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ABSTRACT

Cruz, Roberto E. Periodic supply vessels planning problem integrating berth
allocation decisions and schedule robustness. 2023. Thesis (PhD) – Polytechnic
School, University of São Paulo, São Paulo, 2023.

The periodic supply vessel planning problem (PSVPP) consists in determining a periodic
schedule and the respective fleet composition for servicing offshore units on a regular basis.
In this Thesis, two extensions of the PSVPP have been studied. The first includes berth
allocation decisions to the problem, which links vessel´s and harbour´s planning, allowing
the evaluation of the impact of the number of berths on the fleet composition. The second
is to extend the problem to include stochastic demand and travel time and evaluate the
schedule robustness. The integration with the berth allocation decisions makes the size
of problem increases significantly. In order to reduce the search space and to speed up
convergence, the proposed solution strategy consists of sequentially solving models, that
capture different aspects of the problem, starting with models that are simpler to solve.
The solution found in one step provides a lower bound to the next step. The proposed
solution strategy was applied to real instances resulting in good quality solutions and
improvements to the computational time. Regarding the schedule robustness, one of the
challenges for the periodic supply vessel planning problem is to determine reliable schedules
with a good compromise between reliability and cost. A novel methodology based on a
voyage-based model to deal with the schedule robustness is introduced. Basically, key
statistical parameters related to the routes demand and execution time are generated and
they are used together with a set of probability combinations in order to incorporate the
schedule reliability into the optimization model. Therefore, the schedule reliability is an
input parameter in the optimization model. A comparison of the new methodology to
conventional approaches is presented and a Monte Carlo simulation is used to evaluate
the quality of the solutions. The proposed methodology can generate robust schedules at
lower cost, compared to the conventional approaches. The proposed methodology might
be applied to other stochastic problems, where the schedule reliability is a key parameter
for the problem.

Keywords: Periodic Supply Vessel Planning Problem. Offshore Supply Vessel Operations.
Berth Allocation. Schedule Reliability. Periodic Routing Problem under uncertainty.



ABSTRACT

Cruz, Roberto E. Periodic supply vessels planning problem integrating berth
allocation decisions and schedule robustness. 2023. Tese (Doutorado) – Escola
Politécnica, Universidade de São Paulo, São Paulo, 2023.

O problema de programação periódica de navios de suprimentos (PSVPP) consiste em
determinar um cronograma periódico e a respectiva composição da frota para atendimento
das unidades offshore de forma regular. Nesta Tese, duas extensões do PSVPP foram
estudadas. A primeira é incluir as decisões de alocação de berços ao problema, que vincula
o planejamento de navios e portos, permitindo a avaliação do impacto do número de berços
na composição da frota. A segunda é estender o problema para incluir demanda estocástica
e tempo de viagem e avaliar a robustez do cronograma. A integração com as decisões de
alocação de berços faz com que o tamanho do problema aumente significativamente. Para
reduzir o espaço de busca e acelerar a convergência, a estratégia de solução adotada consiste
em resolver sequencialmente modelos que capturam diferentes aspectos do problema,
partindo de modelos mais simples de resolver. A solução encontrada em uma etapa
fornece um limite inferior para a próxima etapa. A estratégia de solução proposta foi
aplicada a instâncias reais resultando em soluções de boa qualidade e melhorias no
tempo computacional. Com relação à robustez do cronograma, um dos desafios para o
problema de planejamento periódico de navios de suprimento é determinar cronogramas
confiáveis com um bom compromisso entre confiabilidade e custo. Uma nova metodologia
baseada em um modelo baseado em rotas para lidar com a robustez do cronograma é
apresentada. Basicamente, são gerados os principais parâmetros estatísticos relacionados à
demanda das rotas e o tempo de execução e estes são utilizados junto com um conjunto
de combinações de probabilidades para incorporar a confiabilidade do cronograma ao
modelo de otimização. Portanto, a confiabilidade do cronograma é um parâmetro de
entrada no modelo de otimização. Uma comparação da nova metodologia com abordagens
convencionais é apresentada e uma simulação de Monte Carlo é usada para avaliar a
qualidade das soluções. A metodologia proposta é capaz de gerar cronogramas robustos
a um custo menor, em comparação com as abordagens convencionais. A metodologia
proposta pode ser aplicada a outros problemas estocásticos, onde a confiabilidade do
cronograma é um parâmetro chave para o problema.

Palavras-chave: Problema de Programação Periódica de Navios de Suprimentos. Operação
de navios de suprimento. Alocação de Berços. Confiabilidade do Cronograma. Problema
de Roteirização Periódica sob Incertezas.
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1 INTRODUCTION

Supply vessels play an important role in an offshore oilfield development, as they
are present throughout the whole of the offshore exploration and production (E&P) life
cycle (exploration, production and demobilization). The supply vessels’ costs are one of
the most significant cost elements in the upstream oil and gas segment (Aas, Halskau-Sr
e Wallace (2009)). These authors described the supply vessels’ role as delivering goods
from an onshore supply base to one or more offshore units and returning items from these
units to the onshore base. The service provided by those vessels has to be reliable because
late or missing deliveries may cause considerable losses in case offshore production and
operations are affected. An increase in service reliability usually implies in higher costs,
and a balance between reliability and costs is very challenging. The impact of reducing
costs seems to be quite relevant, mainly for oilfields with far distance from the shore and
relatively high density in terms of number of offshore units to be serviced.

A supply vessel (or platform supply vessel - PSV) usually has the capacity to carry
both bulk cargo and deck cargo. While the former - consisting of water, diesel and special
fluids - is stored in tanks under the main deck, the latter consists of general cargo that is
stored in offshore containers which are lifted by cranes from the vessels’ main decks. In
most cases the E&P operators charter the fleet of PSVs rather than owning them. The
hiring rates are highly dependent on the contract duration - long term (time charter) or
short term (spot) - and on the deck area capacity, as described in Døsen e Langeland
(2015).

Figure 1 – Platform Supply Vessel (PSV) - general arrangement
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The supply vessel requires an onshore supply base for loading and unloading cargo
to and from the offshore units. The supply base has a given capacity to operate with a
number of vessels simultaneously and the capacity is usually driven by the number of
berths available.

Figure 2 – Onshore supply base

The Periodic Supply Vessel Planning Problem (PSVPP) consists of determining a
schedule and the respective fleet composition for servicing offshore units regularly. The
schedule is made up of routes assigned to departure days from the supply base periodically.
For the periodic schedule, a fleet composition should be defined in order to ensure both
vessel capacity and availability for executing the planned schedule.

In this Thesis, two extensions of the PSVPP have been studied. The first includes
the berth allocation decisions to the problem, which links vessel´s and harbor´s planning
and the impact of the number of berths on the fleet composition might be evaluated. The
second extends the problem to include stochastic demand and travel time and evaluate
the schedule robustness.

For the PSVPP integrated with berth allocation decisions the fleet planning must
also take into consideration the berth capacity constraints in a 24x7 continuous operation,
being the berth time dependent on the amount of cargo loaded rather than a fixed time. A
mathematical model is proposed and a solution strategy to solve the mathematical model
in steps is devised, in order to reduce the processing time. The solution strategy adopted
consists of sequentially solving models that capture different aspects of the problem, by
starting with models that are simpler to solve. The solution found in one step provides a
lower bound to the next step.
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For the PSVPP with stochastic demand and stochastic travel time we introduce a
novel methodology based on a voyage-based model to deal with the servicing schedule’s
reliability. The schedule disruptions due to bad weather conditions are not addressed, as
other publications propose several methodologies and strategies. The treatment to cope
with such conditions may vary, e.g., hiring extra vessels in the spot market during harsh
weather conditions. This study focuses on determining reliable schedules at a lower cost
facing the challenge of coping with stochastic demand and stochastic travel time under
regular operational conditions. Therefore, the stochastic travel time takes into account the
variation of the travel time under regular operations and not under bad weather conditions,
in which the service of the offshore units is interrupted.

1.1 Problem description

The PSVPP is to define a periodic schedule to serve the offshore units. The schedule
is defined in a planning period, and it should be repeated over the subsequent planning
periods. Basically, regular weekly schedules must be established to serve the offshore units.
This is the current praxis and brings the required discipline for all agents involved in
the process - suppliers, supply base operators, cargo planners and clients. The weekly
regular schedules might be updated from time to time, mostly due to location changes of
mobile units or due to special operations (e.g., installation campaigns, decommissioning
campaigns, or planned maintenance). The regular weekly schedule consists of routes and
corresponding departure days over the planning period. Each route is also associated with
a vessel or a vessel type according to the vessel capacity. Therefore, assigning the vessel
type to the routes is part of the problem. The vessels are assigned to routes that depart
from and return to a given onshore supply base.

The planning period is one week, but the schedule is considered within a two-week
planning horizon to deal with the “end of the week" effect. Extending the planning horizon
to two planning periods makes it possible to take into account routes that might start in a
period and be completed in the subsequent period. Additionally, it is possible to check
if the routes do not overlap, and it opens the possibility that one vessel is not bounded
to repeat the same route in subsequent planning periods, thus giving more flexibility to
the vessel assignment. In Fig. 3 there is an example of a PSVPP schedule. The routes
are indicated by a rectangle. Inside the rectangle, the route number is indicated, and the
departure day is the first day when the rectangle starts. In this example, the vessel of type
1 indicated in the first row starts route 1362 on the first day of week 1 (day 1). However,
it is not the same vessel that will repeat the same route on the first day in week 2 (day 8).

Another characteristic of the PSVPP is that the frequency of visits requested by
an offshore unit within a week is known and depends on several factors. Usually the
production units have a more stable demand with lower fluctuations and, as a consequence,
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Figure 3 – Example of departures routes per day.

the demand is more predictable. In this case, a lower frequency is required. On the other
hand, demand is more unpredictable for drilling rigs due to unforeseen problems that often
occur. Therefore, for drilling rigs and for some special units that work in campaigns, e.g.,
maintenance units, higher frequencies of visit are imposed. In order to ensure the required
frequency of visits, the departure days of the routes that will serve an offshore unit should
be evenly spread for a continuous supply. The combination of departure days for a given
frequency of visits is previously defined. An example of departure patterns from the supply
base for frequencies of one-, two- and three-weekly visits can be seen in Fig 4. There is an
example of a PSVPP schedule for two vessels; the respective routes and offshore units are
indicated therein, in Fig. 5. In this schedule, offshore unit C7 has a frequency of visits
equal to 2 and is served by routes that depart on day four and day seven in the planning
period.

Figure 4 – Departure patterns for frequencies of one-, two- and three-weekly visits.
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Figure 5 – Example of vessels’ allocation per day for 15 offshore units.

A specific characteristic for the Brazilian offshore operation is that the offshore
units might be grouped into clusters. A cluster consists of a group of nearby platforms
that are served together, as a separate entity from the others. They belong to the same
oilfield and are operated by the same onshore base. This segregation is observed in the
Brazilian offshore E&P, and allows a better management of the logistics process, including
cargo prioritization and solving disputes more easily. Figure 6 presents a set of 79 offshore
units grouped into nine clusters. Each cluster is indicated by a different color and each dot
represents an offshore unit. Even though platforms are grouped into clusters, the frequency
of visits is defined individually for each platform.

The PSV fleet is categorized by the vessels’ deck capacity. The main focus is on
the delivery of general cargo. The pickup cargo, also known as backload, is assumed not to
be critical for the problem, as it could be placed on the vessel’s deck without violating its
capacity. Usually, a free area is left on the deck in order to allow for any cargo handling
that may be necessary. Detailed information on this subject can be found in Seixas et al.
(2016). Three classes of PSV have been considered in this study. The first one is PSV4500
with deck capacity of up to 900m2, the second one is PSV3000 with deck capacity of up
to 600m2, and the third is PSV1500 with deck capacity of up to 300m2.

No opening hours are considered for either the onshore base or the offshore unit.
The offshore units are open 24 hours a day, except when performing operations that restrict
cargo transfer (e.g., diving or helicopter operations) and special cases may be treated by
reversing the route-visiting sequence or by changing the sequence of a few visits, resulting
in a minor impact on the overall performance. Moreover, both the onshore base and the
offshore units operate seven days a week, 24 hours per day.
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Figure 6 – Supply base and offshore installations.

The maximum number of offshore units that can be visited in the same route is
limited by each vessel’s capacity, and it is common for the PSVPP to define a limit for the
maximum number of offshore units that can be visited in a route and the maximum route
duration, as longer voyages are more sensitive to delays and to adverse weather conditions.
The main reason is to avoid routes of long duration that are not realistic in practice. In
this study, the maximum number of units in a route is limited to eight, and the route
execution is limited to one week.

The vessels are not linked to routes and thus may not repeat the past voyages
on subsequent weeks. Rather, vessels are considered as a common resource to be used
whenever requested, and this is expected to produce good overall fleet allocation.

Regarding the onshore supply base operation, the port time of a vessel at the
supply base is calculated by considering a fixed setup time (vessel berthing time) added
to the loading time, which is given by the amount of cargo to be loaded divided by an
average loading rate. Given that routes cover different numbers of offshore units, the
loading time is not considered fixed but, rather, dependent on the total amount of cargo
to be transported. Based on the actual loading rates and on the historical average amount
of cargo transported, the maximum number of departures from each berth on each day
is limited to two. Each departure from each berth position is nominated as a departing
position. The vessel may begin loading at any time during the day. Consequently, there is
a risk of not attending the imposed departing day if the loading process begins late in
a day. However, in order to give flexibility to the berth planning process, a tolerance of
up to 12 hours is considered. For example, the departure day of a given vessel may be
considered as belonging to day l even if the vessel leaves the port by 12 pm of the following
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day l+1. All parameters are known in advance and no stochastic data are used for the
harbor operation.

Regarding the stochastic demand, the demand variation is very challenging to the
PSVPP, and two possible violations may occur. The first one is related to the demand that
may exceed the vessel capacity. In such a case, some cargo may be left behind, resulting
in huge losses if the production is affected or the unit stops its operation due to the lack
of supply. The second possible violation is related to the vessel schedule, which happens
when a vessel does not complete its current route on time, thus delaying its next voyage if
no other vessel is available. The schedule violation is affected not only by high demands
- as longer times are spent both at the harbor and the units for the cargo handling and
transshipment, but also by the actual travel time.

Regarding the stochastic travel time, it may deviate from the expected value due to
several factors such as, the vessel’s design characteristics, the coordination of the expected
arrival time for the vessel in its next destination, approximation and maneuvering issues,
the proximity between two consecutive units, and the weather conditions even under the
operation limits for regular operations (in this study the disruption due to bad weather
is disregarded). Consequently, planning a route using a constant travel time along all
the transportation legs may result in a non-realistic duration, likely affecting the overall
schedule.

The stochastic PSVPP (S-PSVPP) is thus a relevant research topic involving the
generation of low-cost, reliable schedules in the presence of stochastic demand and travel
time. Specifically, for the S-PSVPP, the following aspects are considered: i) the probability
distribution of each offshore unit’s demand per visit, assumed to be independent among
the units; ii) the probability distribution of the travel time. The travel time is calculated
by combining the duration of each route leg (or between units), and the probability
distribution of each leg’s duration is known and independent of each other; iii) the joint
probability of the offshore units’ demands and travel time is based on independent events.

1.2 Motivation and Contributions

In this Thesis, two extensions of the PSVPP have been studied. The first includes
the berth allocation decisions to the problem, which links vessel´s and harbor´s planning.
The second is to extend the problem to include stochastic demand and travel time and
evaluate the schedule robustness. The studies carried out for both extensions of the PSVPP
have been published in Cruz et al. (2019) and Cruz, Mendes e Bahiense (2023).

For the PSVPP integrated with berth allocation decisions the fleet planning must
take into consideration the berth capacity constraints and berth assignment decisions.
This makes the problem size to explode resulting in a interesting problem to solve. A
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mathematical model is proposed and a solution strategy to solve the mathematical model
in steps is devised, in order to reduce the processing time. The berth allocation decisions
should be done together with the PSVPP in order to ensure solutions that are feasible
and the supply base capacity constraint is not violated. This is relevant for problems that
the supply base operates close to its maximum capacity.

The demand and travel time variation is very challenging to the PSVPP and huge
losses might occur if the production is affected or the offshore unit stops its operation
due to the lack of supply. It is thus a relevant research topic involving the generation of
low-cost, reliable schedules in the presence of stochastic demand and travel time. For the
PSVPP with stochastic demand and stochastic travel time, a novel methodology based on
a voyage-based model to deal with the servicing schedule’s reliability is introduced.

1.3 Objectives

The objective of this Thesis is to solve two extensions of the PSVPP. The first
includes the berth allocation decisions to the problem while the second extends the problem
to include stochastic demand and travel time and evaluate the schedule robustness.

The specific objectives are:

a) Introduce a novel Mathematical Model for the PSVPP including the berth
allocation decisions to the voyage based model of the PSVPP;

b) For the berth allocation decisions added to the problem, develop and test a
solution strategy to solve it and speed up the convergence using a mixed integer
programming (MIP) optimization software;

c) Introduce a novel Mathematical Model for the PSVPP including the schedule
robustness; and

d) Compare the performance and the quality of the solution obtained for several
different approaches and the novel methodology;

1.4 Methodology

The following methodology was adopted in the development of this Thesis:

a) the literature review to understand the PSVPP modeling, its variants and the
solutions strategies;

b) the input data analysis and the generation of relevant instances based on real
cases data; and

c) the development and testing of the mathematical model (model development
and computational studies.)
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1.5 Thesis Structure

This Thesis has 6 chapters, including the introduction (Chapter 1). The chapters
are organized according to the following: Chapter 2 presents the literature review; in
Chapter 3 one might find the deterministic mathemathical model for the PSVPP and the
mathematical models for the extensions that are object of this Thesis; in Chapter 4 the
solution method for the extensions are presented; in Chapter 5 the computational results
obtained are presented and the main conclusions are indicated in Chapter 6.
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2 LITERATURE REVIEW

The planning of supply operations has been addressed by several authors. In Aas,
Halskau-Sr e Wallace (2009) a general overview of the supply vessel role in the oil industry
is presented. Aas et al. (2007) studied the pickup and delivery problem in the offshore
oil industry involving one single vessel, and considered limited storage capacity at the
platforms and on the vessel. A mathematical model was proposed taking into consideration
that any platform may be visited twice in order to have its demand fulfilled, given the
limited storage capacity. Gribkovskaia, Laporte e Shlopak (2008) tackled the same problem,
and proposed a tabu search procedure to solve larger instances. The route-planning problem
with the purpose of assessing the cost impact of not being able to serve some offshore
units during the night is addressed by Fagerholt e Lindstad (2000). Candidate routes
were generated by considering the night closures and a set partition model was proposed
including the fixed cost of using a vessel in the planning horizon.

The PSVPP was better described in Halvorsen-Weare et al. (2012), with periodicity
being incorporated in the mathematical model. The latest deterministic formulation used
in the PSVPP that considers flexible departures, i.e., vessels not being bounded to a
departure day and route over the periods, is presented in Kisialiou, Gribkovskaia e Laporte
(2018a), Cruz et al. (2019), and Vieira et al. (2021).

In Halvorsen-Weare et al. (2012), different from the previous contribution, the
authors included the departing day in the route selection decision variable, which allowed
the interval between consecutive voyages to be controlled, in accordance with a list of
candidate departure patterns. A more sophisticated set partition model was proposed,
based on a voyage generator, and instances with up to 14 offshore units were reported.
This problem was also solved by a large neighbourhood search in Shyshou et al. (2012),
and reports on solving larger instances were given. The same problem was later studied by
Halvorsen-Weare e Fagerholt (2017) who proposed a new formulation based on arc-flow
variables. Kisialiou, Gribkovskaia e Laporte (2018a) extended the work of Halvorsen-
Weare et al. (2012) by allowing flexible departure times from the onshore base, instead of
considering a fixed departure time for all voyages. The authors also dealt with the ’end of
week effect’, by which a vessel that started a trip by the end of a week may not be able to
repeat the routes performed in the beginning of the previous week. The authors proposed
an ALNS heuristic and the results were compared to a voyage-based model solved by
CPLEX.

A single vessel pickup and delivery problem in the offshore industry is addressed
by Cuesta et al. (2017). The problem considers that it is not mandatory to attend to the
whole demand; however, in such cases, a cost penalty is introduced to consider the losses
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due to unattended demand. A mathematical model was proposed to select the sets of cargo
to be transported, followed by the vessel routing. Another situation was considered, where
transportation of all cargo was compulsory, even if additional vessels were incorporated
into the fleet. The problem was solved by an adaptive large neighborhood search.

In the oil industry, besides the aforementioned references such as Halvorsen-Weare
et al. (2012) and Halvorsen-Weare e Fagerholt (2017), other contributions related to
fleet sizing include Shyshou, Gribkovskaia e Barceló (2010) who proposed a discrete event
simulation model in an anchor-handling operational context. Maisiuk e Gribkovskaia (2014)
studied a platform supply vessels’ fleet-sizing problem under uncertainty by combining
optimization and discrete event simulation. Eskandari, Gribkovskaia e BarcelÓ (2016)
proposed a multi-objective discrete event simulation model for a supply vessel fleet-sizing
problem, and Stålhane et al. (2016) developed a two-stage stochastic optimization model
in a fleet-sizing problem related to maintenance activities.

The period routing problem is an important variation of the classical vehicle routing
problem as many practical applications impose multiple visits to the customers during
the planning period, as in Christofides e Beasley (1984) and Baptista, Oliveira e Zúquete
(2002). A general overview of existing models, solution approaches and applications is given
in Francis, Smilowitz e Tzur (2008). The integration of periodic routing with fleet sizing is
also found in another class of problems known as the periodic location routing problems,
which extends the period routing and fleet-sizing problem by considering location decisions.
Prodon (2011), Hemmelmayr (2015) and Koç (2016) offer a general overview of existing
models and solution approaches.

Berth allocation problems have been mostly investigated in the container industry,
under different configurations. For example, Lim (1998) considered the problem with the
continuous quayside, while Imai, Nagaiwa e Tat (1997) studied the discrete quayside. Imai,
Nishimura e Papadimitriou (2001) considered that the ships arrive dynamically and in
Cordeau et al. (2005) time windows for berthing the ships are imposed. In Agra e Oliveira
(2018) a more complex version of the problem was considered by integrating berth planning
with the planning of cranes. For a comprehensive overview, one can refer to Bierwirth
e Meisel (2015). Applications in other types of terminals can be found, for example, in
Ribeiro et al. (2016) and in Pratap et al. (2017). The extension of the PSVPP including the
berth allocation decisions have been studied by Cruz et al. (2019), and Vieira et al. (2021).
In Vieira et al. (2021) a powerful adaptive large neighborhood search (ALNS) heuristic
has been developed and good quality solutions were obtained in a low computational time.

Some extensions of the PSVPP consider the uncertainty in the planning. Halvorsen-
Weare e Fagerholt (2011) and Halvorsen-Weare e Fagerholt (2017) considered weather
uncertainty and developed a three-phase optimization-simulation heuristic approach for
the robust supply vessel planning. Feasible candidate voyages are generated in the first
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phase. A simulation of each voyage is performed in the second stage when a robustness
measure is assigned to the voyages. In the last phase, a set covering model is solved. In
Maisiuk e Gribkovskaia (2014), the problem of determining the fleet size of offshore supply
vessels under stochastic sailing and service times is studied. A discrete-event simulation
model is used for evaluating the optimal solution produced by the deterministic MIP model
presented in Halvorsen-Weare et al. (2012). The simulation considers uncertainty in weather
conditions and future spot vessel rates and adds one vessel from the spot market each time
a vessel is lacking for attaining the prescribed schedule. In Norlund, Gribkovskaia e Laporte
(2015a), a simulation-optimization tool was presented for evaluating the environmental
performance of speed optimization strategies under weather uncertainty. The objective is
to minimize the expected schedule cost computed over the execution horizon. The schedule
cost is calculated taking into account the implementation of operational modifications in
case of infeasibility during the schedule execution.

Kisialiou, Gribkovskaia e Laporte (2018b) considered weather uncertainty and
developed a methodology for generating robust supply vessel schedules for realistic large-
size instances, taking into account the trade-off between service levels and vessel costs.
The methodology involves generating multiple vessel schedules with different robustness
levels using an ALNS heuristic and a subsequent discrete event simulation procedure to
assess the service levels. Following a similar approach, Kisialiou, Gribkovskaia e Laporte
(2019) studied the PSVPP with stochastic demand. The methodology is based on ALNS
heuristics combined with a discrete event simulation procedure with recourse actions.
A reliability level related to not violating the vessel capacity by the route aggregated
demand is used in the ALNS for defining the feasible solutions. The solutions obtained
in the ALNS algorithm are evaluated in the simulation model that uses recourse actions
to mitigate infeasible voyages. For each reliability value, the ALNS solution’s cost is
compared to the cost obtained by the simulation with recourse actions. Recently, Yauheni,
Gribkovskaia e Laporte (2021) solved a periodic supply vessel planning problem under
demand and weather uncertainty in the offshore oil and gas industry. The ALNS algorithm
in Kisialiou, Gribkovskaia e Laporte (2019) is extended to incorporate the voyage duration
infeasibility under uncertain weather conditions. A simulation model is used to assess the
schedule performance over its execution horizon, and visit relocation options are applied
to ensure the schedule feasibility. The ALNS metaheuristic and the simulation model
are integrated into a single optimization-simulation decision support tool enabling the
construction of schedules of least expected cost for large-size instances under demand and
weather uncertainty.

The PSVPP with stochastic parameters is, to some extent, correlated to the
stochastic vehicle routing problem (SVRP). One of the first references to the SVRP with
stochastic demand is due to Bertsimas (1992). A summary of the scientific literature
on stochastic vehicle routing problems may be found in Gendreau, Laporte e Séguin
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(1996), where different problems are described within a broad classification scheme. In
Dror, Laporte e Trudeau (1989), one may find a description of potential methodologies to
solve the SVPR with stochastic demand. More recently, Gendreau, Jabali e Rei (2016)
presented an updated survey on the main classes of the SVRP, the modeling paradigms,
and the existing exact and approximate solution methods. The SVRP may be solved
using stochastic programming based on chance constraint and the two-stage program with
recourse. For the chance constraint approach, a confidence level is defined as a protection
level against constraints violations. In the two stages with recourse, the problem is solved in
two stages; firstly, by deciding without knowing the outcome of the stochastic parameters.
Then, in the second stage, recourse actions are taken with the realization of the stochastic
parameters.

When the probability distributions for the stochastic parameters are not known,
one can resort to an uncertainty set, wherein the uncertain data resides. The robust
optimization paradigm assumes that constraint violation cannot occur for any realization
of the data in the uncertainty set (Ben-Tal, Ghaoui e Nemirovski (2009), Bertsimas e
Sim (2003), Bertsimas e Sim (2004)). Gorissen, Yanıkoğlu e den Hertog (2015) present
a tutorial on robust optimization, while Ordóñez (2014) gives a tutorial specifically on
robust vehicle routing problems. In Bertsimas, Brown e Caramanis (2011), there is a broad
survey on the known landscape of RO’s theory and applications. Munari et al. (2019)
presents a compact formulation and branch and cut method for the robust VRP with
time-windows. The application of robust optimization also is found to other variants of
the VRP. In Vega, Munari e Morabito (2020), the classical VRP is extended to consider
time-windows and multiple deliverymen. Robustness is incorporated for uncertainties in
the demands and in the travel times. In Agra et al. (2013), a robust optimization approach
is proposed for a maritime transportation problem with time-windows, admitting routes
that are feasible for all values of the travel times in a predetermined uncertainty polytope.
Applications of robust optimization in other contexts can be found, for instance, in Raad,
Sinske e Vuuren (2009), Kalaï e Vanderpooten (2011), Paiva, Rocco e Morabito (2020)
and González, Bert e PodestÁ (2022).

A map indicating the main subject for each reference listed in the bibliography is
presented in Fig. 7.
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Figure 7 – Map of the main subject for each reference from the bibliography.
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3 MATHEMATICAL MODEL

In this section, we first present a consolidated deterministic mathematical model
for the PSVPP based on the existing literature (Halvorsen-Weare et al. (2012),Kisialiou,
Gribkovskaia e Laporte (2018a) and Cruz et al. (2019)). Afterwards, the mathematical
models for the PSVPP with berth allocation and the PSVPP with stochastic demand and
travel time are introduced.

3.1 PSVPP Deterministic Mathematical Model

This section presents the PSVPP deterministic mathematical model, which is
described after Tables 1, 2 and 3 containing the definitions of the sets, indices, parameters
and decision variables used in it.

Table 1 – PSVPP Deterministic Model - Sets and indices

Sets and
Index

Description

V Set of vessel classes (index v).

J Set of offshore units (index j).

R Set of routes (index r).

Rv Subset of routes that vessels of class v can sail (Rv ⊂ R).

S Set of departure patterns (i.e. departure days) from the supply base (index s).

Sj Subset of departure patterns for the frequency of visits imposed by the offshore
unit j (Sj ⊂ S).

T Planning horizon of the vessels (indices l and t, t:1..14).

L Planning horizon of the offshore units (L ⊂ T , index l, l:1..7).
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Table 2 – PSVPP Deterministic Model - Parameters

Parameters Description
Fv Fixed cost of vessels belonging to class v.

Cvr Cost of route r for a vessel belonging to class v.

H Maximum number of departures from the supply base in a day.

A0
rj Binary parameter that is 1 if route r visits offshore unit j, and 0 otherwise.

A1
sl Binary parameter that is 1 if the departure pattern s has a departure on day l,

and 0 otherwise.

Bvrlt Binary parameter that is set to 1 if a vessel of class v departs from the supply
base on day l to perform route r has not returned to the supply base by day t,
and 0 otherwise.

Table 3 – PSVPP Deterministic Model - Decision Variables

Decision
Variables

Description

nv Number of utilized vessels of class v.

bsj Binary variable that is 1 if the departure pattern s is chosen for offshore unit
j, and 0 otherwise.

xvrl Binary variable that is 1 if a vessel of class v departs on day l to execute route
r, and 0 otherwise.

The mathematical model is defined as:

minZ =
∑
v∈V

Fvnv +
∑
v∈V

∑
r∈Rv

∑
l∈L

Cvrxvrl (3.1)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (3.2)

∑
v∈V

∑
r∈Rv

xvrlA
0
rj =

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (3.3)

∑
v∈V

∑
r∈Rv

xvrl ≤ H l ∈ L (3.4)

nv ≥
∑
r∈R

∑
l∈L

xvrlBvrlt v ∈ V , t ∈ T (3.5)

nv ∈ Z+, bsj ∈ {0, 1} , xvrl ∈ {0, 1} . (3.6)

The objective function (3.1) minimizes the vessels’ fixed costs and the routing
costs. Constraints (3.2) ensure that one departure pattern is assigned to each offshore unit.



31

Constraints (3.3) ensure that there is one vessel departing from the supply base each day
belonging to each offshore unit’s selected departure pattern. Constraints (3.4) limit the
number of routes departing from the supply base per day. Constraints (3.5) calculate the
number of vessels per class as the maximum number of vessels in use at the same time on
any day. Lastly, Constraints (3.6) define the variables’ domain.

The deterministic mathematical model to define the PSVPP frequently used in
the literature is a set partition model (SPM) that uses a voyage-based structure as in
Halvorsen-Weare e Fagerholt (2011), Halvorsen-Weare et al. (2012), Norlund, Gribkovskaia
e Laporte (2015b), Kisialiou, Gribkovskaia e Laporte (2018a) and Cruz et al. (2019). The
problem can be solved using a MIP software, for instances with a limited number of units
(around 15 to 20) and routes. In case the number of units and the associated set of feasible
routes are too large, heuristics are the most suitable way to obtain good-quality solutions
within a reasonable processing time (Kisialiou, Gribkovskaia e Laporte (2018a)).

In order to solve the PSVPP using a MIP software, the following steps are observed:
i) generate all feasible routes observing the imposed limits (route duration, the maximum
number of visits) and the other constraints; ii) with the defined set of routes, generate all
the parameters of the mathematical model; iii) solve the MIP model. This procedure is
presented in Fig. 8.

Figure 8 – PSVPP procedure for the deterministic problem using a MIP solver.

3.1.1 Route generation

The set of routes is built by first generating all possible combinations of up to eight
offshore units belonging to the same cluster. Only the combinations whose aggregated
demand does not violate the largest vessel capacity are maintained as routes. The subset
Rv and the parameter A0

rj are generated. The sequence of visits for each route is obtained
by solving the associated TSP. The final step is to calculate the route execution duration
that depends on the route aggregated demand and the travel time. The route execution
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time is used to create the binary parameter Bvrlt, with fractional values being rounded to
the least integer greater than or equal to it. For example, a vessel with a route execution
time of 2.5 days is allocated for three days, starting on the departure day.

The overall route duration (RT) is calculated according to the sum of the following:
i) a fixed setup time for the vessel in the harbor (BT), ii) the cargo handling time in the
harbor that is dependent on the route aggregated demand (HT), iii) the travel time (TT)
that is the sum of the travel time of each route leg (a leg is defined as two waypoints in
the route) and iv) the sum of the cargo handling time on each offshore unit served by the
route (OT). The procedure for the route generation is presented in Algorithm 1, where Dj

is offshore unit j’s demand and LT is a leg’s travel time.

Algorithm 1: Route Generation
Input: j; Dj ; Distance Matrix; Vessel Capacity and Route Cost per Vessel Type v
Output: R; Rv; A0

rj; Bvrlt; Cvr

1 for every combination of up to 8 customers do
2 Calculate the route demand by summing Dj of the units in the combination
3 if the route demand is lower or equal to the maximum vessel capacity then
4 Solve the TSP and define the route sequence
5 Define A0

rj

6 for each class v compatible with the route demand do
7 Calculate TT based on each LT
8 Calculate the route duration RT
9 Create parameter Bvrlt based on RT for every day in the planning

horizon
10 Calculate the route cost Cvr

11 Update subset Rv

12 end for
13 end if
14 end for
15 return R; Rv; A0

rj; Bvrlt; Cvr

3.2 PSVPP with berth allocation

This section presents a mathematical model for the PSVPP with berth allocation
decisions. In order to include the berth allocation decisions in the model, new sets regarding
the berth positions at the supply base, new parameters related to the harbor operation
and respective productivity factors and new decisions variables to cope with the sequence
of the operations at the harbor are introduced. The sets, parameters and decision variables
are presented in Tables 4, 5 and 6 respectively.
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Table 4 – PSVPP with berth allocation - Sets and indices

Sets and
Index

Description

V set of vessel classes (index v).

J set of offshore units (index j).

R set of routes (index r).

Rv subset of routes that vessels of class v can sail (Rv ⊂ R).

S set of departure patterns (i.e. departure days) from the supply base (index s).

Sj subset of departure patterns compatible with the frequency of visits imposed
by offshore unit j (Sj ⊂ S).

T planning horizon of the vessels (indices l and t, t:1..14).

L planning horizon of the offshore units (L ⊂ T , index l, l:1..7).

B set of berths (index b).

P set of departures per day for each berth (index p). For the sake of simplicity,
as each vessel is always assigned to a pair (berth, departing position) at the
onshore base, a berth position (b,p) notation is used.

Table 5 – PSVPP with berth allocation - Parameters

Parameters Description
Fv fixed cost of vessels belonging to class v

Cvr route r cost of vessels belonging to class v

Dj offshore unit j demand (m2) given by the mean plus two times the standard
deviation of the weekly demand divided by the imposed frequency of visits (in
order to cover possible demand variations)

A0
rj binary parameter that is 1 if route r visits offshore unit j, and 0 otherwise

A1
sl binary parameter that is 1 if the departure pattern s has a departure on day l,

and 0 otherwise

STrv route r sailing time of vessels belonging to class v

PB productivity factor (days/m2) for cargo handling at the onshore base

POj productivity factor (days/m2) for cargo handling at offshore unit j

SB berth set up time (average time for approaching and mooring)

LLlb lower time limit for starting loading of a vessel on berth b and day l

LUlb upper time limit for finishing the loading of a vessel on berth b and day l.

The specific parameters introduced due to the berth allocation are indicated with
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double letters. The parameters LLlb and LUlb enables the tolerance in the departure time
of a vessel being loaded at berth position (b,p).

Table 6 – PSVPP with berth allocation - Decision Variables

Decision
Variables

Description

nv number of utilized vessels of class v

bsj binary variable that is 1 if departure pattern s is chosen for offshore unit j,
and 0 otherwise (refer to Figure 4 for the list of departure patterns)

xvbprl binary variable that is 1 if a vessel of class v departs from the berth position
(b,p) on day l to execute route r, and 0 otherwise

cvbpt1t2 binary variable that is 1 if a vessel of class v departing from the berth position
(b,p) on day t1 is still operating its route by day t2, and 0 otherwise

slbpl loading time spent on berth position (b,p) on day l

sbpl instant of time that the loading operation of the berth position (b,p) on day l
is concluded and the vessel starts the voyage

tbpl round trip voyage duration of the vessel that occupies the berth position (b,p)
on day l.

The mathematical model is defined as:

minZ =
∑
v∈V

Fvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

Cvrxvbprl (3.7)

subject to:

∑
s∈Sj

bsj = 1 j ∈ J (3.8)

∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

xvbprlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (3.9)

∑
v∈V

∑
r∈Rv

xvbprl ≤ 1 l ∈ L, b ∈ B, p ∈ P (3.10)

∑
v∈V

∑
r∈Rv

xvb2rl ≤
∑
v∈V

∑
r∈Rv

xvb1rl l ∈ L, b ∈ B (3.11)

sb11 ≥ slb11 b ∈ B (3.12)

sb2l ≥ sb1l + slb2l b ∈ B, l ∈ L (3.13)
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sb1(l+1) ≥ sb2l + slb1(l+1) b ∈ B, l ∈ L, l ≥ 2 (3.14)

LLlb + slbpl ≤ sbpl ≤ LUlb l ∈ L, b ∈ B, p ∈ P (3.15)

slbpl ≥
∑
v∈V

xvbprl(SB +
∑

j∈J : A0
rj=1

DjPB)

l ∈ L, r ∈ R, b ∈ B, p ∈ P

(3.16)

tbpl ≥
∑
v∈V

xvbprl(STrv +
∑

j∈J : A0
rj=1

DjPOj)

l ∈ L, r ∈ R, b ∈ B, p ∈ P

(3.17)

|T |∑
t2=l

cvbplt2 ≥ sbpl + tbpl − l − (1 − cvbpll)|T |

v ∈ V , b ∈ B, p ∈ P , l ∈ L

(3.18)

cvbpll ≥ xvbprl

l ∈ L, v ∈ V , r ∈ R, b ∈ B, p ∈ P
(3.19)

cvbpt1t2 = 0

v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ L, t2 < t1
(3.20)

cvbpt1(t2+1) − cvbpt1t2 ≤ 0

v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ T, t2 ≥ t1
(3.21)

cvbp(t1+|L|)(t2+|L|) = cvbpt1t2

v ∈ V , b ∈ B, p ∈ P , t1 ∈ L, t2 ∈ L
(3.22)

nv ≥
∑

t1∈T

∑
b∈B

∑
p∈P

cvbpt1t2 v ∈ V , t2 ∈ T (3.23)

nv ∈ Z+, bsj ∈ {0, 1} , xvbprl ∈ {0, 1} , cvbpt1t2 ∈ {0, 1} ,

sbpl ∈ R+, slbpl ∈ R+, tbpl ∈ R+.
(3.24)

The objective function (3.7) minimizes the vessels’ fixed costs and the routing
costs. Constraint (3.8) ensures that one departure pattern is assigned to each offshore unit.
Constraint (3.9) ensures that there is at least one vessel departing on each day belonging
to the selected departure days of each offshore unit. Constraint (3.10) limits to at most
one the number of routes departing per day for each berth position. Constraint (3.11)
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forces that berth position two is only assigned if position one was used. Constraint (3.12)
initializes the berth’s departure time based on the berth’s loading time of the first day.
Constraint (3.13) ensures that the departure time for position two of any berth depends
on the position one departure time added to the position two loading time. Constraint
(3.14) ensures that the departure time for berth position 1 is greater than the instant
in which the loading operation of the previous day was concluded, for l ≥ 2. Constraint
(3.15) indicates that the departure time for any berth position is within the time window
defined by LLlb and LUlb. Constraint (3.16) ensures that the operating time of any berth
position must be greater than the sum of the vessel’s set up time and the loading time.
Constraint (3.17) ensures that the vessel’s round trip duration must be greater than the
sum of the vessel’s sailing time and the cargo handling time at each visited offshore unit.
Constraint (3.18) ensures that a binary counter is activated (i.e. equal to 1), for the time
period that a vessel is in use. Constraint (3.19) associates the binary counter with the xvbprl

variable. Constraint (3.20) ensures that the binary counter is not activated in any period
t2 prior to a candidate’s departing day t1. Constraint (3.21) links the counter variable
of one day to its previous day. Constraint (3.22) replicates a vessel class assignment for
the subsequent period. Constraint (3.23) calculates the number of vessels per class as the
maximum number of vessels in use at the same time. Constraint (3.24) define the variables’
domain. Constraints (3.18) to (3.23) ensure that voyages of the same vessel should not
overlap in time.

An example of the calculation of variable cvbpt1t2 in terms of the departure day t1

(rows) and the respective days that the vessel is in use t2 (columns) is given in Table 7.
The example is based in a case where a vessel of class 1 is assigned to perform a route that
departs on day 5 from berth 1 and position 1. Besides, it is assumed that the vessel should
be in use for 3.6 days, according to (3.18). Therefore, the minimum number of vessels for
each class nv must be equal to the maximum number of vessels for the respective class in
use at any time t2 (the columns in Table 7), as indicated in (3.23).

In order to illustrate the use of parameters LLlb and LUlb consider, for instance,
a loading operation that takes place on day 5, where LLlb = 4.0 and LUlb = 5.5. If two
vessels are assigned to berth 2 with loading times of 0.5 and 0.6 (for positions 1 and 2
respectively), and assuming that there is no loading on berth 2 on the previous day then,
according to (3.16): sl215 ≥ 0.5 and sl225 ≥ 0.6. Constraint (3.15) defines the interval for
departure of each position as 4.0 + 0.5 ≤ s215 ≤ 5.5 and 4.0 + 0.6 ≤ s225 ≤ 5.5. Constraint
(3.13) ensures that position 2 only starts after position 1, s225 ≥ s215 + sl215 and, if we use
the minimum values, the constrain is s225 ≥ 4.5 + 0.6. This means that any vessel assigned
for berth position 2 starts loading on day 4.5 (or after) and departs from the harbor on
day 5.1 (or after). According to constraint (3.14) the departure for the next day (day 6) for
berth 2 should consider that the loading in position 1 starts after vessel from position 2 on
the previous day has departed: s216 ≥ 5.1 + sl216. By the use of the upper limit extended to
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Table 7 – Example of the calculation of variable cvbpt1t2 .

v = 1 cvbpt1t2

b = 1 t2
p = 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

the next day it is possible to accommodate better berth allocation, without compromising
the evenly spread departures from the harbor. This is a very important relaxation in the
case of a harbor that operates close to the maximum capacity.

3.3 PSVPP with stochastic demand and travel time

As one may notice, the demand and the travel time are not explicit parameters
in the set partition model (3.1) - (3.6). Instead, those parameters are used as input data
in the route generation algorithm that generates the candidate routes and the related
parameters. Likewise, stochastic demand and stochastic travel time are considered in
the route generation algorithm. Therefore, three approaches to deal with the stochastic
parameters in the PSVPP to calculate the route demand and the route duration are
presented, the robust approach, confidence level applied to each individual probabilistic
parameter and confidence level applied to the routes. After, a new mathematical model
that includes the schedule reliability is presented.

In order to clarify how this process takes place, a numerical example is first presented.
Consider two routes that serve four customers. The first route visits customers {1,2}, while
the second route visits customers {3,4}. The customers’ demands expressed by their mean
values and standard deviations (in m2) are respectively: {42±38,108±63,103±94,164±57}.
A normal distribution is assumed to represent the demand. In this study, the maximum
value of the stochastic parameters is set to comply with a confidence level (CI) of 99.865%,
which is sufficiently large for the intended application. In such a case, the corresponding
demands are {156, 297, 385, 335} in m2. The route leg’s travel time depends on the distance
(DT ), and it is assumed to be represented by two normal distributions. The first applies
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when the distances are inferior to ten nautical miles, typically within a cluster. For the first
case, the travel time (mean, standard deviation) is given by 0.006124DT ± 0.002764DT

(days per km), and for the latter case, 0.004904DT ± 0.001143DT (days per km). In
the given example, the routes are small, having only three navigation legs. Although the
assumption of independence of the travel times of the segments is valid, one can decide to
calculate the overall duration of the route using other statistical assumptions and apply
the proposed methodology to attest the schedule reliability.

3.3.1 PSVPP: route generation with stochastic parameters

Three approaches to deal with the stochastic parameters in the PSVPP to calculate
the route demand and the route duration are presented, the robust approach, confidence
level applied to each individual probabilistic parameter and confidence level applied to the
routes.

3.3.1.1 Robust approach

The first approach for generating the route parameters is based on robust opti-
mization. Whenever the probability distributions for Dj and LT cannot be defined, or its
cumulative distribution function can only be numerically calculated, the use of the robust
approach is straightforward if the mean and the maximum values are known. The routes’
parameters are calculated according to a predefined uncertainty budget (Γ), which can be
translated as a protection level against a given number of variations to extreme values.
The uncertainty budget (Γ) defines how many variations from the mean to the maximum
value can be accepted within each route. This procedure is similar to the robust discrete
optimization paradigm presented in (BERTSIMAS; BROWN; CARAMANIS, 2011). Route
duration must be protected against a given number of delays per voyage defined by Γ,
regardless of whether it is due to the variation of the demand Dj or the variation of the leg
travel time LT . All combinations are tested during the route generation procedure, and
the worst realization is selected. A pseudo-code is presented in Algorithm 2. The route
duration is defined as RT = RTm + RT (Γ), where RTm is the route duration considering
the parameters’ mean values and RT (Γ) is the duration increase when Γ parameters are
set to their maximum values.

In the given example, for route #1, considering the mean demand of each customer
and the mean travel time of each route’s leg, RTm = 1.288 days and the RT (Γ) = (0.000,
0.519, 0.831, 1.107, 1.383, 1.389) in days, for Γ = (0,1,2,3,4,5). If Γ = 0, the mean values
of the parameters are used, and no robustness is added to the problem. Then, the Γ value
ranges from 1 to 5, representing the route added time due to variation both in the demands
and in the route legs’ travel time. For example, if Γ = 2, then RT = 2.119 days, being this
variation due to the increase in cargo handling time both at the harbor and the offshore
units. In this example, the route demand is set to 453 m2.
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Algorithm 2: Route generation - Robust approach
Input: j; Dj; LT; Vessel Capacity and Route Cost per Vessel Type v
Output: R; Rv; A0

rj; Bvrlt; Cvr

1 for every combination of up to 8 customers do
2 Calculate the route demand by summing the mean value of Dj of the units in

the combination
3 if the route demand is lower than or equal to the maximum vessel capacity

then
4 Solve the TSP and define the route sequence
5 for each class v compatible with the route demand do
6 Calculate the mean TT as the sum of the mean value of each LT in the

route
7 Calculate the route duration RTm using the mean demand and the

mean TT
8 for every offshore unit in the route do
9 Define the maximum demand of Dj to cover for a confidence level of

99.865%
10 end for
11 for every route leg in the route do
12 Define the maximum LT to cover for a confidence level of 99.865%
13 end for
14 Define the combination of size Γ of elements that most affect the route

duration (demand or travel time)
15 if any Dj belongs to ‘worst’ combination then
16 Set Dj to its maximum value
17 end if
18 if the vessel capacity is not violated for the worst case demand then
19 Define A0

rj

20 Calculate RT (Γ) and RT
21 Create parameter Bvrlt based on RT for every day in the planning

horizon
22 Calculate the route cost Cvr

23 Update subset Rv

24 end if
25 end for
26 end if
27 end for
28 return R; Rv; A0

rj; Bvrlt; Cvr

3.3.1.2 Confidence level applied to each individual probabilistic parameter

As the probability functions for the offshore units’ demands and the legs’ travel
time are known, one may also consider each parameter to cover for given confidence level
(CI) and then apply the route generation procedure defined in 3.1.1. A pseudo-code is
indicated in Algorithm 3.

In the given example and for a CI of 99.865%, for route #1: i) customer#1 demand
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Algorithm 3: Route generation - Confidence level applied to each individual
probabilistic parameter

Input: j; Dj; LT; Vessel Capacity and Route Cost per Vessel Type v
Output: R; Rv; A0

rj; Bvrlt; Cvr

1 for every combination of up to 8 customers do
2 Set each demand Dj to the value corresponding to the CI
3 Calculate the route demand by summing Dj of the units in the combination
4 if the route demand is lower than or equal to the maximum vessel capacity

then
5 Solve the TSP and define the route sequence
6 Define A0

rj

7 for each class v compatible with the route demand do
8 for every route leg in the route do
9 Set each LT to the value corresponding to the CI

10 end for
11 Calculate TT based on each LT
12 Calculate the route duration RT
13 Create parameter Bvrlt based on RT for every day in the planning

horizon
14 Calculate the route cost Cvr

15 Update subset Rv

16 end for
17 end if
18 end for
19 return R; Rv; A0

rj; Bvrlt; Cvr

is set to 156 m2, and customer#2 demand is set to 297 m2, causing the overall route
demand to be 453 m2; ii) each leg travel time is computed to meet the confidence level;
and iii) the overall route duration is 2.674 days.

3.3.1.3 Confidence level applied to the routes

Another approach is to calculate the route’s statistical parameters based on the
joint probability functions derived from the Dj and LT . The route’s statistical parameters
are the route demand and the route duration. This is done by adding independent random
variables. With the routes’ statistical parameters calculated, it is possible to set the routes
parameters to cover for a given CI. A pseudo-code is indicated in Algorithm 4.
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Algorithm 4: Route generation - Confidence level applied to the routes
Input: j; Dj; LT; Vessel Capacity and Route Cost per Vessel Type v
Output: R; Rv; A0

rj; Bvrlt; Cvr

1 for every combination of up to 8 customers do
2 Calculate the route demand based on the joint probability of Dj to cover for a

given CI
3 if the route demand is lower than or equal to the maximum vessel capacity

then
4 Solve the TSP and define the route sequence
5 for each class v compatible with the route demand do
6 Define A0

rj

7 Calculate the probability function of the route duration from Dj and TT
8 Set RT to cover for a given CI
9 Create parameter Bvrlt based on RT for every day in the planning

horizon
10 Calculate the route cost Cvr

11 Update subset Rv

12 end for
13 end if
14 end for
15 return R; Rv; A0

rj; Bvrlt; Cvr

In the proposed example, route #1 demand is normally distributed ∼N(42 +
108; 382 + 632), or 150 ± 73.6, resulting in an overall route demand of 371 m2 for a 99.865%
confidence level. The same applies to the route duration, which has an aggregate duration
of 1.288 ± 0.239 days and an overall duration of 2.006 days at the desired confidence level.
One may notice that the confidence level applied to the route duration leads to a lower
overall route duration than the route duration calculated using the same confidence level
applied to each individual parameters.

3.3.2 Schedule reliability

In contrast to the proposed approaches for dealing with the stochastic parameters
in the route generation process, a new mathematical model that includes the schedule
reliability is presented. A deterministic schedule is composed of routes with fixed departing
days and known duration, as shown in Fig. 9. Each rectangle corresponds to a route
assigned to a vessel of different sizes, represented by different colors. The numbers one to
fourteen are references to days. The schedule presented covers two planning periods of
one week each. As an example, route 1094 has a duration of 3 days and two departure
days on this horizon: day 2 and day 9. The PSVPP is concerned with defining the optimal
schedule and determining the fleet composition needed for servicing the offshore units
on a regular basis. In such cases, the fleet is given by the maximum number of vessels
simultaneously in use on any given day.



42

Figure 9 – Schedule representation

In the stochastic version of the PSVPP, a major concern is how to achieve a reliable
schedule, as the stochastic demand and the stochastic travel times may cause the following
violations: i) vessel capacity being inferior to the actual route’s demand; ii) a vessel not
being available for the next assignment (trip) in due time.

As an example, consider two given routes, named routed #1 and route #2, whose
departure day is the same, day 1, and both routes are assigned to the same vessel type.
The mean route duration and the corresponding standard deviation are 1.28795 ± 0.23943
(days) for route #1 and 1.44292 ± 0.31637 for route #2. The statistical values for route #1
and route #2 are calculated by the route generation procedure presented in Algorithm 4.
The duration distribution of route #1 shows that the probabilities for a vessel finishing the
route in up to one, two, and three days are 11.46%, 99.85%, 100.00%, respectively (it has
been assumed 100% of probability if the route duration is above the mean plus three times
the standard deviation). Analogously, for route #2, the probabilities of finishing the route
in up to one, two, and three days are 8.08%, 96.09%, and 100.00%. For a confidence level
of 99.865% and assuming that the routes depart on the same day, two vessels are required
from day one to day three. It may also be noticed that, on day three, there is only a 0.15%
of probability that a vessel will be executing route #1 and 3.91% of probability that a
vessel will be executing route #2. By combining these probabilities, it can be realized that
the probability that no vessel will be in use on day three is 95.95%, the probability of one
or less vessel will be in use on that day is 99.99%, and the probability of two vessels being
in use is only 0.01%. This means that one of the vessels may be assigned to its next trip
on day three, incurring a very low risk of not being able to execute the proposed schedule.
The detailed calculation for combining the statistics of routes #1 and #2 on day 3 is
presented in Fig. 10.

The main challenge for incorporating the schedule reliability in the problem is to
find out an efficient way to address the statistics of the violations for the schedule, given a
large number of possible routes and departing days combinations in the problem. This
research uses a new methodology based on the routes’ duration probability function and
the joint probability function for the routes’ combinations. It comprises a set of ranges of
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Figure 10 – Numerical example of how to combine statistics of two routes departing on
the same day.

probabilities for a given vessel type to be executing a route in a given day and a set for the
combinations of the probability ranges. The range of probability is a predefined interval
of probability; for example, a range of probability could be set from 0% to 10%, which
indicates the chance that a vessel is in use lies within this interval. The combination of the
ranges is the Cartesian product of the probability ranges of the routes being simultaneously
executed. For example, if six ranges of probabilities are set and the maximum number of
routes in execution is set to six, there are 923 possible combinations of ranges of probability
(combination with repetition). The required number of vessels for a specific vessel type is
calculated for each combination of probability ranges and the desired confidence level.

In the given example for day 3, two ranges of probabilities for a vessel being in
use in a given day are arbitrarily defined as C1, with a range equal to [0%;0.3%], and
C2 with a range equal to ]0.3%;5%]. Then, all combinations for those probability ranges
are generated, and the number of required vessels are defined, considering the desired
confidence level and using the upper value of each range. Combining C1 and C1 results in
a 99.401% probability that no vessel will be in use on day three, a 99.999% probability that
one or fewer vessels will be in use, and 100% probability that two or fewer vessels will be
in use on day three. Combining C1 and C2 results in a 94.715% probability that no vessel
will be in use on day three, 99.985% probability that one or fewer vessels to be in use, and
100% probability that two or fewer vessels will be in use. For a 99.865% confidence level,
the combination of C1 and C2 only requires one vessel on day three. Fig. 11 illustrates the
combination of the ranges of probabilities C1 and C2 and the respective calculation for
the number of vessels required.
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Figure 11 – Combinations of C1 and C2 for different number of vessels.

3.3.2.1 A novel mathematical model for the S-PSVPP

This section presents the mathematical model considering the schedule robustness,
which is based on the definitions of the sets, indices, parameters and decision variables
described in Tables 8, 9 and 10, and on that previously detailed in Tables 1, 2 and 3 from
Section 3.3.2.1.

Table 8 – S-PSVPP - Sets and indices

Sets and
Index

Description

P Set of ranges of probabilities for a vessel to be in use in a given day (index p).

A Combinations of the ranges of probabilities (index a).
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Table 9 – S-PSVPP - Parameters

Parameters Description
Wa Required number of vessels to ensure a given confidence level for (non-

exceedance limit) for the combination in a.

Zap Number of vessels in the combination of probabilities a that are in the range
of probability p.

Kvrltp Binary parameter that is 1 if a vessel v that is assigned to a route r that
departs from supply base in day l is in use on day t with the probability of be
in use in day t within the range of p, and 0 otherwise.

B̃vrlt Binary parameter that is 1 if a vessel v that is assigned to a route r that
departs from supply base in day l is in use on day t and the probability of
the vessel to be executing the route in day t is above the maximum range of
probabilities defined in p, and 0 otherwise.

Table 10 – S-PSVPP - Decision Variables

Decision
Variables

Description

mvta Binary variable equal to 1 if the probability combination of vessels in use a is
selected (equals zero otherwise) for vessel type v on day t.

The mathematical model taking into account the schedule robustness is defined as:

minZ =
∑
v∈V

Fvnv +
∑
v∈V

∑
r∈Rv

∑
l∈L

Cvrxvrl (3.25)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (3.26)

∑
v∈V

∑
r∈Rv

xvrlA
0
rj =

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (3.27)

∑
v∈V

∑
r∈Rv

xvrl ≤ H l ∈ L (3.28)

nv ≥
∑
r∈R

∑
l∈L

xvrlB̃vrlt +
∑
a∈A

mvtaWa v ∈ V , t ∈ T (3.29)

∑
a∈A

mvtaZap ≥
∑
r∈R

∑
l∈L

xvrlKvrltp v ∈ V , t ∈ T , p ∈ P (3.30)

∑
a∈A

mvta = 1 v ∈ V , t ∈ T (3.31)

nv ∈ Z+, bsj ∈ {0, 1} , xvrl ∈ {0, 1} , mvta ∈ {0, 1} . (3.32)
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The objective function (3.25) and constraints (3.26) to (3.28) are the same of
those one presented in the SPM model, in Section 3.3.2.1. Constraint (3.29) calculates
the number of vessels per class as the maximum number of vessels in use at the same day
for a given confidence level. Constraint (3.30) ensures that the number of vessels in use
with the probability range p is greater or equal to the number of vessel in the range of
probability p for the combination a selected at any day in t and vessel type v. Constraint
(3.31) ensures that only one probability combination a is selected at any day in t and
vessel type v. Lastly, Constraint (3.32) defines the variables’ domain.
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4 SOLUTION METHOD

The solution methods applied to solve the 2 extensions of the PSVPP are presented
in this section.

4.1 PSVPP with berth allocation

The model proposed for the PSVPP with berth allocation decisions is difficult
to solve, due to its combinatorial nature. In order to achieve a good-quality solution or
even the optimal solution, the problem is solved in four steps. The initial steps simplify
many important constraints, which are progressively incorporated. The idea is that the
solution of any given step provides a lower bound to the following step and, in the case of
the fourth step, a bound is provided for the complete model. Although the complexity
increases with each step, the informed bounds are meant to reduce the processing time. In
the following, each step is detailed.

Step 1 - The berth allocation constraints are relaxed and a limit on the maximum
number of departures (i.e. routes) per day is imposed as two times the number of berths,
as no more than two departures per berth are expected to occur in each day. The routing
costs are also eliminated from the objective function. Lastly, instead of calculating the
number of vessels as proposed by constraint (3.23), the vessels’ operating time (in days)
are summed, for each class, and divided by seven (one week). This is an approximation
that is refined in Step 2, taking into account the vessels’ temporal distribution.

Step 2 - The difference from Step 1 is the refinement in the fleet-sizing process.
The fleet is now defined by the maximum number of vessels in use in each day, for each
class, as in constraint (3.23). The fleet cost of Step 2 cannot be inferior to the Step 1 fleet
cost, and this is represented by a constraint.

Step 3 - The routes selected in Step 2 are not necessarily optimal if the routing
costs are considered, despite being able to yield the lowest fleet cost, which was accurately
calculated in Step 2. In Step 3, the same model proposed for Step 2 is considered except
that the routing costs are incorporated in the objective function. As in the previous case,
the fleet cost of Step 3 cannot be inferior to the fleet cost of Step 2, and a constraint is
added to the model in this respect.

Step 4 - The problem solved in Step 3 is complete except for the berth allocation
decisions, which are considered in this step. The routes from the Step 3 solution are used
as input to Step 4.
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4.1.1 Step 1 Mathematical Model

In order to solve Step 1, new decision variables are introduced to allow working
with the simplified model, wvrl - binary variable that is 1 if a vessel of class v executes
route r on day l, and 0 otherwise; and tcvrl - integer variable that registers the cycle time
for a vessel of class v when executing route r on day l. The cycle time is the time span
between the beginning of the vessel loading at the harbour until its return to the onshore
base, after performing a route. Z1 is the value of the objective function, and Z1 is the
lower-bound value obtained with the model processing. The model can be stated as follows:

min Z1 =
∑
v∈V

Fvnv (4.1)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (4.2)

∑
v∈V

∑
r∈Rv

wvrlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (4.3)

∑
v∈V

∑
r∈Rv

wvrl ≤ |B| |P | l ∈ L (4.4)

tcvrl ≥ wvrl

 SB + STrv +
∑

j∈J : A0
rj=1

(PB + POj)Dj


l ∈ L, v ∈ V , r ∈ Rv

(4.5)

nv ≥
∑
l∈L

∑
r∈Rv

tcvrl / |L| v ∈ V (4.6)

nv ∈ Z+, tcvrl ∈ Z+, bsj ∈ {0, 1} , wvrl ∈ {0, 1} . (4.7)

The objective function (4.1) minimizes vessels’ fixed costs based on their average
use during the planning period. Constraint (4.2) ensures that one departure pattern is
assigned for each offshore unit. Constraint (4.3) ensures that there is at least one vessel
departing on each day belonging to the selected departure pattern of each offshore unit.
Constraint (4.4) limits the number of departures per day based on the number of available
berth positions. Constraint (4.5) determines the cycle time for a vessel of class v when
assigned to route r on day l. Constraint (4.6) calculates the number of vessels per class,
based on the average utilization in the considered period (one week). Constraint (4.7)
defines the variables’ domain.



49

4.1.2 Step 2 Mathematical Model

In order to solve Step 2, the following variable is needed: yvrt1t2 - binary variable
that is 1 if a vessel of class v departing on day t1 is still operating on route r by day t2,
and 0 otherwise. This variable plays a similar role as cvbpt1t2 in the complete model, and
allows for computing the maximum number of class v vessels in use. Z2 is the value of the
objective function, and Z2 is the lower-bound value obtained with the model processing.
The model can be stated as:

min Z2 =
∑
v∈V

Fvnv (4.8)

subject to: ∑
s∈Sj

bsj = 1 j ∈ J (4.9)

∑
v∈V

∑
r∈Rv

wvrlA
0
rj ≥

∑
s∈Sj

bsjA
1
sl l ∈ L, j ∈ J (4.10)

∑
v∈V

∑
r∈Rv

wvrl ≤ |B| |P | l ∈ L (4.11)

|T |∑
t2=t1

yvrt1t2 ≥ wvrl

 SB + STrv +
∑

j∈J : A0
rj=1

(PB + POj)Dj


l ∈ L, t1 ∈ L, t2 ∈ T , v ∈ V , r ∈ R

(4.12)

yvrll ≥ wvrl l ∈ L, v ∈ V , r ∈ Rv (4.13)

yvrt1t2 = 0 t1 ∈ L, t2 ∈ L, v ∈ V , r ∈ Rv, t2 < t1 (4.14)

yvrt1(t2+1) − yvrt1t2 ≤ 0 t1 ∈ L, t2 ∈ T , v ∈ V , r ∈ R, t2 ≥ t1 (4.15)

yvr(t1+|L|)(t2+|L|) = yvrt1t2 t1 ∈ L, t2 ∈ L, v ∈ V , r ∈ R (4.16)

nv ≥
∑

t1∈T

∑
r∈R

yvrt1t2 v ∈ V , t2 ∈ T (4.17)

∑
v∈V

Fvnv ≥ Z1 (4.18)
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nv ∈ Z+, bsj ∈ {0, 1} , wvrl ∈ {0, 1} , yvrt1t2 ∈ {0, 1} . (4.19)

The objective function (4.8) minimizes the vessels’ fixed costs based on the maximum
number of vessels that is required for each vessel class in the planning period. Constraints
(4.9) to (4.11) have the same purposes as stated in the previous model. Constraint (4.12)
ensures that a binary counter is activated (i.e. equal to 1), for the time period that a vessel
of class v is executing route r. Constraint (4.13) forces variable yvrt1t2 to be 1 if a vessel of
class v departs from the port on day t1 to execute route r. Constraint (4.14) ensures that
the binary counter is not activated in any period t2 prior to a candidate departing day
t1. Constraint (4.15) links the counter variable of one day to its previous day. Constraint
(4.16) replicates a vessel class assignment for the subsequent period. Constraint (4.17)
calculates the number of vessels per class, as the maximum number of vessels in use at the
same time. Constraint (4.18) imposes a lower-bound value on the fleet cost, based on the
Step 1 lower bound. Constraint (4.19) defines the variables’ domain.

4.1.3 Step 3 Mathematical Model

In Step 3, the same model from Step 2 is solved except that the objective function
incorporates the routing costs. The solution found in Step 2 is used as an initial solution,
and also provides a lower bound to the objective function. Z3 is the value of the objective
function, and Z3 is the lower-bound value obtained with the model processing. The model
is stated as:

min Z3 =
∑
v∈V

Fvnv +
∑
v∈V

∑
r∈Rv

∑
l∈L

Cvrwvrl (4.20)

subject to:

(4.9) to (4.17), (4.19)

∑
v∈V

Fvnv ≥ Z2. (4.21)

The objective function (4.20) minimizes the vessels’ fixed costs and the routing
costs, and constraint (4.21) is the lower bound.

4.1.4 Step 4 Mathematical Model

In Step 4, the berth allocation decisions are made based on input from the set of
routes that were selected in Step 3. These routes are represented by the subset R3 ⊂ R. In
Step 4, the complete model is complemented by the indicated route selection constraints
and the lower-bound constraints. Z4 is the value of the objective function, and Z4 is the
lower-bound value obtained with the model processing. The model can be stated as:
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min Z4 =
∑
v∈V

Fvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

Cvrxvbprl (4.22)

subject to:

(3.8) to (3.24)

∑
v∈V

∑
b∈B

∑
p∈P

∑
l∈L

xvbprl = 1 r ∈ R3 (4.23)

∑
v∈V

∑
b∈B

∑
p∈P

∑
l∈L

xvbprl = 0 r ∈ R \ R3 (4.24)

∑
v∈V

Fvnv ≥ Z2 (4.25)

∑
v∈V

Fvnv +
∑
v∈V

∑
b∈B

∑
p∈P

∑
r∈Rv

∑
l∈L

CRvrxvbprl ≥ Z3 (4.26)

The objective function (4.22) minimizes the fleet’s fixed costs and the routing costs.
Constraints (4.23) and (4.24) assign the routes obtained in Step 3 and discard all the
others. Constraint (4.25) defines that the fleet cost must be greater than or equal to the
Step 2 lower bound, and constraint (4.26) defines that the objective function must be
greater than or equal to the Step 3 lower bound.

In the problem description, it was considered that a vessel meant to depart on day
l could be delayed up to 12 hours, thus leaving the port any time before 12 pm of day l+1.
This could happen in situations where a vessel was not able to start loading earlier on day
l, due to limited berth capacity. The berth scheduling process therefore focuses on how to
accommodate all the vessels in such a way that all departures fit in a one-week period.
The berth scheduling may have a direct impact on the fleet size as well. The cvbpt1t2 binary
decision variable is equal to 1 each day that a vessel of class v is in use, after leaving the
port. However, according to constraint (3.18), the sum of the cvbpt1t2 variables is influenced
by the departure time, which is given by sbpl. For example, if the route duration is 2.3
days and the departure time is 0.5, then the assigned vessel is in use until instant 2.8, and
three cvbpt1t2 variables are set to 1; but, if the departure takes place in instant 0.9, the
assigned vessel is in use until instant 3.2, and therefore four cvbpt1t2 variables are set to 1.
In this case, the maximum number of vessels in use, which is assessed by constraint (3.23),
may indicate a different fleet.

If the solution found in Step 3 indicates a number of departures per day that are
inferior or equal to the number of available berths, then the Step 4 solution is the same as
for Step 3. However, as this may not be the case, in Step 4, the complete model is processed
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with the following simplifications in order to make the model processing more tractable:
the routes that were generated in Step 3 are retained, and the decisions regarding the
departure pattern (i.e. the departing days for each offshore unit) and the vessel class that
is assigned to each route are released. This means that the routes selected in Step 3 can
be sailed by a vessel from a different class and on a different day other than the ones
established in that previous step, thus giving more flexibility to the solution procedure.
Although this procedure may not lead to the optimal solution, good-quality solutions are
expected to be obtained which would not be otherwise possible if one was to resort to
solving the complete model. Finally, the objective function of Step 3 is a natural lower
bound on the objective function of Step 4, and the Step 4 solution provides an upper
bound to the complete model.

4.2 S-PSVPP: Probabilities combinations and relevant parameters

For the stochastic case, the introduction of new sets, parameters, and decision
variables demands an extra step in generating the input parameters for the mathematical
model. The following procedure is added to that stage: i) input parameters: a set of
ranges of probabilities for vessels in use (set P ), the maximum number of simultaneous
routes in execution to define the combinations of the range of probabilities (set A), and
the desired confidence level (non-exceedance limit; CI); ii) generate all combinations of
ranges of probabilities in groups of one up to the maximum number of routes in execution
simultaneously; iii) define the set A and the parameter Zap according to (ii); iv) calculate
the joint probability of the combination using the upper value in the range of probability;
v) define Wa using the joint probability of the combination and the confidence level. A
pseudo-code is presented in Algorithm 5.

Algorithm 5: Schedule Reliability Parameters
Input: P ; maximum number of simultaneous routes in execution; CI;
Output: A; Zap; Wa

1 for Every combination of ranges of probabilities (P ) from 1 to the max. number of
routes do

2 Update A
3 Define Zap

4 Calculate the joint probability of the combination using the upper value in the
range

5 Define Wa to cover for a given CI
6 end for
7 return A; Zap; Wa

Besides this added step, the route generation has to be updated regarding the
generation of the parameters B̃vrlt and Kvrltp. The route statistics are calculated according
to 3.3.1.3. An upper limit for the route duration is set to a confidence level of 99.865%.



53

If the probability of the vessel being used in a given route on day t is above the upper
probability range defined in p, only Bvrlt is set to one. In case this probability lies in one
of the ranges defined in p, only the corresponding Kvrltp is set to 1. If the day t is beyond
the upper limit for route duration with a departure on day l, both B̃vrlt and Kvrltp are set
to zero. A pseudo-code is presented in Algorithm 6. A diagram to illustrate the key input
data and the generation of the mathematical model parameters for the proposed method
is presented in Fig. 12.

Figure 12 – S-PSVPP procedure using a MIP solver.

Algorithm 6: Route Generation - Schedule Reliability
Input: j; Dj; LT; Vessel Capacity and Route Cost per Vessel Type v; P
Output: R; Rv; A0

rj; B̃vrlt; Kvrltp; Cvr

1 for every combination of up to 8 customers do
2 Solve the TSP and define the route sequence
3 Calculate the route demand based on the joint probability of Dj to cover for a

given CI
4 if The route demand is lower than or equal to the maximum vessel capacity

then
5 Define A0

rj

6 for each class v compatible with the route demand do
7 Calculate the probability function of the route duration from Dj and TT
8 Set RT to cover for a given CI
9 Calculate the route cost Cvr

10 Update subset Rv

11 Define B̃vrlt and Kvrltp based on RT for every day in the planning
horizon, observing each day’s route duration statistics

12 end for
13 end if
14 end for
15 return R; Rv; A0

rj; B̃vrlt; Kvrltp; Cvr

As an example, the following has been used in the study: i) 6 ranges of probabilities:
[0%; 0.3%], ]0.3%; 0.5%], ]0.5%; 0.7%], ]0.7%; 1%], ]1%; 5%] and ]5%; 10%]; and ii) maximum
of 6 routes in execution simultaneously. Therefore, 923 combinations are generated. The
combination #642 has 6 vessels (or routes) with the probably of each vessels to be in use
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executing the routes of 0.3%, 0.5%, 0.7%, 10%, 10% and 10%. For this combination there is
71.81%, 96.83%, 99.86%, 99.998%, 99.9999%, 99.99999999% and 100% of probability that
0, 1, 2, 3, 4, 5 and 6 or less vessels are in use on that day, respectively. If the confidence
level is set to 99%, W642 should be set to 2.
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5 COMPUTATIONAL RESULTS

The models applicability are demonstrated by real-based cases. Four cases are
presented: these are cases C10, C15, C41 and C79, having 10, 15, 41 and 79 offshore
units, respectively. In cases C10 and C15, routes are generated considering all possible
combinations for all units. In cases C41 and C79, routes are generated considering all
possible combinations of the units belonging to their clusters (i.e. groups of offshore units).

In the offshore E&P there are permanent units such as the production platforms
that remain fixed in their positions for as long as 25 years, and mobile units, related to
drilling rigs and maintenance platforms, that are constantly moved from one oilfield to
another. Those mobile units usually require a different service level in terms of frequency
of visits and different types of cargo when compared to the permanent units. Therefore, an
oil company may consider grouping near-by permanent units and near-by mobile units in
order to form clusters. Another policy is to group near-by units irrespective of their type
(permanent or mobile). Instances were generated to compare these two policies. Those
with the suffix S indicate that the mobile units are segregated from the permanent units.

The study is divided in two main sections, one dedicated to the berth allocation
and the other dedicated to the stochastic demand and travel time.

5.1 PSVPP with berth allocation

Table 17 presents some key features regarding each instance. The columns indicate
the following data: OU - number of offshore units to be served; Routes - number of
generated routes to be used as input data in the mathematical model; Clusters - number
of clusters (groups of platforms to be serviced together and apart from the others) for
each instance; OUmax - maximum number of offshore units served in a cluster; OUmin
- minimum number of offshore units served in a cluster; Rmax - maximum number of
generated routes in a cluster; and Rmin - minimum number of generated routes in a
cluster.

Table 11 – Berth Allocation - Instances
Case OU Routes Clusters OUmax OUmin Rmax Rmin
C10 10 912 1 10 10 912 912
C15 15 10,021 1 15 15 10,021 10,021
C41 41 1,372 5 11 6 822 47
C41S 41 438 7 8 4 199 14
C79 79 2,168 9 12 6 882 47
C79S 79 1,107 12 10 4 315 14

Case C10 is the easiest to solve and is used to verify the effectiveness of the step



56

solution strategy performance, when compared to the use of the complete model. Case C15
allows us to demonstrate the difficulty of solving an instance with a high overall number of
routes. Cases C41 and C79 are intermediate and hard-to-solve instances, respectively, and
allow for assessing the proposed solution strategy. Not only the overall number of routes
defines hard-to-solve instances. A large number of offshore units divided into clusters might
produce hard-to-solve instances, even with a limited number of routes in each cluster. This
is clearly demonstrated in the results obtained for cases C79.

For all cases, 4 berths were considered available with a maximum of two departures
per berth each day. A tolerance of half a day was allowed for the vessel departure time, to
allow better berth utilization.

All models were implemented in C++ and solved by Gurobi. The results were
obtained using a 2.27 GHz Intel(R) Xeon(R) E5520, with 16 cores, 48 GB RAM, and
solved by GUROBI 7.0.2. The routes were previously generated in a Excel spreadsheet
using VBA. The processing time for route generation varies from 30 to 2,100 seconds
depending on the instance. The code for the route generation has not been developed for
optimal performance and its processing time has been disregarded from the computational
study. The maximum time limit of 99,000 seconds has been set for each run, in order to
verify how far it was possible to go with the proposed solution strategy.

In the tables used to present the main results, the lines represent the following: OF
- objective function value; VC - vessels’ costs; RC - routing costs; V0 - number of PSV4500
vessels; V1 - number of PSV3000 vessels; V2 - number of PSV1500 vessels; NR - total
number of sailed routes; ND - maximum number of departures at any day; B - number of
berths; GAP - percentage difference from the upper and lower bounds given by Gurobi;
Time - processing time in seconds; and CTime - cumulative processing time in seconds for
the steps in the proposed solution strategy, and the processing time in seconds in case
of the complete model. As for the columns, they are organized according to each step
proposed in the solution strategy: S1 refers to Step 1, S2 refers to Step 2, and so on. In
some cases, Step 4 is tested for a number of berths other than four, indicated in line B.
Column CM refers to the complete model, defined in 3.2.

5.1.1 Results for Cases C10 and C15

The results for cases C10 and C15 are provided in Table 12. It can be noticed that
case C10 presented no variation in the number of vessels, with each solution step. The
maximum number of departures on the same day decreased significantly from Step 1 to
Step 2 because of the vessel usage consideration. However, a considerable difference can
be noticed for the processing time. The complete model took 84,340 seconds to process,
while the total processing time for the solution strategy was 115 seconds.

In case C15 the fleet varied with each step, except for the last one. In Step 1,



57

Table 12 – Berth Allocation - Results for cases C10 and C15
C10 S1 S2 S3 S4 CM
OF 50 50 53.77 53.77 53.77
VC 50 50 50 50 50
RC - - 3.77 3.77 3.77
V0 0 0 0 0 0
V1 0 0 0 0 0
V2 2 2 2 2 2
NR 6 7 6 6 6
ND 3 1 1 2 1
B 4 4 4 4 4
Gap 0 0 0 0 0
Time 4 11 16 84 84,340
CTime 4 15 31 115 84,340
C15 S1 S2 S3 S4 CM
OF 71 75 80.37 80.37 89.43†

VC 71 75 76 76 83
RC - - 4.37 4.37 6.43
V0 1 0 2 2 0
V1 1 0 0 0 1
V2 0 3 0 0 2
NR 5 11 4 4 9
ND 1 2 1 1 2
B 4 4 4 4 4
Gap 0 0 0 0 57.90%
Time 1,862 4,448 496 6 21,289
CTime 1,862 6,310 6,806 6,812 21,289
† Objective function value not proven to be opti-

mal.

two vessels were needed to perform five routes. However, when the fleet was calculated
more accurately, three small vessels were chosen to perform 11 routes. In Step 3, as the
routing costs were computed, two large vessels were selected to perform four routes. The
fleet cost increased from 75 to 76, but this was compensated for by a reduction in the
routing costs. In Step 2, the routing costs, which are not shown in Table 12, were 8.04,
and in Step 3, the routing costs were 4.37, yielding an overall cost reduction of 2.67. As for
the complete model, an out-of-memory error interrupted the processing at instant 21,289
seconds, with a 57.90% gap. The proposed solution strategy thus proved to be efficient
and an optimal solution could be found in 6,812 seconds. For both cases C10 and C15,
given that optimal solutions were attained at Steps 1 to 3, and that there were enough
berths to accommodate all the departures generated in Step 3, the Step 4 solutions are
also optimal to the complete model.
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Table 13 – Berth Allocation - Results for cases C41 and C41S
C41 S1 S2 S3 S4 S4(3B) S4(2B) CM
OF 243 243 256.59 256.59 256.59 270.20† 289.23†

VC 243 243 243 243 243 256 276
RC - - 13.59 13.59 13.59 14.20 13.23
V0 4 4 4 4 4 5 4
V1 2 2 2 2 2 2 3
V2 1 1 1 1 1 0 1
NR 19 19 19 19 19 19 18
ND 4 4 4 4 4 3 4
B 4 4 4 4 3 2 4
Gap 0 0 0 0 0 3.1% 62.6%
Time 21 41 77 348 173 99,000 99,000
CTime 21 62 139 487 312 99,139 99,000
C41S S1 S2 S3 S4 S4(3B) S4(2B) CM
OF 248 248 261.99 261.99 - 261.99 305.00†

VC 248 248 248 248 - 248 291
RC - - 13.99 13.99 - 13.99 14.00
V0 5 5 5 5 - 5 7
V1 1 1 1 1 - 1 0
V2 1 1 1 1 - 1 1
NR 18 18 17 17 - 17 17
ND 4 4 3 3 3 3 4
B 4 4 4 4 - 2 4
Gap 0 0 0 0 - 0 60.46%
Time 10 170 81 6 - 61 99,000
CTime 10 180 261 267 - 322 99,000
† Objective function value not proven to be optimal.

5.1.2 Results for Cases C41 and C41S

Table 13 presents the results for cases C41 and C41S, without and with segregation
regarding servicing mobile units apart from the permanent units, respectively. Different
from cases C10 and C15, these cases were also tested for two and three berths. It can be
noticed that in case C41, the number of vessels remained the same, except for the case
with two available berths. The maximum number of departures were four and three, for
cases C41 and C41S, respectively, and Steps 1 to 3 were optimally solved. Therefore, as
with cases C10 and C15, the Step 4 solutions are also optimal. In order to test if the
solution would change in the case that fewer berths were available, the Step 4 model was
run considering three and two berths, and the results are presented in Table 13 in columns
S4(3B) and S4(2B), respectively.

In case C41S, the results for three berths were omitted, as the maximum number
of departures in Step 3, with four available berths, was three and, therefore, the solution
would not change. Also, when only two berths were available, the solution remained
the same. As for the complete model processed with four berths, solutions with poor
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lower bounds were obtained, despite their long processing times, and the computational
efficiency of the proposed solution strategy could thus be verified once again. While the
total processing times for considering all steps were 1,234 seconds and 267 seconds, for
cases C41 and C41S, respectively, the complete model was run for 99,000 seconds for both
cases, and gaps exceeding 60% were obtained. The servicing policies can be compared.
If four berths are available, the option to service the mobile units and permanent units
together is better than segregating them. The costs would be 2.1% lower in this case. This
analysis is valid for the instances presented and might diverge in other cases.

Berth allocation for case C41 can be seen in Figure 13. On the left, the berth
number (B) and the departing position number (P) are indicated. On the top, each column
represents one day, and the solutions with four, three and two berths are compared. The
numbers indicated in the colored spaces are the route number for each berth-position and
day. The color indicates the type of vessel that was used: red for large size, yellow for
mid-size and green for small size.

Figure 13 – Berth allocation for case C41.

In case C41, the results for three berths were the same as for four berths both
in terms of fleet composition and in terms of routing costs. Given that the maximum
number of departures is four and the number of available berths is three, the routes could
be rearranged on different departing days, as indicated in the middle section of Figure
13. When instance C41 was processed with two berths, a different fleet composition was
obtained. The positive gap of 3.1% indicates a lower bound equal to 261.82, which is
greater than the objective function value of S4 with three or four berths. Thus, a greater
fleet is necessary to allow more departures throughout the planning horizon.

The departure times for case C41 can be seen in Figure 14. The importance of
allowing flexibility regarding the departure times (i.e. to allow a departure to take place
by 12 pm of the following day) was noticed in the case C41. This actually happened on 4B
day 1, 3B day 6, and 2B day 3. In case 3B, for example, there is a departure scheduled to
take place on day 6 which actually happens at instant 6.2 (day 7). If no tolerance in the
departure time is allowed, one extra large vessel would be needed in place of a mid-size
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vessel, incurring a cost increase of 2% (around 5 MM USD). This reinforces that finding a
feasible berth allocation with the minimum fleet configuration was made possible due to
such a tolerance in the departure time.

Figure 14 – Departure instants for each berth-position for case C41.

When a vessel is assigned to a route, it can begin loading at the very beginning of
the scheduled departure day; or it may have to wait for a vessel from a previous day to
release the berth; or it may happen that a vessel is the second to occupy a berth on a
given day. The waiting time before starting to load a vessel, added to the loading time and
to the time at sea, indicates the vessel cycle time. The rounded value of the cycle time
to its upper integer value indicates the number of cvbpl1l2 binary variables set to 1, which
allows for computing the maximum number of vessels in use - refer to constraints (3.18)
to (3.23). Figure 15 indicates the cycle time for all departures for case C41. For example,
for 3B day 6, route 39 starts loading at instant 5.33, which is the time the previous vessel
left the berth (see Figure 14). The loading time is 0.87, and the sailing time added to the
trans-shipment time at sea is 2.29. The cycle time is given by 0.33 + 0.87 + 2.29 = 3.49,
thus requiring the vessel to be in use for four days.

Figure 15 – Cycle times for each berth-position for case C41.

According to Table 13, in case C41 the fleet is composed of seven vessels. Figures
16 to 18 present possible arrangements for the vessels’ assignments depending on the
number of berths. In the figures, the number of berths is indicated in the first line, and
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the days are indicated in the second line. Then, each additional line corresponds to a
vessel, indicated by its class and its number. For each vessel, the rectangles are as large as
the cycle time of each route, whose number is indicated inside the rectangle. The colors
indicate the vessel classes: red for large size, yellow for mid-size and green for small size.
The light and dark colors are meant to highlight the routes’ assignments over each week.
As one may notice, the routes selected for the large-size vessels cannot be repeated for the
same vessel in two consecutive weeks. If the vessels were required to perform the same
routes from one period to the other the proposed solution would not be feasible. However,
by considering the vessels as belonging to a pool of available resources, more sophisticated
and cost-effective solutions can be built.

Figure 16 – Vessels’ allocation for case C41 (four berths).

Figure 17 – Vessels’ allocation for case C41 (three berths).

Figure 18 – Vessels’ allocation for case C41 (two berths).
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5.1.3 Results for Cases C79 and C79S

Cases C79 and C79S were also tested and the results are presented in Table 14.
In case C79 with four berths, Steps 1 to 3 did not present any variation related to the
fleet composition. However, in Step 4, the solution from Step 3 could not be confirmed,
and a mid-sized vessel was added to the fleet. The gap was 5.58% with no progress of the
lower bound throughout the whole processing time. Step 4 was also tested for five and
six berths (5B and 6B) and only with six berths the Step 3 solution could be scheduled
with the same fleet. In case C79S with four berths, the model processing in Step 1 and in
Step 2 were not able to close the gap, which was 0.56% after 99,000 seconds. The Step 1
solution was obtained after 1,549 seconds, and the gap was 2.04%. Then it took almost
97,500 seconds to reduce the gap to 0.56%. In Step 2, the final solution was generated at
instant 5,160 with a gap equal to 0.56%. The Step 3 model was interrupted after 61,180
seconds due to an out-of-memory error without having generated any primal solution.

Table 14 – Berth Allocation - Results for cases C79 and C79S
C79 S1 S2 S3 S4 S4(5B) S4(6B) CM
OF 527 527 558.55 591.55† 591.55† 558.55 -
VC 527 527 527 560 560 527 -
RC - - 31.55 31.55 31.55 31.55 -
V0 8 8 8 8 8 8 -
V1 6 6 6 7 7 6 -
V2 1 1 1 1 1 1 -
NR 38 38 38 38 38 38 -
ND 8 8 8 7 6 7 -
B 4 4 4 4 5 6 4
Gap 0 0 0 5.58% 5.58% 0 -
Time 3,274 5,755 36,270 99,000 99,000 64,803 99,000
CTime 3,274 9,029 45,299 144,299 144,299 110,102 99,000
C79S S1 S2 S3 S2∗ S3∗ S4(4B)∗ CM
OF 540† 540† 570.46† 540 570.37 570.37 -
VC 540 540 - 540 540 540 -
RC - - - - 30.37 30.37 -
V0 9 9 - 9 9 9 -
V1 6 6 - 6 6 6 -
V2 0 0 - 0 0 0 -
NR 36 35 - 35 34 34 -
ND 8 6 - 6 6 6 -
B 4 4 4 4 4 4 4
Gap 0.56% 0.56% 0.49% 0 0 0 -
Time 99,000 99,000 61,180 161 1,771 8,653 99,000
CTime 99,000 198,000 259,180 99,161 100,932 109,585 99,000
† Objective function value not proven to be optimal.
∗ Upper bound of a previous solution step informed instead of the lower

bound.

We also tested how Steps 2, 3 and 4 would perform if the upper bound of a
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previous solution step was informed in constraints (4.18), (4.21), (4.25) and (4.26) instead
of the lower bound. This is different from the previous cases, where the initial steps
always produced optimal solutions, and thus the lower bounds and the upper bounds
were the same. These new tests are registered in the columns marked with an asterisk.
It was observed that this procedure produced rapid convergence in the model and very
good-quality solutions could be achieved, although we cannot claim to have obtained the
optimal solution. It was possible to find a solution serving 79 offshore units using only
four berths and the solution obtained in Step 4 has a gap of only 0.56% (the same as in
the Step 1 solution). Therefore, we consider this alternative as a valid and useful solution
strategy that could be used in practice. The complete model was tested for both cases to
assess the effectiveness of the proposed methodology. In both cases, no feasible solution
was obtained after 99,000 seconds.

5.1.4 Proposed Solution Strategy Performance

The comparison between complete mathematical model (CM) with the proposed
solution strategy (PSS) considering the overall results from Step 1 to Step 4 is presented in
Table 15. Based on the presented results, one may conclude that the proposed methodology
is capable of significantly reducing the computational time and to provide an optimal
solution for most of the cases considered. For case C10 both PSS and CM achieved the
optimal solution and the PSS processing time is significantly lower than the CM processing
time. For cases C15, C41 and C41S the PSS was able to achieve the optimal solution and
the CM could not. As one might notice, the PPS spent a significant reduced amount of
time to generate optimal solution. For the cases with 79 offshore units, in C79 a good
solution has been found by the PPS but no solution has been found by the CM. For case
C79S both PPS and the CM struggle to find a feasible solution. A large processing time is
obtained for a few cases, particularity for cases C79 and C79S. For this kind of problem,
a large processing time of thousands of seconds is not an issue, once it has to be solved
around every quarter of a year or more.

An assessment to further investigate the effectiveness of breaking down the complete
model into steps has been performed for cases C15, C41 and C79. The results are presented
in Table 16 and the following denomination has been used in the columns: i) S1-3 is the
consolidated result for steps 1 to 3; ii) S3’ is the result for the Step 3 model without the
lower-bound constraint (4.21) and without using the Step 2 solution as an initial solution;
iii) S3” is the result for Step 3 without the use of the Step 2 solution as an initial solution;
iv) S3 is the result for Step 3 (previously calculated); v) S4” is the result of Step 4 without
the use of the Step 3 solution as a constraint, i.e. without considering constraints (4.23)
and (4.24); vi) S4 is the result for Step 4 (previously calculated).

If one compares S1-3 to S3’ it is possible to verify the effectiveness of breaking
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Table 15 – Berth Allocation - Comparison between the proposed solution strategy and the
complete model

C10 PSS CM C15 PSS CM
OF 53.77 53.77 OF 80.37 89.43†

Gap 0 0 Gap 0 57.90%
Time 115 84,340 Time 6,812 21,289
C41 PSS CM C41S PSS CM
OF 256.59 289.23† OF 261.99 305.00†

Gap 0 62.60% Gap 0 60.46%
Time 487 99,000 Time 267 99,000
C79 PPS CM C79S PPS CM
OF 591.55† - OF - -
Gap 5.58% - Gap - -
Time 144,299 99,000 Time - -
† Objective function value not proven to be optimal.

Table 16 – Berth Allocation - Performance assessment of Step 3 and Step 4
C15 S1-3 S3’ S3” S3 S4” S4
Time 6,806 3,251 438 496 13,006 6
OF 80.37 80.37 80.37 80.37 80.37 80.37
GAP 0 0 0 0 0 0
C41 S1-3 S3’ S3” S3 S4” S4
Time 140 394 122 77 99,000 348
OF 256.59 256.59 256.59 256.59 294.95† 256.59
GAP 0 0 0 0 13.00% 0
C79 S1-3 S3’ S3” S3 S4” S4
Time 42,685 95,192 99,000 36,270 99,000 99,000
OF 558.55 558.55 558.55† 558.55 705.24† 591.55†

GAP 0 0 0.02% 0 20.80% 5.58%
† Objective function value not proven to be optimal.

down the Step 3 model in Step 1 and Step 2. For cases C41 and C79, the reduction on
the processing time is clearly demonstrated. However, as one might notice in case C15
it is more efficient to run Step 3 without Step 1 and 2, and the use of the lower bound
and of the initial solution has not been demonstrated as advantageous for Step 3 model.
If one compares S3” to S3 it is possible to verify the effectiveness of using the Step 2
solution in Step 3, as for cases C41 and C79 the processing time has been significantly
reduced. For case C15, the processing time remains almost the same. If one compares S4”
to S4 it is possible to verify the effectiveness of using the routes obtained in Step 3 as
constraints (4.23) and (4.24). For cases C15 and C41, there was a significant reduction
in the processing time (by a thousand times less). For case C79, neither S4 nor S4” has
closed the gap to zero; however a better solution could be provided by using the Step 3
solution as an input to Step 4.

This assessment demonstrates that the effectiveness of breaking down the model
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into steps (1 to 3) is not always the most efficient manner to solve the problem, although
it was efficient for some cases. This assessment also demonstrates the effectiveness of using
Step 3 routes as the initial solution to Step 4 for all evaluated instances. The overall
evaluation of the method presented in Table 15 demonstrates the overall effectiveness of
breaking down the model into steps for all instances.

5.2 S-PSVPP Computational results

All models were implemented in Python and solved by Gurobi. The results were
obtained using a 2.2 GHz Intel(R) Core(TM) i5-5200U, with two processors and 8 GB RAM,
and solved by Gurobi 8.1.1. The routes and the mathematical model input parameters
were previously generated in a Python script (Spyder/Python 3.6). The processing time
for the route generation varies from 60 to 3.600 seconds, depending on the instance. The
route generation code has not been developed for optimal performance, and its processing
time has been disregarded in the computational study. The maximum time limit of 1.200
seconds has been set for each run. For some specific cases, the time limit has been extended,
aiming to achieve smaller gaps. Such cases are identified with a star (*).

Table 17 presents some key features regarding each instance, and the columns
indicate the following data: OU - number of offshore units; CL - number of clusters; MAX
- the maximum number of OU in a cluster and MIN - the minimum number of OU in a
cluster; FV1, FV2, FV3: number of units with a frequency of visit 1, 2 and 3 days in a
week respectively, and #R is the number of routes generated for each case.

Table 17 – S-PSVPP - Instances.
Case OU CL MAX MIN FV1 FV2 FV3 #R
C10 10 1 10 10 5 5 0 1012
C15 15 1 15 15 7 7 1 22818
C41 41 5 11 6 28 8 5 2935
C41S 41 7 8 4 28 8 5 585
C79 79 9 12 6 54 17 8 6398
C79S 79 12 10 4 54 17 8 2298

5.2.1 Stochastic demand

The average standard deviation of the demand lies between 50% and 62% of the
average demand per visit. The units’ demands per visit have a large dispersion to the
mean value, as the standard deviation is larger than the mean value in a few specific
cases. The offshore units’ demands probability distributions are assumed to follow normal
distributions, with no negative demand being allowed for any customer; in such cases, the
demand is set to zero.
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5.2.2 Stochastic travel time

A route’s leg travel time is assumed to follow a normal distribution and depends
on the distance (DT ). Based on real data of vessel’s departure time and arrival time
for voyages under regular operations, two probability distributions for the routes’ leg
travel times are derived: i) for the cases that the distance between two waypoints is
lower than ten nautical miles (18 km) and ii) for the cases that the distance is greater
than ten nautical miles. For distances inferior to ten nautical miles, the distribution
(mean, standard deviation) is given by 0.006124DT ± 0.002764DT (days per km), and
0.004904DT ± 0.001143DT (days per km), otherwise. No negative travel time is allowed;
in such cases, it is set to zero.

5.2.3 Robustness and confidence levels

Robustness levels and confidence levels must be defined when testing different route
generation schemes. The values should be chosen with two primary purposes: i) to allow
verifying the solution behavior according to the risk-averse level; ii) to allow comparing
the solutions generated from different approaches for the same level of constraint violation.
The robust approach is tested for three robustness levels, B1, B2, and B3, corresponding
to an uncertainty budget (Γ) of 1, 2, and 3, respectively. There is no need to extend the
uncertainty budget beyond 3. It may be noticed in the computational results that an
uncertainty budget of 3 already provides very conservative results for the instances in this
study.

Applying a confidence level to each individual stochastic parameter is tested for
four confidence levels (CI): 84.134%, 93.319%, 97.725%, and 99.865%, and they are labeled
as I1, I2, I3, and I4, respectively. The CI values correspond to the mean plus one, one
and a half, two, and three standard deviations for a normal distribution. One may notice
that I4 also corresponds to the robust approach with the uncertainty budget set to the
maximum value possible. Applying a confidence level to the routes’ statistics is tested
for three confidence levels (RC) of 97.725%, 99.379%, and 99.865%, namely R1, R2, and
R3. The RC values correspond to the mean plus two, two and a half, and three standard
deviations for a normal distribution.

The new proposed methodology is tested for confidence levels of 97.725%, 99.379%,
and 99.865% for the vessel capacity and the schedule probability, namely N1, N2, and N3.
It has been defined six ranges of probabilities for the combination of vessels in use [0%;
0.3%], ]0.3%; 0.5%], ]0.5%; 0.7%], ]0.7%; 1%], ]1%; 5%], and ]5%; 10%], namely F3, F5,
F7, F10, F50 and F100 respectively. The combinations are limited to a maximum of six
routes that can be simultaneously executed.
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5.2.4 Monte Carlo simulation

A Monte Carlo simulation has been used in order to compare the solutions obtained
for each case and approach. The simulations run in a Python script and comprise the
following: 1. Sample generation of customers’ demands per visit using a normal distribution
with the same mean and standard deviation used in the mathematical model. 2. Sample
generation of each leg’s travel time for distances below and above ten nautical miles (18
km). 3. The simulation starts by reading the schedule (routes, vessels, and departure
days) and uses the data samples to calculate how many days a vessel will be in use while
executing a route and check if any route demand violates the vessel capacity. 4. The number
of vessels simultaneously in use per day is recorded. 5. If there is a vessel capacity violation,
the exceedance is recorded, and the vessel executes the route assuming the maximum
vessel capacity. 6. No negative demand for a customer is allowed, and the demand is set to
zero in such a case. Even if the demand is zero, the vessel has to visit the offshore unit.

The samples for the demands and the leg’s travel time are the same within a case,
so it is possible to compare the different approaches for each case studied. The simulation
runs for 1000 evaluation periods or 7000 days.

5.2.5 Key performance indicators (KPI)

Assessing the performance of the different approaches is not a straightforward
task. The main challenge is to compare solutions that use robustness or confidence level
targets in different problem parameters. In order to structure the comparison among
the different approaches, the following key performance indicators are considered: 1.
Solution cost (objective function value). 2. Relative exceedance of the number of vessels
(EV), which is the number of days that the required number of vessels has exceeded the
maximum number of vessels in the fleet, divided by the number of days in the simulation.
3. Relative exceedance of vessel capacity (EC), defined as the number of occurrences of
cargo exceedance in each route divided by the number of routes executed in the simulation.
4. Total undelivered demand due to the lack of vessel capacity (ED). 5. Fleet utilization
rate (UR), defined as the average number of vessels in use divided by the total number of
vessels in the fleet.

5.2.6 Results

The main results are presented in Tables 18 to 21. The first column and first row
indicate the instance, and the subsequent lines in the first column indicate the approach
used according to the definitions presented in 5.2.3. The approaches based on IC, RC, and
N are grouped to the same level of KPIs to facilitate comparing the different approaches.
The deterministic case using the mean value of each stochastic parameter is labeled as
DT and included in the table for comparison. The robust approach is grouped apart, as
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the KPI correlation to the other approaches is not possible. In those tables, the columns
represent the following: PR - robustness factor or confidence level applied according to
the definitions given in 5.2.3; SOL - solution value; GAP - integrality gap of the solution;
LB - lower bound; RT - runtime in seconds; NV - number of vessels for each class [n1, n2

and n3] for PSV1500, PSV3000 and PSV4500 respectively; EV - relative exceedance of
the number of vessels; NR - number of departures (routes) in one evaluation period; EC -
relative exceedance of vessel capacity; ED - total undelivered demand due to the lack of
vessel capacity (in m2); UR - fleet utilization rate.

Table 18 – S-PSVPP - Results for instance C79.
C79 PR SOL GAP LB RT NV EV NR EC ED UR
N3* 99.865% 574.67 8.3% 526.90 3600 [1, 2, 12] 0.000% 32 0.041% 627 75.3%
R3 99.865% 607.96 0.7% 603.51 1200 [1, 3, 12] 0.057% 32 0.056% 627 71.2%
I3 97.725% 708.10 1.0% 701.17 1200 [0, 9, 10] 0.000% 37 0.054% 884 64.9%
N2 99.379% 530.09 6.9% 493.35 1200 [1, 3, 10] 0.029% 30 0.230% 3235 79.3%
R2 99.379% 533.36 0.0% 533.29 1200 [0, 5, 9] 0.029% 30 0.260% 3608 78.5%
I2 93.319% 592.63 0.0% 592.63 537 [1, 6, 9] 0.071% 33 0.324% 5459 71.6%
N1 97.725% 490.42 5.8% 461.86 1200 [1, 3, 9] 0.214% 28 0.711% 10400 82.1%
R1 97.725% 491.50 2.9% 477.36 1200 [1, 3, 9] 0.971% 29 0.838% 11985 83.7%
DT 50.000% 321.49 7.0% 299.99 1200 [5, 3, 2] 55.19% 28 29.59% 832320 95.6%
I1 84.134% 488.93 0.5% 486.66 1200 [3, 6, 5] 0.243% 33 2.924% 47605 82.6%
B1 1 482.10 1.0% 477.28 1200 [2, 2, 9] 0.586% 28 1.771% 28366 81.6%
B2 2 696.87 2.1% 681.90 1200 [0, 4, 14] 0.014% 37 0.005% 78 79.3%
B3 3 825.89 1.9% 809.83 1200 [2, 4, 16] 0.000% 42 0.021% 189 61.1%
I4 99.865% 944.91 0.0% 944.75 1200 [1, 6, 18] 0.000% 45 0.004% 31 55.8%

Table 19 – S-PSVPP - Results for instance C79S.
C79S PR SOL GAP LB RT NV EV NR EC ED UR
N3 99.865% 584.16 5.0% 554.91 1200 [0, 3, 12] 0.000% 32 0.031% 388 76.8%
R3 99.865% 627.55 0.0% 627.55 1194 [0, 2, 14] 0.000% 32 0.025% 347 72.1%
I3 97.725% 733.40 1.4% 722.83 1200 [2, 7, 11] 0.029% 41 0.220% 3169 66.3%
N2 99.379% 534.71 6.9% 497.83 1200 [0, 5, 9] 0.086% 31 0.203% 3170 80.8%
R2 99.379% 565.20 3.9% 543.05 1200 [1, 4, 10] 0.214% 32 0.228% 3058 76.9%
I2 93.319% 614.20 1.9% 602.37 1200 [2, 7, 8] 0.100% 35 0.600% 9527 70.8%
N1 97.725% 509.19 6.2% 477.84 1200 [3, 2, 9] 0.486% 30 0.820% 12950 79.7%
R1 97.725% 498.11 1.3% 491.78 1200 [4, 2, 8] 0.657% 33 0.912% 16441 83.0%
DT 50.000% 307.81 1.6% 302.89 1200 [3, 3, 3] 60.37% 23 26.61% 693406 98.3%
I1 84.134% 494.33 0.1% 493.86 1200 [2, 8, 4] 1.486% 34 2.256% 38710 86.2%
B1 1 483.27 2.7% 470.03 1200 [2, 2, 9] 0.657% 28 1.779% 42001 82.1%
B2 2 677.65 0.0% 677.65 619 [0, 0, 17] 0.000% 33 0.027% 478 69.5%
B3 3 831.74 0.0% 831.66 579 [2, 3, 17] 0.000% 42 0.029% 391 62.2%
I4 99.865% 992.02 0.0% 991.73 1200 [2, 10, 15] 0.000% 52 0.008% 70 57.0%

Table 20 – S-PSVPP - Results for instance C41.
C41 PR SOL GAP LB RT NV EV NR EC ED UR
N3* 99.865% 274.15 8.5% 250.83 7200 [0, 1, 6] 0.000% 16 0.013% 132 76.5%
R3 99.865% 268.13 0.0% 268.13 585 [0, 2, 5] 0.029% 15 0.020% 54 73.1%
I3 97.725% 311.47 0.0% 311.47 265 [2, 4, 3] 0.014% 23 0.170% 1152 72.5%
N2 99.379% 249.31 10.0% 224.38 1200 [1, 3, 3] 0.100% 15 0.300% 1827 72.0%
R2 99.379% 248.04 0.2% 247.66 1200 [2, 1, 4] 0.286% 18 0.183% 1298 82.5%
I2 93.319% 271.67 0.0% 271.66 352 [2, 4, 2] 0.000% 19 0.368% 1913 71.5%
N1 97.725% 219.01 3.7% 210.94 1200 [0, 4, 2] 0.414% 14 0.929% 6671 82.5%
R1 97.725% 220.87 0.0% 220.87 366 [1, 1, 4] 0.971% 14 0.500% 4830 83.1%
DT 50.000% 143.69 0.2% 143.40 00 [4, 1, 0] 29.77% 17 31.07% 455283 98.9%
I1 84.134% 229.75 0.2% 229.20 1200 [3, 2, 2] 0.429% 19 2.968% 23510 84.1%
B1 1 213.93 0.0% 213.93 51 [2, 0, 4] 2.314% 16 0.475% 2350 89.7%
B2 2 294.57 0.0% 294.57 294 [1, 2, 5] 0.000% 18 0.022% 79 71.4%
B3 3 362.80 0.1% 362.39 1200 [1, 4, 50] 0.000% 22 0.009% 29 63.7%
I4 99.865% 418.35 0.0% 418.35 32 [0, 3, 8] 0.000% 20 0.000% 0 54.2%
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Table 21 – S-PSVPP - Results for instance C41S.
C41S PR SOL GAP LB RT NV EV NR EC ED UR
N3 99.865% 283.45 6.5% 264.95 1200 [2,2,4] 0.014% 20 0.040% 225 80.5%
R3 99.865% 295.46 0.9% 292.92 1200 [1,2,5] 0.000% 18 0.050% 250 72.1%
I3 97.725% 336.65 0.0% 336.65 45 [0,4,5] 0.000% 19 0.011% 59 64.8%
N2 99.379% 255.75 5.1% 242.70 1200 [1,2,4] 0.186% 16 0.200% 995 76.6%
R2 99.379% 255.94 0.0% 255.91 256 [1,2,4] 0.214% 16 0.119% 470 76.2%
I2 93.319% 288.22 1.2% 284.80 1200 [0,6,2] 0.014% 19 0.247% 1642 73.4%
N1 97.725% 239.91 2.2% 234.56 1200 [3,0,4] 0.186% 17 0.706% 4266 79.7%
R1 97.725% 235.14 0.0% 235.14 360 [3,1,2] 1.129% 18 1.056% 8834 81.0%
DT 50.000% 152.04 0.0% 152.04 915 [3,2,0] 26.87% 16 25.71% 422064 96.3%
I1 84.134% 237.73 0.0% 237.71 258 [2,3,2] 0.300% 17 1.412% 12667 78.9%
B1 1 221.30 0.0% 221.30 18 [1,1,4] 1.643% 13 1.400% 13090 80.3%
B2 2 319.35 0.0% 319.32 368 [0,0,8] 0.000% 17 0.006% 9 70.1%
B3 3 386.89 0.0% 386.89 51 [0,2,8] 0.000% 21 0.000% 0 62.6%
I4 99.865% 443.08 0.0% 443.06 3 [0,6,6] 0.000% 23 0.000% 0 54.9%

Based on the results of the KPIs for the evaluated instances, it is possible to notice
that the robust approach (B) and the confidence level applied to each stochastic parameter
(I) produced higher-cost solutions when compared to the confidence level of the routes (R)
or the schedule reliability (N). This is more clear if one observes the cost of the solutions
that ensure low relative exceedance for EV (number of vessels) and EC (vessel capacity),
and also for solutions with low values of ED (total undelivered demand due to the lack
of vessel capacity). This is an indication that applying a confidence level to individual
parameters instead of observing the grouped statistics may not be the best approach
as it leads to costly solutions. On the other hand, the solutions obtained by applying a
confidence level to the route’s statistics (R) and the schedule reliability (N) usually have
lower costs and good coherence between the confidence level and the exceedance values of
the KPIs. Regarding the comparison of the R and N approaches, one may notice that in
most cases, the N approach produces solutions with lower or equivalent costs than the
solutions obtained by the R approach.

In Fig. 19, it is possible to realize the benefits of the proposed methodology and the
importance of considering the schedule reliability in the problem. The resulting schedule
of the vessels of class PSV4500 of instance C79S is displayed, with routes as lines and
periods as columns. Value one indicates that a vessel executes the route with a probability
that it exceeds the probability ranges’ upper limit. If the probability lies within the range
of probabilities, it is indicated which range it fits into, e.g., F10 means the range between
0.7% and 1%. The last two lines indicate the number of needed vessels according to the R3
and the N3 approaches, respectively. In this solution, route #5 departs on day one, and the
vessel has a chance of up to 0.7% of executing this route on day 4. The combined statistics
for the schedule on day four for routes 5, 11, 12, 13, and 20 indicate that there is 76.624%,
97.776%, 99.902%, 99.998%, 99.999..% and 100% of chance that zero, one, two, three, four,
five or fewer vessels will be in use. Therefore, only two vessels are required to meet the
schedule reliability at a 99.865% of the acceptance limit instead of five vessels. In this case,
there is a 99.902% of chance that two or fewer vessels will be required, which surpasses
the imposed limit. If one compares the solution with R3, five vessels are required for these
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routes. In Table 22, this example is presented. The first row indicates the route number.
PR is the probability range of the vessel executing the route on day four, and NVS is the
number of vessels executing routes simultaneously on day four. NVSP is the probability
that NVS or fewer vessels execute a route on day four, given the routes’ probability range
and using the upper value in the range to compute the joint probability.

Table 22 – S-PSVPP - Example for case C79s in day 4 using approach N3.
Route 5 11 12 13 20
PR ]0.5%; 0.7%] ]5%; 10%] ]1%; 5%] ]1%; 5%] ]1%; 5%]
NVS 0 1 2 3 4
NVSP 76.624% 97.776% 99.902% 99.998% 99.999...%

Figure 19 – S-PSVPP - C79S, N3 solution for vessel class PSV4500.

One might argue that the improvement obtained by using the N approach is
marginal or small if compared to the R approach for some of the cases. This could happen
if the solution results in a schedule whose joint probability of vessels simultaneously in use
does not reduce the number of vessels for a given confidence level. On top of that, special
attention should be given to the probability combination discretization in the N approach.
A higher discretization for the probability combination might lead to better solutions,
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while a poor discretization may limit the results’ quality. The number of probability
ranges and the maximum number of vessels simultaneously in use define the number of
probability combinations present in the model. Ideally, the ranges of probabilities should
be set to cover small intervals from 0 to 100%, and, at the same time, the maximum
number of simultaneous routes should not be limited. However, the number of probability
combinations would be very high, and the model would not be tractable. On the other hand,
if only a limited number of broad ranges of probabilities is used, it may not be possible to
capture the benefits of applying the joint probability of vessels simultaneously in use. For
example, if the ranges of probabilities started in F50* ([0%;5%]), three vessels would be
required instead of two on day four, for the case presented in Fig. 19. One possibility is to
use the R approach results as a reference to devise the number of simultaneous routes to
be considered in the combinations of probability ranges. On top of that, it is possible to
try out variations in the probabilities range that would lead to better results using the N
method given a desired confidence level.

The drawback of the N approach compared to the R approach is the computational
time. As the N approach introduces new decision variables, combinations, and assignments,
it also requires more computational time to close the gap. A good example is case C41,
where N3 spent 7200s and still had a gap of 8.51%. To improve the convergence of the
N method, one possibility is to use the solution obtained in the R approach as an initial
solution to N. This procedure is valid provided that the route duration upper limit used to
generate the routes in the N approach is equal or lower than the route duration confidence
level used in R. For instance, case R3 has a confidence level of 99.865% for the route
duration, and the same value is used in N1, N2, and N3 as the route duration upper limit
to generate the routes. Therefore, the solution obtained in R3 is always a valid solution
for the cases N1, N2, and N3. The improvement in the convergence for instances with a
larger number of routes by applying this procedure may be seen in Table 23 for case C15.
The brackets’ values are obtained by introducing the R3 solution as an initial solution for
N1, N2, and N3. A final remark is that all the methods can generate good solutions for
small instances with a limited number of routes, as case C10, shown in Table 24.
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Table 23 – S-PSVPP - Results for instance C15.
C15 SOL GAP LB RT
N1 93.36 (70.09) 29.3% (3.9%) 66.04 (67.33) 1200
N2 93.91 (75.22) 25.4% (0.7%) 70.07 (74.69) 1200
N3 80.56 (80.34) 7.2% (6.9%) 74.78 (74.78) 1200
R1 69.94 0.2% 69.78 1200
R2 75.24 6.8% 70.14 1200
R3 80.34 6.8% 74.88 1200
I1 80.33 7.1% 74.65 1200
I2 93.76 0.2% 93.54 1200
I3 104.19 0.0% 104.19 122
B1 66.83 7.2% 62.02 1200
B2 75.25 4.2% 72.09 1200
B3 96.61 0.0% 96.61 337
I4 138.28 2.0% 135.50 1200

Table 24 – S-PSVPP - Results for instance C10.
C10 SOL GAP LB RT
N1 40.05 0.0% 40.05 24
N2 40.05 0.0% 40.05 13
N3 40.05 0.0% 40.05 26
R1 40.05 0.0% 40.05 7
R2 40.05 0.0% 40.05 7
R3 40.05 0.0% 40.05 4
I1 40.05 0.0% 40.05 6
I2 53.93 0.0% 53.93 11
I3 61.20 0.0% 61.20 7
B1 34.82 0.0% 34.82 3
B2 40.05 0.0% 40.05 3
B3 60.82 0.0% 60.82 8
I4 74.24 0.0% 74.24 7
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6 CONCLUDING REMARKS

The integration of berth allocation decisions to the PSVPP is a real complex and
hard-to-solve problem found in some oil and gas industries, such as in the Brazilian case,
where the supply operation is uninterrupted, both at the onshore base and the offshore
units. In this Thesis the berth scheduling problem is considered together with the periodic
routing problem. Also, in order to model the fleet size, a pool of vessels was considered,
one for each class, and this modeling strategy seemed to be effective. A solution strategy
scheme to solve real instances has been presented, as the complete mathematical model is
hard to solve due to its combinatorial nature and many constraints. This strategy consists
of sequentially solving relaxed versions of the problem, adding more complexity with
each step. The proposed strategy consisted of forcing the routes obtained in Step 3 to
be scheduled in the fourth step, which could not be feasible from the berth-scheduling
perspective. To deal with this issue, the Step 4 model allowed the modification of the
departing days, by selecting any valid departure pattern, by considering the use of vessels
from different classes, and by allowing late departures up to given tolerance. Although this
solution approach may hinder the achieving of the optimal solution, from the practical
point of view, good-quality solutions were obtained. Instances were solved based on a real
case from a Brazilian oil and gas company, including a case with up to 79 offshore units
grouped into clusters.

The occurrence of non-deterministic demand and variations in the travel time
affect both the fleet composition and the route schedule. As this operation is recurrent,
the unfulfillment of the schedule, both in terms of left-behind cargo due to the lack of
deck capacity and late departures, is highly undesirable and should be avoided to not
cause a major disruption in the supply chain. On the other hand, vessels are very costly,
and the smallest fleet is thus desired. In this research, elaborating a reliable schedule in
the presence of stochastic parameters was addressed. Several approaches to deal with
stochastic demand and stochastic travel time in the S-PSVPP were compared using KPIs
derived from simulating the solutions obtained in each method: the robust approach (B),
the approach of applying a confidence level to each stochastic parameter (I), the approach
of applying a confidence level to the routes’ statistics (R), and the new method devised
for applying a confidence level to the schedule (N).

In general, the proposed approach that takes into account the statistics for the
routes (R) and the statistics for the schedule (N) are the ones that produce more coherent
and lower-cost solutions for the desired confidence level and the level of exceedance values
in the KPIs. A new methodology to evaluate the reliability of the schedule (N) is introduced.
It has generated better solutions, especially for instances with a large number of units and
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routes. The drawback of the new method is the increased computing time. One possibility
for accelerating the convergence is to use the solution obtained in the R approach as an
initial solution input to the N approach. Future work could investigate the impact of the
probability’s discretization on the overall efficiency. Another potential future work is to
devise a methodology to deal with non-independent events and correlated probabilities
among routes, e.g., bad weather or adverse environmental conditions.

Other future research topic might be the development of heuristic methods, and
the integration of the berth allocation with stochastic demand and stochastic travel times.
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