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ABSTRACT 

Engineering structures are designed to withstand a variety of in service loading specific 

to their intended application. Random vibration excitation is observed in most of the structural 

components in the offshore, aerospace and automotive industries. Likewise, fatigue life 

estimation for structural components is fundamental for the verification of the design and 

assurance of the structural integrity throughout service. The linear cumulative damage model 

(Palmgren-Miner’s rule) is still largely used for damage assessment, even though, its 

limitations are well-known. The scatter of fatigue testing data suggests that a probabilistic 

characterization of the material behavior is needed.  In this work, the inherent uncertainties 

of the fatigue phenomenon as well as the influence of a geometrical discontinuity (notch) are 

explored in the fatigue life estimation of a structural component subjected to random vibration 

profiles. The fatigue life estimated using the methodology proposed in this work presented 

good agreement with testing results using both Lallane and Dirlik frequency domain counting 

methods. Lallane’s method resulted in a 3% more conservative prediction than the average 

physical testing fatigue life, while Dirlik’s method, resulted in an 8.4% higher predicted life for 

the most relevant load case. 

 

 

 

 

 

 

 

Key words: Fatigue Life Estimation, Cumulative Damage, Random Vibration, Power Spectral 

Density 

  



 

LIST OF FIGURES 
 

Figure 1 - Basquin’s S-N relationship in log-log scale ........................................................ 15 

Figure 2 - a) Fatigue test data on a semi-log plot due to constant alternating stress level b) 

Fatigue test data with percentiles curves ........................................................................... 16 

Figure 3 - Fatigue life and fatigue strength distributions .................................................... 17 

Figure 4 - Road load acceleration ...................................................................................... 20 

Figure 5 - Fatigue life estimation - Time domain approach ................................................ 21 

Figure 6 - Synthesized Time Series Approach................................................................... 21 

Figure 7 - Fatigue life estimation - Frequency domain approach ....................................... 22 

Figure 8 - Definition of maximum, gross and net stresses due to the presence of a notch 23 

Figure 9 - Elastic–plastic fatigue crack opening stress distribution .................................... 26 

Figure 10 - Linear Time Invariant Dynamic System. .......................................................... 27 

Figure 11 - Rainflow Histogram - Range-Mean.................................................................. 33 

Figure 12 - Rainflow Histogram - Number of Cycles per Stress Range ............................. 33 

Figure 13 - FRFs of the stress tensor ................................................................................ 36 

Figure 14 – Example of an input PSD - A  and the stress response PSD - G ..................... 38 

Figure 15 - Representation of EP and E0 ........................................................................... 40 

Figure 16 - Surface resolution – Z as a surface normal ..................................................... 41 

Figure 17 - Normal n of material plane and the shear stress τq  projected on ∆ plane ...... 42 

Figure 18 - Synthesized time history from PSD input ........................................................ 44 

Figure 19 - Half Power Bandwidth Method ........................................................................ 45 

Figure 20 - Mass and Stiffness proportional terms relation with Damping Ratio as function of 

Frequency .......................................................................................................................... 46 

Figure 21 – Dirlik’s pdf as function of the stress amplitude ................................................ 51 

Figure 22 - P-S-N curve following a Basquin model .......................................................... 52 

Figure 23 - RFL model applied to the α-β Ti-6Al-4V testing data showing the 0.05, 0.5 and 

0.95 percentile fitting curves .............................................................................................. 59 

Figure 24 - Specimen Design ............................................................................................ 63 

Figure 25 - Testing / Simulation workflow .......................................................................... 63 

Figure 26 - 6061-T6 Aluminum – Engineering stress strain curve ..................................... 64 

Figure 27 - 6061-T6 Aluminum - Unnotched Fatigue Data ................................................ 64 

Figure 28 - Crack opening direction - Y ............................................................................. 65 

Figure 29 - Max stress at the notch root (y=0) per the number of elements in the finite element 

model ................................................................................................................................. 66 



 

Figure 30 - Crack opening stress variation with the mesh element size refinement .......... 66 

Figure 31 - Numerical Model discretization – Mesh element size - 0.125mm .................... 67 

Figure 32 - Crack opening stress distribution near the notch ............................................. 68 

Figure 33 - The elastic–plastic fatigue crack opening stress and relative stress distribution

 ........................................................................................................................................... 68 

Figure 34 - Unnotched fatigue raw data with 95% CI / 97.7% PI ....................................... 70 

Figure 35 - Corrected percentile S-N curves for kf=1.14 ................................................... 71 

Figure 36 - Modal analysis boundary condition ................................................................. 72 

Figure 37 - Notched specimen vibration modes ................................................................. 73 

Figure 38 - Hardware used to conduct the vibration test ................................................... 74 

Figure 39 - Step 1: 3.21grms and Step 2: 6 grms .............................................................. 75 

Figure 40 - Acceleration Response spectrum - 6 grms input ............................................. 76 

Figure 41 - Damping ratio ζ measured at the resonance peaks ......................................... 76 

Figure 42 - Damping ratio fit to the measured data ............................................................ 77 

Figure 43 - Acceleration response spectrum comparison between testing and simulation data

 ........................................................................................................................................... 78 

Figure 44 - Synthesized acceleration time history from the 3.21 grms PSD ...................... 80 

Figure 45 - Synthesized time signal PSD compared to original PSD spec from Step 1 ..... 80 

Figure 46 - Synthesized acceleration time history from the 6 grms ASD ........................... 81 

Figure 47 - Synthesized time signal PSD compared to original PSD spec from Step 2 ..... 81 

Figure 48 - Stress response measurement point ............................................................... 82 

Figure 49 - Transient stress response - 3.21grms input ..................................................... 83 

Figure 50 - Transient stress response - 6 grms input ......................................................... 83 

Figure 51 - FRFs measured at the notch root for a 1g base harmonic excitation .............. 85 

Figure 52 - Stress Response PSD for both input PSDs ..................................................... 86 

Figure 53 - Range-Mean Rainflow cycle count histogram for 25s of 3.21 grmsPSD input . 88 

Figure 54 - Range-Mean Rainflow cycle count histogram for 25s of 6 grmsPSD input ...... 88 

Figure 55 - From-To rainflow cycle histogram (a) 25s of 3.21 grmsPSD input and (b) 25s of

 ........................................................................................................................................... 89 

Figure 56 - Total number of cycles for the two vibration profiles ........................................ 90 

Figure 57 - Lallane's and Dirlik's PDFs .............................................................................. 93 

Figure 58 - Lallane’s and Dirlik’s number of cycles for each input acceleration ................. 93 

Figure 59 - Lallane’s, Dirlik’s and Rainflow number of cycles - 3.21grms input ................. 94 

Figure 60 - Lallane’s, Dirlik’s and Rainflow number of cycles - 6grms input ...................... 94 



 

Figure 61 - Damage contour at notch area - Lallane 6grms input (p=0.5).......................... 96 

Figure 62 - Damage contour at notch area - Dirlik 6grms input (p=0.5) ............................. 97 

Figure 63 - Weibull distribution fit of the testing data ......................................................... 99 

Figure 64 – Crack Location .............................................................................................. 100 

Figure 65 - Sample 1 fracture detail ................................................................................. 100 

Figure 66 - Sample 2 fracture detail ................................................................................. 101 

Figure 67 - Sample 3 fracture detail ................................................................................. 101 

Figure 68 - Damage as function of stress amplitude (p=0.5) - 3.21grms input ................. 103 

Figure 69 - Damage as function of stress amplitude (p=0.5) - 6grms input...................... 104 

Figure 70 - Cumulative Damage as function of stress amplitude (p=0.5) ........................ 104 

  



 

LIST DE TABLES 
 

Table 1 - RFL model parameters for data best fit .............................................................. 58 

Table 2 - Calculation time for the refined element size at the notch area .......................... 67 

Table 3 – Statistical parameters to define the percentile curves ........................................ 69 

Table 4 - Mode Shapes and Natural frequencies – AL 6061-T6 ........................................ 72 

Table 5 – Rayleigh damping model parameters for data best fit ........................................ 77 

Table 6 - Synthesized time histories statistics ................................................................... 79 

Table 7 - Min / Max transient stress amplitudes ................................................................. 84 

Table 8 – Time scale factor................................................................................................ 90 

Table 9 – Cumulative damage, life and time to failure ....................................................... 91 

Table 10 – Spectral moments and properties of the Stress Response PSD ...................... 92 

Table 11 – Cumulative damage, life and time to failure - Lallane ...................................... 95 

Table 12 - Cumulative damage, life and time to failure - Dirlik ........................................... 96 

Table 13 – Testing time to failure summary ....................................................................... 98 

Table 14 – Testing results statistics – Mean time to failure (MTTF) ................................... 98 

Table 15 – Summary of total time to failure – Step 2 – 6 grms only ................................. 102 

Table 16 – Total number of cycles ................................................................................... 103 

Table 17 –Time to failure estimation - 6grms input PSD – Modeling Factors .................. 105 

 
 
 
 

  



 

LIST OF SYMBOLS 
 
[𝐴 ]:    Multiaxial Power Spectral Density input loading 

CDF:    Cumulative Distribution Function  

𝐷𝑖:     Damage at a stress level i 

𝐸[0]:     Expected number of upward zero crossings 

𝐸[𝑃] :     Expected number of positive peaks 

𝑓:     Frequency (Hz) 

{P}:     Vector of external forces 

FFT:     Fast Fourier Transform  

FRF:    Frequency Response Function 

𝑓𝑚𝑒𝑎𝑛:    Response PSD Mean Frequency 

[𝐺]:    Stress Response PSD matrix 

𝐻(𝑓):     Transfer Function 

IFFT:     Inverse Fast Fourier Transform  

𝑘𝑓 :    Fatigue Strength reduction Factor 

𝑘𝑡:    Elastic Stress Concentration factor 

𝑚𝑛:    n-th Spectral Moment 

𝑁𝑖 :     Number of cycles to failure at a stress level i 

𝑛𝑖:     Number of cycles at a stress level i 

𝑝(𝑆𝑖)𝐷𝑖𝑟𝑙𝑖𝑘   Dirlik’s Probability Density Function  

𝑝(𝑆𝑖)𝐿𝑎𝑙𝑙𝑎𝑛𝑒   Lallane’s Probability Density Function 

𝑝(𝑥):     Probability Density Function 

PSD:     Power Spectral Density  

PDF:     Probability Density Function 

𝑄:     Quality Factor 



 

[𝑄]    Dynamic Response Matrix 

𝑅𝑥𝑥(𝜏):   Autocorrelation Function 

rms:     Root Mean Square  

𝑆𝑖    Stress Amplitude i 

𝑆𝑦𝑦(𝑓):    Power Spectral Density - Response 

𝑆𝑥𝑥(𝑓):    Power Spectral Density – Excitation 

TTF:    Time to Failure 

𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒:    Exposure time under determined PSD profile 

{𝑢}    Displacement vector 

𝑥𝑒𝑓𝑓:    Effective Distance 

𝛾 :     Irregularity Factor 

𝜔𝑖:     Circular natural frequency (rad/s) 

Ω𝑖:    Imposed circular frequency (rad/s) 

𝜎𝑖𝑗    Stress Response Tensor 

𝜎Φ:    Normal Stress oriented in the critical plane  

{Φ}    Mode Shape Vector 

휁:     Damping Ratio 

𝜇c:     Confidence Interval 

𝜇𝑝:    Prediction Interval 

𝜒:    Relative Stress Gradient 

 



 

SUMMARY 

 
1 INTRODUCTION ............................................................................................................. 14 

1.1 OBJECTIVES ........................................................................................................................ 18 

2 STATE OF THE ART ....................................................................................................... 19 

2.1 INTRODUCTION TO FATIGUE ............................................................................................. 19 

2.2 OVERVIEW OF RANDOM VIBRATION FATIGUE MODELING VIA FINITE ELEMENT 

METHOD .................................................................................................................................... 20 

2.3 NOTCH EFFECTS IN FATIGUE............................................................................................ 23 

2.4 LINEAR STRUCTURE DYNAMIC RESPONSE CHARACTERIZATION ................................ 27 

2.4.1 MODAL ANALYSIS ......................................................................................................... 28 

2.4.2 MODAL COORDINATES AND MODE SUPERPOSITION METHOD .............................. 29 

2.5 TIME DOMAIN APPROACH .................................................................................................. 31 

2.5.1 TRANSIENT ANALYSIS ................................................................................................. 31 

2.5.2 RAINFLOW CYCLE COUNTING .................................................................................... 32 

2.6 FREQUENCY DOMAIN APPROACH .................................................................................... 34 

2.6.1 HARMONIC RESPONSE ................................................................................................ 34 

2.6.2 RANDOM VIBRATION .................................................................................................... 36 

2.6.3 STRESS COMBINATION METHOD - CRITICAL PLANE ............................................... 41 

2.7 SYNTHESIZED TIME SERIES FROM PSD SIGNAL ............................................................ 43 

2.8 HALF POWER BANDWIDTH (3dB BANDWIDTH) ................................................................ 44 

2.9 PROPORTIONAL OR RAYLEIGH DAMPING ....................................................................... 45 

2.10 DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS .......................................... 47 

2.11 WIDEBAND RANDOM FATIGUE ........................................................................................ 49 

2.11.1 DIRLIK’S PROBABILITY DENSITY FUNCTION ........................................................... 49 

2.11.2 LALLANE’S PROBABILITY DENSITY FUNCTION ....................................................... 51 

2.12 S-N CURVES ...................................................................................................................... 52 

2.13 RANDOM FATIGUE LIMIT MODEL .................................................................................... 56 

2.13.1 MODEL PARAMETERS ESTIMATION ......................................................................... 57 

2.14 PROBABILISTIC LINEAR CUMULATIVE DAMAGE ............................................................ 60 



 

3 MATERIALS AND METHODS ......................................................................................... 62 

3.1 FATIGUE LIFE ESTIMATION OF A NOTCHED 6061-T6 ALUMINUM COMPONENT .......... 62 

3.1.1 TIME DOMAIN ................................................................................................................ 79 

3.1.2 FREQUENCY DOMAIN .................................................................................................. 85 

4 RESULTS AND DISCUSSIONS ...................................................................................... 88 

4.1 TIME DOMAIN ...................................................................................................................... 88 

4.2 FREQUENCY DOMAIN ......................................................................................................... 92 

4.3 TESTING RESULTS ............................................................................................................. 98 

4.4 DISCUSSIONS .................................................................................................................... 102 

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK .......................... 106 

REFERENCES ................................................................................................................. 108 

APPENDIX A – MATLAB ROUTINE ................................................................................. 111 

 

 



 14 

1 INTRODUCTION 

 
Engineering structures are designed to withstand a variety of in service loading specific 

to their intended application. Random vibration excitation is observed in most of the structural 

components in the offshore, aerospace and automotive industries. Likewise, fatigue life 

estimation for such components is fundamental to verify the design robustness assuring 

structural integrity throughout service. 

Fatigue as a technical problem became evident around the middle of the 19th century, 

August Wöhler performed systematic fatigue tests of smooth and notched railway axles in the 

1850s. In addition to the introduction of the S-N diagram, a plot of the number of cycles to 

failure at a given stress level, his work also led directly to the concept of a fatigue (or 

endurance) limit which represents the theoretical maximum cyclic load a material can 

withstand indefinitely without risk of fatigue failure [1]. 

Significant advances in the fatigue research were achieved with the mean stress effect 

studies by Gerber and Goodman, the development of fatigue safety diagrams by Haigh, 

investigation of reversed loading phenomena by Bauschinger, investigation of the notch effect 

on fatigue limit by Heyn, formulation of empirical laws to characterize fatigue limit by Basquin, 

the introduction of the crack growth energy balance by Griffith, life estimation under variable 

loading by Palmgren and the recognition of the statistical nature of fatigue by Weibull [1,2]. 

In the evaluation and prediction of the fatigue life of structures the role of mathematical 

and statistical models is crucial, due to the high complexity of the fatigue problem an efficient 

estimation of the corresponding parameters represents one of the most difficult challenges 

for the problem assessment, additionally, the possible shortage of data, which represents a 

common feature in the case of fatigue experimentation due to economic and/or time reasons.  

Nonetheless, the fatigue damage assessment for components subjected to random 

excitation is an important concern in engineering. Fatigue damage evolves with the applied 

load in a cumulative manner which may lead to failure. Palmgren suggested the concept, 

which is known as the linear rule, Miner in 1945, first expressed the concept in mathematical 

form, where the measure of the damage is the cycle ratio with the assumption of constant 

work absorption per cycle (𝑛𝑖) and characteristic amount of work absorbed at failure (𝑁𝑖). 

The energy accumulation leads to a linear summation which at failure equals one, as shown 

in Equation (1). Despite of Palmgren-Miner’s rule well-known limitations, such as, not 
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accounting for load sequence and interaction effects, it is still dominantly used in design 

due to its simplicity [3].  

 𝐷𝑖 = ∑
𝑛𝑖

𝑁𝑖

𝑘

𝑖=1

 =  1  (1) 

The basic fatigue modeling for the parameter 𝑁𝑖  consists of reproducing the fatigue 

behavior of materials under alternating stresses 𝜎𝑎. Basquin’s equation, presented in 

Equation (2) is a power law function representing fatigue life data using a linear function 

obtained in a log-log scale, its graphic representation is illustrated in Figure 1. 

 𝜎𝑎 = 𝐴. (𝑁𝑖)
𝐵, (2) 

where A and B are constants that varies with the material. 

Figure 1 - Basquin’s S-N relationship in log-log scale 

 

Source: Author 

Due to the random characteristic of fatigue life, if several specimens were subjected 

to this type of tests with the same values of stress range and stress ratio, different fatigue 

lives would be observed.  

An extension of this concept is the p quantile S-N curves, also called S-N-P curves, a 

generalization that relates the percentile of fatigue life to the applied stress or strain [4]. The 

percentile curves illustrate the variability of fatigue life, meaning that at p=0.5, 50% of the 

specimens fail above this curve and 50% below it. The percentile curves can also be used to 
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define design curves at any other percentile value, i.e p=0.01, where 1% of the failures 

(99% probability of survival) are expected to occur below this curve.  

Figure 2a shows a fatigue test data due to a cyclic stress load, the percentiles curves 

are added to the raw testing data in Figure 2b.  

Figure 2 - a) Fatigue test data on a semi-log plot due to constant alternating stress level b) Fatigue 

test data with percentiles curves  

 

Source: Author, adapted from Pollak (2005) 

Fatigue data on ferrous and titanium alloys reveal that specimens tested below a stress 

level are unlikely to fail. This limiting stress level called fatigue limit or endurance limit is 

observed by an accentuated curvature and an asymptotic behavior near the fatigue limit. Most 

nonferrous metals such as aluminum, copper and magnesium appear not to have a fatigue 

limit, the post endurance S-N slope for these materials gradually continues to drop. 

For materials that exhibit fatigue limit, Nelson [5] fitted fatigue curves with non-constant 

standard deviation associated with each stress level utilizing maximum likelihood methods 

and modelled [6] the fatigue limited as a random parameter, where the test specimen would 

have different fatigue limits following a statistical distribution called “strength distribution”. 

Nelson’s work was the basis for the development of the Random Fatigue Limit (RFL) by 

Pascual and Meeker in [7]. The independent variable in a S-N test is the stress amplitude, 

the fatigue life distribution for a specific stress level is illustrated in Figure (3). The vertical 

distribution represents the variation of fatigue strength for a given life. 
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Figure 3 - Fatigue life and fatigue strength distributions 

 

Source: Author  

The fatigue damage is traditionally determined from time histories of loading, usually 

in the form of stress or strain. This approach is satisfactory but requires large time records to 

accurately describe a random loading process. Alternatively, a frequency domain approach 

has a significant advantage in terms of computational time when the finite element analysis 

is used. Random loading and responses are characterized using power spectral densities 

(PSDs).  
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1.1 OBJECTIVES 

The goals of this study are twofold: a) to consider the statistical variation of the S-N 

fatigue curves into the assessment procedures for predicting fatigue life of critical structural 

components; b) to use the frequency domain approach to predict the fatigue life of a notched 

component. The final output of this study will be the definition of a robust and reliable 

methodology to study the fatigue response of any kind of structures using finite element 

analysis. The well-known time domain approach will be used to define benchmark solutions 

of the tested notched component.  

The frequency domain approach offers great advantage in terms of calculation time, 

which can be used to solve much larger and complex problems using finite element analysis. 

Therefore, this work aims to review and identify modeling parameters that increase the 

accuracy of the results compared to the time domain reducing the differences commonly 

encountered in the literature. Teixeira [8] showed that the predicted fatigue life of a notched 

aluminum beam in the frequency domain being ~20% higher than the time domain estimation. 

Due to the scatter in fatigue testing results, probabilistic modeling of the S-N curves should 

be used to justify the difference.  

The fatigue life of a 6061-T6 aluminum notched specimen is estimated for the 

combined load cases for two different vibration profiles. The total fatigue damage and life are 

estimated in both time and frequency domains for the different S-N curve percentiles, which 

are then compared to testing results. 
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2 STATE OF THE ART 

2.1 INTRODUCTION TO FATIGUE  

Fatigue as a technical problem became evident around the middle of the 19th century 

as a by-product of the industrial revolution. 

ASTM E 1150 defines fatigue as the process of progressive localized permanent 

structural change occurring in a material subject to conditions that produce fluctuating stress 

and strains at some point or points and that may culminate in cracks or complete fracture 

after a sufficient number of fluctuations [9].  

The idea that fatigue is a process is important to understand the multiscale nature of 

this phenomenon, as the size of material defects and cracks could be several orders of 

magnitude smaller than the structural component. Repeated constant or variable amplitude 

forces enable weak properties of the materials to become dominant, irreversible slip 

structures accumulation at the microscopic stress concentration sites (e.g. surface intrusions 

/ extrusions), the different sizes and orientations of grains; small scratches and corrosion 

points at the surface; cavities, blisters, and microstructural defects revealing an extraordinary 

scatter in the fatigue testing data. As a result, the cycles to fracture for several parts or 

specimens will be very different [10]. 

Schijve [11] argued that in principle, it is correct to consider fatigue as a phenomenon 

characterized by microcrack initiation, crack growth and failure, however, this concept does 

not occur in the same way in all metallic materials. 

The nature of the observed loading is very different from a constant fatigue amplitude 

S-N test, nonetheless, Schijves [11] and Fatemi and Yang [3] pointed out that for variable 

amplitude loading, Palmgren-Miner’s rule, that predicts the fatigue life based on the S-N curve 

data, is still dominantly used in design. This is also observed in the standard for fatigue 

assessment in ship structures DNVGL-CG-0129 which also indicates the use of Palmgren-

Miner’s rule to estimate the damage accumulation in the structure [12]. 
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2.2 OVERVIEW OF RANDOM VIBRATION FATIGUE MODELING VIA FINITE 
ELEMENT METHOD 

The random vibration fatigue analysis can generally be accomplished in the time 

domain or in the frequency domain.  

For the time domain or time series approach an adequate duration of the loading 

covering all random events is required, therefore, long time records of load data are needed. 

Figure (4) illustrates an example of a measured road load acceleration in all three-axis (X, Y 

and Z) of an automotive vehicle.  

Figure 4 - Road load acceleration 

 

 Source: Author 

 The fatigue life in the time domain is estimated by applying the time series load history 

to the component under evaluation, a transient structural analysis is performed to generate 

the stress histories at all discretized points of the structure, which are defined by the mesh 

size in the finite element modeling. Rainflow cycle counting and linear cumulative damage, 

per Palmgreen Miner’s rule is applied to estimate the total damage and the fatigue life of the 

component. The general calculation procedure is illustrated in Figure (5). 

Often, instead of the time series, the load is specified in its power spectral density 

(PSD) form, the time series load can be synthesized by performing an inverse fast Fourier 

transform (IFFT) for a specific time duration. This approach on long synthesized time histories 

is computationally expensive, therefore, the assumption that the data is ergodic, stationary 
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and Gaussian is required. Figure (6) illustrates the workflow of a synthesized time series 

approach. 

Figure 5 - Fatigue life estimation - Time domain approach 

 

Source: Author 

Figure 6 - Synthesized Time Series Approach 

 

Source: Author 
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In the frequency domain workflow illustrated in Figure (7), the dynamic 

characterization of the discretized structure is made by its frequency response functions 

(FRFs), which are calculated based on a unit load excitation (e.g. for a PSD given in unit of 

acceleration 𝑔2/𝐻𝑧, the structure is harmonically excited with one (1) 𝑔 acceleration at the 

correspondent excitation direction). 

The PSD input load multiplies the square of FRFs stress tensor resulting in the stress 

response spectrum. The fatigue life is then estimated through the calculation of the spectral 

moments of the stress response spectrum, probability density function (PDF) and duration of 

the vibration profile. The obtained number of cycles that the structure is subjected is 

compared to the material S-N curves via linear cumulative damage.  

The modal analysis is used in all procedures to determine the inherent dynamic 

characteristics of the structure by the identification of the natural frequencies and mode 

shapes, allowing the usage of modal superposition technique which is convenient to reduce 

calculation time when the finite element method is used. 

Figure 7 - Fatigue life estimation - Frequency domain approach 

 

 Source: Author 
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2.3 NOTCH EFFECTS IN FATIGUE  

Notches are geometrical discontinuities which create a modification of the stress 

distribution around them, exhibiting a strong variation in stress gradient leading to a maximum 

stress at the tip of the notch tip. Notches, also referred as stress concentrators, are critical in 

the design and evaluation of mechanical components due to the local stress increase be 

significantly higher than the overall stress away from the discontinuity.  

Figure (8) illustrates the changes in the structure stresses due to the presence of a 

notch. At the notch tip the stress is maximum, the net stress is defined at the reduced section 

of the component where the notch is located, and gross stress is the stress away from the 

influence of the notch. 

 

Figure 8 - Definition of maximum, gross and net stresses due to the presence of a notch 

 
Source: Author, adapted from Pluvinage (2003) 

 

The introduction of a notch in a component or structure is more detrimental than the 

consequence of the net section reduction [13]. Therefore, the following inequality can be 

defined as: 

 𝜎𝑚𝑎𝑥  >  𝜎𝑛𝑒𝑡  >  𝜎𝑔𝑟𝑜𝑠𝑠 (3) 

The local increase in stress can defined by the elastic stress concentration factor 𝑘𝑡 

by: 

 𝑘𝑡  =  
𝜎𝑚𝑎𝑥

𝜎𝑛𝑒𝑡
 (4) 
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The elastic concentration factor can also be defined in terms of the gross stress by: 
 

 𝑘𝑡  =  
𝜎𝑚𝑎𝑥

𝜎𝑔𝑟𝑜𝑠𝑠
 (5) 

 
Distinction must be made whether the net or gross stress is used in the determination 

of 𝑘𝑡. 

Given that the maximum value of the stress concentration can be higher than the yield 

stress of the material, as consequence of plastic deformation at the notch tip, an elastic-

plastic stress and strain concentration factors 𝑘𝜎 and 𝑘𝜀  relationship can be defined:  

 

 𝑘𝜎  =  
𝜎𝑚𝑎𝑥

𝜎𝑛𝑒𝑡
 ;  𝑘𝜀  =  

휀𝑚𝑎𝑥

휀𝑛𝑒𝑡
  (6) 

Intuitively, the application of the elastic stress concentration factor as a reduction in 

the fatigue life of a component would be reasonable, as the increased stresses at the notch 

tip would lead to a reduced fatigue life. However, the experimental observations have shown 

that at the same endurance cycle, the notch stress controlling the fatigue life is not the 

maximum stress on the surface of the notch root, but an average stress acting over a finite 

volume of material at the notch root [13,14]. 

Notch effects in fatigue can be defined by the fatigue reduction factor 𝑘𝑓:  

 𝑘𝑓  =  
∆𝜎𝑠 (𝑁)

∆𝜎𝑛 (𝑁)
 ,   (7) 

where ∆𝜎𝑠 and ∆𝜎𝑛 are the stress amplitude for a smooth and for a notched specimen 

respectively at the same number of cycles to failure N. The use of the elastic stress 

concentration factor  𝑘𝑡 results in over-conservative fatigue estimation compared to testing 

results, therefore, the following inequality can be defined [13]. 

  𝑘𝑓  ≤  𝑘𝑡    (8) 

 The relationship between the elastic stress concentration factor (𝑘𝑡) and the fatigue 

strength reduction factor (𝑘𝑓) have been established by several models which are classified 

in three different categories depending on the assumptions used:    

1) Models using empirical relationships and based on the concept of an average 

stress over a given distance. 

2) Models based on the value of stress giving rise to a non-propagating short crack 

initiated from a notch. 
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3) Models based on the localization of fatigue damage in an effective volume. 

Peterson’s model [15] assumes that fatigue failure occurs when the stress, over a 

certain distance, is equal to or greater than the fatigue limit of a smooth specimen, an 

experimental relation using the concept of notch sensitivity that depends on material and 

geometry has been defined.  A comprehensive review of the different models is presented by 

Pluvinage [13]. 

Based on the assumption that the fatigue failure requires a physical volume to occur, 

Pluvinage [13] presented a method named volumetric approach. The volumetric approach is 

a macro-mechanical method that uses elastic-plastic distribution and stress gradient 

evolution to predict the fatigue reduction factor 𝑘𝑓, based on the idea of fatigue damage 

accumulation in a specific region near notch tip. The fact that the fatigue tests are generally 

affected by a large scatter indicates that the stress distribution near the notch tip is different 

between specimens and consequently the first derivative of the stress distribution function, 

thereafter, a relative stress gradient can be defined as: 

 

 𝜒 =  
1

𝜎𝑥𝑥(𝑦)
  
𝑑𝜎𝑥𝑥(𝑦)

𝑑𝑥
 (9) 

The fatigue process volume is the high stressed region ahead of the crack or notch 

tip. Assuming a cylindrical fatigue process volume, where the height of the cylinder equals 

the thickness of the specimen, the cylinder diameter corresponds to an effective distance  

𝑥𝑒𝑓𝑓 which in the volumetric approach is defined when the minimum of the relative stress 

gradient occurs. As the volumetric approach [13] assumes that all stress points in the process 

volume play a role in the fatigue process, the contribution of each point is weighted by the 

stress gradient and distance between the stressed point and notch tip. The stress gradient 

considers the influence of the loading mode, geometry and scale effect.  

The fatigue strength reduction factor 𝑘𝑓, according to the volumetric approach is then 

defined as: 

 𝑘𝑓  =  
1

𝑦𝑒𝑓𝑓 𝜎𝑛𝑒𝑡
  ∫ 𝜎𝑥𝑥(𝑦)(1 − 𝑦𝜒)𝑑𝑥

𝑥𝑒𝑓𝑓

0

 , (10) 

 

where 𝜎𝑥𝑥(𝑦) is the fatigue crack opening stress. 

The elastic-plastic crack opening stress distribution and the relative stress gradient 

near the notch tip are shown in Figure (9).    
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Figure 9 - Elastic–plastic fatigue crack opening stress distribution 

 

Source: Author 

 

In the volumetric approach, the notch strength reduction factor is calculated by 

application of specimen material properties and its geometrical features via finite element 

analysis. The inflection point of the stress gradient is observed when the elastic-plastic 

behavior of the material is considered, therefore, the effective distance can be calculated for 

an applied load that exceeds the material yielding. The notch strength reduction factor is 

applied to the reference fatigue curve for a smooth specimen to obtain the notched or 

corrected fatigue curve. 

The volumetric approach could also be applied when the smooth specimen results are 

not available but another notched specimen with same material, specimen geometry and 

different notch feature exists [16]. 
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2.4 LINEAR STRUCTURE DYNAMIC RESPONSE CHARACTERIZATION 

The dynamic behavior characterization of a component or structure can be determined 

both in time and frequency domains. In the time domain, it involves a complicated and often 

lengthy transient analysis. In frequency domain the transfer function relates the amplitude of 

the input (force, acceleration, moment) to the amplitude of the output stress for each 

frequency. The frequency response functions (FRFs) are determined by the modes and 

natural frequencies which the structure vibrates. 

The vibration modes or mode shapes are an inherent property of the 

component/structure determined by the material properties (mass and stiffness) and 

boundary conditions. Each mode is defined by a natural (modal or resonant) frequency and 

a mode shape. 

In linear systems a multiple-degree-of-freedom systems can be described by:  

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = {𝑃}, (11) 

where: [𝑀] is the global mass matrix, [𝐶] the global damping matrix, [𝐾] the global stiffness 

matrix, {𝑢} the displacement vector, {�̇�} and {�̈�}  are the first and second derivatives of {𝑢} 

respectively,  {𝑃}  is the vector of external forces.  

A class of linear systems is the linear time invariant systems (LTI – Linear Time 

Invariant) is shown in Figure (10), the dynamic response characteristic of this system is 

represented by its Frequency Response Function (FRF)  𝐻 [(𝑓)]. 

Figure 10 - Linear Time Invariant Dynamic System. 

 

Source: Author 

 

The single input 𝑥, single output 𝑦 relationship for a linear system 𝐻, in terms of Fourier 

transforms are: 
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 𝑌(𝑓)  =  𝐻(𝑓 ) 𝑋(𝑓),  (12) 

where 𝑋, 𝑌  are the Fourier transform of the variables 𝑥 and 𝑦. The FRF is generally a 

complex-valued quantity that can be represented in terms of magnitude and an associated 

phase angle. The ratio of the output amplitude and the input amplitude is equal to the gain 

factor 𝐻(𝑓) of the system, and the phase shift between the output and input is called phase 

factor 휃(𝑓) of the system.  

 𝐻(𝑓)  = | 𝐻(𝑓)|𝑒−𝑖𝜃(𝑓) (13) 

The evaluation of the phase change can be used to identify areas of maximum 

response, which are critical to the structural integrity assessment of the structures under 

fatigue loading. 

2.4.1 MODAL ANALYSIS 

Let the dynamic behavior of structural systems be described briefly. Considering an 

undamped system with no external forces, Equation (11) can be reduced to Equation (14) 

with natural circular frequencies (𝜔𝑖) defined by Equation (15). 

 [𝑀]{�̈�} + [𝐾]{𝑢} = {0}, (14) 

 𝜔𝑖 = 2𝜋𝑓𝑖 (15) 

Assuming a harmonic oscillation, described by Equations (16) and (17): 

 {𝑢} = {𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖) (16) 

 {�̈�} = −𝜔𝑖
2{𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖) (17) 

Substituting Equations (16) and (17) into Equation (14): 

 [𝑀] − 𝜔𝑖
2{𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖) + [𝑀]{𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖) = 0 (18) 

 {𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖){[𝐾] − 𝜔𝑖
2[𝑀]} = {0} (19) 
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Equation (19) is satisfied if either {𝐴}. 𝑠𝑒𝑛(𝜔𝑖𝑡 + 휃𝑖) = {0} known as trivial solution, 

which implies no vibration to the system or if the determinant of the matrix [𝐾] − 𝜔𝑖
2[𝑀] = {0}. 

This is an eigenvalue problem which may be solved up to m values of  𝜔2 and m eigenvectors. 

From Equation (19) one obtains: 

 𝑑𝑒𝑡{[𝐾] − 𝜔𝑖
2[𝑀]} = {0} (20) 

The eigenvectors {Φ} are the vibration modes and the eigenvalues are the natural 

frequencies associated each vibration mode [17]. 

2.4.2 MODAL COORDINATES AND MODE SUPERPOSITION METHOD 

Mode-superposition or modal superposition technique uses the natural frequencies 

and mode shapes of a linear structure to characterize the dynamic response of a structure to 

a transient or steady excitation [17]. 

In this technique the structure displacement is written as a linear combination of the 

mode shapes. From the modal analysis, the eigenvectors {Φ} are computed. The 

displacement vector can then be expressed by: 

 {𝑢}  =  ∑{Φ𝑖 } 𝑦𝑖

𝑛

𝑖=1

 (21) 

where {𝑢} is the displacement vector, {Φ} is the mode shape vector, 𝑦𝑖 is the modal amplitude 

(modal coordinates), n is the number of modes and 𝑖 represents the mode number. The modal 

coordinates can be thought as scale factors of each mode. 

Substituting Equation (21) in Equation (14): 

 [𝑀]∑{Φ𝑖}

𝑛

𝑖=1

�̈�𝑖 + [𝐶]∑{Φ𝑖}

𝑛

𝑖=1

�̇�𝑖 + [𝐾]∑{Φ𝑖}

𝑛

𝑖=1

𝑦𝑖 = {𝑃} (22) 

Multiplying both sides of Equation (22) by the typical mode shape {Φ𝑗 }
𝑇
one obtains: 

 {Φ𝑗 }
𝑇
[𝑀]∑{Φ𝑖}

𝑛

𝑖=1

�̈�𝑖 + {Φ𝑗 }
𝑇
[𝐶]∑{Φ𝑖}

𝑛

𝑖=1

�̇�𝑖 + {Φ𝑗 }
𝑇
[𝐾]∑{Φ𝑖}

𝑛

𝑖=1

𝑦𝑖 = {Φ𝑗 }
𝑇
{𝑃} (23) 

Considering the orthogonal condition of the natural modes: 
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 {Φ𝑗 }
𝑇
[𝑀]{Φ𝑖 } = 0  𝑓𝑜𝑟 𝑖 ≠ 𝑗 (24) 

 {Φ𝑗 }
𝑇
[𝐾]{Φ𝑖 } = 0  𝑓𝑜𝑟 𝑖 ≠ 𝑗 (25) 

The mode-superposition method, only allows Rayleigh or constant damping, thus:  

 {Φ𝑗}
𝑇
[𝐶]{Φ𝑖 } = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 (26) 

Applying these properties into Equation (23), only the i=j terms remain: 

 {Φ𝑗 }
𝑇
[𝑀] {Φ𝑗} �̈�𝑗 

+ {Φ𝑗 }
𝑇
[𝐶] {Φ𝑗} �̇�𝑗 

+ {Φ𝑗 }
𝑇
[𝐾] {Φ𝑗} 𝑦𝑗 

= {Φ𝑗 }
𝑇
{𝑓} (27) 

Let [𝑀] be the generalized or the matrix of modal masses, [𝐶] the generalized or matrix 

of modal damping, [𝐾] be the generalized or matrix of modal stiffness and {𝑃} be the 

generalized or matrix of modal forces. Assuming a single degree of freedom oscillator, one 

obtains: 

 [𝑀]  =  {Φ𝑗 }
𝑇
[𝑀] {Φ𝑗} =  1 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (28) 

 [𝐶]  =  {Φ𝑗 }
𝑇
[𝐶] {Φ𝑗}  =  2휁𝑗𝜔𝑗 (29) 

 [𝐾]  =  {Φ𝑗 }
𝑇
[𝐾] {Φ𝑗} =  𝜔𝑗

2 (30) 

 {𝑃}  =  {Φ𝑗 }
𝑇
{𝑃}  =  𝑓

𝑗
  (31) 

Where 휁𝑗 is the fraction of critical damping for mode j, 𝜔𝑗 is the natural circular frequency of 

mode j and 𝑓𝑗 is the force in modal coordinates. 

Substituting Equations (28), (29), (30) and (31) into Equation (27) one obtains: 

  �̈�𝑗 + 2휁𝑗𝜔𝑗  �̇�𝑗 + 𝜔𝑗
2 𝑦𝑗 = 𝑓𝑗   (32) 

While in Equation (11) the system dynamics is described in terms of the geometric 

displacements {𝑢}  in global coordinates, Equation (32) describes the system equation of 

motion in modal coordinates, since j represents any mode, Equation (32) has the same 
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number of uncoupled equations as the number of unknows 𝑦𝑗 . A comprehensive 

description of the method to obtain  �̈�𝑗 ,  �̇�𝑗  and 𝑦𝑗 can be found in [17]. 

Substituting 𝑦𝑗 in Equation (21) the modal coordinates are converted back into 

geometric displacements and the individual modal responses are superimposed to obtain the 

system response. The advantage of solving uncoupled system in modal coordinates is that 

the computationally expensive matrix algebra is performed in the solution of the system 

natural frequencies and modes, optimizing the calculation under transients and harmonic 

responses to obtain the system FRFs.  

2.5 TIME DOMAIN APPROACH 

2.5.1 TRANSIENT ANALYSIS  

Transient structural analysis determines the dynamic response of a structure over 

time. One can obtain the time-dependent results such as displacement, strain, stress, and 

reaction force of the structure under time-dependent loads by solving the equation of motion 

of a multiple-degree-of-freedom system [17]. 

The transient analysis can be performed using implicit or explicit solvers. The main 

difference between the two methods is the time of the transient events. For random vibration 

problems, the structure is exposed to time-varying load for long periods of time, thereafter, 

implicit solvers are used.  

Due to the second-order time derivatives in Equation (11), time integration methods 

are needed. Newmark method and Hilber-Hughes-Taylor (HHT) method are generally used 

in implicit transient analyses. The implicit solver iterates the next step result with the current 

step result and the next unknown result, which must be obtained through an iteration process. 

A detailed description of Newmark’ s and HHT methods can be found in [17]. 

The transient stress response tensor 𝜎𝑖𝑗(𝑡) obtained from the transient analysis can 

be written as: 

  𝜎𝑖𝑗(𝑡)  =  [𝜎𝑥𝑥(𝑡) 𝜎𝑦𝑦(𝑡) 𝜎𝑧𝑧(𝑡) 𝜎𝑥𝑦(𝑡) 𝜎𝑦𝑧(𝑡) 𝜎𝑥𝑧(𝑡)]  (33) 

Rainflow cycle counting method is used to obtain the number of cycles for each stress 

amplitude. At each stress amplitude level, the fatigue damage is then computed by the ratio 

of the number of cycles that the structure is subjected and the number of cycles from the 

material S-N curve. A stress combination method (e.g critical plane, absolute maximum 
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principal, maximum principal) is used to reduce the stress tensor to a scalar value, the 

detailed description of the method is presented in chapter 2.6.3 of this work. 

2.5.2 RAINFLOW CYCLE COUNTING 

The response of the structure is the starting point for any fatigue analysis. In the time 

domain this is usually expressed in terms of strain or a stress time signal, where the amplitude 

and mean values are the key parameters in a stress cycle.  

Matsuishi and Endo [18] initially proposed the rainflow cycle method to count the cycles 

of the half-cycles of strain time signals, where the counting process is based on the stress-

strain behavior of the material. Other methods such as level crossing, range-pair, range-

mean, all attempt to reduce a random sequence of peak valleys to a set of equivalent constant 

amplitude cycles allowing the application of a cumulative damage. Lallane [19] presented a 

detailed description of several counting methods including the rainflow. 

Rainflow cycle counting identifies from a variable amplitude stress or strain history the 

number of cycles with different range and mean values (or maximum and minimum), those 

events are important for the fatigue analysis because they are identified as potentially 

damaging the structure. The following values associated with each cycle may be used in 

subsequent fatigue calculations: 

• Maximum value of the cycle: 𝑆𝑚𝑎𝑥 

• Minimum value of the cycle: 𝑆𝑚𝑖𝑛 

• Range of stress: 𝑆𝑟𝑎𝑛𝑔𝑒 = 𝑆𝑚𝑎𝑥 −  𝑆𝑚𝑖𝑛 

• Stress amplitude: 𝑆𝑎𝑚𝑝 =
𝑆𝑟𝑎𝑛𝑔𝑒

2
  

• Mean stress: 𝑆𝑚𝑒𝑎𝑛 =
𝑆𝑚𝑎𝑥+ 𝑆𝑚𝑖𝑛

2
 

Once the rainflow cycles are counted, a useful way of visualizing the information is 

through the histogram plot of the quantities. The range-mean comprehensively shows the 

number of cycles, stress range and mean stress contained in the time signal input as shown 

in Figure (11). 

 The rainflow histogram can also be represented by the number of cycles as function 

of the stress range (or stress amplitude) as illustrated in Figure (12). 
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Figure 11 - Rainflow Histogram - Range-Mean 

 

Source: Author 

Figure 12 - Rainflow Histogram - Number of Cycles per Stress Range 

 

Source: Author 

The representation of the cycles in a histogram brings clarity and enables a 

comprehensively evaluation of the structure response given the complexity of input excitation.  
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2.6 FREQUENCY DOMAIN APPROACH 

2.6.1 HARMONIC RESPONSE  

Harmonic analysis determines the steady-state response of a structure subjected to 

loads that vary harmonically with time. Considering the general equation of motion presented 

by Equation (11). 

Assuming the force vector {𝑃} and displacement vector {𝑢} , harmonic, not necessarily 

in phase, {𝑢} can be written as: 

 {𝑢}  =  {𝑢𝑚𝑎𝑥 𝑒
𝑖𝜃} eiΩt, (34) 

where: 𝑢𝑚𝑎𝑥 is the maximum displacement, 휃 is the displacement phase shift and Ω is the 

imposed circular frequency. 

Using complex notation equation (34) can be written as: 

 {𝑢}  =  {𝑢𝑚𝑎𝑥 (𝑐𝑜𝑠휃 + 𝑖𝑠𝑖𝑛휃} eiΩt (35) 

 {𝑢}  = ({𝑢1}  +  𝑖{𝑢2}) e
iΩt, (36) 

where {𝑢1} = {𝑢𝑚𝑎𝑥  𝑐𝑜𝑠휃} is the real displacement vector, {𝑢2} = {𝑢𝑚𝑎𝑥  𝑠𝑖𝑛휃}  the imaginary 

displacement vector,  𝑢𝑚𝑎𝑥  =  √𝑢1
2 + 𝑢2

2 and 휃 = tan−1 𝑢1

𝑢2
 . Taking the time derivatives of 

{𝑢} : 

 {�̇�}  =   𝑖Ω({𝑢1}  +  𝑖{𝑢2}) e
iΩt (37) 

 {�̈�}  =   −Ω2({𝑢1}  +  𝑖{𝑢2}) e
iΩt (38) 

Similarly, the force vector can be written as: 

 {𝑃}  =  ({𝑃1}  +  𝑖{𝑃2}) e
iΩt , (39) 

where {𝑃1} = {𝑃𝑚𝑎𝑥  𝑐𝑜𝑠𝜑} is the real force vector, {𝑃2} = {𝑃𝑚𝑎𝑥 𝑠𝑖𝑛𝜑}  the imaginary force 

vector and 𝜑 is the force phase shift. 

Substituting Equations (36), (37), (38) and (39) into Equation (11) one obtains: 
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[𝑀] (−Ω2({𝑢1}  +  𝑖{𝑢2}) e

iΩt) + [𝐶] (𝑖Ω({𝑢1}  +  𝑖{𝑢2}) e
iΩt)

+ [𝐾] (({𝑢1}  +  𝑖{𝑢2}) e
iΩt) = ({𝑃1}  +  𝑖{𝑃2}) e

iΩt 
(40) 

Simplifying and grouping the similar terms, eliminating the time dependent term eiΩt: 

 (−Ω2[𝑀]  + 𝑖Ω[𝐶]  + [𝐾] )({𝑢1}  +  𝑖{𝑢2}) e
iΩt = ({𝑃1}  +  𝑖{𝑃2}) e

iΩt (41) 

 ({𝑢1}  +  𝑖{𝑢2})  = (−Ω2[𝑀]  + 𝑖Ω[𝐶]  + [𝐾] )−1{𝑃1}  +  𝑖{𝑃2} (42) 

 The frequency response function (FRF) is computed by taking the transfer function of 

the linear system from Figure 10 (using natural circular frequency notation), where the inputs 

are the displacement vector {𝑢} and the output is the force vector {𝑃} , from equation (42), 

one obtains [𝐻(ω)] as: 

 [𝐻(ω)]  =
1

(−Ω2[𝑀]  + 𝑖Ω[𝐶]  + [𝐾] )
 (43) 

Substituting Equations (28), (29) and (30) into Equation (43), [𝐻(ω)] in modal 

coordinates can be written as: 

[𝐻(ω)]  =
1

(−Ω2  +  𝑖(2휁𝑗𝜔𝑗)  +  (𝜔𝑗)2 ) 
 (44) 

The dynamic response matrix [𝑄], containing the FRFs of the stress tensor calculated 

from the response displacements, external forces and material properties using finite element 

formulation is presented in Equation (45). Figure (13) illustrates an example of the FRFs of a 

given stress tensor. 

  [𝑄]𝑛𝑥6  =  [

𝜎𝑥𝑥1(𝑓𝑖) 𝜎𝑦𝑦1(𝑓𝑖) 𝜎𝑧𝑧1(𝑓𝑖)

⋮ ⋮ ⋮
𝜎𝑥𝑥𝑛(𝑓𝑖) 𝜎𝑦𝑦𝑛(𝑓𝑖)

𝜎𝑥𝑦1(𝑓𝑖) 𝜎𝑦𝑧1(𝑓𝑖)

⋮ ⋮
…

𝜎𝑥𝑧1(𝑓𝑖)
⋮

𝜎𝑥𝑧𝑛(𝑓𝑖)
] (45) 
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Figure 13 - FRFs of the stress tensor 

 

Source: Author 

The FRFs describe the variation of the normal and shear stresses experienced by the 

structure given the input loading. 

2.6.2 RANDOM VIBRATION  

Any periodic time signal may be represented by the summation of a series of sinusoidal 

waves of various amplitudes, frequencies and phases, which is the basis of Fourier series 

expansion. The Fourier transform pair allows transformation between the time and frequency 

domains. The Fourier transform is defined as: 

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡

∞

−∞

𝑑𝑡 (46) 

and the inverse Fourier transform is: 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒−𝑖2𝜋𝑓𝑡

∞

−∞

𝑑𝑡 (47) 

The autocorrelation function 𝑅𝑥𝑥(𝜏) that defines how a signal is correlated to itself, with 

a time separation 𝜏 can be written as: 
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 𝑅𝑥𝑥(𝜏) = ∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡 = 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)]

∞

−∞

 (48) 

The autocorrelation function 𝑅𝑥𝑥(𝜏) and the power spectral density 𝑆𝑥𝑥  are related by 

the Fourier transform pair as: 

 𝑅(𝜏) = ∫ 𝑆𝑥𝑥(𝑓)𝑒−𝑗𝜔𝑡

∞

−∞

𝑑𝜔 (49) 

 𝑆𝑥𝑥(𝑓) = ∫ 𝑅(𝜏)𝑒𝑗𝜔𝑡

∞

−∞

𝑑𝜏 (50) 

The one-sided PSD 𝐺𝑥𝑥(𝑓) defined for 0 ≤ 𝑓 ≤ ∞, can be written as: 

 𝐺𝑥𝑥(𝑓) = 2𝑆𝑥𝑥(𝑓) (51) 

The spectral density of narrow-band process is centered on a restrict range of 

frequencies, while for a wide-band process it extends over a broader range of frequencies. 

By definition, a random time history cannot be periodic, however, if the time history is 

taken from an ergodic stationary Gaussian random process then it may be expressed in the 

frequency domain. A process is said to be stationary if the probability distributions of the 

ensemble are the same for all points in time. If the ensemble probability distribution function 

is Gaussian, then the process is known as a Gaussian random process.  

A stationary process is called ergodic if the statistics taken from one sample are the 

same as those obtained for the ensemble. For nonstationary process, the statistics obtained 

from a sampled time history would not be representative of those of the whole random 

process as they would be continuously changing. 

The PSD gives a statistical representation of a stationary random process in the 

frequency domain [20,21].  

When the system is characterized by its FRFs and the input random excitation 

described by its PSD, the system stress response can be evaluated by “scaling” the PSD of 

the input signal(s) by the magnitude squared of the stress FRFs that can be written as: 
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 𝐺𝑦𝑦(𝑓)  =  |𝐻𝑥𝑦(𝑓)|
2
𝐺𝑥𝑥(𝑓) (52) 

Note that the square of the transfer function is necessary to keep the unit of the output 

consistent. Equation (52) in matrix form can be written as: 

 [𝐺]  = [𝑄]𝑇  [𝐴 ][𝑄] , (53) 

where [𝐺] is the stress response PSD, [𝐴 ] is the input PSD excitation and [𝑄] is the dynamic 

response matrix. Figure (14) illustrates the input PSD and the structure’s response. 

Figure 14 – Example of an input PSD - [𝐴 ] and the stress response PSD - [𝐺]  

 

Source: Author  

 For a multi-PSD input (multiaxial loading), [𝐴 ] combines the auto PSDs on its main 

diagonal and the off-diagonal terms contain the Cross Power Spectral Densities (CPSDs) 

where the phase between pairs of loading sets is stored, the absence of cross spectrum 

information denotes no correlation between loading inputs.  

For the general case of a multi-PSD input, [𝐴 ] can defined as: 

 [𝐴] 𝑛𝑥𝑛 = [
𝑃𝑆𝐷11 ⋯ 𝐶𝑃𝑆𝐷𝑛𝑛

⋮ ⋱ ⋮
𝐶𝑃𝑆𝐷1𝑛 ⋯ 𝑃𝑆𝐷𝑛𝑛

] (54) 



 39 

Usually in shaker tests one PSD is excited at each time in each specific axis (X, Y 

or Z), for this case the input PSD is given by 𝐴11. 

The acceleration rms (root mean square) of each PSD excitation provides a measure 

of the overall energy level associated to each individual excitation, and can be expressed as: 

 𝑔𝑟𝑚𝑠𝑃𝑆𝐷
= √∫ 𝑃𝑆𝐷(𝑓) 𝑑𝑓

+∞

0

 , (55) 

where the ∫ 𝑃𝑆𝐷(𝑓) 𝑑𝑓
+∞

0
 is the area under the PSD curve. Assuming a zero-mean valued 

excitation, the n-th spectral moment of the stress response PSD matrix [𝐺]  can be written 

as: 

 𝑚𝑛 = ∫ 𝑓𝑛𝐺(𝑓)𝑑𝑓 =  ∑ 𝑓𝑘
𝑛𝐺𝑘(𝑓)𝛿𝑓

𝑚

𝑘=1

∞

0

 (56) 

The spectral moments are typically used to identify the probability distribution function 

of the fatigue cycles used in the cycle counting methods. Rice [22] derived important relations 

for the distribution of peaks in a random signal, which provided the fundamentals to the fatigue 

estimation in the frequency domain. The expected number of upward zero crossings per unit 

time is given by: 

 𝐸[0] = √
𝑚2

𝑚0
 (57) 

The expected number of positive peaks per unit time (peak frequency) can be written 

as: 

 𝐸[𝑃] = √
𝑚4

𝑚2
 (58) 
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Figure (15) illustrates  𝐸[𝑃] and 𝐸[0] for a given stress response signal. 

Figure 15 - Representation of 𝐸[𝑃] and 𝐸[0] 

 

Source: Author  

The irregularity factor 𝛾 or bandwidth parameter is defined as the ratio of number of 

crossings to number of peaks per unit time as per Equation (59), it is an important parameter 

to evaluate the concentration of the process near a central frequency. For a narrow band 

process 𝛾 → 1, indicating that the number of peaks per second and zero crossing are similar. 

Bendat in [23] determined that the probability density function (pdf) of peaks for a narrow 

band signal follows a Rayleigh distribution. 

 𝛾 =
𝐸[0]

𝐸[𝑃]
= √

𝑚2
2

𝑚0.𝑚4
 (59) 

The mean frequency is also defined as function of the spectral moments.  

 𝑓𝑚𝑒𝑎𝑛 =
𝑚1

𝑚0
√

𝑚2

𝑚4
 (60) 

The mean square amplitude of the time history is the area under the PSD curve and 

therefore the root mean square (RMS) is obtained by Equation (61). 
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 𝐴𝑟𝑚𝑠 = √𝑚0 (61) 

2.6.3 STRESS COMBINATION METHOD - CRITICAL PLANE  

To compare the resulting cycles to an S-N curve, the stress tensor [𝑄] needs to be 

reduced to a scalar value. The stress tensor 𝜎𝑖𝑗  can be expressed as: 

 𝜎𝑖𝑗  = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑦𝑧 𝜎𝑧𝑧

] (62) 

Considering that fatigue cracks initiate at free surfaces, in Figure (16) no normal or 

shear stress are applied to the root surface of the notch. Assuming an appropriate cartesian 

coordinate system where the Z-axis is normal to the free surface, the stress tensor is reduced 

to: 

 𝜎𝑖𝑗  = [

𝜎𝑥𝑥 𝜎𝑥𝑦 0

𝜎𝑥𝑦 𝜎𝑦𝑦 0

 0     0    0

] (63) 

 

Figure 16 - Surface resolution – Z as a surface normal 

 

Source: Author 

Stresses in this coordinate system can be assumed to be 2-D. In the critical plane 

stress combination method, the normal stress is calculated and rainflow counted in multiple 

planes. The critical plane is the plane with the highest predicted fatigue damage. The 

orientation of each plane is defined by the angle Φ with the local X-axis. The solution of 

normal stress for critical plane analysis can be defined as: 
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 𝜎Φ =
𝜎𝑥𝑥 + 𝜎𝑦𝑦 

2
+

𝜎𝑥𝑥 − 𝜎𝑦𝑦 

2
 cos(2Φ) + 𝜎𝑥𝑦 sin(2Φ) (64) 

where Φ is defined at a specific angle resolution, e.g. every 10 degrees. 

For a 3D case where the output stress PSD is defined by Equation (53) at each node 

of the finite element model, [𝐺(𝑓)] is projected onto several selected planes, the plane that 

shows the largest  0𝑡ℎ spectral moment is defined as the critical plane. Figure (17) illustrates 

the orientation of a generic material plane ∆, a normal unit vector n can be defined through 

angles Φ and 휃, where Φ is the angle between the local x- axis and the projection of the unit 

vector n on plan x-y. The angle 휃 is the angle between n and the z-axis. A new system of 

coordinates, nab, with origin in O, can be defined. Considering a generic direction q lying on 

the plane ∆ and passing through point O. the angle between the direction q and the axis a is 

defined as 𝛼. The direction cosines vector [𝑑] is then defined as [24]: 

 𝑑6𝑥1  =  

[
 
 
 
 
 
 
 
 
 
 

1

2
[𝑠𝑖𝑛(휃)𝑠𝑖𝑛(2Φ)𝑐𝑜𝑠(𝛼) + 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(2휃)𝑐𝑜𝑠(Φ)2]

1

2
[−𝑠𝑖𝑛(휃)𝑠𝑖𝑛(2Φ)𝑐𝑜𝑠(𝛼) + 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(2휃)𝑐𝑜𝑠(Φ)2]

−
1

2
 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(2휃)

1

2
𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(2Φ)𝑐𝑜𝑠(2휃) − 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(2Φ)sin(휃)

𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(Φ)𝑐𝑜𝑠(2휃) + 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(Φ)cos(휃)

𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(Φ)𝑐𝑜𝑠(2휃)  −  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(Φ)cos(휃) ]
 
 
 
 
 
 
 
 
 
 

 (65) 

Figure 17 - Normal n of material plane and the shear stress 𝜏𝑞  projected on ∆ plane 

 

Source: Adapted from Teixeira (2014) 
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The shear stress as a function of frequency can be expressed by: 

 𝜏𝑞 (𝑓) = 𝑑𝑇 [𝐺(𝑓)] 𝑑 (66) 

 The spectral moments can be determined using Equation (66), by evaluating the 

shear stresses in the frequency range of interest [24].  

2.7 SYNTHESIZED TIME SERIES FROM PSD SIGNAL 

Time history signals are usually obtained from accelerometers or strain gages, the 

fatigue life in the time domain can be estimated from an acceleration time history using finite 

element transient analysis and rainflow cycle counting as previously described in section 2.5.  

However, if the vibration profile is given in terms of the signal PSD, the time history 

can be synthesized using the inverse fast Fourier transform (IFFT) for a given time duration. 

This approach allows the creation of time history loads which can be used to compare fatigue 

calculation results obtained from the frequency domain. 

A PSD does not have a unique time history because it discards the phase angle, which 

gives flexibility for shaker table tests for example, where the equipment can generate the time 

history considering the hardware characteristics inside a given tolerance [26].  

The overall outline of the process to synthesize a time history from a PSD used in this 

work is illustrated in Figure 18, which is based on Quigley et al. [25] and Irvine [26]. 

A normally distributed white noise time history is generated and its fast Fourier 

transform (FFT) is obtained. The FFT is scaled according to the PSD magnitude per each 

constant frequency bandwidth ∆𝑓. Furthermore, the IFFT is used to obtain the time series of 

the scaled FFT signal. The obtained time series signal is scaled, so the 𝑔𝑟𝑚𝑠 of the 

synthesized signal matches the PSD input overall 𝑔𝑟𝑚𝑠 value. 

Finally, the quality of the generated signal is verified by comparing the PSD of the 

synthesized time history with the original PSD input, an acceptance tolerance range must be 

defined as the duration of the time history also affects the accuracy of the synthesized curve. 
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Figure 18 - Synthesized time history from PSD input 

 

Source: Author, adapted from Quigley et al (2016) and Irvine (2020) 

2.8 HALF POWER BANDWIDTH (3dB BANDWIDTH) 

The half power bandwidth or 3dB bandwidth ∆𝑓 of a resonance peak is defined as: 

 ∆𝑓 =  𝑓
𝑢
− 𝑓

𝑙
 , (67) 

where the lower and upper frequencies 𝑓𝑙 and 𝑓𝑢 are defined by: 

 |𝐻(𝑓𝑙)|
2 = |𝐻(𝑓𝑢)|2  =  

1

2
|𝐻(𝑓𝑟𝑒𝑠)|

2 (68) 

The upper and lower frequencies are defined so that the power of |𝐻(𝑓𝑟𝑒𝑠)| has been 

halved in relation to the peak value of |𝐻(𝑓𝑟𝑒𝑠)|. A quality factor 𝑄 is defined as the ratio 

between the center frequency 𝑓𝑟𝑒𝑠 (resonance frequency) and the half power bandwidth as 

per Equation (69) [21]. 

 The variables of the method are illustrated in Figure (19). 

 𝑄 =
𝑓𝑟𝑒𝑠

∆𝑓
 (69) 
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Figure 19 - Half Power Bandwidth Method 

 

Source: Author 

This method is used to determine the structure’s damping ratio ζ. For small damping 

ratios (eg. ζ < 0.1), the damping ratio can be approximated by  

 휁 ≈
1

2

∆𝑓

𝑓
≈  

1

2

𝑓𝑢 − 𝑓𝑙
𝑓𝑟𝑒𝑠

 ≈
1

2𝑄
  (70) 

2.9 PROPORTIONAL OR RAYLEIGH DAMPING 

Damping is the dissipation of energy from vibrating structure, generally in the form of 

heat. From the uncoupled equation of motion presented, Equation (32) implies a diagonal 

matrix of the modal damping [𝐶], otherwise, the modal superposition method would not be 

applicable, as the equations of motion would still be coupled. The concept of proportional 

damping is defined for the case where the damping matrix can be written as a linear 

combination of the mass and stiffness matrices, so it is simultaneously diagonalizable with 

[𝑀] and [𝐾]. 

The proportional or Rayleigh damping is defined as [27]: 

 [C] = 𝛼[𝑀] + 𝛽[𝐾] , (71) 

where 𝛼 and 𝛽 are real constants and represent the mass and stiffness proportional damping 

coefficients. 

Modes of the Rayleigh damped systems preserves the simplicity of the real normal 

modes as in the undamped case solved in the modal analysis. 
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From the verification of measurement data using the half power bandwidth method, 

the damping ratios ζ𝑖 and ζ𝑗 can be determined, 𝛼 and 𝛽 can then be calculated as function 

of frequency range 𝑓1 and 𝑓2 as [27]: 

 [
𝛼
𝛽] =

2휁

𝑓1 + 𝑓2
[
𝑓1𝑓2
1

] (72) 

Figure (20) illustrates the relationship between the mass and stiffness proportional 

terms as well as the damping ratio as function of frequency. The appropriate calculation of 

the Rayleigh damping coefficients is critical for the proper dynamic characterization of the 

structure.  

Figure 20 - Mass and Stiffness proportional terms relation with Damping Ratio as function of 

Frequency 

 

Source: Author 
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2.10 DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 

The distribution function of 𝑥 or 𝐹(𝑥) (also referred as the cumulative distribution 

function – CDF) is defined as the probability of occurrence 𝑝 of the variable 𝑥 taking a value 

less than or equal to 𝑎 . 

 𝐹(𝑥) = 𝑃𝑟𝑜𝑏 [𝑥 ≤ 𝑎] = 𝑝 (73) 

The distribution function monotonically increased from 𝐹(−∞) = 0 to 𝐹(∞) = 1 . The 

probability density function (PDF) is defined as  

 𝑝(𝑥) = lim
∆𝑥→0

[
𝑃𝑟𝑜𝑏[𝑥 < 𝑥𝑗 ≤ 𝑥 + ∆𝑥]

∆𝑥
] (74) 

The distribution function is related to the PDF by 

 𝐹(𝑥) = ∫ 𝑝(𝛼) 𝑑𝛼
𝑥

−∞

 (75) 

Two common PDFs are the Gaussian (or normal) PDF which for zero mean can be written 

as: 

 𝑓𝑛𝑜𝑟𝑚(𝑥; 𝜇, 𝜎) =  
1

𝜎√2𝜋
 𝑒𝑥𝑝 (

−(𝑥 − 𝜇)2

2𝜎2
) (76) 

and the Rayleigh, which PDF is shown below: 

 𝑓𝑟𝑎𝑦(𝑥; 𝜇, 𝜎) =  
𝑥

𝜎2
 𝑒𝑥𝑝 (

−𝑥2

2𝜎2
) (77) 

 The Rayleigh function is useful studying the peak response of narrowband Gaussian 

signals. 

 The probability density can be written as f (𝑥; 휃) where f is the probability density of 𝑥, 

given a set of parameters 휃. For the already presented normal distribution 휃 = (𝜇, 𝜎2). 

 The joint probability f (𝑥, 𝑦; 휃) is the probability of x and y together as a pair, given a 

set of distribution parameters 휃. 

 The marginal probability f (𝑥, 𝑦; 휃) is the probability of x, for all possible values of y, 

given the distribution parameters 휃. The marginal probability is determined from the joint 

distribution of x and y by integrating over all values of y. 
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 Conditional probability f (𝑥|𝑦; 휃) is the probability of x by itself, given specific value 

of variable y, and the distribution parameters 휃. If x and y represent events A and B, then: 

 𝑃(𝐴|𝐵) =
𝑛𝐴𝐵

𝑛𝐵
 (78) 

where 𝑛𝐴𝐵 is the number of times both A and B occur, and 𝑛𝐵 is the number of times B occurs. 

In general, the conditional probability of A given B is not the same as B given A.  

 A method to estimate the parameters 휃 of a probability distribution is the maximum 

likelihood estimation (MLE). The values of the parameters are estimated by maximizing the 

likelihood function, for a specific statistical model. If 𝑥1, 𝑥2, . . . . 𝑥𝑛 are random variables 

normally distributed, Equation (76) can be written as: 

 𝑓 (𝑥1, . . . , 𝑥𝑛|𝜇, 𝜎) =  ∏
1

𝜎√2𝜋
 𝑒𝑥𝑝 (

−(𝑥𝑖 − 𝜇)2

2𝜎2
)

𝑛

𝑖

 (79) 

The likelihood of the two parameters, 𝜇 and 𝜎 can be written as:  

 ℒ(휃)  =  ℒ(𝜇, 𝜎)  =  −𝑛𝑙𝑜𝑔𝜎 − 
𝑛

2
𝑙𝑜𝑔 2𝜋 − 

1

2𝜎2
∑(𝑥𝑖 −  𝜇)2

𝑛

𝑖=1

  (80) 

Setting the derivative of the ℒ(휃) with respect to 𝜇 and 𝜎 to zero, the MLE values are 

obtained. 

 
𝜕ℒ

𝜕𝜇
=

1

2𝜎2
∑(𝑥𝑖 −  𝜇)

𝑛

𝑖=1

 =  0 (81) 

 
𝜕ℒ

𝜕𝜎
= −

𝑛

𝜎
+ 𝜎−3 ∑(𝑥𝑖 −  𝜇)2

𝑛

𝑖=1

 =  0 (82) 
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2.11 WIDEBAND RANDOM FATIGUE  

The Palmgren-Miner linear cumulative damage rule was applied to narrow band 

random fatigue by Miles [28] in the mid 1950’s. Miles extended the linear summation of 

damage to an integral of stress peaks scaled by the probability density function of stress 

peaks, which, for a narrow band random system, is a Rayleigh distribution. It is widely 

accepted the fact that the narrowband approximation, when applied to wideband process 

tends to overestimate the fatigue damage and was proved rigorously by Rychlik [29]. 

The difficulties to obtain stress time histories sufficiently long to reliably characterize the 

structures and the significant computational effort to calculate the transient stress responses 

to determine the rainflow cycle distributions has led to the development of frequency domain 

techniques. The seminal work by Rice [22] and research since has shown that the PDF of 

peak response can be determined from moments of the frequency domain response power 

spectral density (PSD) and that the peak PDF can be described by combination of a Gaussian 

and a Rayleigh PDF. 

2.11.1 DIRLIK’S PROBABILITY DENSITY FUNCTION 

In 1985, Dirlik developed an empirical closed form solution for the wide band random 

problem, the proposed PDF considered the sum of two Rayleigh distributions and one 

exponential distribution developed from an extensive Monte Carlo technique [30]. Although 

apparently more complicated than some alternative methods, it is only a function of the four 

moments of area of the PSD. This method has been found to be widely applicable and 

constantly outperforms all the other available methods considering the four moments of area 

of the PSD [31].   

The Dirlik PDF model developed over the stress range is given by [30]: 

 𝑝(𝑆)𝐷𝑖𝑟𝑙𝑖𝑘 =

𝐷1

𝑄1
𝑒

−𝑍
𝑄1 +

𝐷2

𝑅2 𝑒
−𝑧2

2𝑅2 + 𝐷3𝑍𝑒
−𝑍2

2

2√𝑚0

 , (83) 

where the parameters D1, D2, D3, 𝑄1, R e Z are defined as function of the PSD moments as 

shown from Equation (84) through Equation (90). 

 𝑥𝑚 =
𝑚1

𝑚0
√

𝑚2

𝑚4
     (84) 
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 𝐷1 =
2(𝑥𝑚 − 𝛾2)

1 + 𝛾2
 (85) 

 𝑅 =
𝛾 − 𝑥𝑚 − 𝐷1

2

1 − 𝛾 − 𝐷1 + 𝐷1
2 (86) 

 𝐷2 =
1 − 𝛾2 − 𝐷1+𝐷1

2

1 − 𝑅
 (87) 

 𝐷3 = 1 − 𝐷1 − 𝐷2 (88) 

 𝑄1 =
1.25(𝛾 − 𝐷3+𝐷2𝑅)

𝐷1
 (89) 

 𝑍 =
𝑆

2√𝑚0

 (90) 

Dirlik’s PDF establishes the correlation between the stress response spectral density 

distribution and the rainflow cycle counts through the amplitude distribution. Moreover, the 

PSD being a static representation of the random process, requires as duration time parameter 

to properly model the damage experienced by the structure, this parameter is independent of 

the count method used, nonetheless, in a stationary process which the rainflow method is 

applied, the total number of cycles is a function of expected rate of peak occurrence 𝐸[𝑃] 

given in peaks per unit time multiplied by a time period 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒. 

This relation gives a great computational advantage and flexibility for the calculation 

of fatigue life in the frequency domain, as the number of cycles for long periods of time, can 

simply be estimated by changing time parameter, which in the time domain would require the 

calculation of the entire load history.  

Figure (21) illustrates Dirlik’s PDF as a function of stress amplitude, which represents 

the probability of occurrence of a specific stress amplitude. The area under the curve is equal 

to a unit, as it represents all the possible stress amplitudes experienced by the structure. The 

number of cycles at a specific stress amplitude 𝑆𝑖 is obtained for a given exposure time 

𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 to a given vibration profile by Equation (91). 

 𝑛𝑖𝐷𝑖𝑟𝑙𝑖𝑘
= 𝑝(𝑆𝑖)𝐷𝑖𝑟𝑙𝑖𝑘 . 𝑑𝑆. 𝐸[𝑃]. 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (91) 



 51 

Figure 21 – Dirlik’s pdf as function of the stress amplitude 

 

Source: Author 

2.11.2 LALLANE’S PROBABILITY DENSITY FUNCTION 

Lallane provides an analytical probability distribution based on Rice’s distribution of 

peaks in a random signal. The probability density 𝑝(𝑆𝑖)𝐿𝑎𝑙𝑙𝑎𝑛𝑒 is a weighted sum of a Gaussian 

and Rayleigh distributions, with coefficients function of the irregularity factor. 

Lallane’s PDF model in [19] is given by: 

 𝑝(𝑆)𝐿𝑎𝑙𝑙𝑎𝑛𝑒 =
√1 − 𝛾2

𝑆𝑟𝑚𝑠√2𝜋
𝑒

−
𝑆2

2(1−𝛾2)𝑆𝑟𝑚𝑠
2
+

𝛾𝑆

2𝑆2
𝑟𝑚𝑠

𝑒
−

𝑆2

2𝑆2
𝑟𝑚𝑠

[1+𝑒𝑟𝑓(
𝛾𝑆

𝑆𝑟𝑚𝑠√2(1−𝛾2)
)]

, (92) 

where 𝑆𝑖 is the stress range and  𝑒𝑟𝑓(𝑥) is the Gauss error function given by:  

 𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 (93) 

Similarly, to Dirlik’s method, the number of cycles at a specific value of stress 𝑖 are 

obtained for a given time of vibration duration, which can be written as: 

 𝑛𝑖𝐿𝑎𝑙𝑙𝑎𝑛𝑒
= 𝑝(𝑆𝑖)𝐿𝑎𝑙𝑙𝑎𝑛𝑒 . 𝑑𝑆. 𝐸[𝑃]. 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (94) 
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2.12 S-N CURVES 

Fatigue testing aims to identify the relationship between the resistance of a given 

material or structure subjected to cyclic loading. The results of a fatigue test are presented in 

graphs that relates the applied loading (e.g. force, stress, strain) and the number of cycles to 

failure. 

The inherent variations in material properties, surface defects, manufacturing 

tolerances and testing conditions, result in an invariably scattered data. The characterization 

of the resistance to fatigue of material requires several test specimens tested at same and 

different loading conditions, therefore the fatigue data shall be described in a statistical 

manner. Since the work from August Wöhler performing systematic fatigue tests of smooth 

and notched railway axles in the 1850s, the classical approach to fatigue has focused on the 

plot of the number of cycles to failure for a given stress level, which is known as S-N diagram 

or S-N curve. 

The percentile curves illustrate the variability of fatigue life, meaning that at p=0.5, 50% 

of the specimens fail above this curve and 50% below it, Figure (22) illustrates the fit of fatigue 

testing data using Basquin’s model. The percentile curves can also be used to define design 

curves at any other percentile value. 

Figure 22 - P-S-N curve following a Basquin model 

 

Source: Author 
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DNV-RP-C203 provides guidance to address uncertainties in fatigue life prediction. 

A design S-N curve should provide 97.7% probability of survival. The design curves 

can be derived as mean minus two standard deviations. The mean curve is required to be 

estimated with at least 75% confidence. Two approaches are presented to derive a S-N 

design curve, named: Pure statistical approach and engineering approach. The main 

difference between the two approaches is the standard deviation of the test results which can 

be assumed to be the same as the standard S-N curves in the engineering approach and is 

“unknown” in the statistical approach. A detailed description of the statistical approach is 

presented in [12]. 

The standard approach in curve fitting assumes that the parameter plotted on the x-

axis is the independent variable and the one plotted on the y-axis is the dependent variable. 

However, in the S-N diagram the dependent variable, number of cycles, is commonly 

presented in the x-axis. The best fit line through the data is estimated usually using the 

ordinary least squares (OLS) method. This method is based on choosing those values of the 

coefficients that minimize the sum of the squared deviations (residuals) of the observed 

values of 𝑙𝑜𝑔 𝑁𝑖 from those predicted by the fitted line [32].  

Using the OLS method to estimate the mean curve giving a set of experimental data, 

the confidence interval must be defined. The linear regression in the log-log plot can be 

defined as: 

 𝑦 = 𝑎 + 𝑏𝑥 + 𝜖 (95) 

From testing data, the linear regression curve can be written as: 

 �̂�𝑖  = 𝑎 + 𝑏𝑥𝑖  , (96) 

where �̂�𝑖 is the value of 𝑦 value predicted by the model at 𝑥𝑖 and �̅� and �̅� are the average 

values of 𝑥 and 𝑦. 

 𝑏 =  
∑(𝑥 − �̅�) (𝑦 − �̅�)

∑(𝑥 − �̅�)2
 (97) 
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The error term is given by: 

 𝜖𝑖  = 𝑦𝑖  − �̂�𝑖  (98) 

The standard error of the estimate is defined as: 

 𝑠𝑥𝑦  = 𝑠𝑦√(1 − 𝑟2)
𝑛 − 1

𝑛 − 2
 ,  (99) 

where 𝑛 is the number of samples and  𝑠𝑦 the standard deviation of 𝑦 and 𝑟2  is given by : 

 𝑟2  =  
∑(�̂�𝑖 − �̅�)2

(𝑦𝑖 − �̅�)2
   (100) 

 The 𝑟2 term represents the percentage of the variability of 𝑦 that cannot be explained 

by the regression model.  

The standard error of the confidence interval (CI) is given by: 

 𝑠𝑒𝐶𝐼𝑖
 = 𝑠𝑥𝑦√

1

𝑛
+

(𝑥𝑖 − �̅�)2

∑(𝑥𝑖 − �̅�)
2  (101) 

Let 𝑆 be a Student’s 𝑡 distribution defined as: 

 𝑓(𝑠)  =  
𝛤 (

𝜈 + 1
2 )

𝛤 (
𝜈
2)

 
1

√𝜈𝜋
 

1

(1 +
𝑠2

𝜈
)

1+𝜈
2

 (102) 

The function 𝑓(𝑠) returns the probability of observing a value of 𝑠 from the Student’s 𝑡 

distribution with 𝜈 degrees of freedom, 𝛤(∙) is the gamma function. For a given significance 

level 𝛼, the inverse density  𝛼 =  
1

𝑆
  , can be written as: 

 ℎ(𝛼)  =  
𝛤 (

𝜈 + 1
2 )

𝛤 (
𝜈
2)

 
1

√𝜈𝜋
 

1

𝛼2 (1 +
1

𝛼2𝜈
)

1+𝜈
2

  (103) 

The two values of ℎ(𝛼) which the two-tailed Student’s 𝑡 distribution is satisfied are 

defined as the critical values. Furthermore, the upper and lower intervals of �̂� given the 

confidence interval 𝜇c  and 𝜈 degrees of freedom can be defined as: 
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 �̂�𝐶𝐼 𝑢𝑝𝑝𝑒𝑟𝑖
 =  �̂�𝑖  +  ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝐶𝐼|𝜈) 𝑠𝑒𝑖

  (104) 

 �̂�𝐶𝐼 𝑙𝑜𝑤𝑒𝑟𝑖
 =  �̂�𝑖  − ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝐶𝐼|𝜈)   𝑠𝑒𝑖

 , (105) 

where 𝛼𝐶𝐼  =  1 −  𝜇c   

Similarly, the upper and lower percentile S-N curves (P-S-N), for a given prediction 

interval (PI) 𝜇𝑝, are defined using the prediction interval standard error 𝑠𝑒𝑃𝐼
 as shown by 

Equations (106), (107) and (108). 

 𝑠𝑒𝑃𝐼𝑖
 = 𝑠𝑥𝑦√1 +

1

𝑛
+

(𝑥𝑖 − �̅�)2

∑(𝑥𝑖 − �̅�)
2  (106) 

 �̂�𝑃𝐼 𝑢𝑝𝑝𝑒𝑟𝑖
 =  �̂�𝑖  + ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑃𝐼|𝜈)  𝑠𝑒𝑖

  (107) 

 �̂�𝑃𝐼 𝑙𝑜𝑤𝑒𝑟𝑖
 =  �̂�𝑖  − ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑃𝐼|𝜈) 𝑠𝑒𝑖

 , (108) 

where 𝛼𝑃𝐼  =  1 −  𝜇𝑝. 

 Equations (104) and (105) are used to validate the minimum interval where the mean 

curve (p=0.5) can be accepted which the DNV-RP-C-203 defines to be at least 75% 

confidence, whereas Equations (107) and (108) provide the framework to construct any other 

percentile curve defined by the prediction interval 𝜇𝑝. 

  



 56 

2.13 RANDOM FATIGUE LIMIT MODEL 

When the material exhibits fatigue limit, there are two main considerations in modelling 

the relationship between the applied stress and fatigue life, first, the standard deviation of 

fatigue life decreases as the applied stress increases. Second, the curvature suggests the 

inclusion of a fatigue limit in the statistical model. The random fatigue-limit model describes 

features observed during experimental testing [7]. 

The fatigue life for each specimen i denoted by 𝑵 at a stress level 𝑺 can be modelled 

as: 

 
𝒍𝒏(𝑵𝒊) =  𝜷𝟎 + 𝜷𝟏 𝒍𝒐𝒈(𝑺𝒊 − 𝜸𝒍𝒊𝒎) + 𝝐 ,   𝑺𝒊 > 𝜸𝒍𝒊𝒎, 

(109) 

 

where 𝜷𝟎 and 𝜷𝟏 are fatigue curves coefficients, 𝜸𝒍𝒊𝒎 is the fatigue limit of the specimen, 𝝐 is 

the error term, which is a random life variable associated with the scatter from specimens 

which have same value for fatigue limit. 

Let 𝑽 = 𝒍𝒐𝒈 (𝜸𝒍𝒊𝒎) , then Pascual and Meeker in [7] assume 𝑽 to have a probability 

density function given by: 

 

 
𝒇𝑽(𝒗; 𝝁𝜸𝒍𝒊𝒎

, 𝝈𝜸𝒍𝒊𝒎
) =  

𝟏

𝝈𝜸𝒍𝒊𝒎

 𝝓𝑽 (
𝒗 − 𝝁𝜸𝒍𝒊𝒎

𝝈𝜸𝒍𝒊𝒎

) 
(110) 

 

In Equation (110), 𝝁𝜸𝒍𝒊𝒎
 and 𝝈𝜸𝒍𝒊𝒎

 are the location and scale parameters for the 

distribution of 𝜸𝒍𝒊𝒎, respectively. 𝝓𝑽 is either the standardized smallest extreme value (sev) 

or normal PDF. 

Let 𝑥 = 𝑙𝑜𝑔 (𝑆) and 𝑊 = 𝑙𝑜𝑔 (𝑁). Then, for V < x they assume that W given V has a 

PDF of the form: 

 
𝒇𝑾|𝑽(𝝎,𝜷𝟎, 𝜷𝟏, 𝝈, 𝒙, 𝒗) =  ∫

𝟏

𝝈
 𝝓𝑾|𝑽 {

𝝎 − {𝜷𝟎 + 𝜷𝟏𝒍𝒐𝒈 [𝒆𝒙𝒑(𝒙) − 𝒆𝒙𝒑 (𝒗)]}

𝝈
}

𝒙

−∞

 
(111) 

 
In Equation (111), 𝜷𝟎 + 𝜷𝟏𝐥𝐨𝐠 [𝐞𝐱𝐩(𝒙) − 𝐞𝐱𝐩 (𝒗)] acts as a location parameter and 𝝈 

as a scale parameter, 𝝓𝑾|𝑽  is either the standardized smallest extreme value (sev) or normal 

pdf. The marginal PDF of W is given by: 

 

 
𝒇𝑾(𝝎, 𝒙, 𝜽) =  ∫

𝟏

𝝈𝝈𝜸𝒍𝒊𝒎

 𝝓𝑾|𝑽 [
𝝎 − 𝝁(𝒙, 𝒗, 𝜽)

𝝈
]𝝓𝑽 (

𝒗 − 𝝁𝜸𝒍𝒊𝒎

𝝈𝜸𝒍𝒊𝒎

)𝒅𝒗,

𝒙

−∞

 
(112) 
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where 𝜽 = (𝜷𝟎, 𝜷𝟏, 𝝈, 𝝁𝜸𝒍𝒊𝒎
, 𝝈𝜸𝒍𝒊𝒎

) and 𝝁(𝒙, 𝒗, 𝜽) = 𝜷𝟎 + 𝜷𝟏𝒍𝒐𝒈 [𝒆𝒙𝒑(𝒙) − 𝒆𝒙𝒑 (𝒗)]. The 

marginal cumulative distribution function (CDF) of 𝑾 can be written as: 

 

 
𝑭𝑾(𝝎, 𝒙, 𝜽) =  ∫

𝟏

𝝈
 𝜱𝑾|𝑽 [

𝝎 − 𝝁(𝒙, 𝒗, 𝜽)

𝝈
]𝝓𝑽 (

𝒗 − 𝝁𝜸𝒍𝒊𝒎

𝝈𝜸𝒍𝒊𝒎

)𝒅𝒗

𝒙

−∞

, 
(113) 

 

where 𝚽𝑾|𝑽(∙) is the cdf of 𝑾|𝑽. This statistical model is referred as random fatigue limit 

model (RFL). 

There are no closed forms for the density and distribution functions which demands 

numerical evaluation.  

2.13.1 MODEL PARAMETERS ESTIMATION  

 
Pascual and Meeker in [7] used the maximum likelihood (ML) methods to estimate the 

parameters of the random fatigue-limit model. Statistics theory suggests that ML estimators, 

in general, have favorable asymptotic properties for large samples.  

Let 𝑵𝒑(𝒔) be the 𝒑 quantile of the life distribution at stress level 𝑺. The ML is estimated 

for 𝑵𝒑(𝒔) for  𝒑 = 0.05, 0.50 and 0.95 which are the percentile curves. 

For the random fatigue-limit model defined previously with sample data 𝝎𝟏 =

𝐥𝐨𝐠(𝑵𝟏) , … , 𝝎𝒏 = 𝐥𝐨𝐠(𝑵𝒏) at log stress levels 𝒙𝟏, … , 𝒙𝒏 , respectively, the likelihood can be 

written as: 

 
𝑳 (𝜽) = ∏[𝒇𝑾(𝝎𝒊; 𝒙𝒊, 𝜽)]𝜹𝒊[𝟏 − 𝑭𝑾(𝝎𝒊; 𝒙𝒊, 𝜽)]𝟏−𝜹𝒊  ,

𝒏

𝒊=𝟏

 
(114) 

 

where 𝜹𝒊  =  𝟏 𝒊𝒇 𝝎𝒊 is a failure and 𝜹𝒊  =  𝟎 𝒊𝒇 𝝎𝒊 is a censored observation. 

The function 𝑳 (𝜽) can be interpreted as being approximately proportional to the 

probability of observing  𝑵𝟏, … ,𝑵𝒏 for a given set of parameters 𝜽. Generally, it is more 

convenient to write the log-likelihood function. Maximizing the log-likelihood function 

produces the same set of parameters as maximizing the likelihood function. The log-likelihood 

function is written as: 

 

 
𝓛(𝜽) = 𝒍𝒐𝒈[𝑳(𝜽)] =  ∑𝓛𝒊(𝜽)

𝒏

𝒊=𝟏

 , 
(115) 

where, 

 𝓛(𝛉) = 𝛅𝐢𝐥𝐨𝐠[𝐟𝐖(𝛚𝐢, 𝐱𝐢, 𝛉)] + (𝟏 − 𝛅𝐢)𝐥𝐨𝐠[𝟏 − 𝐅𝐖(𝛚𝐢, 𝐱𝐢, 𝛉)] , 
 

(116) 



 58 

is the contribution of the 𝒊 th observation. The ML estimate �̂� of 𝜽 is the set of parameters 

values that maximizes 𝑳 (𝜽) or 𝓛(𝜽).  

An application of the RFL method is presented by Pollak in his PhD thesis [34] for the 

Titanium Alloy α-β Ti-6Al-4V.  

For the distribution of the random variable 𝜸𝒍𝒊𝒎, the Weibull distribution is an adequate 

choice for describing the skewed downward strength distribution of many engineering 

materials. The Weibull distribution introduces two parameters, the location parameter η and 

the scale parameter 𝜷𝟐, which correspond to the location and scale parameters 𝝁𝜸𝒍𝒊𝒎
 and 

𝝈𝜸𝒍𝒊𝒎
 respectively, used in the RFL model. 

Figure (23) illustrates the fit of the RFL model to the experimental data from [34]. The 

model parameters are shown in table 1: 

Table 1 - RFL model parameters for data best fit  

Parameter Description Value 

𝛽0 S-N curve coefficient 4.95 

𝛽1 S-N curve coefficient -2.11 

𝜎𝜀 Std deviation in lognormal fatigue life 0.16 

휂 Weibull location parameter for fatigue limit 405 

𝛽2 Weibull Scale parameter for fatigue limit 18 
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Figure 23 - RFL model applied to the α-β Ti-6Al-4V testing data showing the 0.05, 0.5 and 0.95 

percentile fitting curves 

 

Source: Author 

 The fatigue data for the Titanium Alloy α-β Ti-6Al-4V reveals a significant curvature 

when the fatigue limit is approached. Basquin’s model is no longer capable to model such 

behavior, thereafter, the RFL method expands the possibilities to properly model a wider 

range of materials specially in high cycle fatigue applications. 
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2.14 PROBABILISTIC LINEAR CUMULATIVE DAMAGE 

The damage is calculated using generally the 50% percentile best fitted S-N curve 

using Equation (1), however, due to the scatter in the material data, a probabilistic linear 

cumulative is here proposed to characterize the variability of the damage estimation using 

the different percentile fatigue life curves. For materials that do not exhibit fatigue limit the 

percentiles curves could be estimated based on the OLS method and a defined prediction 

interval, for the case of materials that fatigue limit is observed, one could use RFL method to 

generate the percentile S-N curves.   

Based on Palgren-Miner’s equation the probabilistic linear cumulative damage is here 

defined as: 

 𝐷𝑝𝑥 = ∑
𝑛𝑖

𝑁𝑖𝑝𝑥

𝑘

𝑖=1

  (117) 

where 𝑝𝑥 represents the percentile curve used for the damage estimation. The damage is 

now computed not only for the commonly used median percentile but for any confidence level 

interval of interest. 

The fatigue life of the component expressed in Equation (117) is defined as number of 

repeats of the determined load or combination of loads which led the component to 

accumulate damage, therefore, a life greater than one means that the component will survive 

the subjected load requirement without failure. A value smaller than one is interpreted as the 

component is likely to fail before the test is completed.  

 𝐿𝑖𝑓𝑒 𝑝𝑥 = 
1

𝐷𝑝𝑥 
 (118) 

The time to failure (TTF) is estimated considering exposure time to the vibration profile 

and the damage associated to specific fatigue curve percentile as per Equation (119), which 

could also be defined in terms of life as shown by Equation (120). 

 𝑇𝑇𝐹𝑝𝑥
=

𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐷𝑝𝑥 
   (119) 

 𝑇𝑇𝐹𝑝𝑥
= 𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . 𝐿𝑖𝑓𝑒 𝑝𝑥   (120) 
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The time to failure is calculated based on the test duration, or repetitions of the 

random vibration excitation. The benefit of estimating the fatigue life using the different S-N 

curve percentiles is the understanding of how a specific material or manufacturing method 

could impact in the performance of the structure in service. Instead of a unique life value, the 

proposed method provides a range that is inherent to the scatter in fatigue testing. 

Safety factors could also be added to the proposed modeling process, where design 

curves could be defined systematically based on pre-determined percentile curves. 

The probabilistic linear cumulative damage model presented in Equation (117) has the 

flexibility to be applied independent of the method used to obtain the S-N curve percentiles, 

thereafter, allowing the usage of linear, bilinear, multilinear, hyperbolic, RFL, material 

modeling techniques. 

 Pascualinotto and Sarzosa discussed the application of the probabilistic linear 

cumulative damage using the RFL method described in 2.13 in [35]. 
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3 MATERIALS AND METHODS 

The fatigue life calculation in frequency domain offers great advantage in terms of 

calculation time compared to the time domain, enabling to solve much larger and complex 

problems using finite element analysis. However, due to statistical nature of the frequency 

domain method, the understanding of the parameters that influence most the fatigue 

prediction results is key to the reliable application of the method. 

In [8] the predicted fatigue life in the frequency and time domains differed by 

approximately 20%, with the frequency domain result being more conservative.  Observing 

the work from Castillo and Canteli in [4] and Pascual and Meeker in [7], the scatter of fatigue 

testing results suggests that the prediction of fatigue life must be made in a probabilistic 

manner.  

The DNV-RP-C203 standard provides guidance to generate design curves to account 

for the testing scatter, considering the mean minus two standard deviations of the testing 

data. The suggested probability of survival is used in this work. 

The fatigue life of a 6061-T6 notched aluminum specimen is estimated for the 

combined load cases of two different vibration profiles. The total fatigue damage and life are 

estimated in both time and frequency domains for the different S-N percentiles, the results 

are compared to experimental results.  

3.1 FATIGUE LIFE ESTIMATION OF A NOTCHED 6061-T6 ALUMINUM COMPONENT 

A notched 6061-T6 aluminum specimen illustrated in Figure (24) is subjected to two 

different vibration profiles applied in the Z axis direction, following the workflow shown in 

Figure (25). The first PSD profile was defined with a specific time duration, subsequently the 

component is subjected to a second PSD profile with an increased root mean square 

acceleration where the component was tested to failure. Based on the cumulative damage 

process, the objective of the first test is to pre-damage the structure. To evaluate the effects 

of the geometrical discontinuity in the fatigue life, a double notched specimen with 1.9mm 

wall thickness was defined. 
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Figure 24 - Specimen Design 

 

Source: Author 

Figure 25 - Testing / Simulation workflow 

 

Source: Author 
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The material modeling took into consideration the engineering stress-strain curve 

and unnotched fatigue data from [36], the material data for the 6061-T6 aluminum are 

illustrated in Figures (26) and (27).   

Figure 26 - 6061-T6 Aluminum – Engineering stress strain curve 

 

Source: Author 

Figure 27 - 6061-T6 Aluminum - Unnotched Fatigue Data 

 

Source: Author 
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The fatigue strength reduction factor 𝑘𝑓 is calculated using the volumetric approach 

to correct the S-N curve for the notched condition. Equations (121) and (122) following the 

local coordinate system in the numerical model as shown in Figure (28) can be written as: 

 𝑘𝑓𝑚𝑜𝑑𝑒𝑙
 =  

1

𝑦𝑒𝑓𝑓 𝜎𝑛𝑒𝑡
  ∫ 𝜎𝑥𝑥(𝑦)(1 − 𝑦𝜒)𝑑𝑥

𝑦𝑒𝑓𝑓

0

  (121) 

 𝜒𝑚𝑜𝑑𝑒𝑙  =  
1

𝜎𝑥𝑥(𝑦)
  
𝑑𝜎𝑥𝑥(𝑦)

𝑑𝑦
 (122) 

Figure 28 - Crack opening direction - Y 

 

Source: Author  

The crack opening stress is induced by the combined effect of a tensile and bending 

stress, a multilinear kinematic hardening plasticity model has been used to model the elastic-

plastic behavior based on the stress-strain curve presented in Figure (26). A tensile 

displacement of 0.25mm and a moment load of 100N.mm were applied to the free end of the 

specimen to induce yielding at the root of the notch. The two loading conditions types were 

defined to correlate to the unnotched fatigue test which is generated through tensile loading 

and during the vibration test the specimen primarily undergoes bending loads. 

A mesh independency study was carried out to properly capture the opening stress 

behavior near the notch tip. The determination of the mesh refinement was based not only 

on the stress value at the notch tip, but the behavior near the notch. The variation of the max 

stress at the notch root per the number of elements in the discretized finite element model is 

illustrated in Figure (29) for various mesh element sizes. 

Figures (29) and (30) present the crack opening stress variation near the notch where 

five different element sizes were evaluated, 1mm, 0.5mm, 0.25mm, 0.125mm and 0.1mm. A 
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significant numerical difference is observed with 1mm element size, 0.5mm and 0.25mm 

have approximate solution values at the notch root compared to the smaller element sizes, 

however, as the volumetric approach uses the relative stress gradient, the stress distribution 

near the notch is relevant.  

Figure 29 - Max stress at the notch root (y=0) per the number of elements in the finite 

element model 

 

Source: Author 

Figure 30 - Crack opening stress variation with the mesh element size refinement 

 

Source: Author 
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The stress solution for the element sizes 0.1mm and 0.125mm had an average 

variation of 0.1MPa from y=0 to y=1mm. After defining the size range where a minimum 

variation was expected the calculation time was also evaluated, as this choice would define 

the base model for the dynamic and fatigue analysis. The element size of 0.125mm has been 

selected based on the reduced computational time compared to the 0.1mm, the summary of 

the calculation time for the two elements sizes are shown in Table 2. 

Table 2 - Calculation time for the refined element size at the notch area 

Element Size (mm) Calculation time 

0.125 39 m 19s 

0.100 2h 56m 52s 

The model discretization with the mesh refinement at the vicinity of the notch to properly 

capture the stress gradient is illustrated in Figure (31).  The crack opening stress 𝜎𝑥𝑥(𝑦) as 

function of the crack opening distance is shown in Figure (32). 

Figure 31 - Numerical Model discretization – Mesh element size - 0.125mm 

 

Source: Author 
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Figure 32 - Crack opening stress distribution near the notch 

 

Source: Author 

A MATLAB routine was created to calculate the relative stress gradient 𝜒 , the effective 

distance 𝑦𝑒𝑓𝑓 is determined graphically at the inflection point of 𝜒 as per Figure (33). The 

fatigue strength reduction factor of 𝑘𝑓=1.14 was obtained from Eq. (121).  

Figure 33 - The elastic–plastic fatigue crack opening stress and relative stress distribution 

 

Source: Author 
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The plot of the raw fatigue unnotched data presented in Figure (27) considering the 

log number of stress as the independent variable and following the DNV-RP-C203 

engineering approach recommendation is shown in Figure (34) which illustrates the fit of the 

data for the percentile curves p=0.01 and p=0.99. The prediction interval (PI) has been 

defined as 97.7% for a mean confidence interval (CI) of 95%. Table 3 presents a summary 

of the statistical parameters that define the confidence interval curves as well as the 

percentiles curves for the defined prediction interval.  

Table 3 – Statistical parameters to define the percentile curves  

Parameter Description Value 

𝑛 Number of tested samples 13 

�̅� Mean log of stress  2.09 MPa 

𝑠𝑥𝑦 Standard error of predicted cycle 

value for each stress value in the 

regression  

0.285 

𝜇c Confidence interval 0.950 

𝜇𝑝 Prediction Interval 0.977 

𝜈 Degrees of freedom 11 

ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝐶𝐼|𝜈)  Student’s t critical value for the given 

confidence interval 

2.20 MPa 

ℎ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝛼𝑃𝐼|𝜈) Student’s t critical value for the given 

prediction interval 

2.69 MPa 
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Figure 34 - Unnotched fatigue raw data with 95% CI / 97.7% PI 

 

Source: Author 

As expected, the percentile curves create an envelope that contains of all data points 

from testing, this is a better representation of the variation which reflects directly in the 

component fatigue life.   

The fatigue strength reduction factor 𝑘𝑓 is then applied to the unnotched S-N percentile 

curves. The corrected P-S-N curves in a log-log scale are illustrated in Figure (35).  

It is noticeable the influence of the notch reducing the fatigue strength of the specimens 

that contain this type of geometric discontinuity. Due to time and economic constrains to 

generate fatigue data for all the different design possibilities, the presented method supports 

the identification of parameters that can affect the fatigue performance tailoring the decisions 

regarding testing scope.    

p=0.01 

p=0.99 

p=0.5 
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 Figure 35 - Corrected percentile S-N curves for 𝑘𝑓=1.14 

 

Source: Author 

The probabilistic damage is then determined using the corrected P-S-N curves for the 

notched specimen. 

The dynamic characterization of the structure was carried out by performing the modal 

analysis solving the natural frequencies and vibration modes of the structure. The boundary 

conditions were defined to emulate the fixation of the specimen in the shaker fixture. A fixed 

support was applied at the highlighted area in Figure (36). A shell model with the element 

formulation SHELL181 was used. 
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Figure 36 - Modal analysis boundary condition 

 

Source: Author 

Seven modes are found in the frequency range up to 500Hz, which is the upper limit 

of the vibration profiles, natural frequencies are shown in Table 4: 

Table 4 - Mode Shapes and Natural frequencies – AL 6061-T6 

Vibration Mode Natural Frequency (Hz) 

1 17.29 

2 85.49 

3 174.98 

4 203.73 

5 252.86 

6 440.11 

7 453.81 

Even though the upper frequency limit of the input vibration profile is 500Hz, the natural 

frequencies and modes for the FRFs were obtained considering a factor of two over the upper 

limit, thus 1000Hz.  
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The mode shapes are shown in Figure (37).  

Figure 37 - Notched specimen vibration modes 

 

Source: Author  

To properly define the transient response and obtain the FRFs, the damping must be 

defined, which is a very difficult parameter to obtain. When testing data is not available, a 

constant damping ratio is usually estimated based on previous experience with same or 

similar material or based on the information available in the literature. In this work the damping 

was modeled using the half power bandwidth method obtained from testing data, the results 

of a constant damping were also compared.  

The machining of tested specimens and fatigue testing were carried out at the 

Continental Brasil Ind. Automotiva in Guarulhos-SP testing facility, as shown in Figure (38). 
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Figure 38 - Hardware used to conduct the vibration test 

 

Source: Author 

A DSA-4K - GW Gearing & Watson Electronics Limited electrodynamic shaker and 

three Bruel & Kjær DeltaTron 4519-003 accelerometers were used to excite and measure the 

acceleration responses at the notches on the test specimens when the specimens were 

subjected to the second vibration profile (Step 2) with 6 𝑔𝑟𝑚𝑠 acceleration. 

Normally, the input PSD profiles are created based on accelerometers time histories 

which are then converted to the frequency domain in the format of a PSD. In this work, the 

PSD profiles were defined to create a broad band excitation with stress responses below the 

yield point of the AL 6061-T6 material. The two profiles were created to illustrate the fact that 

fatigue phenomenon is cumulative, therefore, the first profile was defined under the 

hypothesis that the acceleration levels and exposure time would not be enough to create a 

fatigue failure. The PSD profiles were applied to the computational model to validate the 

premises. 

The two acceleration spectrum densities applied during the test are shown in Figure 

(39). 
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Figure 39 - Step 1: 3.21𝑔𝑟𝑚𝑠 and Step 2: 6 𝑔𝑟𝑚𝑠 

 

Source: Author 

Due to an issue with one of the reading channels, the results of only two channels 

Input3 – Sample 1 and Input 4 – Sample 2 were available for analysis. The acceleration 

response spectrum densities (ASDs) of the two test specimens are shown in Figure (40). For 

each resonance peak the damping ratio ζ was calculated based on the quality factor Q using 

half power bandwidth method. The results of the damping ratios as function of frequency are 

illustrated in Figure (41). 
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Figure 40 - Acceleration Response spectrum - 6 𝑔𝑟𝑚𝑠 input 

 

Source: Author 

Figure 41 - Damping ratio ζ measured at the resonance peaks 

 

Source: Author 



 77 

Clearly, the damping ratio is not constant but varies with frequency, thus, the 

Rayleigh damping model was employed. The definition of model parameters 𝛼, 𝛽 , 𝑓1 and 𝑓2 

was not only based on the fit to experimental results but also to the verification of the response 

for that set of parameters through a series of random vibration simulations. The set of 

parameters obtained for the Rayleigh damping model are listed in Table 5.  

Table 5 – Rayleigh damping model parameters for data best fit 

Parameter Description Value 

𝑓1 Lower Frequency 125 Hz 

𝑓2 Upper Frequency 1000 Hz 

𝛼 Mass proportional coefficient 4.1888 

𝛽 Stiffness proportional coefficient 8.49e-7 

 ζ  Damping Ratio 0.003 

 

The fit of the damping ratio using Rayleigh’s model compared to damping ratio 

obtained from testing is shown in Figures (42).   

Figure 42 - Damping ratio fit to the measured data 
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Source: Author 

The simulated dynamic response using the Rayleigh’s damping model is compared to 

the physical testing result in Figure (43). 

Figure 43 - Acceleration response spectrum comparison between testing and simulation data 

 

Source: Author  

The simulated amplitudes are in good agreement with testing results for the first, fifth 

and seventh modes, a higher resonance amplitude is found at the second natural frequency 

in the numerical model. One hypothesis for the discrepancy could be related to the added 

mass of the accelerometer during the test, which could also be related to the shift in the 

natural frequency at the seventh mode. 

The defined Rayleigh damping parameters were applied to dynamic analysis of the 

structure in both time and frequency domains.  

 

 

 

1st Mode 

2nd Mode 

5th Mode 

7th Mode 
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3.1.1 TIME DOMAIN 

Two acceleration time histories were synthesized following the acceleration spectrum 

densities specifications. Following the process described in Figure (18), the PSD of the 

synthesized time histories are compared to the original PSDs to ensure the quality of the 

synthesis. As the time signal is generated from a normally distributed white noise, the 

normality of the time signal is verified. 

A tolerance range of +/-1.5 dB has been defined to evaluate the sampling parameters 

defined to synthesize the signal.  

A summary of the statistics of the synthesized signals is given in Table 6. The synthesized 

time signals are shown in Figures (44) and (46). A comparison of the synthesized time 

histories and the original PSD specifications are illustrated in Figures (45) and (47). One can 

also observe that the acceleration amplitude histograms follow a normal distribution, these 

results were expected as the signals were synthesized from a normally distributed white noise 

as described in section 2.7.  

Table 6 - Synthesized time histories statistics 

Parameter 3.21 𝑔𝑟𝑚𝑠PSD  6 𝑔𝑟𝑚𝑠PSD  

Time step 0.1907e-3 s 0.1907e-3 s 

Sample rate 5243 samples/s 5243 samples/s 

Overall accel rms 3.21𝑔𝑟𝑚𝑠 6𝑔𝑟𝑚𝑠 

Max/Min accel. amplitude 15.2 𝑔 / -13.6 𝑔 23.3 𝑔 / -23.9 𝑔 

Kurtosis 3.05 2.99 
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Figure 44 - Synthesized acceleration time history from the 3.21 𝑔𝑟𝑚𝑠 PSD 

 

Source: Author 

Figure 45 - Synthesized time signal PSD compared to original PSD spec from Step 1 

 

Source: Author 
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Figure 46 - Synthesized acceleration time history from the 6 𝑔𝑟𝑚𝑠 ASD 

 

Source: Author 

Figure 47 - Synthesized time signal PSD compared to original PSD spec from Step 2 

 

Source: Author 
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The synthesized acceleration time signals were applied as a transient base 

excitation to the notched specimen at the fixed support defined in the modal analysis, the 

Rayleigh damping was used. The time transient analysis is computationally expensive 

analysis as the stress response tensor is calculated for each time step (0.0001907s) which 

for the total signal length of 25s gives a total of 131,095 acceleration records. At the free 

surface the time transient stress tensor can be written as: 

𝜎𝑖𝑗(𝑡)  =  [𝜎𝑥𝑥(𝑡) 𝜎𝑦𝑦(𝑡) 𝜎𝑥𝑧(𝑡)] (123) 

Figures (48) and (49) illustrate the time transient stress response for the two 

synthesized acceleration excitations at the notch root shown in Figure (50).   

Figure 48 - Stress response measurement point 

 

Source: Author 
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Figure 49 - Transient stress response - 3.21𝑔𝑟𝑚𝑠 input 

 

Source: Author 

Figure 50 - Transient stress response - 6 𝑔𝑟𝑚𝑠 input 

 

Source: Author 



 84 

The stress response is predominantly uniaxial, 𝜎𝑥𝑥 is significantly higher than 𝜎𝑦𝑦 

and 𝜎𝑥𝑦. A summary of the minimum and maximum stress amplitudes is presented in Table 

7: 

Table 7 - Min / Max transient stress amplitudes 

Stress (MPa) 3.21 𝑔𝑟𝑚𝑠PSD  6 𝑔𝑟𝑚𝑠PSD  

𝜎𝑥𝑥𝑚𝑖𝑛
/ 𝜎𝑥𝑥𝑚𝑎𝑥

  -135.2 / 130.4 -277.6 / 272.0 

𝜎𝑦𝑦𝑚𝑖𝑛
/ 𝜎𝑦𝑦𝑚𝑎𝑥

  -5.6 / 5.4 -11.4 / 11.1 

𝜎𝑥𝑦𝑚𝑖𝑛
/ 𝜎𝑥𝑦𝑚𝑎𝑥

  -1.3 / 1.4 -2.4 / 2.5 

 

The number of cycles, given a defined stress range (or amplitude) can then be 

calculated using the rainflow cycle count algorithm. The component fatigue life can be 

predicted based on the linear cumulative damage estimated for a given S-N curve percentile. 

For the two vibration profiles applied in sequence, the damage, life and time to failure 

can be expressed by:  

𝐷𝑝𝑥 = (∑
𝑛𝑖

𝑁𝑖𝑝𝑥

𝑘

𝑖=1

 )

𝑆𝑡𝑒𝑝 1

+ (∑
𝑛𝑖

𝑁𝑖𝑝𝑥

𝑘

𝑖=1

 )

𝑆𝑡𝑒𝑝 2

 (124) 

𝐿𝑖𝑓𝑒 𝑝𝑥 = (
1

𝐷𝑝𝑥 
)

𝑆𝑡𝑒𝑝 1

+ (
1

𝐷𝑝𝑥 
)

𝑆𝑡𝑒𝑝 2

  (125) 

𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑝𝑥
= (𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . 𝐿𝑖𝑓𝑒 𝑝𝑥 )𝑆𝑡𝑒𝑝 1

+ (𝑇𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . 𝐿𝑖𝑓𝑒 𝑝𝑥 )𝑆𝑡𝑒𝑝 2
  (126) 
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3.1.2 FREQUENCY DOMAIN 

The frequency response functions (FRFs) and the dynamic response matrix [𝑄] are 

calculated from a unit acceleration harmonic base excitation. The dynamic response matrix 

is independent of PSD excitation and for the case being explored in this work, vibration in z-

axis direction only, [𝑄] can be written as a tensor: 

[𝑄]1𝑥6  =  [𝜎𝑥𝑥(𝑓) 𝜎𝑦𝑦(𝑓) 𝜎𝑧𝑧(𝑓) 𝜎𝑥𝑦(𝑓) 𝜎𝑦𝑧(𝑓) 𝜎𝑥𝑧(𝑓)] (127) 

At the free surface the dynamic matrix can be reduced to the stress tensor: 

[𝑄]1𝑥6  =  [𝜎𝑥𝑥(𝑓) 𝜎𝑦𝑦(𝑓) 𝜎𝑥𝑦(𝑓)] (128) 

Figures (51) illustrates the FRFs for the normal stresses 𝜎𝑥𝑥(𝑓) , 𝜎𝑦𝑦(𝑓)  and shear 

stress 𝜎𝑥𝑦(𝑓) measured at the notch root per Figure (48). 

Figure 51 - FRFs measured at the notch root for a 1g base harmonic excitation 

 

Source: Author 
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The FRFs show a predominantly axial stresses, with peak responses at the first and 

second modes. Shear stresses are significantly lower for the uniaxial excitation case. 

Furthermore, the response peaks up to 500Hz are observed at the modes 1, 2, 4 and 5. The 

vibration mode 3 in torsion is an antiresonance, thus not being evident on the FRF responses. 

The unit harmonic base acceleration allows the direct application of Equation (53) to 

obtain the stress response PSD for the given input acceleration spectrum in the Z-axis can 

be written as: 

 [𝐺]1𝑥6  = [𝑄]1𝑥6
𝑇
 [𝐴 ]1𝑥1[𝑄]1𝑥6 , (129) 

 [𝐴] 1𝑥1 = [𝑃𝑆𝐷𝑧] (130) 

  The critical plane method is used to combine the stress response PSD components, 

an embedded feature in Ansys - nCode was used to perform the stress combination. The 

resultant stress PSDs for the two input accelerations are shown in Figure (52).  

Figure 52 - Stress Response PSD for both input PSDs 

 

Source: Author 
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From the combined stress response PSD, number of cycles is then estimated based 

on the probability density function (Dirlik or Lallane), the input PSD exposure time and the 

expected number of positive peaks. The PSD has no time duration, as it is simply a 

representation of the frequency content and energy of the time signal, therefore, the total 

number of cycles must be scaled by the period that the structure is exposed to the vibration 

profile. Similarly, to the definition of the acceleration spectrum magnitudes, the time durations 

were defined to create a cumulative damage process in the first step not leading to failure, 

followed by a sufficient exposure time to the second profile leading to failure. The exposure 

time were defined as 7800s for the 3.21 𝑔𝑟𝑚𝑠PSD input and 2500s for the 6 𝑔𝑟𝑚𝑠PSD. The 

component fatigue life was estimated based on the linear cumulative damage calculated for 

the defined S-N curve percentiles.  
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4 RESULTS AND DISCUSSIONS 

4.1 TIME DOMAIN 

In the time domain, the number of cycles from the stress random response were 

obtained using the rainflow cycle count algorithm. The range-mean histogram of the number 

of cycles for each of the stress responses shown in Figures (53) and (54) considers only the 

data for 25s exposure. Thereafter, the number of cycles shown are scaled by a time factor to 

the match the number of cycles from testing for the damage calculation.  

Figure 53 - Range-Mean Rainflow cycle count histogram for 25s of 3.21 𝑔𝑟𝑚𝑠PSD input 

 

Source: Author 

Figure 54 - Range-Mean Rainflow cycle count histogram for 25s of 6 𝑔𝑟𝑚𝑠PSD input 

 

Source: Author 
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Another comprehensive representation of the rainflow data is through the so called 

From-To histogram illustrated in Figure (55) where the number of cycles is given by the 

colored bar chart (z-axis). In the From -To representation, From represents the stress level 

that the cycle originates from, whereas the To represents the stress level that the cycles 

finishes, the cycle counts represents the number of times that a particular From -To cycle 

occurs. In a tensile cycle there is a positive mean, the diagonal from lower left to upper right 

represents stress range close to zero line, thus not producing significant damage, conversely, 

the diagonal from upper left to lower right is the zero-mean line, it represents the most 

damaging cycles due to their very large range. 

Figure 55 - From-To rainflow cycle histogram (a) 25s of 3.21 𝑔𝑟𝑚𝑠PSD input and (b) 25s of  

 6 𝑔𝑟𝑚𝑠PSD input 

 

Source: Author 

The total number of cycles for a given stress amplitude (or range) is given by the 

number of cycles Rainflow cycle counted multiplied by a time factor 𝑘1 as: 

 𝑛𝑖  𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑖  25𝑠  ∙  𝑘1  (131) 

𝑘1 is defined as: 

 𝑘1  =  
𝑡𝑟𝑎𝑛𝑑𝑜𝑚

𝑡𝑠𝑦𝑛𝑡ℎ
 ,  (132) 
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where 𝑡𝑟𝑎𝑛𝑑𝑜𝑚 is total time that the component is subjected to the random vibration profile 

and 𝑡𝑠𝑦𝑛𝑡ℎ the total time where signal was synthesized. A summary of the scale factors applied 

to the rainflow cycles is shown in Table 8. 

Table 8 – Time scale factor 

Vibration Profile 𝑡𝑟𝑎𝑛𝑑𝑜𝑚 𝑡𝑠𝑦𝑛𝑡ℎ 𝑘1 

3.21 𝑔𝑟𝑚𝑠PSD 7800 25 312 

6 𝑔𝑟𝑚𝑠PSD 2500 25 100 

  

The total number of cycles per stress amplitude for each input excitation is shown in 

Figure (56).   

Figure 56 - Total number of cycles for the two vibration profiles 

 

Source: Author 

The life is given in terms of repeats of the vibration profile, the TTF has units of time 

because is relative to the duration that the component is subjected to the vibration profile. In 

step 1 a life greater than one represents that the component is likely to complete the test and 
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no failures (NF) are expected for the given test duration, therefore the TTF is shown as 

“NF”. In column “Total”, when a failure occurs, the correspondent “NF” cell is replaced by the 

test duration for TTF estimation. A cumulative damage greater than one, represents the 

component is not able to withstand one repeat of the vibration profile.  

Values of damage greater than one and life smaller than one are highlighted in red. 

The linear cumulative damage is then calculated for the S-N percentiles p=0.01, p=0.5 and 

p=0.99, the summary of the cumulative damage, life and time to failure (TTF) are presented 

in Table 9. 

Table 9 – Cumulative damage, life and time to failure 

 Step 1 - 3.21 𝑔𝑟𝑚𝑠  Step 2 - 6𝑔𝑟𝑚𝑠   Total 

S-N  p=0.01 p=0.5  p=0.99  p=0.01  p=0.5  p=0.99  p=0.01 p=0.5 p=0.99 

Damage 0.057 0.009 0.002 7.15 1.34 0.14 7.21 1.35 0.14 

Life (repeats) 17.4 109.7 728.1 0.13 0.74 6.90 0.14 0.74 6.84 

TTF (s) NF NF NF 329 1847 NF 8129 9647 NF 

 

Failure was predicted using the time domain during second vibration profile (step 2) 

for the S-N percentiles p=0.01 and p=0.5, no failure is expected for the specimens with fatigue 

properties at p=0.99. In fact, p=0.99 does not predict a failure until 6.84 repeats of the 6 𝑔𝑟𝑚𝑠 

vibration profile. 
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4.2 FREQUENCY DOMAIN 

In the frequency domain, the number of cycles was estimated from the duration of the 

input PSD, the probability density function and the number of positive peaks per second which 

were derived from combined stress response PSD. The PDF models of Dirlik and Lallane 

were used to estimate the component fatigue life, the results from both models were then 

compared to the results in the time domain and test results. 

The spectral moments were then computed from the response stress PSD, the number 

of positive peaks, upward zero crossings per second, central frequency, irregularity factor 

and standard deviation are summarized in Table 10. 

Table 10 – Spectral moments and properties of the Stress Response PSD 

Parameter Description Value 

𝑚0 0th spectral moment 4574 

𝑚1 1st spectral moment 3.51e5 

𝑚2 2nd spectral moment 3.35e7 

𝑚4 4th spectral moment 6.2e11 

E[0]  Upward zero crossings per second 85.6 

E[P]  Peaks per second 136.1 

𝛾  Irregularity factor 0.629 

𝑓𝑚𝑒𝑎𝑛  Mean frequency 0.56 

 

A comparison of the probability density functions modeled using Dirlik’s and Lallane’s 

formulation for the 3.21𝑔𝑟𝑚𝑠 and 6𝑔𝑟𝑚𝑠 inputs per stress amplitude are shown in Figure (57).  

The correspondent number of cycles are shown in Figure (58), a comparison of the 

two probability density functions with the results from the rainflow cycle counts in the time 

domain is shown in Figure (59) for the 3.21𝑔𝑟𝑚𝑠 and in Figure (60) for the 6𝑔𝑟𝑚𝑠. 
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Figure 57 - Lallane's and Dirlik's PDFs 

 

Source: Author 

Figure 58 - Lallane’s and Dirlik’s number of cycles for each input acceleration 

 

Source: Author 
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Figure 59 - Lallane’s, Dirlik’s and Rainflow number of cycles - 3.21𝑔𝑟𝑚𝑠 input 

 

Source: Author  

Figure 60 - Lallane’s, Dirlik’s and Rainflow number of cycles - 6𝑔𝑟𝑚𝑠 input 

 

Source: Author 
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Figures (57) and (58) show the different stress amplitude areas excited by the 

different input vibration profiles, the difference between the two models are evident at lower 

stress amplitudes, which are less of concern, compared to the more damaging high amplitude 

cycles given the observation of the behavior of the S-N curve. Both models agree at the high 

amplitude stresses. The comparison with the number of cycles from the time domain time 

history rainflow cycle counts in Figures (60) and (61) show good agreement between the 

cycles counts obtained from both time and frequency domains. Lallane’s PDF creates an 

envelope capturing the peaks of determined stress levels, except at lower stress amplitudes. 

Dirlik’s PDF, however, models an average curve in which the rainflow curve fluctuates around 

it, good agreement is obtained at low stress amplitudes. Figure (60) also shows an 

augmented detail of the of the number of cycles for stress amplitude over 150MPa.  

In general, despite the evident difference at low stress amplitudes, which is not the 

critical region for the fatigue assessment, the number of cycles obtained by both frequency 

domain methods are in good agreement with the results from the rainflow cycles count from 

the stress time history, specially at the high damaging cycles. 

From the number of cycles calculated at each probabilistic model, the damage, life and 

time to failure (TTF) can be estimated for a given S-N percentile curve. The results of the 

predicted number of cycles using Lallane’s and Dirlik’s formulation are shown in Tables 11 

and 12 respectively. 

Table 11 – Cumulative damage, life and time to failure - Lallane 

 Step 1 - 3.21 𝑔𝑟𝑚𝑠  Step 2 - 6𝑔𝑟𝑚𝑠   Total 

S-N  p=0.01 p=0.5  p=0.99  p=0.01  p=0.5  p=0.99  p=0.01 p=0.5 p=0.99 

Damage 0.10 0.02 0.003 7.28 1.34 0.15 7.38 1.36 0.15 

Life (repeats) 9.3 57.6 369.2 0.12 0.73 6.69 0.13 0.73 6.59 

TTF (s) NF NF NF 306 1821 NF 8106 9621 NF 

 

 

 

 



 96 

The damage plot at the notch area for p=0.5 is illustrated in Figure (61).  

Figure 61 - Damage contour at notch area - Lallane 6𝑔𝑟𝑚𝑠 input (p=0.5) 

 

Source: Author 

Table 12 - Cumulative damage, life and time to failure - Dirlik 

 Step 1 - 3.21 𝑔𝑟𝑚𝑠 Step 2 - 6𝑔𝑟𝑚𝑠 Total 

S-N p=0.01 p=0.5 p=0.99 p=0.01 p=0.5 p=0.99 p=0.01 p=0.5 p=0.99 

Damage 0.09 0.015 0.002 6.53 1.21 0.13 6.62 1.35 0.14 

Life (repeats) 10.4 64.2 441.9 0.14 0.81 7.47 0.15 0.74 6.84 

TTF (s) NF NF NF 346 2035 NF 8146 9835 NF 

 

The damage plot at the notch area for p=0.5 is illustrated in Figure (62).  
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Figure 62 - Damage contour at notch area - Dirlik 6𝑔𝑟𝑚𝑠 input (p=0.5) 

 

Source: Author 

The contour plot shown in Figures (61) and (62) illustrates the areas of the part that 

are likely to initiate a crack.  

For all percentile curves considered, step 1 loading does not create significant damage 

into the component, therefore, for the time duration defined, no failures are expected.  

The step 2 loading, however, create fatigue damage at the notch which is higher than 

the threshold criteria of one for the percentile curves 0.01 and 0.5 using both Lallane and 

Dirlik models. The failure is not predicted if the fatigue properties of the specimen are within 

the 0.99 percentile.  

The results presented in Tables 11 and 12 are important because the scatter in the 

fatigue properties could lead to results in testing which not necessarily correlating with the 

estimations if only the p = 0.5 is used.  The large difference of the expected damage between 

the different percentiles also indicates the sensitivity of the studied notched specimen design 

for the vibration profile requirement in step 2. 

 Observing the total damage results for p = 0.5, Lallane’s method was 10.52% more 

conservative than the Dirlik’s method under step 2 loading, the higher number of cycles 

predicted of the mid-range stress amplitude resulted in overall higher cumulative damage  
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4.3 TESTING RESULTS 

Due to characteristic of the test, the failure was defined when the complete fracture has 

occurred based on the assumption that takes most of the fatigue life to initiate the crack. The 

time to failure of each specimen in seconds is summarized in Table 13. 

The samples are identified as follows: 

• Sample 1 – “Input 3” 

• Sample 2 – “Input 4” 

• Sample 3 – “Input 5” 

Table 13 – Testing time to failure summary 

 Step 1 – 3.21 𝑔𝑟𝑚𝑠 Step 2 – 6 𝑔𝑟𝑚𝑠  

Specimen Exposure time (s)  Exposure time (s) Total time to failure (s) 

Sample 1  7800 (No failure) 1772 (Failure) 9572 

Sample 2  7800 (No failure) 2324 (Failure) 10124 

Sample 3 7800 (No failure) 1534 (Failure) 9334 

 

Using a weibul distribution, the statistics of the mean time to failure (MTTF) based on 

the testing data is shown in Table 14.  

Table 14 – Testing results statistics – Mean time to failure (MTTF) 

   CI 95% 

 Estimate (s) Standard Deviation (s) Lower (s) Upper (s) 

MTTF  9667 228.5 9230 10126 
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Figure 63 - Weibull distribution fit of the testing data 

 

Source: Author 

The three specimens failed at notch closest to the fixation point on the shaker table, 

the location of the failure correlates to the location predicted in the analytical models. 

One of the difficulties encountered during the test was the determination of crack 

initiation, given the random and rapid displacement of the samples during the test. Failure 

was defined when the complete fracture was reached. 

Nonetheless, the analysis of the failed specimens, showed that the cracks have 

developed from the surface of the specimens towards the bending plane through the 

thickness before the fast fracture. 

To reduce the error in the determination of the time to failure, the test was video 

recorded and multiple observations of the final fracture of each specimen were made and 

finally compiled on Table 13. 

The crack location for all the three specimens is illustrated in Figure (64). 

A close-up picture of the fracture face of each specimen is shown in Figures (65), (66) 

and (67). 
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Figure 64 – Crack Location 

 

Source: Author 

Figure 65 - Sample 1 fracture detail 

 

Source: Author  
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Figure 66 - Sample 2 fracture detail 

 

Source: Author 

Figure 67 - Sample 3 fracture detail 

 

Source: Author 
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4.4 DISCUSSIONS 

The upper limit of the S-N curve which correspond to p=0.99, is non conservative for 

fatigue predictions, therefore, it is not recommended to be used for design purposes, the 

discussion in this chapter is then focused on the results from p=0.01 and p=0.5. Furthermore, 

as the damage predicted during the step 1 could be neglected, to avoid skewing the results, 

7800s is subtracted from the total time to failure. Table 15 summarizes the time to failure for 

the different models and S-N percentile curves for step 2 results only, a comparison with the 

testing mean time to failure as a percentage error is presented. 

Table 15 – Summary of total time to failure – Step 2 – 6 𝑔𝑟𝑚𝑠 only 

 Total time to failure (s)  Error % (
𝑁𝑚𝑜𝑑𝑒𝑙

𝑁𝑒𝑥𝑝
− 1)   

S-N  p=0.01 p=0.5  p=0.01  p=0.5  

Test data 1877 Baseline 

Time Domain 329 1847 -82.5 -1.6 

Lallane 306 1821 -83.7 -3.0 

Dirlik 346 2035 -81.6 +8.4 

 

As one can see, the results shown in Table 15 show good agreement between testing 

and analytical results, when the mean time to failure from the test results is compared to the 

results using the percentile 0.5 of the S-N curve in both time and frequency domains. The 

predictions using p=0.01 S-N are conservative in all cases as one would expect. 

In the time domain the maximum stress amplitude was found to be 258MPa, as the   

S-N approach was used, the validity of the models in the frequency domain was defined to 

be the yield stress of the 6061-T6 aluminum (𝜎𝑦 = 266MPa).  

The total number of cycles for the different random amplitudes from the different 

models are shown in Table 16.   
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Table 16 – Total number of cycles 

 Step 1 – 3.21 𝑔𝑟𝑚𝑠 Step 2 – 6 𝑔𝑟𝑚𝑠 Grand Total 

Time Domain  1,052,688 358,400 1,411,088 

Lallane  851,090 272,665 1,123,755 

Dirlik 978,058 313,528 1,291,586 

 

The number of cycles when observed from the perspective of Figures (59) and (60) 

reiterates the cumulative nature of the fatigue damage, however, the observation of data 

shows that for the load case step 2 in the time domain, stresses below 0.85 𝜎𝑦 contributed to 

99.72% of the number cycles but to only 50.2% of the overall damage. In the frequency 

domain Lallane and Dirlik presented similar percentage of the number of cycles, but with 

slightly over 67% contribution to the overall damage. 

In a random phenomenon the tail of the distributions shown in Figures (59) and (60) 

are critical for the fatigue prediction, as the damage increases significantly at these stress 

levels. A comparison of the damage as function of the stress amplitude for the p=0.5 S-N 

curve is shown in Figure (68) and (69). The cumulative damage is shown is Figure (70). 

Figure 68 - Damage as function of stress amplitude (p=0.5) - 3.21𝑔𝑟𝑚𝑠 input 

 

Source: Author 
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Figure 69 - Damage as function of stress amplitude (p=0.5) - 6𝑔𝑟𝑚𝑠 input 

 

Source: Author 

Figure 70 - Cumulative Damage as function of stress amplitude (p=0.5) 

 

Source: Author  
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Despite the well-known limitations of the linear cumulative damage, the proper 

dynamic characterization of the structure via a representative damping modeling and the 

consideration of geometrical factors which affects the fatigue behavior were found in this work 

to significantly influence the fatigue life prediction under random vibration environment. 

Considering the advantages in computational time of the frequency domain, the 

contribution of each factor in the fatigue life prediction was evaluated using the input 6𝑔𝑟𝑚𝑠 

input PSD with a 2500s duration and Lallane’s method.  

The baseline for comparison was defined based on the results from step 2 in Table 

11. The time to failure for the 6𝑔𝑟𝑚𝑠 input PSD considering constant damping ratio and 

unnotched S-N curve are shown in Table 17. 

Table 17 –Time to failure estimation - 6𝑔𝑟𝑚𝑠 input PSD – Modeling Factors 

 Rayleigh damping 

𝑘𝑓=1.14 (p=0.5) 

Damp. Ratio ζ = 1% 

Unnotched S-N curve 

Damping Ratio ζ = 1% 

𝑘𝑓=1.14 (p=0.5) 

Damage 1.34 0.4 1.27 

Life (repeats) 0.73 2.5 0.79 

TTF (s) 1,821 6,250 1,969 

TTF Error (%)  Baseline 243 8.1 

 

The modeling of the notch effect on the fatigue strength reduction has reduced the 

estimated time to failure in 68.5%. The Rayleigh damping contributed to additional 7.52% 

reduction in the predicted time to failure. Considering fatigue strength reduction correction 

and constant damping ratio, the TTF is 8.1% higher than the predicted in the time domain, 

resulting in a non-conservative prediction. 

 There are various sources of variation when modeling fatigue in a random 

environment, however, using the linear cumulative damage with p=0.5 produced results in 

good agreement with testing, after the appropriate characterization of the effect of the notch 

and modeling of the damping. Another fact that contributed for the good agreement of the 

predictions, is the primarily uniaxial behavior of the stress tensor, which approximates the 

material response to the one obtained in the standard S-N test.   
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5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

In this work the fatigue life of a notched component subjected to random vibration was 

estimated using the frequency domain alongside with the statistical modeling of the material 

S-N fatigue curves. 

The fatigue life estimation based on the well-known time domain was used as the 

benchmark solution. The fatigue strength reduction in the presence of a notch was estimated 

based on the volumetric approach. The proper correction of the base S-N curve (p=0.5) had 

an influence in the fatigue life estimation of approximately 69%, thereafter, including the 

effects of geometric discontinuities is critical to the accuracy of the prediction. 

The probabilistic modeling of S-N curves aimed the model of the inherent scatter 

observed in the fatigue testing data. If the material behavior can be modelled using Basquin’s 

relation, the ordinary least square method can be used to determine the percentile curves. 

For materials that exhibit strong curvature caused by the fatigue limit, the Random Fatigue 

Limit model is recommended. 

The observation of the harmonic excitation response from the physical testing of the 

AL 6061-T6 specimen showed a frequency dependency of the damping ratio. Based on the 

testing results a Rayleigh damping model was used improving the accuracy of the dynamic 

response of the structure in the simulation model. The fatigue life using Rayleigh damping 

compared to a constant damping ratio produced results approximately 8% more conservative. 

Based on Palmgreen-Miner’s rule, the probabilistic linear cumulative damage was 

proposed to account for the damage at specific S-N percentile. In the probabilistic approach 

not only the commonly used percentile 50% (p=0.5) is used to calculate the fatigue life, but 

also any other quantile, resulting in a range of fatigue life rather than one unique value.  

Between the two methods that have been used for the cycles count in the frequency 

domain, Lallane’s method presented 10.5% more conservative results than the Dirlik’s 

method. Both methods are in good agreement with the results obtained from the time domain. 

Once the main modeling parameters were refined, the fatigue life prediction from the 

frequency domain were in good agreement with both time domain and average physical 

testing TTF for the percentile 0.5.  

Even though the fatigue life estimations using the percentile 0.99 are non-

conservatives and are not recommended to be used for design purposes, the visualization of 
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the envelope created over the data alongside with the range of life predictions could be 

used in the evaluation and determination of safety factor as well as interpretation of physical 

testing results. 

Finally, for the notched specimen model presented in this work, the total calculation 

time to solve the model in the time domain was 42 hours, in comparison to 2.5 hours in the 

frequency domain, this great advantage in terms of computational time allows the application 

of the frequency domain method to solve much larger and complex problems using finite 

element analysis, thus, efforts to improve its accuracy are worthwhile.  

A suggestion for future work would be to explore the application of the probabilistic 

linear cumulative damage using Random Fatigue Limit Model for the high cycle fatigue 

problems. 

Another area for improvement is to investigate the application of the volumetric 

approach to create corrected fatigue curves for stress concentration design features in 

complex geometries. 

Moreover, the expansion of the frequency domain methods to include the mean 

loading could be studied.  
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APPENDIX A – MATLAB ROUTINE 

This appendix presents the implementation of a MATLAB routine to calculate the 

fatigue strength reduction factor 𝑘𝑓 based on the volumetric approach discussed in section 

2.3. 

 

% Fatigue Strength Reduction Factor - Volumetric Approach 
% By Vagner Pascualinotto Junior,  v1.0 - Feb, 2021 
% vagnerpj@gmail.com 
clc 
clear all 
disp(' Select file input       '); 
disp('   1=external ASCII file        '); 
file_choice = input(''); 
% 

if(file_choice==1) 
     [filename, pathname] = uigetfile('*.*'); 
     filename = fullfile(pathname, filename); 
     fid = fopen(filename,'r'); 
     SCANFILE = fscanf(fid,'%g %g',[2 inf]); 
     SCANFILE=SCANFILE'; 

end 

  
size(SCANFILE); 
x=SCANFILE(:,1); 
y=SCANFILE(:,2); 

  
Fx=gradient(x) 
Fy=gradient(y) 

  
dFy=gradient(y,x) 
Qsi=(1/(max(y)))*dFy 
Qsi1=abs(Qsi) 

  
index = find(Qsi==min(Qsi)) 
xeff=x(index) 
SigmaN=mean(y) 

  
for i=1:index 

     Integral(i)=y(i)*(1-(x(i)*Qsi1(i)))*Fx(i) 
end 

  
cintegral = cumtrapz(Integral) 
cintegral=cintegral' 
Intergral=Integral' 
Sigmaeff=(1/(xeff))*cintegral 

  
kf0=Sigmaeff/SigmaN 

  
kf=(1/(xeff*SigmaN))*cintegral 

  
semilogx(x,y) 
grid on 
yyaxis right, 
semilogx(x,Qsi) 
grid on   

 


