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También me gustarı́a agradecer al Prof. Francisco Huera-Huarte por darme la

bienvenida a su grupo de investigación en la URV y al compañero de laboratorio Javier.
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RESUMO

O fenômeno de Vibração Auto-Induzida por Vórtices (VSIV) ainda é pouco explo-
rado nos projetos de risers em catenária na exploração de hidrocarbonetos em águas
profundas e ultra-profundas. O VSIV é causado pelo movimento imposto ao riser pela
unidade flutuante, que é sujeita à ação de ondas de gravidade, induzindo vibrações no
plano da catenária e assim liberando vórtices que provocam movimento oscilatório em
direção a ele perpendicular. Estudos fundamentais com cilindros rı́gidos, montados
em base elástica em uma direção e forçados a se movimentar na direção a ela perpen-
dicular, desvelam uma fenomenologia rica e complexa, mostrando diversos padrões de
sincronização e picos de resposta em função da amplitude e frequência do movimento
imposto. Contrário ao fenômeno observado em cilindros rı́gidos, o caso em catenária
não apresenta uma clara relação de causalidade, e os movimentos no plano e fora
deste são respostas daquela excitação primária. Além disto, cilindros flexı́veis as-
sumem respostas multimodais, dificultando a compreensão fenomenológica do VSIV.
Utilizando um modelo em escala reduzida de “riser” em catenária, deslocamentos me-
didos oticamente ao longo da linha foram utlizados em um processo de decomposição
de Galerkin, levando à obtenção de séries modais de movimento do modelo sujeito
ao VSIV. A partir da consideração de causalidade entre a resposta de vibração do
plano e fora deste, foi possı́vel obter um Modelo de Ordem Reduzida (MOR) contendo
um número finito de modos. Além disto, os grupos adimensionais tipicamente utiliza-
dos em análise de VSIV foram reinterpretados na forma de parâmetros equivalentes
modais dos quais se percebeu a necessidade de se substituir a velocidade reduzida
pela relação entre a frequência dominante do movimento no plano e a frequência
natural de cada modo analisado, em seu movimento fora deste plano. Finalmente,
adotando-se uma hipótese de que o mecanismo responsável pelo movimento fora do
plano é causado pelo modo dominante no plano, foi possı́vel obter relações de simi-
laridade entre os resultados da dinâmica multimodal e os apresentados para o caso
do cilindro rı́gido.

Palavras-Chave – Dinâmica das Estruturas; Tubos Flexı́veis; Vórtices em Fluidos;
Interação Fluido-Estrutura; Análise Modal.
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ABSTRACT

The phenomenon of Vortex Self-Induced Vibration (VSIV) is still little explored in
the design and analysis of catenary risers used in the production of hydrocarbons in
deep and ultra-deep waters. The VSIV is driven by the movement imposed to the top
extremity due to the vessels oscillations caused by the action of gravity waves, inducing
vibrations in the catenary plane and, therefore, shedding vortices which provoke oscil-
latory motions perpendicular to this plane. Fundamental studies with rigid cylinders,
mounted on an elastic apparatus and forced to oscillate in the direction perpendicular
to the springs, reveal a rich and complex phenomenology, showing diverse patterns
of synchronization and amplitude peaks as function of amplitude and frequency of the
imposed motion. Contrary to the case in rigid cylinders, the phenomenon in cate-
nary models is not characterized by a clear causality relation, since the only imposed
movement is at the upper-extremity and the movements in-plane and out-of-plane are
both responses to that excitation. In addition, flexible cylinders assume multimodal
responses, making the phenomenological understanding of the VSIV difficult. Using
a small-scale model of a catenary riser, displacements optically measured along the
line were used in a Galerkin’s decomposition process to obtain modal motion series
of the model subjected to VSIV. Considering a causality relation between the in-plane
and out-of-plane vibration responses, it was possible to obtain a Reduced Order Model
(MOR) decomposed into a finite number of modes. In addition, the dimensionless
groups typically used in VSIV analysis were reinterpreted, leading to the proposition of
a set of equivalent modal parameters. Then, it was observed that a redefinition of the
reduced velocity parameter should me made, replacing it with the ratio between the
in-plane mode measured dominant frequency with the out-of-plane natural frequency
of the mode under analysis. Finally, a hypothesis was adopted that the driving mecha-
nism responsible for the out-of-plane movement was caused by the dominant mode in
the plane, making it possible to obtain similarity relations between the the VSIV multi-
modal dynamic results and those from the rigid cylinder case.

Keywords – Structural Dynamics; Flexible Pipes; Fluid Vortex; Fluid-Structure Interac-
tion; Modal Analysis.
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êx, êy, êz
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PREFACE

The Laboratory of Offshore Mechanics (LMO) is a large group composed by a few re-

search groups, among them the Fluid-Structure Laboratory, originally named LIFE&MO

(Laboratório de Interação Fluido-Estrutura e Mecânica Offshore). The LIFE&MO has

dedicated its lifetime to study fluid-structure interaction phenomena and many other as-

pects of offshore mechanics since 1990, such as: structural mechanics of risers, pipes

and mooring lines, dynamic positioning of floating ocean systems, non-linear dynamics

and hydrodynamics.

The LIFE&MO main research field has been Offshore Engineering, mainly spon-

sored by Prysmian, Petrobras, the São Paulo Research Foundation (FAPESP), the

National Council for Scientific and Technological Development (CNPq), the Coordina-

tion for the Improvement of Higher Education Personnel (CAPES) and the Brazilian

Innovation Agency (FINEP). Some pioneer works developed by the LMO group are,

among others:

• The Steel Catenary Riser (SRC) pioneer design that was installed in the Petro-

bras semi-submersible platform P18 (PESCE et al., 1994);

• Th methodology used for designing SCRs (PESCE; ARANHA; MARTINS, 1996);

• Analytical treatment of riser dynamics (PESCE, 1997; ARANHA; MARTINS;

PESCE, 1997; PESCE; FUJARRA, 1997; FUJARRA, 1997; PESCE et al., 1998,

1999; RAMOS; PESCE, 2003; PESCE; FUJARRA; KUBOTA, 2006; SILVEIRA

et al., 2007).

Concerning experimental activities, LMO and LIFE&MO were pioneers in using

some new sensoring methods and acquisition systems as to measure Vortex-Induced

Vibration (VIV) acting on flexible cylinders and riser models since 1997.

For instance, some of these methods and systems use accelerometry and con-

ventional extensometers installed and distributed along the cylinder span (FUJARRA,

1997; FUJARRA; PESCE; PARRA, 1998; PESCE; FUJARRA, 2000; FUJARRA et al.,

2001; FUJARRA, 2002).

The Laboratory of Offshore Mechanics carried out many experimental campaigns

using small-scale models in several prestigious facilities, such as: the Institute for
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Technological Research (IPT), Michigan University and Cornell University. The dis-

tributed extensometry method was considered pioneer by the international commu-

nity (PESCE; FUJARRA, 2000; FUJARRA et al., 2001; WILLIAMSON; GOVARDHAN,

2004).

These sensoring methods are still present in recent studies carried out at LMO,

e.g. Franzini et al. (2008, 2009, 2011), and other research groups (MOROOKA et al.,

2009). Later, the use of high speed optical tracking targets techniques were employed

in order to measure spatial displacement series with minimal interference (RATEIRO

et al., 2013; FRANZINI et al., 2016a; FRANZINI et al., 2016c; PESCE et al., 2017;

SALLES; PESCE, 2019).

Leading and always innovating, LMO also introduced the use of Hilbert-Huang

Transform (HHT) as to analyze VIV (PESCE; FUJARRA; KUBOTA, 2006; SILVEIRA et

al., 2007; FRANZINI et al., 2008, 2010, 2011). The HHT allows the realization of time-

frequency spectral analysis for extremely non-ergodic signals, specially the ones that

exhibit instantaneous variation on frequency; thus, showing to be essential in state-of-

the-art analyses executed with offshore platforms subjected to Vortex-Induced Motion

(VIM) (GONÇALVES et al., 2012b).

More recently, the R&D project entitled “Non-Linear Dynamics of Risers: non-linear

interactions of hydro-elastic and contact nature (NLDR)”1 was commissioned to the

Universidade de São Paulo (USP) by Petrobras in late 2009, under the Offshore Struc-

tures Thematic Network. Its scope was based on four complementary activities, as

follows:

• Mathematical modeling of risers dynamics with reduction techniques, using non-

linear modes representation;

• Parametric excitation and internal resonant responses, arising from dynamical

interaction in several time and space scales, such as heave imposed movement,

VIV, or both;

• Analysis of typical cases, focusing on non-linear dynamics of risers;

• Design methodology and experimental tests with riser small-scale model.

It is noteworthy that the Non-Linear Dynamics of Risers (NLDR) project assisted

1The original title (in Portuguese): “Dinâmica não-linear de Risers: Interações não-lineares de na-
tureza hidro-elástica e de contato”.
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LIFE&MO to advance in the state-of-the-art analysis of VIV and riser dynamics, im-

proving technical and scientific topics related to theoretical models, and modeling and

monitoring techniques.

Additionally, a multitude of experiments carried out with small-scale riser models

were possible due to the NLDR project scope, which comprised topics as:

• Small-scale modeling and monitoring techniques:

– Development of new methodology for designing small-scale riser models,

using a silicon hose filled with stailess stell micro spheres, keeping some

degree of similitude with an operational riser (LIFE&MO, 2012b; RATEIRO

et al., 2012);

– Use of high speed optical tracking cameras as to measure spatial displace-

ments with minimal interference carried out at several facilities, e.g. Water

Channel of the Fluid & Dynamics Research Group (NDF), Hydrodynamic

Calibrator of the Numerical Offshore Tank (TPN) and Towing Tank (IPT)

(LIFE&MO, 2012a,b; GONÇALVES et al., 2012a; FRANZINI et al., 2013;

RATEIRO et al., 2013).

• Experimental analysis techniques:

– Consolidation of diverse analysis methodology, combining different ap-

proaches, such as: statistical methods, spectrum and time-domain analyses

(LIFE&MO, 2012c,d);

– Time-frequency spectrum analysis using the HHT (LIFE&MO, 2012b;

GONÇALVES et al., 2012a; FRANZINI et al., 2013; RATEIRO et al., 2013;

FRANZINI et al., 2015, 2016b);

– Modal decomposition methods applied to Flow Induced Vibration (FIV) phe-

nomena (LIFE&MO, 2012d; FRANZINI et al., 2014).

Particularly, the nonlinear dynamics of risers project produced a huge experimental

database that is further detailed in LIFE&MO (2011a,b,c,d,e, 2012a,b,c,d). Finally,

quoting the preface of LIFE&MO (2012d):
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The specific results obtained [and reported in the technical re-

ports LIFE&MO (2012c,d)] [...] are unique, since they came from

thorough planning and experimental tests that were conducted

systematically with a great degree of comprehensiveness and

completeness.

The reader will be able to verify that the huge experimental data

base [...] will serve not only to technical and scientific insights

of experimental nature, but also primarily to the verification of

different models, turning it possible to be an important source

for benchmarking with consequent impact assessments on risers

design methodology. (LIFE&MO (2012d), p. 12, own translation.)

The provided experimental database made it possible the present work realization.

It is hoped that more works could come to fruition from such an amazing source.
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1 INTRODUCTION

Vlc.

Kb.      
 

   
  



Poco	Adagio
pizz.

MAHLER, G., Symphony no. 8, Part II: Schlußszene aus

Goethes Faust (excerpt)

1.1 Motivation

Currently, the use of commodities as oil and gas is still intrinsically connected to

the world development, participating in industrial processes or in daily civilian activi-

ties, such as fossil fuel used in vehicles and heating source. Thus, the exploitation of

hydrocarbons in the marine environment was responsible for nearly 2.1 billions dollars

annual revenues in 20211.

Figure 1.1: Schematic configuration of typical offshore structures use to exploit and
store hydrocarbons.

Source: Extracted from Faltinsen (1993).

1According to IBISWorld.



2

In the XX century, the majority of risers employed in the oil and gas exploitation

were rigid and the use of such structure was possible due to their prospecting in shal-

low waters basins; see the first and second examples in Figure 1.1. Additionally, a

vast amount of oil and gas could be exploited onshore, specially in the Middle East,

providing the commodity at low price.

Notwithstanding, the historical events that occurred in the last century, e.g. the Gulf

War, showed that, in order to maintain the progressing zeitgeist, it was necessary to

find new markets from where the commodity could be obtained.

The discovery of hydrocarbons basins in deep and ultra-deep waters changed how

the offshore industry should approach the designing and projecting methodologies,

taking into consideration new solutions, such as the Highly Compliant Rigid (HCR)

riser and the flexible Steel Catenary Riser (SCR); see Figures 1.1-1.2.

Figure 1.2: Different risers configurations used in deep-waters exploitation and drilling
process.

Source: Extracted from 4subsea - Flexible Pipeline Engineering. All rights reserved.

Although rigid risers in shallow water also experience fluid-structure interaction

phenomena, the dynamics observed in flexible marine structure due to Fluid Induced

Vibration (FIV) is highly nonlinear and assorted; see Figure 1.3.

The nonlinearities arise from a multitude of sources, such as: incident current;

imposed motion in the marine platforms or Floating Production Storage Offloading

(FPSO) systems due to the incidence of gravitational waves; nonlinear contact in the
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Touch Down-Zone (TDZ) with the seabed; structural materials composition; internal

multi phase flow; amid others.

Figure 1.3: Some nonlinear phenomena acting on different risers and floating vessels.

Source: Extracted from Hoffman et al. (1991).

Such hydroelastic systems are so complex that it is difficult to fully comprehend and

predict its dynamics considering all possible phenomena to which it could be subjected

at once, not even by the current computational methods and hardware available.

Thus, the use of small-scale prototypes experimental results are more and more

necessary in order to calibrate prediction models that are tailor made for some real

case scenarios. The goal of the present work is to unveil some interesting behaviors

observed from the dynamics of a SCR small-scale model, considering just a snippet of

the real scenario in which there is the imposition of movement at the upper extremity

due to floating vessel oscillations.

1.2 Contextualization

The experimental data available for the present work was obtained during the “Non-

linear Dynamics of Risers” project sponsored by Petrobras which is presented in the

Preface. The project had a huge scope and experimental campaigns were carried out

in several facilities.

As to partially replicate the real structural dynamics in a laboratory facility, a testing

prototype was designed using scaling methods, typically used in experimental marine

applications regarding floating structures, in order to obtain a small-scale model that

could be as representative as possible to a real scale flexible riser.
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The small-scale prototype does not exhibit full similarity with the real scale riser;

however, there is some degree of similitude between them; see Appendix A. The ex-

perimental model is composed of a silicon hose filled with stainless steel micro spheres

and it is launched in still water from a fixed structure on top of a towing vehicle at the

IPT facility, located in São Paulo, Brazil.

Tests were carried out using the small-scale model and subjecting it to incident

flow, imposed movement at the top, or both concomitantly. The testing models were

arranged in-plane with the incident flow or perpendicular to it. Additionally, the incident

flow were imposed intrados or extrados with respect to the catenary plane.

The water depth was about 3.5m deep, considering the fake floor used to anchoring

the slender model. Due to the structural relative weight, a plane half catenary-like static

configuration was achieved successfully. The upper extremity, also known as the hang-

off point, was fixated in an actuator that could impose vertical movement at it.

The acquisition system was composed of high speed tracking target cameras and

a typical traction cell at the upper extremity. Special reflecting tape strips were placed

along the cylinder span in order to the tracking cameras measure the 3D Cartesian

instantaneous position of each monitored section.

The vertical movement could be harmonic, specified using an amplitude and ex-

citing frequency values, or it could even emulate a typical JONSWAP sea condition

spectrum. The present works deals only with the experimental arrangement in which

harmonic movement is imposed at the upper extremity.

Hence, the imposed vertical motion was used to experimentally simulate the ef-

fect due to gravitational waves in floating vessels where real scale flexible risers are

installed in order to exploit hydrocarbons, typically oil and gas, or inject substances,

such as water or carbon-dioxide, in oil wells.

The vertical plane motion acting on the plane catenary-like structure induces vor-

tex shedding that produces lift forces pointing in the out-of-plane direction. As a result,

the in-plane dynamics induced lateral motion through the structural span. This phe-

nomenum here named Vortex Self-Induced Vibration (VSIV), after Fernandes et al.

(2008).

Whereas it is not fully understood the VSIV role on the general fatigue life of a SCR,

lateral displacement at the Touch Down Zone (TDZ) can induce a snaking movement

at the seabed trenches where the structure rests. This motion could cause collapse
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of the trenches walls due to the excavation process induced by the lateral motion.

Consequently, the boundary condition change at the Touch Down Point (TDP) to a

cantilever-like one would have a great fatigue impact locally.

The phenomenum of out-of-plane movement due to in-plane harmonic oscillation in

a viscous fluid was already reported occurring in straight rigid cylinders models (SARP-

KAYA, 1976, 1986; SUMER; FREDSØE, 1988). Sarpkaya and Rajabi (1979) reported

an early model to predict the transversal amplitude response of circular rigid cylinders

subjected to harmonic oscillations.

Sumer and Fredsøe (1988) presented a thorough study using a couple of rigid

cylinders mounted in an elastic structure free to vibrate in the plane orthogonal to the

forced harmonic oscillation movement. The results reported showed that the cross-

flow dynamics exhibits several amplitude peaks, depending on the forced movement

velocity, and the existence of a synchronicity between both movements.

The name Vortex Self-Induced Vibrations (VSIV) was firstly introduced in Fernan-

des et al. (2008) when early experimental data obtained in a real scale structure ap-

pend to Petrobras P18 platform evidenced lateral motions due to imposed movement

at the floating unit.

Later, Fernandes, Mirzaei Sefat, and Cascão (2014) also carried out experimental

studies using a rigid straight cylinder, finding more evidences on the kinematic and

dynamic characteristic responses exhibited by the structure.

Laboratory observations of flexible pipes subjected to VSIV can be find in Le Cunff,

Biolley, and Damy (2005), Rateiro et al. (2013), Wang et al. (2014), and Pesce et al.

(2017), to cite a few. These former references are also characterized by analyses in the

state of configuration, i.e. regarding the 3D Cartesian displacements of each monitored

section.

The multimodal vibrating intrinsic behavior of flexible structures oscillations poses

big challenges in the experimental analysis, limiting itself to some selected cases in

which a certain mode dominates the general structural dynamics.

The modal characterization would benefit the experimental analysis by spatially

filtering the structural motion, unveiling fewer Degrees of Freedom (DOF), i.e. the

vibrating eigenfunctions, in which the majority of the system energy is distributed. Thus,

the modal representation is also a form of obtaining Reduced Order Models (ROM) for

the hydroelastic system.
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Additionally, the coupled 3D hydroelastic responses are highly nonlinear, exhibiting

internal and parametric resonances. There is also a fundamental difference on the

kinematics of the VSIV acting on a plane slender structure when compared to the rigid

straight cylinder case.

The latter is elastic mounted and the forced oscillations are an input of the system,

whilst in the former the input is characterized by the imposed motion at the hang-off

point and both the in-plane and out-of-plane dynamics are hydroelastic responses.

Thus, the present work uses Galerkin’s decomposition and modal analysis meth-

ods as to study how the VSIV acts on each modal parcel present in the multimodal

responses. Accordingly, some ansatzes are also needed in order to turn the phe-

nomenum treatable from the modal hydroelastic system characterization perspective.

The methodology to be devised later, albeit conventional, is pioneer, providing a

fully linear modal representation of the VSIV acting of a catenary-like cylinder. Modal

analysis methods were used formerly in order to characterize the structural response

with respect to its dominant mode information, which can be regarded as a proto anal-

ysis in the modal space.

For instance, Wang et al. (2015) used wavelet analysis so as to obtain instanta-

neous representation of the out-of-plane response. The use of strain data in the afore-

mentioned work also revealed that there are consistent differences in the catenary-like

response within the imposed movement oscillation period.

This may be attributable to the asymmetry exhibited in the catenary-like static con-

figuration due to the curvature caused by the structural own weight. Wang et al. (2015)

also studied the hydroelastic response considering the local Keulegan-Carpenter (KC)

parameter distribution along the structural span.

Typically, the KC is measured with respect to the vertical motion experienced by

floating units, or, in the rigid straight cylinder, the forced harmonic movement; nonethe-

less, should the in-plane motion be considered as an proper input to the out-of-plane

motion in the catenary-like case, then each in-plane section will be subjected to a dif-

ferent KC value.

Contrarily to the characterization reported in Wang et al. (2015), the current modal

methodology dwelves deeper in the modal realm, carrying out a modal reinterpretation

of the govern parameters typically found in the VSIV analysis.

Moreover, compared to the previous references, the present work suggests a new
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set of governing parameters, taking into account that the modal reduced velocity ought

to be replaced by the frequency ratio parameter.

This normalized frequency is evaluated as the ratio between the response fre-

quency with the system natural one, which is commonly employed in the analysis of

driven damped linear oscillators.

1.3 Main goals and achievements

Rigid straight cylinder subjected to VSIV exhibits a clear causality input/output re-

lation. Regarding this particular structure, the input is the driving oscillation in one

direction, presenting fixed amplitude, and the output is the response measured in the

perpendicular direction with respect to the imposed movement.

Considering the catenary-like structure, the only true input in the system is the

forced motion at the upper-extremity and both in-plane and out-of-plane oscillations

are responses of the hydroelastic oscillator.

Thus, it should be necessary to assume a causality relation between the in-plane

and out-of-plane responses, which is characterized by the hypothesis that the out-

of-plane response is solely caused by the in-plane one; additionally, the out-of-plane

oscillations has a second order effect in the in-plane one. Such causality assump-

tion would make the problem physically treatable, establishing an input/output relation

determined by a given experimental analysis methodology.

Taking into consideration that the VSIV is characterized by multimodal response

in the catenary-like case, modal analysis could allow to reduce the system order by

specifying in which modes the structure responds.

Modal decomposition carried out using Galerkin’s method would be a linear approx-

imation of the highly nonlinear phenomenum. Furthermore, the linearization process

should be executed around the structural static configuration as to simplify the geomet-

ric nonlinearities presented by the catenary-like configuration.

One big challenge is that the in-plane motion presents different amplitudes along

the cylinder span and it is not possible to determine an unique characteristic value.

Moreover, even considering the modal approach, the in-plane modal response de-

pends on the imposed amplitude and exciting frequency at the top extremity, not being

achievable fixed values.
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However, it could be possible to conjecture whether the dominant mode amplitude

should be used to characterize the out-of-plane one, finding a clear causality relation

between in-plane and out-of-plane dynamics. Together with the dominant mode ampli-

tude, one should also consider the dominant frequency obtained in its movement.

Undoubtedly, this is considered a fundamental assumption in the present work in

order to seek similarities with the rigid cylinder cases using the dominant in-plane mode

as the driving mechanism for the multimodal out-of-plane response.

It is certainly true that the hydrodynamic oscillator is generally characterized by

a group of governing parameters, such as the Keulegan-Carpenter’s, Reynolds’ and

Strouhal’s numbers, among others. Notwithstanding, as a result of the varying in-plane

amplitude, these parameters cannot assume fixed values, varying along the cylinder

span.

These parameters are typically presented for the rigid cylinder model and, when

needed, they can be used in the strip theory context. Regarding the modal represen-

tation, one could wonder how these parameter would be included in the experimental

analysis and if there is the necessity of adapting them in some modal degree.

These are some considerations that will be addressed in the following chapters.

The present work main question to be answered is whether there is similarities be-

tween the complex multimodal response observed in the catenary-like case with the

fundamental results obtained using a rigid cylinder.

As a result of these considerations, modal analysis could unveil that it is possible

to attain similarities between the rigid cylinder experimental results with the ones ob-

tained using catenary-like model. Achieving this was possible considering the in-plane

dominant mode as driving mechanism for the out-of-plane response.

More importantly, the reinterpretation of Buckingham’s Π theorem, obtaining a set

of modal governing parameters, was a fundamental step in order to achieve the main

results. It is also the case that modal intra and intersimilarities could be found during

analysis of the VSIV multimodal responses.

1.4 Text organization

The modal experimental analysis carried out during the last years produced a total

amount of 60GB data, distributed in a multitude of graphics, several databases and a
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proto numerical solver with thousands lines using MATLAB®.

Consequently, the current work is organized considering the multitude of experi-

mental results that were obtained in the previous years, aiming to provide a concise

text that is accessible to the reader, without losing the rigorous foundations used to

devise the experimental methodology.

Thus, the writer tried to limit the text insofar as containing only the most funda-

mental results, considering only the modal analysis. Space of configuration findings

and complimentary modal results are avoided in the main text, being presented in Ap-

pendixes when necessary.

The present work is organized in five different chapters that are advisable to be

read in order. The current chapter is the introduction in which a brief contextualization

was given in order to situate the reader in the context of multimodal responses of a

catenary-like flexible cylinder subjected to VSIV.

The main goals and results were also summarized in the previous section, pro-

viding the reader a black box perspective, in which it is possible to understand the

inputs and outputs present in this work. Hence, the work itself would be a thorough

description on the black box contents, i.e. the experimental methodology devised.

The second chapter, entitled “Literature review”, contains a concise presentation

on the VSIV history and a summary of the results reported in the technical literature.

Currently, no review paper was solely written about the VSIV; thus, the second chapter

tries to partially fill this gap, showing a brief time line on the previous findings about the

VSIV reported in several papers.

The literature review chapter also presents a critical evaluation of the multitude of

terminologies used in technical publications in order to refer to the VSIV. The lack of

consensus and the adoption of a name that describes the phenomenum was a chal-

lenge to be overcome when searching for references and, consequently, the present

review is to be considered as thorough as possible, but not complete.

Following, the third chapter is the present work core, acquainting the reader with a

detailed characterization of the experimental model and arrangement used. Besides,

the modal space and a modal characterization of the structural system is carried out

using analytic results and a discrete model simulated using Orcaflex®.

The modal characterization is comprised of free decay tests from which the struc-

tural natural frequencies are computed. Then, the numerical model is used as to obtain
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the structure eigenfunctions, i.e. vibrating modes. The Orcaflex® results are discussed

and comparison of the natural frequencies obtained numerically with the ones in free

decay tests is carried out.

Furthermore, analytic results concerning the catenary cylinder eigenfunctions re-

ported in Chatjigeorgiou (2008) and Pesce and Martins (2005) are used in order to

specify the modal basis used in the Galerkin’s decomposition.

A thorough description on the processing methods used in the experimental anal-

ysis is then provided. These tools are not innovative per se, being based on classical

methods of averaging oscillating series, basic concepts of signal and spectral analysis,

and differential geometry.

A more complex and fundamental discussion about the VSIV governing parameters

is carried out using Buckingham’s Π theorem. A reinterpretation of the usual param-

eter is executed, achieving their modal counterparts that are going to be used in the

experimental analysis.

The assumption that the in-plane motion be considered as an input for the out-

of-plane response is revisited at the end of the third chapter. Finally, it is presented

a new ansatz that tries to incorporate the concept of dominant KC, i.e. the modal

KC evaluated to the dominant mode (largest modal amplitude), into the modal ROMs

formulation.

It is noteworthy to note that the present work does not formulate a modal ROM

explicitly, but it tests the hypothesis that such ROM could be written as a function of the

in-plane dominant mode dynamics in a first approximation. The experimental results

obtained later would serve as a calibration tool to other models, benchmarking, or both.

The fourth chapter presents the results obtained using the proposed experimental

methodology in the previous chapter. Firstly, the results reported in Sumer and Fredsøe

(1988) and Fernandes, Mirzaei Sefat, and Cascão (2014) are reinterpreted using the

frequency ratio parameter in lieu of the reduced velocity.

These results are used to propose a simple tool to predict possible candidates that

will present some sort of resonant peak response. The candidates are the group of

modal amplitudes obtained from the Galerkin’s decomposition method, average using

Root Mean Square (RMS).

The modal results are displayed in a similar fashion of the ones reported in Sumer

and Fredsøe (1988) and Fernandes, Mirzaei Sefat, and Cascão (2014). The set of
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results for each mode is comprised of a peak-to-peak amplitude graphic, in which it is

possible to check for peak responses, and a set of spectral amplitude graphics from

which the synchronization presented in a given amplitude peak can be identified.

The candidates predicted are compared with the peaks evidenced in the peak re-

sponse graphic for each mode. Then, if they are indeed a resonant peak, they are

classified accordingly. Other peaks that are not predicted by the frequency relations

are also addressed.

Considering the experimental testing groups presented in the third chapter, it is

argued that the first group to be analyzed is the Ai = 105mm, followed by 70mm, 35mm

and 17.5mm. The analysis follows that order due to the actuator power limitation, which

is responsible for higher imposed amplitude cases be subjected to a exciting frequency

whose values are lower.

It is observed that, when higher driven frequencies are used in the imposed motion,

the VSIV modal response is richer in higher modes responses, being more complex to

analyze.

A modal intersimilarity test is carried out by plotting the amplitude peak responses

for all modes in the same graphic. This analysis is carried out for each testing group

and later the results as recollected and reanalyzed in a modal intrasimilarity test.

The main text finishes with the fifth chapter, in which it is summarized the results ob-

tained using the proposed methodology. Frequency ratios reported to the rigid straight

cylinder tests are compared to the values found in the multimodal analysis. Moreover,

it is presented a brief discussion on possible further works.

The reader will find three Appendixes that are complementary to the main text.

The first appendix carries a detailed discussion on the design of the small-scale testing

model and its mechanical characterization in order to obtain rigidity moduli, specific

mass, structural damping coefficient, to cite just a few.

The second appendix contains a description of all numerical algorithms and meth-

ods used in the experimental analysis. Filtering approaches are also introduced. The

final and third appendix contains complementary experimental results. These addi-

tional results were not added in the fourth chapter due to the vast amount of results

already included there.

This ends the introduction chapter. The author hopes for a good appreciation of

the present work.
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2 LITERATURE REVIEW

(...) Sem tangibilidade, ver humilhava a memória,
que nunca recuperaria a completude de coisa

alguma. A memória era o resto da realidade. Uma
sobra que mutava para a ilusão com facilidade.

MÃE, V.H., In: Homens imprudentemente poéticos.

The Vortex Self-Induced Vibration (VSIV) belongs to the class of Flow Induced

Vibration (FIV) phenomena in fluid-structure nonlinear dynamics study field. Generally,

the VSIV occurs always on slender flexible structures, as risers and umbilical cables,

that are launched in catenary-like configuration, so that an imposed movement at their

top end, as those due to the action of gravitational waves on a floating vessel, causes

an oscillating movement at their configuration plane (henceforth called in-plane). As

a result of such in-plane oscillations, vortex shedding is established and it induces lift

forces that causes out-of-plane oscillating vibrations.

At a first glance, the VSIV and the Vortex Induced Vibration (VIV) seem to bare a

great deal of similarity: in-plane flow induces vortex shedding which causes lateral

movement. Nonetheless, this impression is misleading from the actual VSIV phe-

nomenology. Firstly, the in-plane flow in VSIV is a response from imposed oscillatory

movement at the structure upper end, which differs from the VIV in which there is an

incident current flow. In addition, the VSIV phenomenology differs in almost every as-

pects from the VIV, displaying a closer similarity with the response of a rigid cylinder

subjected to oscillatory flow. The VSIV phenomenology will be further discussed later

in this chapter.

2.1 The Vortex Self-Induced Vibration

Now that the VSIV was briefly introduced, one ought to dive deeper in its origins,

terminologies and other aspects of interest. The VSIV has a strong dependence on

the structural configuration, occurring in cases that the geometrical configuration has

any horizontal displacement with respect to the structural suspension point fixed at the
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floating unit.

At the present work only planar structural configurations are considered, i.e.hen it

is possible to define a set of osculating planes spanned by tangent and normal ver-

sors evaluated at each point of the structural material curve so that these planes are

equivalent to each other (henceforth called vertical plane). Under this consideration,

the VSIV is caused by any oscillatory movement at the upper end in the vertical plane

due to the floating unit dynamics.

Besides, although the floating unit can display rigid body motion, e.g.eave, surge

and pitch, the same terminology is not conceptually correct to describe the structural

hang-off point motion, for there is a causality relationship between the latter onto the

former.

One typical structural configuration found in offshore applications is the catenary-

like. The terminology catenary-like (or “catenary”) is conceptually more precise for

the catenary shape is obtained in the context of an inextensible string subjected to its

own weight. In other words, the catenary dynamics is due to the geometrical stiffness

variation, i.e.raction variation at each section.

Not only offshore structures launched in catenary-like configuration are extensible,

they are also subjected to bending stiffness effects near both lower and upper ends,

regions where the curvature changes substantially. On the other hand, the structural

dynamics at mid-span is dictated by the geometrical stiffness.

Although “catenary shape” in the context of real structures is an improper terminol-

ogy usage, one acknowledges that it is impossible to go against the current terminology

fashion and advises the reader to think of catenary-like (or “catenary”) every time it is

read catenary in the following work.

In VIV literature, specially regarding elastic mounted rigid cylinders, the incident

flow direction is referred as In-Line (IL) and the response is measured on the Cross-

Flow (CF) direction. The same terminology becomes less accurate in the VSIV context

for the self-incident flow is approximately within the “catenary” plane1, reinforcing the

in-plane terminology usage in the present work.

The other way around, the CF direction is perpendicular to the self-imposed flow,

coinciding with the out-of-plane direction. Nonetheless, such terminologies, IL and CF,

1Considering that the out-of-plane motion is of lesser order than the in-plane one, so the instanta-
neous and local oscullating planes, spanned by the tangent and normal to the curve unit vectors, t̂(s, t)
and n̂(s, t), are somehow bounded around the static configuration plane.
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will not be used within the present work.

In the technical literature, there is little consensus on how the VSIV as a phe-

nomenon should be named and there are some culprits to be considered in this lack

of terminology precision. Firstly, the VSIV chronology shows its first (and accidental)

observation dating from the late ’90s2, being a recent study field. Secondly, the VIV

technical literature is very proliferous, causing a direct influence on studies regard-

ing the VSIV and, sometimes, an amalgamation of both phenomena into two faces of

the same coin. Lastly, the usual terminology fashion in this field can lack of precision

sometimes, as discussed previously.

Juxtaposed with which has been discussed, the VSIV can be found in the technical

literature as: Intermittent Vortex-Induced Vibration Lateral Response3; Heave-Induced

Intermittent Vortex-Induced Vibration4; Heave Induced Lateral Motion (HILM)5; Vortex

Self-Induced Vibration6; Vortex-Induced Vibration in Oscillatory Flow7; Vortex-Induced

Vibration caused by Vessel Motions8; Unsteady Flow Vortex-Induced Vibration9; Mod-

ulated Vortex-Induced Vibration10; among others.

Some of those terminologies are redundant, show improper usage of terms, or just

consider VIV and VSIV as the same phenomena. Two of them, “Vortex Self-Induced

Vibration” and “Modulated Vortex-Induced Vibration”, seem to be the most appropriate

in this context. The justification for the usage of “VSIV” over “Modulated VIV” in the

present work is purely phenomenological: the VSIV shows a persistent response, with

no post-critical regime, nor the “lock-in” phenomenon as in the VIV. So, the choice is

based on avoiding the acronym “VIV” that carries much of the VIV phenomenology

within.

2Grant, Litton, and Mamidipudi (1999).
3Grant, Litton, and Mamidipudi.
4Mark Chang and Isherwood (2003).
5Le Cunff, Biolley, and Damy (2005); and Le Cunff et al. (2009).
6Fernandes et al. (2008), Rateiro et al. (2013); and Pesce et al. (2017).
7Fu et al. (2013a).
8Wang et al. (2014).
9Lu et al. (2019).

10Liu et al. (2020).



15

2.2 Phenomenological aspects, analysis and modeling

of VSIV

This literature review aims at a brief contextualization of the VSIV since its first ob-

servation in Grant, Litton, and Mamidipudi (1999). The main purpose is to present a

historical point of view of how the VSIV has been reported for the last two decades.

Besides, the fundamental references that have been used to support the current anal-

yses or served as paradigms to them will be thoroughly discussed along the text, when

needed. This approach was adopted to avoid letting the text too tedious to the reader.

This section is organized in order to introduce fundamental studies on the rigid

cylinder subjected to oscillatory flow, before taking the VSIV as main subject. This

particular order is due to the existence of parallels between both phenomena, as it was

pointed out in several VSIV references that will be duly discussed later.

2.2.1 Cylinder subjected to oscillatory flow

Experimental tests of structures subjected to steady incident flow have been a mat-

ter of interest for several centuries. Initially, the æolian harp, as the name suggests,

was a mythical instrument powered by the god of winds himself, a common godly ex-

planation rule mankind has been following as to accept what rational thinking can not

resolve yet.

The mystery around the æolian harp could only be explained fairly recently by Lord

Rayleigh in the early XX century, observing that the tones would be a response to

an aeroelastic phenomenum, VIV, characterized by the detachment of a von Kármán

vortex street which occurred with a certain shedding frequency, fs, with respect to the

incoming velocity, U∞.

Surprisingly, the shedding frequency was not purely proportioned to the incoming

air velocity, inasmuch as there was a special range in which the vortex shedding fre-

quency would assume a constant value, corresponding to one of the harp string natural

frequency. This particular feature of the VIV response would later be called “lock-in”.

Previously, other studies in the fluid dynamic field have already presented theo-

retical and experimental explanations on the von Kármán vortex street and the vortex

shedding frequency in which parameters, such as the Reynolds’ and Strouhal’s num-

bers, Re and St respectively, were acknowledged to take a key role on the fluid behavior.
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Nonetheless, little was known about the VIV fluid-elastic mechanism and much

could be unveiled on this topic over the last centuries (PESCE; FUJARRA, 2000; FU-

JARRA et al., 2001; SARPKAYA, 2004; WILLIAMSON; GOVARDHAN, 2004; MA et al.,

2022). Thus, the VIV is a very complex fluid-structure interaction phenomenum that still

puzzles many researchers, specially with respect to flexible structural multi-modal re-

sponses (HUERA-HUARTE, 2006).

However complex the VIV response is, the presence of an unsteady incoming flow

enriches and increases the structural response complexity to a whole new level. It

is noteworthy that the current discussion will be restrained to the rigid cylinder case,

which is submitted to a harmonic incident flow with zero mean velocity in one direction.

The cylinder dynamics depends on hydrodynamic loads that occur in the flow and

also in the cross flow directions. The in-plane forces are mainly due to drag and added

inertia, which can be evaluated considering a parcel that is in phase with the relative

velocity (drag) and other with the relative acceleration (inertia).

Firstly with respect to the potential flow theory, a moving structure is subject to

hydrodynamic loads that can be expressed as the Froude-Krylov force. Considering

a circular cylinder, immersed in a viscous fluid flow, the in-line forces can be approxi-

mated as the Morison’s formula,

F =
1

2
ρDCd ‖U‖U +mdCM

dU

dt
, (2.1)

in which ρ is the fluid density, D, the cylinder diameter, U , the incoming flow velocity

and t, time. The force coefficients, Cd and CM, are related to drag and added inertia

terms, respectively, and the fluid displaced mass, md = πρD2/4. Should the velocity of

the ambient flow be harmonic, it will be possible to write it as U(t) = Um cos(2π fit),

assuming known the velocity amplitude, Um, and the imposed motion frequency, fi.

Generally, the imposed motion is supposed to be harmonic with zero mean velocity,

which allows one to write Um = 2π fiAi with Ai being the imposed amplitude. In this

configuration, the Keulegan’s-Carpenter’s and Reynold’s numbers can be evaluated as

KC =
Um

D fi
=

2πAi

D
= 2πA⋆

i , (2.2)

Re =
UmD

ν
, (2.3)
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in which ν is the fluid kinematic viscosity. Moreover, both drag and inertia coefficients

also depends on the relative surface roughness, k/D, and they are supposed to assume

different values at distinct phases of the oscillatory flow cycle.

Accordingly, any force coefficient, C f , ought to be written with respect to these

governing parameters,

C f = f

(

KC,Re,
k

D
, fit

)

, (2.4)

which would not be manageable even for simple geometries. In turn, time independent

mean coefficient values are generally simpler and more feasible, i.e.

C f = f

(

KC,Re,
k

D

)

, (2.5)

to be carried out experimentally.

Sarpkaya (1976) argues that the choice of both KC and Re are not the best option

available due to them be depended on the velocity amplitude, Um. Consequently, it is

suggested the frequency parameter instead

β =
KC

Re
=

fiD
2

ν
. (2.6)

Thus far, there was a multitude of experimental data concerning a fixed cylinder

subjected to oscillatory flow, measuring in-line and transverse forces by means of force

transducers in each directions. Focusing on in-line forces, such as drag and fluid iner-

tial force, there was no systematical experiment that could combine into a set of charts

how the force coefficients would behave in the oscillatory flow regime.

Sarpkaya (1976) overcame that issue using a novel experimental set-up, consist-

ing of a U-shaped tube with a small section at the middle where a cylinder specimen

was placed. The fixed cylinder was subjected to the incident oscillatory flow due to a

pressure controlling system. By decomposing the measured in-line force into a parcel

in phase to flow velocity and other to the relative acceleration, a direct measurement

of drag and the inertial force could be accomplished.
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Figure 2.1: Inertia force coefficient, CM, of a rigid cylinder subjected to oscillatory flow.

Source: Extracted from Sarpkaya (1976).

Figure 2.2: Drag force coefficient, CD, of a rigid cylinder subjected to oscillatory flow.

Source: Extracted from Sarpkaya (1976).

Undeniably, a great effort was made in Sarpkaya (1976) so as to exhibit a compre-

hensible set of experimental drag and added inertia coefficients; see Figures 2.1-2.2.

Dissecting a bit further the added inertia chart, it is possible to identify that low KC

regime displays a limit value, CM = 1+Ca→ 2+ (SALLES; PESCE, 2019), coinciding

with the potential added mass, Ca = 1.

More significantly, the vast majority of hydrodynamic studies on risers subjected to

oscillatory flows uses Ca = 1 as known parameter, whereas Figure 2.1 shows that the



19

added mass varies depending on the amplitude and frequency of the imposed motion;

the same occurs with the drag force coefficient. Moreover, those charts are evaluated

using data from a fixed rigid circular cylinder, which means that other geometries and

configurations need further investigations (SARPKAYA, 1976).

After the previous studies on the fixed cylinder, Sarpkaya and Rajabi (1979) exhib-

ited results using a cylinder that is subjected to an oscillatory flow, however it is free to

oscillate in the cross flow direction. Sumer and Fredsøe (1988) also carried out experi-

ments in the same fashion, which were already cited in the context of Le Cunff, Biolley,

and Damy (2005), dealing with the VSIV in a catenary-like cylinder.

Considering the elastic mounted cylinder subjected to harmonic flow, the control-

ling parameters differ from what was considered in the fixed cylinder case; Equation

2.5. Whence some parameters, such as mass ratio, damping coefficient and reduced

velocity, are necessary to unveil the new dynamic behavior.

For instance, the lift force coefficient and the relative lateral amplitude could be

considered as

CL = f

(

KC,Re,
k

D
,VR,m

⋆,ζ

)

and (2.7)

Y ⋆ = g

(

KC,Re,
k

D
,VR,m

⋆,ζ

)

, (2.8)

in which VR is the reduced velocity,

VR =
Um

D fN
, (2.9)

m⋆ is the mass ratio,

m⋆ =
ms

md

=
4ms

ρπD2
, (2.10)

and ζ is the damping coefficient. The system natural frequency is fN ; the structural

mass, ms; the displaced mass, md ; and the fluid density, ρ .

Sarpkaya and Rajabi (1979) evinced some interesting features within the lateral

response. Firstly, the introduced a new controlling parameter,
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RP =
msζ

ρLD2C◦LM

, (2.11)

grouping the parameter m⋆ζ , commonly used in VIV analysis to characterize the am-

plitude response, and also the lift force coefficient, C◦LM in which C◦LM corresponds to

the lift force coefficient relative to a fixed cylinder.

The ratio CLM/C◦LM appears in the predicted cylinder lateral response,

Y ⋆
M =

V 2
R

32π2RP

CLM

C◦LM

, (2.12)

as an amplification parameter to evaluate how the lift force magnitude of an oscillating

cylinder can behave with respect to the fixed one; Y ⋆
M corresponds to the mean relative

lateral amplitude.

Figure 2.3: Lift force coefficient and lateral motion amplitude with respect to reduced
velocity for a sand-roughened cylinder in harmonic flow (k/D = 0.01).

Source: Extracted from Sarpkaya and Rajabi (1979).

Interestingly, Sarpkaya and Rajabi (1979) could demonstrate that the perfect syn-

chronization would occur when of V ∗R = 5.4 and the maximum of the lift force, CLM/C◦LM,

would happen to values slightly lower than V ∗R ; see Figure 2.3.
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Figure 2.4: Temporal variation on the vortex shedding frequency during a cycle for
some reduced velocity values.

Source: Extracted from Sarpkaya and Rajabi (1979).

The shedding frequency also unraveled that its value synchronizes with the system

natural frequency in V ∗R , whereas it could assume an oscillating value close to the

system natural frequency during the oscillation cycle, depending on the VR value; see

Figure 2.4.

Figure 2.5: Elastic mounted cylinder subjected to harmonic displacement in water:
experimental system sketch.

Source: Extracted from Sumer and Fredsøe (1988).

Whilst Sarpkaya and Rajabi (1979) were concerned with the lift force magnitude

and its contribution on the lateral amplitude, Sumer and Fredsøe (1988) shed light on
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the lift force spectral content, especially on the frequency ratio between lateral and

imposed motion, N, with respect to KC and VR.

Figure 2.5 shows the experimental set-up designed and used in order to carry out a

thorough investigation on the lateral motion characteristics. Although fairly simple, the

experimental arrange was capable to execute several tests within a broad KC range,

including a typical VIV test and others varying parameters, such as: the spring stiffness,

k, the system natural frequency (still water), fn, the relative weight, s = ρcylinder/ρwater,

and the stability parameter, Ks ∝ m⋆ζ ; see Table 2.1.

Table 2.1: Experimental system parameters used in which test case.

Exp. k/ρ
(

m2/s2
)

fn (Hz) s Ks

I 0.336 0.71 1 0.9
II 1.074 1.24 1 0.3
III 0.168 0.51 1 1.5
IV 0.336 0.61 1.8 1.2

Source: Extracted from Sumer and Fredsøe (1988).

Following the nomenclature used in Sumer and Fredsøe (1988), the imposed mo-

tion is due to a controlled displacement, x(t) = Asin(ωwt), and the velocity can be duly

obtained through differentiation,

U =Um cos(ωwt) = 2π fwAcos(2π fwt) , (2.13)

in which ωw = 2π fw is the driving frequency. The Keulegan-Carpenter number, KC,

and reduced velocity, VR, can be directly evaluated using Um and fn,

KC =
Um

fwD
=

2π fwA

fwD
= 2πA⋆, (2.14)

VR =
Um

fnD
=

2π fwA

fnD
= KC

fw

fn
. (2.15)



23

Figure 2.6: Frequency and amplitude response. Exp. I.
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(b) KC = 20
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(c) KC = 30
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(d) KC = 40
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Source: Adapted from Sumer and Fredsøe (1988).

Most importantly, the lateral response oscillates with dominant frequency, f , pro-

portional to the driving one, which is computed within the number of vibrations per

cycle (hereinafter called the cycle number),

N =
f

fw
, (2.16)
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assuming integer values that decreases as the reduced velocity increases; see Figure

2.6. The cycle number shows an interesting behavior that can display an important role

in the fatigue damage analysis.

Observing closely Figure 2.6, it is possible to infer that KC is a strong governing

parameter and the lateral response shows greater complexity when the KC increases.

Except from the KC = 10 test that keeps N = 2 within the whole run, Figure 2.6a,

every other test exhibits a cascade of N values that decreases in a steadily manner

until reaching a minimum value of N = 2; see Figures 2.6b-2.6d.

Recalling Equation 2.14, the KC is solely dependable on the imposed amplitude,

which serves as an energy input to the system. Thus, higher the KC, larger the max-

imum number of vibration in on cycle can be, which can be verified observing Figure

2.6 where the maximum N can assume higher values as KC increases.

Figure 2.6a displays a typical VIV response, in which the lateral motion frequency

follows the increase in the imposed one until it reaches a region near the system natural

frequency. There, the “lock-in” causes an amplitude peak response that, passing a

critical value, diminishes due to the loss of synchronization.

The other cases present a different response in which the lateral vibration starts

with a maximum N until the response frequency reaches values close to the system

natural frequency. Thus, a synchronization is achieved and an amplitude peak is ob-

served; see Figures 2.6b-2.6d. Differently from the typical VIV lock-in, the system

response usually does not assume the same frequency as the natural one.

Most significantly, the system jumps to a lower cycle number, N, every time the

response reaches a peak. This jump phenomenon occurs until the minimum N = 2 is

achieved. Then, the response does not mitigate, maintaining the relative peak-to-peak

amplitude close to one diameter.

Although the KC = 10 case seems to display a typical VIV lock-in, the synchroniza-

tion due to imposed oscillatory movement shows a different kinematics when the KC

increases. Thus, this synchronization phenomenon is acknowledged as an unique fea-

ture on the lateral vibration due to the oscillatory flow, assuming some sort of “lock-in”

behavior asymptotically when KC→ 0.

Sumer and Fredsøe (1988) argues that the cycle number never reaches the unity,

N = 1, stating that

Note that N becomes unity only (i) in the case where KC is in the range
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4 < KC < 7, as demonstrated in the following paragraphs; and (ii) in the

case where fw overlaps with fn (SUMER; FREDSØE, 1988, p. 390)

which seems to be the case in their work. It would be interesting to analyze what should

occur when the imposed frequency reached the same value as the system natural

frequency. In such case, given the aforementioned argument, the lateral response

should admit N = 1.

2.2.2 Vortex Self-Induced Vibration: chronology & idiosyncrasies

The VSIV was firstly reported in Grant, Litton, and Mamidipudi (1999) during exper-

imental studies using Highly Compliant Rigid (HCR) large-scale models. The experi-

mental tests were conducted in the lake Pend Oreille, USA. The large-scale models

were of several configurations, specially a catenary-like configuration launched in 800ft

(∼ 245m) depth, using different soil configurations.

The SCR model showed lateral motion when subjected to imposed motion at the

upper end. The lateral response was intermittent, displaying amplitude and frequency

magnitudes increasing with respect to an increase in the top motion frequency. The

lateral dynamics observed was highly nonlinear due to the nonlinear soil-riser contact

at the Touch Down Point (TDP).

The effect of soil stiffness is of importance at the Touch Down Zone (TDZ), impact-

ing the local dynamics. Although the global dynamics and fatigue life are not heavily

affected by the soil stiffness itself (QUÉAU, 2015), the type of soil matters in real struc-

tures local analyzes. For instance, a softer soil allows the lateral response at the bottom

to display a snaking motion that, over time, produces soil trenches where the riser rests.

The event of a lateral trench side collapse could lead to a quasi-cantilever boundary

condition at the TDZ that would have a great impact on the structural dynamics and

fatigue life.

These nonlinear conditions impose a great limitation on frequency domain VIV nu-

merical models and time domain algorithms, albeit slower, need to be employed as to

capture the lateral motion observed in experimental data. The fluid-structure coupling

is feasible for the hydrodynamic loads adapt to the complex in-plane and out-of-plane

synchronous motion. Currently, none of the available commercial algorithms take into

account the VSIV in their analyses because it is difficult to measure the VSIV isolated

response in-situ structures, when a multitude of phenomena occurs concomitantly.



26

An early time domain model that aimed to capture the VSIV response can be found

in Grant et al. (2000), a semi-empirical approach that approximates the lift and drag

forces by using data from a Single Degree of Freedom (SDOF) cylinder subjected

to steady flow. Then, the instantaneous frequency and amplitude observed in the

lateral motion were fed into an algorithm that evaluates the instantaneous hydrody-

namic forces that the elastic mounted cylinder would be subjected to. This procedure

were tested using several geometrical configurations, including the catenary-like, and

showed good agreement with predictions and observations.

Following Grant, Litton, and Mamidipudi (1999) and Grant et al. (2000), Mark

Chang and Isherwood (2003) reported a thorough discussion on Computational Fluid

Dynamics (CFD) techniques that could be employed into VSIV models. The main goal

of Mark Chang and Isherwood (2003) was the fatigue assessment due to the VSIV,

which was studied by considering a test matrix using a large-scale generic riser model

and typical Brazilian sea conditions. The vortex tracking empirical model (SARPKAYA;

SCHOAFF, 1979a; SARPKAYA; SCHOAFF, 1979b) was chosen over other empirical

models, such as wake oscillators, or CFD.

Figure 2.7: SCR normalized fatigue damage in 1 year.

Source: Extracted from Mark Chang and Isherwood (2003).

The outcomes categorically showed that the riser bottom part around the TDZ was

subjected to the highest fatigue due to the VSIV; see Figure 2.7. Although promising,

the vortex tracking model missed calibration using field measurements, reinforcing the

need of experimental tests to be used as paradigms to numerical models.

Whilst previous works focused on large-scale models, Le Cunff, Biolley, and Damy

(2005) carried out experimental analyses aiming to isolate the VSIV response with a

small-scale SCR model. The experimental tests were conducted at IFREMER located

in Brest, France. It is noteworthy that the VSIV is difficult to measure in-situ due to
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the concomitant effect of incident flow (VIV), amid others geophysical phenomena, (LE

CUNFF; BIOLLEY; DAMY, 2005, p. 1 apud MARK CHANG; ISHERWOOD, 2003).

The planar small-scale SCR model was subjected to imposed sinusoidal vertical

motion at the hang-off and its bottom sag bend was monitored using optical tracking

cameras. The set of observed material points (henceforth called space of configu-

ration) displayed complex and nonlinear dynamics, specially due to the TDP spacial

(3D) motion. The lateral response showed to be intermittent and persistent when the

imposed motion increased its magnitude and frequency, likewise the previous works.

Figure 2.8: Selected targets spectra and trajectories.

(a) 3D-1 target displacement spectra:

experimental in magenta; deepflow in blue

(b) 3D-8 target: displacement spectrum in blue;

lift coefficient spectrum in magenta

(c) 3D-8 target: in-plane vs. out-of-plane trajectory

Source: Extracted from Le Cunff, Biolley, and Damy (2005).

Le Cunff, Biolley, and Damy (2005) also introduced a proto modal analysis in which

a out-of-plane dominant mode was determined by using the largest lateral displace-

ment value measured in the bottom sag bend region. Additionally, a 2D numerical
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model by slice (ETIENNE et al., 2001) was employed to obtain an iterative process

that computes fluid forces coefficients using a Navier-Stokes solver and a structural

coupling model; see Figures 2.8a-2.8b. The riser experimental and computed states

showed good agreement.

One of the greatest achievements in Le Cunff, Biolley, and Damy (2005) is the

parallel between the VSIV and the dynamics of rigid cylinders subjected to oscilla-

tory flow (SARPKAYA, 1976; SARPKAYA; RAJABI, 1979; SARPKAYA, 1986; SUMER;

FREDSØE, 1988, 1989; KOZAKIEWICZ; SUMER; FREDSØE, 1994). Consequently,

the VSIV inherited a group of control parameters that plays an important role in its

intrinsic behavior; see Equation 2.8 and Table 2.2.

Table 2.2: Cylinder subjected to oscillatory flow main control parameters.

Parameters Definition

Reynolds Re = UD
ν

Keulegan-Carpenter KC = U
fwD
∼ 2πA

D

Reduced velocity VR = U
fnD

Relative roughness k
D

Stability parameter Ks ∝ m⋆ζ = 4ms

ρπD2 ζ

Source: Adapted from Sumer and Fredsøe (1988).

The VSIV also showed a synchronization ratio between in-plane and out-of-plane

motions similar to the cycle number, N, in elastic mounted rigid cylinders subjected to

oscillatory flow, which will be further detailed later in this chapter; see Figure 2.8c.

Following Grant et al. (2000) and Mark Chang and Isherwood (2003), Le Cunff et al.

(2009) presented a simplified model to predict the VSIV dynamics. In contrast with the

vortex tracking model (SARPKAYA; SCHOAFF, 1979a; MARK CHANG; ISHERWOOD,

2003), this particular model employed a fluid wake oscillator coupled to the structural

model (FACCHINETTI; DE LANGRE; BIOLLEY, 2008) .

Additionally, the proposed simplified model (LE CUNFF et al., 2009) was used to

assess fatigue damage of a real riser structure and it was possible to observe that

the VSIV spreads the fatigue damage across the structure span, which, in the VSIV

absence, would be restricted to the bottom sag and TDZ due to soil-riser interactions

and in-plane movement; see Figure 2.9.
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Figure 2.9: Fatigue damage due to VSIV for different sea conditions. Comparison be-
tween in-plane (magenta) and out-of-plane (blue) contributions to accumulate damage.

(a) Sea condition H = 1m, T = 13s (b) Sea condition H = 3m, T = 13s

Source: Extracted from Le Cunff et al. (2009).

Figure 2.10: Petrobras Platform P18 SCR in-situ, KCmax = 10.

(a) Frequency ratio (b) Relative frequency

(c) Amplitude response

Source: Extracted from Fernandes et al. (2008).

Most importantly, depending on the sea condition, the VSIV accumulated damage
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can overcome the fatigue due to in-plane movements, spreading considerably the dam-

age throughout the riser span; see Figure 2.9b. About the fatigue due to the VSIV, Le

Cunff et al. (2009) concludes that

[the] HILM [VSIV] generates out-of-plane motion and stresses in the

pipe. The motion is not restricted to the TDZ and therefore will spread

the fatigue. Another consequence is that the local drag coefficient is

amplified due to the vibration. This reduces the dynamic in the TDZ

and improves the life due to pipe/soil interaction, up to a point where

the vibration in the lateral direction overcomes the vertical damage. (LE

CUNFF et al., 2009, p. 6)

Up to a point, the VSIV was though of difficult observation in-situ conditions (MARK

CHANG; ISHERWOOD, 2003), due to concomitant effects that would have greater im-

pact than the VSIV isolated lateral motion. Juxtaposed with this previous assumption,

Fernandes et al. (2008) reported the evidence of lateral motion due to VSIV measured

in real risers structures installed in the Petrobras platform P18; see Figure 2.10.

The in-situ observations displayed typical synchronization with two or three Lis-

sajous rings and maximum KC ∼ 10 spanwise; see Figure 2.11. The synchroniza-

tion observed was coherent with previous experimental results (LE CUNFF; BIOLLEY;

DAMY, 2005).

Figure 2.11: Petrobras Platform P18 SCR in-situ: in-plane vs. out-of-plane trajectories.

(a) N = 2 (b) N = 3

Source: Extracted from Fernandes et al. (2012).
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Figure 2.12: Vortex Self-Induced Vibration amplitude and frequency responses for sev-
eral KC conditions. Trajectories between in-plane and out-of-plane displacements are
also depict, showing the VSIV inherent synchronization.

(a) KC = 10 (b) KC = 20

(c) KC = 30 (d) KC = 40

Source: Extracted from Fernandes et al. (2012).
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Fernandes et al. (2008) carried out experiments using two horizontal cylinders

(O (L/D) ∼ 10 and O (L/D) ∼ 20), imposing a series of harmonic vertical motion and

measuring the correspondent transverse response. The experiments were conducted

at the Laboratory of Waves and Current of COPPE in the Federal University of Rio de

Janeiro (LOC/COPPE/UFRJ). The imposed movement consisted of a sinusoidal dis-

placement varying its amplitude and frequency, keeping fixed Keulegan-Carpenter pa-

rameters; KC = 10, KC = 20 and KC = 30, respectively. The experimental results also

displayed good agreement to what was reported regarding an elastic mounted cylin-

der subjected to oscillatory flow (SUMER; FREDSØE, 1989; KOZAKIEWICZ; SUMER;

FREDSØE, 1994).

Figure 2.13: Trajectories found in the VSIV in-plane and out-of-plane response syn-
chronization for several experimental conditions.

Source: Extracted from Fernandes, Mirzaei Sefat, and Cascão (2014).

Some improvements were done in the scotch-yoke apparatus presented in (FER-

NANDES et al., 2008), aiming at a better VSIV response characterization and kinemat-

ics understanding. Such improvements include the minimization of the motion damping

due to friction on the lateral VSIV response, and the measurement of the fluid field and

vortex shedding (FERNANDES et al., 2011; FERNANDES et al., 2012; FERNANDES;

MIRZAEI SEFAT; CASCÃO, 2014).

The experimental tests in Fernandes et al. (2011) aimed to measure amplitude and

frequency response due to VSIV for KC = 10 and KC = 20; see Figures 2.12a-2.12b.
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The main motivation was to analyze how the VSIV could affect the fatigue life of a SCR

structure using the experimental tests as a paradigm in order to understand typical

amplitude and frequency response for several excitation values.

Figure 2.14: Vortex patterns measurements (PIV) in VSIV motion for KC = 10 and
VR = 4.65.

(a) 2S downward (b) P+S mode

(c) P+S mode (d) Classical Kármás street of upward motion

Source: Extracted from Fernandes et al. (2012).

The characteristic persistent response with large amplitude values occurred for

both KC = 10 and KD = 20 and the frequency synchronization varied, reaching N =

2 for large imposed frequency values (SUMER; FREDSØE, 1988; KOZAKIEWICZ;

SUMER; FREDSØE, 1994); see Figures 2.12a-2.12b. Hence, the VSIV could dis-

played an important role in the fatigue life of SCR, in agreement with previous works

(GRANT et al., 2000; MARK CHANG; ISHERWOOD, 2003).

The vortex shedding pattern measured showed to be a function of the Keulegan-
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Carpenter parameter (KC), occurring more complex patterns as high values of KC

are observed (FERNANDES et al., 2012; FERNANDES; MIRZAEI SEFAT; CASCÃO,

2014); see Figures 2.12c-2.12d and Figure 2.13. Several shedding patterns were ob-

served by Fernandes et al. in different stages of the imposed movement cycle, such

as: 2S, P+S, classical von Kárman street, mixing modes, amid others; (SARPKAYA,

2004; WILLIAMSON; GOVARDHAN, 2004); see Figure 2.14.

Fernandes, Mirzaei Sefat, and Cascão (2014) conclude that the maximum fatigue

damage due to the VSIV occurs when high modes are excited, which is the case of

real scale SCR in typical Brazilian sea conditions. Consequently, high frequencies

combined with large curvature values due to the VSIV at the SCR bottom span seems

to decrease the overall structural integrity.

From 2012 onward, new experimental data were reported using small-scale flexible

riser models in two different geometrical configuration: highly taut horizontal cylinder

(FU et al., 2013a); and two distinguished catenary-like models (RATEIRO et al., 2013;

WANG et al., 2014).

Fu et al. (2013a,b) carried out tests with a taut cylinder at the Shanghai Jiao Tong

University, using a highly tensioned horizontal cylinder of aspect ration O(L/D) ∼ 160.

The model was mounted under a towing car which was able to impose movement in

the horizontal plane. Within this configuration, the VSIV response was observed in the

vertical plane. The phenomenum was measured using a set of strain gauges placed

over the cylinder surface, creating a lattice distribution of gauges on the vertical and

horizontal model section extremities.

The in-plane displacement evaluation (also velocity and acceleration) was executed

under the linear rheology and small deformation assumptions. Carrying out Galerkin’s

decompostion using a set of trigonometric modes, the displacement series can be

reconstructed for any cylinder section as a linear sum of modal amplitudes.

In order to obtain the modal amplitude series, the assumption of small deforma-

tion is used to express the cable model curvature as proportional to the modal shape

functions second derivative. Thus, the obtained deflection deformation could indirectly

measure the cylinder displacement series in a given direction knowing that the strain

is proportional to the curvature and the cylinder radius. Besides, wavelet techniques

were employed to enrich the analysis with measurements of the shedding frequency

instantaneous values, assuming St = 0.2.
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Figure 2.15: Typical VSIV response in high KC regime with its proposed division into:
building-up region; lock-in region; and dying out region. The asymmetry between
building-up and dying out regions characterizes a hysteresis loop.

Source: Extracted from Fu et al. (2013a).

Figure 2.16: Hysteresis showed in the VSIV amplitude response during an imposed
movement cycle.

(a) KC = 178, VR,max = 4

(b) KC = 178, VR,max = 6.5

Source: Extracted from Fu et al. (2013a).

Note: Dependence of the hysteresis loop on the reduced velocity.
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Using the normal displacement series, Fu et al. (2013a) showed that the typical

VSIV beating response depends on the Keulegan-Carpenter number. Although that

parameter must be locally evaluated, KC(s), the maximum value was chosen as rep-

resentative of the whole system behavior, which admitted values between 31 and 178.

This experimental set-up shows similar features to the classic rigid cylinder subjected

by oscillatory flow (SUMER; FREDSØE, 1988; KOZAKIEWICZ; SUMER; FREDSØE,

1994), as it bears partial similarity due to the cylinder geometrical configuration.

Considering high KC value regime, Fu et al. (2013a) could identify a typical beat-

ing out-of-plane response that could be segmented into three distinguished regions:

building-up, when the response amplitude increases from quasi-null values as the cylin-

der re-enters in its own vertical semi-cycle accelerating; lock-in, when the response

reaches a quasi-steady state regime as in a typical VIV case; and dying-out, when the

amplitude decreases as the cylinder decelerates until reaching again quasi-null values;

see Figure 2.15.

Figure 2.17 shows typical VSIV responses on two distinct KC regimes. The high

KC = 178 test displays clearer spectra in which the frequency is more concentrated in

instants when the shedding frequency assumes maximum value. There is also mode

transition when the input frequency is sufficiently high, but the second mode amplitude

is never higher enough to exhibit dominance.

On the other hand, the spectrogram exhibits higher harmonics when KC = 31,

specially in the high input frequency scenario due to the mode transition, in which the

second mode turns dominant.

Using OpenFOAM11, Fu, Wan, and Hu (2017) proposed a numerical represen-

tation for the aforementioned taut cylinder. The CFD model was based in the direct

solution of the Navier-Stokes equation, averaging turbulence terms.

The numerical and experimental results showed good agreement, being able to

capture nonlinear features observed in the experimental analysis, such as the presence

of a hysteresis loop on the lateral amplitude with respect to the in-plane motion; see

Figure 2.16. The hysteresis displays a direct dependency on the KC regime and VR

considered, exhibiting itself more prominently as the VR increased.

11Open source C++ toolbox for the development of customized numerical solvers, and pre-/post-
processing utilities for the solution of continuum mechanics problems, most prominently including Com-
putational Fluid Dynamics (adapted from Wikipedia – OpenFOAM. Last Accessed: 02/15/2022).
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Figure 2.17: VSIV experimental response in two different KC. The first column corre-
sponds to KC = 31 and the second, KC = 178; top-to-down indicate a decrease on the
period (or increase on frequency) of imposed movement. For each chart: (i) shedding
frequency; (ii) lateral relative amplitude response; (iii) lateral response spectrogram;
and (iv) modal amplitudes measured and used in order to reconstruct the displace-
ment signal.

(a) KC = 31, T = 2.5s (b) KC = 178, T = 16.5s

(c) KC = 31, T = 1.8s (d) KC = 178, T = 10.2s

(e) KC = 31, T = 1.45s (f) KC = 178, T = 8.45s

Source: Extracted from Fu et al. (2013a).

In addition, vortex shedding development and patterns illustrated the complexity of
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the field flow, specially when the cylinder re-enters its own non dissipated vortex street

in high KC regime, which produces the typical beating response already discussed.

Focusing now on the catenary-like configuration subjected to imposed motion at

the hang-off point, Rateiro et al. (2013) and Wang et al. (2014) disclosed two different

sets of experimental observations on the nonlinear nature of the VSIV response.

Wang et al. (2014) carried out experiments with a catenary-like cylinder at Shang-

hai Jiao Tong University which keeps Cauchy similitude with a deep-water DNV riser.

The instrumentation was conceived similarly to what were used in Fu et al. (2013a),

embedding local strain sensors at selected points as to directly measure deformation.

Wavelet analysis is also employed to check the time-frequency behavior of the VSIV.

Figure 2.18: Distribution of KC(s) throughout the model span for two different tested
conditions.

Source: Extracted from Wang et al. (2015).

The main purpose was to evaluate the fatigue damage due to the VSIV response,

considering normal deformation around the static configuration. In light of a linear ma-

terial assumption to represent the cylinder rheology, tension is directly obtained using

the deformation and the material elastic modulus12, E, so as to assess the cycling

tension to fatigue evaluation through Miner’s law and S-N curve methods.

The VSIV modulated response once again was observed in all tested cases with

imposed amplitude ranging from A⋆
i,min∼ 4.4 to KC⋆

i,max∼ 15.5. The Keulegan-Carpenter

number is a local value, varying through the cylinder span (KC(s)); the maximum KC

value found within the cylinder span was chosen as a characteristic KC value, spanning

from KCmax = 40 to KCmax = 130; see Figure 2.18. Typical Strouhal value (St = 0.2)

was used to compute the time dependent shedding frequency, fs(t), which is assumed

to be near the normal displacement motion frequency.

12Equivalently, using the Hooke’s law: σ = 2µε +λ tr (ε), in which µ and λ are Lamé’s constants.
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Figure 2.19: Traction variation evaluated in the VSIV presence (model test) and in the

VSIV absence (quasi-static and Orcaflex®).

Source: Extracted from Wang et al. (2017).

Interestingly, Wang et al. (2014) unveiled a hysteresis behavior on the in-plane

movement due to variation on the geometric rigidity. Considering the cylinder motion

represented in the local intrinsic basis, it was argued that the normal displacement

could be segmented into lift-up and push-down (with respect to gravity) phases and the

pushing-down stage would affect more the traction variation at the cylinder due to the

positive apparent weight; see Figure 2.19. Ergo, the hysteresis was more pronounced

at larger values of imposed amplitude tests.

At high A⋆
i tests, the variation on the cylinder traction at pushing-down phase

showed to cause TDP motion, which duly exhibited a major part in the shift of shed-

ding frequency maximum values through the cylinder span. During the lift-up phase,

the shedding frequency peak occurred at the model mid-span, displaying larger normal

amplitudes around half diameter.

On the other hand, throughout the pushing-down phase, the peak occurrence on

the shedding frequency is right above the TDP, in the cylinder bottom sag bend, a

sensitive region due to larger curvature values. Finally, Wang et al. (2014) concluded

that the fatigue damage was more sensitive to changes to the imposed amplitudes than

frequencies.

Sequentially, Wang et al. (2015) further analyzed the same experimental data, now

focusing on the general behavior of the cylinder. Once more, it was employed the

technique of indirectly measuring the model normal displacement series using the ob-

served strain and modal reconstruction (FU et al., 2013a). Nevertheless, the mode
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functions were evaluated by means of a numerical FE model.

Figure 2.20: Experimental responses in two different conditions. The first row corre-
sponds to the in-plane motion and the second refers to the out-of-plane response.

(a) KC = 31, T = 5.96s (b) KC = 178, T = 5.04s

(c) KC = 31, T = 5.96s (d) KC = 178, T = 5.04s

Source: Extracted from Wang et al. (2015).

Besides, Wang et al. (2015) argued on truncating the model in a reduced segment

in favor of numerical analysis, stating that the area of interest was comprised of the TDZ

and the bottom sag-bend region, and also simplifying the TDP boundary condition as

pinned. This procedure was validated using Orcaflex and it was also provided wavelet

analysis to compute the in-plane response frequency with respect to time.

When compared to low KC regime, greater KC values carried within higher modal

components due to the pushing-down phase causing a more expressively traction de-
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crease, which causes the variation on the structure natural frequencies to lesser val-

ues. The lift-up and push-down phases brought out the placement variation of the

TDP anew, particularly in high KC regimes, having a greater impact over the estimated

instantaneous reduced velocity throughout the cylinder span; see Figures 2.20a-2.20b.

Figure 2.21: Fatigue damage estimated in several conditions.

Source: Extracted from Wang et al. (2017).

Thus, it was possible to detect a multitude of phenomena occurring in the space-

time varying strain measurements, such as: traveling in the lift-up phase, accompanied

with reflecting waves when the pushing-down begun; additionally, standing waves could

be seen when the pushing-down phase was crossing the inflection point, i.e. change

of acceleration signal; see Figures 2.20c-2.20c. The discussion on tension variation

went further, stating that:

The tension variation is sensitive to both the heave amplitude and the

period. This is because the static tension is dependent on the con-

figuration of an SCR. Meanwhile, the inertial force and hydrodynamic

loads would also contribute a lot to the tension variation. Tension varia-

tion should be definitely taken into account in the future vessel motion-

induced VIV prediction. (WANG et al., 2015, p. 398)

More significantly, Wang et al. (2017) carried a dominant parameters investiga-

tion through as to unravel more of the VSIV idiosyncratic features that affect the riser

general dynamics, which, in the end, is intimately related to the structural fatigue life;

see Figure 2.21. Unquestionably, one of the greatest difficulties found hitherto in the

catenary-like model analyses is to determine a representative KC value to characterize

the VSIV phenomenum, due to each cylinder section be subjected to different velocity

values.
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Formerly, the maximum KC measured within the cylinder span was being consid-

ered as a proper choice (WANG et al., 2014, 2015), suggesting that all the structure

would be subjected to an equivalent load depending on KCmax, independently whether

KC(s) could admit values of the same order at different sections.

That previous avowal showed to be true if the maximum Keulegan-Carpenter pa-

rameter is sufficiently high, KCmax > 39 (WANG et al., 2017). Hence, the general VSIV

out-of-plane response exhibited a strong dependence on the cylinder model maximum

reduced velocity value, VR,max, which is proportional to KCmax. Whereas, the low KC

regime13 presented a dual dependency on KCmax and the local distribution of KC(s)

along the catenary-like span.

Moreover, considering some key results presented in Wang et al. (2014), Wang et

al. (2017) assessed the VSIV out-of-plane fatigue damage taking into consideration the

lateral motion behavior. Most importantly, the VSIV in-plane response is more sensitive

to imposed amplitudes than frequencies, which leads to high KCmax regime. The VSIV

synchronization exhibits lateral movement dominant frequency, fb,dom, proportional to

the in-plane dominant frequency, fn,dom,

N =
fb,dom

fn,dom

,

assuming larger values as the KCmax increases (SUMER; FREDSØE, 1988; FER-

NANDES et al., 2011). As higher out-of-plane modes are excited, the local curvature

variation at the TDZ causes significantly accumulated damage.

In reality, typical sea conditions induces low KC values and it is not straightforward

to have a clear overview on how the VSIV promoted fatigue damage in a SCR. Mainly,

this occurs due to the dual dependency of both KCmax and local distribution along the

SCR length, KC(s).

Consequently, Wang et al. (2017) also suggests that further investigation should

be carried out in low KC regime for SCR and other compliant risers typical geometric

configurations used in-situ, such as: lazy-wave risers, free-hanging risers, amid others.

In conclusion to this discussion on Wang et al. (2017), it is noteworthy that the VSIV

dominant parameters discussion will be an essential and necessary subject matter to

the present thesis, which shall return to this point in order to carry out the VSIV re-

sponse analysis from a modal decomposition perspective, proposing modal dominant

13In which the VSIV amplitude response varies less in time, not displaying typical beating behavior.
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parameters to study the VSIV behavior in catenary-like structures.

Last but not least, Wang et al. (2019) presented a generalized in-plane global mo-

tion reconstruction method for SCR or other slender marine structures that assumes

large displacements, but small deformation. Their proposed methodology was vali-

dated both numerically and experimentally, displaying significantly accuracy (less than

1%).

Comparing measured and numerical results, there was a substantial amplification

on drag coefficient in the VSIV occurrence, which could suggest that typical hydrody-

namic parameters used in current offshore risers project designs need to be evaluated

in-situ sea conditions, aiming to develop better dynamic prediction tools.

There are some important differences between the experimental set-ups carried

out in Wang et al. (2014) and Rateiro et al. (2013) that should be addressed. Firstly,

the small-scaled models were conceptualized using different similarity scales. For in-

stance, Rateiro et al. (2012) presented a methodology considering Froude similitude,

as also carried out in Le Cunff, Biolley, and Damy (2005), which differs from the Cauchy

similarity used in Wang et al. (2014).

Besides, the conceptual design and material selection for both models are signif-

icantly distinct, inasmuch as Rateiro et al. (2012) proposed a silicon rose filled with

stainless steal micro spheres and Wang et al. (2014) used a steal hose with plastic

coating and inner copper core.

The material selected alters strongly which sort of sensoring system ought to be

used. As a steel hose presents rheology close to a linear material, the strain gauge

measurements are adequate, since the Hooke’s law relates both deformation and

stress measurements.

Nonetheless, a silicon hose has a more complex viscoelastic rheology, in which de-

formation and stress cycles depends on the movement amplitude and frequency, dis-

playing hysteresis features as well. Consequently, optical tracking cameras are more

suitable due to direct displacement measurement with high accuracy and precision

(SALLES; PESCE, 2019).

In addition, Wang et al. (2014) tests in air evidenced no lateral movement, con-

trarily to what was duly observed in the other catenary-like cylinder model (LIFE&MO,

2011c,e). This may be attributed to internal resonances within the cable model (SRINIL;

REGA; CHUCHEEPSAKUL, 2006; SRINIL; REGA, 2006, 2008) due to the significant
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difference between both models flexural stiffness, which differs in O [EIWang/EIRateiro] ∼
100 due to the material selected in each model.

Moving on to Rateiro et al. (2013), the catenary-like model was conceptualized as

to maintain Froude similarity with a real riser used by Petrobras (LIFE&MO, 2011a,b;

RATEIRO et al., 2012). The experimental tests pertained in a much more compre-

hensible investigations on SCR nonlinear dynamics due to several phenomena, such

as: structural, hydrodynamic and contact with marine soil (LIFE&MO, 2011a,b,c,d,e,

2012a,b,c,d).

These experimental tests ensued from a project known as “Nonlinear Dynamics

of Risers” sponsored by Petrobras, which had a broad scope of theoretical, numeric

and experimental approaches on the dynamic of risers subjected to nonlinear exciting

loads due to current, imposed motion at the upper extremity and concomitant effect of

both.

The cylinder in catenary-like configuration subjected to imposed motion at the up-

per end is a snippet derived from a colossal experimental database. The tests were

carried out with small-scale cylinder models in vertical and catenary-like conditions, in

different media (air and water) and at several facilities (LIFE&MO, NDF, TPN, IPT).

Figure 2.22: Local analysis of the target 29, including: local KC distribution with respect
to the imposed displacement at the top; and local VR as a function of an equivalent
global reduced velocity.

(a) Local KC (b) Local VR as a function of 2πA⋆
i

fi
f3

Source: Extracted from Rateiro et al. (2013).

Apropos of the small-scale model used in the VSIV tests, the aspect ratio was

O(L/D) ∼ 180 built of a silicone hose filled with stainless steel micro spheres, main-

taining similarity with a real deep water riser. The experimental set-up was rather ele-

gant with the small-scale model launched from a fixed structure and spanning a planar
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catenary-like configuration. The imposed movement occurred within the vertical plane,

originating an in-plane oscillation that shed vortex responsible to induce out-of-plane

dynamics.

Figure 2.23: Frequency ratio, relative frequency and amplitude responses with respect

to 2πA⋆
i

fi
f3

for different input amplitude conditions at the top.

(a) 2πA⋆
i = 5.7 (b) 2πA⋆

i = 14.2

(c) 2πA⋆
i = 27.5

Source: Adapted from Rateiro et al. (2013).

The cylinder movement was measured using a system of synchronized optical tar-
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get tracking cameras, capturing the spacial displacement of each monitored section

directly. This sort of assessing experimental data presents minimal interference and

high accuracy (A⋆
min ∼ 0.05) (SALLES; PESCE, 2019), which is required in order to

monitor displacement on cables or other high aspect ration structure.

The preliminary analysis of the catenary-like cylinder subjected to VSIV (RATEIRO

et al., 2013) was executed in the configuration space, i.e. selecting specific targets,

e.g. the 29th, as to observe local KC and reduced velocity; see Figure 2.22. Although

preliminary, this analysis showed some agreement with previous results, such as the

elastic mounted rigid cylinder in oscillatory flow response (SUMER; FREDSØE, 1988;

KOZAKIEWICZ; SUMER; FREDSØE, 1994).

The synchronization observed by Rateiro et al. (2013) displayed integer values, N,

between in-plane and out-of-plane responses, also depending on the local KC. Fur-

thermore, the Keulegan-Carpenter parameter depends on how the in-plane structural

response behaves, admitting different values through the cylinder span, KC(s).

Ergo, the catenary-like response in space of configuration did not turn to be a

straightforward task, given that the only controlled input is the imposed movement at

the hang-off point and the in-plane response is duly caused by it and depends heavily

in the own structural dynamics.

Rateiro et al. (2013) found that the out-of-plane experimental response, albeit com-

plex and highly nonlinear, showed to be well gathered with respect to a global reduced

value parameter,

2π
Ai

D

fi

f3

,

in which Ai and fi correspond to the imposed movement amplitude and frequency,

respectively, and f3 is the structural third natural frequency (coinciding with the second

out-of-plane mode); see Figure 2.23. Similarly, this parameter resembles the reduced

velocity used in Sumer and Fredsøe (1988) and Kozakiewicz, Sumer, and Fredsøe

(1994), inasmuch as the rigid cylinder local and global reduced velocity are equivalent

to each other.

Although the equivalent global reduced velocity could unveil some features of the

structural dynamics, the attempt of using a local reduced velocity parameter did not

succeed due to the concomitant presence of different values of KC(s) across the model

span wise; see Figure 2.23.
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In contrast with Rateiro et al. (2013) preliminary analyses on the VSIV response,

Pesce et al. (2017) carried out a complementary and deeper analysis of the cylinder

dynamics, including scalograms so as to display the synchronization between in-plane

and out-of-plane movements through time, and also orbits of selected points to identify

Lissajous loops as previously evinced in VSIV results (GRANT; LITTON; MAMIDIPUDI,

1999; LE CUNFF; BIOLLEY; DAMY, 2005; FERNANDES et al., 2008; FERNANDES

et al., 2011; FERNANDES et al., 2012; FERNANDES; MIRZAEI SEFAT; CASCÃO,

2014); see Figures 2.24-2.25.

Figure 2.24: Cartesian displacement trajectories for input test 2πA⋆
i = 10 and fi =

0.72Hz; fi/f3 = 1.

Source: Extracted from Pesce et al. (2017).

Analyses presented in Pesce et al. (2017) were realized considering the cylinder

movement around its static configuration14 in the global Cartesian reference frame.

Coincidentally, the out-of-plane direction is placed in the y-axis, which is aligned with

the binormal direction,~b; see Figures 2.25c-2.25d.

The local reference frame is composed of the tangent, ~t(s)15, normal, ~n(s), and

binormal, ~b(s), unit vectors, defining a positive orthonormal basis16 that spans the

Euclidean space, R3. Even so the set of intrinsic coordinates is a more suitable choice

to analyze the cylinder dynamics (WANG et al., 2019), Pesce et al. (2017) were able

to unveil lots of behaviors present in the VSIV dynamics.

14Under the assumption of small displacements.
15The coordinate s is used as the arc-length parametrization of a given differential curve in space,

{

~γ(s) : R→ R
3
}

.
16Also known as the TNB reference frame.
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Figure 2.25: Analyses of the Cartesian displacements for input test 2πA⋆
i = 10 and

fi = 0.72Hz; fi/f3 = 1.

(a) Scalogram: movement in the x-axis (b) Spectrogram: movement in the x-axis

(c) Scalogram: movement in the y-axis (d) Spectrogram: movement in the y-axis

(e) Scalogram: movement in the z-axis (f) Spectrogram: movement in the z-axis

Source: Developed by the author after Pesce et al. (2017).

Thus, spectral analyses of in-plane motions showed to be quasi-monochromatic,

except when the imposed frequency matches higher in-plane modes; see Figures

2.25b and 2.25f. In turn, the VSIV out-of-plane response exhibited multi-frequency

or even scattered frequency spectrograms, and several other phenomena, such as:

multi-modal behavior, parametric and internal resonance, Mathieu-like instability and

traveling waves; just to mention a few.

The present work is, as a matter of fact, a set of further experimental analyses of

the aforementioned results (PESCE et al., 2017), in which Galerkin’s decomposition

is carried out in order to obtain a reduced order system, unveiling some characteristic

featured of the VSIV in catenary-like riser models.
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Figure 2.26: VSIV response in the top point of a cantilever subjected to oscillatory flow:
(a) the instantaneous reduced velocity imposed in the circulation water channel; (b)
in-plane and out-of-plane responses, respectively; orbits between in-plane and out-of-
plane responses.

Source: Extracted from Neshamar, van der A, and O’Donoghue (2022).

Currently, Neshamar, van der A, and O’Donoghue (2022) shed light into the VSIV

of cantilever structures and array of cantilevers. The experimental set-up imposed

an oscillatory flow around the cantilever and the VSIV response is exhibited in both

in-plane and out-of-plane movements; see Figure 2.26. Interestingly, the full synchro-

nization between in-plane and out-of-plane responses occurred always at half period

of the semi-cycle. Neshamar, van der A, and O’Donoghue (2022) further argues on

this behavior and other characteristic features on the response phase.

Most significantly, the paper presents a discussion on the role of hydrodynamic

coefficients in the VSIV, specially the author declared that the added mass must be

separated into two different parcels: one that comes from flow-frequency itself; and

other that is due to the own structural vibration.
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Figure 2.27: Added mass coefficient evaluated using FF-LS methodology for a SCR
model (m⋆ = 1.53) subjected to oscillatory flow (Ai = 0.105m and Ti = 5.96s).

Source: Extracted from Zhang et al. (2021).

So as to evaluate the added mass and drag force coefficients, Neshamar, van der

A, and O’Donoghue (2022) used the Forgetting-Factor Least Square (FF-LS) method-

ology presented in Liu et al. (2018, 2020) and Zhang et al. (2021). Although promising,

this methodology focuses on the evaluation of optimal coefficients, which can lead to

values that does not have a physical meaning.

For instance, the total inertia of an oscillating cylinder in a quiescent fluid can be

written as

mtot = ms +ma = ms (1+a) , (2.17)

in which a= ma/ms is the added mass coefficient normalized by the structural mass. The

fundamental condition for a dynamic system is that the total mass never achieves zero,

mtot = 0. Given such physical restriction, the added mass must have an asymptotic

behavior, such as

mtot → 0
+⇐⇒ a→−1

+. (2.18)

Considering that both added mass coefficients, a and Ca, are related with each

other through the reduced mass,

Ca =
ma

md

=
ma

ms

ms

md

= am⋆, (2.19)

then,

Ca→−m⋆+. (2.20)
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Closely inspecting Figure 2.27, it is possible to verify that the minimum added mass

value estimated using FF-LS is Ca,min ≈ −2 (dark blue). Ergo, the physical constrain

obtained in Equation 2.20 is clearly not satisfied, Ca,min ≈−2 <−m⋆ =−1.53.

This divergence may be attributed to the lack of constrains in the FF-LS formulation,

which searches for an optimal solution and not necessarily to one that is subjected to

physical constrains, namely that the kinetic energy should be strictly positive.

The physical constrains can be considered as Lagrange’s multipliers that should

be introduced into the FF-LS objective function, using typical non-linear estimation

methods, such as: Tikhonov’s regularization; filtering algorithms; Bayesian statistical

prior functions; amid others (CAMARGO, 2013; PELLEGRINI, 2019).

2.2.3 Other numerical models

Several numerical models were developed over the last decade to predict VIV and

VSIV response. Generally, the VSIV models are adaptations on VIV ones, focusing

on calibrating coefficients in order to capture the VSIV characteristic features (GRANT

et al., 2000; LE CUNFF et al., 2009).

Wu et al. (2015) proposed an empirical model based on RIFLEX and VIVANA ap-

proach that was able to assess the fatigue damage on a catenary-like riser model.

Although the assessment gave an overshoot value, given several simplification as-

sumptions considered, the empirical model was capable of predicting the out-of-plane

response frequencies and mode fairly well.

A time-domain model was introduced in Lu et al. (2019) so as to predict VSIV

response on flexible risers, using a FE approach. The hydrodynamic forces were eval-

uated using rigid cylinders forced vibration experimental responses in which a period

identification criterion was established in order to divide the entire vibration process

into segments characterized by exciting and damping behavior.

Based on this criterion, a non iterative solving model evaluates modal space re-

sponses, assuming the VIV entered an ideal lock-in stage for each reduced velocity

range. The time-domain model is tested and validated, comparing response predic-

tions for steady and unsteady flows with experimental data.

Firstly considering the VIV, Thorsen, Sævik, and Larsen (2014) proposed a sim-

plified method for time-domain simulations that takes into account a semi-empirical

approach. The relative fluid velocity vector is used to decompose the external force ex-
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erted by the fluid into in-plane and out-of-plane components. The out-of-plane forces

are written with respect to equivalent lift, damping and added mass coefficients, con-

sidering a typical Morison approach.

The synchronization was considered to be the adjustment between frequencies

and phases in a coupled oscillator system. Based on a Kuramoto synchronization

model (IZHIKEVICH; KURAMOTO, 2006), the lift force instantaneous frequency is

written as a sum of the shedding frequency and another function that acts as a tuning

element, varying the lift force frequency around the shedding one. The lift force fre-

quency increase or decrease depends on the relative phase between the out-of-plane

movement and the correspondent lift force phases.

Experimental force coefficient data obtained by Gopalkrishnan (1993) was used

in order to evaluate the proposed synchronization model. Further developments on

this model were presented in Thorsen, Sævik, and Larsen (2015a,b), taking into con-

sideration the in-plane movement as well and also simplifying the synchronization lift

phase model. Thorsen, Sævik, and Larsen (2016, 2017) presented time-domain sim-

ulation regarding oscillatory flow using the same calibrated model, achieving a good

agreement with experimental data previously obtained (WANG et al., 2014).

Contemporary works on the FIV phenomena have been focused in new inroads,

such as Deep Neural Networks (DNN) and other Artificial Intelligence (AI) based al-

gorithms as to predict complex dynamic behavior and assess fatigue damage (CANN,

2022; ZHANG et al., 2022). This sort of model works together with numerical analyses

obtained with FE models in other to calibrate neural network to identify patterns and

tune hidden layers.

The future of FIV phenomena analyses seems to go in the direction of new paths,

regarding AI and physical based machine learning models in order to simplify the pre-

diction of nonlinear systems. The computational capacity at the moment is not able

to deal with CFD analyses on high aspect ratio structures subjected to a multitude of

physical phenomena17 at once. This limitation is particularly due to the huge mesh

size needed to fully represent a deep water riser.

Table 2.2.3 collects key references discussed in the present memoir, serving as a

chronological guide that gathers some information on the VSIV. It is also given further

17Such as: 3D current profiles, internal waves, seismic phenomena on seabed, interaction with other
structures, internal multiphase flow, internal material composition and surface phenomena, just to cite a
few.
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details on which riser model type and imposed amplitudes18 are presented.

Table 2.3: VSIV references chronological guide. Nomenclature: Steel Catenary Riser
(SCR); Scaled Catenary Riser (ScCR); Rigid Right Cylinder (RRC); and Scaled Flexible
Horizontal Cylinder (SFHC).

Reference Year Model A⋆
i

Grant et al. (1999) SCR 4, 24, 32

Grant et al. (2000) SCR 4, 24, 32

Chang and Isherwood (2003) SCR 4.3-43

Le Cunff et al. (2005) ScCR 352 (horizontal), 141 (vertical)

Fernandes et al. (2008) RSC 1.59, 3.19, 4.78

Le Cunff et al. (2009) ScCR 352 (horizontal), 141 (vertical)

Fernandes et al. (2011) RSC 1.59, 3.19

Fernandes et al. (2012) RSC 1.59, 3.19, 4.78, 6.37

Rateiro et al. (2013) ScCR 0.8, 1.6, 3.2, 4.8

Fu et al. (2013) SFHC 4.14-28.33

Fernandes et al. (2014) RSC 1.59, 3.19, 4.78, 6.37

Wang et al. (2014) ScCR 4.4, 8.8, 13.2, 15.4

Wu et al. (2015) ScCR 4.4, 8.8, 13.2, 15.4

Wang et al. (2017) ScCR 4.4, 8.8, 13.2, 15.4

Fu et al. (2017) SFHC 4.14-28.33

18Normalized with respect to the cylinder diameter, A⋆
i
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Table 2.3: VSIV references chronological guide. Nomenclature: Steel Catenary Riser
(SCR); Scaled Catenary Riser (ScCR); Rigid Right Cylinder (RRC); and Scaled Flexible
Horizontal Cylinder (SFHC).

Reference Year Model A⋆
i

Liu et al. (2017) SFHC 4.14-28.33

Pesce et al. (2017) ScCR 0.8, 1.6, 3.2, 4.8

Thorsen et al. (2017) Numerical 4.4

Yuan et al. (2018) SFHC 4.14-28.33

Lu et al. (2019) Numerical 4.14-28.33

Source: Developed by the author.
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3 EXPERIMENTAL ARRANGEMENT AND ANALYSIS

METHODOLOGY

Modal reconstruction on Fourier , 2022

Digital print

This chapter is devoted to the methodology which serves as a basis for the present

work. It starts by presenting the testing model and the experimental arrangement used

in order to observe the VSIV in a small-scale model and to record the fluid-structure

interaction dynamics data.

Besides, a summary on the test matrix is going to be detailed, properly presenting

the input parameters used in the experimental campaigns and how the tests were sys-

tematically conduced and registered. It is also presented a brief discussion on the real

riser paradigm, including some challenges associated with technological limitations to

represent a real structure dynamics in laboratory.

Finally, regarding the basis provided by the previous discussion, the last section

of the following chapter serves the purpose of presenting the experimental analysis

methodology, providing a necessary set of techniques employed in the present work.

3.1 Experimental description

As mentioned, this first section is a concise, albeit suffice, presentation of the mate-

rials used in order to obtain experimental data on the VSIV acting upon a catenary-like

riser model.
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3.1.1 Small-scale riser model: concept, design and characteriza-

tion

As formerly stated, the testing model was conceptualized to maintain similarity with

a real riser, which is a challenging task due to practical limitations on materials selec-

tion and experimental feasibilities. The model is built of a silicon hose filled-up with

stainless steal micro-spheres and this choice of materials and design is addressed in

the following paragraphs; see Figure 3.1.

The small-scale prototype main goal was to observe in laboratory some fluid-

structure interaction phenomena present in risers dynamics due to incident current

and imposed motion at the upper portion which is attached to a floating unit.

Figure 3.1: Prototype used to measure in air the model equivalent linear structural
damping. In detail: the compact heavy filling and the optical targets attached to the
model.

Source: Developed by the author.

Table 3.1 unveils some of the governing parameters on the hydroelastic dynamics

of a catenary-like structure subjected to the action of Vortex Self-Induced Vibration.

The set contains parameters typically found in fluid dynamics, such as the Reynolds’,

Strouhal’s and Froude’s numbers.

Others, like the Keulegan-Carpenter’s number, appears in the hydrodynamics of

floating structures, or the reduced mass and reduced velocity, which are commonly
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associated to the VIV phenomenon.

Table 3.1: Main nondimensional parameters related to the hydroelastic dynamics of a
catenary-like riser model subjected to the imposed motion at the top due to the action
of gravitational waves on a floating unit.

Parameter Symbol and definition

Froude’s number Fr = Ui√
gL
∼ 2πωA√

gL

Reynolds’ number Re = UnD
ν

Strouhal’s number St = fsD
Un

Keulegan-Carpenter’s number KC = Ui
fiD
∼ 2πA⋆

i

Structural damping ζ

Reduced velocity VR = Ui
fb,ND

Reduced shedding frequency f ⋆s = fs
fb,N

Reduced mass m⋆ = ms
md

= 4ms

ρπD2

Added mass a = ma
ms

Added mass Ca =
ma
md

Bending stiffness K f =
λ f

L
= 1

L

√

EI
T

Axial stiffness Ka =
EA
T

Soil stiffness Ks =
ksEI

T 2

Source: Developed by the author.
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Interestingly, the catenary-like geometry configuration is represented by the axial

and bending stiffness parameters that take into consideration the cable traction at the

TDZ, an important structural parameter in this case. The contact between riser with

the seabed appears on the soil stiffness parameter; see Table 3.1.

Table 3.2: Mechanical properties of the chosen operational riser, the small-scale and
the “as-built” models.

Data “As-built”

Internal diameter (mm) 15.80

External diameter (mm) 22.20

Angle (◦) 71.5

Water line (m) 2.50

Depth (m) 3.50

Anchor distance (m) 2.50

Total length (m) 6.65

Mass per length, ms (kg/m) 1.14

Linear structural damping, ζ 0.53%

Weight in air (N/m) 11.18

Weight in water (N/m) 7.39

Axial rigidity, EA (kN) 1.0-1.6

Bending stiffness, EI (Nm2) 5.60E-02

Flexural length, λ f (mm) 49

Reduced mass, m⋆ = ms/md 2.95

Source: Developed by the author.

The choice of a set of representative parameters is a difficult task. Nonetheless, it

was possible to maintain similarity between real riser and scaled model considering a

few physical parameters, as seen in Table 3.2.

The axial and bending rigidities obtained were typical of polymeric materials,

whereas the diameter achieved was unfeasible to be monitored using conventional

techniques. In the end, the model diameter was augmented, whilst maintaining the
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axial and bending stiffness (LIFE&MO, 2011c,e; RATEIRO et al., 2012).

Consequently, the prototype was constructed using a polymeric circular hose filled-

up with a heavy material to reach the scaled distributed mass, ms. The filling was limited

to safe, non-toxic, durable in water environment materials that should not modify the

axial and bending rigidities, EA and EI, respectively.

The solution was to insert stainless steel micro-spheres into the hose, which has a

second order effect on the aforementioned structural quantities variation.

Choosing a polymeric material adds to the model a hysteric behavior due to the

material viscoelasticity, which was considered during the experimental axial rigidity

evaluation. The viscoelastic behavior turns the model EA dependent on the deforma-

tion time rate, which, in turn, depends on the structural movement frequency.

Although the VSIV in catenary-like risers is characterized by large amplitude re-

sponses, the structural deformation is small, 1% to 2%. The deformation cycle also

presents low frequencies. Such an effect is presented in the prototype mechanical

characterization, in which the axial stiffness value is given as an interval; see Table

3.2.

The viscoelasticity seems to be an extra complication on the structural dynamics

analysis, which can be a source of delay into the structure response given a varying

load.

Nonetheless, the presence of hysteresis also occurs in real flexible-pipes risers,

as there are several polymeric layers and other coating substance around metallic

components in order to reduce friction.

The discussion on the testing model concept and design is extensive and full of

details. The reader is invited to check the Appendix A in order to obtain further infor-

mation on these topics, including the process of similarity through Froude’s scale and

the prototype mechanical properties experimental characterization.

3.1.2 Experimental arrangements

The experimental set-up constructed to study vertical and catenary-like prototypes

subjected to hydroelastic phenomena, such as VIV and VSIV. The testing arrange-

ments exploited thoroughly the towing carriage and channel in the Institute for Tech-

nological Research (IPT), which provided a plethora of experimental data on structural
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non-linear dynamics due to incident flow, oscillatory imposed movement at the top in

quiescent fluid and also the concomitant effect of them.

Three different small-scale models were used in the experimental campaigns and

each one was tested in a different static configuration. The first model was a vertical

cylinder (FRANZINI et al., 2016a; FRANZINI et al., 2016c), whilst the others were

launched in the planar catenary-like shape and these models differ from each other

with respect to the reference plane used to place their static configuration.

The reference planes are aligned with the towing channel in such way that one

model is longitudinal to the relative flow generated by the carriage movement and the

other transverse to the same flow. Ergo, they are referred as the longitudinal and

transversal catenary-like models.

Figure 3.2: Sketch of the experimental arrangement used in the longitudinal catenary
model.

θt
Plane XZ

Ufar Unear

Submerged
cameras Logitudinal

catenary
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load cell

cameras
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n̂
t̂
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êz

êxO

Source: Developed by the author.

Due to its configuration, the longitudinal model presents a different dynamic re-

sponse depending on whether the incident current is placed on the structure intrados

or extrados regions, U f ar and Unear, respectively; see Figure 3.2. In turn, the current is

always perpendicular to the transversal model.

In reference to the imposed motion at the top tests, only the longitudinal model was

tested due to the absence of incident current. The imposed oscillations acted as the

floating unit where the riser model is attached, this movement being caused by incident

gravitational waves acting on the vessel. The tests were executed with harmonic mono-
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chromatic imposed motion (regular waves) and a multi chromatic one (irregular waves),

evaluated using a typical JONSWAP spectrum.

Moreover, the tests were executed using two different soil contact conditions: one

rigid and other over a foam layer, mimicking a softer seabed. As previously mentioned,

the subsequent work is a snippet on a major experimental campaign, focusing only on

tests with the longitudinal catenary-like model placed in a rigid soil and subjected to

imposed mono-chromatic motion at its hang-off point.

The acquisition apparatus was composed of a LYNX® ADS2000 system, which has

64 channels with 16bits each (14 bits of precision). Each analog channel has its on

dedicated signal conditioner circuit, LYNX® model AI2164, that has a second order

anti-aliasing analog filter with fixed cut frequency, fcut = 3000Hz. Besides, the acqui-

sition system had sampling frequency of Fs = 60Hz, which is suffice in this particular

arrangement; see Appendix B.3.

Figure 3.3: Testing model monitored span both under and out of water. The sketch
also shows the planar catenary-like 3D geometric configuration in all Cartesian planes.
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Source: Adapted from LIFE&MO (2012d).

Figure 3.2 also illustrates the measuring system used to record the structural dy-

namics, composed of an optical target tracking Qualisys® cameras set placed both

under and above water, and a load cell that measures the traction at the hang-off point.
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As to complete the experimental arrangement, the testing model upper extremity

was connected to a servo driver attached to the towing carriage. The actuator was

capable to input harmonic oscillations with controlled amplitude and frequency, and

irregular oscillations based on a JONSWAP spectrum.

The connection between the model hang-off and the actuator was a cantilever with

fixed angle, called the top angle or angle at the top that was measured with respect

to the horizontal. Such angle was determined by the own full scale riser model that

inspired the small-scale prototype design; see Table 3.2 and Appendix A.

Although the load cell calibration is fairly simple, the tracking cameras need a so-

phisticate method that determine a monitored volume around where the model should

exist. This requires an initial educated estimation on the vibration amplitude response

in order to identify the largest possible volume under and above water.

Consequently, this process can lead to an iterative reassembling of the cameras

until the calibration converges. Figure 3.3 displays partially the monitored volume under

and above water line where the cameras could measure the longitudinal catenary-like

shape model instantaneous displacement.

Figure 3.4: Group of optical target tracking cameras used to capture 3D displacement
of the model at each sampled instant.

(a) Set of cameras out of water.

Model

Aerial cameras

(b) Set of cameras under water.

Model

Submerged Cameras

Source: Adapted from LIFE&MO (2012d).

The synchronization amid acquisition system, sensors and the tests start was pos-

sible due to a common trigger that could be activated by starting the camera recording

software in each testing case. The array of tracking cameras is exhibited in Figure 3.4,

in which is possible to have a clear idea on the cameras placement above and under
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the water free surface; see Figures 3.4a-3.4b, respectively.

It is necessary at least 2 cameras, albeit ideally 3 or more, to determine each

optical target position in space. For that reason, the set of submerged cameras worked

in different depth and spatial angle ranges, observing the same target in at least 2 of

them. Still, some targets could not be totally observable in the final data base, specially

the ones placed near the water line region.

Figure 3.5: Aerial portion of the longitudinal catenary-like model showing in detail the
imposing heave motion actuator and the load cell installed at the hang-off point.

Model

Load cell

Actuator

Source: Adapted from LIFE&MO (2012d).

In turn, Figure 3.5 focus on the model hang-off point, which is attached to a load cell

and a cantilever connection with the actuator. The servo driver is composed of a step

motor that acts on a endless screw that provides a controlled vertical displacement.

The actuator is connected to a control system that is set by an user to execute a

particular motion.

The load cell is a typical 1D S-type that is capable of measuring directly the traction

at the hang-off point. The top traction, Tt , is a valuable experimental data due to the

riser dynamic behavior be highly dependable on the geometric stiffness in region where
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the curvature rate of change is negligible, i.e. away from the extremities where the

bending effect is important.

The top traction variation over time is also important, because it is responsible for

a modulation on the structure natural frequencies. This variation showed to produce

a substantial difference on the structural behavior, as mentioned previously (SILVEIRA

et al., 2007; WANG et al., 2015).

Figure 3.6: Vertical model testing set-up carried out in TPN facility.

(a) Experimental arragement description (b) Cartesian axes

Source: Extracted from Salles (2016).

Finally, Salles (2016) conduced another experimental campaign with a vertical

model in air at the TPN facility. These tests focused on assessing further results ob-

tained with the vertical riser tests in water. Nonetheless, Salles (2016) also measured

an equivalent viscous linear structural damping coefficient which is also adopted to all

other prototypes based on the same model, among them the longitudinal catenary-like;

see Table 3.2.

The experimental arrangement was fairly simple, composed of a prototype obtained

as described in Appendix A, placed in a vertical configuration; see Figure 3.6. The

same actuator described previously was used at the top and the model was attached

to it through a S-type load cell that measured the top traction.
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In addition, a robust load cell capable of measuring load in all direction and rotation,

6 dof, was placed at the bottom extremity; see Figure 3.6a. This was done for the

model weight in air caused some variation on the bottom traction due to relaxation of

the model viscoelastic hose material.

Hence, every test was preceded by a check on the bottom load in order to avoid

compression and, if necessary, another calibration on the top. Figure 3.6b shows the

testing arrangement.

Figure 3.7: Optical target tracking cameras used in the vertical riser model tests in air.

Cameras

Source: Extracted from Salles (2016).

These extra tests conducted with a vertical model in air were monitored using a

similar set of optical tracking Qualisys® cameras and, inasmuch as the experimental

set-up in air is simples, only 3 cameras were needed; see Figure 3.7. The acquisition

system was the same used in the tests in water at IPT facility.

3.2 Longitudinal catenary-like model: modal charac-

terization

Following the experimental arrangement assemblage, a series of free decay tests

were executed to evaluate the structural system natural frequencies and their respec-

tive modal functions. The small-scale model is a catenary-like circular tube and its

vibration modes occur in two different planes, namely in the catenary plane (in-plane)

and perpendicular to the catenary plane (out-of-plane).

The in-plane and out-of-plane are uncoupled due to a negligible torsional load in the
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experimental arrangement. In the TDP region, some torsional loads can occur caused

by of some assemblage misalignment, loss of the tube circular symmetry, contact with

a non-rigid seabed or even rolling movements at the TDZ. However, such torsional

effects are minimal and, consequently, the in-plane and out-of-plane modes are duly

uncoupled from each other.

Table 3.3: Experimental natural frequencies obtained from free decay tests in water
and their correspondent mode occurrence plane.

Global

mode

Natural frequency,

fN (Hz) (CI 95%)

Occurrence

plane

I 0.4265 (0.4185 to 0.4346) Out-of-plane

II 0.7205 (0.7105 to 0.7306) In-plane

III 0.8582 (0.8382 to 0.8782) Out-of-plane

IV 1.1258 (1.1140 to 1.1377) In-plane

V 1.2865 (1.2633 to 1.3097) Out-of-plane

VI 1.6207 (1.5944 to 1.6470) In-plane

VII 1.7378 (1.6427 to 1.8328) In-plane

VIII 1.7494 (1.6756 to 1.8232) Out-of-plane

IX 2.0960 (2.0250 to 2.1669) In-plane

X 2.1824 (2.1386 to 2.2263) Out-of-plane

XI 2.3900 (2.2847 to 2.4952) In-plane

XII 2.6479 (2.5199 to 2.7759) Out-of-plane

XIII 2.9940 (2.9551 to 3.0328) In-plane

XIV 3.0207 (2.9788 to 3.0626) Out-of-plane

XV 3.6495 (3.4944 to 3.8047) In-plane

XVI 3.7547 (3.6970 to 3.8123) Out-of-plane

Source: Developed by the author.

Table 3.3 shows the experimental characterization obtained executing 6 different

free decay tests. The natural frequencies were computed in the frequency domain by

analyzing all optical targets temporal series after an impulsive input.

The methodology was fairly simple, taking advantage of the frequency response of

all targets displacement series evaluated using a typical Fast Fourier Transform (FFT),

necessary windowing and zero-padding procedures.

Each mode is evinced as a peak in the frequency response and the correspondent
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eigenvalue is determined as the mean of all peaks around a fixed frequency value. The

confidence interval (CI) is computed as a typical statistical hypothesis test, using two

tailed Student’s T-distribution with fixed confidence, p = 0.05 (95%).

The occurrence plane could be identified due to both in-plane and out-of-plane

modes be uncoupled and the plane catenary-like geometric configuration be contained

in the XZ plane, whilst the y-axis points to the out-of-plane direction; see Figure 3.2-

3.3. Thus, the former were observed in the x,z-axes Cartesian displacements series,

whilst the latter in the y-axis Cartesian displacements ones.

Accordingly, analytic or numerical approaches should be considered as to charac-

terize the structural modes. Whilst the latter are generally Finite Element (FE) models

composed of 3D beam or cable elements that are commonly computed by means of

commercial solvers, e.g. Orcaflex®, the former are only possible to be obtained by

using perturbation methods along with curved beam models, such as the WKB(J)1

approximation (PESCE et al., 1998; PESCE; MARTINS, 2005; CHATJIGEORGIOU,

2008).

For instance, Pesce and Martins (2005) present a closed form solution for the

Sturm-Liouville’s problem of a linearized catenary-shaped riser, considering its dynam-

ics to occur only in the structure plane (2D). The elastica is supposed to be inextensible

and hinged-hinged at the bottom and upper points. Bending effect and TDP movement

are not considered as well.

Both eigenvalues and normal eigenvectors, Ωn and ϕn (θ (ξ ) ,θL), respectively, can

be obtained with respect to the hang-off angle, θL, and the unstretched Lagrangian

nondimensional arc-length, ξ = s/L,

ϕn (θ (ξ ) ,θL) ∼ cos
1/4 (θ (ξ ))sin

[

Λn

∫ θ(ξ )

0

cos
−3/2

(

θ ′
)

dθ ′
]

,

Ωn = Λn tan(θL)

√

T0

(m+ma)L
, (3.1)

Λn =
nπ

∫ θL
0

cos−3/2 (θ ′)dθ ′
,

in which n is the mode number; T0, the traction at the TDP; m and ma, structural and

1The perturbation technique is usually known as the acronym WKB(J), which stands for
Wentzel–Kramers–Brillouin(-Jeffreys), or even as the Liouville–Green (LG) method.
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added masses, respectively; and L, the structural length; see Figure 3.8.

Figure 3.8: Some normal normalized eigenvectors for catenary-shaped riser obtained
by Pesce and Martins using the WKB approximation.
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Source: Developed by the author.

Chatjigeorgiou (2008) presents another application of the WKB method to the lin-

earized catenary-like risers, assuming nonzero bending stiffness at the bottom sag re-

gion where the curvature varies considerably. In addition to bending effect, the model

takes into account variations on the geometric stiffness and static configuration along

the structure span, and the TDP is supposed fixed.

Figures 3.9a-3.9b and 3.9c-3.9d illustrate the in-plane normal and out-of-plane

modal shapes for a catenary-shaped structure, respectively. Chatjigeorgiou argues

that the complete model can be simplified if the static configuration effect is considered

to be one order of magnitude smaller than the one due to geometric stiffness.

The variation on static configuration plays a major role only in the in-plane dynam-

ics, where the structural effective weight breaks symmetry imposing static curvature

along the span. Consequently, both complete and simplified models should retain

terms of the order O (ε) if the in-plane modes are considered, ε ≪ 1.

Chatjigeorgiou identifies that omitting terms of the order O (ε), alternatively ε ≈ 0,

would diminish the static configuration variation influence on the structural response,

pointing out that this would be a defensible assumption for the out-of-plane modes

attainment.
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Figure 3.9: Structural modal shapes obtained by Chatjigeorgiou’s complete and simpli-
fied models using the WKB approximation.

(a) Complete model: normal modes, ε ≪ 1 (b) Simplified model: normal modes, ε ≪ 1

(c) Complete model: out-of-plane modes, ε ≈ 0 (d) Simplified model: out-of-plane modes, ε ≈ 0

Source: Extracted from Chatjigeorgiou (2008).

Note: Following Chatjigeorgiou’s nomenclature notation: x is the nondimensional arc-length; y0(x), the

modal shape; and the perturbation scale parameter, ε.

Pesce and Martins (2005) presented a closed form solution for both in-plane modes

normal and tangent parcels, ϕn (ξ ) and ψn (ξ ), respectively, attained from the 2D

catenary-shaped structural formulation. In turn, Chatjigeorgiou (2008) started its WKB

approximation from a linear Euler-Bernoulli curved beam formulation and, thus, only

the normal parcel was obtained.

The precise nomenclature should be in-plane and out-of-plane modes, however,

it is acceptable to reason that the latter always occurs in the binormal direction in

a planar catenary-like structure. Ergo, the normal and binormal nomenclatures are

borrowed from the differential geometry context and they are used in order to call the

in-plane normal parcel and out-of-plane modes, respectively.
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Considering the complete model, the differences between normal and binormal

modes are subtle for lower modes. Nonetheless, it is possible to note a little variation

on the modal shape maximum displacement position in which the out-of-plane modes

seem to be more shifted towards the TDP, presenting these maximum at lower points

nearer to the fixed TDP when compared to the normal modes. Besides, the bending

rigidity effect is more pronounced in the normal modes due to the asymmetry caused

by the static configuration on the structural elastica; see Figures 3.9a-3.9b.

More significantly, even though Chatjigeorgiou (2008) takes into account nonzero

bending, Figures 3.9b and 3.9d resemble closely the normal modes obtained in Pesce

and Martins (2005), in which the bending effect is absent; see Figure 3.8.

Nevertheless, from the Galerkin’s decomposition perspective, all modes presented

so far are equivalent, as they do not violate the boundary conditions of the catenary-

shaped structural configuration2.

The resemblance on the normal and binormal modes topology, equivalently their

general shape, is accounted for the linearization on the plane catenary-shaped struc-

tural model. Full 3D catenary-like structural models, such as in Triantafyllou (1994)

and Chatjigeorgiou and Mavrakos (2010), sheds light on how the normal and binormal

linearized oscillators present similar terms in their equations, which can indicate why

both modal shapes are similar when it is assumed that the structure is inextensible and

in the small out-of-plane displacement and angle regime.

The numerical approach is based on a small-scale model3 that was implemented

in Orcaflex® so as to compute the structural eigenfunctions. The FE model assumes

that the structural material is linear, as it is currently impossible to define a material of

different rheology on the numeric solver.

2It is noteworthy that the modes obtained by Pesce and Martins (2005) are indeed for a classical
catenary structural configuration and, in turn, the ones by Chatjigeorgiou (2008) represents a catenary-
like structure due to the presence of bending stiffness. Thus, s.str., the terminology “catenary-shaped”
is only applicable in the context of Pesce and Martins (2005).

3Orcaflex® cannot simulate the experimental prototype in its as-built scale due to the geometric and
mechanical properties values are too small. So, the small-scale model was scaled using the Froude
scale methodology with λ ′ = 100 : 1; see Appendix A.
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Table 3.4: Natural frequencies and modal shapes obtained from Orcaflex® numerical
model.

(continued on next page)

Global

mode
fN (Hz)

Occurrence

plane

Modal shape

T (ŝ) N (ŝ) B(ŝ)

I 0.4235 Out-of-plane

II 0.7113 In-plane

III 0.8420 Out-of-plane

IV 1.1159 In-plane

V 1.2663 Out-of-plane

VI 1.5367 In-plane

VII 1.6983 Out-of-plane

VIII 1.7329 In-plane

IX 2.1397 Out-of-plane

X 2.1466 In-plane
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Table 3.4: Natural frequencies and modal shapes obtained from Orcaflex® numerical
model.

(final page)

Global

mode
fN (Hz)

Occurrence

plane

Modal shape

T (ŝ) N (ŝ) B(ŝ)

XII 2.5922 Out-of-plane

XIII 3.0401 In-plane

XIV 3.0568 Out-of-plane

XV 3.5003 In-plane

XVI 3.5346 Out-of-plane

XVII 3.9719 In-plane

XVIII 4.0261 Out-of-plane

XIX 4.1484 In-plane

XX 4.5313 Out-of-plane

Source: Developed by the author.

Note: The anchor non-monitored span is not represented.
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Figure 3.10: Structural II mode (1st in-plane mode), f
(1)
N,n = 0.7113Hz, obtained with the

numerical model on Orcaflex®. Normal and binormal vectors are displayed in red and
orange, respectively.

(a) Instant A

X

Z

80 m

OrcaFlex 11.0d: At35_Scaled_2.sim (modified 07:16 on 22/12/2021 by OrcaFlex 11.0d)

azimuth=270; elevation=0

(b) Instant B (half a cycle after A)

X

Z

80 m

OrcaFlex 11.0d: At35_Scaled_2.sim (modified 07:16 on 22/12/2021 by OrcaFlex 11.0d)

azimuth=270; elevation=0

Source: Developed by the author.

The numerical model is constructed from a steel catenary riser hinged at the float-

ing unit and it is launched forming a half catenary-like shape, in which the bottom part

is in touch with the seabed and the anchor is located far away from the TDZ; see Figure

3.10. The TDP is also supposed fixed for each mode.

The modal shapes obtained by the Orcaflex® numerical model are thoroughly pre-

sented in Table 3.4. The numerical solver considers a nonrigid soil which affects the

in-plane normal mode, as it can be seen detailed in Figure 3.10, where the riser pene-

trates slightly the soil, creating an extra small lobe in the first normal mode (II mode);

see Figure 3.10b4.

Table 3.4 depicts the secondary lobe presence up to the third normal mode (II,

IV and VI modes). The absence of this secondary lobe in higher modes could be

accounted for the bending effect at the bottom sag region limiting the curvature locally,

which mitigates steadily the soil penetration.

More importantly, the Orcaflex® modes show the static configuration effect on

higher modes. The static curvature breaks the symmetry and it appears an oblique

tendency on the vibration shape.

4The scale factor used in Orcaflex® exaggerates the amount of penetration that would occur in a real
case.
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Table 3.5: Out-of-plane modes natural frequencies, fN,b (Hz), obtained in free-decay

tests and numerically using Orcaflex®.

Mode
fN,b (Hz)

Experimental (95% CI) Orcaflex

1st 0.4265 (0.4185 to 0.4346) 0.4235

2nd 0.8582 (0.8382 to 0.8782) 0.8420

3rd 1.2865 (1.2633 to 1.3097) 1.2663

4th 1.7494 (1.6756 to 1.8232) 1.6983

5th 2.1824 (2.1386 to 2.2263) 2.1397

6th 2.6479 (2.5199 to 2.7759) 2.5922

7th 3.0207 (2.9788 to 3.0626) 3.0568

8th 3.7547 (3.6970 to 3.8123) 3.5346

9th - 4.0261

10th - 4.5313

Source: Developed by the author.

The rising question is what set of modal shapes should be considered as to use in

the Galerkin’s decomposition. The analytic modes are easier to be used, inasmuch as

their closed form is straightforward to compute (PESCE; MARTINS, 2005; CHATJIGE-

ORGIOU, 2008). In turn, the Orcaflex® modes are closer to the experimental prototype

modal shape, since it takes into consideration the extensibility and bending effects at

the bottom sag region.

On top of this, the structural “as-built” eigenvectors are farther complicated than

those presented due to the variation on TDP position with respect to time, causing

modulation on the structural eigenfrequencies.

Tables 3.5-3.6 shows the natural frequencies computed by Orcaflex®. The out-of-

plane natural frequencies, in the binormal direction, Table 3.5, show excellent agree-

ment with all experimental eigenvalues within their confidence interval. It is defensible

that such agreement points to a conclusion that the Orcaflex® binormal modes are

excellent estimations of the true modal shapes.
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Table 3.6: In-plane modes natural frequencies, fN,n = fN,in−plane (Hz), obtained in

free-decay tests and numerically using Orcaflex®.

Mode
fN,n (Hz)

Experimental (95% CI) Orcaflex

1st 0.7205 (0.7105 to 0.7306) 0.7113

2nd 1.1258 (1.1140 to 1.1377) 1.1159

3rd 1.6207 (1.5944 to 1.6470) 1.5367

4th 1.7378 (1.6427 to 1.8328) 1.7329

5th 2.0960 (2.0250 to 2.1669) 2.1466

6th 2.3900 (2.2847 to 2.4952) 2.5673

7th 2.9940 (2.9551 to 3.0328) 3.0401

8th 3.6495 (3.4944 to 3.8047) 3.5003

9th - 3.9719

10th - 4.1484

Source: Developed by the author.

In contrast, the in-plane natural frequencies obtained in the experimental free decay

tests are a bit off the ones computed by Orcaflex®; see Table 3.6. This could be

explained by the lesser quality on free decay tests in in-plane coordinates compared

to the out-of-plane tests. Furthermore, the experimental arrangement has a rigid soil,

differing slightly from the Orcaflex® model.

Figure 3.11 displays a typical normal amplitude response found in the present ex-

perimental data. Figure 3.11b shows in detail that the first normal mode does not

present the small lobe as the one presented in the Orcaflex® first in-plane modal shape;

see Figure 3.10.

This difference may be attributable to the discrete model used in the Orcaflex®

modal analysis, since the developed model did not take into consideration a rigid soil

contact condition at the bottom.
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Figure 3.11: Typical experimental normal displacement spectrogram and scalogram
found in the present work. Case: Ai = 70mm and fi = 0.42Hz, alternatively At70-ID16.

(a) Normal displacement spectrogram (b) Normal displacement 3D spectrogram

(c) Normal displacement scalogram (d) Normal absolute displacement scalogram

Source: Developed by the author.

The VSIV is characterized by the out-of-plane movement and the Orcaflex® modal

analysis show excellent agreement with the experimental results obtained. Contrast-

ingly, the numerical in-plane normal modes were not very representative of what could

be observed in the experimental data, as the discrete model did not have the rigid soil

contact condition at the bottom.

Considering the results presented in Pesce and Martins (2005) and Chatjigeorgiou

(2008), the normal modes show great similarity with the out-of-plane modes and, for

this reason, the Galerkin’s decomposition of the in-plane normal motion will be also

carried out using the binormal eigenfunctions in lieu of the ones obtained previously.

3.2.1 Test matrix and selected cases

The experimental tests were carried out considering variations on the displacement

amplitude and its imposed frequency at the structure hang-off point. Each experimental

group was composed of a fixed imposed amplitude value at the top, seriatim varying

the input frequency.

The imposed amplitudes, Ai, were chosen as to resemble typical low KC values
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measured in offshore floating units. Table 3.7 brings the amplitude values used in its

first row, which varied from 17.5mm up to 105mm.

Thereon, the correspondent floating unit reduced amplitude,

2π
Ai

D
= 2πA⋆

i ,

assumed values in the range of 5 up to 30, turning possible to define a nondimensional

velocity number,

υi = 2πA⋆
i

fi

f
(1)
N,b

= 2πA⋆
i f ⋆i , (3.2)

that resembles closely the reduced velocity number, VR, as if it was computed consid-

ering the floating unit vertical movement; see Table 3.7.

Such velocity number, υi, takes into consideration the structural I mode natural fre-

quency, alternatively the 1st out-of-plane, as it is commonly employed in the rigid cylin-

der subjected to oscillatory flow reduced velocity characterization (SARPKAYA; RA-

JABI, 1979; SUMER; FREDSØE, 1988; KOZAKIEWICZ; SUMER; FREDSØE, 1994;

FERNANDES et al., 2008).

The correspondent velocity is then varied steadily, assuming values comprehended

in a typical VIV test range5. Consequently, the input vertical motion frequency can be

evaluated by means of the input reduced frequency, f ⋆i , considering the out-of-plane

eigenfrequency thereof; see Equation 3.2.

A close inspection in Table 3.7 reveals the power limitation on the mechanism that

imposes motion at the hang-off point. For that reason, the input frequency, fi, alterna-

tively the reduced input frequency, fi⋆, can only vary up to a maximum figure, which

differs depending on the experimental test imposed amplitude.

5Even though the limelight is upon the VSIV, the VIV enlightens much of the experimental praxis on
the VSIV.
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Table 3.7: Test matrix for the longitudinal catenary-like model subjected to imposed

movement at the top, in which υi = 2πA⋆
i f ⋆i , f ⋆i = fi/f

(1)
N,b and f

(1)
N,b = 0.4265Hz.

Ai (mm) 17.5 35 70 105

2πA⋆
i 5 10 20 30

Test ID υi f ⋆i υi f ⋆i υi f ⋆i υi f ⋆i

00 0 0.00 0 0.00 0 0.00 0 0.00

01 2 0.40 2.3 0.23 5 0.26 7 0.23

02 3 0.60 3 0.30 6 0.30 8 0.26

03 4 0.79 4 0.40 7 0.35 9 0.30

04 5 1.00 5 0.51 8 0.40 10 0.33

05 6 1.21 6 0.60 9 0.44 11 0.37

06 7 1.40 7 0.70 10 0.51 12 0.40

07 8 1.60 8 0.79 11 0.56 13 0.44

08 9 1.79 9 0.91 12 0.60 14 0.47

09 10 2.00 10 1.00 13 0.65 15 0.51

10 11 2.21 11 1.09 14 0.70 16 0.53

11 12 2.40 12 1.21 15 0.74 17 0.56

12 13 2.60 13 1.30 16 0.79 18 0.60

13 14 2.79 14 1.40 17 0.86 19 0.63

14 15 3.00 15 1.51 18 0.91 20 0.67

15 16 3.21 16 1.60 19 0.95 21 0.70

16 17 3.40 17 1.70 20 1.00 22 0.74

17 18 3.60 18 1.79 21 1.05 23 0.77

18 19 3.79 19 1.91 22 1.09 24 0.79

19 20 4.00 20 2.00 23 1.14 25 0.84

20 21 4.21 21 2.09 24 1.21 26 0.86

21 - - - - - - 27 0.91

22 - - - - - - 28 0.93

23 - - - - - - 29 0.98

24 - - - - - - 30 1.00

25 - - - - - - 31 1.02

Source: Developed by the author.
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In addition to the VSIV, other nonlinear structural phenomena can occur in in-plane,

out-of-plane, or both dynamics. In particular, Mathieu-type instability depends on the

possible input frequency range, since higher frequencies would be needed to create a

scenario in which typical frequency ratios such as 2 : 1 can be obtained.

In turn, still considering parametric instability, the excessive damping due to drag in

water acts as a stabilizer and larger amplitude values are necessary in order to achieve

the instability bifurcation.

Ergo, the test matrix, albeit large, faces limitations on the hydroelastic response

observability, which reduces occasionally the occurrence of multiple phenomena on

the experimental response. Conversely, this limitation is also beneficial and desirable

in terms of studying the VSIV and isolating it from other nonlinear phenomena.

In the current analyses, emphasis will be placed on tests whose amplitude condi-

tion are larger, namely, Ai = 35mm, 70mm and 105mm. The case Ai = 17.5mm will

also be addressed as the input frequency assumes larger values in this particular group

and other interesting structural phenomena may be seen.

Notwithstanding, as to study the VSIV under the modal perspective, the other

tested groups, whose amplitudes are larger, seem to provide better results due to

the KC(s) can assume larger values along the riser span, which turns possible to find

richer synchronization relations amid the model dynamics.

More significantly, the Appendix C is comprised of experimental supplementary

results whose importance might be secondary, or due to the quantity of results to be

presented seriatim.

3.2.2 Real riser paradigm and the experimental methodology mo-

tivation

Taking advantage of the previous discussion on concomitance of several phenom-

ena in the small-scale model dynamics, one could wonder whether it would be possible

to have a model that could encompass the real case paradigm, including all loads that

are applicable to a certain riser.

Clearly, no experimental small-scale model would fit such requirements, not only

a real sea state is impossible to achieve at laboratory conditions, including all hydro-

dynamic and geophysical phenomena, but also the small-scale methodology cannot

match the Reynolds number between in situ and laboratory models; see Appendix A.
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As a general rule, analytic formulations are limited to a few fairly simple conditions

and even perturbation techniques cannot deal with this much of complexity. Hence,

numerical models could be an alternative, insofar as the domain and structural dis-

cretizations can commonly handle variations on loads and other parameters.

Figure 3.12: Motion spectra in the global reference coordinates of two cases whose the
input frequency is kept constant, f ⋆i = 1, whereas the imposed amplitude varies from
17.5mm to 105mm, corresponding to the cases A17-ID04 and A105-ID24, respectively.

(a) A17-ID04: x direction motion (b) A105-ID24: x direction motion

(c) A17-ID04: y direction motion (d) A105-ID24: y direction motion

(e) A17-ID04: z direction motion (f) A105-ID24: z direction motion

Source: Developed by the author.

Note: The input f ⋆i = 1 corresponds to the 1st out-of-plane natural frequency (mode I). Additionally, the

spectrum intensity was normalized by its own maximum value.

The main issue is that the full representation of a riser is nearly impossible on a

numeric solver. The high aspect ratio, L/D, would be responsible for a rapid exponential

increase on the system Degrees-of-Freedom (DOF) and the calculations alone would

take an almost infinite amount of time, considering the current technology.

Although discouraging at a first glance, these challenges and limitations reinforce
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the crucial role of experimental results on understanding the phenomenology behind

complex phenomena, such as the VSIV, which serves as paradigm to other Reduced

Order Models (ROM).

For this reason, the current work sought to develop an useful analysis methodol-

ogy, aiming to create an experimental phenomenological paradigm from the Galerkin’s

decomposition perspective.

It is certainly true that the number of generalized coordinates in a continuum struc-

ture is infinite and any sort of discretization is so good and suitable as the amount of

considered measuring points.

Modal analysis acts as a spatial filter that redistributes the system dynamical infor-

mation within a finite number of modes, allowing the usage of any discretization points

quantity as necessary so to obtain a good structural representation.

Ergo, it is possible to reintroduce the concept of generalized coordinates as the

own modes used within the modal decomposition methodology, insofar as the analysis

can be executed using only a set containing the most relevant and energized modes.

For instance, Figure 3.12 displays spectra results for two different testing conditions

whose reduced input frequency is kept constant, f ⋆i = 1, corresponding to an input of

the same value as the first out-of-plane mode natural frequency, alternatively mode I,

whereas the imposed amplitude varies from 17.5mm to 105mm.

The synchronization observed as a result of the VSIV depends closely on the im-

posed amplitude and frequency. Moreover, the synchronization complexity increases

as the imposed amplitudes and frequency assume higher values. Figure 3.12 shows

the effect of increasing the exciting amplitude, whereas maintaining the same fre-

quency, and, as it can be seen, the structural response assumes a more complex

and rich synchronization.

Whilst the in-plane motions, directions x and z, do not show significant variation

on its modal response which is mainly characterized as a quasi-monochromatic move-

ment, Figures 3.12a, 3.12b , 3.12e and 3.12f, the same behavior cannot be seen in the

out-of-plane motion as the synchronization is far more complex, Figures 3.12c-3.12d,

displaying multimodal responses.

The filtering process is characterized by means of the reduced number of neces-

sary coordinates used to represent the structure dynamics, which can also be regarded

as a modal ROM. Considering again the behavior depicted in Figure 3.12, the modal
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decomposition can assist the analysis by selecting only the most relevant modes to be

considered.

Notwithstanding, as any other ROM, the price to be paid is loss of local informa-

tion on the structural behavior, as the emphasis was placed on the global dynamics.

Furthermore, as to achieve a minimum number of generalized coordinates for the pro-

posed ROM, the choice of modal functions must be such that a few modes are capable

of represent the general structural behavior. Generally, such modal shapes are ob-

tained closely as possible to the structural eigenvectors, which resumes the former

subject on selecting a proper modal basis.

3.3 Experimental analysis methodology: modal ap-

proach to the VSIV

This final section contains the mathematical methodology devised in order to ana-

lyze the structural modal response due to the VSIV. Firstly, it will be presented some

modeling assumptions used in the experimental data processing, specially regarding

the signal treatment necessary to develop further outcomes.

Accordingly, the methodology will be divided into three stages, which refers to

the data pre-processing so to obtain the displacement series decomposed into local

reference frames, namely TNB, then the modal decomposition and, finally, the post-

processing responsible to compute and refine the experimental analysis, leading to the

final results.

Algorithms and other specific numerical methods used within the analysis are pre-

sented in the Appendix B, aiming to improve the text readability. Always when neces-

sary, the reader will be invited to check a specific method or content there.

For the most part, the data measured by the optical tracking cameras is the targets

spatial positions varying in time. The displacement series are obtained with respect to

a global Cartesian reference frame, ΣO =
(

êx, êy, êz

)

, fixed at the anchor point, O; see

Figure 3.13.

Figure 3.13 also depicts the first monitored optical target, point O′, which is placed

far away from the anchor point. The former, O′, position was chosen by virtue of

numeric estimations on the general model dynamics, aiming to capture the TDZ region

kinematics without losing the TDP during any experimental run.
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Figure 3.13: Schematic experimental arrangement depicting the adopted reference
frames. In detail: Global Cartesian, ΣO =

(

êx, êy, êz

)

; first monitored optical target, O′;
and local TNB at a generic point, ΣP =

(

t̂ (s) , n̂(s) , b̂(s)
)

.

Plane XZ
θt

Plane YZ

êz

êx êy

êzn̂
t̂ b̂

O

P
PO O′

Source: Developed by the author.

Although the local reference frame will be addressed properly in the following sub-

section, the reader can already see the TNB at the point P, arbitrarily chosen over the

model span. The local frame depends on the point where it is placed on, therefore, it is

depicted as ΣP =
(

t̂ (s) , n̂(s) , b̂(s)
)

with respect to the natural arclength coordinate, s.

As to illustrate the measured data, Figures 3.14-3.15 display four different experi-

mental tests whose input frequency is kept constant, f ⋆i = 1, and the imposed ampli-

tude corresponds to the cases 17.5mm, 35mm, 70mm and 105mm.

Interestingly, there is a major difference on the out-of-plane responses presented

in Figures 3.14-3.15. The former depicts two different amplitude values of 17.5mm and

35mm, Figures 3.14c-3.14d, respectively, responding more significantly in the first and

second out-of-plane modes, modes I and III.

The first mode acts more subtly in the first case, Figure 3.14c, as the second out-

of-plane node region is better characterized, whilst in the second case, Figure 3.14d,

considerable displacement in the same region can be observed.

This may be attributable to the VSIV synchronization that typically presents a cycle

number N = 2 for low KC regime. The concomitant existence of N = 1 and N = 2

in the out-of-plane response could be a result of the fact that multimodal response is

expected.
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Figure 3.14: Motion spectra in the global reference coordinates of two cases whose the
input frequency is kept constant, f ⋆i = 1, whereas the imposed amplitude varies from
17.5mm to 35mm, corresponding to the cases A17-ID04 and A35-ID09, respectively.

(a) A17-ID04: x direction motion (b) A35-ID09: x direction motion

(c) A17-ID04: y direction motion (d) A35-ID09: y direction motion

(e) A17-ID04: z direction motion (f) A35-ID09: z direction motion

Source: Developed by the author.

Note: The input f ⋆i = 1 corresponds to the 1st out-of-plane natural frequency (mode I). Additionally, the

spectrum intensity was normalized by its own maximum value.

Conversely, the other cases whose the imposed amplitude is larger, 70mm and

105mm, respectively, display a more complex synchronization due to the VSIV; see

Figure 3.15. The in-plane motion in both conditions, Figures 3.15a-3.15b and 3.15e-

3.15f, shows the same quasi monochromatic behavior as before, Figures 3.14a-3.14b

and 3.14e-3.14f, whilst the out-of-plane motion, Figures 3.15c-3.15d, is far more er-

ratic, presenting multimodal response behavior in lieu.
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Figure 3.15: Motion spectra in the global reference coordinates of two cases whose the
input frequency is kept constant, f ⋆i = 1, whereas the imposed amplitude varies from
70mm to 105mm, corresponding to the cases A70-ID16 and A105-ID24, respectively.

(a) A70-ID16: x direction motion (b) A105-ID24: x direction motion

(c) A70-ID16: y direction motion (d) A105-ID24: y direction motion

(e) A70-ID16: z direction motion (f) A105-ID24: z direction motion

Source: Developed by the author.

Note: The input f ⋆i = 1 corresponds to the 1st out-of-plane natural frequency (mode I). Additionally, the

spectrum intensity was normalized by its own maximum value.

The out-of-plane response behaviors depicted in Figures 3.14c and 3.15d is also

evinced in the spectra presented in Figures 3.12c-3.12d. The amplitude effect on the

VSIV response results in a rich synchronization behavior, agreeing with previous works,

such as Fernandes, Mirzaei Sefat, and Cascão (2014) and Wang et al. (2017).

The local KC effect on the VSIV dynamics presented in Wang et al. (2017) can

be also observable in the present experimental data. Large amplitude regime, as the

A105-ID24, displays a slightly different displacement response in the vertical move-

ment at the bottom sag region when the imposed motion is the lift-up or push-down

semi cycle, which is an evidence of the TDP variation; see Figures 3.11d and 3.15f

in which the lift-up motion (red) is stretched downwards if compared to the push-down
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one (blue).

More importantly, there are two main assumptions inherent in the analyses carried

out in the present work and they are:

• the out-of-plane motion is considerably smaller than the in-plane one;

• thus, the hydroelastic system is linearized around the its own structural static

configuration.

The first assumption can be verified checking the out-of-plane displacements (motion

in the y-axis) for they are generally one order smaller than the maximum in-plane am-

plitude response (motion in the z-axes); see Figures 3.14-3.15.

The second assumption is a consequence of the first one for, albeit highly nonlin-

ear, the out-of-plane motion due to the VSIV can be considered as small amplitudes

and angles, hence, its nonlinear behavior is of second order. Moreover, Chatjigeor-

giou (2008) had already argued favorably about this assumption, insofar as the static

configuration curvature is less relevant in the out-of-plane motion.

Figures 3.14-3.15 also act as an illustration on the measured experimental data,

which are 3D displacements at each sampled instant by the optical target tracking cam-

eras. This last discussion also serves as a starting point to the experimental methodol-

ogy developed in the following texts, as the reader can comprehend two relevant points:

firstly, the chosen rational used in order to carry out the experimental analyses; and,

lastly, the present work relevance in the state-of-the-art of flexible risers subjected to

VSIV.

3.3.1 Raw data pre-processing

The raw data pre-processing methodology focus on the local reference frame at-

tainment, namely the TNB basis, that will be used in order to obtain the correspondent

displacement data series in the structural natural coordinates.

As previously discussed, the measured experimental data is given with respect to

the global reference frame that differs from the natural coordinates of a spatial curve,

which are composed by the tangent, t̂, normal, n̂, and binormal, b̂, unit vectors.

The TNB bases are generally non unique over a spatial curve span and a formal

definition could be expressed with respect to the natural coordinate arclength, s, such
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that a local reference frame, ΣP placed at a material point, P, on the curve is given by

{

Σ : R→M3 (R) | s ∈ [0,L] , ΣP = Σ(s) =
(

t̂ (s) , n̂(s) , b̂(s)
)}

, (3.3)

in whichM3 (R) is the matrix vector space of rank 3 over the real numbers body; and

L, the curve total length.

Clearly, the spatial curve will be considered as the mean static position measured

in the experimental tests with no movement imposed, ID00 in any testing group. Using

the natural coordinate, s, the relations so as to obtain each versor can be obtained as

function of the curve parametrization and through differential geometry of curves.

Figure 3.16: Flowchart on the evaluation of the local reference frame, TNB, at each
monitored target.

Interpolation 

Evaluation of arclength 

Interpolation w.r.t  

Tangent versor 

Normal versor 

TNB at each target  

Plane catenary 

Binormal versor

Source: Developed by the author.

The main problem is that the experimental static configuration is measured as

points in the space and some interpolation should be carried out as to find the curve

parametrization.
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Consequently, the problem could be divided in two parts: find the curve

parametrization algebraic equation with respect to the natural coordinate, ~γ (s); obtain

the local reference frame, ΣP, using the curve parametrization.

Figure 3.16 shows the developed strategy in order to evaluate the local basis in any

point of the static configuration spatial curve. The flowchart shows that the algorithm is

fairly simple, taking advantage of the fact that the curve is planar, ys
j ≈ 0 for any point

Pj considered in the domain s ∈ [0,L].

Table 3.8: Fitting curves coefficients used in each experimental group in order to eval-
uate model arclength and local reference frames.

Curve Coefficient
Ai (mm)

17.5 35 70 105

z(x)

a1 15.43 0.40 0.43 0.97

a2 -4.14E-02 3.92E-02 3.83E-02 5.90E-03

a3 1.86 2.39 2.39 2.33

a4 0.20 1.17 1.15 0.78

x(s)

b1 5.90 4.48 4.15 1.31

b2 -3.97E-02 -1.62E-02 -7.96E-03 -1.26E-01

b3 -5.92 -4.50 -4.16 0.00

b4 -0.22 -0.26 -0.27 -

z(s)

c1 5.84 10.42 4.74 2.36

c2 5.40E-02 4.14E-02 5.97E-02 4.73E-02

c3 1.74 1.82 1.70 1.96

c4 0.31 0.23 0.34 0.47

Source: Developed by the author.

Firstly, the natural coordinate should be evaluated for each experimental sampled

point, Pj, and the arclength is computed using the classical approach using the curve

slope,

s j =
∫ x j

0

√

1+
dz

dx
dx,
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in which the vertical position is interpolated as a function of the horizontal one, z(x).

The interpolation function is chosen as a combination of the classical catenary equation

flattened by an exponential term,

z(x,a) = a1e−a2xa3
[cosh(a4x)−1] , (3.4)

and the experimental static configuration points are used as to find the coefficients, a,

using a typical nonlinear minimization algorithm available in Matlab®. The interpolation

function coefficients are presented in Table 3.8.

Table 3.9 brings the model evaluated total length obtained by virtue of Equation

3.4. The numeric total length value, L, is given within a confidence interval (CI 95%) as

4.160m (4.135 to 4.189), which agrees with the measured model total length, 4.150m.

Table 3.9: Targets with poorly measured temporal displacement series and evaluated
total length, L, for each testing group using the correspondent interpolation coefficients.

Ai (mm) Bad targets L(m)

17.5 6,12,44 4.1662

35 6,43,44 4.1710

70 29,43,44,45 4.1548

105 31,42,43,44,45 4.1497

Source: Developed by the author.

A quality check on the displacement series was executed for each tracked target

and the amount of bad targets for each testing groups is also presented in Table 3.9.

The variation on interpolation coefficients shown in Table 3.8 may be attributable to the

considered sampled data in each testing group, which varies in number depending on

the bad targets amount.
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Figure 3.17: Interpolations on the catenary-like model static configuration obtained as
to evaluate the arclength, s, and the local reference frame (TNB),

(

t̂ (s) , n̂(s) , b̂(s)
)

.
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Source: Developed by the author.

Following, a second fitting curve step with respect to the previous obtained ar-

clength is carried out, x(s) and z(s). The x(s) interpolation used are chosen as a bi

exponential function with coefficients b, whilst the z(s) is the same function used for

z(x) with respect to the coefficients c; see Equations 3.5-3.6. Figure 3.17 illustrates the

fitting curves found for the testing group A70.

x(s,b) = b1eb2s +b3eb4s (3.5)

z(s,c) = c1e−c2sc3
[cosh(c4s)−1] (3.6)
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Accordingly, the curve parametrization is obtained with respect to the arclength

coordinate, as

~γ (s) = (xs (s) ,0,zs (s)) , (3.7)

and the local reference frame unit vectors can be determined in three steps: firstly, the

tangent unit vector is evaluated using ~γ (s),

t̂ =
∂~γ

∂ s
=
(

xs′ (s) ,0,zs′ (s)
)

; (3.8)

then, taking advantage that in this planar configuration the binormal unit vector is con-

stant, Figure 3.18b,

b̂ = (0,−1,0) ; (3.9)

and, finally, the normal unit vector can be found using the previous ones, as the basis

is orthonormal,

n̂ = b̂× t̂. (3.10)
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Figure 3.18: Plane catenary-like model static configuration depicting the TNB frame
evaluated at some sampled points. Data retrieved from the experimental test A70-
ID00.
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Source: Developed by the author.

Finally, the TNB basis can be computed at each sampled static configuration point

by substituting the correspondent arclength value, s j; see Figure 3.18. The basis ob-

tained by the previous algorithm, Figure 3.16, is already orthonormal due to the evalu-

ation was done using the curve natural coordinate, s, and no additional normalization

step is necessary.

The next step is projecting the 3D displacements series onto the local reference

frames obtained previously. Figure 3.19 brings a flowchart on the pseudo-algorithm

used as to compute the structural motion with respect to the TNB frames.
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Figure 3.19: Flowchart on the algorithm used in the measured data projection into the
TNB reference frame.

no
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Source: Developed by the author.

The general algorithm requires two nested recursions containing heavy calcula-

tions, one within the other, in order to evaluate the projected position of each moni-

tored target in each time instant. This solution is very time consuming and, thus, an

alternative that uses only one recursion is used.

In turn, the inefficient algorithm is best suitable for explaining purposes. The algo-

rithm assumes that the experimental data contains N time instants, t1, t2, . . . , tN , and M

monitored targets characterized by their arclength values, s1,s2, . . . ,sM.

So as to project the movement onto the local reference frames, the backwards

change of basis matrix, B = Bv
u with u,v = 1,2,3, is constructed using the TNB unit

vectors obtained previously. Such transformation matrix is time independent due to the

movement be considered around the structural configuration, which depends solely on

the arclength coordinate. The nested recursion algorithm inefficiency arises from the

construction of Bv
u for each target at each time instant.

Parallel to the evaluation of Bv
u, the global displacement vector, henceforth called

centered displacement vector, Ruêu, is computed for each target by subtracting the

correspondent static configuration from its displacement series,
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. (3.11)

As depicted in Figure 3.19, the local position is simply computed using the centered

displacement vector and the transformation matrix, as

Av = Bv
uRu, (3.12)

in which the TNB displacement, Avêv, is composed of the tangent, normal and binormal

amplitude responses, At , An and Ab
6, respectively, as

Av =







At

(

s j, ti
)

An

(

s j, ti
)

Ab

(

s j, ti
)






, (3.13)

resuming the recursion algorithm until the end, when every target at all time instants

were computed.

Figure 3.20 displays the scalograms and spectra evaluated in the TNB reference

frames considering the same case presented in Figures 3.15, 3.15b, 3.15d and 3.15f.

As expected the movements registered in the y and binormal directions are equiva-

lently, only differing in sign due to the relation between unit vectors, b̂ = −êy; see

Figures 3.15d and 3.20e.

6Alternatively, the normal and binormal displacement may appear as p̂ and q̂, respectively.
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Figure 3.20: Motion scalograms and spectra in the local reference coordinates consid-
ering imposed amplitude of 105mm and input frequency f ⋆i = 1; alternatively, the case
A105-ID24.

(a) Tangent response: scalogram (b) Tangent response: spectrum

(c) Normal response: scalogram (d) Normal response: spectrum

(e) Binormal response: scalogram (f) Binormal response: spectrum

Figure 3.21: Normal displacement and absolute scalograms regarding the previous
case, A105-ID24, depicting in detail the TDP variation within a vibration cycle.

(a) Normal response: scalogram (b) Normal response: absolute scalogram

Source: Developed by the author.

Note: By virtue of the static configuration curvature due to the apparent weight, the push-down semi-

cycle displacement assumes larger absolute values (darker reddish hue).
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On the other hand, the in-plane motion evaluated in the local frames presents a

more meaningful behavior on the testing dynamics. Particularly, the normal amplitude

response shows precisely the TDP variation if compared the push-down (blue) and

lift-up intervals at the TDZ (WANG et al., 2017); see Figure fig:Motivation-A105ID24-

Normal-Scalogram+Abs.

3.3.2 Modal space and Galerkin’s decomposition

The Galerkin’s decomposition takes into account a finite number of modes and

projects the amplitude responses onto the same modes, obtaining a series of modal

amplitude responses. The method is based on the separation of variables technique

with generally used in Partial Differential Equations (PDE) problems.

A generic amplitude response, A(s, t), that varies with respect to position and time

is decomposed into two different functions that solely depends on one variable each,

A(s, t) = A(t)ϕ (s) , (3.14)

therefore, it is possible to consider the original response as a composition of an ampli-

tude temporal series, A(t), and a shape function, ϕ (s).

As a general rule, vibration problems arise from EDPs that assume an infinite num-

ber of shape functions, called modal shapes. Each mode is associate with a natural

frequency and the modal shapes are ascending sorted, in which the mode associated

to the minimum natural frequency is known as the fundamental mode.

Supposing the obtained modes are linear, the exact representation of the ampli-

tude response A(s, t) should be evaluated as an infinite sum of each modal amplitude

associated with its modal shape,

A(s, t) = A1 (t)ϕ1 (s)+A2 (t)ϕ2 (s)+ . . . . (3.15)

This process is equivalently to a typical vector representation in an Euclidean space

spanned by unit vectors, êk with k = 1,2, . . . , however, using functions as directions.

This particular subsection deals with the actual modal decomposition procedure

and its idiosyncrasies. The modal basis chosen in the previous section is composed of

numerical modes obtained by means of an Orcaflex® scaled model.
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Moreover, it was reasoned about the usage of binormal modes also in the normal

decomposition due to the fact that the obtained modes were not representative for the

rigid soil used in the experimental arrangement. The justification on the adoption of the

binormal modes as to construct the modal basis relied on the results obtained in Pesce

and Martins (2005) and Chatjigeorgiou (2008).

Consider that the k-th out-of-plane mode, ϕk with k ∈N∗, is a function defined in a

real Hilbert vector subspace, V , so

{ϕk (s) : R 7→V ⊂H (R) | k ∈N∗, s ∈ [0,L] and ϕk (0) = ϕk (L) = 0} , (3.16)

thus, the modal basis, B∞, is constructed so that

B∞ = {ϕ1 (s) ,ϕ2 (s) , . . . ,ϕk (s) , . . .} . (3.17)

Although the modal basis, B∞, has infinite dimension, the testing model discretiza-

tion, i.e. the amount of monitored targets, limits the number of modes that can be

observable in the experimental analysis. Thus, contrarily of the exact value obtained in

Equation 3.15, the modal decomposition will evaluate an approximation,

A(s, t)≈ Ak (t)ϕk (s) , (3.18)

considering only a finite basis with k = 1, . . . ,L,

B = {ϕ1 (s) ,ϕ2 (s) , . . . ,ϕk (s) , . . . ,ϕL (s)} . (3.19)

As the modal functions are elements of a Hilbert subspace, V ⊂H (R), it is possible

to define their norm, ‖ϕk (s)‖, by means of an inner product, as

‖ϕk (s)‖=
√

〈ϕk (s) ,ϕk (s)〉 (3.20)

in which the inner product is evaluated as

〈u,v〉=
∫ L

0

u(s)v(s)ds =
∫ 1

0

u(ŝ)v(ŝ)Ldŝ. (3.21)
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Most significantly, the technical literature on modal analysis recommends that the

modal basis should be orthonormal in order to uncouple the structural system mass

matrix (MEIROVITCH, 1980).

Table 3.10: Orthogonality index evaluated using the Orcaflex® binormal modes, ϕn (s).
Each mode norm is in the diagonal.

Out-of-plane modes

Modes 1st 2nd 3rd 4th 5th

1st 1.9035 1.71E-05 -2.29E-05 1.91E-05 -5.04E-05

2nd 1.71E-05 1.6682 3.62E-05 -3.34E-05 6.22E-05

3rd -2.29E-05 3.62E-05 1.6386 8.88E-05 -1.13E-04

4th 1.91E-05 -3.34E-05 8.88E-05 1.6626 1.58E-04

5th -5.04E-05 6.22E-05 -1.13E-04 1.58E-04 1.6895

6th 6.00E-05 -9.40E-05 1.38E-04 -1.71E-04 2.26E-04

7th -6.81E-05 8.92E-05 -1.48E-04 2.21E-04 -2.82E-04

8th 6.50E-05 -1.33E-04 1.92E-04 -2.70E-04 3.14E-04

9th -8.82E-05 1.37E-04 -2.05E-04 3.15E-04 -3.84E-04

10th 7.22E-05 -1.77E-04 2.25E-04 -3.25E-04 4.00E-04

Out-of-plane modes

Modes 6th 7th 8th 9th 10th

1st 6.00E-05 -6.81E-05 6.50E-05 -8.82E-05 7.22E-05

2nd -9.40E-05 8.92E-05 -1.33E-04 1.37E-04 -1.77E-04

3rd 1.38E-04 -1.48E-04 1.92E-04 -2.05E-04 2.25E-04

4th -1.71E-04 2.21E-04 -2.70E-04 3.15E-04 -3.25E-04

5th 2.26E-04 -2.82E-04 3.14E-04 -3.84E-04 4.00E-04

6th 1.7360 3.42E-04 -3.83E-04 4.62E-04 -4.82E-04

7th 3.42E-04 1.7542 4.44E-04 -5.45E-04 6.06E-04

8th -3.83E-04 4.44E-04 1.7679 6.04E-04 -7.23E-04

9th 4.62E-04 -5.45E-04 6.04E-04 1.8518 7.65E-04

10th -4.82E-04 6.06E-04 -7.23E-04 7.65E-04 1.7874

Source: Developed by the author.

Albeit an additional step, the attainment of an orthonormal basis aids in the modal

decomposition algorithm, and, by virtue of uncoupling the mass matrix, there is no
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cross-modal added mass coefficients, which is desirable if one wants to deal with the

modal added mass coefficients values.

Accordingly, a rising concern comes from the fact that it is not guaranteed that the

chosen modal functions computed in Orcaflex® are in fact orthonormal. As a general

rule, numeric modes are not necessarily orthogonal7, whereas in some cases they

may be quasi-orthogonal insofar as the lower modes, for instance the ones presented

in Figure 3.9d and Table 3.4, which are quasi-sinusoidal.

Table 3.10 shows the orthogonality index calculated for all out-of-plane modes pair,

including their norm depicted in the diagonal. As expected, the binormal modes are

quasi-orthogonal to one another two-by-two and this may be attributable to the afore-

mentioned reasons, even so they are not normalized.

For that reason, the Modified Gram-Schmidt (MGS) orthonormalization algorithm is

employed as to obtain orthonormal out-of-plane modes based on the Orcaflex® ones.

Inasmuch as the modes were already quasi-orthogonal, there are little differences on

the orthonormal mode functions shape with respect to the original ones.

Table 3.11: Orthogonality index evaluated using the Orcaflex® binormal modes after
orthonormalization process, ϕ̂n (s). Each mode norm is in the diagonal. Any cross

coefficient is of order O ∼ 10−17 and, practically, considered null.

Out-of-plane modes

Modes 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1st 1.00 0 0 0 0 0 0 0 0 0

2nd 0 1.00 0 0 0 0 0 0 0 0

3rd 0 0 1.00 0 0 0 0 0 0 0

4th 0 0 0 1.00 0 0 0 0 0 0

5th 0 0 0 0 1.00 0 0 0 0 0

6th 0 0 0 0 0 1.00 0 0 0 0

7th 0 0 0 0 0 0 1.00 0 0 0

8th 0 0 0 0 0 0 0 1.00 0 0

9th 0 0 0 0 0 0 0 0 1.00 0

10th 0 0 0 0 0 0 0 0 0 1.00

Source: Developed by the author.

7Depending on the numeric method used as to evaluate the FE modal analysis, the obtained eigen-
vectors can display some degree of orthogonality, specially if algorithms as QR-decomposition are used.
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Consequently, the main difference is their amplitude values, which are normalized

by the correspondent mode norm; see the diagonal coefficients in Table 3.10. Ac-

cordingly, Table 3.11 displays the orthogonality index of the binormal modes set and

their norm in the diagonal. The cross coefficients are considered null, in lieu of their

approximate values (O ∼ 10−17), and the norms are unitary.

Resuming the modal decomposition, the procedure is executed projecting the in-

stantaneous amplitude value onto each mode function in B̂ = {ϕ̂1 (s) , . . . , ϕ̂10 (s)}.
Whereas the modal basis is now orthonormal, the k-th modal amplitude may be evalu-

ated as

Ak (t) =
〈A(s, t) , ϕ̂k (s)〉
‖ϕ̂k (s)‖

ϕ̂k (s)

‖ϕ̂k (s)‖
= 〈A(s, t) , ϕ̂k (s)〉 ϕ̂k (s) , (3.22)

for each one of the ten out-of-plane modes considered, k = 1, . . . ,10. Accordingly,

the amplitude response may be reconstructed using the approximation described in

Equation 3.18, as

A(s, t)≈ Ak (t) ϕ̂k (s) =
10

∑
k=1

Ak (t) ϕ̂k (s) , (3.23)

in which the modal ROM is characterized by the one variable functions Ak (t) and ϕ̂k (s).

3.3.3 Results post-processing

As to follow the experimental analysis, it is necessary to define the nomenclature

that is going to be used in the present work. There are several sub- and superscripts

related to the modal response executed in the normal or binormal direction and they

can be easily mistaken.

The nomenclature, albeit a little cumbersome at first, is straightforward to use

for superscripts in parentheses always represents which mode is being considered,

whereas subscripts display orientation planes, such as �n and �b, in which � is a

generic variable representation in the normal and binormal directions, respectively.

Moreover, the superscripts �(d) and �(s) relate to the “Dominant” and “Sub-dominant”

modes, respectively.

The dominant (sub-dominant) mode presents the largest amplitude peak value

(second largest) and the subscript �N is reserved to “Natural” as in natural frequency.
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The former will be presented as superscripts between parenthesis, whilst the latter, as

subscript placed after the correspondent direction, n or b.

Particularly, the in-plane normal and out-of-plane binormal modes will be ad-

dressed using j = 1, . . . ,10 and k = 1, . . . ,10 indexes, respectively, when necessary

to differentiate both in-plane and out-of-plane modes. Otherwise, the same superscript

k will be used.

The dominant frequency of any given response is evaluated using its spectrum,

finding the frequency slot that corresponds to the maximum peak value, so that

f
( j)
n,dom

⇔ max
f

{∣

∣AS j
n ( f )

∣

∣

}

,

(3.24)

f
(k)
b,dom

⇔ max
f

{∣

∣

∣
ASk

b ( f )
∣

∣

∣

}

.

Accordingly, the sub-dominant frequency is found by means of the second largest peak

value.

Even though the in-plane normal amplitude series presents a polichromatic spec-

trum, the response is usually characterized by a dominant peak at a certain frequency

value, which is defined as a dominant frequency. For instance, the j-th dominant fre-

quency of a given normal response will be denoted as f
( j)
n,dom

, whose notation carries a

subscript indicating it.

It is noteworthy that the word dominant is being used in two different context: as a

superscript to indicate the dominant mode, i.e. the one assuming the largest displace-

ment; and also as a subscript to denote the dominant frequency of a given response.

Both usages ought not to be mistaken, since they can be used concomitantly, de-

noting the dominant frequency of the dominant (sub-dominant) modal response, f
(d)
n,dom

( f
(s)
n,dom

).

It is also the case that normalized quantities are displayed with the superscript �⋆,

which, if necessary, is going to be placed after the modal number in parentheses, �(k)⋆.

Table 3.12 brings an illustration on the devised nomenclature, considering as ex-

ample the nominal and normalized amplitude responses, and natural frequency for the

j,k-th, dominant and sub-dominant modes.
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The only input in the hydroelastic system is the imposed movement at the hang-off

point and the normal and binormal dynamical behaviors are a response of the system

input. The general 3D flow around the cylinder couples both normal and binormal

movements for one is affected by the other.

Table 3.12: Illustration on the modal nomenclature used in the present work.

Quantity Mode
Symbol

Normal Binormal

j,k-th A
( j)
n A

(k)
b

Amplitude response Dominant A
(d)
n A

(d)
b

Sub-dominant A
(s)
n A

(s)
b

j,k-th A
( j)⋆
n A

(k)⋆
b

Normalized amplitude

response
Dominant A

(d)⋆
n A

(d)⋆
b

Sub-dominant A
(s)⋆
n A

(s)⋆
b

j,k-th f
( j)
n,N f

(k)
b,N

Natural frequency Dominant f
(d)
n,N f

(d)
b,N

Sub-dominant f
(s)
n,N f

(s)
b,N

j,k-th f
( j)
n,dom

f
(k)
b,dom

Dominant frequency Dominant f
(d)
n,dom

f
(d)
b,dom

Sub-dominant f
(s)
n,dom

f
(s)
b,dom

Source: Developed by the author.

In turn, the in-plane measurements unveil that the out-of-plane dynamics has a

second order effect on it which may be attributable to the latter amplitude values be

of lesser order than the former. Thus, it is possible to make an ansatz in which the

binormal motion should be a consequence of the normal hydrodynamic loads due to

the VSIV, the normal motion should not be affected by the binormal dynamics.
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This assumption is a strong constrain that sets a causality relation on the hydroe-

lastic system for the normal motion is regarded as an equivalent input that causes the

out-of-plane movement and, at the same time, removes any flow effect that would let

the former dynamics depends on the latter.

Although being a strong assumption, the causality relation, which may be summa-

rized as

An (s, ti+1) = f
(

ti,An (s, ti) , Ȧn (s, ti)
)

(3.25)

Ab (s, ti+1) = g
(

ti,An (s, ti) , Ȧn (s, ti) ,Ab (s, ti) , Ȧb (s, ti)
)

,

is defensible by virtue of the out-of-plane motion always being lesser in value than the

one measured in-plane. Note that the true input, characterized by Ai and f ⋆i (imposed

motion), is the responses through their explicit dependence on time.

In particular, considering the most critical case whose input amplitude and fre-

quency are A=105mm and f ⋆ = 1, in which the in-plane motion presents the largest

amplitude values, the measured out-of-plane displacement is still about a order less in

value; see Figure 3.20.

Alternatively, Figure 3.22 also depicts the causality assumption adopted, displaying

as a dashed line the weak effect of the binormal response in the normal one. Here,

the notation used differs slightly from the previous one and the normal and binormal

response states are presented as p̂i and q̂k, respectively, in which the indexes refer to

monitored targets.

Figure 3.22: Causality between normal and binormal responses depicted as a block
diagram.

˙̂pi = f (t, pj , ṗj) ˙̂qk = g (t, pj , ṗj , ql, q̇l)

noise noise

p̂i q̂k
Atop

ftop

Source: Developed by the author.

Note: In the block diagram, the normal and binormal amplitude responses are presented as p̂ and q̂,

respectively.



104

Another fact that may support the causality ansatz is that the in-plane normal mo-

tion is generally quasi-monochromatic, presenting a dominant frequency equal or close

to the imposed movement one (or an integer multiple of it).

Furthermore, upon checking Figure 3.20d, it is possible to verify that there is no fre-

quency registry of a typical VSIV response, which is characterized by the cycle number,

N (SUMER; FREDSØE, 1988; FERNANDES; MIRZAEI SEFAT; CASCÃO, 2014); e.g.

the dominant N = 5 found in the out-of-plane motion (Figure 3.20f).

Complementary to the temporal modal amplitude registry from which spectra and

synchronization features can be analyzed, the evaluation of a mean modal amplitude

value is important in order to characterize the VSIV response.

The signals are supposed zero-average ones and their mean amplitude response

will be evaluated by means of its Root Mean Square (RMS) value multiplied by a factor

of
√

2,

A(k) =
√

2

〈

A(k) (t)
〉

rms
, (3.26)

in which the temporal interval is fixed in size, being a total of 4096 samples taken

from the instant T = 2Tf/5 onward with Tf representing the experiment total time. The

factor 2/5 was chosen upon inspection of all experimental data in order to remove their

transitory response stage.

It is noteworthy that, as to avoid turning the adopted nomenclature more inconve-

nient and cumbersome, the k-th peak amplitude response will be represented by A(k)

(alternatively the peak-to-peak amplitude, 2A(k)) and, when necessary to discuss its

temporal registry, it will be explicitly shown its time dependence, A(k) (t).

The measured and computed experimental data will be always filtered using a typi-

cal FIR digital filter in order to attenuate high frequency noise that could cause aliasing.

More information on the filtering algorithm employed can be found in Appendix B.3.

Although the hydroelastic system is highly nonlinear, the frequency domain analy-

ses are carried out using Fast Fourier Transform (FFT). The choice of employing the

FFT comes from the sampling frequency value, FS, being large enough with respect to

the VSIV response frequency range, avoiding significant discrepancies between the re-

sults obtained employing FFT or other frequency analysis method, such as the Hilbert-

Huang Transform (HHT).
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Inasmuch as the Hamming window presents nonzero values at its end points, little

leakage effect may occur during the frequency response evaluation. In turn, it can

be argued that the Hamming window is employed due its high accuracy in isolating

frequency peaks that may occur in the neighborhood of other peak.

This feature can be easily verified as the Hamming window frequency response

shows a large gain at zero that is rapidly attenuated reaching up to −300dB. Hence,

any additional frequency peak in the vicinity of other is attenuated by virtue of the

windowing procedure in time domain equivalently to a convolution in the frequency

domain.

Figure 3.23: Out-of-plane spectrum response attainment of a mid-span target (18) con-
sidering the testing case whose amplitude is Ai = 17.5mm and f ⋆ = 1 (A17-ID04). In
detail: the temporal response (A⋆

b,18
); the Hamming window employed (W ); the com-

puted windowed response (A⋆
b,18
×W ); and the correspondent amplitude spectrum

(AS⋆b,18
).
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Source: Developed by the author.

An illustration on the procedures carried out in order to attain any of the responses

spectra is displayed in the Figure 3.23. As it can be verified, the resonating frequency

peaks present good resolution, which is characterized by their thin shape and small

width.

Furthermore, the amplitude spectrum is evaluated single-banded, showing the
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peak amplitude response of the analyzed signal. Thus, each peak magnitude rep-

resents the actual amplitude associated to that frequency term in their Fourier series.

3.3.4 Governing parameters and their modal counterparts

It is known that the VSIV shows a characteristic behavior with respect to some

hydrodynamic parameters, such as the reduced velocity, VR, synchronization cycle,

Keulegan-Carpenter and Reynolds numbers, N, KC and Re, respectively.

In fact, previous studies carried out in Le Cunff, Biolley, and Damy (2005) and

Fernandes, Mirzaei Sefat, and Cascão (2014) have unveiled the similarity on the VSIV

and the dynamics behavior found with cylinders subjected to oscillatory flow, thoroughly

studied in Sarpkaya (1976), Sumer and Fredsøe (1988), and Kozakiewicz, Sumer, and

Fredsøe (1994).

Although their analysis focused mainly on the space of configuration, Le Cunff, Biol-

ley, and Damy (2005) had already executed a proto modal analysis, using wavelets, as

to determine locally which would be the dominant modal response due to the necessity

of finding a characteristic natural frequency on the VR evaluation.

The following works on VSIV also employed the same analysis methodology, based

on reduced velocity, showing its strong effect on the hydroelastic response. Most im-

portantly, whereas the natural frequency was evaluated with respect to modal analysis,

the definition of a characteristic KC was carried out by means of the maximum value

measured withing the structural span.

Thus, this hybrid analysis methodology, using both modal and space of configura-

tion characterization, shows some limitations on the KC (s) distribution along the riser

span for it is considered as fixed parameter, disregarding if the local values occurs in a

narrow or broad range.

Wang et al. (2017), for instance, argued that the local KC (s) regime has a strong

and direct impact over the structural dynamics, presenting evidences that, below the

critical KC = 39 value, the local KC (s) distribution may contribute to the vortex diffusion

along the span and 3D flow effects turn out to be important, meaning that a typical strip

assumption is not valid.

In other words, as the KC (s) distribution shows similar values all over the structure,

it is not possible to characterize the dominant mode natural frequency very well, and

thus the reduced velocity. This may be attributable to the amplitude response along the
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span being of the same order and, as a consequence, the multimodal response would

lead to distinct modes being quasi-dominant in different regions, specially the bottom

sag in which the fatigue response is critical.

Hence, it would be beneficial to the experimental analysis to avoid using the space

of configuration due to the huge amount of DOF in the structural model, or, equiva-

lently, mixing global (modal methodology) and local dynamics characteristics on the

hydroelastic response.

Within this context, the present experimental methodology adopts a global dynam-

ics characterization, using the modal decomposition as spacial filter that evaluates

mean amplitude values as to find similarity on the VSIV response. Consequently,

when considering the modal representation, there is no longer the use of local and

global values as in the aforementioned hybrid analysis.

Moreover, the modal decomposition produces ROMs taking into consideration only

the most representative modes within it. The local dynamics may be also easily re-

trieved using modal reconstruction, summing each mode contribution at any point on

the riser span.

Therefore, it is of utmost importance to characterize the hydroelastic governing

parameters in the modal domain, i.e. VR, N, KC and Re, amid others. This task is

not trivial by virtue of, as already discussed, the only true system input is the external

forced movement at the hang-off point, which causes the in-plane and out-of-plane

dynamics.

In turn, the VSIV is a consequence of the driving motion and there is a complex

causality relation between the observed in-plane and out-of-plane responses. There-

fore, the VSIV presented in a catenary-like structure differs tremendously from that

measured using a rigid straight cylinder, as it is not possible to identify in-plane motion

as solely responsible for the out-of-plane oscillations.

Although the normal motion in the plane is a direct response of the imposed exci-

tation, the ansatz that it acts as the driving mechanism for the binormal oscillation is

necessary as a starting point of the analysis. Extending the govern parameters to their

modal counterparts is not trivial due to the abstract leap necessary to link the space of

configuration and the modal domain.

Notwithstanding, in the multimodal response context, the reduced velocity may

present a more tangible meaning in the modal domain, since the natural frequency
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evaluation in flexible structure requires modal analysis in some degree (LE CUNFF;

BIOLLEY; DAMY, 2005).

It is certainly true that each mode is characterized by an unique natural frequency

value and, hence, the modal reduced velocity parameter can be evaluated as

V
( j,k)
R =

U
( j)
n

D f
(k)
N,b

∼
2πA

( j)
n f

( j)
n,dom

D f
(k)
b,N

, (3.27)

in which the modal in-plane normal velocity, U
( j)
n , can be approximated as

2πA
( j)
n f

( j)
n,dom

, since the normal amplitude response is generally quasi-monochromatic

with dominant frequency given by f
( j)
n,dom

.

The term 2πA
( j)
n /D in Equation 3.27 resembles closely a modal Keulegan-Carpenter

number considering that the in-plane normal movement is monochromatic. It is cer-

tainly the case that the normal modal amplitude is quasi monochromatic, thus, the j-th

equivalent modal KC( j) could be defined as

KC( j) =
U

( j)
n

D f
( j)
n,dom

∼ 2πA
( j)
n

D
= 2πA

( j)⋆
n , (3.28)

which can be used in Equation 3.27 as to obtain the modal reduced velocity with re-

spect to the modal Keulegan-Carpenter number, KC( j), and a frequency ratio between

the in-plane motion dominant frequency, f
( j)
n,dom

and an out-of-plane eigenvalue, f
(k)
N,b,

so that

V
( j,k)
R = KC( j)

f
( j)
n,dom

f
(k)
b,N

. (3.29)

The modal Reynolds’ number can be also obtained with respect to the modal

Keulegan-Carpenter parameter,

Re( j) =
U

( j)
n D

ν
=

KC( j) f
( j)
n,dom

D2

ν
, (3.30)

in which ν is the fluid kinematic viscosity.

Another important nondimensional parameter is the cycle number, N, that is the
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number of vibrations in one cycle of the oscillating flow (SUMER; FREDSØE, 1988).

Using the proposed causality ansatz, the cycle number should be the ratio between

the amount of out-of-plane vibrations in one in-plane cycle.

In this context, it is chosen the dominant k-th in-plane mode frequency and the bi-

normal k-th amplitude series frequency response in order to evaluate the cycle number

as

N(k) =
f
(k)
b

f
(k)
n,dom

. (3.31)

Other governing parameters, such as Strouhal’s and Roshko’s numbers, and added

mass, just to cite a few, can be obtained likewise, using the concepts of dominant mode,

dominant frequency and modal peak amplitude.

However, it is not possible to guarantee that the currently known experimental rela-

tions and regimes for each one of these parameters hold true in the modal domain.

Following the VSIV analysis devised in Sumer and Fredsøe (1988), the modal re-

duced velocity, V
( j,k)
R , modal Keulegan-Carpenter, KC( j), and modal cycle number,

N(k), could be suffice to characterize the experimental responses available in the

present analysis.

Consequently, the VSIV modal domain Buckingham’s Π analysis leads to the di-

mensionless governing parameters,

A
(k)⋆
b

= F
(

KC( j),Re( j),V
( j,k)
R , . . .

)

,

(3.32)

N(k) = G
(

KC( j),Re( j),V
( j,k)
R , . . .

)

,

in which it is being chosen a combination of governing parameters that encompasses

at least three of the most important quantities in the hydroelastic system so as to char-

acterize the fluid-structure interaction: the structural out-of-plane eigenvalue, f
(k)
b,N ; the

fluid kinematic viscosity, ν ; the imposed motion frequency, f
( j)
n,dom

.

It is noteworthy that the hydroelastic phenomenum depends on other parameters

along the model span, such as: shedding frequency; cylinder surface roughness, ge-

ometry and specific weight; structural damping; flow turbulence; added mass, drag and
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lift coefficients; soil stiffness, to cite a few; see Table 3.1 and (SARPKAYA; RAJABI,

1979).

Furthermore, the present database, albeit extensive, has its own limitations and

the fundamental group of nondimensional parameters available in the current analysis

must be obtained by grouping the aforementioned parameters in a physical and rational

way using the Buckingham’s Π theorem.

For instance, the modal reduced velocity resembles a second order tensor that has

direct components ( j = k) and other cross terms that take into consideration the effect

of j-th in-plane mode to all other binormal modal responses ( j 6= k). Additionally, the

modal KC depends on both the imposed motion at the hang-off point, frequency and

amplitude, and the mode chosen to be studied.

Particularly, the variation due to choosing an in-plane normal mode is more pro-

nounced than the one caused by the imposed motion, insofar as each mode generally

has a very characteristic amplitude parcel in the response modal reconstruction of a

considered test. Thus, the modal reduced velocity “tensor” components vary consider-

ably with respect to the plane mode due to the KC( j) values for each mode in a given

test.

Contrarily to fundamental results obtained with rigid straight cylinders (SUMER;

FREDSØE, 1988; FERNANDES; MIRZAEI SEFAT; CASCÃO, 2014), the modal KC

is not fixed due to the in-plane response dependence on the driving frequency. This

behavior may be attributable to the exciting frequency being able occur in the sub-

resonant, resonant or super-resonant regime, depending on the plane natural frequen-

cies values.

More importantly, the modal KC is not a fixed input parameter, but a response of the

nonlinear hydroelastic dynamics. Consequently, choosing the modal reduced velocity

as a governing parameter is not ideal due to its direct dependence on the modal KC.

Rearranging the parameters using Buckingham’s Π theorem in Equation 3.29 un-

veils the nondimensional parameter f ( j,k)⋆, such that

f ( j,k)⋆ =
V
( j,k)
R

KC( j)
=

f
( j)
n,dom

f
(k)
b,N

, (3.33)

in which the modal KC variation is removed from the analysis nondimensional group.

A closer inspection on the new governing parameter reveals that the term is a reinter-
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pretation on the nondimensional driving frequency parameter commonly used in forced

linear system dynamics.

Interestingly, the reduced velocity was firstly used in the VSIV context due to the

VIV heavy influence on it. As argued in the previous chapter, even though the VIV plays

an important role in the VSIV analysis since both phenomena share some similarities,

the VSIV is unique and presents a great deal of idiosyncrasies that cannot be found in

the VIV.

The other way around, the VSIV is caused by a driving motion in a complex non-

linear hydroelastic system and the relation obtained in Equation 3.33 is nothing but

a reinterpretation on frequency ratio found in the most fundamental case of a forced

dynamical system.

It is important to point out that, although the in-plane motion is being used as a

driving mechanism to the out-of-plane movement (causality assumption), it is still a

response obtained from the hydroelastic system. Consequently, not only the modal KC

varies, as already discussed, but also the dominant plane response frequency, f
( j)
n,dom

,

evaluated to a particular in-plane response may vary for each test.

For the most part, the dominant normal response frequency assumes values near

the driving one at the hang-off point. Notwithstanding, in some cases, it was observed

that another harmonic of the driving frequency showed to be dominant.

Frequency domain analysis will be thoroughly presented in the next chapter, but, in

general, this variation occurred in few cases whose in-plane motion showed a typical

bi-harmonic response, and the fundamental and second harmonics had similar peak

frequency values.

Then, it could be argued that, even so the nondimensional parameter were recom-

bined, the governing terms still present some variation on them and similarity in the

modal context may not be easily achieved. On the whole, the effect due to the dom-

inant plane response frequency variation is more subtle than the one caused by the

modal KC variation.

As a result, modal similarity could be achieved in the present work analysis, but

these cases in which there is variation on the dominant plane frequency should be

analyzed carefully.

More significantly, the out-of-plane response dependence on the modal governing

parameters presented in Equation 3.32 can be rewritten as:
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A
(k)⋆
b

= F



KC( j),Re( j),
f
( j)
n,dom

f
(k)
b,N

, . . .



 ,

(3.34)

N(k) = G



KC( j),Re( j),
f
( j)
n,dom

f
(k)
b,N

, . . .



 ,

which will be used later in the experimental analysis, considering the modal frequency

ratio in lieu of the modal reduced velocity.

The modal analysis allowed to filter the spatial data, focusing only in a few number

of modes in which the majority of energy was concentrated. The modal reconstruction,

as argued, will never be achieved completely due to the continuum structure discretiza-

tion in a finite number of DOFs.

A closer inspection in Equation 3.34 reveals that, although the Galerkin’s decompo-

sition reduced the number of DOF in the hydroelastic system, the VSIV response, char-

acterized by the out-of-plane (binormal) dynamics, is a function of all in-plane modes,

j = 1, . . . ,10.

This is also explicit when it was defined the modal frequency ratio (modal reduced

velocity) “tensor”, Equation 3.33 (3.29), which represents the effect of a certain j-th

plane mode in the k-th binormal mode, i.e. the VSIV response.

Notwithstanding, it would be advantage if, in a first approximation, all the binormal

dynamics were a response of the dominant in-plane movement, which is the most

energetic mode oscillating in a given test (or modes, since the in-plane response can

be multi-modal).

Figure 3.24: Block diagram showing the simplified modal hydroelastic ROMs.
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Figure 3.24 displays this proposed hydroelastic ROMs as a block diagram, con-
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sidering that the modal VSIV response is a reaction of the dominant in-plane normal

movement. Moreover, it is also considered that the binormal modes are uncoupled

between each other due to the eigenfunctions be orthonormal with respect to the mass

matrix.

The dashed lines in Figure 3.24 refer to second order effects, mainly the role of the

sub-dominant plane mode in the VSIV response, specially when there is multi-modal

in-plane dynamics. It is also considered that the out-of-plane movement action in the

normal dynamics is of second order.

In these ROMs, the plane dynamics is important for it is the driving mechanism

for the VSIV response. However, Figure 3.24 shows that the in-plane modes are cou-

pled to each other, i, j = 1, . . . ,10. This assumption is not far-fetched, since the plane

movement carries non-linear geometric effects due to the curvature and presents large

displacements, albeit small strain.

Moreover, the Galerkin’s in-plane motion decomposition was executed using the

binormal mode functions. Although the eigenfunctions set used is valid under the per-

spective of modal decomposition, it is not guaranteed that the resultant plane modal

system is uncoupled.

The relations obtained in Equation 3.34 can be rewritten, considering that each

out-of-plane modal response depends only on the dominant in-plane movement, such

that

A
(k)⋆
b

= F



KC(d),Re(d),
f
(d)
n,dom

f
(k)
b,N

, . . .





(3.35)

N(k) = G



KC(d),Re(d),
f
(d)
n,dom

f
(k)
b,N

, . . .



 ,

in which the super-script �(d) is the indication for the dominant mode; see Table 3.12.

Thus, the VSIV response for each binormal mode, k = 1, . . . ,10, could be written

as a function of the following parameters: the dominant Keulegan-Carpenter, KC(d);

the dominant modal Reynolds, Re(d); the modal frequency ratio evaluated using the

dominant frequency found in the dominant in-plane modal spectral response, f (d,k)⋆ =

f
(d)
n,dom/f

(k)
b,N; amid other parameters.
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3.3.5 Structural and hydrodynamic oscillators

The assumption that the hydroelastic response should be, in a first approximation,

caused by the dominant in-plane mode is based on the modal KC range obtained for

each plane mode. Such assumption is defensible when the dominant modal KC is

much larger than the other modal KC, KC(d)≫ KC( j) with j 6= d, referring to the other

modes.

Moreover, this condition is equivalently to the out-of-plane response maximum KC

dependence reported in Wang et al. (2017) and both assumes regimes in which the

global dynamics is suffice to understand the hydroelastic response.

In turn, when the measured KC(d) is similar in order with the one from other mode,

the local dynamics turns out to be relevant in the hydroelastic response. Nonethe-

less, the present methodology exhibits a quasi-uncoupled modal system8 and it should

works sufficiently well if the system structural part governs the hydroelastic response.

The quasi uncoupled is a rather complicated discussion subject due to the exis-

tence of a structural model coupled to a hydrodynamic oscillator. Little is known about

the latter and even its terms and coefficients should also depend on the hydroelastic

response state instantaneously.

Whereas it is acceptable to consider a linear Euler-Bernoulli curved beam model as

representative for the present structural system and even use its orthogonal eigenfunc-

tions in the Galerkin’s decomposition in order to obtain an uncouple structural modal

system, the hydrodynamic oscillator eigenfunctions are not necessarily equivalent to

the structural ones.

Thus, it is little defensible to argue that the hydrodynamic oscillator is indeed un-

coupled. For this reason, a set of fundamental questions arise from this fact: is there

an oscillator, structural or hydrodynamic, that is the most important one in the VSIV,

assuming a governing behavior upon the other? Then, which one?

These fundamental and concerning questions are difficult to be answered gener-

ally. However, the present results and analyses will try to address them in the present

experimental range and conditions.

Accordingly, should the structural oscillator be the governing one in the VSIV anal-

ysis, the devised modal methodology will be suffice to predict when some modal am-

8Due to the mass matrix be diagonal as a result of the orthogonal set of eigenfunctions.
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plitude peak responses should occur, since the hydrodynamic oscillator could be de-

composed in modal parcels that are quasi-orthogonal to one another two by two.

Consequently, the case in which the dominant and sub-dominant modal KCs as-

sume same order values should not be a major problem in the present analysis due to

the hydroelastic modal responses are nearly uncoupled and the causality assumption

is still a good ansatz, i.e. the plane dynamics causes the binormal one, but the latter

does not contribute in the former.
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4 VSIV MODAL RESPONSE ANALYSIS

Para onde vou, de onde vim?
Não sei se me acho ou me extravio.
Ariadne não fia seu fio
à frente, mas sim atrás de mim.
Não será a saı́da um desvio
E o caminho o verdadeiro fim?

CICERO, A., In: O Livro de Sombras

de Luciano.

This chapter deals with the attained experimental results using the proposed method-

ology previously presented. The main goal is to obtain some sort of similarity amid

previous experimental results and those from the multi-modal catenary-like response

arrangement (SUMER; FREDSØE, 1988; FERNANDES; MIRZAEI SEFAT; CASCÃO,

2014; PESCE et al., 2017).

As a brief recapitulation, Figure 4.1 depicts the orthonormal eigenfunctions, ϕ̂n,

used in the Galerkin’s decomposition, comparing them with the quasi-orthogonal modes,

ϕn, obtained numerically in Orcaflex®. The major visible difference between them is

the amplitude value due to the normalization using the inner product used in the Hilbert

vector subspace.

Additionally, the orthonormal set, B̂, is used in both the in-plane normal and out-of-

plane binormal modal projection processing, inasmuch as the plane modes obtained

using the discrete model did not reproduce the rigid soil contact accordingly with the

experimental set-up condition.

The tests differ with respect to the imposed harmonic motion at the top, and, due to

the actuator power limitations, higher exciting frequencies were possible only in small

imposed amplitudes cases. Hence, the dominant modal KC assumes larger values

mainly due to the imposed amplitude value at the hang-off point.

Moreover, the dominant KC value varies within each testing group due to the im-

posed motion frequency. The movement frequency at the upper end do not reach the

first in-plane natural frequency, f
(1)
n,N/f

(1)
b,N = 1.69, in the testing groups Ai = 70mm and

Ai = 105mm, whose maximum input is of f ⋆i,A70
= 1.21 and f ⋆i,A105

= 0.86, respectively;

see Table 3.7.
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Figure 4.1: Modal functions, ϕn (ŝ) (dotted black), and their orthonormal counterparts
used in Galerkin’s decomposition, ϕ̂n (ŝ) (solid orange).

(a) 1st mode

0 1
-1

0

1

(b) 2nd mode

0 1
-1

0

1

(c) 3rd mode

0 1
-1

0

1

(d) 4th mode

0 1
-1

0

1

(e) 5th mode

0 1
-1

0

1

(f) 6th mode

0 1
-1

0

1

(g) 7th mode

0 1
-1

0

1

(h) 8th mode

0 1
-1

0

1

(i) 9th mode

0 1
-1

0

1

(j) 10th mode

0 1
-1

0

1

Source: Developed by the author.

As a result, the experimental in-plane amplitude response ought to be considered

as sub-resonant with respect to the first in-plane eigenmode and, thus, the dominant

modal Keulegan-Carpenter parameter, KC(d), increases proportionally to the input fre-

quency; see Table 4.1. On the other hand, the other testing groups, Ai = 17.5mm and

Ai = 35mm, present exciting frequencies at the upper extremity that assume values

around in-plane modes eigenfrequencies.

The latter case, Ai = 35mm, whose maximum driven frequency is f ⋆i,A35
= 2.09,

achieves the first in-plane natural frequency, which can be directly observed in the

KC(d) values presented in Table 4.1, as the parameter firstly increases in value, reach-

ing a maximum value slightly above the in-plane resonance and then decreasing.

The former case, Ai = 17.5mm, shows a more complex response, as multi-modal

in-plane resonance occurs due to the higher imposed frequencies (maximum f ⋆i,A17.5
=

4.21). Consequently, the dominant modal KC in such case occurs in several in-plane

normal modal amplitude series, particularly in the first, second and third in-plane modes:

f
(1)
n,N/f

(1)
b,N = 1.69, f

(2)
n,N/f

(1)
b,N = 2.64 and f

(3)
n,N/f

(1)
b,N = 3.80, respectively.
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Table 4.1: Dominant modal Keulegan-Carpenter (KC(d)) evaluated for all testing
groups and the correspondent dominant in-plane normal mode occurrence.

Ai (mm)

17.5 35 70 105

ID KC(d) Mode KC(d) Mode KC(d) Mode KC(d) Mode

01 7.82 1st 15.28 1st 30.12 1st 45.33 1st

02 8.07 1st 15.45 1st 30.41 1st 45.22 1st

03 8.42 1st 15.46 1st 30.40 1st 45.26 1st

04 8.90 1st 15.68 1st 30.66 1st 45.30 1st

05 9.76 1st 15.80 1st 30.70 1st 45.60 1st

06 10.56 1st 16.12 1st 30.93 1st 45.77 1st

07 10.45 1st 16.34 1st 31.28 1st 45.96 1st

08 9.17 1st 16.67 1st 31.65 1st 46.05 1st

09 7.55 2nd 17.16 1st 31.63 1st 46.11 1st

10 8.13 2nd 17.07 1st 31.79 1st 46.07 1st

11 7.09 1st 17.86 1st 31.95 1st 46.61 1st

12 7.58 1st 17.68 1st 32.13 1st 46.48 1st

13 7.62 1st 17.97 1st 32.54 1st 46.96 1st

14 8.08 3rd 16.87 1st 32.63 1st 47.20 1st

15 8.14 3rd 16.34 1st 32.99 1st 47.37 1st

16 8.24 3rd 16.32 1st 33.11 1st 47.49 1st

17 7.32 1st 16.09 1st 33.18 1st 47.65 1st

18 7.39 1st 14.09 1st 33.24 1st 47.58 1st

19 7.32 1st 14.13 1st 33.70 1st 47.97 1st

20 7.25 1st 12.96 1st 33.91 1st 47.88 1st

21 - - - - - - 47.95 1st

22 - - - - - - 47.65 1st

23 - - - - - - 47.59 1st

24 - - - - - - 47.76 1st

25 - - - - - - 47.94 1st

Source: Developed by the author.

Accordingly, the ensuing experimental analysis will follow an order determined with

respect to the in-plane resonance occurrence due to the forced motion at the hang-

off point. Thus, the analysis will be executed considering firstly the largest imposed
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amplitude, Ai = 105mm, and then considering the other cases in inverse order, 70mm,

35mm and 17.5mm, respectively.

More significantly, the modal analysis could unveil some intrinsic behaviors that

cannot be perceived in a plain space of configuration analysis. For instance, the at-

tainment of each mode VSIV response individually may assist in the search for modal

intrasimilarities, comparing the modal response one to another.

Moreover, should it be possible to observe an modal intrasimilarity in each testing

group, it will be possible to compare these idiosyncratic synchronization and peak re-

sponses in order to check the evidence of inter-modal similarities amid the different

experimental conditions available.

Although large plane amplitude response can be observed, the structure is sub-

jected to small strains. Hence, the majority of nonlinear phenomena are related to the

hydroelastic interactions and the multi-modal response behavior, including internal and

parametric resonances.

In addition, flow measurements were impossible to be carried out in the experimen-

tal arrangement. It is certainly true that such measurements would enrich the present

analyses. Nonetheless, the results to be depicted show great similarity with previous

analysis using rigid straight cylinders subjected to oscillatory flow and VSIV (SUMER;

FREDSØE, 1988; FERNANDES; MIRZAEI SEFAT; CASCÃO, 2014).

4.1 Rigid straight cylinders

Previously, it was presented experimental results using rigid straight cylinders ob-

tained in Sumer and Fredsøe (1988) and Fernandes, Mirzaei Sefat, and Cascão (2014);

see Figures 2.6 and 2.12, respectively. These analyses were carried out using the re-

duced velocity, VR, parameter, which is indeed very suitable for both cases, having fixed

KC values in each executed test.

Figure 4.2 displays the experimental data reported in Sumer and Fredsøe (1988),

re-scaling the abscissa using the frequency ratio parameter, f ⋆. Interestingly, the am-

plitude peak responses occur in rational values of f ⋆. For instance, the KC = 20

presents amplitude peaks in f ⋆ = 0.25, 0.4 and 0.7; see Figure 4.2b.
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Figure 4.2: Frequency and amplitude response with respect to f ⋆. Exp. I.
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(c) KC = 30
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(d) KC = 40
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Source: Adapted from Sumer and Fredsøe (1988).

The case in which KC = 10, Figure 4.2a, shows peak response between f ⋆ = 0.5

and 0.6, whilst the larger KC cases present a more complex behavior and amplitude
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peaks happen near f ⋆ = 0.2, 0.25 and 0.3, and f ⋆ = 0.18 and 0.25 for KC = 30 and

KC = 40, respectively; see Figures 4.2c-4.2d.

The experimental data shows that the occurrence of f ⋆ = 0.25 happens in most

cases, except in the KC = 10 case. Nevertheless, the former case, KC = 10, presents

a peak amplitude response near f ⋆ = 0.5.

It is also possible to observe that high KC value cases, Figures 4.2c-4.2d, present

peak response in lower frequency ratio values. This may be attributable to the synchro-

nization and high N values found in large KC tests due to the hydroelastic response

responding in higher frequencies.

In turn, Figure 4.3 shows the experimental results reported in Fernandes, Mirzaei

Sefat, and Cascão (2014) using the frequency ratio parameter, f ⋆.

Once more, it is possible to observe peak amplitude responses around rational

frequency ratio values. Moreover, the occurrence of peak amplitude responses at f ⋆ =

0.25 is more evident in these tests.

Contrastingly to what was reported in Figure 4.2, the KC = 10 test shows more

than one peak response, happening close to f ⋆ = 0.25 and 0.6; see Figure 4.3a. The

case KC = 20, Figure 4.3b, presents peaks in f ⋆ = 0.25 and 0.75.

Similarly to the KC = 30 results in Figure 4.2c, the KC = 30 case, Figure 4.3c,

also shows peak response in a frequency ratio value near f ⋆ = 0.3. The same can be

observed in the case KC = 40 which has a peak response near f ⋆ = 0.18; see Figure

4.3d. The latter also shows a peak amplitude response in f ⋆ = 0.40.

Furthermore, conversely to the amplitude response reported in Figure 4.2, the ex-

perimental results obtained by Fernandes, Mirzaei Sefat, and Cascão (2014) shows a

response whose amplitude peaks occur in a more comprehensible fashion with distin-

guishable peaks; see Figure 4.3.

The frequency ratio could shed light in the results reported in Sumer and Fredsøe

(1988) and Fernandes, Mirzaei Sefat, and Cascão (2014), unveiling an interesting pat-

tern on the distribution of amplitude peaks with respect to values of f ⋆. Particularly,

Sumer and Fredsøe (1988) argued that the transition which occurs in the synchroniza-

tion parameter, N, happens when there is a resonance in the system, i.e. the response

frequency is approximately equal to the natural one, fr/fN ∼ 1.
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Figure 4.3: Vortex Self-Induced Vibration amplitude and frequency responses for sev-
eral KC conditions with respect to f ⋆.

(a) KC = 10

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

(b) KC = 20

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8
0
1
2
3
4
5

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

(c) KC = 30
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Source: Adapted from Fernandes et al. (2012).

Considering the synchronization parameter, N = fr/fi, and the frequency ratio, f ⋆ =
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fi/fN, it is possible to obtain the following relation,

f ⋆ =
fi

fN
=

fr

N fN
=

1

N

fr

fN
, (4.1)

in which the synchronization number, N, shows up in the frequency ratio. If a resonance

occurs, i.e. fr/fN ∼ 1, then the frequency ratio can be written in the following form:

f ⋆ ∼ 1

N
. (4.2)

The previous results show that the occurrence of amplitude peak response in the

vicinity of a rational f ⋆ value is not a coincidence, but a necessary condition. Un-

questionably, when high KC values are used in the experimental test, the measured

response will assume higher N values and, consequently, resonance amplitude peaks

will occur in the vicinity of smaller f ⋆ values.

For instance, Figure 4.2d displays that the cylinder response assumes N = 2, . . . ,8

and, considering the result obtained in Equation 4.2, it is possible to verify that the

response amplitude peaks are occurring in the range 0.125≤ f ⋆ ≤ 0.5, as predicted.

Although Equation 4.2 is a reasonably prediction of a amplitude peak, the VSIV

is a nonlinear phenomenum and presents peaks that are not necessarily located in

f ⋆ ∼ N−1.

This can be evidenced in Figure 4.2b in which there is a resonance peak in f ⋆∼ 2/3,

whilst N = 2 is observed. The same behavior can be observed in Figures 4.3a-4.3c, in

which all cases present a peak response around f ⋆ ∼ 0.6, whilst measuring N = 1.

4.2 VSIV response in a catenary-like cylinder

After this brief reinterpretation of results, the present chapter will follow the analysis

order presented previously, beginning with the Ai = 105mm test group, followed by the

other cases in inverse order of imposed amplitude values, Ai = 70mm, 35mm and

17.5mm, respectively.

The present experimental results will be presented following a color scheme, as-

signing an unique color and its hues to each mode. For instance, the first mode is

assigned to the color blue; the second, to orange; the third, to yellow; the fourth, to
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green; and the fifth, to purple.

As a general rule, if two hues of a same color appear at the same time, the darker

hue will be assigned to the dominant mode, while the lighter one to a subdominant

mode. The same applies to when there is the intention of evidencing which measure-

ments are obtained from a dominant or subdominant mode.

The other modes, seventh up to tenth, are also assigned to an unique color. Nonethe-

less, these higher modes are less important than the ones specified previously and

their color code might be checked in the results to be presented afterwards.

Otherwise indicated, henceforth, these colors will be used only in the context of

their correspondent mode, except in the following cases: the green used for citing

references; the blue, for cross-reference of textual elements; and the red, for hyperlinks.

4.2.1 Testing group Ai = 105mm

The first part of this section will present the modal plane and binormal movement

synchronization using modal orbits and results in a similar fashion to what was reported

in Figures 4.2-4.3, followed by the analysis of theses results in the modal context.

Complementary results can be found in the Appendix C.

The second part will focus on the similarity obtained using the modal responses

with respect to the dominant frequency measured in the dominant in-plane modal dy-

namics, f
(d)
n,dom

. This analysis will check the robustness of the proposed methodology

to variations in the plane response, considered to act as an input to the binormal oscil-

lations.

Figure 4.4 exhibits some of the synchronization in the space of configuration re-

ported in the present testing group. Particularly, the synchronization was obtained in

the experimental run ID 06 whose used driving frequency is f ⋆i = fi/f
(1)
b,N = 0.42.

The experimental results showed in Figures 4.2-4.3 also exhibited some interesting

synchronization results when the frequency ratio was in the range 0.35 ≤ f ⋆i ≤ 0.45,

namely in Figures 4.2b and 4.3d.

Additionally, the modal analysis reveals that the ratio of the exciting frequency with

respect to other modes, e.g. the second one fi/f
(2)
b,N = 0.21, can suggest that the exis-

tence of a resonant peak response in the second mode, i.e. the modal synchronization

would assume a whole number value.
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Figure 4.4: Exampling the synchronization displayed using orbits in the space of con-
figuration between normal and binormal displacements measured at specific points
selected in the model span considering the testing group Ai = 105mm.
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Source: Developed by the author.

Note: The modal color scheme is not applied in this case and the colors merely represent the selected

points at the cylinder span.

An early analysis of the possible resonant peak using Equation 4.2 suggest that

the synchronization number should evaluate to N = 5 in the aforementioned case. A

thorough discussion regarding this sort of apparent modal resonant response will be

addressed accordingly in the following section. Such discussion will also serve as a

basis to the following cases analysis.

4.2.1.1 Modal orbits, synchronization and amplitude results

Firstly, Table 4.2 shows the modal KC for the five first plane modes, j = 1, . . . ,5,

in the Ai = 105mm case. It is possible to observe that the dominant KC is indeed

occurring in the first mode, as previously presented in Table 4.1, and that the modal

KC increased as the exciting frequency enlarged as well.

The subdominant KC occurs both in the second and third modes, IDs 01-12 and

15-25, respectively, and the IDs 13-14 show co-subdominance of both modes. The

dominant KC is larger than the subdominant one, being approximately an order higher

in magnitude.
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Table 4.2: Modal Keulegan-Carpenter, KC( j), evaluated for all relevant modes in the
Ai = 105mm testing group along with the correspondent nondimensional frequency

parameter, f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N.

Modes

1st 2nd 3rd 4th

ID KC(1) f (1,1)⋆ KC(2) f (2,2)⋆ KC(3) f (3,3)⋆ KC(4) f (4,4)⋆

01 45.3 0.24 4.4 0.12 4.7 0.08 0.7 0.06

02 45.2 0.28 4.3 0.14 4.7 0.09 0.7 0.07

03 45.3 0.31 4.3 0.16 4.7 0.10 0.7 0.08

04 45.3 0.35 4.3 0.17 4.7 0.12 0.8 0.09

05 45.6 0.38 4.3 0.19 4.6 0.13 0.8 0.10

06 45.8 0.42 4.3 0.21 4.7 0.14 0.9 0.10

07 46.0 0.45 4.3 0.23 4.6 0.15 0.8 0.11

08 46.1 0.48 4.3 0.24 4.6 0.16 0.8 0.12

09 46.1 0.52 4.5 0.26 4.6 0.17 0.9 0.13

10 46.1 0.55 4.4 0.28 4.6 0.19 0.9 0.14

11 46.6 0.55 4.4 0.28 4.6 0.19 0.9 0.14

12 46.5 0.62 4.6 0.31 4.8 0.21 1.1 0.16

13 47.0 0.62 4.6 0.31 4.6 0.21 1.0 0.16

14 47.2 0.69 4.7 0.35 4.7 0.23 1.1 0.17

15 47.4 0.69 4.8 0.35 4.6 0.23 1.2 0.17

16 47.5 0.76 5.1 0.38 4.8 0.26 1.2 0.19

17 47.7 0.80 5.7 0.40 4.9 0.27 1.4 0.20

18 47.6 0.80 5.7 0.40 5.0 0.27 1.4 0.20

19 48.0 0.87 6.2 0.44 5.3 0.29 1.5 0.22

20 47.9 0.87 6.4 0.44 5.5 0.29 1.6 0.22

21 48.0 0.93 7.5 0.47 5.7 0.31 1.8 0.23

22 47.7 0.93 7.9 0.47 6.0 0.31 1.9 0.23

23 47.6 1.00 8.7 0.51 6.5 0.34 2.1 0.25

24 47.8 1.00 8.7 0.51 6.5 0.34 2.1 0.25

25 47.9 1.04 9.0 0.52 6.7 0.35 2.2 0.26

Source: Developed by the author.

This large distance in range of the dominant and subdominant KCs are favorably to
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the assumption that, in a first approximation, the VSIV dynamics is a response of only

the dominant normal movement. The reader is encouraged to check the Appendix C.1

in order to see modal amplitude series and their spectral content for each analyzed

mode.

Figures 4.5-4.6 depicts the synchronization between plane and out-of-plane move-

ments using Lissajous’ curves. The modal orbits are scaled with respect to the highest

out-of-plane ones observed in the whole testing group.

The modal orbits are plotted considering each binormal modal amplitude series

with respect to the in-plane normal dominant mode displacement, i.e. the plane move-

ment whose amplitude is the largest observed.

Visual inspection in Figure 4.5 reveals that there are some synchronization patterns

in each mode, which indicates that the modal synchronization parameter, N(k), can

assume approximately whole values in some situations.

This behavior is easily seen in the second mode in the runs ID04, ID06, ID09 and

ID10. For instance, the second mode in the run ID06 clearly shows a synchronization

with 5 lobes, in other words N(2) = 5, as previously estimated. The first mode mode

also presents a distinct synchronization with higher N(1). Additionally, the other modes,

namely third, fourth and fifth, show synchronization patterns in some cases.

Higher exciting frequency values in the imposed motion causes distinct synchro-

nization pattern in higher modes, leading to larger out-of-plane modal displacements.

It is noteworthy that frequency ratio, f (d,k)⋆ = f
(d)
n,dom/f

(k)
b,N, i.e. the ratio between the

dominant frequency obtained in the plane dominant mode with respect to the k-th out-

of-plane mode, presented in Table 4.3 shows that some distinct synchronization ob-

served in Figure 4.5 seems to occur near f (d,k)⋆ values that are similar to the ones

found in Figures 4.2-4.3.
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Figure 4.5: Modal orbits for out-of-plane
modes against dominant in-plane mode;

out-of-plane modes: 1st to 5th.

Source: Developed by the author.

Figure 4.6: Modal orbits and their local ref-
erence frame orientation.

06

Source: Developed by the author.

Table 4.3: Ratio f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N ( j = k)

for all test with imposed movement at the
top Ai = 105mm, regarding dominant in-
plane mode; out-of-plane modes: 1st to
5th.

Out-of-plane modes

ID 1st 2nd 3rd 4th 5th

01 0.24 0.12 0.08 0.06 0.05
02 0.28 0.14 0.09 0.07 0.06
03 0.31 0.16 0.10 0.08 0.06
04 0.35 0.17 0.12 0.09 0.07
05 0.38 0.19 0.13 0.10 0.08
06 0.42 0.21 0.14 0.10 0.08
07 0.45 0.23 0.15 0.11 0.09
08 0.48 0.24 0.16 0.12 0.10
09 0.52 0.26 0.17 0.13 0.10
10 0.55 0.28 0.19 0.14 0.11
11 0.55 0.28 0.19 0.14 0.11
12 0.62 0.31 0.21 0.16 0.12
13 0.62 0.31 0.21 0.16 0.12
14 0.69 0.35 0.23 0.17 0.14
15 0.69 0.35 0.23 0.17 0.14
16 0.76 0.38 0.26 0.19 0.15
17 0.80 0.40 0.27 0.20 0.16
18 0.80 0.40 0.27 0.20 0.16
19 0.87 0.44 0.29 0.22 0.17
20 0.87 0.44 0.29 0.22 0.17
21 0.93 0.47 0.31 0.23 0.19
22 0.93 0.47 0.31 0.23 0.19
23 1.00 0.51 0.34 0.25 0.20
24 1.00 0.51 0.34 0.25 0.20
25 1.04 0.52 0.35 0.26 0.21

Source: Developed by the author.
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Thus, Equations 4.1-4.2 could be extended in the modal context using the same

arguments, such that

f (d,k)⋆ =
f
(d)
n,dom

f
(k)
b,N

=
f
(k)
b

N(k) f
(k)
b,N

=
1

N(k)

f
(k)
b

f
(k)
b,N

,

(4.3)

f (d,k)⋆ ∼ 1

N(k)
,

as f
(k)
b /f

(k)
b,N ∼ 1 and in which f

(k)
b

is the binormal frequency response associated to the

k-th mode. Again, this prediction of a peak response is an approximation, assuming

a typical resonance condition observed in a linear system, which, by no means, is the

presented hydroelastic case.

Figures 4.7-4.8 display, in the modal context, the same analysis carried out in Fig-

ures 4.2-4.3. Here, observations show that the modal response of the first, second,

third and fourth modes are characterized by some resonance peaks.

Even though the other higher modes must also be considered in the global context,

only these modes are presented in order to focus on general aspects of the hydroe-

lastic system response. Later, all modal peak amplitude responses will be addressed

together.

Figures 4.7b, 4.7d, 4.8b and 4.8d present the modal amplitude peak response with

respect to the modal frequency ratio. Due to the imposed exciting frequency values,

the modal results are bounded in a fixed range whose value decreases as the natural

frequency increases.

Consequently, the first mode response, Figures 4.7a-4.7b, presents a maximum

amplitude around f (d,1)⋆ = 0.25 (1.5D), which is coherent to the prediction obtained in

Equation 4.3 for it is observed N(1) ∼ 4 at that spot. Some peak responses are also

observable nearby f (d,1)⋆ = 0.33 (0.5D) and 0.5 (0.6D), corresponding to N(1) = 3 and

5, respectively.

As reported in Sumer and Fredsøe (1988), the synchronization number, N(1), tran-

sition is occurring when f
(1)
b /f

(1)
b,N ∼ 1. Additionally, a small peak response is also ob-

tained in the range 0.7≤ f (d,1)⋆ ≤ 0.8 (0.8D), which was also observed in some exper-

imental cases using rigid straight cylinders; see Figures 4.2-4.3.
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Figure 4.7: Modal response of the first and second out-of-plane modes with respect to

the modal frequency ratio parameter: 45.2≤ KC(d) ≤ 48.
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Source: Developed by the author.
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Figure 4.8: Modal response of the third and fourth out-of-plane modes with respect to

the modal frequency ratio parameter: 45.2≤ KC(d) ≤ 48.
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Source: Developed by the author.
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The second mode, Figures 4.7c-4.7d, presents maximum peak amplitude of the

same order observed in the first mode (0.5D-1.5D) and some interesting synchroniza-

tion patterns were measured, specially in the tests IDs 04, 06 and 09; see Figure 4.5.

Figure 4.7c evidences that there are considerable amplitudes in the spectral response

placed on the synchronization N(2) = 6, 5 and 4.

A closer inspection on Table 4.3 shows that in these cases the frequency ratio is

approximately f (d,2)⋆ = 0.17, 0.21 and 0.26, respectively. These frequency ratio values

fit the prediction given in Equation 4.3.

Likewise, the third mode present a peak spectral response on the synchronization

N(3) = 5 and an amplitude peak around the predicted f (d,3)⋆ = 0.2 (1D); see Figures

4.8a-4.8b. The fourth mode shows a smaller amplitude response; nevertheless, its

peak occurs in the vicinity f (d,4)⋆ = 0.2 (0.7D), corresponding to N(4) = 5; see Figures

4.8c-4.8d.

The reader is asked to check Figure 4.5 and Table 4.3 whenever possible as to

seek more information, e.g. in which IDs cases the peak resonance occurs, and to

visualize the modal orbit characterizing the synchronization.

4.2.1.2 Modal similarity

Previously, it was presented and analyzed the out-of-plane modal responses using

both their amplitude and spectral contents. The analyses showed great similarity to the

results obtained using a rigid straight cylinder Sumer and Fredsøe (1988) and Fernan-

des, Mirzaei Sefat, and Cascão (2014), which was possible due to the recombination

of governing parameters and adoption of the modal frequency ratio, f (d,k)⋆.

In the following analysis, it will be considered only the modal amplitude response,

seeking to obtain an modal intrasimilarity. Figure 4.9 shows the peak-to-peak amplitude

evaluated for each mode in all testing cases with respect to the modal frequency ratio.

In this case, the modal frequency ratio is evaluated for each mode consistently.

Thus, the abscissa is written with respect to k = 1, . . . ,10. The reader is also asked to

regard the color and marker schemes used to distinguish each mode data.

Until now, the modal responses were presented separately with respect to the fre-

quency ratio, f (d,k)⋆. It would be interesting if all modal amplitude peaks could be

displayed at once in order to check how the modal responses are related to each other.
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Figure 4.9: Modal peak-to-peak amplitude response, considering all out-of-plane

modes with respect to the dominant plane modal displacement 45.2≤ KC(d) ≤ 48.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Source: Developed by the author.

Surprisingly, the data evidenced an modal intrasimilarity, unveiling much informa-

tion on the structural response. For instance, a direct comparison on the amplitude

magnitude reveals that the first and second mode present the largest responses.

Nonetheless, the third mode shows considerable high displacement of the diameter

order and the fourth presents peak amplitude slightly above half diameter. The other

modes exhibit modal displacement less than half diameter, which may seem small, but

their frequency response and local curvature at the TDP are larger in value, which may

trigger more fatigue cycles (WANG et al., 2014).

4.2.2 Testing group Ai = 70mm

The previous section set some foundation that will be used in the following testing

cases analysis. Thus, these analyses will be carried out in similar fashion, however,

the results will be exhibited in a more concise way in order to avoid redundancy.

Figure 4.10 exhibits some of the synchronization in the space of configuration re-

ported in the present testing group. Particularly, the synchronization was obtained in

the experimental run ID 09 whose used driving frequency is f ⋆i = fi/f
(1)
b,N = 0.65.
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The experimental results showed in Figures 4.2-4.3 also exhibited some interesting

synchronization results when the frequency ratio was in the range 0.60 ≤ f ⋆i ≤ 0.75,

namely in Figures 4.2b and 4.3b.

Figure 4.10: Exampling the synchronization displayed using orbits in the space of con-
figuration between normal and binormal displacements measured at specific points
selected in the model span considering the testing group Ai = 70mm.
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Source: Developed by the author.

Note: The modal color scheme is not applied in this case and the colors merely represent the selected

points at the cylinder span.

4.2.2.1 Modal orbits, synchronization and amplitude results

Table 4.4 shows the evaluated modal KC in each testing case for the first up to the

fifth mode. The dominant KC occurs in the first in-plane mode in all experimental runs

and the sub-dominant in-plane modes are the third (IDs 01-10) and the second (IDs

13-20); the cases IDs 11-12 exhibit a dual modal sub-dominance and both second and

third modes displayed the same modal KC values.

More significantly, the dominant KC is an order larger than the sub-dominant one,

which is favorably to the assumption that the out-of-plane depends solely on the dom-

inant plane motion as a first approximation. More details on the modal series can be

found in the Appendix C.2.
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Equation 4.3 set a prediction to when a peak amplitude response may occur, dis-

playing a clear synchronization pattern. Considering the modes exhibited in Table 4.4,

it is possible to select some cases based on their resonant modal frequency ratio,

f (d,k)⋆.

The first, second, third and fourth modes candidates and their correspondent fre-

quency ratio ( f (d,k)⋆) are:

1st IDs IDs 02 (0.31), 16 (1.00);

2nd IDs IDs 02/03 (0.16/0.17), 04 (0.21), 09 (0.33), 15/16 (0.49/0.51);

3rd IDs 06 (0.17), 07/08 (0.19/0.21), 11 (0.26), 15/16 (0.32/0.34);

4th IDs 08/09/10 (0.16/0.16/0.17), 11/12 (0.19/0.20), 15/16 (0.24/0.25).

Inspecting the modal orbits displayed in Figure 4.11 confirms that some of these

candidates duly present a characteristic Lissajous’ curves. Particularly, these synchro-

nization patterns are better depicted in the following cases: ID 02 (1st mode) ; ID 09

(2nd mode); IDs 07 and 11 (3rd mode); IDs 09, 11 and 15 (4th mode).

Some of the other candidates also depicted a comprehensible modal orbit. Never-

theless, they appeared with lesser visual quality due to noise or phase change during

the resonance, or both. Surprisingly, the case ID 20 in the first mode, f (d,1)⋆ = 1.21,

showed a distinguished pattern typically found in 1 : 1 internal resonance.
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Table 4.4: Modal Keulegan-Carpenter, KC( j), evaluated for all relevant modes in the
Ai = 70mm testing group along with the correspondent nondimensional frequency pa-

rameter, f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N.

Modes

1st 2nd 3rd 4th

ID KC(1) f (1,1)⋆ KC(2) f (2,2)⋆ KC(3) f (3,3)⋆ KC(4) f (4,4)⋆

01 30.1 0.28 3.0 0.14 3.4 0.09 0.3 0.07

02 30.4 0.31 2.9 0.16 3.3 0.10 0.3 0.08

03 30.4 0.35 2.9 0.17 3.3 0.12 0.3 0.09

04 30.7 0.42 2.8 0.21 3.3 0.14 0.3 0.10

05 30.7 0.45 2.8 0.23 3.2 0.15 0.3 0.11

06 30.9 0.52 2.8 0.26 3.2 0.17 0.4 0.13

07 31.3 0.55 2.7 0.28 3.2 0.19 0.4 0.14

08 31.7 0.62 2.6 0.31 3.1 0.21 0.4 0.16

09 31.6 0.66 2.6 0.33 3.1 0.22 0.5 0.16

10 31.8 0.69 2.7 0.35 3.1 0.23 0.6 0.17

11 32.0 0.76 3.2 0.38 3.2 0.26 0.7 0.19 5

12 32.1 0.80 3.2 0.40 3.2 0.27 0.7 0.20

13 32.5 0.87 3.6 0.44 3.2 0.29 0.8 0.22

14 32.6 0.93 3.9 0.47 3.3 0.31 0.8 0.23

15 33.0 0.97 4.8 0.49 3.6 0.32 1.1 0.24

16 33.1 1.00 4.9 0.51 3.6 0.34 1.1 0.25

17 33.2 1.07 5.6 0.54 3.9 0.36 1.2 0.27

18 33.2 1.11 6.0 0.56 4.1 0.37 1.3 0.28

19 33.7 1.18 6.4 0.59 4.2 0.39 1.4 0.29

20 33.9 1.21 7.6 0.61 4.7 0.41 1.6 0.30

Source: Developed by the author.
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Figure 4.11: Modal orbits for out-of-plane
modes against dominant in-plane mode;

out-of-plane modes: 1st to 5th.

Source: Developed by the author.

Figure 4.12: Modal orbits and their local
reference frame orientation.

02

Source: Developed by the author.

Table 4.5: Ratio f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N ( j = k)

for all test with imposed movement at the
top Ai = 70mm, regarding dominant in-
plane mode; out-of-plane modes: 1st to
5th.

Out-of-plane modes

ID 1st 2nd 3rd 4th 5th

01 0.28 0.14 0.09 0.07 0.06
02 0.31 0.16 0.10 0.08 0.06
03 0.35 0.17 0.12 0.09 0.07
04 0.42 0.21 0.14 0.10 0.08
05 0.45 0.23 0.15 0.11 0.09
06 0.52 0.26 0.17 0.13 0.10
07 0.55 0.28 0.19 0.14 0.11
08 0.62 0.31 0.21 0.16 0.12
09 0.66 0.33 0.22 0.16 0.13
10 0.69 0.35 0.23 0.17 0.14
11 0.76 0.38 0.26 0.19 0.15
12 0.80 0.40 0.27 0.20 0.16
13 0.87 0.44 0.29 0.22 0.17
14 0.93 0.47 0.31 0.23 0.19
15 0.97 0.49 0.32 0.24 0.19
16 1.00 0.51 0.34 0.25 0.20
17 1.07 0.54 0.36 0.27 0.21
18 1.11 0.56 0.37 0.28 0.22
19 1.18 0.59 0.39 0.29 0.23
20 1.21 0.61 0.41 0.30 0.24

Source: Developed by the author.
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The modal response can be further analyzed with aid of Figures 4.13-4.14. The

first mode exhibit amplitude peaks occurring in the vicinity of f (d,1)⋆ = 0.31, 0.66 and

1.00 whose magnitude varies from approximately half up to one and half diameter

(0.5D-1.5D).

The testing run ID 02 present the maximum peak response (1.5D), f (d,1)⋆ = 0.31,

and the last testing case presents a large amplitude of the diameter order (1D); how-

ever it is not possible to classify it as a peak; see Figure 4.13b.

The spectral response reveals that the maximum amplitude peak occurs in N(1) =

3, which was previously predicted as a candidate point; see Figure 4.13a. In turn, the

synchronization characterized by N(1) = 1 exhibits two spectral peaks, corresponding

to the IDs 16 and 20, f (d,1)⋆ = 1.00 and 1.21, respectively.

Considering the second mode, three different peaks could be identified in the ampli-

tude response, Figure 4.13d, varying in magnitude from half to one and a half diameter

(0.5D-1.5D). Once more, the first and second modes present modal amplitudes similar

to one another, as reported in the Ai = 105mm testing group.

The first amplitude peak occur around f (d,2)⋆ = 0.20 (0.5D), the second peak ap-

proximately in f (d,2)⋆ = 0.35 (1.3D) and the last one somewhere in the range 0.5 ≤
f (d,2)⋆ ≤ 0.55 (0.75D). These peaks correspond to the cases IDs 04, 10 and 16-18.

The largest peak responds with N(2) = 3 and it is a resonant case, i.e. f
(2)
b /f

(2)
b,N ∼ 1; see

Figure 4.13c.

Figure 4.14b shows that the third mode has a resonant peak response in the vicinity

of f (d,3)⋆ = 0.25 (1D), which corresponds to the case ID 11 and is characterized by

f
(3)
b /f

(3)
b,N ∼ 1. This peak occurs in N(3) = 4 and it is possible to observe an augmented

spectral amplitude towards f (d,3)⋆ = 0.33 (0.75D), which is the ID 18 and N(3) = 3; see

figure 4.14a. The first were predicted using Equation 4.3, whilst the second is in near

the predicted case ID 16.

Lastly, the fourth mode is the smallest in amplitude magnitude, achieving a max-

imum displacement of about half diameter (0.5D); see Figure 4.14d. It is possible to

clearly identify on peak in the vicinity of f (d,4)⋆ = 0.25, in turn, a more subtle peak

could be seen around f (d,4)⋆ = 0.20 as well.
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Figure 4.13: Modal response of the first and second out-of-plane modes with respect

to the modal frequency ratio parameter: 30.1≤ KC(d) ≤ 33.9.
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Source: Developed by the author.
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Figure 4.14: Modal response of the third and fourth out-of-plane modes with respect to

the modal frequency ratio parameter: 30.1≤ KC(d) ≤ 33.9.

(a) 3rd binormal mode - frequency (b) 3rd binormal mode - amplitude

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2 3rd mode

(c) 4th binormal mode - frequency (d) 4th binormal mode - amplitude

0 0.1 0.2 0.3
0

0.5

1

1.5

2 4th mode

Source: Developed by the author.
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The spectral amplitude response confirms the previous observations, exhibiting a

resonant peak lying on N(4) = 5 line and another, on N(4) = 4; see Figure 4.14c. Both

peaks occur when f
(4)
b /f

(4)
b,N ∼ 1, characterizing them as resonant and being predicted

by Equation 4.3.

4.2.2.2 Modal similarity

Figure 4.15 exhibits the modal intrasimilarity obtained in the Ai = 70mm testing

group. The result is similar to the one presented in Figure 4.9, when considering the

previous testing group, Ai = 105mm.

The actual testing group present a slightly smaller amplitude, allowing to impose

higher exciting frequencies under the actuator power limit. It is possible to observe that

there could be amplitude peaks in the region f (d,k) > 1, which is not predictable by

Equation 4.3 whose limit is the unit, as the synchronization parameter is reported to

achieve a plateau value N = 2 or N = 1 Sumer and Fredsøe (1988) and Fernandes,

Mirzaei Sefat, and Cascão (2014).

Figure 4.15: Modal peak-to-peak amplitude response, considering all out-of-plane

modes with respect to the dominant plane modal displacement and 30.1 ≤ KC(d) ≤
33.9.
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Source: Developed by the author.
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It is certainly true that the peaks not predictable by Equation 4.3 should be a result

of the nonlinearities present in the hydroelastic system. It is noteworthy that this be-

havior also occurred in fundamental experiments with rigid straight cylinders (SUMER;

FREDSØE, 1988; FERNANDES; MIRZAEI SEFAT; CASCÃO, 2014), thus, it is cur-

rently not possible to discern if these peaks are due to the fluid excitation or structural

internal and parametric resonances.

The modal intrasimilarity exhibited common peaks around 0.25 ≤ f (d,k) ≤ 0.33,

presenting a slightly shifted towards f (d,k) = 0.33 in lieu of f (d,k) = 0.25 observed in

Figure 4.9.

4.2.3 Testing group Ai = 35mm

The remaining testing groups, Ai = 17.5mm and 35mm, present in-plane reso-

nance and the analysis must be carried out more carefully, expecting that the dominant

and subdominant KC can assume values of similar order in some cases.

Figure 4.16 exhibits some of the synchronization in the space of configuration re-

ported in the present testing group. Particularly, the synchronization was obtained in

the experimental run ID 04 whose used driving frequency is f ⋆i = fi/f
(1)
b,N = 0.51.

The experimental results showed in Figure 4.2 also exhibited some interesting

synchronization results when the frequency ratio was in the range 0.45 ≤ f ⋆i ≤ 0.48,

namely in Figures 4.2c.

4.2.3.1 Modal orbits, synchronization and amplitude results

Table 4.6 shows the evaluated modal KC in each testing case for the first up to the

fifth mode. The dominant KC occurs in the first in-plane mode in all experimental runs

and the sub-dominant in-plane modes are the third (IDs 01-08) and the second (IDs

09-20).
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Figure 4.16: Exampling the synchronization displayed using orbits in the space of con-
figuration between normal and binormal displacements measured at specific points
selected in the model span considering the testing group Ai = 35mm.
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Source: Developed by the author.

Note: The modal color scheme is not applied in this case and the colors merely represent the selected

points at the cylinder span.

The first and second modes present modal KC of similar order in the cases IDs

14-20 and the assumption that, in a first approximation, the dominant plane mode

is the main cause of the VSIV response should be revisited, considering the previous

discussion on governing modal oscillator within the hydroelastic response. More details

on the modal series can be found in the Appendix C.3.

Equation 4.3 set a prediction to when a peak amplitude response may occur, dis-

playing a clear synchronization pattern. Considering the modes exhibited in Table 4.6,

it is possible to select some cases based on their resonant modal frequency ratio,

f (d,k)⋆.
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Table 4.6: Modal Keulegan-Carpenter, KC( j), evaluated for all relevant modes in the
Ai = 35mm testing group along with the correspondent nondimensional frequency pa-

rameter, f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N.

Modes

1st 2nd 3rd 4th 5th

ID KC(1) f (1,1)⋆ KC(2) f (2,2)⋆ KC(3) f (3,3)⋆ KC(4) f (4,4)⋆ KC(5) f (5,5)⋆

01 15.3 0.24 1.3 0.12 1.8 0.08 0.4 0.06 1.5 0.05

02 15.5 0.31 1.3 0.16 1.8 0.10 0.4 0.08 1.5 0.06

03 15.5 0.42 1.2 0.21 1.8 0.14 0.4 0.10 1.5 0.08

04 15.7 0.52 1.3 0.26 1.8 0.17 0.5 0.13 1.5 0.10

05 15.8 0.62 1.4 0.31 1.7 0.21 0.5 0.16 1.5 0.12

06 16.1 0.69 1.1 0.35 1.7 0.23 0.5 0.17 1.5 0.14

07 16.3 0.80 1.0 0.40 1.6 0.27 0.6 0.20 1.5 0.16

08 16.7 0.93 1.5 0.47 1.7 0.31 0.6 0.23 1.4 0.19

09 17.2 1.00 2.2 0.51 1.7 0.34 1.0 0.25 1.5 0.20

10 17.1 1.11 2.4 0.56 1.7 0.37 0.9 0.28 1.5 0.22

11 17.9 1.21 2.8 0.61 1.7 0.41 0.9 0.30 1.4 0.24

12 17.7 1.32 3.4 0.66 2.1 0.44 1.0 0.33 1.5 0.26

13 18.0 1.42 4.5 0.71 2.7 0.47 1.2 0.35 1.4 0.28

14 16.9 1.52 7.1 0.77 3.7 0.51 1.4 0.38 1.5 0.30

15 16.3 1.63 7.3 0.82 3.5 0.54 1.3 0.41 1.5 0.32

16 16.3 1.73 8.2 0.87 3.9 0.58 1.4 0.43 1.6 0.34

17 16.1 1.83 8.9 0.92 4.2 0.61 1.5 0.46 1.6 0.36

18 14.1 1.94 9.8 0.97 4.9 0.65 1.7 0.48 2.0 0.38

19 14.1 2.04 11.0 1.03 5.0 0.68 2.0 0.51 2.0 0.40

20 13.0 2.15 11.4 1.08 5.4 0.72 2.2 0.54 2.2 0.43

Source: Developed by the author.

Respecting the actuator power limitations, the experimental group Ai = 35mm could

be tested using higher driving frequencies inputs and more modes could achieve sig-

nificant resonant response. The first, second, third, fourth and fifth modes candidates

and their correspondent frequency ratio ( f (d,k)⋆) are:

1st IDs 01 (0.24), 09 (1.00);
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2nd IDs 09/10 (0.51/0.56);

3rd IDs 14/15 (0.51/0.54);

4th IDs 09 (0.25), 12 (0.33) and 18/19 (0.48/0.51);

5th IDs 11/12 (0.24/0.26) and 15/16 (0.32/0.34).

Inspecting the modal orbits displayed in Figure 4.17 confirms that some of these

candidates duly present a characteristic Lissajous’ curves. Particularly, these synchro-

nization patterns are better depicted in the following cases: IDs 01 and 09 (1st mode) ;

IDs 09 and 10 (2nd mode); ID 15 (3rd mode); IDs 09 and 12 (4th mode); IDs 12 and 16

(5th mode).

As in the previous cases, some of the other candidates also depicted a comprehen-

sible modal orbit, nevertheless, they appeared with lesser visual quality due to noise

or phase change during the resonance, or both. Besides the resonant candidates,

the modal response also exhibited peaks around other characteristic frequency ratio

values.

For instance, the first mode exhibits amplitude peaks occurring in the vicinity of

f (d,1)⋆ = 0.50, 1.00, 1.25, 1.50 and 2.00, whose magnitude varies from approximately

half up to one and half diameter (0.5D-1.5D); see Figures 4.19-4.20.

The testing run ID 04 present the maximum peak response (1.5D), f (d,1)⋆ = 0.52,

followed by amplitude peaks around half diameter (0.5D) in IDs 08, 11 and 13, corre-

sponding to f (d,1)⋆ = 0.93, 1.21 and 1.42, respectively. It seems to occur a peak of half

diameter (0.5D) in ID 16, f (d,1)⋆ = 1.73, and the last one of about one diameter (1D)

in ID 19, f (d,1)⋆ = 2.04; see Figure 4.19b.

The spectral response reveals that the maximum amplitude peak occurs in N(1) =

2, which was previously predicted as a candidate point; see Figure 4.19a. In turn, the

synchronization transition characterized by N(1) = 2→ 1 occurs when f
(1)
b /f

(1)
b,N ∼ 2.

Interestingly, if the frequency ratio used in the first mode analysis were renormal-

ized using the second out-of-plane mode natural frequency, f̃ (d,1)⋆ = f
(d)
n,dom/f

(2)
b,N, which

is approximately f
(2)
b,N ≈ 2 f

(1)
b,N , the points in which response peaks occurred would ex-

hibit the following frequency ratio values: f̃ (d,1)⋆ = 0.26, 0.47, 0.61, 0.71 and 1.02;

moreover, the aforementioned synchronization transition would occur around 1.
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Figure 4.17: Modal orbits for out-of-plane
modes against dominant in-plane mode;
out-of-plane modes: 1st until 5th.

Source: Developed by the author.

Figure 4.18: Modal orbits and their local
reference frame orientation.

17

Source: Developed by the author.

Table 4.7: Ratio f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N ( j = k)

for all test with imposed movement at the
top Ai = 35mm, reagarding dominat in-
plane mode; out-of-plane modes: 1st until
5th.

Out-of-plane modes

ID 1st 2nd 3rd 4th 5th

01 0.24 0.12 0.08 0.06 0.05
02 0.31 0.16 0.10 0.08 0.06
03 0.42 0.21 0.14 0.10 0.08
04 0.52 0.26 0.17 0.13 0.10
05 0.62 0.31 0.21 0.16 0.12
06 0.69 0.35 0.23 0.17 0.14
07 0.80 0.40 0.27 0.20 0.16
08 0.93 0.47 0.31 0.23 0.19
09 1.00 0.51 0.34 0.25 0.20
10 1.11 0.56 0.37 0.28 0.22
11 1.21 0.61 0.41 0.30 0.24
12 1.32 0.66 0.44 0.33 0.26
13 1.42 0.71 0.47 0.35 0.28
14 1.52 0.77 0.51 0.38 0.30
15 1.63 0.82 0.54 0.41 0.32
16 1.73 0.87 0.58 0.43 0.34
17 1.83 0.92 0.61 0.46 0.36
18 1.94 0.97 0.65 0.48 0.38
19 2.04 1.03 0.68 0.51 0.40
20 2.15 1.08 0.72 0.54 0.43

Source: Developed by the author.
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Figure 4.19: Modal response of the first and second out-of-plane modes with respect

to the modal frequency ratio parameter: 13≤ KC(d) ≤ 18.

(a) 1st binormal mode - frequency (b) 1st binormal mode - amplitude

0 0.5 1 1.5 2
0

0.5

1

1.5

2 1st mode

(c) 2nd binormal mode - frequency (d) 2nd binormal mode - amplitude

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2 2nd mode

Source: Developed by the author.



148

Some of these normalized points would be placed in the vicinity of resonant peaks

frequency ratios, namely f̃ (d,1)⋆ = 0.25, 0.5 and 1. The remaining points, f̃ (d,1)⋆ = 0.61

and 0.71, appear in the neighborhood of values that were already reported previously,

0.66 and 0.75, respectively.

Considering the second mode, four different peaks could be identified in the ampli-

tude response, Figure 4.19d, varying in magnitude from half to one and a half diameter

(0.5D-1.5D). Once more, the first and second modes present modal amplitudes similar

to one another, as reported in the Ai = 70mm and 105mm testing groups.

The first amplitude peak occur around f (d,2)⋆ = 0.26 (0.3D), the second peak ap-

proximately in f (d,2)⋆ = 0.56 (1.5D), the third peak in f (d,2)⋆ = 0.82 (0.75D) and the last

one in f (d,2)⋆ ≤ 1.03 (0.75D). These peaks correspond to the cases IDs 04, 10, 15 and

19. The largest peak responds with N(2) = 2 and it is a resonant case, i.e. f
(2)
b /f

(2)
b,N ∼ 1;

see Figure 4.19c.

Figure 4.20b shows that the third mode has a small resonant peak response in the

vicinity of f (d,3)⋆ = 0.20 (0.1D), which corresponds to the case ID 05; however spectral

results were to faded as to determine its response synchronization parameter N(3).

A large amplitude peak is found in f (d,3)⋆ = 0.54 (1.25D), corresponding to the

run ID 15. Spectral results show that this point is a resonant peak and N(3) = 2; see

Figure 4.20a.

The fourth mode presents three amplitude peaks, occurring in f (d,4)⋆= 0.25 (0.3D),

0.33 (0.45D) and 0.51 (1.0D); see Figure 4.20d. These points correspond to the cases

IDs 09, 12 and 19, which were predicted using Equation 4.3.

The spectral response shows that all these peaks are resonant ones, exhibiting

N(4) = 4 (ID 09), 3 (ID 12) and 2 (ID 19); see Figure 4.20c. The largest spectral

amplitude reported occurs in f (d,4)⋆ = 0.51 (N(4) = 2).

Lastly, the fifth mode exhibits maximum amplitude of about half diameter (0.5D)

and it is difficult to identify its peaks visually, using Figure 4.21b. Nonetheless, the

spectral response reveals that the synchronization transitions, N(5) = 4→ 3, occur in

f
(5)
b /f

(5)
b,N ∼ 1, classifying any amplitude peak as resonant and predictable using Equation

4.3.

A closer inspection on the fifth mode frequency ratio in Table 4.6 and in Figures

4.21a-4.21b unveils the existence of some small peaks in f (d,5)⋆ = 0.20 (0.05D), 0.26

(0.25D), around 0.33 (0.5D), corresponding to IDs 09, 12 and 15/17.
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Figure 4.20: Modal response of the third and fourth out-of-plane modes with respect to

the modal frequency ratio parameter: 13≤ KC(d) ≤ 18.
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Figure 4.21: Modal response of the fifth out-of-plane mode with respect to the modal

frequency ratio parameter: 13≤ KC(d) ≤ 18.

(a) 5th binormal mode - frequency (b) 5th binormal mode - amplitude

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2 5th mode

Source: Developed by the author.

4.2.3.2 Modal similarity

Figure 4.22 exhibits the modal intrasimilarity obtained in the Ai = 35mm testing

group. The present results is rather unique, when compared to the other cases pre-

sented in Figures 4.9 and 4.15, corresponding to the Ai = 105mm and 70mm imposed

amplitude cases, respectively.

The main difference is that the common peak response is located in the range

0.50 ≤ f (d,k) ≤ 0.60, farther from f (d,k) = 0.25 that was observed in Figures 4.9 and

4.15. Nevertheless, this particular testing group also presented some peculiarities in

its modal dynamics.

For instance, the first mode presents an odd behavior characterized by the syn-

chronization transition occurring in f
(1)
b /f

(1)
b,N ∼ 2. Although the renormalization using

f̃ (d,1)⋆ = f
(d)
n,dom/f

(2)
b,N appeared to be natural, the amplitude response reported in Fig-

ure 4.22 suggests otherwise, as the second and third modes exhibit common peak

response in the same range in which the first mode has a local maximum amplitude
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value.

Figure 4.22: Modal peak-to-peak amplitude amplitude response, considering all out-of-

plane modes with respect to the dominant plane modal displacement and 13≤KC(d)≤
18.
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Source: Developed by the author.

The modal intrasimilarity depicted in Figure 4.22 also presents a common modal

amplitude peak response around f (d,k)⋆ = 0.50 with respect to the first, second, third

and fourth modes; the other modes growth tendency appears to agree with it.

4.2.4 Testing group Ai = 17.5mm

The present case exhibits several in-plane resonances due to the driving frequency

achieving the highest values of all experiments described in the current work. Thus,

the number of solicited modes to be analyzed is larger and a more complex and varied

spectral response is reported.
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Figure 4.23: Exampling the synchronization displayed using orbits in the space of con-
figuration between normal and binormal displacements measured at specific points
selected in the model span considering the testing group Ai = 17.5mm.
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Source: Developed by the author.

Note: The modal color scheme is not applied in this case and the colors merely represent the selected

points at the cylinder span.

Figure 4.23 exhibits some of the synchronization in the space of configuration re-

ported in the present testing group. Particularly, the synchronization was obtained in

the experimental run ID 06 whose used driving frequency is f ⋆i = fi/f
(1)
b,N = 1.40.

The selected case driving frequency range is not reported in Figures 4.2-4.3 and

it is not possible to access much information on the space of configuration. In con-

trast, the modal approach reveals that fi/f
(3)
b,N = 0.47, fi/f

(4)
b,N = 0.35 and fi/f

(5)
b,N = 0.24,

presenting the possibility of resonant peak response in these modes.

Thus, the synchronization evidenced in the space of configuration could be at-

tributable to multi-modal response, which cannot be explained by a plain analysis re-

garding only the exciting frequency and the first out-of-plane natural frequency.
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4.2.4.1 Modal orbits, synchronization and amplitude results

Table 4.8 shows the evaluated modal KC in each testing case for the first up to

the eighth mode. The dominant KC is measured in the first, second and third modes,

corresponding to the cases: IDs 01-08, 11-13 and 17-20 (1st mode); IDs 09-10 (2nd

mode); and IDs 14-16 (3rd mode).

Thus, the subdominant KC also occurs in different in-plane modes, such as in the

cases: IDs 09-10 and 14-16 (1st mode); IDs 04-08 (2nd mode); and IDs 01-03, 12-13

and 17-20 (3rd mode).

The present testing group exhibits the dominant and subdominant KCs achieving

similar values in several cases, Table 4.8, differently from what was observed in the

previous group, Ai = 35mm, in which they only assumed similar values in the last runs.

The first mode is dominant, whilst the other present lower values, only in the cases

IDs 01-06. From there, the first mode presents similar values to the second and third

ones in the cases IDs 07-11 and 14-20, respectively. All three modes (1st, 2nd and 3rd)

exhibit similar modal KC values in the cases IDs 12-13.

Consequently, the present testing group, Ai = 17.5mm, is the most intrinsically

complex one, presenting up to three plane modes with similar modal KCs concomi-

tantly. More details on the modal series can be found in the Appendix C.4.

Equation 4.3 set a prediction to when a peak amplitude response may occur, dis-

playing a clear synchronization pattern. Considering the modes exhibited in Table 4.8,

it is possible to select some cases based on their resonant modal frequency ratio,

f (d,k)⋆.

The first, second, third, fourth, fifth, sixth, seventh and eighth modes candidates

and their correspondent frequency ratio ( f (d,k)⋆) are:

1st ID 04 (1.00);

2nd IDs 01 (0.21), 02 (0.31), 04 (0.51) and 09 (1.03);

3rd IDs 02 (0.21), 04 (0.34), 06/07 (0.47/0.54) and 13/14 (0.95/1.02);

4th IDs 02 (0.16), 03 (0.20), 04 (0.25), 05/06 (0.30/0.35), 09/10 (0.51/0.56) and 19/20

(1.01/1.06);

5th IDs 02 (0.12), 03 (0.16), 04 (0.20), 05 (0.24), 07 (0.32) and 11/12 (0.48/0.53);
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6th IDs 03 (0.13), 04 (0.16), 05 (0.20), 06 (0.23), 09 (0.33) and 14/15 (0.50/0.53);

7th IDs 05 (0.17), 06 (0.20), 08/09 (0.25/0.28), 11 (0.34) and 17 (0.51);

8th IDs 04 (0.12), 06 (0.17), 07 (0.20), 09 (0.25), 12/13 (0.32/0.34) and 20 (0.51);

Inspecting the modal orbits displayed in Figures 4.24 and 4.28 confirms that some

of these candidates duly present a characteristic Lissajous’ curves. Particularly, these

synchronization patterns are better depicted in the following cases: ID 04 (2nd mode);

ID 07 (3rd mode); IDs 06 and 09 (4th mode); IDs 11 and 12 (5th mode); IDs 09, 14 and

15 (6th mode); IDs 06, 11 and 17 (7th mode); IDs 06, 09, 12 and 20 (8th mode).

Some of the other candidates also depicted a comprehensible modal orbit, never-

theless, they appeared with lesser visual quality due to noise, or phase change during

the resonance, or both.

Besides the resonant candidates, the modal response also exhibited peaks around

other characteristic frequency ratio values. Interestingly, some of the best modal or-

bits displayed in Figures 4.24 and 4.28 occurred in these non predictable candidates,

obtained using Equation 4.3.

The first mode exhibits a rather peculiar response varying in the range of half

and one diameter (0.5D-1D). The peaks occur in f (d,1)⋆ = 1.00, 3.05 and 3.67, from

which the first and second present synchronization N(1) = 1, the first occurring when

f
(1)
b /f

(1)
b,N ∼ 1, whilst the other around f

(1)
b /f

(1)
b,N ∼ 2. The latter modal synchronization

parameter is not in the range of whole numbers; see Figures 4.26a-4.26b.

In turn, the second mode presents a well characterized response whose amplitude

peaks occur in the vicinity of f (d,1)⋆ = 0.5 (1.2D), 1 (0.5D), 1.45 (0.5D) and 1.9 (0.75D);

see Figure 4.26d. Only the first and second peaks were predicted using Equation 4.3.

The spectral results show that the synchronization transition N(2) = 2→ 1 occurs

when f
(2)
b /f

(2)
b,N ∼ 1, in special the first peak is resonant, presenting N(2) = 2, whilst the

others, N(2) = 1; see Figure 4.26c.
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Table 4.8: Modal Keulegan-Carpenter, KC( j), evaluated for all considered modes in the Ai = 17.5mm testing group along with the

correspondent nondimensional frequency parameter, f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N and f ⋆ = f (n,n)⋆.

(continued on next page)

Modes

1st 2nd 3rd 4th 5th 6th 7th 8th

ID KC(1) f ⋆ KC(2) f ⋆ KC(3) f ⋆ KC(4) f ⋆ KC(5) f ⋆ KC(6) f ⋆ KC(7) f ⋆ KC(8) f ⋆

01 7.8 0.42 0.6 0.21 1.0 0.14 0.2 0.10 0.7 0.08 0.4 0.07 0.6 0.06 0.1 0.05

02 8.1 0.62 0.5 0.31 0.9 0.21 0.2 0.16 0.7 0.12 0.4 0.10 0.5 0.09 0.1 0.08

03 8.4 0.80 0.3 0.40 0.8 0.27 0.2 0.20 0.7 0.16 0.4 0.13 0.5 0.11 0.1 0.10

04 8.9 1.00 0.9 0.5 0.7 0.34 0.4 0.25 0.64 0.20 0.5 0.16 0.5 0.14 0.2 0.12

05 9.8 1.21 1.1 0.6 0.5 0.41 0.4 0.30 0.57 0.24 0.5 0.20 0.5 0.17 0.2 0.15

06 10.6 1.42 3.1 0.7 1.3 0.47 0.6 0.35 0.58 0.28 0.6 0.23 0.4 0.20 0.3 0.17

07 10.5 1.63 5.1 0.8 1.9 0.54 0.8 0.41 0.65 0.32 0.6 0.27 0.5 0.23 0.3 0.20

08 9.2 1.83 8.3 0.9 2.6 0.61 0.9 0.46 0.93 0.36 0.5 0.30 0.6 0.25 0.4 0.22

09 6.3 2.04 7.6 1.1 2.6 0.68 0.9 0.51 1.10 0.40 0.5 0.33 0.6 0.28 0.3 0.25

10 6.2 2.25 8.2 1.5 2.4 0.75 1.3 0.56 1.09 0.45 0.4 0.37 0.6 0.31 0.2 0.27

11 7.1 2.42 6.9 1.2 3.8 0.81 1.4 0.60 1.26 0.48 0.5 0.40 0.7 0.34 0.3 0.29

12 7.6 2.66 5.39 1.4 5.6 0.89 1.5 0.66 1.5 0.53 0.6 0.44 0.9 0.37 0.4 0.32

13 7.6 2.84 5.07 1.5 7.2 0.95 1.8 0.71 1.9 0.56 0.7 0.46 1.0 0.39 0.5 0.34

14 7.0 3.05 3.74 1.6 8.1 1.02 1.7 0.76 1.6 0.60 0.9 0.50 1.1 0.42 0.6 0.37

15 6.8 3.25 3.14 1.7 8.2 1.09 1.5 0.81 1.6 0.64 1.2 0.53 1.2 0.45 0.5 0.39

16 7.6 3.46 3.12 1.8 8.3 1.16 1.5 0.86 1.7 0.69 1.3 0.57 1.2 0.48 0.6 0.42
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Table 4.8: Modal Keulegan-Carpenter, KC( j), evaluated for all considered modes in the Ai = 17.5mm testing group along with the

correspondent nondimensional frequency parameter, f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N and f ⋆ = f (n,n)⋆.

(final page)

Modes

1st 2nd 3rd 4th 5th 6th 7th 8th

ID KC(1) f ⋆ KC(2) f ⋆ KC(3) f ⋆ KC(4) f ⋆ KC(5) f ⋆ KC(6) f ⋆ KC(7) f ⋆ KC(8) f ⋆

18 7.4 3.88 3.37 2.0 6.3 1.30 2.6 0.97 2.03 0.77 0.7 0.63 1.7 0.54 0.8 0.46

19 7.3 4.05 3.31 2.1 5.7 1.35 3.7 1.01 2.14 0.80 0.8 0.66 1.8 0.56 0.7 0.49

20 7.3 4.26 3.07 2.2 5.4 1.42 3.2 1.06 2.14 0.84 0.8 0.70 1.2 0.59 1.1 0.51

Source: Developed by the author.
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Figure 4.24: Modal orbits for out-of-plane
modes against dominant in-plane mode;

out-of-plane modes: 1st until 5th.
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Source: Developed by the author.

Figure 4.25: Modal orbits and their local
reference frame orientation.

14

Source: Developed by the author.

Table 4.9: Ratio f ( j,k)⋆ = f
( j)
n,dom/f

(k)
b,N ( j = k)

for all test with imposed movement at the
top Ai = 17.5mm, reagarding dominat in-
plane mode; out-of-plane modes: 1st until
5th.

Out-of-plane modes

ID 1st 2nd 3rd 4th 5th

01 0.42 0.21 0.14 0.10 0.08
02 0.62 0.31 0.21 0.16 0.12
03 0.80 0.40 0.27 0.20 0.16
04 1.00 0.51 0.34 0.25 0.20
05 1.21 0.61 0.41 0.30 0.24
06 1.42 0.71 0.47 0.35 0.28
07 1.63 0.82 0.54 0.41 0.32
08 1.83 0.92 0.61 0.46 0.36
09 2.04 1.03 0.68 0.51 0.40
10 2.25 1.13 0.75 0.56 0.45
11 2.42 1.22 0.81 0.60 0.48
12 2.66 1.34 0.89 0.66 0.53
13 2.84 1.43 0.95 0.71 0.56
14 3.05 1.53 1.02 0.76 0.60
15 3.25 1.64 1.09 0.81 0.64
16 3.46 1.74 1.16 0.86 0.69
17 3.67 1.85 1.23 0.92 0.73
18 3.88 1.95 1.30 0.97 0.77
19 4.05 2.04 1.35 1.01 0.80
20 4.26 2.14 1.42 1.06 0.84

Source: Developed by the author.
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Figure 4.27b displays that the third mode has at least four different amplitude

peaks, occurring around f (d,3)⋆= 0.34 (0.25D), 0.5 (0.9D), 0.95 (0.5D) and 1.30 (0.5D).

The spectral amplitude response shows that the first, second and third ones present

modal synchronization N(3) = 2. The last peak is the only that could not be predicted,

exhibit N(3) = 1; see Figure 4.27a.

Regarding the fourth mode, its amplitude and spectral responses are bounded in

the frequency range f (d,4)⋆ < 1, showing visually three different peaks and a last point

that presents a local maximum value. These points occur in f (d,4)⋆ = 0.25 (0.15D),

0.51 (1D), 0.76 (0.5D) and 1.06 (0.75D); see Figure 4.27d. Considering the frequency

values in which the peaks occurred, the first, second and last one were the only among

predicted candidates.

The spectral graphics do not accurately present a modal synchronization parameter

for the first peak, which should be heuristically placed in N(4) = 4. On the other hand,

the remaining points are either in N(4) = 2 or 1; see Figure 4.27c. The largest peak is

resonant, occurring in the synchronization transition N(4) = 2→ 1.

The fifth and final mode presents some of the most visually pleasing modal or-

bits depicted in Figure 4.24. Figures 4.30a-4.30b exhibit the spectral and amplitude

responses, respectively, and it is possible to identify at least five different amplitude

peaks in its response.

The peaks occurs in the vicinity of f (d,5)⋆ = 0.2 (0.1D), 0.32 (0.25D), 0.4 (0.4D),

0.52 (0.7D), 0.6 (0.5D) and lastly 0.77 (0.4D). The synchronization transition is different

from the previous cases, exhibiting N(5) = 2→ 1 when f
(5)
b /f

(5)
b,N ∼ 1.5, similarly with the

first mode analyzed in Figures 4.19a-4.19b.
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Figure 4.26: Modal response of the first and second out-of-plane modes with respect

to the modal frequency ratio parameter: 7≤ KC(d) ≤ 10.6.
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Figure 4.27: Modal response of the third and fourth out-of-plane modes with respect to

the modal frequency ratio parameter: 7≤ KC(d) ≤ 10.6.
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The sixth, seventh and eighth modal orbits are presented in Figure 4.28. The sixth

mode exhibits three distinguishable peaks in its spectral and amplitude peak-to-peak

responses; see Figures 4.30c-4.30d.

The first visible peak has very low amplitude, occurring in f (d,6)⋆ = 0.16 (0.1D),

whilst the other peaks are located in f (d,6)⋆ = 0.4 (0.35D) and 0.53 (0.75D), being the

last one, whose magnitude is the largest, a predicted candidate.

There is not enough data to identify the modal synchronization parameter associ-

ated to the first peak, which could be heuristically guessed as N(6) = 6. The second

peak lies in N(6) = 1 and the last one is resonant, occurring in the vicinity of the modal

synchronization transition, i.e. N(6) = 2→ 1.

Figures 4.31a-4.31b displays de modal response of the seventh mode. It is pos-

sible to identify at least three amplitude peaks visually, which occurs at f (d,7)⋆ = 0.28

(0.2D), 0.42 (0.5D) and 0.51 (0.55D). The first and last peaks are among the candi-

dates predicted previously.

Once more, there is not enough data to characterize the modal synchronization

number of the first peak, which should be heuristically expected to be N(6) = 4. The

transition between modal synchronization values occurs in f
(7)
b /f

(7)
b,N ∼ 1 and the last

peak is resonant, i.e. it lies in the region in which N(6) = 2→ 1.

Lastly, the eighth mode presented in Figures 4.31c-4.31d shows small amplitude

response, not reaching half diameter in value. A carefully visual inspection shows

that amplitude peaks occur in f (d,8)⋆ = 0.12 (< 0.1D), 0.2 (< 0.1D), 0.25 (0.15D),

0.32 (0.2D) and 0.44 (0.3D); an additional amplitude local maximum is displayed in

f (d,8)⋆ = 0.51.

Among these points, all except the one in f (d,8)⋆ = 0.44 could be predicted using

Equation 4.3, suggesting that they are probably resonant peaks. Unfortunately, there

is not enough data to characterize the synchronization parameter in most of the cases.

Thus, it was possible to identify synchronization transitions N(6) = 3→ 2→ 1 in the

vicinity of f
(8)
b /f

(8)
b,N ∼ 1. The points located in f (d,8)⋆ = 0.32 and 0.51 are placed around

the resonant region in which the transitions occur.
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Figure 4.28: Modal orbits for out-of-plane
modes against dominant in-plane mode;

out-of-plane modes: 6th until 10th.
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Figure 4.29: Modal orbits and their local
reference frame orientation.

14

Source: Developed by the author.

Table 4.10: Ratio f ⋆ = f
(d)
n,dom/f

(k)
b,N for all

test with imposed movement at the top
Ai = 17.5mm, regarding dominant in-plane

mode; out-of-plane modes: 6th until 10th.

Out-of-plane modes

ID 6th 7th 8th 9th 10th

01 0.07 0.06 0.05 0.04 0.04
02 0.10 0.09 0.08 0.07 0.06
03 0.13 0.11 0.10 0.08 0.07
04 0.16 0.14 0.12 0.11 0.09
05 0.20 0.17 0.15 0.13 0.11
06 0.23 0.20 0.17 0.15 0.13
07 0.27 0.23 0.20 0.17 0.15
08 0.30 0.25 0.22 0.19 0.17
09 0.33 0.28 0.25 0.22 0.19
10 0.37 0.31 0.27 0.24 0.21
11 0.40 0.34 0.29 0.26 0.23
12 0.44 0.37 0.32 0.28 0.25
13 0.46 0.39 0.34 0.30 0.27
14 0.50 0.42 0.37 0.32 0.29
15 0.53 0.45 0.39 0.34 0.30
16 0.57 0.48 0.42 0.36 0.32
17 0.60 0.51 0.44 0.39 0.34
18 0.63 0.54 0.46 0.41 0.36
19 0.66 0.56 0.49 0.43 0.38
20 0.70 0.59 0.51 0.45 0.40

Source: Developed by the author.
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Figure 4.30: Modal response of the fifth and sixth out-of-plane modes with respect to

the modal frequency ratio parameter: 7≤ KC(d) ≤ 10.6.
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Figure 4.31: Modal response of the seventh and eighth out-of-plane modes with re-

spect to the modal frequency ratio parameter: 7≤ KC(d) ≤ 10.6.
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4.2.4.2 Modal similarity

Figure 4.32 exhibits the modal intrasimilarity obtained in the Ai = 17mm testing

group. The present results is similar to the one obtained in Figure 4.22, differing from

the other cases presented in Figures 4.9 and 4.15.

Similarly to Figure 4.22, the present modal intrasimilarity presents a common peak

modal response in the vicinity of f (d,k)⋆ = 0.50. Several modes contribute to the this

common peak, namely the second, third, fourth, fifth, sixth and seventh modes.

Figure 4.32: Modal peak-to-peak amplitude response, considering all out-of-plane

modes with respect to the dominant plane modal displacement and 7≤ KC(d) ≤ 10.6.
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Source: Developed by the author.

The modal intrasimilarity results in Figure 4.32 also exhibit other peaks that are

shared by more than one mode. For instance, there is a cluster of small peak response

around f (d,k)⋆ = 0.75 obtained from the fourth and fifth modes.

Although the fourth mode has a maximum value instead of a peak lying around

f (d,4)⋆ = 1, another shared peak resonant responses from the first, second, third and

fourth modes could be observed there.

The second mode exhibits more peaks, f (d,2)⋆ = 1.40 and 1.75, and the first mode

has additional peaks in f (d,1)⋆ = 3 and 3.75, and a local maximum value in the last
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case.

The first mode exhibits a different behavior than the other modes, which can be at-

tributable to the response reported in Figures 4.26a-4.26b that shows a region in which

the modal synchronization parameter seems to not assume whole number value.

4.3 Intra and intersimilarities

The modal intrasimilarities obtained in Figures 4.9, 4.15, 4.22 and 4.32 evidenced

that there is a set of predictable frequency ratio values in which peak amplitude re-

sponses can be observed.

The prediction takes into the account that there are descending jumps from different

synchronization branches in which the measured k-th modal out-of-plane response

frequency can assume a value similar to its correspondent eigenvalue, f
(k)
b /f

(k)
b,N ∼ 1.

These branches are characterized by the synchronization parameter assuming an

approximately whole number value, i.e. N(k) = 3→ 2→ 1. More importantly, these

frequency ratio values could be previously determined using the typical synchronization

patterns observed in a given case.

Furthermore, there are some other interesting frequency values in which a peak

response can occur, assuming a non resonant nature. The same feature is also ob-

served in the rigid cylinder cases, in which peak responses were measured around

points, such as f ⋆ = 0.66, 0.75, to cite a few.

These values are considered non resonant due to the synchronization observed

be characterized by a value that does not correspond to the frequency ratio estimation,

i.e. f ⋆ 6∼ 1/N; alternatively, fr/fN 6∼ 1.

Since these values could be also observed in the rigid cylinder tests, it is not possi-

ble to infer, in the flexible structure context, if they are originated by the hydrodynamic

oscillator, the structural one, or both.

Undoubtedly, the amount of synchronizations that can be observed in a given ex-

perimental set-up depends mostly on the imposed amplitude and exciting frequency

range disposable.
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Figure 4.33: Effect of imposed amplitude and exciting frequency range on the modal
intrasimilarities.
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Note: The figure is a vector file and more details can be seen as the reader zooms-in in the digital

version.

Figure 4.33 depicts that cases whose imposed amplitude may assume large values

will exhibit large amplitude peaks in high synchronization branches. On the other hand,

exciting the system with large frequency values will cause more relevant amplitude

peaks due to higher modes responding in larger frequency ratio values.

For instance, the testing group Ai = 105mm shares a common amplitude peak with

the first, second an third modes at f (d,k)⋆ ≈ 0.25, which corresponds to N(k) = 4 in

each out-of-plane response; see Figures 4.26-4.27.

The following group, Ai = 70mm, also shares a common peak with the first, second

and third modes; however, the location is shifted towards f (d,k)⋆ = 0.33 due to the

driving frequency range be a little broader. Some peak responses with large amplitude

can be also observed at f (d,k)⋆ ≈ 1.

In turn, the group Ai = 35mm shares a common peak response at f (d,k)⋆ ≈ 0.5, in

which it is possible to observe that the fourth mode has joined the previous ones and all

first, second, third and fourth modes exhibit relevant peak-to-peak amplitude response.
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The effect of broadening the driven frequency range is easily seen in the next group,

Ai = 17.5mm.

Inasmuch as the exciting frequency could achieve values up to the fourth out-of-

plane mode eigenvalue, a characteristic secondary amplitude peak appears in the

vicinity f (d,k)⋆ ≈ 1 for the fourth mode and 2, for the second one. These peaks exhibit

peak-to-peak displacement similar to the first response peak, located at f(d,k)⋆ ≈ 0.5.

With exception of the group Ai = 105mm, the other also presented peaks above

the prediction resonant range, delimited by N(k) = 1 ( f (d,k)⋆ = 1). Additionally, these

peaks may exhibit large amplitude values.

There is evidence to suggest that experimental tests whose driven frequency range

is broader will display several amplitude peaks, which can occur in higher modes, and

large peak responses above the prediction range. On the other hand, cases whose

imposed amplitude is large evidence that peak responses are located in higher syn-

chronization branches.

Currently, the experimental data available cannot provide a case in which both the

high imposed amplitude and broaden exciting frequency range conditions are satisfied

concomitantly. This is due to the driving actuator power limitation.

Notwithstanding, the available data suggests that the hydroelastic multimodal re-

sponses share a common behavior that could be regarded as a modal intersimilar-

ity, which is characterized by the presence of peak responses that can exhibit higher

modes contributions at some frequency values, or be located in higher synchronization

branches, or a combination of both.

The modal intersimilarity could also be extended to the similar behavior found in the

rigid cylinder response with comparison to the multimodal ones, if modes are studied

separately.

The contribution of higher modes in forming peak responses is due to the frequency

range, whilst the presence of responses in higher synchronization branches as a result

of larger imposed amplitude values.

Considering flexible pipes design methodology, the scenarios shown in Figure 4.33

are rather interesting due to the dichotomy presented in both the imposed amplitude

and frequency range effects insofar as considering fatigue caused by the multimodal

VSIV response.

For the most part, should it be possible to consider the effect of amplitude or fre-
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quency one at a time, the presence of higher synchronization branches will cause some

low order modes with large peak-to-peak amplitude to vibrate in high frequency values;

the other way around, a broader frequency range will be responsible for higher modes

oscillating in lower synchronization branches, nonetheless, higher modes can present

larger local curvature variation.

On one hand, lower modes with large amplitude response, despite having small

natural frequencies, can oscillate in higher synchronization branches and, thus, as-

suming values close to higher modes natural frequency and presenting locally small

curvature variations.

On the other hand, higher modes can oscillate with large amplitude in lower syn-

chronization branches, assuming response frequencies not much higher than their own

natural one and presenting locally larger curvature variations.

Therefore, considering the available data and the modal intersimilarity, it turns out

that it is necessary to evaluate fatigue damage due to the VSIV multimodal response

in both conditions: large imposed amplitude with narrow frequency range (large modal

amplitude in high synchronization branches); and low amplitude with broad frequency

range (high modes exhibiting large modal amplitudes in low synchronization branches).
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5 CONCLUSIONS AND FURTHER WORKS

(...)
Das Ewig-Weibliche
Zieht uns hinan.

GOETHE, J.W., In: Faust - 2. Teil.

5.1 Considerations on the modal methodology ap-

proach

The present work made a humbly effort to shed new light on the VSIV multimodal

response of a flexible plane catenary-like circular cylinder. The current methodology

applies tools of modal analysis in order to unveil some idiosyncratic features of the

VSIV response, seeking for some degree of similitude with other fundamental experi-

mental results considering rigid straight cylinders.

The catenary-like model was monitored using a high speed tracking targets cam-

eras set that was able to detect and measure the structural displacement at each sam-

pled instant, creating a full spacial animation of the structural response.

Even tough the tracking system measured every monitored target during the tests,

the data was obtained considering a global Cartesian reference frame fixed at the

anchor. Using the static configuration measured by the cameras, it was possible to

compute local reference frames positioned at each monitored target. Each target dis-

placement series was projected in the new local references frames, carrying out a

linearization of the system dynamics around the static configuration.

every local reference frame was constructed using differential curves theory, obtain-

ing at each point a tangent and normal unit vectors that spanned locally an osculating

plane. The reference frame basis was completed using a third unit vector orthogonal

to the osculating plane, specifying the out-of-plane (binormal) direction.

Whereas modal analysis is not a new research topic, the proposed methodology is

pioneer due to the proposition of a complete modal characterization for a catenary-like

structure subject to VSIV. Early analyses were carried out in the space of configura-
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tion and modal analysis methods, specially wavelets, were employed just to evaluate

instantaneous variations on the cylinder response within the oscillation cycle.

The amount of modes necessary to execute the modal analysis is dictated by how

close the trial functions are from the system eigenfunctions. Many approaches were

considered as to obtain a set of functions that could be the closest to actual model

eigenfunctions.

Consequently, it was decided to use the modes obtained from a numerical model

simulated in Orcaflex®. The numerical modes were reasoned to be the closest due to

the numerical solver taking into consideration several other effects that are not repre-

sented in analytical approaches.

Orcaflex® also considered the effect of soil stiffness and contact at the bottom. The

soft soil condition was responsible to evaluate in-plane normal modes that were little

representative of the results obtained using spectral analysis. On the other hand, the

binormal modes showed excellent agreement with the experimental results, including

in the estimation of the structural natural frequencies.

Nonetheless, the normal modes were actually similar to the binormal ones, a re-

sults that had already been reported in previous analytic formulations. Thus, the binor-

mal modes were used both in the in-plane and out-of-plane Galerkin’s decomposition

method.

Qualitative analysis showed that the firsts ten modes were sufficient to represent

the structural system displacement series. This analysis was executed comparing each

experimental response with its modal reconstruction one.

The modal basis was also orthonormalized with respect to the structural mass ma-

trix and, as a result, uncoupling the modal structural inertial forces. This is an important

feature on the current methodology, since it serves as basis for more fundamental con-

siderations that arose from the hydroelastic system representation.

One of them is the causality between in-plane and out-of-plane dynamics. Con-

trarily to experiments carried out with rigid cylinders, the only input in the catenary-like

arrangement is the imposed movement at top; thus, the in-plane and out-of-plane dy-

namics are both responses of the hydroelastic oscillator.

The classical VSIV is characterized by the out-of-plane movement being induced

by the in-plane motion and, as both in-plane and out-of-plane are responses of the

excitation at the top, it was necessary to taken into consideration an ansatz that con-
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siders the in-plane motion as the driving mechanism of the out-of-plane hydroelastic

response. Such ansatz made the problem physically treatable, as it was possible to

establish a causality relation between the in-plane and out-of-plane oscillations.

Another innovative aspect of the devised methodology is the reinterpretation of

governing parameters, determining their modal counterparts. Typical hydrodynamic

parameters as the Keulegan-Carpenter’s, Reynolds’ and Strouhal’s numbers are es-

sential to the VSIV response characterization. This leap from the space of configura-

tion into the modal realm was possible and based on variational methods, i.e. regarding

the system eigenfunctions as its own generalized coordinates.

Finally, the present work also proposed a modal Reduced Order Model obtained us-

ing the modal governing parameters as to characterize the multimodal VSIV response.

One key element of this modal ROM is the assumption that the dominant in-plane mode

can be regarded as the main driving input of the out-of-plane hydroelastic response.

The hypothesis present in the current analysis were tested using the proposed

experimental methodology, seeking a similitude paradigm between the multimodal re-

sponses with the rigid cylinder ones. Moreover, these fundamental considerations will

be addressed later at the end of this chapter.

5.2 VSIV multi-modal response

Table 5.1 exhibits a summary of the VSIV experimental results reported in the rigid

cylinder cases; in addition, the present multimodal results are also presented.

The results are mainly the frequency ratio values at which it was observed peak

responses in the cylinders subjected to VSIV. These frequency values can be classified

either resonant or not, depending on their location.

For instance, the present terminology refers as resonant to values that can be

obtained considering the relations presented in Equation 4.2, i.e. when the frequency

value is evaluated in the vicinity of a synchronization transitions.
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Table 5.1: Comparison of the frequency ratio parameter values in which could be ob-
served amplitude peak response between the rigid straight cylinder model and the
present flexible catenary-like one.

Rigid straight cylinder f ⋆ = fr/fN

Sumer and Fredsøe (1988)

KC

10 [0.5,0.62]

20 [0.25,0.35], [0.38,0.45], [0.60,0.70]

30 [0.15,0.20], [0.22,0.25], [0.28,0.35]

40
[0.12,0.15], [0.15,0.18], [0.19,0.21],

[0.23,0.27]

Fernandes, Mirzaei Sefat, and Cascão (2014)

KC

10 0.34, 0.62

20 0.26, 0.68

30 0.22, 0.34, 0.49

40 0.12, 0.16, 0.25, 0.37, 0.39

Flexible catenary-like cylinder f (d,k)⋆ = f d
n,dom/f

(k)
b,N (approximately)

KC(d)

[45.2,48]

0.12, 0.2, 0.25, 0.3, 0.33, 0.4, 0.45,

0.5, 0.66, 0.75, 0.8, 1, 1.2, 1.45, 1.75,

2, 3, 3.67

[30.1,33.9]
0.2, 0.25, 0.33, 0.45, 0.5, 0.66, 0.75,

0.8, 1, 1.2, 1.45, 1.75, 2

[13,18] 0.2, 0.25, 0.33, 0.66, 1, 1.2

[7,10.6] 0.17, 0.2, 0.25, 0.33, 0.75

Source: Developed by the author.

Note: Intervals are denoted with brackets: x ∈ [0,1]≡ 0≤ x≤ 1.
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As reported in Sumer and Fredsøe (1988) and Fernandes, Mirzaei Sefat, and

Cascão (2014), the synchronization transitions always occurs from a higher branch,

characterized by a large whole number N, into a lower branch that presents the syn-

chronization parameter N−1. Considering all possible branches, the lowest synchro-

nization allowed is characterized by N = 1.

Considering the multimodal approach, the same behavior is observed, present-

ing branches transitions around specific frequency values that can be obtained using

Equation 4.3, the modal counterpart of the last one. The same applies in the modal

space, the modal synchronization parameter can only admit whole number values,

N(k), and the branch transitions are bounded to the limit N(k) = 1.

The multimodal VSIV individual responses also showed agreement with those re-

ported in the rigid cylinder case with respect to the imposed amplitude performed in

each test. This comparison is only possible due to the pioneer use of modal governing

parameters.

The rigid cylinder exhibits causality between forced oscillation and out-of-plane hy-

droelastic response, which is not observed in the flexible structure context due to the

in-plane movement causing different values of KC distributed along structure span. In

the context of VSIV, the KC dependence on the structural arc-length is also reported in

Wang et al. (2014, 2017).

Particularly, Wang et al. (2017) carried out an thorough analysis on how the local

values of KC acted on the general global dynamic response. The concept of a dominant

KC, obtained from the maximum KC value measured along the span, was reinterpreted

in the current analysis, but considering the dominant in-plane mode as main driving

mechanics for the multimodal out-of-plane response.

Furthermore, the experienced KC values may differ with respect to variations in

exciting frequency. Hence, it is impossible to obtain testing cases that share a fixed KC

value in both plane of configuration and modal space.

Consequently, the modal reduced velocity varies considerably in different modes,

as it is proportional to the KC. An alternative is also proposed in the present work, con-

sidering a reorganization in the governing parameter obtained from the Buckingham’s

Π theorem.

The modal frequency parameter, defined as the ratio between the dominant fre-

quency measured in the in-plane dominant mode to each k out-of-plane eigenvalue,
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f (d,k)⋆ = f
(d,k)⋆
n,dom/f

(k)
b,N, is used in lieu of the modal reduced velocity parameter, achieving

better comprehension of the results.

More importantly, a thorough inspection on Table 5.1 reveals that the multimodal re-

sponses kept similarity with the rigid cylinder case, presenting resonant peaks located

at frequency ratio values that can be obtained using Equations 4.2 and 4.3.

As to illustrate, resonant frequency values in the rigid cylinder case, f ⋆ ≈ 1/N =

1,0.5,0.33,0.25 . . . , are also observable in the multimodal responses, f (d,k)⋆≈ 1/N(k) =

1,0.5,0.33,0.25 . . . ; thus, considering the lowest allowed synchronization, N = 1 and

N(k) = 1, the maximum frequency that can be predicted is located at 1.

Other amplitude peak responses are evidenced in other frequency values, such as

f ⋆ ≈ 0.75,0.66,0.4, to mention a few. These peaks are denominated non resonant in

the present work for they are not obtained using the resonance relation, fr/fN ∼ 1 or

f
(k)
b /f

(k)
b,N.

These non resonant peaks also displayed similarity between the rigid cylinder and

catenary-like one. The non resonant peaks always occur in two cases: between two

consecutive synchronization transitions, e.g. 0.5 < 0.66 < 1; or above f ⋆ = 1, main-

taining the limit synchronization branch, N = 1.

Particularly, there is evidence between the rigid cylinder and the flexible catenary-

like one to suggest that the resonant peaks may occur in frequency ratios that assume

rational number values. Although this condition is sufficient, it is not necessary for other

more complex peaks also showed in the multimodal response case.

Lastly, the concepts of modal intrasimilarity and the intersimilarity one are proposed

in the present work. The former is characterized by the common response or amplitude

peaks growth tendencies shares by all modes in a given testing group; in turn, the latter

refers to the common general response that can be observed comparing each testing

group cases.

The available data showed that the intrasimilarity is present in every analysed test-

ing group. The imposed amplitude can responsible for the presence of lower modes

vibrating in higher synchronization branches, being able to assume response frequen-

cies much higher than its own natural frequency. The lower modes exhibit large ampli-

tude response in these lower branches.

In turn, large exciting frequency values can cause higher modes to vibrate in lower

synchronization branches, assuming large amplitude values. These higher modes ex-
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hibit large natural frequency values and, due to their eigenfunctions, they also present

larger curvature variations.

Regarding fatigue evaluation, the modal intersimilarity suggests it is possible that,

depending on the maximum exciting frequency value in a given range, considerable

damage could be accumulated at the cylinder bottom-sag due to VSIV even in cases

presenting small imposed amplitudes.

Under the perspective of risers design and analysis methodologies, fatigue damage

could be assessed individually for each mode using the present results in the available

testing conditions as to determine in which mode and condition the accumulated dam-

age is larger.

Currently, there is no available data for a critical case in which the imposed ampli-

tude and maximum driving frequency are concomitantly larger in value.

5.3 Final thoughts on the VSIV modal approach

During the experimental analysis carried out in the present work, it was possible

to verify that the VSIV multimodal response kept similarity with the intrinsic responses

reported in the technical literature.

The evidence shows that modal responses could be studied individually in a first

approximation for they behave equivalently to the classical VSIV response found in

rigid straight cylinders.

Additionally, the VSIV can contribute to accumulate fatigue damage and failure in

in-situ risers; the obtained results can be used in order to devise new methodology as-

pects for design and analysis of such structures. Thus, the present work also presents

a relevant contribution for engineering project and the offshore industry.

The results also confirmed that the causality relation between the in-plane move-

ment and the out-of-plane response is defensible, assuming that the out-of-plane mo-

tion is smaller than the in-plane one. In this context, the out-of-plane response displays

a second order dynamic role in the in-plane movement.

Moreover, the Galerkin’s decomposition of both structural and hydrodynamic oscil-

lators using the structural eigenfunctions could be explored and, in the context of the

VSIV and the available data, the assumption proved to be defensible and the structural

oscillator exhibited some degree of dominance in the coupled hydroelastic system.
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A key element of the present analysis is the construction of modal parameters that

could govern the multimodal VSIV response in some degree. These modal governing

parameters assisted in the attainment of similarity between the rigid cylinder response

with the flexible catenary-like one.

The dominant modal KC, KC(d), displayed a protagonist role in the characteriza-

tion of the VSIV multimodal response. Particularly, the assumption that the dominant

in-plane mode should be regarded as main driving mechanism to the out-of-plane re-

sponse showed great agreement with fundamental experimental results.

More significantly, the modal intersimilarity suggests that the devised methodology

displayed robustness in cases whose sub-dominant KC assumed values similar to the

dominant one.

Although the reduced velocity was inherent from the VIV context to the VSIV one,

the out-of-plane multimodal responses showed lesser comprehensibility using this pa-

rameter. This may be attributable to the variation on the KC from a testing case to other

in a same group, as the reduced velocity can be written as function of KC.

Using the Buckingham’s Π theorem, it was possible to choose a second modal

parameter, the frequency ratio, f (d,k)1, which was more suitable for the experimental

analysis. Considering that the VSIV is caused by a forced oscillation in a dynamic

system, this parameter could be interpreted as an extension of the frequency ratio

used to study forced linear damped systems response.

Finally, if the reader wants a brief summary of some contributions found in the

present work, they are:

• Experimental methodology, using linear modal analysis in order to successfully

represent a complex hydroelastic system;

• Finding similarity between the fundamental rigid cylinder results with the VSIV

multimodal response;

• Exploring the Galerkin’s decomposition of the hydroelastic system showed that,

in the context of VSIV, the hydrodynamic oscillator could be carried out using the

structural eigenfunctions;

• Use of modal governing parameters;

1In this context, characterized by the dominant in-plane mode.
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• A critic review on using the reduced velocity as governing parameter, suggesting

the frequency ratio as more meaningful one;

• Representation of the VSIV multimodal response using ROMs as a function of

modal governing parameters;

• The present results can be used for calibration and benchmarking of predictions

models.

It is noteworthy that the devised methodology using modal governing parameters

is pioneer in the offshore context and such devised experimental methodology can be

adapted for other phenomena.

5.4 Further works

There are many aspects that could improve the present experimental methodology,

specially replicating it in other contexts, using other hydroelastic phenomena; thus,

enhancing its robustness.

It would also be interesting to explore the nature of modal governing parameter in

the hydrodynamic field, exploring new relations amid them, specially characterizing the

Reynolds’ and Strouhal’s numbers in multimodal hydroelastic responses.

Although experimental campaigns are expensive and arduous, the necessity of

more experimental data is extreme important as to calibrate new predictive models

and serve as paradigm for other numerical methods.

Particularly, experimental tests with different models, reaching the conditions of

large imposed amplitude and maximum exciting frequency values, are extremely nec-

essary in order to have a better assessment of fatigue damage in a catenary-like cylin-

der.

In-situ experiments, with riser models in full-scale, by using new offshore laboratory

facilities, for sure can be devised in a near future, where the present methodology could

be applied, after proper adaptations to the real scenario.
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. RT-1-M4. Dinâmica Não-linear de Risers: experimentos hidroelásticos com
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São Paulo, Brazil, 2012. Restricted Access. In Portuguese.
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elasticii. 1986. Boletim técnico, No. BT/PEF/8613. Departamento de Estruturas e
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A – TESTING MODEL DESIGN

The testing model designed is based on the Froude scale due to the action of grav-

itational waves on floating vessels, where risers and other structures are appended.

Hence, risers hydroelastic response depends on the general sea wave behavior, which

is studied using the Froude’s parameter.

A.1 Froude scale

The Froude scaling technique is determined by equating the full scale model (m-

superscript) and prototype (p-superscript) Froude numbers,

Fr =
U√
gL

,

with

Fr(m) = Fr(p), (A.1)

in which U is the heave velocity due to incident gravitational waves; g, the gravity; and

L, a characteristic length. In addition, the Froude scale is based on a scaling factor, λ ,

acting upon the characteristic length, such as:

L(p) = λL(m). (A.2)

Consequently, the scaling factor for quantities of different physical units can as-

sume power values of λ , which can be directly obtained using the equality of Froude

numbers. Moreover, a model will be called small-scale model if the scaling factor is

smaller than the unity, λ < 1.
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For instance, assuming the gravity is constant for both model and prototype, the

velocity can be scaled as

U (m)

√

gL(m)
=

U (p)

√

gL(p)
=

U (p)

√

gλL(m)
⇐⇒U (p) =

√
λU (m). (A.3)

Thus, obtaining the velocity scaling factor,
√

λ . More generally, the Froude scale factor

for each basic SI unit (M, T , L) can be obtained in order to find the respective scaling

factor for any other physical quantity; see Table A.1.

Table A.1: Scaling factor for selected physical quantities using the Froude scale.

Physical quantity Physical dimension Scale

Length L λ

Time T
√

λ
Mass M λ 3

Force per length M1L0T−1 λ 2

Axial stiffness, EA M1L1T−2 λ 3

Bending stiffness, EI M1L3T−2 λ 5

Torsion stiffness, GJ M1L3T−2 λ 5

Angle M0L0T 0 1

Frequency M0L0T−1

√

1
λ

Source: The author.

More importantly, the Froude scale has a direct impact in the general hydrodynamic

for it is impossible to match both Froude’s and Reynolds’ numbers at the same time.

Considering the Reynolds’ number,

Re =
UD

ν
,

and assuming that both sea and regular water viscosities are equivalent, ν(m)
≅ ν(p),

the Reynolds similarity can be simply written as:

Re(m) = Re(p). (A.4)

Then, the velocity scaling factor would be
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U (p) =
ν(p)

ν(m)
λU (m) = λU (m), (A.5)

which is incompatible to what was obtained before, as the velocity cannot be generally

scaled simultaneously by
√

λ and λ ; see Equation A.3.

Considering a small-scale prototype, λ < 1, the scaled velocity, obtained using

Froude similarity, is greater than it should be to match the Reynolds’ number in both

full scale model and prototype. As a result, the scaled structure will be subjected to

hydrodynamic loads that may differ to the real regime.

A.2 Riser scaling

The riser scaling procedure is fully described in Rateiro et al. (2012)1 and here only

a concise discussion on the subject will be provided.

The real riser has 8in of external diameter and it is considered to be filled with raw

oil. In addition, using the scaling factor λ = 1 : 100, all mechanical properties are duly

scaled as shown in Table A.2.

The scaled axial and bending stiffness are similar to polymeric materials, which

agrees with the silicon hose chosen to construct the testing model. Although the rel-

ative weight in water of the silicon hose is negative, it is possible to increase its linear

weight by filling the hose with a dense substance or solid material. Whilst the former

cannot be toxic or unstable, the latter cannot change the structural axial and bending

rigidity.

For that reason, the hose was filled up with stainless steel micro-spheres, d =

1.5mm, which provided enough distributed mass, achieving the desired scaled mass,

ms. The micro-spheres contribution on the axial and bending stiffness is far less than it

would be if a metallic soul or internal hose were used.

The chosen instrumentation was a set of optical tracking cameras, measuring the

structural displacement directly, working synchronously both above and under the wa-

ter. Together with the cameras, a load cell was placed at the model upper top, providing

a direct measure of the traction at the hang-off point. The reasoning behind this sen-

soring system was to reduced as much as possible the interference on the hydroelastic

1Although unlikely, should it be available to the reader, further details and a broader discussion on
the riser scaling methodology could be obtained in LIFE&MO (2011c,e).
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system, specially avoiding any mass lumps due to classical accelerometer techniques.

Table A.2: Mechanical properties of the chosen full scale riser and the scaled model.

Data Full scale Scaled (1:100)

Internal diameter (mm) 182.58 1.826

External diameter (mm) 219.10 2.191

Depth (m) 410.00 4.10

Angle (◦) 70 70

Mass per length, ms (kg/m) 112.69 1.13E-02

Weight in air (filled with oil) (N/m) 1105.08 1.11E-01

Weight in water (filled with oil) (N/m) 726.12 7.26E-02

Axial rigidity, EA (kN) 2.60E+06 2.60

Bending stiffness, EI (Nm2) 1.20E+07 1.20E-03

Flexural length, λ f (mm) 7.14E+03 71.39

Displaced mass, md (kg/m) 38.65 3.86E-03

Reduced mass, m⋆ = ms/md 28.60 28.60

Added mass coefficient, Ca = ma/md 1.00 1.00

Added mass coefficient, a = ma/ms 0.035 0.035

Source: The author.

The external diameter obtained for the scaled model is a major obstacle, due to

the model diameter be too small, O (De) ∼ 1mm, around the camera resolution limit.

Hence, the testing model external diameter was distorted, augmented in 10 times, so

the tracking cameras could work properly.

The augmented internal and external diameters acts directly on the scaled model

linear distributed mass, ms, increasing its weight. In the end, the designed model

exhibits scaled parameters using two different scaling factors: λ = 1 : 100 is used to

scale axial and bending rigidities, and flexural length; λ ′ = 1 : 10, in geometric and

mass parameters.

Additionally, the designed external diameter also causes an increase in the overall

Reynolds value to which the cylinder will be subjected. As exposed previously, the typ-
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ical hydrodynamic loads that act on offshore structures tend to increase proportionally

to the flow Reynolds’ number. This is a limitation imposed both by the Froude scaling

methodology and the structural diameter augmentation.

As the added mass in viscous fluid flow effect on the hydroelastic system mecha-

nism is still an open researching field, it is only possible to assume the added mass

coefficient, Ca = 1, typically used in offshore models.

Table A.3: Mechanical properties of the designed and “as-built” models.

Data Designed “As-built”

Internal diameter (mm) 15.80 15.80

External diameter (mm) 22.20 22.20

Depth (m) 3.50 3.50

Angle (◦) 70 71.5

Mass per length, ms (kg/m) 1.13 1.14

Weight in air (N/m) 11.08 11.18

Weight in water (N/m) 7.29 7.38

Axial rigidity, EA (kN) 1.91 1.0-1.6

Bending stiffness, EI (Nm2) 8.86E-03 5.60E-02

Flexural length, λ f (mm) 61 49

Displaced mass, md (kg/m) 0.387 0.387

Reduced mass, m⋆ = ms/md 2.92 2.95

Added mass coefficient, Ca = ma/md 1.00 1.00

Added mass coefficient, a = ma/ms 0.343 0.340

Source: The author.

The designed model mechanical properties are shown in Table A.3 and, as it was

already discussed, there is little difference on the hydrodynamic parameters, such as

reduced mass and added mass coefficient. In turn, other geometric and structural

parameters, such as the axial and bending stiffness, and the flexural length, displayed

substantial differences.

Rateiro et al. (2012) provides further details on the rationale behind the riser sim-
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ilarity process, explaining the group of parameters chosen to characterize the test-

ing model. The methodology is based on analytical and asymptotic dynamics solu-

tions. Modal characterization, including natural frequencies and eigenfunctions, can

be checked in Pesce et al. (2017).

A.3 Mechanical characterization

The first mechanical characterization was carried out at the Surface Phenomena

Laboratory (LFS) where different sizes of stainless steel micro spheres were used in

order to obtain linear mass equivalently to the scaled one; see Table A.3. The tests

were executed by the present author and, unfortunately, there is no photos of the ex-

perimental tests.

Figure A.1 depicts the axial rigidity experimental assessment of the small-scale

model. The tests were carried out at LIFE&MO facility, using a Material Test System

MTS® that applied sinusoidal displacement in a testing tube. The monitoring system

was composed of a Linear Variable Differential Transformer (LVDT) and load cell typo

‘S’ in order to measure displacement and load, respectively; see Figure A.1a.

Figure A.1: Small-scale model axial stiffness experimental evaluation.

(a) Experimental set-up (b) Measured EA

Source: Developed by the author.

The testing specimens were divided in two groups: the first was composed of empty

tubes; and the second, of tubes filled with stainless steel micro spheres. The former
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was used in order to experimentally evaluate the tube material rheology, which is vis-

coelastic.

The latter tests aimed at check if the filling composed of micro spheres contribute to

the axial rigidity. It was shown that the filling only slightly contribute to the axial modulus

due to the metallic material being incompressible, which provide a rigid internal wall

that increased the axial stiffness by means of the Poisson’s ratio.

Additionally, it was carried out imposed sinusoidal displacement in order to mea-

sure how much the velocity in which the load was applied would effect the axial stiffness

due to the viscoelasticity rheology; see Figure A.2a.

In turn, the bending stiffness experimental tests were executed at the TPN facility,

using the analytic formulation reported in Pimenta and Mazzilli (1986). Figure A.2a

displays the experimental set-up composed of the small-scale model in a cantilever

arrangement.

Figure A.2: Small-scale model bending stiffness experimental evaluation.

(a) Experimental set-up (b) Measured EI

Source: Extracted from Pesce (2013).

Figure A.2b presents the bending rigidity as a function of the angle variation with

respect to the structural length.
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B – EXPERIMENTAL ANALYSIS

METHODOLOGY: ALGORITHMS

B.1 Orthonormalization - Modified Gram-Schmidt

The Modified Gram-Schmidt (MGS) algorithm shows greater efficient implementa-

tion. In classical Gram-Schmidt (CGS), the orthonormalization is executed taking each

vector, one at a time, and making it orthogonal to all previous vectors. In turn, the MGS

evaluation takes each vector and modifies all forthcoming vectors to be orthogonal to

it.

Listing B.1: Modified Gram-Schmidt’s pseudo-code

% xj is vector so {x1,...,xn} is an arbitrary basis

% vk is a vector so {v1,...,vn} is an orthogonal basis

% qj is a vector so {q1,...,qn} is an orthonormal basis

% norm is the Euclidean norm

5 for j ← 1:n

vj ← xj

end

for j ← 1:n

qj ← vj/norm(vj)

10 for k ← j+1:n

vk ← vk - (transpose(qj)*vk)*qj

end

end
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B.2 Numerical differentiation

The numerical differentiation algorithms are selected depending if the data has a

fixed step or not. Generally, experimental temporal series present a fixed step due to

a constant sampling rate. In turn, the optical targets used to measure the structural

displacement do not have a constant distribution on the model span.

B.2.1 Arbitrary step

In this case, the algorithm is based on a combination of forward, central and back-

wards differences. The data is segmented into three regions, whose size depends on

the chosen precision.

This method is used due to the loss of a point every time a forward/backward dif-

ferentiation is executed. Furthermore, the usage of a central difference increases the

precision on the evaluation for it has a second order error.

For this example, one admits an arbitrary function u(s) with respect to s. The

function u(s) is measured at different points, si, such that si+1 > si with i = 1, . . . ,N.

The step, δ s, is irregularly spaced. Then, one wants to find the first derivative of u(s)

w.r.t s,

u′(s) =
du

ds
, (B.1)

which is approximated as

u′(s)≈ δu

δ s
. (B.2)

Admitting that the forward and backward differences are of first order and the cen-

tral one of second order, then:

Listing B.2: Arbitrary step differentiation pseudo-code

% u is 1−by−N vectors and s is N−by−1

% u_s is also 1−by−N vector

% Forward difference

u_s[1] ← (u[2]-u[1])/(s[2]-s[1])

5 % Backward difference

u_s[N] ← (u[N]-u[N -1])/(s[N]-s[N-1])
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% Reamaining points − central differences

for i ← 2:N-1

u_s[i+1] ← (u[i+1]-u[i])/(s[i+1]-s[i])

10 end

Higher order derivatives are evaluated likewise. Should the differentiate signal ex-

hibit excessive noise, a simple Finite Impulsive Response (FIR) lowpass filter is used

in order to cut high frequencies due to the differentiation process. The filter design is

detailed in the following section.

B.2.2 Fixed step differentiation

This particular case is used only for temporal derivatives due to the constant sam-

pling rate, Fs. The main issue with experimental temporal signals is the noise origi-

nated in the differentiation itself. Then, a different approach is adopted based on the

smooth noise-robust differentiators derived in Holoborodko (2008). The differentiation

algorithm is rather complex and only a concise idea is presented here.

The algorithm is based on a low-noise filter known as Lanczos differentiators, or

Savitzky-Golay filters. Typical finite differences methods approximate the given function

with a polynomial and, then, the differentiation depends on how close the exact value

is from the approximation. In order to increase the precision, high order polynomials

are used.

On the other hand, Lanczos filters also approximates the function with a polynomial,

nonetheless, the coefficients are found using smooth least-squares optimization. The

following steps are based on the fact that the differentiation filter is anti-symmetric of

Type III, whose exact value is Hd(ω) = iω .

One should admit the filter length as N (odd), whose coefficients are {ck}. The

function, u(t), is sampled at N equidistant points around t∗ with step h. Then,

fk = f (tk), with tk = t∗+ kh, (B.3)

in which k =−M, . . . ,M and M = N−1
2

. The numerical derivative can be written as

ḟ (t∗)≈ 1

h

M

∑
k=1

ck ( fk− f−k) . (B.4)
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The filter frequency response, considering h = 1 for now, is given as

H (ω) = 2i
M

∑
k=1

ck sin(kω) , (B.5)

and the goal is to select the coefficients {ck} such that H (ω) is as close as possible

to the differentiator filter, Hd (ω) = iω in low frequency region and smoothly tending to

zero towards the Nyquist’s frequency, ω = π .

The chosen way to select such coefficients is to force both filters to exhibit high

tangency order at ω = 0 and ω = π . Then,

∂ iH (ω)

∂ω i

∣

∣

∣

∣

ω=0

=
∂ iHd (ω)

∂ω i

∣

∣

∣

∣

ω=0

(B.6)

∂ jH (ω)

∂ω j

∣

∣

∣

∣

ω=π

= 0, (B.7)

in which i = 0, . . . ,n and j = 0, . . . ,m. Assuming that n = 2, m = N−3
2

and M = N−1
2

,

the coefficients are evaluated as

ck =
1

22m+1

[(

2m

m− k+1

)

−
(

2m

m− k−1

)]

. (B.8)

The lowest differentiator order, N = 5, assumes the following approximation:

ḟ (t∗)≈ 2( f1− f−1)+ f2− f−2

8h
(B.9)

Once again, the forward and backward finite differences are used in the boundary

layers, corresponding to two points at the beginning and end.

Listing B.3: Fixed step smooth noise-robust differentiation pseudo-code

% f(s,t) is 1−by−N vector and t is a N−by−1 vector

% f_t is 1−by−N vector

h ← t[2]-t[1]

% Forward difference

5 f_t[1] ← (f[2]-f[1])/h

f_t[2] ← (f[3]-f[2])/h

% Backward difference
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f_t[N] ← (f[N]-f[N-1])/h

f_t[N-1] ← (f[N-2]-f[N -1])/h

10 % Smooth noise−robust filter

for i ← 3:N-2

f_t[i] ← (2(f[i+1]-f[i-1]) + f[i+2]-f[i -2])/(8h)

end

Inasmuch as the differentiation is smooth and noise-robust, high order derivatives

can be obtained likewise. For instance, after obtaining the first derivative, the second

is evaluated passing the first as input to the algorithm.

Although the method reduces noise and produces a smooth response, the begin-

ning and last regions are still evaluated as forward and backward differences.

Thus, high order derivatives cause an increase at those boundary layers each time

the method is iterated, i.e. these increasing regions exhibit lower precision and ac-

curacy over time. An alternative is to discard 2+ 2 points in the signal each time the

method is iterated.

B.3 Filter design

A lowpass filter is used in several occasions so as to reduce high frequency noise

due to the measuring system acquisition or other numerical analysis procedure. It

is noteworthy that the acquisition system already has an anti-aliasing second order

analog filter with fixed cut frequency, fcut = 3000Hz.

In turn, the sampling frequency used in the experimental tests, Fs = 60Hz, is lower

than the acquisition system one. The maximum observable frequency, fobs,max = 30Hz,

is given by the Nyquist-Shannon’s theorem, which is suffice in the present tests due to

the model natural frequencies are limited to the range 0.42≤ fN (Hz)≤ 4.53.

Limiting the present analysis to the first 20 modes1, which corresponds to 10 in-

plane and 10 out-of-plane modes, the maximum natural frequency obtained in a nu-

merical representation of the physical model2 is f
(10)
N,b = 4.53Hz≪ 30Hz.

1High in-plane and out-of-plane modes (from the eighth mode upwards) show small maximum modal

amplitudes. For instance, the maximum modal amplitude evaluated in the tenth mode is O
(

A
(10)⋆
max

)

∼ 0.1

in both directions. Thus, limiting the present analysis to the first 10 modes in each in-plane and out-of-
plane directions is suffice.

2Using Orcaflex®.
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In addition, the frequency bandwidth is large enough for the digital signal to be

treated as a continuous one. This means that is not necessary to consider the dynamic

effect of a typical Zero-Order Hold (ZOH) block into the analysis.

Consequently, the filter is designed using MATLAB® Filter Design Toolbox, which is

set to have the lowest possible order, to be equiripple with pass and stop frequencies

of fcut = fpass = 5Hz and fstop = 6Hz, respectively.

Moreover, the filter is also set to exhibit pass and stop amplitude gains of 1dB and

80dB, respectively. These gains are chosen so the filter does not add any gain to the

response in low frequencies, whilst attenuating high frequency responses. The density

factor is left with its default value.
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C – VSIV: MODAL ANALYSIS

COMPLEMENTARY RESULTS

C.1 Ai = 105mm

This section presents additional experimental results from the group Ai = 105mm.

The testing case ID 06 will be used as to illustrate the dynamics in space of config-

uration, based on local reference frame measurements, that was reported in Figure

4.4.

Figure C.1 summarizes the space of configuration of the testing case ID 06. It

is possible to observe the TDP variation in in Figure C.1a which occurs during the

pushing-down and lifting-up phases of the imposed motion at the top (WANG et al.,

2017).

The modal orbits evaluated using the normal and binormal displacements series for

each testing case in the present group is exhibited in Figure C.2. The testing case ID

06 was selected due to its characteristic synchronization pattern in the second mode,

displaying a amplitude peak and N(2) = 5.

Table 4.2 reveals that the modal frequency ratio evaluated for this particular modal

case is in the vicinity of f (d,2)⋆ = 0.2. Thus, the second mode peak responsible for the

modal synchronization pattern described in Figure C.2 can be considered resonant.

Modal resonant peaks can be predicted using Equation 4.3. Additionally, the space

of configuration synchronization along the cylinder presented in Figure 4.4 displays a

typical 5 lobes orbit in the middle-span.

The 5 lobes observed in Figure 4.4 contain some distortion, if compared to the

second mode synchronization found in Figure C.2 (ID 06), due to small amplitude re-

sponses from the other modes.

Therefore, the modal decomposition assisted in retaining only relevant information
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for each mode.

Figure C.1: Normal and binormal dynamics in the space of configuration obtained from
the testing case ID 06 of the group Ai = 105mm.

(a) Normal: absolute scalogram (b) Binormal: absolute scalogram

(c) Normal: scalogram (d) Binormal: scalogram

(e) Normal: spectrogram (f) Binormal: spectrogram

(g) Normal: 3D spectrogram (h) Binormal: 3D spectrogram

Source: Developed by the author.

Table C.1 presents all modal KC evaluated from the present group. The testing

case ID 06 exhibits KC(d) = 45.8, obtained from the dominant in-plane mode, which is

the first one. Higher modes present small modal KC.



2
0

8

Figure C.2: Modal orbits obtained from all testing cases in the group Ai = 105mm.

Source: Developed by the author.
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Table C.1: Modal KC for imposed movement at the top Atop = 105mm. Dominant modal
KC is colored with respect to the modal color scheme.

Modal KC( j)

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

01 45.33 4.35 4.74 0.72 4.12 3.75 4.60 1.36 1.53 0.42

02 45.22 4.34 4.73 0.70 4.12 3.72 4.59 1.34 1.54 0.43

03 45.26 4.29 4.66 0.73 4.09 3.72 4.56 1.35 1.52 0.42

04 45.30 4.29 4.70 0.75 4.10 3.72 4.56 1.34 1.53 0.42

05 45.60 4.27 4.63 0.77 4.09 3.74 4.56 1.36 1.52 0.42

06 45.77 4.26 4.69 0.91 4.12 3.76 4.58 1.36 1.53 0.42

07 45.96 4.28 4.61 0.81 4.09 3.75 4.56 1.37 1.52 0.41

08 46.05 4.33 4.64 0.82 4.10 3.75 4.57 1.36 1.52 0.42

09 46.11 4.51 4.64 0.88 4.09 3.75 4.56 1.36 1.52 0.42

10 46.07 4.41 4.59 0.86 4.08 3.75 4.55 1.36 1.51 0.42

11 46.61 4.39 4.59 0.93 4.07 3.78 4.56 1.38 1.51 0.41

12 46.48 4.58 4.76 1.08 4.09 3.75 4.53 1.38 1.51 0.43

13 46.96 4.57 4.64 1.04 4.06 3.79 4.53 1.40 1.50 0.41

14 47.20 4.73 4.65 1.11 4.05 3.80 4.53 1.41 1.50 0.42

15 47.37 4.83 4.58 1.17 4.03 3.81 4.52 1.43 1.50 0.42

16 47.49 5.13 4.75 1.24 4.02 3.82 4.51 1.43 1.50 0.42

17 47.65 5.74 4.87 1.38 3.99 3.84 4.50 1.46 1.49 0.43

18 47.58 5.70 4.95 1.39 4.02 3.83 4.49 1.45 1.49 0.44

19 47.97 6.17 5.29 1.52 4.01 3.88 4.49 1.47 1.49 0.45

20 47.88 6.43 5.46 1.60 4.02 3.86 4.49 1.46 1.49 0.46

21 47.95 7.45 5.68 1.76 4.00 3.91 4.47 1.50 1.48 0.47

22 47.65 7.91 5.97 1.92 3.98 3.91 4.43 1.50 1.47 0.49

23 47.59 8.69 6.47 2.05 4.00 3.92 4.43 1.53 1.48 0.52

24 47.76 8.65 6.52 2.08 4.01 3.94 4.42 1.53 1.48 0.52

25 47.94 8.95 6.73 2.16 4.00 3.96 4.41 1.55 1.48 0.53

Figures C.3-C.4 exhibits the normal and binormal amplitude series, respectively,

for the cases IDs 01 until 10. They also present the spectral content of each series.
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Figure C.3: Second mode normal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 105mm.

Source: Developed by the author.
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Figure C.4: Second mode binormal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 105mm.

Source: Developed by the author.
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The ID 06 is located in the first column of the second row in the charts presented in

Figures C.3-C.4. The normal displacement series shows that its dominant frequency

is equal to the driving frequency of the imposed vertical motion at the hang-off point.

Figure C.5 shows the second out-of-plane mode VSIV response with respect to the

modal reduced velocity parameter, V
(d,k)
R . Note that, contrarily to the results in Figure

4.7, there is discontinuations in the frequency charts due to the modal KC not be fixed.

Thus, reinforcing visually the adoption of modal frequency ratio parameter, f (d,k)⋆, in

the context of multi modal VSIV response.

Figure C.5: Modal frequency response of the second out-of-plane modes with respect

to the modal reduced velocity parameter: 45.2≤ KC(d) ≤ 48.

Source: Developed by the author.
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C.2 Ai = 70mm

This section presents additional experimental results from the group Ai = 70mm.

The testing case ID 09 will be used as to illustrate the dynamics in space of config-

uration, based on local reference frame measurements, that was reported in Figure

4.10.

Figure C.6 summarizes the space of configuration of the testing case ID 09. It

is possible to observe the TDP variation in in Figure C.6a which occurs during the

pushing-down and lifting-up phases of the imposed motion at the top (WANG et al.,

2017).

The modal orbits evaluated using the normal and binormal displacements series for

each testing case in the present group is exhibited in Figure C.7. The testing case ID

09 was selected due to its characteristic synchronization pattern in the second mode,

displaying a amplitude peak and N(2) = 3.

Table 4.4 reveals that the modal frequency ratio evaluated for this particular modal

case is in the vicinity of f (d,2)⋆ = 0.33. Thus, the second mode peak responsible for the

modal synchronization pattern described in Figure C.7 can be considered resonant.

Modal resonant peaks can be predicted using Equation 4.3. Additionally, the space

of configuration synchronization along the cylinder presented in Figure 4.10 displays a

typical 3 lobes orbit in the lower and upper quarter portion of the total span.

The 3 lobes observed in Figure 4.10 contain some distortion, if compared to the

second mode synchronization found in Figure C.7 (ID 09), due to small amplitude re-

sponses from the other modes.

Therefore, the modal decomposition assisted in retaining only relevant information

for each mode.
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Figure C.6: Normal and binormal dynamics in the space of configuration obtained from
the testing case ID 09 of the group Ai = 70mm.

(a) Normal: absolute scalogram (b) Binormal: absolute scalogram

(c) Normal: scalogram (d) Binormal: scalogram

(e) Normal: spectrogram (f) Binormal: spectrogram

(g) Normal: 3D spectrogram (h) Binormal: 3D spectrogram

Source: Developed by the author.

Table C.2 presents all modal KC evaluated from the present group. The testing

case ID 09 exhibits KC(d) = 31.63, obtained from the dominant in-plane mode, which

is the first one. Higher modes present small modal KC.
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Figure C.7: Modal orbits obtained from all testing cases in the group Ai = 105mm.

Source: Developed by the author.
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Table C.2: Modal KC for imposed movement at the top Atop = 70mm. Dominant modal
KC is highlighted in red.

Modal KC( j)

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

01 30.12 2.95 3.37 0.28 2.62 2.15 3.23 1.00 1.17 0.26

02 30.41 2.91 3.34 0.29 2.62 2.18 3.23 1.03 1.16 0.24

03 30.40 2.92 3.34 0.30 2.61 2.18 3.22 1.03 1.16 0.24

04 30.66 2.82 3.27 0.31 2.59 2.19 3.22 1.04 1.15 0.23

05 30.70 2.77 3.22 0.33 2.57 2.19 3.20 1.04 1.14 0.23

06 30.93 2.80 3.21 0.36 2.57 2.20 3.20 1.05 1.14 0.23

07 31.28 2.74 3.18 0.37 2.56 2.21 3.19 1.06 1.14 0.22

08 31.65 2.64 3.11 0.41 2.55 2.23 3.19 1.07 1.13 0.21

09 31.63 2.56 3.11 0.52 2.55 2.23 3.18 1.08 1.12 0.22

10 31.79 2.65 3.06 0.60 2.52 2.25 3.16 1.09 1.11 0.22

11 31.95 3.33 3.21 0.67 2.54 2.27 3.14 1.10 1.11 0.23

12 32.13 3.23 3.16 0.70 2.50 2.26 3.13 1.11 1.11 0.24

13 32.54 3.57 3.22 0.75 2.49 2.29 3.13 1.12 1.10 0.24

14 32.63 3.93 3.32 0.82 2.48 2.29 3.11 1.12 1.10 0.25

15 32.99 4.75 3.58 1.06 2.50 2.33 3.08 1.16 1.09 0.26

16 33.11 4.94 3.64 1.13 2.47 2.35 3.08 1.17 1.08 0.28

17 33.18 5.63 3.89 1.20 2.49 2.37 3.09 1.17 1.09 0.30

18 33.24 6.00 4.05 1.27 2.49 2.37 3.08 1.17 1.09 0.32

19 33.70 6.36 4.21 1.35 2.45 2.39 3.07 1.19 1.08 0.32

20 33.91 7.58 4.72 1.57 2.48 2.42 3.06 1.21 1.09 0.36

Figures C.8-C.9 exhibits the normal and binormal amplitude series, respectively,

for the cases IDs 01 until 10. They also present the spectral content of each series.
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Figure C.8: Second mode normal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 70mm.

Source: Developed by the author.
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Figure C.9: Second mode binormal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 70mm.

Source: Developed by the author.



219

The ID 09 is located in the fourth column of the second row in the charts presented

in Figures C.8-C.9. The normal displacement series shows that its dominant frequency

is equal to the driving frequency of the imposed vertical motion at the hang-off point.

Figure C.10 shows the second out-of-plane mode VSIV response with respect to

the modal reduced velocity parameter, V
(d,k)
R .

Figure C.10: Modal frequency response of the second out-of-plane modes with respect

to the modal reduced velocity parameter: 30.1≤ KC(d) ≤ 33.9.

Source: Developed by the author.
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C.3 Ai = 35mm

This section presents additional experimental results from the group Ai = 35mm.

The testing case ID 04 will be used as to illustrate the dynamics in space of config-

uration, based on local reference frame measurements, that was reported in Figure

4.16.

Figure C.11 summarizes the space of configuration of the testing case ID 04. It

is possible to observe the TDP variation in in Figure C.11a which occurs during the

pushing-down and lifting-up phases of the imposed motion at the top (WANG et al.,

2017).

The modal orbits evaluated using the normal and binormal displacements series

for each testing case in the present group is exhibited in Figure C.12. The testing case

ID 04 was selected due to its characteristic synchronization pattern in the first mode,

displaying a amplitude peak and N(1) = 2.

Table 4.6 reveals that the modal frequency ratio evaluated for this particular modal

case is in the vicinity of f (d,2)⋆ = 0.5. Thus, the first mode peak responsible for the

modal synchronization pattern described in Figure C.12 can be considered resonant.

Modal resonant peaks can be predicted using Equation 4.3. Additionally, the space

of configuration synchronization along the cylinder presented in Figure 4.16 displays a

typical 2 : 1 with ±90◦ phase.

The 2 : 1 observed in Figure 4.16 contain some distortion, if compared to the first

mode synchronization found in Figure C.12 (ID 04), due to small amplitude responses

from the other modes.

Therefore, the modal decomposition assisted in retaining only relevant information

for each mode.
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Figure C.11: Normal and binormal dynamics in the space of configuration obtained
from the testing case ID 04 of the group Ai = 105mm.

(a) Normal: absolute scalogram (b) Binormal: absolute scalogram

(c) Normal: scalogram (d) Binormal: scalogram

(e) Normal: spectrogram (f) Binormal: spectrogram

(g) Normal: 3D spectrogram (h) Binormal: 3D spectrogram

Source: Developed by the author.

Table C.3 presents all modal KC evaluated from the present group. The testing

case ID 04 exhibits KC(d) = 15.7, obtained from the dominant in-plane mode, which is

the first one. Higher modes present small modal KC.
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Figure C.12: Modal orbits obtained from all testing cases in the group Ai = 35mm.

Source: Developed by the author.



223

Table C.3: Modal KC for imposed movement at the top Atop = 35mm. Dominant modal
KC is highlighted in red.

Modal KC( j)

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

01 15.28 1.28 1.81 0.42 1.52 0.92 1.01 0.18 0.38 0.11

02 15.45 1.26 1.80 0.43 1.53 0.93 1.01 0.18 0.38 0.11

03 15.46 1.20 1.76 0.44 1.50 0.92 0.99 0.18 0.37 0.11

04 15.68 1.29 1.75 0.46 1.51 0.93 0.99 0.18 0.37 0.11

05 15.80 1.37 1.73 0.48 1.49 0.93 0.99 0.19 0.37 0.11

06 16.12 1.10 1.66 0.51 1.49 0.94 0.98 0.19 0.36 0.10

07 16.34 1.00 1.61 0.55 1.47 0.95 0.97 0.20 0.36 0.10

08 16.67 1.53 1.67 0.61 1.44 0.97 0.95 0.22 0.35 0.09

09 17.16 2.17 1.68 0.98 1.45 1.00 0.94 0.25 0.34 0.11

10 17.07 2.39 1.74 0.85 1.47 0.99 0.95 0.26 0.35 0.13

11 17.86 2.75 1.65 0.90 1.40 1.05 0.90 0.28 0.32 0.12

12 17.68 3.35 2.13 0.98 1.45 1.05 0.91 0.30 0.34 0.15

13 17.97 4.46 2.67 1.22 1.39 1.05 0.91 0.34 0.36 0.19

14 16.87 7.13 3.73 1.35 1.49 1.03 1.00 0.40 0.45 0.28

15 16.34 7.31 3.47 1.29 1.53 1.08 1.01 0.38 0.45 0.29

16 16.32 8.19 3.91 1.43 1.59 1.01 1.05 0.44 0.50 0.33

17 16.09 8.88 4.23 1.51 1.64 1.01 1.07 0.45 0.53 0.36

18 14.09 9.83 4.85 1.72 1.98 0.87 1.15 0.47 0.62 0.41

19 14.13 11.04 5.03 2.03 2.01 0.95 1.18 0.50 0.66 0.45

20 12.96 11.44 5.39 2.16 2.16 1.08 1.27 0.49 0.70 0.46

Figures C.13-C.14 exhibits the normal and binormal amplitude series, respectively,

for the cases IDs 01 until 10. They also present the spectral content of each series.
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Figure C.13: First mode normal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 35mm.

Source: Developed by the author.
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Figure C.14: First mode binormal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 35mm.

Source: Developed by the author.
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The ID 04 is located in the fourth column of the first row in the charts presented in

Figures C.13-C.14. The normal displacement series shows that its dominant frequency

is equal to the driving frequency of the imposed vertical motion at the hang-off point.

Figure C.15 shows the first out-of-plane mode VSIV response with respect to the

modal reduced velocity parameter, V
(d,k)
R . Note that, contrarily to the results in Figure

4.19, there is discontinuations in the frequency charts due to the modal KC not be fixed.

Thus, reinforcing visually the adoption of modal frequency ratio parameter, f (d,k)⋆, in

the context of multi modal VSIV response.

Figure C.15: Modal frequency response of the first out-of-plane modes with respect to

the modal reduced velocity parameter: 13≤ KC(d) ≤ 18.

Source: Developed by the author.
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C.4 Ai = 17.5mm

This section presents additional experimental results from the group Ai = 17.5mm.

The testing case ID 06 will be used as to illustrate the dynamics in space of config-

uration, based on local reference frame measurements, that was reported in Figure

4.23.

Figure C.16 summarizes the space of configuration of the testing case ID 06. It

is possible to observe the TDP variation in in Figure C.16a which occurs during the

pushing-down and lifting-up phases of the imposed motion at the top (WANG et al.,

2017).

The modal orbits evaluated using the normal and binormal displacements series

for each testing case in the present group is exhibited in Figure C.17. The testing case

ID 06 was selected due to its characteristic synchronization pattern in the third mode,

displaying a amplitude peak and N(3) = 2.

Table 4.8 reveals that the modal frequency ratio evaluated for this particular modal

case is in the vicinity of f (d,3)⋆ = 0.47. Thus, the third mode peak responsible for the

modal synchronization pattern described in Figure C.17 can be considered resonant.

Modal resonant peaks can be predicted using Equation 4.3. Additionally, the space

of configuration synchronization along the cylinder presented in Figure 4.23 displays a

typical 2 lobes in some parts of the structural span.

The 2 lobes observed in Figure 4.23 contain some distortion, if compared to the

third mode synchronization found in Figure C.17 (ID 06), due to small amplitude re-

sponses from the other modes.

Therefore, the modal decomposition assisted in retaining only relevant information

for each mode.
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Figure C.16: Normal and binormal dynamics in the space of configuration obtained
from the testing case ID 06 of the group Ai = 17.5mm.

(a) Normal: absolute scalogram (b) Binormal: absolute scalogram

(c) Normal: scalogram (d) Binormal: scalogram

(e) Normal: spectrogram (f) Binormal: spectrogram

(g) Normal: 3D spectrogram (h) Binormal: 3D spectrogram

Source: Developed by the author.

Table C.4 presents all modal KC evaluated from the present group. The testing

case ID 06 exhibits KC(d) = 10.56, obtained from the dominant in-plane mode, which

is the first one. Higher modes present small modal KC.
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Figure C.17: Modal orbits obtained from all testing cases in the group Ai = 17.5mm.

Source: Developed by the author.
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Table C.4: Modal KC for imposed movement at the top Atop = 17.5mm. Dominant
modal KC is highlighted in red.

Modal KC( j)

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

01 7.82 0.58 0.93 0.13 0.72 0.39 0.55 0.08 0.22 0.07

02 8.07 0.46 0.86 0.16 0.70 0.41 0.54 0.09 0.22 0.06

03 8.42 0.29 0.76 0.20 0.68 0.43 0.53 0.10 0.21 0.05

04 8.90 0.86 0.65 0.34 0.64 0.47 0.54 0.22 0.22 0.06

05 9.76 1.07 0.49 0.39 0.57 0.52 0.45 0.18 0.16 0.04

06 10.56 3.06 1.23 0.60 0.58 0.56 0.43 0.25 0.17 0.12

07 10.45 5.11 1.90 0.78 0.65 0.59 0.47 0.30 0.24 0.20

08 9.17 8.28 2.60 0.89 0.93 0.54 0.56 0.36 0.35 0.28

09 6.47 7.55 2.57 0.89 1.10 0.46 0.63 0.29 0.38 0.28

10 6.15 8.13 2.38 1.24 1.09 0.40 0.61 0.22 0.35 0.23

11 7.09 6.85 3.73 1.35 1.26 0.51 0.72 0.32 0.39 0.25

12 7.58 5.39 5.62 1.51 1.49 0.55 0.91 0.39 0.49 0.30

13 7.62 5.07 7.18 1.73 1.84 0.71 0.96 0.46 0.55 0.37

14 7.02 3.74 8.08 1.63 1.58 0.88 1.10 0.55 0.65 0.44

15 6.80 3.14 8.14 1.45 1.57 1.18 1.17 0.50 0.66 0.40

16 7.25 3.12 8.24 1.45 1.70 1.29 1.17 0.55 0.70 0.41

17 7.32 3.21 7.17 1.66 1.79 0.93 1.56 0.79 0.64 0.50

18 7.39 3.37 6.29 2.59 2.03 0.73 1.70 0.78 0.62 0.67

19 7.32 3.31 5.64 3.1 2.14 0.75 1.79 0.68 0.73 0.57

20 7.25 3.07 5.42 3.13 2.14 0.76 1.23 1.13 0.82 0.46

Source: Developed by the author.

Figures C.18-C.19 exhibits the normal and binormal amplitude series, respectively,

for the cases IDs 01 until 10. They also present the spectral content of each series.
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Figure C.18: third mode normal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 17.5mm.

Source: Developed by the author.
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Figure C.19: third mode binormal displacement series and correspondent spectral contents from testing cases IDs 01 until 10 in the
group Ai = 17.5mm.

Source: Developed by the author.
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The ID 06 is located in the third column of the first row in the charts presented in

Figures C.18-C.19. The normal displacement series shows that its dominant frequency

is equal to the driving frequency of the imposed vertical motion at the hang-off point.

Figure C.20 shows the third out-of-plane mode VSIV response with respect to the

modal reduced velocity parameter, V
(d,k)
R . Note that, contrarily to the results in Figure

4.26, there is discontinuations in the frequency charts due to the modal KC not be fixed.

Thus, reinforcing visually the adoption of modal frequency ratio parameter, f (d,k)⋆, in

the context of multi modal VSIV response.

Figure C.20: Modal frequency response of the third out-of-plane modes with respect to

the modal reduced velocity parameter: 7≤ KC(d) ≤ 10.6.

Source: Developed by the author.


