de algum ponto da embarcação mantendo
devida de movimento da embarcação, mas sim em função dos
ser manifest expressão que em termos dos seus grupos de
deixar estar ejaculaciones de operação a ser realizadas e poder
em termos de resposta da embarcação, os critérios
de onde a ser encontrado.
ativação de energia de ondas, dada pela fórmula de espécie
direção de propagação da onda, da estrutura do pesco, ou mesmo
pode ter características de resposta divergentes, conforme a
embarcação e sujeito a incertezas, pois a mesma embarcação
critérios são normamente aplicados apenas a um tipo de
quando expressos em termos de condições ambiente.
veios, incertezas, alterações ou mesmo erros e tensoes.
em termos de resposta da embarcação como deslocamento,
Os registros das condições de mar e dos movimentos da embarcação operação empírico, baseado em histogramas obtidos de leitura, foi feito e reportado (1979) e Fritzé e Horrman (1979). Essa pode ser verificada com as operações de busca do seu operador. Ooperador, através do aumento da segurança, optando diretamente da análise de sua empresa operacional, dispõe de um setor offshore pode-se citar terceiras manter as operações de ser procurada estabelecer um critério operacional.

Asse fases consideradas críticas.

Conforme a natureza da operação e sua duração ou duração de operação, as pontas de ocorrência, por Horrman e Fritzé (1979), as operações de busca do seu operador. Ooperador, através do aumento da segurança, optando diretamente da análise de sua empresa operacional, dispõe de um setor offshore pode-se citar terceiras manter as operações de ser procurada estabelecer um critério operacional.

Ser consideradas estocásticas e análises através de justamente uma durabilidade e quais as condições de mar podem, por isso, de serem representadas de 20 a 30 minutos, para estes períodos representam caso ideal para ser estabelecer um critério de operações. O quando, servem extrapolações tanto para períodos mais longos quanto mais posológico (1979), de modo que as condições de curto prazo, de serem determinadas num nível de resposta, de acordo com a curta e por um tempo de poucos minutos ou segundos, para quais critérios claves operações requerem um leito de períodos muito caracterizam um erro, de mar. Além disso, certas fases estocásticas e descritas por um simples espetro condutas amplitudes que mais sejam ser adiadas como complementares, ultrapassando diversas horas, para que quais as múltiplas operações requerem períodos longos para serem
operados a ser analisados.

Considerando que as aplicações sejam adequadas e significativas, tratam-se dos métodos simples de somatório de movimentos em três níveis. Os critérios baseados na resposta provavelmente não formam realidades durante o período de valorização que as operações moderadas, incluindo que possam medir-se de formas reais e de formas valorizadas, atingindo-se para casos a 3 e 4, para caso geral, máxima, na freqüência de coe. O mesmo, extremamente ao que apresenta históricamente aos movimentos verticais, e que representa a história da parte da Fig. 6, reproduzindo, dessa forma, uma compreensão da tais critérios pode ser facilmente.

A avaliação de tais critérios pode ser facilmente.

que requerem o uso do processo lquete ao quatro, comparado como casos pesadas angulares.

Revestimento de lítio (1978) dentro como casos pesadas angulares.

Carregas moderadas se levam: 1,20 w

Carregas pesadas: 0,90 a 1,00 w

ve ao movimento vertical da ponta de lenda são dados por:

estabelecendo para a dupla amplitude da resposta significativa.

extremamente ao que apresenta históricamente aos movimentos verticais, e que representa a história da parte da Fig. 6, reproduzindo, dessa forma, critérios até previsões bastante consistidos, considerações que formam durante operações no mar do Norte. Trata-se de um dos
Uma segunda abordagem para estabelecer os critérios:

Pitch: $\theta \leq \frac{\pi}{2}^\circ$
Roll: $\phi \geq 6^\circ$

Significativa:

Do pitch e roll deveriam estar limitadas aos seguintes valores, segundo Novitz (1983) para DC e dupla amplitude de embarcação. Segundo Novitz, e em termos dos movimentos angulares da plataforma offshore e também baseado na resposta para operações offshore e também baseado na resposta, um outro critério de operação comummente estabelecido é a Fig. 6.1: Histogramas da dupla amplitude do movimento vertical.

Fig. 6.1: Histogramas da dupla amplitude do movimento vertical.
\[u \times (\phi^0 w |^0 z < z) \sigma = N \]

se \(N \) o número de vezes esperado em que \(z^0 \) ser
deve exceedido tem-
representando a resposta e \(z^0 \) o valor esperado, chamando-
número de choques total. Ou seja, sendo \(z \) a variável
ser excedido e dado para o valor das vezes o
- o número de vezes que determina valor da resposta deveda

\[\frac{\int_{z}^{+\infty} \exp(-\frac{(\phi^0 w |^0 z < z)\sigma}{z})}{\int_{0}^{+\infty} \exp(-\frac{(\phi^0 w |^0 z < z)\sigma}{z})} = u \]

por \(u \) dado para cada

de choques esperado para a resposta da embarcação, denotado
extrapolando-se a conduta do mar para tal período, o número
- considerando-se uma duração de \(N \) horas para uma operação e

- a distribuição da resposta segue uma distribuição de

\[\int_{0}^{\infty} \exp(-\frac{(\phi^0 w |^0 z < z)\sigma}{z}) = u \]

sugerindo que para a:

- A distribuição de período de cruzamento ascendente via

procedimento:

descrevendo por ser espectro, considerando-se a sequência
para se determinar o número de vezes que determinado
- alguma fase crítica.

alguma operação e expressa em termos do número de vezes que a

de operação e espera.
O estacionamento pode ser extrapolido para ação em torno de 20 a 30 minutos, de acordo com Hoffman (1978), e pode ser adotada como prática para períodos curtos de aproximação de estacionamento. No entanto, a estacionamento que condutas se mantenha determinando estudo da maioria clínicas e se considera um critério descritos anteriormente, são facilitadas.

Messa na resistência das estruturas envolvidas.

Conforme a operação a ser realizada, deve-se basear na danos o valor último para a velocidade pode ser outro, ser absorvidas partes estruturas sem que elas sofram quadro determinado, que pode ser baseada em quantidades de energia crítica que pode em sua posição final. Segundo Chun e Raisdon (1987), como reforço o modulo da barreira de transporte em corrida de
necessário para se executar uma etapa crítica de operação, minutos, condicionando-se este intervalo como o tempo determinação pode ser talhado de uma vez a cada 20
ocorrência perfeitamente pode ser tampo de uma vez a cada 0,75 m/s. A frequência de de 0,80, 1,20 e 1,60 metros, a cada 20 minutos de operação.
ocorrência de valores de duplicação também de uma
quintuplicc de mais tempo para mudar a ampliação de de
espadelho, passa jutara e estáticas em estiramento do
estimado para o movimento vertical da extrapoldado ao
análises de manter a comparação, se referem a jutara e
jornamento. Outros critérios adotados na mesma referência e
não poder ser excedido mais do que uma vez durante o
transitário do quintuplicação da operação a 2 grupos, não que
aprenda os quintuplicação dos estudos de referência. Uso dos baseados nele princípio, um determina o movimento
Hoffman e Fitzgerald (1978) sugerem outros critérios
Local a ser analisado.

adaptado pois também requer dados observados ou medidas.

estados admsorvem. No entanto, tal modelo não é fácil

estados de mar calmos e severos ocorre sépere através de

transição triangular, admissível-se que a transição entre

mar e termos de uma cadeia de Markov com uma matriz de

at. (1974) descrevem um modelo de persistência de estados de

registros tempestuosidade durante verificações. Normais, potência e
aplicáveis apenas em locais onde uma extensa geração de
aperto de uma determinação condicional. Tal abordagem pode ser

distrito daço o período de persistência de estados de mar

abordagem e a falta de um modelo teórico que considere uma

estados revelam-se operação superiormente. A distinção pode ser
construir a operação do período de tempo em que as condições dos

para um determinado estado de mar, junamente com a

probabilidade de se exceder determinações válidas de resposta

condições operacionais sejam estratificadas em termos de

Hoffman (1987) e Chen e Watson (1983) sugerem que as

costas são admsorvem estratificationes, alguns autores como

normamente ultrapassam o período de tempo para operar.

interesse dessa distinção, as operações de RC

dos critérios de operação, e no caso maré e operações de

estados de mar calmos, nos estados em que uma embarcação possa

dos critérios de operação e termos de persistência de

embarcação ser a estabilidade mensura

uma terceira abordagem para a determinação da

derrenolutoamento ou decapamento de uma condutora mar

el o

critérios os períodos de mudança de condutora, isto é, a

4 horas conforme as condutoras de mar, sendo os casos marés
O operacionalidade desenvolvida no presente trabalho, de um modo gênero representar o modelo de

Recebe três fatores por forma distintos nos capítulos e

ambientais.

1 - da característica de respostas da embarcação às condições

2 - da operação a ser realizada;

embarcação poder operar, depende basicamente de três fatores:

Embarcação, entendida como as condições favoráveis para a

De fato mencionado que a operacionalidade de uma

6.4. MODELO DE OPERACIONALIDADE

EC.

Presente trabalho para a determinação da operacionalidade de

Parágrafo seguinte seria apresentado o modelo adotado no

operacional é para se determinar a operacionalidade, no

maneira mais adequada para se considerar as condições de

de desconsiderar dos estados de mar, e que irão determinar a

cooperar por tal dado, aliás da adequação de modelos teóricos
dos ou medidas, sua forma de representação e o período

correlacionar de estudos de mar. A quantidade de dados obtida

curto prazo, como a representação, de longo prazo da

tanto no que se refere aos modelos adotados para a análise de

ambientais para o local onde a embarcação devede operar,

do nível de representação e contabilidade das condições

caminho dos critérios de operação, a determinação da

qualquer que seja o princípio adotado para o estabele-
Intervalos de \(H^e \) e \(H^o \) dever-se-ão considerar a espetrometro determinando estado do mar e representando pelo cruzamento dos na Táb. 6.1. Perto de cada grupo, gue caracteriza um

\begin{equation*}
\text{distribuição de correntes de estados do mar, como ilustrado construções em termos de interações nas tabelas de de mar tipos da região a ser considerada. H^e \, e \, \text{ISSC, } \text{se referindo a quarteto um dos períodos características utlizado/com, deverem estar ligeiros ao dos períodos ISSC,] que serem utlizados no modelo os valores de } H^e \, e \, \text{um função de}}
\end{equation*}

\begin{equation*}
S \left(\theta \right) = S \left(\theta \right) \ (\gamma \left(\theta \right)
\end{equation*}

\begin{itemize}
\item no Cap. 5:
\end{itemize}

função de espetrometro, de modo a ser, conforme diretivo

distribuição do modelo de doses para estudos do ISSC como uma

à espetro writes como método represente o mar na região considerada.

espetro que melhor represente o mar na região considerada podem ser adotados. Caso contrário, é o modelo matemático de poder ser adotados. Caso contrário, é o modelo matemático de

considerações como representações do mar da região, as mesmas partes de registros de andar, no local que possam ser

espetros de andar, de forma distintas espetros gerados ao espetro do mar no local da operação, feita através do

o primeiro passo a ser executado é a representação do

(1) representações dos estados de mar

Fig. 6.2, e depois a seguir:

operacionalidade e ilustração no diagrama apresentado na

A metodologia utlizada para a determinação da

44
Fig. 6.2 Representação esquematica do modelo genético para determinação da operacionalidade em base mensal.
e a fdp de H e C
\[
\frac{t}{\int_{-\infty}^{\infty}} = \tilde{C}
\]
d e onde se trata facílimente que
\[
\frac{t}{\int_{-\infty}^{\infty}} = \frac{t}{\int_{-\infty}^{\infty}}
\]

Satisfazer as relações:

gadro, de modo que suas fdp são constantes, se derem a isso de H e L são um transformação distribuição dentro de cada se nendo a probabilidade de H e L respectivamente. Além disso, e g(\tilde{t}) de H e L e fdp de H e L e g(\tilde{t}) do H e L d = \int_{-\infty}^{\infty} H d P

des dentro de um gruado, tem-se que de H e L. Como as variáveis são admitidas como independente representem a função de densidade de probabilidade conjunta \(\frac{t}{\int_{-\infty}^{\infty}} \) e \(\frac{t}{\int_{-\infty}^{\infty}} \) e L são os limites do intervalo de H e L e onde \(\frac{t}{\int_{-\infty}^{\infty}} \) e \(\frac{t}{\int_{-\infty}^{\infty}} \) são os limites do intervalo de \(\frac{t}{\int_{-\infty}^{\infty}} \) e \(\frac{t}{\int_{-\infty}^{\infty}} \) e L.

\[
\frac{t}{\int_{-\infty}^{\infty}} = \frac{t}{\int_{-\infty}^{\infty}}
\]

ela pode ser representada como \(\frac{t}{\int_{-\infty}^{\infty}} \) para o grupo considerado, chamando-se de S(\(\frac{t}{\int_{-\infty}^{\infty}} \)) a média de S(\(\frac{t}{\int_{-\infty}^{\infty}} \)) (a média de S(\(t \))) a média de S(\(t \)) e uma função de duas variáveis de grupo. De tal modo \(\frac{t}{\int_{-\infty}^{\infty}} \) e \(\frac{t}{\int_{-\infty}^{\infty}} \) e \(\frac{t}{\int_{-\infty}^{\infty}} \) são variáveis aleatórias e uniformalmente distribuídas dentro de um intervalo infinito e \(\frac{t}{\int_{-\infty}^{\infty}} \) são variáveis aleatórias representativas daquele estado. Segundo Haver e Mcan (1982), à
Parte da equação expressa:

ser caracterizada pelos seus momentos de ordem 1, optando a principal da propagação da onda. O espectro de resposta pode
sendo o ângulo entre uma direção quadrante e a direção

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

espectro de resposta da embarcação e dado por

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

uma vez considerado o estado de mar calmo e a

Resposta da embarcação fazendo-se o cruzamento espectral para

\[(\phi - \alpha \phi) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

Gruppo representativo dos estados de mar aórtados, dada por

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

modo que a obtenção de \(\phi (\theta + \alpha \theta) \) como constante para cada frequência de

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

pode-se admitir \(\phi (\theta + \alpha \theta) \) como constante para a representação da

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

pode-se obter uma expressão analítica simples para \(\phi (\theta + \alpha \theta) \) e possa ser representada como um espectro ISSC. Para que se

c characterize como constante de acordo com o período

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

onde

\[\phi (\theta + \alpha \theta) \]

\[S \left(\frac{\pi}{2} - \theta \right) \]

A expressão (6.1) pode ser escrita como

\[e \quad \text{fp de } \phi \]
embarcareço pode operar.

limite para altura significativa de onda para as quais a
com tal critério pode-se tambem f匠camento estabelecer os
\[a = \frac{5}{4} \]

expresso:

se parte do momento de aceleração do espectro de resposta pela
cruzamento espectral, a resposta significativa é obtida a
das condições de ond lavorecidos a operação a partir do
mar, sempre considerando o efeito imediato da determinação
movimento vertical da ponta de roda. Trata-se de critério
litimo para a resposta significativa de um
0 primeiro deles das resposta ao estabelecimento de um
1 formar os critérios análises dos
para uma determinada operação. No presente trecho de
anteriores, divergencias e os critérios que podem ser aplicados
no estado de mar considerado. conforme descrito em tone
analises da determinação-se a embarcareço pode ou não operar
a partir da resposta aos critérios de operação

(3) Verificaçãodos critérios de operação

\[\phi \in (\sigma) \]

\[\sigma \in (\sigma)^{0} \]

\[\sigma = (\phi) \]

418
A Tab. 6.1 ilustra um exemplo de distribuição de estados favoráveis a operações. Possa ocorrer a probabilidade de ocorrerem desses mesmos estados favoráveis ao longo prazo de estados de mar, para que se opira, a partir da operação, a operacionalidade e otimização da operação.

uma vez determinados os estados de mar favoráveis e

\[\mathcal{H}(X) \psi = \sum_0 \mathbf{H}(X) \mathbf{F}_1 \psi \]

em caso contrário:

estado de mar: manterá independente tempo-se para cada um deles e para cada

considerando-se a aplicação dos critérios de operação de

que a reação ocorrer os estados de mar favoráveis a operação.

a característica da onda, introduzindo-se uma função

characterísticas para altura estáticas e período

caracterizado pela altura estática, e período

or corrente no local da operação, sendo ao estado de mar

ser computados para todos os estados de mar que possam

ser representados por seus espectros, de modo que eles sejam

response e das condições de operación para um único estado de

os itens 1, 2, 3 e 4 acima determinam a avaliação da

determinação da operacionalidade

4 estadoamento dos estados de mar favoráveis:

contribuído e favorecido a operação.

Risco acidental "a, para se determinar se o estado de mar

o valor calculado e estabelecer como variável de

(6.1.4) \[\psi \approx \exp \left(-\frac{1}{2} \sigma^2 \right) \]

excêder esse valor e dada por:

por \(\sigma \) o limite estabelecido, a probabilidade da resposta

Ravieža que depende somente da sua variação, determinando-se
No en tanto se a operação tiver que ser efectuada com um

das condições de mar, por exemplo, se o approxamento
aproximante fixo prevêmente estabelecido antes da salvação

(\int H^x dJ \int) M = (\phi \chi) M

embarcações para o mes \(e \) opção por

\(\phi \int \int H^x dJ \int = (\phi \chi) M \)

mediante pelo valor de \(H^x \). Tem-se entanto:

em embarcações poder operar um funçao da seivação do mar

(\int H^x \int dJ) M = (\phi \chi) M

pendurando-se por \(\phi \) a probabilidade de ocorrer

peço numero total de ocorrencias do grupo de \(H \) considerado.

de \(H \) considerado (cuasamento de linha e coluna da tabela)

de ocorrencias do intervalo de \(\phi \) junamente com o intervalo

representado por cada coluna, e opção da intervalo-ese o numero

dos intervalos de \(H \) representados por cada uma das linhas da

distribuição de probabilidad conjugada de \(H \) e \(\phi \) a partir da

150
exceder um valor esperado pode ser expresso como:
em contrário às variações de \(\sigma \). A probabilidade de a resposta
estar dentro de uma distribuição normal é, em média, \(\sigma \) e
ser aproximadamente por uma distribuição normal em valor
(0,7) e (7,9) (8,91) e (7,97) e (7,98) e (7,99) e (8,0)
em relação às variações de \(\sigma \), assume-se (chin e
empresas) de tornar-se considerado a incoerência na resposta da
incoerência em tornar-se considerado as
proporções sobre a resposta podem ser diretamente relacionadas
proporções sobre a resposta, portanto a incoerência
por sua vez têm a ver com o ter diferentemente considerado
no parâmetro \(\sigma \) da resposta da embaraçado. \(\sigma \) em
razões na forma do espectro, que \(\sigma \) em proporções
 deter- numerosos parâmetros \(\sigma \) e \(\sigma \) existem proporções
em \(\sigma \) da variação em \(\sigma \) da resposta. Para um dado estudo de mar
pazo e dada pela distribuição de Rayleigh e dependente apenas
a distribuição da resposta de uma embaraçado no curto

6.4.1 Considerações sobre a variância na forma do espectro

\[(\phi) \int (\phi x)M \] = (x)M

Excluindo expressa porque:

das ocorrencias de alturas significativas, a operacionalização
diretamente de onda e aditiva-se que tal distribuição independe
dos valores do \(\phi \) e \(x \) em \(\sigma \) e \(\sigma \) de

em local da operação, e necessários que se avale e
em estabelecimento em termos de uma estrutura física como uma

151
Espectros de deslocamento no Apêndice E.

mar. O modelo para considerações da incerteza em forma dos
incertezas em forma do espectro para um determinado estado de
por Haver e Mann (1983) e outros (1990) referências a
matemático utilizado, mas referência em estudos e trabalhos
resposta em termos de uma variância na formação
da presente discussão, a consideração da variância da

Na presença destas variáveis, a consideração da

determinação em termos de mátriz singularidade de outras
espectro representativas dos estados de mar da região,
representada por Chan (1980 e 1982) a partir de famílias de
considerações espectro de uma parte dos registros de onda, e
A estimação dos valores de n e ó quando se

A partir de operações analíticas de pesquisa
considerações na resposta da embarcação, sejam consideradas as
6,5 acima, para que as incertezas na forma do espectro, e
A expressão 6.4 deve ser substituída pela expressão

\[\left(\frac{\partial Z}{\partial t} \frac{\partial \theta}{\partial t} \right) \exp \frac{\theta - \mu}{\tau} = (\theta) \]

onde \((\theta) \) representa o fator de distribuição de \(\theta \) dados por:

\[(6.5) \quad \int_{0}^{\theta} (\theta) \exp (\theta t) \left(\frac{t^{\theta}}{\tau} \right) = (\theta < t) \]
Tabela 6.2. Porcentagem de ocorrência de altura significativa para a bacia de campos em base mensal.

<table>
<thead>
<tr>
<th>Altura Significativa (m)</th>
<th>0 à 0.5</th>
<th>0.5 à 1.0</th>
<th>1.0 à 1.5</th>
<th>1.5 à 2.0</th>
<th>2.0 à 2.5</th>
<th>2.5 à 3.0</th>
<th>3.0 à 3.5</th>
<th>3.5 à 4.0</th>
<th>4.0 à 4.5</th>
<th>4.5 à 5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campos</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: PETROBRAS/CENPES

Tabela 6.1. Porcentagem mensal de ocorrência de altura significativa para a bacia de campos de zero acendeante.

Fonte: PETROBRAS/CENPES

<table>
<thead>
<tr>
<th>Mes</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>4.5-5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Fonte: PETROBRAS/CENPES

Nível de Resolução: 226

<table>
<thead>
<tr>
<th>Compressão</th>
<th>0 à 10</th>
<th>10 à 30</th>
<th>30 à 50</th>
<th>50 à 70</th>
<th>70 à 90</th>
<th>90 à 110</th>
<th>110 à 130</th>
<th>130 à 150</th>
<th>150 à 170</th>
<th>170 à 190</th>
<th>190 à 210</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fonte: PETROBRAS/CENPES

Para a bacia de campos para a altura significativa e período de zero acendeante.

Tab. 6.1. Porcentagem mensal de ocorrência de altura significativa de zero acendeante.
dupla amplitude do movimento (2π e 4π) específicam nos de rayleigh, pressões limites formam estabelecimentos em termos da movimentação em desempenhos excedentes, oferecendo uma parte da distribuição as propriedades de que os limites estabelecem para esses encontrarem em um modo adaptar o argumentar e correrem no modo adaptado, afim de apresentar langes das embarcações consideram para os estados de mar

\[\text{9. Apêndice C: Apresentar os resultados de resposta} \]

O modelo do ISS descreve um capitulo 5.

Para descritério da curva prazo dos estados de mar foi adaptado um novo de obtenção de registo de ondas na base do campos. As tabelas se referem a registos de mar obtidos durante e apresentadas na Táb.6.2, permitem estabelecer a distribuição de percentagem de correnteza de alturas significativas de ondas porcentagem de correnteza de alturas significativas de ondas, apresentadas na Táb.6.1, períodos de zero ascendente de ondas, apresentadas em Táb.6.2.

Períodos de 1985 a 1987. A descritério de longo prazo e refer direta em forma de campos de características dos estados de mar, formam orígenes de estudos de mar considerados e referem-se a base de métodos.

Casos representados consideram um comportamento de cabo de 45 nível de ritmo aceitével, para um gama men de 2000 ton. Os

\[\text{6.5 Resultados} \]

15
Apêndice C.

As demais podem ser anotadas através das tabelas do diretório, apenas três diretórios principais são apresentados.

O operacionalidade tende a continuar para as detergências de 20 grupos, com espalhamento de energia. Como a consideração das detergências de onda de 0 a 180 graus em intervalos embaraços e representadas nas figs. 6.7 e 6.12. Forma destacada no item anterior, a operacionalidade das termos do estabelecimento em um nível de risco "A" como para o segundo critério de operacionalidade.

Movimentação e gue deve estar no operacionalidade quando comparado como o pitch e roll, e que porcento esse vertical da ponta da lança e sempre o movimento mais critico.

Tab. 6.3. Para ambas embarcações nota-se que o movimento representa nas figs. 6.3 e 6.4 para a Barca e 6.5 e 6.6 quando uma embarcação pode operar. Taís estes de mar são valores limites de altura significativa de onde para os termos da resposta significativa pode-se opor diretamente os termos ou critérios de operacionalidade seg estabelecimentos em quando os critérios de operacionalidade.

Tab. 6.3. Valores Limites Para Operacionalidade

<table>
<thead>
<tr>
<th>T,2 m</th>
<th>Ponta da Lança</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>Pitch</td>
</tr>
<tr>
<td>0,4</td>
<td>Roll</td>
</tr>
<tr>
<td>Limites da Resposta (Zs)</td>
<td>Movimentação</td>
</tr>
</tbody>
</table>

155
métodos considerados no rendimento da embalagem, com a mesma
comprimento de cabo de 1 metro de 75 metros, nota-se uma
Analisando-se a percentualidade da SS aparente com um
na Fig. 6.9.
coerção para indução da ondas de 180 graus como justitroco
até sobre o critério 2. Para a barreira, uma pequena diferença
emite com um valor de 10% para a, se determinada
operacionalidade determinada através do critério 1 e o
com a distribuição do raiotégrafo. No caso da SS, a
response exceder o valor da resposta significativa, de acordo
nível de risco admisible de 13.3% que é a proporção da
significativa do movimento e angula e se estabelecer um
anômalo ou critérios e gerais de engenheiros para limitar a resposta
pratamente neutra diferença considerada. Na realidade
quando as medidas para os critérios, nota-se que não haver
comparando-se a operacionalidade das embalagens
ondas de 90 e 180 graus.
valores de 5 e 10% para a, uma pequena metáfora ocorre
por 80% do tempo total. Quando se considera a comparáveis e
períodos do e ao se antecipar um tempo operacional do mais de
quando se comparar com a barcare a podendo-se em alguns
para a SS e indispensável o seu melhor rendimento
0% que não se alterando entreraranto para 90 e 180%.
operacionalidade tende a apresentar métodos resistentes para
diâmetro praticável de indução da. De 5% para 10% de risco e
bastante crítica como ondas de popa (0,0) do carcaçerazem como
exceder o limite estabelecido, a operação da barcare a torna
significa que em 95% do tempo da operação a resposta não deve
Nota-se que se for estabelecido como 5%, o que
março e novembro que correspondem ao período de inverno, e os meses de março, abril, maio, junho, julho, agosto, setembro e outubro, por se tratar de meses de primavera, verão, outono e inverno. Por outro lado, apresentam um grau de divergência estatística, correspondendo a variáveis que não estão generalizadas e que têm suas quadrantes estatísticos, que apresentam dados baseados em média e estatísticas de correlação. As características dos dados apresentados no quadro são operacionalizadas em barras e em gráficos e tabelas de operacionalização da barra e da SS em estudos de mar relógio ao local de operação, formando uma característica do modelo compreendido de acordo.

Para se verificar a dependência da operacionalização em compreensão de quadrantes e suas operacionalizações para divergência em no caso da barreira praticamente nenhuma diferença.

Características menores.

devido ao seu método de operacionalização em ondas com períodos rendimentos da SS pode realizar este bem melhor para tal caso corre para uma faixa de períodos de até 6 a 8 segundos, o baixo de campos, enquanto os dados apresentados na Tabela 6.1, pendente de eventos, devido a registro em que os efeitos de ressonância do meteoro, devido a registro que os efeitos de ressonância em complementarmente menor e com um compreendido de cabo de 15 do tempo. A diferença entre o operar com compreendidos do podendo operar praticamente ao longo de tempo durante quase
Por outro lado o fato de uma embarcação poder operar

efetiva operacionalidade.

sintetizam-se, de modo que tais diferenças acabam não tendo
poder no ângulo satisfazer os critérios de operação
embarcações para duas condições de operação diferentemente, amenas
apenas de haver diferenças consideráveis na resposta da
destruição de ocorrer também os estados de mar. Multas vezes,

efeitos quando se considera os critérios de operação e
nas diversas direções de onda, outro fator é a atenuação dos
energias dos espectros, mas tais fatos ao espalhamento de energia
transferência da resposta, devendo nogo a distorção do de
atenuação das diferenças observadas na função de
mar treinadas em parte do cruzamento espectral, ocorrente um
ao ângulo de que, ao se considerar a resposta da embarcação em
amplitude e captura de arquétipos. Isto é de se desenvolvere
apenas das diferenças que ocorrem na resposta das embarcações
de operação, pode apresentar diferenças bastantes pequenas
operação de operações ou condições de embarcações para condições de
da análise dos resultados de estudos acima verticais e

que a operacionalidade das embarcações de

destruíram a operacionalidade das embarcações.

Locais com características de mar mais severas afetam
referência às condições na boca de campos, percebe-se como
verão. Comparando-se a operacionalidade e uma grande diferença entre os períodos de
de verão e inverno demonstrando que operações com os de
embarcações, uma grande diferença ocorre entre os meses de

As Fig. 61 & 6.15 ilustram a operacionalidade das
mas favoráveis a operações, os meses de julho e setembro.

158
grande parte dos mares ocorre neste e determinado local, ao
obter-se a um modelo matemático que seja representativo de
distritos no caputrio 5. Poete-se considerar portanto, que a
única, a presença de sólids, dentre outros que já form
severamente do mar, a direção principal de propagação das
tre depende de uma série de fatores como por exemplo a
ele reputado a realidade. A agravamento dos modelos matemáticos
as condições de mar, como em outros ser bastante grosseiras
de estados de mar, que poder ao certo casos bem representar
modelos matemáticos de espectro 30 aparente um representação
até que se espectro de onde, vale observar o seguinte,
como referência a descritório de curtto prazo, entre
modelos de descritório dos estados de mar no balato de campos.
ácima e faz necessária, no que se refere a agravamento dos
uma observação final sobre os resultados distritos
10° como na operacionalidade da barcareia por exemplo.
ão que é eficaz pode entrar a valor de a de 50%
direções de onde, no quando seraltera o valor de a de 5%
quando se considera o mesmo critério de operação e direções
te, esse é tão pode explicar as grandes diferenças encotradas
período de zero ascendentência entre 4 e 6 segundos. Inversamente
casos -- e com aproximadamente 50% de ocorrecência de mares com
com frequência de ocorrecência bastante concentrada em mares
com modelo de distrituição de estados de mar da balata de campos,
esse aspecto é bastante relevante quanto à frequência de ocorrecência de mar considerada.
frequência de ocorrecência dessas condições de mar considerada, conforme a
que poder operar no mesmo mar para outra condições, terem um
em determinado estado de mar para uma determinada conduto e
mar, como apresentado no Apêndice B, e bastante afegadinha para a forma do espectro para descriptação do curto prazo de estados de

e modo de um modelo que considere a variação na

necessitada.

que a adoção de um simples modelo matemático se faz

espectro de mar mais adequado para a bocca de campos, de modo
correlacionado entre atributos significativos de uma e tipo de
do mar. É importante notar que a interseccenção de um modelo de

amostras de modelos mencionados não so acontecimentos para descritação

presença de swell em mais locais contrastantes, em tal caso,

superposição de marés geradas em recifes distantes são de

de energia em faixas distintas de frequência, bem como em certas condições, no seia há uma correlação

pseudotidale e faixas distintas de frequência, bem como em certas condições um

outro lado a característica do mar em campos apresentem uma

que em outras ocasiões o modelo JONSWAP média e adaptada, por

por um modelo de Persson-Moskowitz como o modelo do ISS, e
demonstrarão que em algumas situações o mar pode ser descripto

formas estacionárias como em seiva de souza (1988), que

estudos sobre as condições amplamente na bocca de campos de

a obtença de um modelo de curto prazo adequado. Além

registros de ondas obtidos está longe de ser satisfatório para

no caso da bocca de campos, a pequena quantidade de

disponíveis.

nenecessidade de e se fazer uso dos modelos matemáticos

dos por um modelo matemático com pontos parente. Da

significação que os espectros obtidos poderem ser bem representar-

ou seja, diferentes aos de medição. Mesmo assim, isso não

no local em questão durante período de tempo bastante longo,

possivel a partir de registros de mar obtidos contrastamese
Campos para um período muito longo.

tomados como representativos das condutas ambivalentas em
distintos lugares de longo prazo de estados de mar e mar de
condutas, os mesmos servem mal como um modelo de representações de
conduzindo a grandes um ano de meditação dos condutas de
mesmos pode se dizer sobre a descrição de longo prazo

A metodologia para o cálculo de operações matemáticas

161
Fig. 6.4 Estados de Mar Limitees Baseados nas Condições Barcaça

Límite Operacional

Fig. 6.3 Estados de Mar Limitees Baseados nas Condições Barcaça

Límite Operacional
Fig. 6.6 Restrições de Mar Limites Baseados nas Condições de Limite Operacional

SS

Fig. 6.5 Restrições de Mar Limites Baseados nas Condições de Limite Operacional

SS
Fig. 6.8
Barcaça - Operacionalidade em Base Mensal

Fig. 6.7
Barcaça - Operacionalidade em Base Mensal
Fig. 6.12 \(T = 75 \text{mm}; \) Critério de Operação 2 - \(a = 10\% \)
Operacionalidade em Base Mensal

Fig. 6.11 \(T = 75 \text{mm}; \) Critério de Operação 2 - \(a = 10\% \)
Operacionalidade em Base Mensal
Fig. 6.14
SS - Operacionalidade para o Mar do Norte

Fig. 6.13
Barcaça - Operacionalidade para o Mar do Norte
Fig. 6.15: Criterio de Operación 2 - a = 10%

SS = Operacionsalidade para o Mar do Norte

<table>
<thead>
<tr>
<th>Mês</th>
<th>0-180 ton</th>
<th>60 grupos</th>
<th>180 grupos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operacionsalidade SS

2000 ton

75 M
aperceção, um modelo mais completo deve ser desenvolvido para uma escolha de ambientes. É importante destacar que a execução do estudo operacional pode ser adaptada como uma ferramenta de pesquisa para a mesma ferramenta.

Sobre o modelo de operacionalidade proposto, o mesmo foi considerado.

Ressalta-se que nos momentos em que frequências próximas e determinações das frequências naturais do sistema, pois a acentuação das frequências de um movimento do mundo, além de se notar a importância da caracterização da resposta de uma ou quando se chega a um momento de askedo, pode-se ver que a diferença é embarracada para se prever a resposta do sistema durante a se considerar os efeitos aplicados entre o mundo e a interação entre conceito-se do trabalho e importância de.

and.

Portanto, de tempo operacional para os diversos períodos do operacionalidade de embarraco é a fim de se poder prever a de operacional, foi proposta um modelo para determinação da resposta da embarraco e das condutas ambientais no local. Embarraco e do mundo suspeito. A partir das características do efeto do acompanhamento existente entre o movimento da análise dinâmica de DC no contexto da frequência considerável o trabalho produzir apresentar um modelo teórico para

2. CONCLUSÕES E RECOMENDAÇÕES

169
Locato.

com maior precisão a operacionalidade de empregadores negativos

em que se gerer dados mais consistentes para o poder prever

estudo interno das condições ambientais na bacia do campos, a

estados de mar. Nessas condições linhas pode ser recomendado um

considerar-se uma distribuição do período de persistência de

comparar-se os resultados de estados de mar, como um modelo que

continuamente desde, seja o desenvolvimento de modelos mais

outro estudo de importância que pode ser tirado como uma

que possam ser mantidas nos domínios da frequentia.

outras etapas da operação que envolvam fumagens intereiras e

ser considerados critérios para a mensura. Além disto e sugerir-

toda a operação, identificada como todos os aspectos que possam

operar uma análise completa do comportamento de rc durante

outras etapas da operação de isenção, para que se possa

presença estudo deve-se mencionar interação em análise de de

como recomendadas práticas para a contínuação do

é análise de operações.

gerando figuras de metas de grande valor para o planejamento

pode ser feita de maneira bastante agil

limites para a resposta. Comparação entre diferentes valores

do valor da resposta em função do risco envolvido na

niveis da probabilidade aceitáveis para se exceder determina-

dade, tais como diferentes critérios de operação, diferentes

considerar diferentes parâmetros na análise da operacionalidade.

A teorização da modelo se deve a faculdade de se

Incorporar custos de alocação ou de operação das mensura.
REFERENCES BIBLIOGRAFICAS
the design of a platform/derick semi-superstructure barge.

Grosch, S.; Chou, P. S.; Huang, P. W. A rational approach to

P.161-70.

offshore crane vessels. In: Offshore Technology Conference,
Clauss, G., F. Rieker, T. Operational limitations of

construction planning and scheduling. Maritime

Chen, H.j. Ranson, P. Systems approach to offshore

P.504.

1. Offshore Structures. In: Offshore Technology Conference,
the 20-year hindcast wave data in the design and operation of
Chen, H. J.; Chen, H. J.; Hoffman, D. The implementation of

responses for design and operability evaluation. In: Offshore
Chen, H. J. Long term prediction of offshore vessels

Offshore Structures, 3. Cambridge, 1982. Boss 82 :
structures. In: International Conference on Behaviour of
 variations in the design and analysis of marine
Chen, H. Effect of wave spectral shape and directional

HYDRODYNAMICALLY INDUCED FORCES ON A SEMISUBMERGIBLE

HORRIT, J. P. A mathematical method of determining

HORRIT, J. P. Oscillatory wave forces on small bodies.

Mechanical Engineers, 1975, P. 258-77.

and structures in waves, 1974. London, Institution of
International Symposium on the Dynamics of Marine Vehicles
and Structures in Waves: Papers Presented at
vehicles and structures in waves: the dynamics of marine
HOBBS, W. J. Standing, R. C. Wave loads on large bodies. In:
Hobben, N. "Standing, R. C. Ocean Wave Statistics." London,
HOBBS, N. J. NUMB, P. E. Ocean Wave Statistics. London,

HOPFMAN, D. P. Fitzgerald, W. K. Systems approach to offshore
crane ship operation. Transactions of the Society of Naval

HOPFMAN, D. P. Fitzgerald, W. K. Systems Approach to Ship
Distribution and some of the Applications. Journal of the Rayleigh
HOPFMAN, D. P. Rayleigh, J. The theory of the Rayleigh
Tromhöft, Norwegen Institute of Technology, 1987. V.1
INTERNATIONAL SYMPOSIUM ON PRACTICAL DESIGN OF SHIPS AND
Jacket Launching, Pipe Drifting and Jacket Operations. In:
Installation of offshore platforms with emphasis placed on
installation of offshore platforms with emphasis placed on
Michaelston, F. C., Zandwijk, K. A. J., Bencuin, J. 4, on the
Michaelston, F. C., Zandwijk, K. A. J., Bencuin, J. 4, on the

20979, Securemo, 1984

Interfla Pressores e Motrimentos durante o Desmonte do Modulo Pela RG-1

Transactions of the Society of Naval Architecture and Marine

Transactions of the Society of Naval Architecture and Marine
OFFSHORE ENGINEER. Raisting consciousness on all design touch. P.46-77. Ang. 1987(1).

OFFSHORE ENGINEER. Dual crane lifts: power with a sensitive

Architects and marine engineers, Transactions of the society of Naval ocean structures. Transactions for the design of ships and occu. M. K. wave statistics for the design of ships and

Vessels in lifting operation, in: Offshore Technology
moriru, n. 'Sasaki, T. motion characteristics of crane

(1)

Future installations in deep waters. (presentation at the S.C.V. McCoer 7000° Influence and advantages for

MICCOERI S. P. A. CORP. one year of experience operating for

P.462-91.

derick barges in construction of large offshore structures.

Sekita, K.; Shimada, H.; Tanivama, M. The operability of

35.

International Conference on Offshore Mechanics and Arctic

analytical and nonlinear time domain simulation. In: response to regular waves. Integrated frequency domain

Schelin, T. J. Sharma, S. D. Jiang, T. Crane ship

Sarkarya, T. J. Isaacson, M. Mechanisms of wave forces on

sea loads. Transactions of the Society of Naval Architects

Sauvieson, N. J. Tuck, E. O. Paltinen, O. Shipt motions and

V. 20, No. 10, 1974

Offshore Construction Alternatives. Management Science,

Rothkopf, M. H., et al. A weather model for simulating

downtime for derrick barges. In: Offshore Technology

Rawston, P. J. M.; Bright, C. J. Prediction of weather

177
Mechanical Engineers, 1975. P. 113-34.

Mechanical and structural design in waves. 1974. London, Institution of
Engineering and Management Symposium on the Dynamics of Maritime
Vehicles and Structures in Waves: Papers presented at

K. C. Tong, R. E. Duncan, P. E. Modelling the dynamics of

Tong, K. C.; Duncan, P. E. Modelling the dynamics of

mechanical engineers, 1975. P. 113-34.

and structures in waves, 1974. London, Institution of

International Symposium on the Dynamics of Maritime

Vehicles and Structures in Waves: Papers Presented at

Bishop, R. E. D. Price, W. G. ed. The Dynamics of Maritime

St. Denis, M. On the motions of oceanic platforms. In:

1979. (NMI Report, R74)

Offshore structures. Petroleum, National Maritime Institute,

Standing, R. G. Use of wave diffraction theory with

W. G. Standing, R. G. Use of wave diffraction theory with

- Coppé.

- Ingenharia de Oceania, Universidade Federal do Rio de Janeiro

Rio de Janeiro, 1988. Dissertação (Mestrado) do

Severo de Souza, M. H. ? Clima de ondas ao Norte do Borda do

1986. V. 3, P. 547-54.

Analysis of offshore structures. In: Offshore Technology

and shifting tension on crane vessels during heavy lifting
ZHENG, X. : McGREGOR, R. C. Prediction of motion wave load.

WENHAUSE, J., V. IAITJON, E., V. Surface Waves. Encyclopedia

Technische Hogeschool Delft.
WIER, W. H. The hydrodynamic forces and ship motions in
vessels, 1978.

and Bacon, 1978.

Da equação de Bernoulli a pressão agente na superfície

"(...) é ligeira ao gás de condensável,

uma oscilação forçada da embarracação nos seis grãos de

\[f = 7 \ldots \ldots 6 \], representam os potenciais de onda irradiação de

devido a uma diferença de pressão da embarracação, outra

perturbação pela presença da embarracação e o potencial

onde, \(^0 \phi \), representa o potencial da onda incidente, por

\[\frac{1}{g} \sum_{i=1}^{7} \phi_j + ^0 \phi = \phi \]

pode ser descrito por

representando pela superfície da ceita problemas distintos e

interações de modo que a potencial de veiculadas pode ser

na superfície da água e na superfície do corpo, podemos

embarracamento de pequenas amplitudes, as condições de contorno

não viscoso, e assumindo-se atitudes de ondas e oscilações da

de um fluido, estabelecendo escamamento interacional e fluido

considerando-se a teoria potencial para o escamamento

oscilando na superfície do mar.

portabilidade de veiculadas do escamamento ao redor da embarracamento

forças de excitação de ondas, envolve a determinação do

embarracamento para a obtenção dos coeficientes hidrodinâmicos e

o problema de determinação da gás do fluido sobre uma

EMBARCAÇÕES.

RESTAURANÇO HIDROSTÁTICA E FORÇAS DE EXCITAÇÃO DE UMA

REPRESENTAÇÃO DOS TERMOD AS MASSA ADICIONAL, AMORTECIMENTO.

APÊNDICE A

A.1
\[
0 = \frac{\varepsilon \rho \phi}{\phi \phi} + \frac{\sigma \varrho}{\phi \phi} + \frac{\varepsilon \rho}{\phi \phi}
\]

No

Laplace tem-se

corpo, na superfície livre e no fundo do mar. Da equação de
contorno na fronteira do fluido, que seja, na superfície do
água, é que se obteve o Laplace no domínio fluido e as condições de
para o potencial do potencial o mesmo deve satisfazer

(4.3)

\[
-\nabla \phi = \mathbf{f}
\]

Pode-se de fato como

considerando as partículas fluidas oscilantes harmonicamente,
sendo \(\phi \) o potencial de velocidades gerárco e
acordo com a descreção apresentada a seguir.

Hidrodinâmica o problema pode ser formulado de

Fase como a velocidade

paralela em fase com a aceleração da embaraço e outra em
que representam as forças de reação hidrodinâmica com uma
forma, \(\phi \) e \(\phi^{*} \) do potencial \(\phi \) e \(\phi^{*} \) forças de
exército de onde, enquadra-se potenciais forças de
embaraço, que potenciais forças de

Na obtenção das forças hidrodinâmicas agentes numa

\(\phi^{*} \) e \(\phi \) forças de reação geradoras \(\phi^{*} \) em \(\phi \)
diretore-ao direção geradora \(\phi^{*} \) e \(\phi \) as coisas

(4.2)

\[
\mathbf{F} = \int \mathbf{P} \, d \mathbf{L}
\]

enquadra-se uma força hidrodinâmica na direção \(\phi \) expressa por

(4.1)

\[
\int \left[\frac{\dot{\phi}}{\dot{\phi}} \frac{\rho}{\phi} + \frac{\delta \varrho}{\phi} \right] d = \mathbf{P}
\]

da embaraço e dada por
expressa por:

Em última instância deve-se impor a impotência aos potenciais

\[V = \frac{V_0}{\phi} \]

não

\[F_s \phi = \frac{V_0}{\phi} \]

condições na superfície do corpo:

Para outro lado, \(V = \frac{V_0}{\phi} \), deve satisfazer a seguinte

\[0 = \frac{V_0}{\phi + \phi_0} \]

considerando-se a embarracação parada, deve-se ter em

\(\phi \), como os dois primeiros representam o potencial de ondas

expressas de manterá diferente para os potenciais e \(\phi_0 \).

Na superfície do corpo, as condições de contorno são

Para a superfície a superfície da água,

\[0 = \frac{\phi_0}{\phi} + \frac{\phi_0}{\phi} \]

medida dado pela coordenada \(z = 0 \). Tem-se então:

que a condição de contorno seja satisfeita para a superfície

assumindo-se que o movimento na superfície e para o

Para a condição de contorno na superfície lívrea,

\[0 = \frac{V_0}{\phi} \]

não

\[0 = \frac{V_0}{\phi} \]

e matematicamente tem-se

vetorialmente no tridimensional se a

Não fundo do mar, a condição de contorno requer que a
As forças hidrostáticas induzidas pelas movimentações fluído, descrevem a pressão potencial ao ser chamadas forças representando as partes reais e imaginárias da função complexa

\[(\phi^1 + \phi^i) = e^{-\text{rot}} \phi \]

radiais. O esforço ser escritos como

considerando-se interações apenas de potenciais de carga

na embarcação.

mesmos, observa-se a expressão hidrostática e as forças angulares
para a partícula dos

o problema consiste então, na determinação dos

\[\phi^1 = \phi^i + \phi^0 \phi \]

com

\[e^{-\text{rot}} \phi \]

no ponto de velocidade \(\phi \) na ponde ser escrita como

considerando-se apenas a componente da pressão devido

restauração hidrostática C.

reconhecida hidrostática, representações potenciais de

correspondentes ao termo das representação de

embarcação de acordo com a expressão (4.2), assim forças

inteirando-se a pressão para a superfície de

\[zd^2 \cdot 2/3d \cdot d = d \]

primeira ordem tem-se

superfície do corpo, considerando-se apenas os termos de

da expressão (4.1) para a pressão do fluído no

\[\frac{\partial}{\partial \phi} \]

a o número das amís, dado por \(x \)

onde \(u \) e a distância radial de partícul ao centro da estrutura e

1 \(e \)
suprême da embaraço. Senão (s, t, u, v) e suas coordenadas de um o tempo. De uma distrição de forças ao longo da superfície uma expressão para os potenciais ϕ e ψ dá a:

\[
\frac{\partial}{\partial x} \frac{\cosh K \phi}{\cosh K(\frac{t}{2} + \frac{u}{2})} \left(\phi \cos \theta + \Psi \sin \theta \right) = 0
\]

onde ϕ e ψ são funções de x e t.

Para ter uma linha de ondas e pade ser descreta por o potencial de velocidades da onda incidente e dado

\[
\frac{\partial}{\partial x} \frac{\cosh K \phi}{\cosh K(\frac{t}{2} + \frac{u}{2})} \left(\phi \cos \theta + \Psi \sin \theta \right) = 0
\]

onde ϕ é a onda de velocidade e t é o tempo.

Por outro lado, as expressões para a onda dentre as ondas de velocidade que numa direção gênerica ξ são expressas extratago de ondas, que numa direção gênerica ξ são expressas de desenvolvido ao mesmo tempo e expressões para a potência de velocidade a integral de campo de pressões considerando os potenciais ϕ e ψ das ondas

\[
\int_{\Sigma} \left(\phi + \Psi \right) \frac{\partial}{\partial x} \frac{\cosh K \phi}{\cosh K(\frac{t}{2} + \frac{u}{2})} \left(\phi \cos \theta + \Psi \sin \theta \right) = 0
\]

e Ψ dados por

resultando nas expressões dos coletorres hidrometraicos

\[
\Phi(t) = \int_{\Sigma} \left(\phi + \Psi \right) \frac{\partial}{\partial x} \frac{\cosh K \phi}{\cosh K(\frac{t}{2} + \frac{u}{2})} \left(\phi \cos \theta + \Psi \sin \theta \right) dt
\]

onde são escritas como

A 5
Fórmula de Restauração Hidrostática que gera

\[\text{d} x = \lambda \]

\[\frac{2(z + \lambda) + 2(z - \lambda) + 2(z - \lambda)}{2(z + \lambda) + 2(z - \lambda)} \]

\[= 0 \text{ se } \lambda \text{ é um número real puro} \]

onde \(\lambda \) é o valor principal.

\[\frac{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}{\sqrt{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}} \]

\[\frac{2}{\pi} \left(\frac{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}{\sqrt{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}} \right) \frac{2}{\sqrt{\nu}} \frac{2}{\sqrt{\mu}} \]

\[\frac{2}{\pi} \left(\frac{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}{\sqrt{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}} \right) \frac{2}{\sqrt{\nu}} \frac{2}{\sqrt{\mu}} \]

\[\frac{2}{\pi} \left(\frac{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}{\sqrt{\lambda + \mu \frac{\lambda}{\sqrt{\nu}} - \nu}} \right) \frac{2}{\sqrt{\nu}} \frac{2}{\sqrt{\mu}} \]

\[(\lambda - \mu) \frac{\lambda}{\sqrt{\nu}} - \nu \]

Por Wehausen e Lattone (1960) e expressão como:

da embrião de uma expressão para uma função de Green e da

distribuição de cada uma das forças localizadas na superfície
de coordenadas (x, y) do tijolo, e dado pela soma da

intensidade mutirão. Portanto a potencial em quadrado ponto

Green, e pode ser interpretada como uma fórmula de onde de

uma função de Green (x) como representante uma função de

\[\int_{S}^{0} (\lambda - \mu) \frac{\lambda}{\sqrt{\nu}} - \nu \text{ ds} \]

Portanto e Wehausen e Lattone (1974). Pode ser expressada como:

potenciais de vetores de um ponto ao de um ponto e como pontos por

\[\int_{S}^{0} (\lambda - \mu) \frac{\lambda}{\sqrt{\nu}} - \nu \text{ ds} \]

A.6
causar alteração longitudinal na posição do centro de

Influencas. Isso significa que um movimento de cabeça deve

Influencas da embarcação nas partes de vamente e re do centro

um momento em pitch desenvolve a diferença na altura do da

longitudinal, as forças de restauração em Head desenvolver

No caso de embarcação não estar simultaneamente a direção

\[C = \frac{a}{Cm} \]

\[C = \frac{a}{Cm} \]

Restauração é dado por

Pitch, de modo que os correspondentes coeficientes de

Tal expressão é válida tanto para o roll como para o

\[\phi = \frac{a}{Cm} \phi \]

Por

modo que o momento causado pelo diâmetro peso-Influencia é dado

Influencia resultante passa pelo metacentro da embarcação, de

embarcação. Sabendo que para pequenas influências a força de

embarcação se desenvolvem ao deslocamento do centro de Influencia da

os momentos de restauração se desenvolvem à uma Influencia da

\[C = \frac{a}{Cm} \]

que

restauração \(C \) vezes o deslocamento unitário \(s \) tem-se então

sendo a força de restauração dados por um coeficiente de

\[\rho = \frac{a}{Cm} \rho \]

Força de restauração e dados por de

de tinta d’água, de modo que a força restauradora e dados por

induz uma mudança de Influencia proporcional a área do plano

vertical de, um movimento de amplitude \(s \) na direção vertical

na Influencia da embarcação desenvolvido um movimento na direção

de neve, roll e pitch.
\[C^3 = \frac{C_3}{\rho a^4} \cdot B^1 \]

C^3 é dado por

Resposta ao histograma C^3 que deve ser igual ao coeficiente de centros de influência e gravidade. Pertencem ao coeficiente de onde B_G1 representa a nova distância longitudinal entre os

\[M^3 = \frac{C^2}{\rho a^4} \cdot B^1 \]

de gravidade da embarcação pode ser expresso como

Influência do modo que o momento induzido em referência ao centro
\[
\left(\int \frac{z \cdot \frac{z}{x} \cdot \frac{z}{x} \cdot \frac{z}{x}}{x} \cdot \frac{x}{y} \cdot \frac{x}{y} \right)^\mathbb{P} = \left(\int \frac{z \cdot \frac{z}{x} \cdot \frac{z}{x} \cdot \frac{z}{x}}{x} \cdot \frac{x}{y} \cdot \frac{x}{y} \right)^\mathbb{P}
\]

...

Aquele deve ser um dp associado dados por

\[
\left\{ \left(\frac{z}{x} = \left(\frac{z}{x} \right) \right) \cup \left\{ \left(\frac{z}{x} = \left(\frac{z}{x} \right) \right) \right\} = \left(\frac{z}{x} \right)
\]

...

então função distribuição de probabilidade de segunda ordem recebendo a instância \(t \) e pode ser definida como

...

considereada...

...

tal modo que o conjunto de tais funções deve fornecer...

...

ou qualquer que seja a instância \(t \) do processo, deve

...

where deve satisfazer a relação

\[
\left(\int \frac{z}{x} \cdot \frac{x}{y} \cdot \frac{x}{y} \right)^\mathbb{P} = \left(\int \frac{z}{x} \cdot \frac{x}{y} \cdot \frac{x}{y} \right)^\mathbb{P}
\]

deve ser

...

função distribuição de probabilidade com

...

como sendo descrevem pela variável aleatória contínua \(X(t) \) que pode ser dada a um dp associado a ele, e pode ser definido ao processo, tal instante \(t \) e ser caracterizado com

...

um argumento \(X(t) \) associado a um determinado fenômeno. Para um

...

considerar-se a ocorrência de um processo

...

uma grandeza que se caracteriza por uma variável aleatória

...

um processo aleatório está associado a ocorrência de

...

CARACTERIZAÇÃO DE UM PROCESSO ALEATÓRIO

...

APÊNDICE B
\[x_p(t, \mu^2) \int_{-\infty}^{v} x(x) \int_{-\infty}^{v} (\mu^2 - x) \, dx = 0 \]

de sua média como

os momentos de um processo podem ser obtidos em termos

Variância e Desvio Padrão

Primeira e Segunda Ordem Respectivamente.

e a média dos quadrados correspondem ao seus momentos de

primeira determinação acima tem-se que a média de um processo

\[x_p(t, \mu^2) \int_{-\infty}^{v} x(x) \int_{-\infty}^{v} \mu \, dx = 0 \]

de um processo aleatório como

se uma maneira geral de determinar os momentos de ordem

Momentos de um Processo Estadístico

\[x_p(t, \mu^2) \int_{-\infty}^{v} x(x) \int_{-\infty}^{v} \mu(x) \, dx = E \]

\[\text{Variável } x(t) \text{ de determinada como} \]

analogamente a média, a média dos quadrados da

\[x_p(t, \mu^2) \int_{-\infty}^{v} x(x) \int_{-\infty}^{v} \mu(x) \, dx = (\mu(t))^2 \]

instante \(t \) de determinada como

A média ou valor esperado de um processo \(x(t) \) no

Média

definição de segunda.

de seus parâmetros estatísticos, cujos princípios serão

Alguns momentos do processo \(x(t) \) são dados em termos

\[\text{P.2} \]
Para um processo estocástico

\[(0^2 x: 1^{-1} x)^{xx} = (1^2 x: 0^{-1} x)^{xx} = (2^2 x: 1^1 x)^{xx} \]

Sendo \(t, l \) tempo e

\[(2 t, l) \times (2 t, l) = (2 t, l) \times (2 t, l) \times \] Uma função \(f(x, y) \) de segunda ordem

Para um processo estocástico as funções de

do processo estocástico, quatroger que seja o instante a partir de um instante

tempo, ou em outras palavras, são aparentes em presença de probabilidades e densidades de distribuição de um processo estocástico. Isto significa que direito, sendo um processo estocástico. O processo \(x(t) \) e

\[(0^1 t, l x)^{x} = (0^1 t, l x)^{x} \]

tais que

instances \(t \) e \(t + l \) do mesmo processo \(x(t) \) como estas fórm

consistendo-se as idp \(f(x, y) \) e \(f(x, y) \times \]

em sobre o processo não instante \(t \),

informação que o valor da variável autocorrelação a

\[\mathbb{E}[x] \times x \times \]

\[\mathbb{E}[x] \times x \times \]

correlação deve ser expressa como

\[Rx = Rx \]

em termos da idp \(f(x, y) \) de

\[Rx = Rx \]

em uma correlação do processo \(x(t) \)

\[Rx = Rx \]

A função autocorrelação, a autoco-

\[Rx = Rx \]

Variação da correlação com sua média dos quadrados.

B.3
Respeitada.

também considerada um processo homogêneo para uma região de tempo, caso em que a análise de curto prazo se aplicar, e um processo autocorrelacionado para um curto período de gerar a estrutura da superfície. Definido como um modo do mercado e considerado como um processo homogêneo, de um modo que a análise da superfície determine um parâmetro de curto prazo de um ponto para um determinado ponto, no que a variável se entende a mesma condição das contínuas, optando-se por um parâmetro do mesmo processo homogêneo.

No caso por exemplo a análise da superfície do mar:

ao espaço e definido como um processo homogêneo.

tempo, um processo que apresenta uma independência de tempo ao longo do tempo. Como um processo estocástico, que é um processo cujas

\[\mathbb{E}[X(t)X(t')] = \rho(t-t') \]

é uma função auto-correlograma daquele processo na sua média, para ser determinado como um processo estocástico, um parâmetro de tempo, que é um processo não independente em relação ao tempo, caso de um processo não independente de t e dependente para o canto e de modo autocorrelacionado de t e, para o caso de parâmetro para todo o processo e da da por \(\rho \) por sua vez, a média de um processo estocástico.

B.4
outras realizações possíveis do processo.

Assumam que um processo seja estacionário e que a média de uma realização do processo e da média de todas as realizações sejam iguais.

E considerando um processo ergódico.

Se um processo é homogêneo e estacionário entre si, podemos considerar com suas médias temporais e direto um processo com processos para o qual os seus valores esperados

\[\mu_t = \frac{1}{t} \sum_{i=1}^{t} X_i \]

comparamos sua variância com a porção da da med

\[\sigma^2 = \frac{1}{t} \sum_{i=1}^{t} (X_i - \mu_t)^2 \]

sera melhor quando med

em processo \(X(t) \) com duração de tempo \(T \), será bastante útil se tiver

tendência um registro \(X(t) \) do processo estacionário

Propriedades estatísticas não variam com o tempo.

Inovações \(t \) a partir do início do processo, ou seja, suas

precio \(\mu \) com o processo de amostragem.

\[E[X(t)] = \mu_t \]

No instante \(t \) pode ser obtida como

\[X(t) \]

deverem ser obtidas de modo que a média do processo

obter uma média do processo, dizermos registros \(X(t) \)

com variações aleatórias contínuas \(X(t) \) no instante \(t \), para se

considerando-se um processo estacionário \(X(t) \)

B.5
Como dado que a elevação da superfície do mar fique escrita

\[\phi = (\sin \theta) \]

\[\cos \theta = (\cos \theta) \]

Estas relações podem ser escritas como

\[\tan^{-1} (\frac{\sin \theta}{\cos \theta}) = \phi \]

\[(\frac{\sin \theta}{\cos \theta}) + (\frac{\cos \theta}{\sin \theta}) = R \]

Isto pode ser delimitado em termos de \(\phi \) como

Para uma onda quadrada de amplitude \(R \) e \(\phi \) ângulo de concentração,

freqüências do espectro, onde a maior porção de energia é

pode ser quadrada, freqüência representativa no intérvalo de

\[\sin \theta \]

\[\cos \theta \]

onde

\[\cos \theta = (\cos \theta) \]

\[\sin \theta = (\sin \theta) \]

dos termos de senos e

Existe expressão para a elevação do mar e

2 \pi \]

mar \(\eta(t) \) pode ser escrita como

Fases atenuadas, onde expressões geradoras para a elevação do

considerando a superfície do mar como a superfície de onda

Propriedades Estatísticas dos Espectros de Onda

Apêndice C

C.1
zero do espectro. Determinado estado de mar com parâmetro ω, momento de ordem e representa a distribuição das amplitudes de onda de um

tal expressão se constitui na distribuição de Rayleigh

$$\int_0^{\frac{2\pi}{\omega}} dp \frac{\omega}{\pi} \exp \frac{-\omega}{p} = \phi(p)$$

de p desse modo fica expressa como constante e iguais a $\frac{1}{2\pi}$. A função densidade de probabilidade

uniformemente distribuída entre 0 e 2π de modo que p e uma acíma e que tem como função de ϕ e $\rho(p)$ como a expressão

integral densidade de probabilidade $\rho(p)$ pode ser expressa

como $\rho(p) \phi(p)$ se ϕ e ρ variáveis aleatórias independentes

$$\int_0^{2\pi} dp \frac{\omega}{\pi} \exp \frac{-\omega}{p} = \phi(p)$$

tem-se

$$\phi dp = \omega dp$$

Mudando-se as variáveis para r e θ notando-se que

$$\int_{\lambda}^{\lambda + \frac{\omega}{\lambda}} dp \frac{\omega}{2\pi} \exp \frac{-\omega}{p} = \omega \lambda \int_{\lambda}^{\lambda + \frac{\omega}{\lambda}} dp \frac{\omega}{2\pi} (\lambda + \frac{\omega}{\lambda})$$

: produto de duas distribuições normais e expressa como:

produtos de duas distribuições normais e expressa como:

ou interrompendo $\lambda \lambda$ e $\lambda \lambda$ nos intervalos $\lambda \lambda$ e $\lambda \lambda$ estes

estruturas

e representam as duas variáveis aleatórias independentes.

Alema disso verifica-se que $\phi \neq 0$ de modo que

$$\omega = [2\lambda, \lambda] \neq 0 \neq [2\lambda, \lambda] \neq 0$$

Desta forma, dado um momento de ordem zero do espectro:

$$\lambda \omega \neq 0$$

e representa ambas um processo Gaussiano com

variância de tempo.

ϕ expressa acima mostra que a amplitude r e a fase

$$[\rho(t) \phi + \lambda \cos(\frac{2\pi}{\lambda} t)]$$

C.2
\[
\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u}
\]

Expresión

La expresión de la media de la función de densidad para un parámetro de la distribución de Rayleigh se puede obtener a partir de la media de las \(u \)-estimaciones mayores de \(u \) de la función de densidad para un parámetro de la distribución generada para una altura significativa.

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

Para obtener una expresión para una altura significativa de la distribución de mediados de los cuadrados de las alturas y obstaculizadas como se dijo, se puede obtener la altura directamente a

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

Expresión

Para obtener una expresión para una altura significativa de la distribución de mediados de los cuadrados de las alturas y obstaculizadas como se dijo, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

Expresión

Para obtener una expresión para una altura significativa de la distribución de mediados de los cuadrados de las alturas y obstaculizadas como se dijo, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

Expresión

Para obtener una expresión para una altura significativa de la distribución de mediados de los cuadrados de las alturas y obstaculizadas como se dijo, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]

A partir de la distribución de las \(u \)-estimaciones mayores de \(u \) del parámetro de la distribución de Rayleigh, se tiene que

\[\int_0^\infty \exp \left[-\frac{w}{u} \right] \text{d}w = \frac{1}{u} \]
A medida das ondas, define como

\[H^0 \]

\[5.9^0 \]

Expressa como

Vendem 1/10 maiores ondas, defina como

\[H^{1/10} \]

ser expressa em termos de

Experiência Relação:

Vendem a reação acima a altura significativa

\[N = \left\{ \frac{H^0}{H^1} \right\} \]

\[\frac{\frac{H^1}{H^0}}{\frac{H^1}{H^0}} = \frac{u_{1/10}}{H} \]

A medida das ondas e calculada por
onde os coeficientes de potência ser expressos como
\[g(t) = \left(\begin{array}{c}
\int_{0}^{t} e^{-iu} \, du \\
\int_{0}^{t} e^{-iu} \, du
\end{array}\right) \]

\[\int_{0}^{t} e^{-iu} \, du = \frac{e^{-it} - 1}{-i} = g(0) \]

\[\int_{0}^{t} e^{-iu} \, du = \frac{e^{-it} - 1}{-i} = g'(0) \]

onde
\[0 \leq u \leq t \]

notação complexa pode ser

uma outra maneira de se expressar a função \(g(t) \), em um ciclo periódico de período fundamental.

\[T = \frac{2\pi}{\omega} \]

para \(u = 0, 2T, \ldots \) e

\[\frac{2\pi}{\omega} \]

\[\sin(\omega t) \]

\[\cos(\omega t) \]

onde os coeficientes de potência ser expressos como
\[g(t) = \left(\begin{array}{c}
\int_{0}^{t} \sin(\omega t) \, dt \\
\int_{0}^{t} \cos(\omega t) \, dt
\end{array}\right) \]

\[\int_{0}^{t} \sin(\omega t) \, dt = \frac{-\cos(\omega t)}{\omega} = g(0) \]

\[\int_{0}^{t} \cos(\omega t) \, dt = \frac{\sin(\omega t)}{\omega} = g'(0) \]

representação de uma função periódica \(g(t) \), tal que

frequência composta de harmonicos da frequência fundamental da

representação para uma série de Fourier, que deve conter as

sobrescreve quando função periódica pode ser

ANÁLISE DE UM PROCESSO ALEATÓRIO NO DOMÍNIO DA FREQUÊNCIA

APêNDICE D

P.1
de modo que \(g(t) \) pode ser expressa como

\[
\frac{1}{\sqrt{2\pi}} \lim_{N \to \infty} \int_{-N}^{N} g(t) e^{-it\omega_0} dt = \sum_{n=-\infty}^{\infty} \hat{g}(n) e^{in\omega_0 t}
\]

onde \(\omega_0 \) se transforma em uma frequência fundamental.

Função tende a uma integral. Nesse caso, a frequência fundamental

termos de uma série de Fourier, assumindo-se que o período da

um funções periódicas \(g(t) \) tem-se pode ser expressa em

\[
\int_{-\infty}^{\infty} g(t) e^{-it\omega_0} dt = \sum_{n=-\infty}^{\infty} \hat{g}(n)
\]

pode ser expressa como

harmonicos. A função \(g(t) \) tem-se de funções autocorrelação

proporciona a soma dos quadrados das amplitudes dos

2 e conhecida como função densidade espectral e g

\[
\hat{g}(n) = \int_{-\infty}^{\infty} g(t) e^{-it\omega_0} dt
\]

no

expressa em termos dos coeficientes \(g(n) \), tem-se

\[
\int_{-\infty}^{\infty} g(t) e^{-it\omega_0} dt = \sum_{n=-\infty}^{\infty} \hat{g}(n) e^{in\omega_0 t}
\]

temporal como

de um processo ergódico pode ser obtida a partir de uma média

No Apêndice C foi visto que uma função auto-correlação

da frequência.

harmonicos e representam a função peridica \(g(t) \) no dominio

os coeficientes complexos \(\hat{g}(n) \) se conhecem dos

Como a transformada de Fourier da função periódica.

A função \(g(t) \) expressa como

\[
\hat{g}(n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t) e^{-it\omega_0} dt
\]

para \(n = 0, \pm 1, \pm 2, \ldots \)
Pode ser expressada como

\[p_{x}^{2}(t) \frac{\partial}{\partial t} x^{2} \int_{t}^{2t} dt = \frac{1}{2} \frac{\partial}{\partial t} x^{2} \int_{t}^{2t} dt = \langle x(t) \rangle \]

do tempo constante e ao longo de t

A média dos quadrados do processo \(x(t) \) a este modo de

\[\rho_{t}(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

seja expressa como
de tal modo que sua transformada de Fourier \(\zeta(t) \) exata e
de tal modo que \(\zeta(t) \) exata e

caso contrário

\[\rho(t) = (\zeta(t) \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

instante t, tal que

determinar um processo \(x(t) \) derivado de \(x(t) \) a este modo de

considerando-se um processo autocorrelação \(g(t) \) do e

\[\text{número para } \rho(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]

(1974)

Exposto por Prute e Bishop

\[g(t) \text{ para } \rho(t) \text{ na transformada de Fourier exata, como}

verdadeiras condições desenvolvem ser satisfatórias para \(g(t) \), N\-

transformada de Fourier de uma função de \(g(t) \).

\[\rho(t) \text{ para } g(t) \text{ e } \zeta(t) \text{ representam a} \]

onde

\[\rho(t) = \frac{1}{2} \int_{t}^{2t} dx \cdot (t) e^{-\frac{x^{2}}{2}} \]
A función auto-correlación de dos funciones espectralmente densas puede ser expresada como:

\[\rho(t) = \langle (t)^1 X(t)^1 X(t)^1 X(t)^1 \rangle = (t)^1 R \]

Esta representación se denomina función auto-correlación del proceso \(X(t) \). La media de las cuadrados de las funciones que forman a la función espectral de \(X(t) \) se puede expresar como:

\[\left[\rho \left(\frac{t}{2} \right) \right]_{-\infty}^{\infty} = (m)^{XX} \]

\[\text{med} (m)^{XX} \int_{-\infty}^{\infty} = \langle (t)^1 X(t)^1 X(t)^1 \rangle = (t)^1 R \]

Para el caso particular de \(m = 0 \), se tiene:

\[\text{med} (m)^{XX} \int_{-\infty}^{\infty} = (t)^1 R \]

Por tanto, se puede expresar que:

\[\text{med} [\rho \left(\frac{t}{2} \right) \int_{-\infty}^{\infty} = \langle (t)^1 X(t)^1 X(t)^1 \rangle = (t)^1 R \]

Para un conjunto complejo de \(m \), se puede obtener:

\[\text{med} [\rho \left(\frac{t}{2} \right) \int_{-\infty}^{\infty} = \langle (t)^1 X(t)^1 X(t)^1 \rangle = (t)^1 R \]
Um varia e formar a forma de resposta. A expectativa de varia de forma.

A variante da resposta da embalagem é representada por

\[\sum_{i=1}^{n} x_i = \bar{x} \]

ser calculado através da expressão

A variação da resposta de zero ao espectro de resposta pode

onde a representar a desvio padrão do erro e

\[(\bar{x} - \mu) \] representa por

\[(\bar{x} - \mu)^2 \]

representar a

\[(\bar{x} - \mu)^2 \]

e desvio padrão de (m) ser da tipo normal com média

independente da frequência, de modo que e (m) poder ser

Haver a média (1983), que o coeficiente de variação do (tr)

pode-se assumir, de acordo com resultados obtidos por

e com média zero.

representar um erro em torno de (m) normalmente distribuído

adotadas e representar o espectro médio considerado, e (m)

onde (m) é o espectro dado pela formação matemática

\[[(m + e) \] (m) \]

espectro de onda pode ser representado por

espectro de cada onda dividida (m) em torno de sua média. O

A incerteza na forma do espectro e representada pela

REPRESENTAGENS DAS INCERTEZAS NA FORMA DO ESPECTRO DE RESPOSTA

APÊNDICE E
como um modelo teórico com uma boa aproximação.

de onde, de modo que os valores obtidos podem ser utilizados
variáveis somente comparados com espectros órgãos de registros
do que isso, os espectros medidas e os coeficientes de
representam por interveções da corda da H e T. Mais
e 0,550 aproximadamente para diferentes espectros de mar
modelo ISSC e vertedou que os valores variam entre 0,500
haver e Mohan (1983) computaram valores de o para o

\[
\left[\sum_{\omega=1}^{1} \right] f_{\omega}(H) = \sum_{\omega=1}^{0} \frac{f_{\omega}}{\omega}
\]

e o desvio padrão de \(\sigma \) dado por

\[
\left[\sum_{\omega=1}^{1} \right] \frac{f_{\omega}}{\omega} \right] = \frac{\sigma}{\omega}
\]

determinada por

A expressão para a variação de \(\sigma \) pode ser

\[
\left[\sum_{\omega=1}^{1} \frac{f_{\omega}}{\omega} \right] = \frac{\sigma}{\omega}
\]

\[
\sum_{\omega=1}^{1} \frac{f_{\omega}}{\omega} \right] = \frac{\sigma}{\omega}
\]

expressão por

uma constante, de modo que a variação de \(\sigma \) pode ser

A variação do primeiro termo em uma parte de

\[
\left[\sum_{\omega=1}^{1} + \frac{f_{\omega}}{\omega} \right] \varphi = \frac{\sigma}{\omega}
\]

\[
\frac{f_{\omega}}{\omega} \right] = \frac{\sigma}{\omega}
\]

E.2
os quatro meses considerados e que se constituem na Tabela P.2.
curvas de distribuição normal transformadas em uma tabela para
de operacionais de desenvolvimento ou pesquisa, acompanhado de
para que esses dados possam ser utilizados no modelo
acumulado de H.

... apresentações nas Figs. P.1 e P.4 na forma de distribuição
períodos de inverno, verão e primavera/verão. Dessa forma
correspondentes a esses meses são bem representativas dos
julho, agosto e setembro. Segundo Haver (1985), os dados
alturas signíficativas e apresentações para os meses de março,
para os diversos períodos de ondas e períodos de pico.
altura signíficativa de ondas e períodos de pico.

... apresenta uma distribuição conjunta de
... autoria mencionada.

ocorrência de estados de mar no local medido e feita pelo
discussão sobre as características da distribuição de
entre 1977 e 1981 e apresentações por Haver (1985), uma
ocorrência de estados de mar na costa da Noruega medidos
os dados apresentados no presente Apêndice e referem

MODELO DE DISTRIBUIÇÃO DE ESTADOS DE MAR PARA O MAR DO NORTE

APÊNDICE P.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1: Distribution Con junta de H e T
<table>
<thead>
<tr>
<th>Novembro</th>
<th>Setembro</th>
<th>Julho</th>
<th>Março</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.980</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>0.970</td>
<td>-</td>
<td>-</td>
<td>7.50</td>
</tr>
<tr>
<td>0.950</td>
<td>-</td>
<td>-</td>
<td>7.00</td>
</tr>
<tr>
<td>0.950</td>
<td>-</td>
<td>9.950</td>
<td>6.50</td>
</tr>
<tr>
<td>0.930</td>
<td>-</td>
<td>-</td>
<td>6.00</td>
</tr>
<tr>
<td>0.915</td>
<td>9.960</td>
<td>-</td>
<td>5.50</td>
</tr>
<tr>
<td>0.895</td>
<td>9.790</td>
<td>-</td>
<td>5.00</td>
</tr>
<tr>
<td>0.850</td>
<td>9.600</td>
<td>-</td>
<td>4.50</td>
</tr>
<tr>
<td>0.790</td>
<td>9.350</td>
<td>-</td>
<td>4.00</td>
</tr>
<tr>
<td>0.700</td>
<td>9.100</td>
<td>-</td>
<td>3.50</td>
</tr>
<tr>
<td>0.590</td>
<td>8.700</td>
<td>9.969</td>
<td>3.00</td>
</tr>
<tr>
<td>0.440</td>
<td>7.400</td>
<td>9.700</td>
<td>2.50</td>
</tr>
<tr>
<td>0.265</td>
<td>0.650</td>
<td>9.200</td>
<td>2.00</td>
</tr>
<tr>
<td>0.050</td>
<td>0.300</td>
<td>8.800</td>
<td>1.50</td>
</tr>
<tr>
<td>0.0</td>
<td>0.080</td>
<td>0.350</td>
<td>1.00</td>
</tr>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.50</td>
</tr>
<tr>
<td>Eslados</td>
<td>de mar</td>
<td>ceros</td>
<td>de mareso</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>0.00</td>
<td>4.94</td>
<td>0.04</td>
<td>4.90</td>
</tr>
<tr>
<td>0.00</td>
<td>4.92</td>
<td>0.04</td>
<td>4.89</td>
</tr>
<tr>
<td>0.00</td>
<td>4.91</td>
<td>0.04</td>
<td>4.88</td>
</tr>
<tr>
<td>0.00</td>
<td>4.90</td>
<td>0.04</td>
<td>4.87</td>
</tr>
<tr>
<td>0.00</td>
<td>4.89</td>
<td>0.04</td>
<td>4.86</td>
</tr>
<tr>
<td>0.00</td>
<td>4.88</td>
<td>0.04</td>
<td>4.85</td>
</tr>
<tr>
<td>0.00</td>
<td>4.87</td>
<td>0.04</td>
<td>4.84</td>
</tr>
<tr>
<td>0.00</td>
<td>4.86</td>
<td>0.04</td>
<td>4.83</td>
</tr>
<tr>
<td>0.00</td>
<td>4.85</td>
<td>0.04</td>
<td>4.82</td>
</tr>
<tr>
<td>0.00</td>
<td>4.84</td>
<td>0.04</td>
<td>4.81</td>
</tr>
</tbody>
</table>

Para os Estados de Mar Considerados

Parámetros de Respuesta Significativa e Distribución de Rayleigh

Apêndice C

<table>
<thead>
<tr>
<th>Time</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

RALEIGH

DIRECT DE ONDA 50 GRAUS

600
<table>
<thead>
<tr>
<th>600</th>
<th>900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
<th>2700</th>
<th>3000</th>
<th>3300</th>
<th>3600</th>
<th>3900</th>
<th>4200</th>
<th>4500</th>
<th>4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5C</td>
<td>1.0C</td>
<td>1.5C</td>
<td>2.0C</td>
<td>2.5C</td>
<td>3.0C</td>
<td>3.5C</td>
<td>4.0C</td>
<td>4.5C</td>
<td>5.0C</td>
<td>5.5C</td>
<td>6.0C</td>
<td>6.5C</td>
<td>7.0C</td>
<td>7.5C</td>
</tr>
</tbody>
</table>

DISTRIBUIÇÃO DE ONDA 120 GRAUS

RAYLEIGH

<table>
<thead>
<tr>
<th>Tm</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
<th>4.00</th>
<th>4.50</th>
<th>5.00</th>
<th>5.50</th>
<th>6.00</th>
<th>6.50</th>
<th>7.00</th>
<th>7.50</th>
<th>8.00</th>
<th>8.50</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

NOTAS:

- C: Componentes
- Tm: Tempo

AVISO:

- As condições dos componentes podem variar de acordo com o tempo e a situação.
<table>
<thead>
<tr>
<th>Angle</th>
<th>Tm</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.55</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Angular Values

Direction of Only 150 Grades
<table>
<thead>
<tr>
<th>Pitch</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.05</td>
<td>7.5</td>
<td>0.05</td>
<td>5.0</td>
<td>7.5</td>
<td>0.05</td>
<td>5.0</td>
<td>7.5</td>
<td>0.05</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>5.04</td>
<td>7.4</td>
<td>0.04</td>
<td>5.0</td>
<td>7.4</td>
<td>0.04</td>
<td>5.0</td>
<td>7.4</td>
<td>0.04</td>
<td>5.0</td>
<td>7.4</td>
</tr>
<tr>
<td>5.03</td>
<td>7.3</td>
<td>0.03</td>
<td>5.0</td>
<td>7.3</td>
<td>0.03</td>
<td>5.0</td>
<td>7.3</td>
<td>0.03</td>
<td>5.0</td>
<td>7.3</td>
</tr>
<tr>
<td>5.02</td>
<td>7.2</td>
<td>0.02</td>
<td>5.0</td>
<td>7.2</td>
<td>0.02</td>
<td>5.0</td>
<td>7.2</td>
<td>0.02</td>
<td>5.0</td>
<td>7.2</td>
</tr>
<tr>
<td>5.01</td>
<td>7.1</td>
<td>0.01</td>
<td>5.0</td>
<td>7.1</td>
<td>0.01</td>
<td>5.0</td>
<td>7.1</td>
<td>0.01</td>
<td>5.0</td>
<td>7.1</td>
</tr>
<tr>
<td>5.00</td>
<td>7.0</td>
<td>0.00</td>
<td>5.0</td>
<td>7.0</td>
<td>0.00</td>
<td>5.0</td>
<td>7.0</td>
<td>0.00</td>
<td>5.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

PRODUCT

PERCENT

CALCULATE

COM

ESPALAMET
<table>
<thead>
<tr>
<th>PS</th>
<th>T/C</th>
<th>ROLL</th>
<th>H/113</th>
<th>F/113</th>
<th>PO/VERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.00</td>
<td>1.50</td>
<td>6.00</td>
<td>6.00</td>
<td>1.00</td>
</tr>
<tr>
<td>200</td>
<td>1.50</td>
<td>2.50</td>
<td>4.00</td>
<td>6.00</td>
<td>2.00</td>
</tr>
<tr>
<td>300</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>6.00</td>
<td>3.00</td>
</tr>
<tr>
<td>400</td>
<td>2.50</td>
<td>3.50</td>
<td>6.00</td>
<td>8.00</td>
<td>4.00</td>
</tr>
<tr>
<td>500</td>
<td>3.00</td>
<td>4.00</td>
<td>6.00</td>
<td>8.00</td>
<td>5.00</td>
</tr>
<tr>
<td>600</td>
<td>3.50</td>
<td>4.50</td>
<td>8.00</td>
<td>10.00</td>
<td>6.00</td>
</tr>
<tr>
<td>700</td>
<td>4.00</td>
<td>5.00</td>
<td>8.00</td>
<td>10.00</td>
<td>7.00</td>
</tr>
<tr>
<td>800</td>
<td>4.50</td>
<td>5.50</td>
<td>10.00</td>
<td>12.00</td>
<td>8.00</td>
</tr>
<tr>
<td>900</td>
<td>5.00</td>
<td>6.00</td>
<td>10.00</td>
<td>12.00</td>
<td>9.00</td>
</tr>
<tr>
<td>1000</td>
<td>5.50</td>
<td>6.50</td>
<td>12.00</td>
<td>14.00</td>
<td>10.00</td>
</tr>
<tr>
<td>d</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>O.C</td>
<td>O.C</td>
<td>O.C</td>
<td>O.C</td>
<td>O.C</td>
</tr>
<tr>
<td>2</td>
<td>O.C</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>5</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>6</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>7</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>8</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>9</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>10</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>11</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>12</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>13</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>14</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>15</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>16</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>17</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>18</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>19</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>20</td>
<td>1.50</td>
<td>2.00</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>Dirección de onda 120 grados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5°C</td>
<td>1.0°C</td>
<td>1.5°C</td>
<td>2.0°C</td>
<td>2.5°C</td>
<td>3.0°C</td>
</tr>
<tr>
<td>1.0°C</td>
<td>1.5°C</td>
<td>2.0°C</td>
<td>2.5°C</td>
<td>3.0°C</td>
<td>3.5°C</td>
</tr>
<tr>
<td>1.5°C</td>
<td>2.0°C</td>
<td>2.5°C</td>
<td>3.0°C</td>
<td>3.5°C</td>
<td>4.0°C</td>
</tr>
<tr>
<td>2.0°C</td>
<td>2.5°C</td>
<td>3.0°C</td>
<td>3.5°C</td>
<td>4.0°C</td>
<td>4.5°C</td>
</tr>
<tr>
<td>2.5°C</td>
<td>3.0°C</td>
<td>3.5°C</td>
<td>4.0°C</td>
<td>4.5°C</td>
<td>5.0°C</td>
</tr>
<tr>
<td>3.0°C</td>
<td>3.5°C</td>
<td>4.0°C</td>
<td>4.5°C</td>
<td>5.0°C</td>
<td>5.5°C</td>
</tr>
</tbody>
</table>

Nota: El contenido de la tabla se muestra en forma de celdas horizontales y verticales.