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Resumo

A capacidade de prever os movimentos de uma plataforma de petróleo sujeita a ondas é

bastante importante no contexto da engenharia naval e oceânica, já que esses movimentos terão

diversas implicações no projeto deste sistema, com impactos diretos nos custos de produção e

tempo de retorno do investimento. Esse trabalho apresenta os fundamentos teóricos sobre o

problema de comportamento no mar de corpos flutuantes sujeitos a ondas de gravidades e um

método numérico para solução do problema 2D no domı́nio do tempo. A hipótese básica adotada

é a de escoamento potencial, que permitiu a utilização do método de elementos de contorno para

descrever a região fluida. Optou-se pela utilização de fontes de Rankine como função de Green

no desenvolvimento do método, o qual será abordado somente no contexto linear do problema

matemático, delimitado através de um procedimento combinado entre expansão de Stokes e

série de Taylor. As simulações são realizadas no domı́nio do tempo sendo, portanto, resolvido

o problema de valor inicial com relação às equações do movimento e equações que descrevem

a superf́ıcie-livre combinadas com dois problemas de valor de contorno, um para o potencial

de velocidades e outro para o potencial de aceleração do escoamento. As equações integrais de

contorno permitem transformar o sistema de equações diferenciais parciais da superf́ıcie livre

num sistema de equações diferenciais ordinárias, a quais são resolvidas através do método de

Runge-Kutta de 4a ordem. As equações integrais são tratadas de forma singularizada e o método

utilizado para discretizar as mesmas é de ordem baixa tanto para a função potencial quanto para

a aproximação geométrica, sendo as integrações necessárias realizadas numericamente através de

quadratura Gauss-Legendre. O algoritmo numérico é testado e validado através de comparações

com soluções anaĺıticas, numéricas e experimentais presentes na literatura, considerando os

problemas de geração de ondas, cálculo de massa adicional e amortecimento potencial através

de ensaios de oscilação forçada, testes de decaimento e, por último, resposta em ondas. Os

resultados obtiveram boa concordância com aqueles adotados como paradigma.

Palavras chave: Método de Rankine, Método de elementos de contorno, Comportamento em

ondas.
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Abstract

The ability to predict the seakeeping characteristics of an offshore structure (such as an oil

platform) is very important in offshore engineering since these motions have important conse-

quences regarding its design and therefore its cost and payback period. This work presents the

theoretical and numerical aspects concerning the evaluation of the 2D seakeeping problem under

the potential flow hypothesis, which allows the use a Boundary Elements Method to describe the

fluid region with Rankine sources as Green function. The linearized version of the mathematical

problem is built by a combined Stokes expansion and Taylor series procedure and solved in time

domain.

The initial value problem concerning the motion and free surface equations are solved com-

bined to the boundary value problems considering the velocity and acceleration flow potentials,

which transform the partial differential equations of the free surface into ordinary differential

equations, that are solved using the 4th order Runge-Kutta method. The integral equations

are solved in it’s singularized version using a low order method both for the potential function

and the geometrical approximation, with the terms of the linear system evaluated using Gauss

Legendre quadrature.

The numerical scheme is tested and validated considering analytical, numerical and experi-

mental results obtained in the literature, concerning wave generation, added mass and potential

damping evaluation, decay tests and response to waves. The results achieved good agreement

with respect to those used as paradigm.

Keywords: Rankine panel method, Boundary Elements Method, Seakeeping.
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for swaying b̂yy as function of the panel number N , for dimensionless frequency

ω̂ “ 1.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.16 Circular section. (a) Time series of hydrodynamic force per length Fy; Conver-

gence of (b) Added mass coefficient for heaving âzz and (c) Potential damping
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for heaving b̂zz as function of the panel number N , for dimensionless frequency

ω̂ “ 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.19 Added mass for sway motion in sway direction of a circular cylinder . . . . . . . 90

5.20 Potential damping for sway motion in sway direction of a circular cylinder . . . . 91

5.21 Added mass for heave motion in heave direction of a circular cylinder . . . . . . 92

5.22 Potential damping for heave motion in heave direction of a circular cylinder . . . 93

5.23 Rectangular section forced oscillation test . . . . . . . . . . . . . . . . . . . . . . 94

vii
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Symbols
ρ - specific mass

~v - flow velocity

ϕ - velocity potential

T - stress tensor
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p - flow pressure
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∇ (not the mathematical operator) - body displacement in volume

xiii



GM - metacentric height

G or GpP,Qq - Green function

BΩ - fluid region boundaries
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Chapter 1

Introduction

1.1 Relevance and Motivation

In the context of offshore and naval design the correct seakeeping prediction is very important

in all design phases, since response to waves (motions, velocities and accelerations) will define

the environmental conditions in which the structure will operate safely. The latest discoveries

of petroleum reservoir in the brazilian coast, in ultra-deep waters, mean that a greater demand

for ships and platforms will appear in the next years, increasing the need for refined seakeeping

studies. In facts better designs should help reducing the production downtime, specially under

harsh conditions, improving production efficiency and reducing costs.

The technological development continuously improves the computational capability, allow-

ing the use of sophisticated numerical methods for this problem. The problem to be studied

consists of determining forces and motions on floating bodies under waves, current and wind

with arbitrary incidences upon a floating structure that may or may not have forward speed.

For platforms there are also interactions with the risers, mooring lines and tendons, most of

them usually not considered in a first analysis.

An alternative approach is experimental, which is based on small-scale models that are

tested on offshore basins, being able to reproduce some phenomena which are hard to evaluate

numerically. The constrains involved in the experimental approach are related to the lack of

similarity, specially Reynolds number and the accuracy on small parts and measurements (like

the risers of an oil platform in deep waters). However, the experimental approach usually

provides essential contributions on the validation/extension of numerical models.

A mixed approach based on numerical models combined with experimental data has been
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developed at the Numerical Offshore Tank (TPN-USP) since 2000. One of the goals has been

to provide a simulator that could handle a fully coupled solution of hydrodynamics, mooring

lines, environmental conditions and body motions. Since the hydrodynamic solution is obtained

in frequency domain using WAMIT (see Lee and Newman [2005] that summarize some of the

developments performed), the time domain solution is evaluated following the theory developed

by Cummins [1962], that basically transform the frequency domain solution into a time domain

one using a convolution integral to take into account the flow memory effects. However, this

procedure leads to some limitations, specially because the hydrodynamic problem in frequency

domain can only be solved considering the first order and higher order solutions using Stokes

series (see Stoker [1957]), which is only valid for weakly non-linear problems, as will be discussed

later.

Following this approach the mesh is fixed during the whole simulation period, which leads

to some limitations concerning some practical problems, like multi body simulation with large

relative displacements. This problem, for example, motivated alternative strategies trying to

overcome this limitation, like re-run the frequency domain code if the displacements exceeds a

specified value, as presented by Tannuri et al. [2004] and Queiroz Filho and Tannuri [2009].

The only way to consider all the non-linearities concerning the problem is by solving the fully

non-linear fluid-structure problem considering the time dependent boundaries and interactions,

which is a long term goal for the simulator, specially for dealing with engineering applications

where the ”strong”1 non-linear effects are important, such as multi body simulations with large

relative displacements, extreme roll motions of FPSOs, structures with very low draft (such as

monobuoys) and bodies in resonant motions. Shao [2010] states that strong non-linear effects

are also important in the study of slamming, green water, capsizing of ships and violent sloshing.

Following this fully non-linear approach, almost all methods assumes a mixed Eulerian-

Lagrangean (MEL) approach for the free surface evolution in time, which is not performed in

the weakly non-linear formulation because the free surface remains in the undisturbed position.

van Daalen [1993] formulated a fully non-linear time domain BEM for the evaluation of 2D

wave-maker problem, forced oscillation test and decay tests. Greco [2001] followed a similar

approach for the investigation of green water phenomenon, but added some additional effects

like hydroelasticity. Tanizawa et al. [1999, 2000], Koo [2003], Koo and Kim [2004] and Kim and

Koo [2005] applied the bidimensional fully non-linear approach for the evaluation of response to

1For strong non-linear effects we understand the ones that are beyond what the multi-scales approach can
evaluate properly
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waves of floating bodies in a numerical wave tank simulation (NWT). Tanizawa and Naito [1997]

used the NWT for the study of parametric roll of a ”bell” shaped body still in a 2D approach.

Contento [2000] also studied the fully non-linear problem validating the results initially with

Vugts [1968] experiments for forced oscillation and then performed decay tests and response to

waves. The simulations concerning large initial displacements (40% of the draft) for heave free

decay tests showed significant non-linear influence, which was not verified by van Daalen [1993]

concerning a circular and rectangular sections, as will be presented latter. Tanizawa and Naito

[1998] tried to reproduce chaos in roll motions still in a bidimensional approach.

Some other important problems concerning ”weak” non-linearities are the slow motions (well

discussed by Pinkster [1980]) and mean drift (introduced initially with a simple formula by Maruo

[1960]) of offshore structures, that are already evaluated in the simulator using the first and sec-

ond order solutions, both engineering problems discussed by Faltinsen [1990]. Those effects are

taken into account although the slow motions evaluation require a long time to run when multi

body and shallow water effects need to be considered for the QTF2 evaluation. This long time

computation is partially because the second order problem requires the free surface discretiza-

tion, since the Green function adopted does not respect the second order inhomogeneous free

surface condition. An alternative procedure would be the evaluation of a group of waves together

in time domain, obtaining all the forces and motions during one single computation, following

an approach similar to the proposed by Kim et al. [1997].

The weakly non linear approach was also adopted for the study of third order problems,

concerning the presence and absence of current as presented in Shao [2010] (who also studied

second order problems), that used a time domain higher order BEM for solving the mathemat-

ical problem, achieving good agreement for the results. Zhu [1997] formulated the third order

diffraction problem, comparing a BEM solution to the long-wave approximation theory for the

ringing3 phenomenon. Stassen et al. [1998] described a BEM applied to the problem concerning

the third-order free surface waves discussing that an additional condition must be imposed in

order to correct the secular terms (see Nayfeh [1973]), that produced instabilities, as introduced

by Benjamin and Feir [1967] for waves propagating without any kind of dissipation (or at least

negligible in this order of approximation).

Although the main goal of the simulator is to evaluate the practical engineering problems

discussed before, in the present work only basic steps involved in building an offshore seakeeping

2Quadratic Transfer Function
3High frequency transient type response

19



analysis code will be presented, in order to achieve a better comprehension of the physical

phenomenon, mathematical modelling (and hypothesis), numerical issues and implementation

procedure. In order to evaluate the method proposed a 2D code was implemented in Matlab R©

programming language. The output of the code is compared with some results presented in the

literature to confirm the correctness of the mathematical model and numerical scheme presented,

that latter will be extended to the desired practical problems. Furthermore, the main goal of

this text is to present the basic aspects (which are not trivial) concerning the seakeeping problem

for further extensions to the three dimensional problem.

The physical problem can be converted into a mathematical problem using appropriate

hypothesis, simple conservation laws and boundary conditions concerning the nature of the

fluid-structure interaction. The structures studied are fixed and floating bodies without forward

speed susceptible only to gravity wave loads. Despite the formulation adopted provides an

extension to multi-bodies interaction almost directly, this work is focused on a single floating

body problem. The code was developed to allow simulations either in ocean conditions or in

wave basins (modeling the wave-maker and the walls of a wave basin).

The conservation laws adopted for solving the flow are the mass and linear momentum

conservation. The bodies are assumed as rigid and their motions can be described by Newton’s

law.

Regardless the body is free to move, the partial differential equation system describing the

flow dynamics consists of four equations (three for momentum and one for mass), meaning that

the velocity components in all directions and the pressure can be evaluated. The pressures are

integrated over the wetted body surface, providing the hydrodynamic forces used for motion

evaluation.

The ideal fluid model is usually adopted in the context of seakeeping analysis, which means

that the fluid is homogeneous, has no viscosity and the flow is assumed as incompressible and

potential, so the velocity field is irrotational, allowing the complete velocity field to be described

by the value of a scalar function at the boundaries, being this function known as the velocity

potential.

The assumption of potential flow is appropriate when the viscous effects can be neglected,

which may occurs as the Reynolds number increases, since the inertial forces becomes large

compared to viscous ones. For streamlined bodies this means that the flow separation will be

small. For oscillating bodies, such as floating bodies on ocean waves, the relation of inertial
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forces and viscous forces is given by the KC4 number, which is usually small for oil platforms,

specially in the linear problem context, when the problem is linear with the wave amplitude and

the wave steepness is small.

The completely non-linear boundary value problem (BVP) for a floating body is very diffi-

cult to be solved, since the boundary conditions are mostly non-linear and applied to unknown

time variant boundaries. In order to simplify the BVP, a Stokes expansion procedure is usu-

ally adopted, together with Taylor expansions, leading to a linear problem solved at the mean

boundaries.

The BVP can be solved either in time domain or in frequency domain. The solution in

frequency domain is based on separation of variables considering the motions as periodic, not

allowing the analysis of transient effects, which can be done in time domain. Besides that, in

frequency domain one usually does not solve the fluid/structure interaction directly, since the

body motion equation is not solved coupled to the hydrodynamic BVP. Therefore, the body

dynamic does not affect the hydrodynamic solution. In frequency domain usually the hydrody-

namic solution is obtained considering 6 individual problems (one for each degree on freedom, the

so called radiation problems) and the diffraction problem, the latter considering only the body

presence, but not the body motion. On the other hand, the time domain approach requires the

body dynamics to be solved coupled with the fluid BVP, solving the fluid/structure interaction

directly, facilitating the inclusion of non-linearities, either in the hydrodynamic problem or in

the body motion. However, it should be noticed that the time domain approach usually requires

much more computational effort than the frequency domain, which was one of the reasons for

the first numerical methods developed to be based in frequency domain solutions.

In this work, the numerical technique chosen to solve the BVP is the Boundary Elements

Method (BEM), since the velocities can be defined in terms of the values at the boundaries, not

being necessary to discretize the whole fluid domain, as would be the case in a Finite Elements

Method (FEM), Finite Volumes Method (FVM) or Finite Differences Method (FDM). The

computational effort required for solving a boundary elements method is usually much smaller

than those required by these other methods, since only the boundaries are discretized, reducing

the number of elements (and the size of the linear system).

In this work, only the linear problem will be considered in order to get the knowledge

concerning the fundamental approach. Furthermore, the bidimensional linear approach presents

4Keulegan Carpenter
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several relevant problems that can be solved analytically, which is very useful for validation

purposes. So, this first work concerning a linear time domain boundary elements method should

be understood as only the first step for further extensions, that in the future could consider the

mooring dynamics and the completely non-linear problem.

The BEM requires the choice of a Green function and there are several ones, such as Kelvin

sources and transient Green function. These functions satisfy the linearized free surface condi-

tions automatically, reducing the computational effort, since the free surface does not need to

be discretized. They could also be extended to satisfy the no flux condition at the flat bottom,

if required, but then they have the inconvenient of containing an improper integral of diffi-

cult convergence. Besides that, these functions usually satisfy only the linearized free surface

conditions and therefore they cannot be applied for non-linear problems, which is one of the

long term goals. In the present work, the Rankine sources are chosen, which do not satisfy

any boundary condition immediately, but their evaluation does not require much computational

effort, rendering future extensions to non-linear problems easier.

The three major subdivisions in boundary elements method applied for naval and ocean

applications are: advancing ships (problem with forward speed), platforms (floating stationary

structures) and numerical wave tanks (NWT), the last one focusing on two main themes, non-

linear free surface phenomena and fluid-structure interaction. Among the numerical codes based

on Boundary Elements Methods available nowadays for seakeeping analysis, the main commercial

softwares are WAMIT R©, AQWA R© and WADAM R©, all adopting a frequency domain solution.

Among the time domain softwares, which were mostly applied and developed for academic

purposes, one may find TIMIT R© and SWAN R©.

The order of approximation of the geometry and the potential function leads to two kinds

of numerical methods: the low order, that retains only the first term in the approximations,

methods with plane panels and constant potential inside each panel, as introduced by Hess

and Smith [1964] and the higher order method, that uses other representations containing more

terms, that keep the continuity of the potential function and normal vector between the panels,

and that can also be extended to guarantee the continuity of the derivatives of the potential

function. One example of low order method is the singularized one developed by Yee-Tak Ng

[1993] to study second order effects on floating structures. However, the use of higher order

numerical methods are justified due to the reduction of computational effort, specially for solving

the higher orders problems concerning seakeeping of stationary structures or problems concerning

22



forward speed, which require the evaluation of the panels tangential derivatives accurately. Some

of the higher order codes developed are, for example, Maniar [1995] that extended the WAMIT

code to a higher order panel method based on spline approximations for the potential function

but the geometry could be arbitrary described. He also adopted a Galerkin procedure to obtain

a determined linear system. Qiu [2001] and Qiu et al. [2006] presented the so-called panel

free method (desingularized) for wave body interaction, with and without current, where the

geometry is generically described by the coefficients of a NURBS, as largely available in CAD

packages. Gao and Zou [2008], presented a desingularized higher order method based on NURBS

for the geometry description and B-spline for the potential function to study problems concerning

forward speed. Shao [2010] presented a higher method based in quadratic elements defined each

3 nodes, for both the potential function and geometry.

The following Table (1.1), taken from Bertram [1996] summarizes some of the numerical

methods available for solving the forward speed problem. Here the ”indirect method” stands

for methods that evaluate the source strength, while the ”direct method” indicate the ones that

evaluate the velocity potential.

Table 1.1: Numerical methods for forward speed
No. Place Country Code Author Method Domain
1 MIT USA SWAN Nakos, Sclavounous Direct Frequency
2 KRI/SNU Korea HOBEM Hong, Choi Direct Frequency
3 Hiroshima Japan CBIEM Iwashita et al. Direct Frequency
4 Osaka Japan - Takagi Indirect Frequency
5 MHI Japan - Yasukawa Indirect Frequency
6 Nantes France AQUAREVA Maissonneuve et al Indirect Frequency
7 NTH Norway - Zhao, Faltinsen Indirect Frequency
8 IfS Germany NEPTUN Bertram Indirect Frequency
9 IfS Germany FREDDY Bertram, Hughes Indirect Frequency
10 Michigan USA - Cao et al. Direct Time
11 MIT USA SWAN Kring, Sclavounos Direct Time
12 AMI USA USAERO/FSP Maskew Indirect Time
13 Delft Holland - Prins Direct Time

The numerical wave tank approach has also been researched by several groups, almost ex-

clusively for academic purposes, creating even benchmark cases, whose contributors, taken from

Tanizawa [2000] are shown in Table (1.2).
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Table 1.2: List of contributors for NWT benchmark (Tanizawa [2000])
Contributor Simulation Method
K. Tanizawa BEM Fully Nonlinear
M. Kashiwagi BEM Fully Nonlinear

H. Kihara BEM Fully Nonlinear
A. H. Clement BEM Fully Nonlinear
C. Maisondieu BEM 2nd order

R. Otto & J. H. Westhuis FEM Fully Nonlinear
N. Hirata FVM Fully Nonlinear

It can be seen that most of the developments have been performed at the academic context. A

better comprehension concerning the mathematical formulation and numerical methods in time

domain for seakeeping analysis, which to the author’s knowledge, was not complete developed

in Brazil yet, is therefore one of the goals of the present study.

With this in mind, Chapter 2 states the complete mathematical problem stating the potential

flow hypothesis and the free surface condition as described by a mathematical function, which

does not allow overturning waves. A brief discussion about the complete non-linear problem is

done, followed by a linearization procedure based on Stokes expansion.

Chapter 3 describes the mathematical procedure that allows the BVP concerning the flow

problem to be described by means of an integral equation. A boundary elements method (BEM)

for solving this problem is also defined, followed by a low order approximation description.

Chapter 4 describes the numerical method implemented, consisting on solving the Boundary

Value Problem using a lower order panel method and the Initial Value Problem using a 4th

order Runge-Kutta method (RK-4).

Chapter 5 shows the numerical results obtained for wave-generation at a numerical offshore

tank, the added mass and wave damping coefficients estimated for simple geometric cylinders, the

analysis of decay tests of the cylinders and the response amplitude operator for a bidimensional

box. A small discussion concerning the comparison of the results with available data at the

literature is also performed, showing that good agreement is achieved.

Finally, Chapter 6 brings the main conclusions about the linear method capability and the

next steps required in order to extend the method for 3D cases. A discussion about possible

improvements of the code and extensions for multi-bodies and non-linearities is also performed.
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1.2 Bibliography review

The description of the fluid dynamics can be defined by a system of equations containing a

scalar equation of mass conservation (continuity) and a vectorial equation concerning the linear

momentum conservation (Navier-Stokes), that allow the evaluation of pressure and velocity field.

These equations are largely available and discussed in Batchelor [2009], Milne-Thomson [1968]

and Fox and Donald [1973]. The dynamic of a rigid body can be studied through the motion

equations derived from Newton’s laws.

The problem concerning floating bodies under gravity waves has been largely studied con-

sidering the potential flow description (Lamb [1945], Newman [1977] , Mei et al. [2005]), when

the velocity field is assumed as irrotational, simplifying, for incompressible flows, the continuity

equation into Laplace’s equation. The ocean waves was largely studied for several authors, for

example, by Stoker [1957] and Hermans [2011], that describe a multi-scale procedure for the de-

composition of the non-linear free surface conditions into a sequence of several linear conditions,

where the lower solutions are imposed into the higher order problems, as proposed by Stokes

[1847].

The mathematical problem is quite difficult to be solved generically since it has non-linear

conditions applied to time-varying boundaries (the free surface and the body wetted surface), as

discussed, for example, by John [1949, 1950] and Kuznetsov et al. [2004]. In order to overcome

this inconvenient several authors proposed simplified procedures, basically known as the linear

approach, where the time varying boundaries are replaced by static ones and the boundary

conditions are linearized during the calculations, achieving good experimental agreement for

free surface flow without a floating body, as described by Barber and Ursell [1948] and Dean

et al. [1959].

Hess and Smith [1964] introduced the use of a panel method for solving Laplace’s equation

using a singularized and indirect equation with a low order approximation either by the source

strength distribution or geometrical approximation, obtaining good results considering bodies

fully submerged. Dawson [1977] was one of the first to use Rankine sources as Green function for

a panel method to evaluated three dimensional ship-resistance. Yang [2004] implemented a sim-

ilar method for linear wave resistance calculation and formulated the fully non-linear approach

concerning the wave resistance problem citing Tanizawa [1995] work, extending the formulation

to consider forward speed effect. A discussion about the simulation stability in time is performed
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by both and Tanizawa [2000] summarizes the four consistent methods available for the evalua-

tion of the time derivative of the potential function, which is very important for time domain

simulation stability, as will be presented latter: (1) Iterative method, as performed, for exam-

ple, by Cao et al. [1994]; (2) Modal decomposition; (3) Indirect Method; (4) Implicit boundary

condition method. Kacham [2004] evaluated this derivative by using a finite difference scheme.

van Daalen [1993] followed the implicit boundary condition method, obtaining good agreement

in the results.

The use of a numerical beach in order to avoid wave reflection was introduced by Israeli and

Orszag [1981], which was followed by several authors concerning different numerical methods and

problems. This idea was extended to the Rankine panel method considering damping term(s) in

the free surface condition(s), for example, by Nakos et al. [1993], Kring [1994], Prins [1995], Cao

et al. [1994], Huang [1997], Kim [2003], Koo and Kim [2004] and Zhen et al. [2010], although

there are some variations.
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Chapter 2

Mathematical problem

In this chapter the mathematical problem is formulated for the generic case of arbitrarily floating

body motions on gravity waves. The difficulties involved for solving the complete problem are

discussed and using a Stokes series approach the problem is simplified (linearized). After properly

boundary conditions are defined, the Boundary Value Problem (BVP) is complete and linearized,

the Initial Value Problem (IVP) is treated by defining the correct initial conditions.

2.1 Governing equations

As already mentioned, the basic hypothesis adopted are the incompressible and potential flow.

The mass conservation is given by (2.1), where ρ is the specific mass and ~v is the velocity field.

By definition, an incompressible flow has the material derivative of the specific mass as zero at

all times, simplifying the mass conservation to equation (2.2).

Dρ

Dt
` ρ∇ ¨ ~v “ 0 (2.1)

ρ∇ ¨ ~v “ 0 ñ ∇ ¨ ~v “ 0 (2.2)

Since the flow is assumed as potential the velocity field is written as (2.3), where ϕ denotes

the velocity potential function, which is position and time dependent, converting the continuity

equation to Laplace’s equation (2.4), valid at the fluid region Ω.

~v “ ∇ϕ (2.3)
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∇ ¨ ∇ϕ “ ∇2ϕ “ 0 (2.4)

The conservation of linear momentum is expressed by equation (2.5) and represents Newton’s

second law applied to fluid particle. The acceleration is on the left side of the equation and all

forces on the right side, where the contact forces are evaluated in terms of the stress tensor (T )

and the field forces, such as gravity, by the body forces vector ~b.

D~v

Dt
“

B~v

Bt
` ∇~v ¨ ~v “

1
ρ
∇ ¨ T `~b (2.5)

Looking more carefully into this equation we can se that it’s only a statement of the balance

between the acceleration of the fluid and the forces acting on it, which are segregated in two

groups, one that acts directly on the fluid particle by contact and other that acts by distance.

Since the fluid is assumed ideal, the system is conservative because the unique external load

considered is the gravity, which is also a conservative field. The stress tensor is given by (2.6),

which allows the linear momentum conservation law to be written as (2.7), which is exactly

Bernoulli’s equation for an irrotational, non-permanent flow, where p is the pressure and g the

gravity acceleration.

Tij “ ´pδij (2.6)

Bϕ

Bt
`

1
2

}∇ϕ}2 `
p

ρ
` gz “ Cptq (2.7)

The initial 4 variables/4 equations problem is then reduced to the solution of 2 equations con-

cerning 2 scalar functions (variables), the velocity potential function ϕ and the pressure p.

However, in order to particularize the solution, boundary conditions need to be provided.

Those conditions guarantee the BVP an unique solution and the boundaries can be grouped in

Sfixed, Spm, Sfb and Sfs, denoting the fixed (stationary), prescribed motions, floating body and

free surface boundaries, respectively.

The fixed boundaries are usually the sea bottom or the walls at a wave basin. The prescribed

motion boundaries are the wetted surface of bodies with imposed motion, such as wave-makers

or, as another example, bodies at oscillation test.

The conditions at all boundaries but the free surface are simply the no-flux condition, given

by (2.8), (2.9) and (2.10). One should notice that velocity at the boundary can be described

in terms of the velocities at the center of gravity of the body using Poisson formula, since

the body is supposed rigid. These Neumann conditions are non-linear but at Sfixed, and are
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quite complicated since the region of evaluation are time dependent, leading to a very complex

condition. The non-linearities are due to the fluid-structure interaction nature, since different

flows lead to different pressures and forces, changing body motions, wetted surface and the

normal vector.
BϕQ

BnQ
“ 0, for Q P Sfixed (2.8)

BϕQ

BnQ
“ ~vQptq ¨ ~nQptq, for Q P Spmptq (2.9)

BϕQ

BnQ
“ ~vQptq ¨ ~nQptq “ ~nQptq ¨ r~vGptq ` ~ωptq ^ pQptq ´ Gptqqs, for Q P Sfbptq (2.10)

In the context of seakeeping analysis concerning potential flow, the free surface is usually

understood as a membrane that segregates water from air at all time. This kind of construction

denies the possibility of breaking waves, since the membrane is assumed as simply connected.

This approach simplifies the mathematical problem since the free surface can be described by

a geometrical surface, where the boundary condition can be applied. The free surface elevation

is measured from the undisturbed surface using a variable η and represents the z coordinate

of the air-water interface, as can be seen on Figure (2.1). The basic idea is to find out a

mathematical surface that can correctly capture the water-air interface, such as a membrane

that always segregates the two phases, it is, no fluid particles can cross the membrane. Besides

that, any motion of the particles in the surface normal direction deforms it, in order to keep the

membrane always segregating the two phases.

Figure 2.1: Free surface

Suppose a generic surface given by (2.11). It can be expanded using Taylor series as shown
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in (2.12), where ~vs is the surface velocity with components (vx, vy, vz).

Spx, y, z, tq “ 0, @t (2.11)

Sp~x`vxΔt, y`vyΔt, z`vzΔt, tq “ Spx, y, z, tq`
´BS

Bt
`~vs ¨∇S

ˉ
Δt`OpΔt2q`OpΔt3q`... (2.12)

If we divide the expansion by Δt and take the limit case when Δt goes to zero, assuming all

surface derivatives as finite, the equation (2.14) is obtained, since (2.11) is true at all times.

lim
ΔtÑ0

Spx ` vxΔt, y ` vyΔt, z ` vzΔt, tq
Δt

“ lim
ΔtÑ0

”Spx, y, z, tq
Δt

`

´BS

Bt
` ~vs ¨ ∇S

ˉ

Δt
Δt`OpΔt2q`...

ı

(2.13)

BS

Bt
` ~vs ¨ ∇S “ 0 (2.14)

Since the fluid has no viscosity, the basic relation of a generic fluid particle at the boundary

is that the particle velocity vector projection on the free surface normal direction should be the

same as the projection of the surface velocity vector at the surface normal direction, as given by

(2.15), where ~vp is the flow velocity at a point P adjacent to the surface S and ~ns is the surface

normal vector, which is equal to the surface gradient.

~vp ¨ ~ns “ ~vs ¨ ~ns ñ ~vp ¨ ∇S “ ~vs ¨ ∇S, P P S (2.15)

Applying (2.14) at the right side of (2.15) and changing the flow velocity by the gradient of

the velocity potential function leads to (2.16).

∇ϕp ¨ ∇Sp “ ´
BS

Bt

ˇ
ˇ
ˇ
p
, @t, P P S (2.16)

The free surface can be written as (2.17) and replacing it in equation (2.16) leads to condition

(2.18).

S “ z ´ ηpx, y, tq “ 0 (2.17)
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Bηp

Bt
“ ∇ϕp ¨ ∇Sp, P P S ñ

Bη

Bt
`

Bϕ

Bx

Bη

Bx
`

Bϕ

By

Bη

By
´

Bϕ

Bz
“ 0, z “ ηpx, y, tq (2.18)

This condition is known as kinematic condition and states that particles at the free surface

will be always at the free surface, because the velocity of the fluid particles adjacent to the

membrane on the surface normal direction should be the same of the surface normal velocity of

the membrane itself, which is assumed by construction, it is, the particles cannot ”drop” from

the surface.

The description of the free surface as (2.17) denies the possibility of overturning waves (waves

that are almost breaking, see Figure (2.2)) because an elevation function η is assumed and it is

single valued of the coordinates x and y.

Figure 2.2: Example of overturning wave

The first expression in (2.18) states the Neumann condition for the free surface, but since

ηt is unknown, the kinematic condition is not enough for determining the membrane behavior,

specially because nothing was said about it’s dynamics. Another condition needs to be specified

then in order to evaluate the elevation itself, which is achieved by applying Bernoulli’s equation

(2.7).

Imposing that the pressure at the free surface should be atmospheric and choosing the

constant Cptq as zero, equation (2.19) is obtained. This statement is known as dynamic free

surface condition and describes the equilibrium of forces at the air-water interface.

Bϕ

Bt
`

1
2

p∇ϕ ¨ ∇ϕq ` gη “ 0 at z “ ηpx, y, tq (2.19)

In the same way as already discussed for the prescribed motion and floating body boundaries,

the free surface conditions are non-linear, being difficult to find an easy solution procedure. In

the case of the free surface and the floating body, there is an additional problem because the
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boundary conditions should be applied at an unknown time dependent surface. The floating

body wetted surface, at all times, can only be defined by solving Newton’s second law (2.20)

and (2.21), assuming the body mass as constant and the only external loads as the gravity and

flow pressure, where ~L0 is the angular moment considering a pole O and ~M ext
0 is the external

torque considering the same pole.

dpm~vGq
dt

“
ÿ

~F ext (2.20)

d~L0

dt
“

ÿ
~M ext

O (2.21)

Therefore the boundary value problem (BVP) can be summarized in solving Laplace’s equa-

tion (2.4) under the boundary conditions given by (2.18), (2.8), (2.9) and (2.10). The dynamic

free surface condition (2.19) and body motions equations (2.20)/(2.21) would be used for the

definition of the time dependent surface boundaries.

Since the problem containing non-linear boundary conditions applied at unknown boundaries

are hard to solve directly, an initial simplified problem is solved, which is the linear problem,

usually achieved by using expansions in Stokes series, as presented next.

2.2 Stokes expansion

The velocity potential, free surface elevation, normal vectors and moving bodies position vectors

can be expanded using an unidimensional Stokes series, that is basically a multi-scales expansion

using a perturbation factor ε, where the potential of order zero equals to zero because the problem

has no forward speed and the position and normal vectors of order zero represent their mean

values, it is, the vectors when the bodies are at rest. The ~X function in equation (2.25) and

~α function in equation (2.26) denote the body linear and angular displacements. The method

proposes the problem to be solved by splitting the original problem into a collection of linear

problems (one for each order), solving them successively by imposing the solutions of the lower

orders problem into the higher order ones.

ϕ “ ϕ̄ `
8ÿ

i“1

ϕpiqptq.εi (2.22)
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η “
8ÿ

i“0

ηpiqptq.εi (2.23)

~n “ ~̄n `
8ÿ

i“1

~npiqptq.εi (2.24)

~X “ ~̄X `
8ÿ

i“1

~Xpiqptq.εi (2.25)

~α “ ~̄α `
8ÿ

i“1

~αpiqptq.εi (2.26)

The first condition for the series convergence is that all individual potentials ϕi to be finite,

it is, they are bounded by a positive real M (|ϕi| ď M,M P R`, i “ 1, 2, 3, ..., 8) and the

perturbation factor modulus to be less than 1 since this series is bounded by a geometrical

series. This convergence condition is obviously extended to the remaining expansions.

8ÿ

i“0

ϕiε
i ď

8ÿ

i“0

Mεi “ M
8ÿ

i“0

εi |ε|ă1
“

M

1 ´ ε
(2.27)

The velocity vector can be written by time derivation of (2.25) and (2.26), providing (2.28)

and (2.29). As expected the mean velocities are zero, there is no zero order term.

~V “
8ÿ

i“1

~V piqptq.εi (2.28)

~ω “
8ÿ

i“1

~ωpiqptq.εi (2.29)

The boundary condition at the floating bodies and prescribed motion surfaces can be written

as (2.30).

8ÿ

i“1

εi
” iÿ

j“0

∇ϕ
pi´jq
Q ¨ ~npjq

Q

ı
“

8ÿ

i“1

εi
” iÿ

j“0

~V
pi´jq
Q ¨ ~npjq

Q

ı
, at Q P Spm,fbptq (2.30)

The standard procedure would be to multiply this expression by the powers of p1{εq taking

the limits when ε Ñ 0 successively, which would lead to several boundary conditions, one for

each order. However, it would not solve the inconvenient of having a time dependent boundary.

In order to overcome this inconvenient, the velocity vectors and the normal vectors are
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expanded in Taylor series around the surface Spmpt “ 0q “ S̄pm. Supposing an arbitrary point

px0, y0, z0q that belongs to the Spmpt “ 0q, the expansion (2.31) can be performed.

V piq
x px0 ` Δx, y0 ` Δy, z0 ` Δz, tq “ V piq

x px0, y0, z0, tq `
BV i

x

Bx

ˇ
ˇ
ˇ
px0,y0,z0q

Δx `
BV i

x

By

ˇ
ˇ
ˇ
px0,y0,z0q

Δy`

BV i
x

Bz

ˇ
ˇ
ˇ
px0,y0,z0q

Δz ` ... “
8ÿ

j“0

8ÿ

k“0

8ÿ

u“0

ΔxjΔykΔzu

j!k!u!
Bj`k`uV

piq
x

BxjBykBzu

ˇ
ˇ
ˇ
px0,y0,z0q

(2.31)

The values of Δx, Δy and Δz are the (2.25) terms without the zero order value. Therefore all

powers of the delta terms on Taylor expansion have at least order ε, but the zero power, which is

exactly the value at rest. The other velocity and normal vector components could be expanded

by an analogous process.

Replacing those expansions into (2.30), dividing by ε and now taking the limit for ε Ñ 0

leads to (2.32), which is the first order condition.

∇ϕ
p1q
Q ¨ ~̄nQ “ ~V

p1q
Q ¨ ~̄nQ, at Q P Spmp0q (2.32)

The procedure for the floating body boundary is exactly the same. For the deduction of a second

order condition, the expression (2.30) should now divided by ε2 (the terms of p1{εq order would

cancel each other since they respect the first order condition) followed by taking the limit for

ε Ñ 0. However, in this work the results are developed considering only the first order problem.

The next step is the linerization of the free surface boundary condition, which is done by

replacing the velocity potential and free surface elevation series into the kinematic and dynamic

conditions. The expressions (2.33) and (2.34) are then derived.

B
Bz

p
8ÿ

u“0

ϕpuqεuq´
B
Bt

p
8ÿ

u“0

ηpuqεuq`
B

Bx
p

8ÿ

u“0

ϕpuqεuq
B

Bx
p

8ÿ

u“0

ηpuqεuq`
B

By
p

8ÿ

u“0

ϕpuqεuq
B

By
p

8ÿ

u“0

ηpuqεuq “ 0

in z “
8ÿ

u“0

ηpuqεu (2.33)

ρ
B
Bt

p
8ÿ

u“0

ϕpuqεuq`
1
2
ρ∇p

8ÿ

u“0

ϕuεuq¨∇p
8ÿ

u“0

ϕpuqεuq`ρgp
8ÿ

u“0

ηpuqεuq “ 0 in z “
8ÿ

u“0

ηpuqεu (2.34)

After some algebra the expressions for an arbitrary order can be achieved and grouped as
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can be seen in (2.35) and (2.36).

8ÿ

i“0

#

εir
Bηpiq

Bt
´

Bϕpiq

Bz
`

iÿ

j“0

p
Bϕpjq

Bx

Bηpi´jq

Bx
`

Bϕpjq

By

Bηpi´jq

By
qs

+

“ 0 in z “
8ÿ

u“0

ηpuqεu (2.35)

8ÿ

i“0

#

εir
Bϕpiq

Bt
`

1
2

iÿ

j“0

p∇ϕpjq ¨ ∇ϕpi´jqq ` gηpiqs

+

“ 0 in z “
8ÿ

u“0

ηpuqεu (2.36)

Following the same procedure adopted before, all functions can be locally expanded by a

Taylor series around the undisturbed free surface (z=0). Replacing the free surface by the

stokes series (2.23) the expression (2.37) for the time derivative of the free surface elevation can

be derived.

Bηpiq

Bt

ˇ
ˇ
ˇ
z“η

“
Bηpiq

Bt

ˇ
ˇ
ˇ
z“0

`
8ÿ

j“1

Bj`1ηpiq

BzjBt

ˇ
ˇ
ˇ
z“0

ηj

j!
“

Bηpiq

Bt

ˇ
ˇ
ˇ
z“0

`
8ÿ

j“1

Bj`1ηpiq

BzjBt

ˇ
ˇ
ˇ
z“0

p
ř8

i“0 ηpiq.εiqj

j!
(2.37)

Changing all terms in equations (2.35) and (2.36) by their respective Taylor series leads to

the equations (2.39) and (2.38). Taking the limit ε Ñ 0 in expression (2.39) leads to the zero

order elevation to be zero, as can be seen on (2.40).

8ÿ

i“0

”
εi

” 8ÿ

k“0

´Bk`1ηpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
´

8ÿ

k“0

´Bk`1ϕpiq

Bzk`1

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ

`
iÿ

j“0

´ 8ÿ

k“0

´Bk`1ϕpjq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

8ÿ

k“0

´Bk`1ϕpjq

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉˉıı
“ 0, in z “ 0

(2.38)

8ÿ

i“0

”
εi

” 8ÿ

k“0

´Bk`1ϕpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

1
2

iÿ

j“0

” 8ÿ

k“0

∇
´Bkϕpjq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
¨

8ÿ

k“0

∇
´Bkϕpi´jq

Bzz

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉı
`

g
8ÿ

k“0

Bkηpiq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ıı
“ 0, in z “ 0 (2.39)
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lim
εÑ0

8ÿ

i“0

”
εi

” 8ÿ

k“0

´Bk`1ϕpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

1
2

iÿ

j“0

” 8ÿ

k“0

∇
´Bkϕpjq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
¨

8ÿ

k“0

∇
´Bkϕpi´jq

Bzz

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉı
`

g
8ÿ

k“0

Bkηpiq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ıı
“

8ÿ

k“0

Bkηpiq

Bzk

ˇ
ˇ
ˇ
z“0

ηp0qk

k!
“ 0 ñ ηp0q “ 0 (2.40)

The next step is the division of expressions (2.39) and (2.38) by the perturbation factor ε and the

evaluation of the limit when ε Ñ 0, already considering the zero order elevation and potential as

zero. Only the first term on Taylor series should be taken, since it is powered at zero while the

other terms will contain powers equal or greater than 1 for the perturbation factor. Following

this process the expressions (2.41) and (2.42) are obtained, which is the first order problem and

supposing that it was solved, the first order elevation and potential at the free surface would be

determined.

lim
εÑ0

8ÿ

i“0

”
εi´1

” 8ÿ

k“0

´Bk`1ηpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
´

8ÿ

k“0

´Bk`1ϕpiq

Bzk`1

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ

`
iÿ

j“0

´ 8ÿ

k“0

´Bk`1ϕpjq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

8ÿ

k“0

´Bk`1ϕj

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉˉıı
“

lim
εÑ0

Bηp1q

Bt
´

Bϕp1q

Bz
“ 0

Bηp1q

Bt
“

Bϕp1q

Bz
, in z “ 0 (2.41)

lim
εÑ0

8ÿ

i“0

”
εi´1

” 8ÿ

k“0

´Bk`1ϕpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

1
2

iÿ

j“0

” 8ÿ

k“0

∇
´Bkϕpjq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
¨

8ÿ

k“0

∇
´Bkϕpi´jq

Bzz

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉı
`

g
8ÿ

k“0

Bkηpiq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ıı
“ lim

εÑ0
gηp1q `

Bϕp1q

Bt
“ 0

ηp1q “ ´
1
g

Bϕp1q

Bt
, in z “ 0 (2.42)

36



Taking the expression (2.39) and (2.38), dividing by ε2 and evaluating again the limit when

ε Ñ 0 leads to the so-called second order condition as can be seen in (2.43) and (2.44), getting new

inhomogeneous linear equations where the second order elevation and potential are evaluated

imposing the first order solutions.

lim
εÑ0

8ÿ

i“0

”
εi´2

” 8ÿ

k“0

´Bk`1ηpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
´

8ÿ

k“0

´Bk`1ϕpiq

Bzk`1

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ

`
iÿ

j“0

´ 8ÿ

k“0

´Bk`1ϕpjq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBx

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

8ÿ

k“0

´Bk`1ϕpjq

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ 8ÿ

k“0

´Bk`1ηpi´jq

BzkBy

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉˉıı
“

lim
εÑ0

”1
ε

´Bηp1q

Bt
´

Bϕp1q

Bz

ˉ
`

Bηp2q

Bt
´

Bϕp2q

Bz
`

Bϕp1q

Bx

Bηp1q

Bx
`

Bϕp1q

By

Bηp1q

By
´

B2ϕp1q

Bz2
ηp1q

ı
“ 0

Bηp2q

Bt
´

Bϕp2q

Bz
`

Bϕp1q

Bx

Bηp1q

Bx
`

Bϕp1q

By

Bηp1q

By
´

B2ϕp1q

Bz2
ηp1q “ 0, in z “ 0 (2.43)

lim
εÑ0

8ÿ

i“0

”
εi´2

” 8ÿ

k“0

´Bk`1ϕpiq

BzkBt

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
`

1
2

iÿ

j“0

” 8ÿ

k“0

∇
´Bkϕpjq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉ
¨

8ÿ

k“0

∇
´Bkϕpi´jq

Bzz

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ˉı
`

g
8ÿ

k“0

Bkηpiq

Bzk

ˇ
ˇ
ˇ
z“0

p
ř8

v“0 εvηpvqqk

k!

ıı
“ lim

εÑ0

”1
ε

´
gηp1q `

Bϕp1q

Bt

ˉ
`

Bϕp2q

Bt
` gηp2q `

1
2
∇ϕp1q ¨ ∇ϕp1q `

B2ϕp1q

BzBt
ηp1q

ı
“

Bϕp2q

Bt
` gηp2q `

1
2
∇ϕp1q ¨ ∇ϕp1q `

B2ϕp1q

BzBt
ηp1q “ 0, in z “ 0 (2.44)

As discussed before this procedure can continue for higher orders and the important result is

the decomposition of the non-linear condition into several linear problems, recovering the original

non-linear equation if there is a small perturbation factor that goes to zero and a solvability

condition. However, it should be noticed that the higher orders problems (more than the three)

are hard to be verified experimentally and the effects concerning those problems could be as

small as the viscous effects, which were neglected since the beginning of the formulation.

In the linear problem the free-surface boundary conditions are given by (2.46) and (2.47),

where η and ϕ are the first order potentials, being the subscripts neglected in order to simplify
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the notation.

This perturbation factor ε is actually kA, the wave steepness where k is the wave number, and

in order to guarantee the wave stability this factor should be small. The Keulegan-Carpenter

number (KC) (2.45) measures the inertial forces over drag forces for bluff objects at oscillatory

motions, where V is the velocity amplitude, T is the period of oscillation and L is a charac-

teristic length, which can be simplified at gravity waves situation to the wave amplitude over

a characteristic length. If this value is small, it is, the wave amplitude is small compared to

the body characteristic length, the inertial forces dominate. In the seakeeping context of oil

platforms (focus of this work), this condition is usually satisfied, which means that most of the

acting forces are inertial. The approximation assuming potential flow for the hydrodynamic

forces is also as good as the flow near the body can be assumed as potential. Near the body

it is well known that there is a boundary layer, where the viscous and turbulent effects are

significantly appreciable. If this layer is thin and there is not much separation, the pressure at

the body surface can be approximated by the potential pressure near the surface and outside

the boundary layer. This condition is satisfied if the body has an hydrodynamic shape, it is,

the surface curvature radius is large, which is clearly not the case at edges and corners. For oil

platforms motion prediction this local effect can under some circumstances be neglected, it is, if

the wave steepness and body motions are small, since this local contributions on forces are small

compared to the flow global effects. This condition is usually not completely satisfied near the

resonance frequency, since even small waves lead to big displacements. Besides that, in order to

guarantee accurate results, the ratio wave amplitude per body draft should be reasonable, since

the problem is solved considering the wetted mean surface (wetted surface at rest), not taking

into account the instantaneous wetted surface.

KC “
V T

L
“

Aω
2π

ω
L

“
2πA

L
(2.45)

Bη

Bt
“

Bϕ

Bz
in z “ 0 (2.46)

η “ ´
1
g

Bϕ

Bt
in z “ 0 (2.47)

The linear free-surface equations can be combined into a single condition (2.48), which is
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known as the Cauchy-Poisson condition.

B2ϕ

Bt2
` g

Bϕ

Bz
“ 0 in z “ 0 (2.48)

The motions equation are also solved, so the pressure at the body (2.49) and (2.50) needs

to be linearized. The pressure evaluation is transferred from the instantaneous wetted surface

to the mean wetted surface using again Taylor expansion.

p “
8ÿ

i“0

ppiqεi (2.49)

p “ ´ρ
B
Bt

´ 8ÿ

i“1

ϕpiqεi
ˉ

´
1
2
ρ∇

´ 8ÿ

i“1

ϕpiqεi
ˉ

¨ ∇
´ 8ÿ

i“1

ϕpiqεi
ˉ

´ ρgz, atSfbptq (2.50)

p “ ´ρ
8ÿ

i“1

εi
´Bϕpiq

Bt
`

1
2

iÿ

j“0

∇ϕpi´jq ¨ ∇ϕpjq
ˉ

` ρgz, at Sfbptq (2.51)

The linearized flow pressure is given by (2.52), with the hydrostatic term neglected because

the forces are evaluated at the mean wetted surface, which is the body position at rest, assuming

buoyancy equilibrium (which is a zero order quantity), it is balanced by the body weight. The

body weight and buoyancy equilibrium can be changed in motion equations by considering

constant hydrostatic restoration terms involving, in first order, the mean water plane area and

static moments.

p
p1q
D “ ´ρ

Bϕp1q

Bt
, at Sfbp0q “ S̄fb (2.52)

The body motion equations are presented on (2.53), (2.54) and (2.55) for the bidimensional

case, the case of interest in this work, where LWL is the area of water plane (actually it is a

length in the bidimensional case), m is the body mass, I0 is the moment of inertia concerning

the center of flotation (actually a moment of inertia per length) with the normal vector assumed

as pointing inward the body. The normal vector mean value (time independent) is denoted by

the index 0 in order to better comprehend the order of the forces evaluated.

m:zp1q
G ` ρgLWLz

p1q
G “

ż

S̄fb

p
p1q
D np0q

z dl (2.53)
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m:xp1q
G “

ż

S̄fb

p
p1q
D np0q

x dl (2.54)

I0
:θp1q ` ρg∇GMθp1q “

ż

S̄fb

p
p1q
D rnp0q

zQpxp0q
Q ´ x

p0q
G q ´ n

p0q
xQz

p0q
Q sdl (2.55)

For the evaluation of the Neumann conditions at the floating bodies boundary, the velocities

can be described in terms of the center of gravity, as shown in (2.56).

Bϕp1q

Bnp0q

ˇ
ˇ
ˇ
Q

“ ~V
p1q
Q ptq ¨ ~np0q

Q “ n
p0q
zQr 9zp1q

G ptq ` 9θp1qptq.pxp0q
Q ´ x

p0q
G qs ` n

p0q
xQr 9xp1q

G ptq ´ 9θp1qptq.pzp0q
Q ´ z

p0q
G qs

(2.56)

The equations and conditions presented so far are enough to guarantee an unique solution

to the boundary value problem. The initial conditions for the initial value problem closure are

discussed ahead, in section 2.4. From now on the development will be performed only for the

interest case, which is the bidimensional one.

The theory developed above can be applied for numerical wave tanks, but for oceanic con-

ditions, an incident wave potential must be included. Supposing the incident wave potential

given by (2.57) the boundary conditions at Sfixed, S̄pm and S̄fb change to (2.59) imposing the

impermeability under the assumption of the superposition effects, as shown on (2.58). Here ϕ

will denote the perturbation caused by the body on the undisturbed flow field represented by

φI . The incident wave potential already respects the linearized free surface conditions.

φI “
Ag

ω
ekz cospkx ´ ωtq, |x| ă 8, z ď 0 (2.57)

Φ “ ϕ ` φI (2.58)

BΦp1q

Bnp0q

ˇ
ˇ
ˇ
Q

“ 0 ñ
Bϕp1q

Bnp0q

ˇ
ˇ
ˇ
Q

“ ~V
p1q
Q ptq ¨ ~np0q

Q ´
BφI

Bnp0q
(2.59)

Some differences between the time domain and frequency domain approaches should be

discussed before the mathematical problem development continues.
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2.3 A discussion between time domain and frequency domain

approaches

In frequency domain the separation of variables technique (2.60) and the superposition principle

are used (2.61), decomposing the total potential into a diffraction potential φD, 3 radiation

potentials φRi (2D case, one for each degree of freedom) and an incident wave potential φI .

Φpx, z, tq “ RetΦ̂px, zqeiωtu (2.60)

Φ “ φD `
3ÿ

i“1

φRi ` φI (2.61)

The boundary condition at the floating body is given by (2.62) that may be decomposed

into the conditions (2.63) and (2.64), which combined to Laplace’s equation, the other boundary

conditions and an appropriate radiation condition at infinity lead to the so called diffraction and

radiation problems, which may be solved individually. The radiation condition appears from the

separation of variables, that leads to a non-unique solution, requesting an additional condition

defining the correct direction of energy propagation for diffracted and radiated waves.

BΦ
Bn

“ ~VQ¨~nQ ñ
BφD

Bn

ˇ
ˇ
ˇ
Q

`
BφI

Bn

ˇ
ˇ
ˇ
Q

`
3ÿ

i“1

BφRi

Bn

ˇ
ˇ
ˇ
Q

“ VxGnxQ`VzGnzQ` 9θrnzQpxQ´xGq´nxQpzQ´zGqs

(2.62)

BφD

Bn

ˇ
ˇ
ˇ
Q

“ ´
BφI

Bn

ˇ
ˇ
ˇ
Q

(2.63)

BφR1

Bn

ˇ
ˇ
ˇ
Q

“ VxGnxQ;
BφR2

Bn

ˇ
ˇ
ˇ
Q

“ VzGnzQ;
BφR3

Bn

ˇ
ˇ
ˇ
Q

“ 9θrnzQpxQ ´ xGq ´ nxQpzQ ´ zGqs; (2.64)

More importantly, one should observe that in frequency domain the original boundary value

problem is decomposed into several independent problems, the transient effects cannot be eval-

uated directly due to the previous assumption of harmonic variation in time (2.60) and in the

linear approach the body dynamics does not need to be solved coupled to the hydrodynamics, so

the body motions are only post-processed results. Despite being much faster in terms of calcu-

lation effort, since there is only 4 integral equations to be solved (one for the diffraction problem
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and three for the radiation problems), this approach turns difficult to add non-linearities to

the BVP or considering multi-bodies problems, when the relative position change significantly

during the timespan of the analysis.

On the other hand, time domain approach naturally deals with transient effects and must

solve the coupled fluid-body problem. It makes the inclusion of geometrical and hydrodynamic

non-linearities easier, but requires much more computational capability, since there will be two

BVP (one for the velocity potential and another for the acceleration one, the last presented

next) and five ordinary differential equations for IVP (two for the free surface equations and

three for body motions). An important aspect that should be remarked is that due to the

coupled body dynamics and hydrodynamics, the numerical scheme needs to be robust, in order

to avoid numerical instabilities. The main issue during the time evolution is the evaluation of

the time derivative of the velocity potential function, used for the body forces evaluation, since

it is difficult to provide an accurate and stable numerical scheme because the velocity potential

is evaluated explicitly. In order to overcome this inconvenient, the acceleration potential is

introduced into the numerical scheme, leading to a new BVP, that solved provides the time

derivative directly, as presented next.

2.3.1 Acceleration potential

The essence of the fluid-structure interaction for a free floating body is quite different from the

one when the motion is prescribed, because in the latter the position does not depend on the

hydrodynamic pressure, which is proportional to the time derivative of the potential function.

For a free floating body this dependence exists and any inaccurate evaluation may turn the

solution unstable and, after some time, the simulation diverges.

In the context of potential flow the velocity field is assumed irrotational, which allows the

determination of a potential function for the flow velocity, representing a conservative field,

being the velocity completely defined by the values of this function at the boundaries. The same

procedure may be proposed for the flow acceleration:

~a “ OΨ (2.65)

It is possible to establish an equation between the acceleration potential and the velocity

potential, as shown in (2.66). This equation is non-linear with a difficult convective term, but
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using Stokes expansion, it can be demonstrated that this term can be neglected in the first order

problem, since the zero order velocity potential is null, leading to (2.68).

~a “
B~v

Bt
` ∇~v ¨ ~v “

Bp∇ϕq
Bt

` ∇p∇ϕq ¨ ∇ϕ “ ∇p
Bϕ

Bt
`

1
2
∇ϕ ¨ ∇ϕq “ ∇Ψ (2.66)

Ψ “
Bϕ

Bt
`

1
2
∇ϕ ¨ ∇ϕ (2.67)

Ψp1q “
Bϕp1q

Bt
(2.68)

The linearized acceleration potential also satisfies Laplace’s equation (2.69) (one should

notice that the complete acceleration potential (2.67) does not satisfies Laplace’s equation due

to the non-linear term). The boundary conditions can be defined by derivation of the first order

velocity potential BVP boundary conditions, as can be seen in (2.70). The acceleration potential

conditions are given by (2.71) and (2.72) for fixed and prescribed motion boundaries, where the

subscripts are neglected in order to simplify the notation. It should be noted the time derivative

of the normal vector in (2.70) is zero because in the linear approach only the normal vector zero

order term (time independent) is considered.

∇2
´Bϕ

Bt

ˉ
“ 0, in Ω (2.69)

B
Bt

p
Bϕ

Bn
q “

B
Bt

p∇ϕq ¨ ~n ` ∇ϕ ¨
B~n

Bt
“

B~v

Bt
¨ ~n “ ~aptq ¨ ~n (2.70)

B
Bt

´Bϕ

Bn

ˉˇ
ˇ
ˇ
Q

“ ´
B
Bt

´BφI

Bn

ˉˇ
ˇ
ˇ
Q
, Q P Sfixed (2.71)

B
Bt

´Bϕ

Bn

ˉˇ
ˇ
ˇ
Q

“ ~aQptq ¨ ~nQ ´
B
Bt

´BφI

Bn

ˉˇ
ˇ
ˇ
Q
, Q P S̄pm (2.72)

At the floating body boundary, the acceleration can be described in terms of the center of

gravity acceleration (2.73). The stokes expansion for this condition leads to (2.74), neglecting

the centripetal acceleration term, since it is, at least, of order ε2.
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~aQ “
B~vQ

Bt
“ ~aG ` :~θ ^ pQ ´ Gq ` 9~θ ^ r 9~θ ^ pQ ´ Gqs (2.73)

B
Bt

´Bϕ

Bn

ˉˇ
ˇ
ˇ
Q

“ nzQr:zGptq ` :θptq.pxQ ´ xGqs ` nxQr:xGptq ´ :θptq.pzQ ´ zGqs ´
B
Bt

´BφI

Bn

ˉˇ
ˇ
ˇ
Q
, Q P S̄fb

(2.74)

The acceleration of the center of gravity can be described in terms of the equations of

motion (2.54), (2.53) and (2.55), which then result dependent of the acceleration potential as

shown in (2.75), with v as a dummy variable concerning the body wetted surface. By following

this procedure the body acceleration can be eliminated from the integral equation and the

acceleration potential remains as the only variable.

~aQ ¨ ~nQ “ ρnxQ

¿

v

p
Bϕv

Bt
q

"
nxv

m
´

pzQ ´ zGqrnzvpxv ´ xGq ´ nxvzvs
I0

*

dlv`

nxQ

„
ρg∇GM pzQ ´ zGq

I0
θ



´

ρnzQ

¿

v

p
Bϕv

Bt
q

"
nzv

m
´

pxQ ´ xGqrnzvpxv ´ xGq ´ nxvzvs
I0

*

dlv`

nzQ

„

´
ρgLWL

m
zG ´

ρg∇GM pxQ ´ xGq
I0

θ
ı

(2.75)

The first order boundary condition at the free surface is given by (2.76), where η is evaluated

through the dynamic free surface condition.

ηQ “ ´
1
g

BϕQ

Bt
ñ

BϕQ

Bt
“ ´gηQ, z “ 0 (2.76)

The BVP for the acceleration potential is then complete. The solution provides the time

derivative of the potential function, which may then be used for the body forces evaluation. Since

the problem is solved on time domain, initial conditions concerning the initial value problem

should be provided, as discussed next.

2.4 Initial conditions

The initial conditions concerning the floating body are basically the initial velocity and position

to be nulls, since the body is assumed at rest initially, the undisturbed free surface ηp~x, 0q “ 0
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and the velocities and acceleration as zero at the prescribed motion boundaries.

At the floating bodies, prescribed motion and fixed surfaces the variable to be evaluated in

the BVP is the potential function, because the Neumman conditions are known (for the fixed

and prescribed motion surfaces) or can be evaluated (for the floating bodies using the equations

of motion) at all time. However, for the free surface neither the potential nor the flux are known,

which means that both could be chosen as variable to be evaluated in the BVP. In this work

the choice was the imposition of a Dirichlet condition (the potential function) at the free surface

and the evaluation of the flux, in order to convert the free surface partial differential equations

into ordinary differential equations.

The free surface Dirichlet condition can be derived from the mass conservation condition on

the interior region translated into flux conservation by Gauss theorem (2.77).

ż

Ω
∇2ϕdΩ “

¿

BΩ

Bϕ

Bn
dBΩ “

ż

Sfixed

Bϕ

Bn
dS `

ż

Spm

Bϕ

Bn
dS `

ż

Sfb

Bϕ

Bn
dS `

ż

Sfs

Bϕ

Bn
dS “ 0 @t ě 0

(2.77)

The flux through the free surface is zero and replacing the linearized free surface condition

into the zero flux condition and since the surfaces are fixed in time, the condition (2.78) can be

derived.

ż

Sfs

ˆ
Bϕ

Bn

˙

t“0

dS “
ż

Sfs

ˆ
Bϕ

Bz

˙

t“0

dS “ ´
1
g

ż

Sfs

ˆ
B2ϕ

Bt2

˙

t“0

dS “ ´
1
g

B2

Bt2

ż

Sfs

ϕpx, z, 0qdS “ 0

(2.78)

The simplest function that satisfies this condition is the null function and it was assumed for

the whole free surface (ϕpx, z, 0q=0). The BVP and IVP are now complete. The next chapter

will discuss the numerical procedure adopted for solving the BVP.
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Chapter 3

Boundary Elements Method (BEM)

In this chapter a brief discussion on boundary elements method is done in order to discuss

the benefits from the potential flow hypothesis. The discussion about the adoption of Rankine

sources as the Green function for the numerical model is performed and after that, the velocity

and acceleration potential BVPs are translated into integral equations, which may then be solved

by the numerical scheme described in Chapter 4.

3.1 Green’s second identity

As it was discussed before, the assumption of potential flow allows the velocity field to be

completely described by the boundaries values of a potential function. Under this assumption

the solution of flow dynamics is based on BVPs governed by Laplace’s equation.

However, this equation must be satisfied in the entire fluid region, which is not convenient

in terms of a numerical solution because then the whole volume domain should be discretized

and the velocity field does not depend of the interior domain values directly. The basic idea of

a boundary elements method is to relate the interior values of the function with the boundary

values and this can be done by making use of Green’s second identity (3.1), so the interior values

can be related to the function values and flux at the boundaries.
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Figure 3.1: Representation of Ω, BΩ, BΩε and ε

¡

Ω

pGΔϕ ´ ϕΔGqdΩ “
ĳ

BΩ

pG
Bϕ

Bn
´ ϕ

BG

Bn
qdBΩ (3.1)

The region Ω is assumed to be singly connected and bounded by piecewise smooth surfaces

BΩ, as shown in Figure (3.1), with the normal vector pointing outward concerning an observer

inside the fluid domain. The potential function ϕ and the Green’s function G are assumed

harmonic and C2-continuous, which means that both satisfy Laplace’s equation (∇2ϕ “ ∇2G “

0) in Ω, but for a finite number of points where the functions may not be defined.

It is possible to isolate the points where the functions are not defined (being ~x the vector

pointing from the origin of the coordinate system to those points) by using a small sphere of

radius ε and surface BΩε centered at ~x, if those points are placed in the interior of Ω. If those

points are at the boundary BΩ, half a sphere is used, taking advantage of the smooth piecewise

boundary, meaning that half a sphere can always isolate those points. For a more generic surface

that is not smooth, such as a corner, a spherical cap defined by the solid angle, it is, the interior

space angle, should be taken.

Now that all precautions were taken and there are two surfaces bounding the points where

the function is not defined, Green’s identity can be applied to the region between those surfaces

if the point is inside Ω or at the region ΩzΩε if the point is at the boundaries, leading to (3.2).

The fact that the potential function and Green’s function are harmonic can be used to cancel

the left side of the equality, obtaining (3.3).

¡

Ω

pGΔϕ ´ ϕΔGqdΩ “
ĳ

BΩ`BΩε

pG
Bϕ

Bn
´ ϕ

BG

Bn
qdBΩ (3.2)
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ĳ

BΩ

pG
Bϕ

Bn
´ ϕ

BG

Bn
qdBΩ “ ´

ĳ

BΩε

pG
Bϕ

Bn
´ ϕ

BG

Bn
qdBΩ (3.3)

The next step is to evaluate the right side of (3.3). Since the radius can be as small as

desired and so may be the surface BΩε, one may take the limit ε Ñ 0 (3.4). Before proceeding,

however, the function G needs to be defined.

lim
εÑ0

ĳ

BΩε

pG
Bϕ

Bn
´ ϕ

BG

Bn
qdBΩ (3.4)

3.2 Rankine sources

The choice of the most appropriate Green’s function is particular to each boundary problem,

the convenience to the numerical method and approach adopted. In the context of seakeeping

problems there are some famous ones, such as the transient Green function, Kelvin sources and

Rankine sources, this last one being adopted in this work.

The transient Green function for deep water is given by (3.5), where r and r’ are given by (3.6)

and (3.7), K is the wave number, J0 is the Bessel function, Q is the point where the singularity is

placed and P the evaluation point. This singularity is usually adopted in the frequency domain

approach automatically satisfies the linear free surface and radiation conditions, which means

that the free surface does not need to be discretized. However, this Green’s function has the

inconvenient of involving a improper integral containing a Bessel function in the integrand, which

requires some computational effort to guarantee its numerical convergence. Furthermore, it only

satisfies the linearized free surface condition and so non-linearities cannot be included easily.

GpP,Qq “
1
r

`
1
r1 `

2K

π

ż 8

0
dk

ekpzP `zQq

k ´ K
J0pkRq (3.5)

r “
b

pxP ´ xQq2 ` pyP ´ yQq2 ` pzP ´ zQq2 (3.6)

r1 “
b

pxP ´ xQq2 ` pyP ´ yQq2 ` pzP ` zQq2 (3.7)

Despite the Rankine sources do not satisfy any boundary condition automatically (like the

free surface or a plane bottom) it is simple to evaluate and appropriate for future works con-
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cerning non-linear calculations, justifying it’s first use in this work. This Green’s function is

given by (3.8), where c0 is an arbitrary constant (the source strength).

GpP,Qq “
c0

rPQ
(3.8)

rPQ “
b

pxP ´ xQq2 ` pyP ´ yQq2 ` pzP ´ zQq2 (3.9)

This expression should be replaced into Green’s identity and, as discussed before, the pre-

cautions should be taken because Rankine source is singular at rPQ “ 0, leading to an indeter-

mination problem for interior or boundary points.

After choosing the Green function (3.8) the limiting process (3.4) can be continued, but for

convenience a spherical coordinate system will be used, where (θ : 0 ď θ ď 2π) is the azimuth

angle, (ψ : 0 ď ψ ď π) is the polar angle and r is the radial distance. The jacobian for a spherical

coordinate system is r2 sinpψq and assuming the function ϕQ as finite, the first part of the limit

can be evaluated as (3.10), which is independent of the angle ψ˚.

lim
εÑ0

ĳ

BΩε

G
Bϕ

Bn
dBΩ “ lim

εÑ0

ż ψ˚

0

ż 2π

0

”c0

r

BϕQ

BnQ
r2 sinpψq

ı

r“ε
dθdψ “

lim
εÑ0

ż ψ˚

0

ż 2π

0

”
c0r

BϕQ

BnQ
sinpψq

ı

r“ε
dθdψ “ lim

εÑ0
2πr´ cospψqsψ

˚

0 ε “ 0 (3.10)

For the evaluation of the second part of the limit, the gradient operator in spherical coor-

dinates is given by (3.11) and the term BG
Bn becomes (3.12), with the normal vector pointing

outward the fluid region.

The limiting process is taken in (3.13).

∇¨ “
´ B

Br
~er `

1
r

B
Bθ

~eθ `
1

r sinpθq
B

Bψ
~eψ

ˉ
¨ (3.11)

BG

Bn
“ ∇G ¨ ~n “

B
Br

p
c0

r
q~er ¨ p´~erq “

c0

r2
(3.12)

lim
εÑ0

ĳ

BΩε

ϕ
BG

Bn
dBΩ “ lim

εÑ0

ż ψ˚

0

ż 2π

0

”
ϕQ

c0

r2
r2 sinpψq

ı

r“ε
dθdψ “

lim
εÑ0

ż ψ˚

0

ż 2π

0
ϕQc0 sinpψqdθdψ “ 2πϕQc0r´ cospψqsψ

˚

0 (3.13)
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As discussed before, if the point is interior to Ω then ψ˚ “ π. Otherwise, if the point is at

the boundary BΩ and the surface is smooth, ψ˚ “ π{2.

This leads to the results in (3.14), where the integration region does not contain the point

P, since the residues were already evaluated and is shown in the right side of the expression.

(For the boundary values it was considered only smooth surfaces). The constant c0 is assumed

as unit since it is arbitrary anyway.

ĳ

BΩ´P

´
ϕQ

BGPQ

BnQ
´ GPQ

BϕQ

BnQ

ˉ
dBΩQ “

$
’’’’’’&

’’’’’’%

´4πϕP , if P is inside Ω

´2πϕP , if P is at BΩ

0, if P is outside Ω

(3.14)

For the bidimensional problem, focus of this work, the Rankine source should be replaced

by (3.15) and the integral equation to be solved is reduced to (3.17).

GpP,Qq “ c0lnprPQq (3.15)

rPQ “
b

pxP ´ xQq2 ` pzP ´ zQq2 (3.16)

ż

BΩ´P

„

ϕQ
BGPQ

BnQ
´ GPQ

BϕQ

BnQ



dBΩQ “

$
’’’’’’&

’’’’’’%

2πϕP , if P is inside Ω

πϕP , if P is at BΩ

0, if P is outside Ω

(3.17)

The Rankine sources are also one of the fundamental solutions of Laplace’s equation in polar

coordinates. For instance, consider Laplace’s equation in polar coordinates (3.18). If it is

assumed that ϕ “ ϕprq, the equation is easily simplified into the ordinary differential equation

(3.19) with the basic solution given generically by (3.20); more details can be seen on Ang [2007].

1
r

B
Br

´
r

Bϕ

Br

ˉ
`

1
r2

B2ϕ

Bθ2
“ 0 (3.18)

d

dr

´
r
dϕ

dr

ˉ
“ 0 (3.19)
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ϕ “ C1 lnprq ` C2, r ‰ 0 (3.20)

3.3 Fredholm integral equation

The equation (3.17) is part of a group of equations known as integral equations, characterized

by the integrand function (or part of it) as the variable of the problem, in this case, the potential

function ϕp~x, tq. Equation (3.17), either choosing points at the boundaries or inside the domain

for evaluation is a Fredholm inhomogeneous equation of the second kind (generally represented

by (3.21)) because the limits of the integral operator are fixed (Fredholm), the function ϕp~x, tq

appears inside and outside the integral (second kind) and there is another function fp~xq outside

the integral sign (inhomogeneous). The function Kp~x,~sq is known as the kernel function and

due to the nature of the Green’s function adopted (Rankine sources) the kernels obtained are

symmetric, it is, satisfies (3.23).

ϕp~x, tq “ fp~x, tq `
ż

S
Kp~x,~sqϕp~s, tqd~s (3.21)

fp~x, tq “
ż

S
Kp~x,~sqϕp~s, tqd~s (3.22)

Kp~x,~sq “ Kp~s, ~xq (3.23)

This classification is important because if the points chosen to evaluate the equation are

outside the domain Ω, the equation to be solved would be a first kind Fredholm equation.

However, even if the points are chosen inside the domain or at the boundaries, we can still have

a first kind equation because at the free surface both the potential and the flux are unknown

and if the choice is by the flux as a variable, a first kind equation is obtained.

In this work, the points will be chosen only at the boundaries because it is convenient for

the numerical method that will be applied, as will become clear in Chapter 4. The potential as

variable to be found for all boundaries but for the free surface, where the variable will be chosen

the flux. This will lead to a mixed second and first kind equation.

It is possible to demonstrate that the set of linear algebraic equations (3.24) when n Ñ 8,

with δxj “
a

pxj ´ xj`1q2 ` pzj ´ zj`1q2, applied for points in the equation domain (BΩ) is
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exactly the solution of the integral equation. This is an important fact, because it allows

changing the integral equation by a set of linear algebraic equations with infinite degrees of

freedom, which is reduced by finite approximation adopting the collocation method. This is the

procedure adopted in this work.

The collocation method approximates the equation domain by splitting the boundary BΩ in

small line segments (elements) and the term Kp~xi, ~xjqϕp~xj , tq has a different value inside each

one. The function ϕp~x, tq (unknown a priori and the one that we are looking for an approxi-

mation) and the domain surface are expanded in Taylor series and the order of approximation

defines the accuracy of the method for a given number of elements.

ϕp~xi, tq “ fp~xi, tq `
nÿ

j“0

Kp~xi, ~xjqϕp~xj , tqδxj , i “ 1, 2, ..., n (3.24)

This simple description of integral equations are sufficient for the purpose of this work, but

more details can found on Tricomi [1985], Moiseiwitsch [2005] and Rahman [2007].

Looking carefully into the boundary value problem and considering the flux at all boundaries

as known, the boundary problem is reduced to the classic Neumman problem, which has an

unique solution, but for a constant, if the total flux is zero. This constant is unknown and

cannot be defined easily.

3.3.1 Numerical solution procedure

In this work the collocation method was adopted because other methods, such as Neummann

approximations, which is iterative, would be very costly because for each order of approximation

the integral equation needs to be evaluated at all points of the grid.

The integral equation to be solved is (3.25), which can be replaced by (3.26), suppressing

the potential time dependence in order to simplify the notation, with P as an arbitrary point at

the boundary and Pj the segments of the closed curve that composes the boundary.

´πϕp~xP , tq `
¿

Q‰P

ϕp~xQ, tq
BlnprPQq

BnQ
dBΩQ ´

¿

Q‰P

Bϕp~xQ, tq
BnQ

lnprPQqdBΩQ “ 0, P P BΩ (3.25)

lim
NÑ8

´πϕP `
Nÿ

j“0

´ ż

Pj

Q‰P
ifP PPj

ϕQ
BlnprPQq

BnQ
dlj ´

ż

Pj

Q‰P
ifP PPj

BϕQ

BnQ
lnprPQqdlj

ˉ
“ 0, P P BΩ,

Nÿ

j“0

Pj “ BΩ

(3.26)

52



Let’s consider the existence of a parametrization (3.27) that takes the points of a line segment

to the domain boundaries, which is a closed curve and cannot intersect itself. It allows the

definition of an inverse transformation since γps1q “ γps2q only if s1 “ a and s2 “ b.

γpsq “ tpxpsq, zpsqq|@ a ď t ď b, BΩ ” γu (3.27)

In equation (3.26), the domain geometry and the logarithmic function are known but the

potential function ϕ is not. However, the potential function can be expressed locally by a

spatial Taylor series (3.28), where ϕpx, z, tq “ ϕpxpsq, zpsq, tq “ ϕps, tq and, in order to simplify

the notation, will be referred only as ϕpsq.

ϕpsq “
8ÿ

j“0

ϕpjqps0q
ps ´ s0qj

j!
(3.28)

ϕ is replaced by the Taylor series in the second term of (3.26), assuming a convenient point

s0 inside each segment of the curve (this can be, for example, the center point of the element).

The expression (3.29) is then derived, where the s0j correspondent point is inside each segment

of the curve bounded by the points pxps1jq, zps1jqq and pxps2jq, zps2jqq, j “ 0, 1, 2, ..., N.

Nÿ

j“0

ż

Pj

Q‰P
ifP PPj

ϕQ
BlnprPQq

BnQ
dlj “

8ÿ

j“0

8ÿ

k“0

ϕpkqps0jq
ż s2j

s1j

ps ´ s0jqk

k!
Blnprpsqq

Bnpsq

›
›
›γ

1
psq

›
›
› ds (3.29)

As discussed before, the imposition of a Dirichlet condition in some parts of the boundaries

requires the flux at those parts to become variables of the problem. The flux can also be

expanded locally by a Taylor series, as shown in (3.30) and replaced in the third term of (3.26),

thus obtaining (3.31).
Bϕ

Bn
psq “

8ÿ

j“0

dj

dsj

´Bϕ

Bn

ˉ

s0

ps ´ s0qj

j!
(3.30)

Nÿ

j“0

ż

Pj

Q‰P
ifP PPj

BϕQ

BnQ
lnprPQqdlj “

8ÿ

j“0

8ÿ

k“0

dk

dsk

´Bϕ

Bn

ˉ

s0

ż s2j

s1j

ps ´ s0jqk

k!
lnprpsqq

›
›
›γ

1
psq

›
›
› ds (3.31)

These expressions allow the representation of the functions ϕ and Bϕ
Bn by an arbitrary order of

approximation by retaining the corresponding terms in the series. Although the geometry (the

domain) is known, it is not easy to find a parametrization for a generic curve in space, which
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means that it is convenient to express this curve by a Taylor series, as shown in (3.32).

γpsq “

$
’’&

’’%

xpsq “ xps0q `
ř8

j“0 xpjqps0q
ps ´ s0qj

j!

zpsq “ zps0q `
ř8

j“0 zpjqps0q
ps ´ s0qj

j!

(3.32)

The last approximation to be done regards the normal vector, that should satisfy the condition

(3.33) for any order of approximation and is almost completely defined by the unity norm

condition (3.34), remaining only the external normal vector definition.

~nps0q ¨ γ
1
ps0q “ 0 ñ rx˚ ´ xps0qsx1ps0q ` rz˚ ´ zps0qsz1ps0q “ 0 (3.33)

a
rx˚ ´ xps0qs2 ` rz˚ ´ zps0qs2 “ 1, ~nps0q “ px˚ ´ xps0q, z˚ ´ zps0qq (3.34)

The Taylor series approximation for the potential function and the flux through the bound-

aries transform the problem variables from continuum functions to the corresponding Taylor

series coefficients, which can then be evaluated by applying a collocation method. If one adopts

a representation concerning only the first term of the potential function and line segments for the

geometry, the method obtained is called as low order method. Otherwise, if the representation

of the potential function and geometry is done by choosing more terms on their Taylor series,

the method is generically referred as higher order.

The low order method leads to equation (3.35), which is discretized by a finite number

of panels and when evaluated at all panels compose a fully determined linear system. Its

solution provides the potential at the panels without any guarantee of continuity, recovering

the continuum distribution when the number of panels increases to infinity.

The point where the potential and the flux will be evaluated inside each panel is arbitrary, but

is common to adopt the midpoint. For the geometry, although the Taylor series could be written

using an arbitrary point inside each panel, it is convenient to choose a point that guarantees

the ”connection” between the nodes of neighbor panels in order to avoid discontinuities in the

geometry representation. The mean value theorem (3.36) guarantees the existence of such point.

´πϕi `
Nÿ

j“0

ϕj

ż

Pj

Blnprijq
Bnj

dlj ´
Nÿ

j“0

Bϕj

Bnj

ż

Pj

lnprijqdlj “ 0, i “ 1, 2, ..., N (3.35)

x1ps˚q “
xps2q ´ xps1q

s2 ´ s1
, z1ps˚q “

zps2q ´ zps1q
s2 ´ s1

, s1 ď s ď s2 (3.36)
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The development above was done assuming the same parametrization for the geometry and

potential function, but one could make use of different ones. It should be noticed that other

expressions (not Taylor) could be created to represent both the potential function and the

geometry, such as B-splines, NURBS1 etc, leading to more complex expressions and involving

new orders of approximation. All the approximation procedure was done concerning the velocity

potential BVP. However, the procedure for the acceleration potential is analogous, providing

(3.37).

´π
Bϕi

Bt
`

Nÿ

j“0

Bϕj

Bt

ż

Pj

Blnprijq
Bnj

dlj ´
Nÿ

j“0

B
Bt

´Bϕj

Bnj

ˉ ż

Pj

lnprijqdlj “ 0, i “ 1, 2, ..., N (3.37)

The next step is to define the numerical scheme to be adopted for solving the integral

equations for the boundary value problems together with the boundary conditions and the

initial value problem. This will be done in the next chapter.

1Non Uniform Rational Basis Spline
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Chapter 4

Numerical scheme

The numerical scheme implemented for solving the fluid-structure interaction is presented in this

chapter. Some particularities adopted during the implementation, such as the ramp function

and the numerical beach are also discussed. The first one to avoid an impulse response of the

system, which could compromise the numerical stability, and the second one was used to avoid

wave reflections at the domain’ edges. The numerical integration method and the time marching

scheme are also discussed. A simple method for the evaluation of the volume and water plan

area of an arbitrary body using only the panels, required for free floating simulations, is shown

in the Appendix A.

4.1 Linear system

4.1.1 Velocity potential

The linear system for the potential velocity BVP is shown in (4.1), where the terms Aij and

Bij are given by (4.2) and (4.3), respectively. In the right hand side Ct
i is evaluated imposing

the Neumman conditions at the body and other fixed and prescribed domain boundaries and

the Dirichlet conditions at the free surface, as seen in (4.4), with NB as the sum of the fixed,
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prescribed motion and floating body panels and N as the total panels.

»

—
—
—
—
—
—
—
—
—
—
—
—
—
—
–

´π ` A11 A12 A13 ... B1N´1 B1N

A21 ´π ` A22 A23 ... B2N´1 B2N

...

AN´11 AN´12 AN´13 ... BN´1N´1 BN´1N

AN1 AN2 AN3 ... BNN´1 BNN

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

»

—
—
—
—
—
—
—
—
—
—
—
–

ϕt
1

ϕt
2

...
´Bϕ

Bz

ˉt

N´1´Bϕ

Bz

ˉt

N

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

“

»

—
—
—
—
—
—
—
—
—
—
–

Ct
1

Ct
2

...

Ct
N´1

Ct
N

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

(4.1)

Aij “
ż

Pj

Blnprijq
Bnj

dlj (4.2)

Bij “
ż

Pj

lnprijqdlj (4.3)

Ct
i “

$
’’’’’&

’’’’’%

NBÿ

j“1

´
~V ¨ ~n ´

BφI

Bn

ˉt

j
Bij ´

Nÿ

j“NB`1

ϕt
jAij , i “ 1, 2, ...NB

NBÿ

j“1

´
~V ¨ ~n ´

BφI

Bn

ˉt

j
Bij ´

Nÿ

j“NB`1

ϕt
jp´π ` Aijq, i “ NB ` 1, ..., N

(4.4)

The integral terms Aij and Bij are only geometry dependent since the linear approach was

adopted, and they are constant along the whole simulation, being only evaluated once. The

linear system for the velocity potential BVP can be summarized in (4.5), (4.6) and (4.7) and

only the last term in (4.5) needs to be updated for each time step.

SNXN

»

—
–

pϕtqNBX1
´Bϕ

Bz

ˉt

pNFSX1q

fi

ffi
fl “ RNXN

»

—
–

´
~V ¨ ~n ´

BφI

Bn

ˉt

NBX1

pϕqt
pNFSX1q

fi

ffi
fl (4.5)

SNXN “
´

´ π

»

—
–

IpNBXNBq 0pNBXNFSq

0pNFSXNBq 0pNFSXNFSq

fi

ffi
fl ` rApNXNBq, ´BpNXNFSqs

ˉ
(4.6)

RNXN “
´
π

»

—
–

0pNBXNBq 0pNBXNFSq

0pNFSXNBq IpNFSXNFSq

fi

ffi
fl ` rBpNXNBq, ´ApNXNFSqs

ˉ
(4.7)
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4.1.2 Acceleration potential

The linear system for the acceleration potential BVP is similar to the one for the velocity

potential one. However, there are some differences because of the floating bodies condition,

since the acceleration term is eliminated by replacing the motion equation into the corresponding

boundary condition. The linear system (4.8) is obtained with the floating body terms given by

(4.9) and right side given by (4.10).

»

—
—
—
—
—
—
—
—
—
—
—
—
—
—
–

´π ` A11 A12 D1,NB´NFB`1 ... B1N´1 B1N

A21 ´π ` A22 D2,NB´NFB`1 ... B2N´1 B2N

...

AN´11 AN´12 DN´1,NB´NFB`1 ... BN´1N´1 BN´1N

AN1 AN2 DN,NB´NFB`1 ... BNN´1 BNN

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

»

—
—
—
—
—
—
—
—
—
—
—
–

ϕt
t1

ϕt
t2

...
B
Bt

´Bϕ

Bz

ˉt

N´1
B
Bt

´Bϕ

Bz

ˉt

N

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

“

»

—
—
—
—
—
—
—
—
—
—
–

Ct
1

Ct
2

...

Ct
N´1

Ct
N

fi

ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
ffi
fl

(4.8)

Di,j “ Aij`ρljpM´1rnxj , nzjsrnxj , nzjsT `I´1
0 r´nxjpzj´zGq, nzjpxj´xGqsr´nxjzj , nzjpxj´xGqsT q

(4.9)
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Ct
i “

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

NB´NFBÿ

j“1

´
~a ¨ ~n ´

B
Bt

BφI

Bn

ˉt

j
Bij ´

NBÿ

j“NB´NFB`1

´ B
Bt

BφI

Bn

ˉt

j
Bij ´

Nÿ

j“NB`1

ϕt
jAij

´zt
G

NBÿ

j“NB´NFB`1

M´1nzjρgLWLBij

´θt
NBÿ

j“NB´NFB`1

I´1
0 ρg∇GM r´nxjpzj ´ zGq, nzjpxj ´ xGqsr´nxjzj , nzjpxj ´ xGqsT Bij ,

i “ 1, 2, ...NB

NB´NFBÿ

j“1

´
~a ¨ ~n ´

B
Bt

BφI

Bn

ˉt

j
Bij ´

NBÿ

j“NB´NFB`1

´ B
Bt

BφI

Bn

ˉt

j
Bij ´

Nÿ

j“NB`1

ϕt
jp´π ` Aijq

´zt
G

NBÿ

j“NB´NFB`1

M´1nzjρgLWLBij

´θt
NBÿ

j“NB´NFB`1

I´1
0 ρg∇GM r´nxjpzj ´ zGq, nzjpxj ´ xGqsr´nxjzj , nzjpxj ´ xGqsT Bij ,

i “ NB ` 1, ..., N

(4.10)

4.2 Numerical integration

4.2.1 Spatial integration

There are two different integrals in the equations that need to be evaluated, concerning the

Rankine source and the dot product of the source gradient by the normal vector. A numerical

integration process is adopted using Gauss-Legendre quadrature with 4 points. The convergence

was verified by evaluating the integrals with Gaussian points ranging from 4 to 8 and the results

compared with the software Mathematica R©, and no significant was observed. Therefore 4 points

was assumed sufficient and this value was adopted for all the integration processes.

The spatial integrals that need to be performed are line integrals and so a parametrization

must be found. The linear parametrization (4.11) was performed with the Jacobian equals to

half the panel length and integral is changed by a weighted sum of the integrand values (4.12).

γpsq “

$
’’&

’’%

xpsq “ x1 `
px2 ´ x1qps ` 1q

2

zpsq “ z1 `
pz2 ´ z1qps ` 1q

2

´ 1 ď s ď 1 (4.11)
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Figure 4.1: Isoparametric domain

ż
fpx, zqdl “

ż 1

´1
fpγpsqq }Jpsq} ds «

Nÿ

i“0

wifpsiq (4.12)

Actually, in a low order method the integrals could be performed analytically using a similar

procedure to the one presented by Hess and Smith [1964] for tridimensional cases, requiring

the coordinate system to be changed during the integrations to a local coordinate system at

the panel side, as shown in Figure (4.2). However, since one of the goals of this work is the

development of numerical procedures aiming at future improvements and one of them is the

consideration of higher order methods, the integrals were performed numerically.

Figure 4.2: Changing coordinate system during integration
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4.2.2 Time integration

The equations that guarantee the time marching solution are the free surface and body motion

equations. The motion equations are already ODEs and the free surface equations were trans-

formed from a system of PDEs into a system of ODEs because the flux through the free surface

can be evaluated at all times through the acceleration potential BVP. The 4th order Runge-Kutta

(RK-4) method was adopted, as suggested by Yang [2004], Koo [2003] and Tanizawa [2000], be-

cause it provides a large stability region and good accuracy. Although the predicted values are

good, the computational cost is higher if compared to predictor/corrector schemes, since inside

each time step the equations need to be evaluated 3 times, while the predictor/corrector schemes

evaluate then only once per time step.

4.3 Additional Schemes

4.3.1 Ramp function

As discussed before, to avoid the system impulsive response a ramp function was adopted at the

prescribed motion boundaries and for the incident wave potential. The ramp function adopted

for the prescribed motion boundaries can be seen in (4.13), where Ux is the amplitude of the

velocity and Tr is the ramp time (usually adopted as multiple of the motion period). The

function adopted for the incident wave potential is basically the same, only the wave amplitude

modified.

~V ptq ¨ ~n “

$
’’&

’’%

1
2
Uxr1 ´ cosp

πt

Tr
qs, if t ď Tr

Ux, if t ą Tr

(4.13)

4.3.2 Numerical beach

In the offshore seakeeping context, the incident waves and the waves irradiated from the body

usually cannot reflect and come back to the body. In the ocean, this occurs because the bound-

aries that could reflect part of the wave energy are usually far way and the energy is dissipated by

non conservative forces or wave breaking before the reflected waves could come back to the body
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considered in the analysis. In towing tanks there is usually a physical beach or active absorbers

that avoid (at least partially) that the reflected waves come back to the model. The beach basic

function is to dissipate the energy transported by the waves, but in the numerical simulation it

is impossible to reproduce its physical behavior because all mathematical formulation is based

on conservative fields and therefore no dissipation is expected.

There are two ways to overcome this inconvenient, both based on modelling some new

equations or conditions: to transmit the energy through the domain boundaries or to artificially

damp the waves. The most common condition that transmits the wave energy outside the

domain is the so-called Sommerfeld boundary condition, which will be discussed latter in this

text, associated to the wave-maker problem, presented ahead. However, the basic problem of

these conditions is that, although they are usually very efficient for normal incidences of linear

waves, the same is not true for oblique incidences or non-linear waves. Besides, these conditions

are usually imposed for a single well defined frequency, having a narrow range of frequencies

for which the condition will be efficient. Since for a fully developed ocean the frequencies have

a large variation, the choice was done for a damping region, because, despite the beach factor

being frequency dependent, it’s efficiency is not restricted to a narrow range of frequencies.

The damping condition is also known as ”sponge boundary condition” and was first pro-

posed by Israeli and Orszag [1981]. It has been largely adopted on numerical simulations and

satisfactory performances have been reported. Since there are some variations, the formulation

here presented was taken from Zhen et al. [2010]. The condition is applied on both kinematic

and dynamic free surface conditions, modifying them to (4.14) and (4.15), respectively, with

dbeach being the distance between the generation region and the beginning of the damping zone

and νpxq being the damping function, define by (4.16) with a parabolic profile. The coefficients

a and b define the intensity and length of the beach, respectively.

Bη

Bt
“

Bϕ

Bz
´ νpxqη, for z “ 0 in |x| ą dbeach (4.14)

Bϕ

Bt
“ ´gη ´ νpxqϕ, for z “ 0 in |x| ą dbeach (4.15)

νpxq “ aω
´x ´ dbeach

bλ

ˉ2
(4.16)
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The choice of a and b values should be done carefully because low values for the a coefficient

lead to an incomplete damping, while high values lead to numerical reflection in the beginning

of the damping zone. The coefficient b defines the length of the beach and so the higher this

value the smoother is the damping process for the same value of a coefficients. However, large

damping zones have an impact on the computational performance because the domain must

increase in order to avoid the damping zone influence at the region near the floating body. More

details on this matter can be found in Engquist and Majda [1977], Kumar and Narayan [2008],

Cao et al. [1993], Kim [2003] and Clement [1996].

Figure 4.3: Wave-maker in a wave tank with 50 meters length and 5 meters depth

The behavior of this sponge layer can be understood in a simplified analysis by derivating

expression (4.15) with respect to time and combining it with expression (4.14), obtaining (4.17).

B2ϕ

Bt2
`g

Bη

Bt
`νpxq

Bϕ

Bt
“ 0 ñ

B2ϕ

Bt2
`g

Bϕ

Bz
´gνpxqη`νpxq

Bϕ

Bt
“ 0, for z “ 0 in |x| ą dbeach (4.17)

Eliminating the free surface elevation η from this equation using expression (4.15) leads to

(4.18). Assuming ϕ as periodic in time (ϕ “ φpx, zqeiωt) and replacing in the previous equation

leads to (4.19), which can be used to evaluate the wave number in the damping zone considering

deep water condition in order to simplify the analysis
´
kφ “

Bφ

Bz

ˉ
.
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B2ϕ

Bt2
` g

Bϕ

Bz
` 2νpxq

Bϕ

Bt
` νpxq2ϕ “ 0 (4.18)

r´ω2 ` 2νpxqiω ` νpxq2sφ “ ´g
Bφ

Bz
(4.19)

The wave number in the damping zone is then given by (4.20), which reveals an imaginary

part in the frequency of oscillation, which will become a damping term of the potential function

(4.21) in time. So, it can be seen that inside the damping zone the potential function will

asymptotically go to zero, as the free surface elevation, since it should also be periodic (η 9

eiωt).

k “
ω2

g
´

νpxq2

g
´

2νpxqiω
g

ñ pω ´ νpxqiq2 “ kg ñ ω “ ˘
a

kg ` νpxqi (4.20)

ϕ “ φpx, zqeiωt “ φpx, zqe˘i
?

kgte´νpxqt (4.21)

Some brief tests were performed using the wave-maker shown in figure (4.3) and the conclu-

sion was that at least one wave length should be used for the damping zone. In order to illustrate

the results, a comparison of the free surface elevation η was done by changing the beach intensity

coefficient a while keeping b fixed at a point located 6 meters far from the wave-maker. The

time series of η can be seen in figure (4.4) for a wave period of 2 seconds.

As discussed before, without the damping zone (green line) there is a full reflection and the

free surface elevation has the maximum value more than twice the generated wave amplitude.

For the blue and red lines the wave is damped and it was important to verify that for an a

coefficient equal to 2 (red line) the reflection was more intense and started at the beginning of

the damping zone, due to a non-smooth damping process.

It was verified during the simulations performed that these coefficients should be adjusted

for each case in order to balance the tradeoff between computational demand and satisfactory

damping levels, specially because the ”optimum”(here understood as the one that produces

minimum wave reflection) coefficients value change with the wave frequency.
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Figure 4.4: Comparison of free surface elevation for some beach coefficients for a point located
6 meters far from the wave-maker

In order to illustrate the effectiveness of the numerical beach with the wave frequency, the

reflection coefficient was calculated changing the values of the coefficients a and b. The sim-

ulation setup is given in Table (4.1). The reflection coefficient was evaluated by tanking the

wave amplitude average (H1) of a point placed at the position x=10m before the reflected waves

could come back to the numerical wave probe, neglecting the first crests (ramp effect), and then

compared to the wave amplitude after reflection (H2), using expression (4.22).

Cr “
H2 ´ H1

H1
(4.22)

The reflection coefficients for several values of coefficients a and b are given in Figures (4.5)

and (4.6). The results show that the higher the value of the beach length coefficient b, the lower

is the reflection coefficient for an arbitrary frequency, but this conclusion cannot be extended

to the intensity coefficient a, since there is an apparently strong non-linear dependence of the

frequency.
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Table 4.1: Simulation setup for reflection coefficient study
Description Value Unit

Length 50 m
Depth 5 m

Wave period 2 s
Velocity amplitude wave-maker 0.05 m/s

Time-step 0.05 s
Simulation time 200 s

Panel size 0.2 m

(a) beach length coefficient b=1

(b) beach length coefficient b=1.5

Figure 4.5: Reflection coefficient results 1
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(a) beach length coefficient b=2.5

(b) beach length coefficient b=3

Figure 4.6: Reflection coefficient results 2

A longer study could be performed in order to investigate a procedure that could guarantee

the beach effectiveness. However, since the numerical beach had a good performance during all

simulations, this study was not deeply assessed.
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Chapter 5

Numerical results

In this chapter the numerical results obtained using the theory developed in Chapter 2 and 3,

combined with the numerical scheme presented in Chapter 4 are shown. The results were widely

compared to analytical results, when available, or the results obtained with accepted numerical

codes. Most of the compared results are obtained in frequency domain and a discussion concern-

ing the methodology adopted for the comparison is performed before each result is presented.

The first tests were performed for the wave-maker problem, which the analytical solution was

obtained assuming an eigenvector expansion procedure, as proposed by Dean and Dalrymple

[2000].

The next tests were for the added mass and wave damping coefficients evaluation of simple 2D

sections (circular and rectangular), reproducing Vugts [1968] experimental results and compari-

son considering Pesce [1988] and van Daalen [1993] numerical results. For the rectangular section

an analytical solution was also available, first presented by Black et al. [1971] and re-presented

by Zheng et al. [2004].

On these first simulations, the acceleration potential was not essential to guarantee the numer-

ical stability, since the body position is force independent, which is not true for a free floating

body. In order to evaluate the stability of free floating bodies simulation, the decay tests of

simple cylinders were performed and the results compared with the numerical ones presented

by van Daalen [1993].

However, none of the simulations until performed considered the analytic incident wave potential

and, in order to evaluate this important consideration, the response amplitude operator (RAO)

of a simple rectangular section was evaluated. The results were compared to the numerical ones

presented by Tanizawa et al. [1999] and the analytical one combining the radiation and diffrac-
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tion potentials as briefly discussed in section 2.3, evaluated following the methodology presented

by Zheng et al. [2004].

5.1 Wave-maker problem

In order to validate the numerical method the first problem studied was the one of a wave-

maker, which is a classical hydrodynamic problem with a useful result since it can be used on

the analysis of ocean basins. The problem is sketched in Figure 5.1, and consists in solving

Laplace’s equation with the linearized free surface condition, the impermeability of the wave

generator and bottom using a radiation condition on the x axis for x Ñ 8, since the solution

is obtained in frequency domain. The radiation condition is the one that defines the correct

direction of energy propagation in frequency domain, because the solution is evaluated using

separation of variables, leading to a non-unique solution if this condition is not enforced. The

physically consistent one is preserved by this condition, defining that the energy goes from the

wave-maker to the infinity and not the opposite.

Figure 5.1: Wave-maker boundary value problem (Source:Lin [1984])

The radiation condition usually adopted is the Sommerfeld radiation condition, generically

stated in (5.1), where n is the dimension of the space (3 for 3D problems and 2 for 2D problems)

and k is the wave-number and i the imaginary unit. Further details can be found in Sommerfeld

[1949].

lim
|x|Ñ8

|x|
n´1

2 p
B

B|x|
´ ikqϕp~x, tq “ 0 (5.1)

For the bidimensional problem this condition can be simplified into (5.2), where the x coordinate

increases to infinity and the only way to get a feasible solution is imposing that the parenthesis

term is zero or goes to zero faster than the x coordinate increases and for a generic case it is
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simpler to impose directly the parenthesis term as zero.

lim
xÑ8

?
xp

Bϕ

Bx
´ ikϕq “ 0 ñ

Bϕ

Bx
´ ikϕ “ 0 (5.2)

The linear solution to this problem was first shown by Havelock [1963] using Fourier integral

theorem, for the wave-maker with velocities profile given by the right side of (5.3), where Upyq

can be an arbitrary function of y and the wave-maker is considered as vertical and plane, changing

the flux condition by the x derivative of the potential function, since the external normal vector

is ´x̂.
Bϕ

Bn
“

Bϕ

Bx
“ ´Upyq sinpωtq, at x “ 0 (5.3)

However, there are methods to compose the solution (not the Fourier Integral Theorem

adopted by Havelock), such as the eigenvector decomposition, which is shown on Dean and

Dalrymple [2000] and is adopted here, consisting in composing the full solution by the simple

sum of basic harmonic functions, as can be seen in (5.4). The wave-maker kinematic boundary

condition is applied in order to get the correct potential function that provides the correct Upyq

velocity profile at the wave-maker.

Examining the candidate solutions in (5.4), it is possible to verify that the constant B could

take any value without changing the boundary value problem and so it is arbitrarily set as zero.

The constant A should also be zero because it will never respect the impermeability at the

wave-maker since the motion must be periodic.

ϕp~x, tq “ Ap coshrkpph ` yqs cospkpx ´ ωtq ` pAx ` Bq ` Ce´kpx cosrksph ` yqs sinpωtq (5.4)

Replacing the potential into the linearized free surface condition for periodic solutions (5.5)

leads to the so-called dispersion relation for progressive waves and a relation for the stationary

solution (evanescent wave) as can be seen in (5.6).

Bϕ

By
´

ω2ϕ

g
“ 0, at y “ 0 (5.5)

ω2 “ gkp tanhpkphq, ω2 “ ´gks tanpkshq (5.6)

The progressive wave for finite depth has a known potential, given by the first term in (5.4),

where kp is the real positive root of the dispersion relation (the negative root should be dropped
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in order to keep the correct propagation direction). The evanescent wave has infinite possible

values of ks, since the frequency wave-number equation has an infinite number of solutions and

all positive real roots should be taken. The final solution form is (5.7) and all constants are

determined using the boundary condition (5.3).

ϕp~x, tq “ Ap coshrkpph ` yqs cospkpx ´ ωtq `
8ÿ

n“1

Ane´kspnqx cosrkspnqph ` yqs sinpωtq (5.7)

Applying this condition leads to the equation (5.8) and all coshrkspnqph ` yqs combinations

or cosrkspnqph ` yqs to coshrkspnqph ` yqs are orthogonal (except the combination of kspnq with

itself), so they are the eigenvectors of the problem and the wave-numbers kp and kspnq are the

corresponding eigenvalues, which means that the coefficients can be calculated using (5.9), which

is obtained by multiplying the equation (5.8) by the cosrkspnqph ` yqs, integrating both sides on

the interval [-h,0] and taking advantage of the orthogonality.

´Upyq “ Apkp coshrkpph ` yqs ´
8ÿ

n“1

Cnkspnq cosrkspnqph ` yqs (5.8)

Ap “ ´

0
´h Upyq coshrkpph ` yqsdy

kp

0
´h cosh2rkpph ` yqsdy

Cn “

0
´h Upyq cosrkspnqph ` yqsdy

kspnq
0

´h cos2rkspnqph ` yqsdy
(5.9)

Looking more carefully into the series solution it is possible to identify two types of waves,

one progressive and the other local oscillations (evanescent modes), the last one due to the non-

exponential velocity profile generated by the traditional wave-maker shape (flaps and pistons).

5.1.1 Piston type wave-maker

The solution for this kind of wave-maker is given by (5.10), supposing the velocity profile (5.11).

ϕp~x, tq “
4U sinhpkphq coshrkpph ` yqs

kprsinhp2kphq ` 2kphs
cospkpx ´ ωtq´

sinpωtq
8ÿ

n“1

4U sinpkspnqhq cosrkspnqpy ` hqs
kspnqrsinp2kspnqhq ` 2kspnqhs

e´kspnqx (5.10)

Upyq “ U (5.11)

The free surface elevation can be determined using the linearized dynamic free surface con-
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dition, obtaining (5.12).

ηpx, tq “ ´
2Uω sinhp2kphq

gkprsinhp2kphq ` 2kphs
sinpkpx ´ ωtq`

cospωtq
8ÿ

n“1

2Uω sinp2kspnqhq
kspnqrsinp2kspnqhq ` 2kspnqhs

e´kspnqx (5.12)

In order to validate the numerical results a numerical tank was created, the simulation

performed using the setup conditions given by table (5.1). Three different numerical meshes

were used with 275, 550 and 1100 panels. All the meshes were uniform, meaning that all their

panels had the same length. A numerical wave probe was positioned at the position x=25m

Table 5.1: Simulation setup for piston wave-maker
Description Value Unit

Length 50 m
Depth 5 m

Wave period 2 s
Velocity amplitude wave-maker 0.05 m/s

Time-step 0.05 s
Simulation time 50 s

Beach coefficient ”a” 1 -
Beach length ”b” 1 -

(half the tank length) and the free surface elevation time series at this position was obtained and

compared to the analytical solution, as can be seen in Figure (5.2). In order to better visualize

the results, a zoom was applied and the results showed in figure (5.3), which demonstrates

that for more than 550 panels the results had a very good agreement with the analytical ones.

The numerical damping zone (beach) worked fine since no visual wave reflection was observed,

meaning that the a and b coefficients equal to one were enough to guarantee a satisfactory

simulation.
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Figure 5.2: Time series for a wave probe at x=25m

Figure 5.3: Zoom at time series for a wave probe on x=25m

For a more comprehensive verification, other wave frequencies were tested following the

same methodology discussed above at the same numerical wave tank. The wave-maker transfer

function concerning the probe at half the tank length was evaluated using the 550 panel mesh

and the numerical results compared to the analytical predictions, as can be seen in Figure (5.4),

where A is the wave amplitude of the generated wave at the probe and S is the piston stroke.

73



Once again a good agreement is observed.
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Figure 5.4: Piston-type wave-maker transfer function

5.1.2 Flap type wave-maker

The flap type wave-maker is very used on ocean basins, such as the TPN one, so the same study

performed to piston type was reproduced. The velocity profile function is given in (5.13) and

the potential function for this wave-maker in (5.14).

Upyq “ Up1 `
y

h
q (5.13)

ϕp~x, tq “
4U r1 ` kph sinhpkphq ´ coshpkphqs coshrkpph ` yqs

k2
phrsinhp2kphq ` 2kphs

cospkpx ´ ωtq´

sinpωtq
8ÿ

n“1

4U r´1 ` kspnqh sinpkspnqhq ` cospkspnqhqs cosrkspnqpy ` hqs
k2

spnqhrsinp2kspnqhq ` 2kspnqhs
e´kspnqx (5.14)

Using the linearized dynamic free surface condition again, the free surface elevation (5.15)

is obtained.

ηpx, tq “ ´
4Uωr1 ` kph sinhpkphq ´ coshpkphqs coshpkphq

gk2
phrsinhp2kphq ` 2kphs

sinpkpx ´ ωtq`

cospωtq
8ÿ

n“1

4Uωr´1 ` kspnqh sinpkspnqhq ` cospkspnqhqs cospkspnqhq
gk2

spnqhrsinp2kspnqhq ` 2kspnqhs
e´kspnqx (5.15)

The simulation setup can be seen in Table (5.2) with a mesh that contains 1550 panels,

considering a 0.2m panel size. The result for the transfer function of the wave-maker can be
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seen in Figure (5.5), with a good agreement of the results, except for a small shift in the curve

for high frequencies. These differences suggested that the convergence was not achieved yet and,

in order to minimize the discretization error, a simulation was performed with half the panel

size (0.1m), obtaining the results shown in Figure (5.6). A comparison of the results can be

seen in Table (5.3), where it can be verified that the differences between the finest mesh and the

analytic solution is less than 3%.

Table 5.2: Simulation setup for piston wave-maker
Description Value Unit

Length 150 m
Depth 5 m

Velocity amplitude wave-maker 0.05 m/s
Time-step 0.05 s

Simulation time 100 s
Beach coefficient ”a” 1 -

Beach length ”b” 1 -
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Figure 5.5: Flap-type wave-maker transfer function h=0.2m
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Figure 5.6: Flap-type wave-maker transfer function h=0.1m

Table 5.3: Ratio A{S for the flap wave-maker comparison

ω
Analytic-Havelock BEM-2D (h=0.2m) BEM-2D (h=0.1m)

1.500 0.708 0.702 0.707
1.683 0.842 0.838 0.840
1.867 0.982 0.973 0.978
2.050 1.119 1.110 1.115
2.233 1.242 1.233 1.237
2.417 1.349 1.337 1.341
2.600 1.433 1.420 1.427
2.783 1.503 1.486 1.497
2.967 1.561 1.549 1.555
3.150 1.610 1.588 1.600

5.2 Added mass and wave damping coefficients of simple forms

When a floating body is excited by ocean waves, energy is transferred from the wave to the

body, generating motion. However, the body motions also transfer energy from the body to the

water, being this phenomenon known as radiation problem.

In the linear analysis, the hydrodynamic force can be segregated in two components: one in

phase with the body acceleration and another in phase with it’s velocity, meaning that the first

one can be summed with the body mass as an added mass and the second one acts as an external

damping, as indicated in (5.16) and (5.17), where y is the horizontal axis and z the vertical one.

The terms aii represents the added mass, bii the wave damping and cii the hydrostatic restoring.
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In these expressions, eventual cross terms are neglected and the hydrostatic coefficient for y

direction is set as zero because there is no hydrostatic restoration in this direction.

Fyptq “ pM ` ayyq:yG ` byy 9yG ` cyyyG (5.16)

Fzptq “ pM ` azzq:zG ` bzz 9zG ` czzzG (5.17)

These coefficients can be experimentally evaluated through a forced oscillation test, where a

prescribed motion like (5.18) is imposed and the dynamic forces are measured. Since the motion

is periodic, a periodic behavior is expected in the hydrodynamic forces, as can be seen in (5.19)

and (5.20), with a relative phase αi between motion and force.

yGptq “ ay sinpωtq zGptq “ az sinpωtq (5.18)

Fyptq “
ż

WS
pnydS “ ´ρ

ż

WS

Bϕ

Bt
nydS “ Ay sinpωt ` αyq (5.19)

Fzptq “
ż

WS
pnzdS “ ´ρ

ż

WS

Bϕ

Bt
nzdS “ Az sinpωt ` αzq (5.20)

Replacing these prescribed motions into the motion equations leads to the simple (5.21) and

(5.22) formulas for the added mass and potential damping evaluation.

ayy “ ´
Ay cospαyq

ω2ay
byy “

Ay sinpαyq
ωay

(5.21)

azz “
azczz ´ Az cospαzq

ω2az
bzz “

Az sinpαzq
ωaz

(5.22)

In order to validate the numerical method, the forced oscillation test was numerically repro-

duced and the results compared with the experimental data from Vugts [1968], numerical results

from Pesce [1988] (frequency domain) and van Daalen [1993] numerical results (time domain).

The last one used a fully non-linear time domain boundary element method. For the rectangu-

lar section an analytical solution by eigenvector expansion (similar to the wave-maker problem)

was obtained following the procedures first presented by (Black et al. [1971]) and reproduced by

(Zheng et al. [2004]).
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5.2.1 Circular section cylinder

The initial test was performed using a circular section as shown in Figure (5.7) with radius of 1m

and the section placed exactly at the half the length of the tank. The range of frequencies tested

were from 0.78 rad/s to 6.26 rad/s, leading to very long waves for the lowest frequencies (almost

100m of wave length). To overcome the problem of wave reflection, the damping zone influence

in the body pressure and finite depth, large domains were adopted during the simulations.

However, it is intuitive that for shorter waves the panel size should be smaller in order to cap-

ture the physical phenomena better and the use of large domain increases the number of panels.

For this reason, the first step was the study of the domain and panel sizes to verify the ones

that could capture the phenomena. The wave length was always evaluated using the dispersion

relation and wave-number relation for deep waters (5.24) and the study was performed for three

dimensionless frequencies, ω̂ “ 0.25, ω̂ “ 1.00 and ω̂ “ 2.00, with wave lengths of 100.53m,

6.28m and 1.57m, respectively. The domains were adopted with 500m, 60m and 60m length.

The bottom influence was also studied in order to verify the sufficient values to guarantee the

deep water condition, it is, no bottom influence.

For comparison purposes the results are non-dimensional according to (5.23), where ρ “ 1000kg{m3

is the water density and @ “ πR2{2 is the displacement by unit of length, supposing that the

equilibrium position has the radius as draft.

ω̂ “ ω

d
R

g
, âxx “

axx

ρ@
, b̂xx “

bxx

ρ@

d
R

g
, âzz “

azz

ρ@
, b̂zz “

bzz

ρ@

d
R

g
(5.23)

The added mass and potential damping coefficients variation with depth can be seen in Figures

(5.9), (5.10) and (5.11). It was verified that for the highest frequency the ratio depth/wave

length to guarantee the deep water condition is higher than the one for the smallest frequency.

Since the method proposed is a time domain, the direct result obtained from the simulation is

the time series of the hydrodynamic force, as can be seen in Figure (5.8) as an example.
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Figure 5.7: Circular section forced oscillation test

k “
2π

λ

deepwater
“

ω2

g
(5.24)

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3x 10
4

Time (s)

 

 

Force (N/m)
Position x 1000 (m)

Figure 5.8: Force and position series example
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Figure 5.9: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 2 for the circular section.
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Figure 5.10: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 1 for the circular section.
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Figure 5.11: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 0.25 for the circular section.

This study allowed the depth determination in order to avoid bottom influence, as shown in

Table (5.4), which was adopted for both heaving and swaying.

Table 5.4: Domain dimensions for forced oscillation test of a circular section
ω̂ L(m) H(m)

2.00 60 8
1.00 60 8
0.25 500 80

The discretization error were also evaluated changing the number of elements in order to

guarantee the convergence. To reduce the computational effort, the meshes built were stretched,

allowing the concentration of elements near the body. An example of a stretched mesh can be

seen in Figure (5.12), where the red circles are the element vertices and the blue symbol the

center of the elements. The stretched meshes tested are in Table (5.5), ranging from 0.05m

elements up to 0.8m ones. The stretching formula adopted was a simple geometric series with

a stretching factor γ, as can be seen on (5.25), where lmin is the smallest panel size and N the
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number of panels in a given direction (left and right of the body). However, since the sum of

these panels size may not be exactly the geometry length, the stretching factor needed to be

adjusted in order to keep the number of panels and geometric length, using (5.26). Additionally

there were also a maximum panel size lmax in order to avoid excessive large panels.

li “ lminp1 ` γqi, i “ 0, 1, 2, .., N ´ 1 (5.25)

lgeo “ lmin
pγ˚N´1q
γ˚ ´ 1

(5.26)

Figure 5.12: Mesh for circular section with stretching and number of panels N “ 279

Table 5.5: Stretched meshes tested for numerical forced oscillation test of a circular section
ω̂ N1 N2 N3 N4 N5

2.00 124 150 183 224 279
1.00 124 150 183 224 279
0.25 199 229 262 305 360

The convergence analysis concerning the panel size can be seen in Figures (5.13), (5.14),

(5.15), (5.16), (5.17) and (5.18) and shows that a mesh with 183 elements would be enough for

the dimensionless frequencies ω̂ “ 1.00 and ω̂ “ 2.00 concerning engineering purposes. However

for the dimensionless frequency ω̂ “ 0.25 a bigger mesh with 262 panels would be recommended.
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â
y
y

(b)

120 140 160 180 200 220 240 260 280

0.05

0.1

0.15

0.2

0.25

0.3

N

b̂ y
y

(c)

Figure 5.13: Circular section. (a) Time series of hydrodynamic force per length Fy; Convergence
of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy as
function of the panel number N , for dimensionless frequency ω̂ “ 2.00.

Table 5.6: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 2.00 for the
circular section

Number of panels âyy b̂yy

124 0.130 0.030
150 0.222 0.220
183 0.207 0.306
224 0.206 0.296
279 0.206 0.290
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â
z
z

(b)

120 140 160 180 200 220 240 260 280
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

N

b̂ z
z

(c)

Figure 5.14: Circular section. (a) Time series of hydrodynamic force per length Fz; Convergence
of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz as
function of the panel number N , for dimensionless frequency ω̂ “ 2.00.

Table 5.7: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 2.00 for the
circular section

Number of panels âzz b̂zz

124 0.701 0.053
150 0.776 0.130
183 0.803 0.078
224 0.815 0.065
279 0.820 0.060
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Figure 5.15: Circular section. (a) Time series of hydrodynamic force per length Fy; Convergence
of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy as
function of the panel number N , for dimensionless frequency ω̂ “ 1.00.

Table 5.8: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 1.00 for the
circular section

Number of panels âyy b̂yy

124 0.250 0.288
150 0.374 0.452
183 0.383 0.689
224 0.380 0.701
279 0.379 0.706
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Figure 5.16: Circular section. (a) Time series of hydrodynamic force per length Fy; Convergence
of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz as
function of the panel number N , for dimensionless frequency ω̂ “ 1.00.

Table 5.9: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 1.00 for the
circular section

Number of panels âzz b̂zz

124 0.589 0.413
150 0.599 0.423
183 0.567 0.394
224 0.569 0.387
279 0.571 0.384
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Figure 5.17: Circular section. (a) Time series of hydrodynamic force per length Fy; Convergence
of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy as
function of the panel number N , for dimensionless frequency ω̂ “ 0.25.

Table 5.10: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 0.25 for the
circular section

Number of panels âyy b̂yy

195 0.597 0.050
225 0.774 0.013
258 1.021 0.009
301 1.033 0.009
358 1.034 0.009
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Figure 5.18: Circular section. (a) Time series of hydrodynamic force per length Fz; Convergence
of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz as
function of the panel number N , for dimensionless frequency ω̂ “ 0.25.

Table 5.11: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 0.25 for the
circular section

Number of panels âzz b̂zz

124 1.581 0.410
150 1.681 0.452
183 1.677 0.460
224 1.678 0.459
279 1.679 0.459

Following a similar convergence procedure, the results for added mass and potential damping

coefficients in sway could be evaluated for a wider range of frequencies, as can be seen in Table
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(5.12) and Table (5.13), respectively, with the data plotted in (5.19) and (5.20) in order to

better visualize the results. It can be seen that the results of the present method BEM-2D

(2011), Pesce [1988], Vugts [1968] and van Daalen [1993] agree very well for the added mass

and potential damping coefficients, except the results of van Daalen [1993] for low frequencies.

Regarding these discrepancies, it should be noticed that since he used a time domain fully non

linear method, the numerical scheme had a very high computational cost (specially in 1993),

which probably made the long time simulation on large domains unfeasible.

Table 5.12: Added mass coefficient for circular section in sway âyy

ω̂
âyy

Vugts (1968) Pesce (1988) van Daalen (1993) USP (2011)

0.250 1.086 1.095 ´ 1.087
0.452 ´ ´ 1.244 ´
0.500 1.293 1.303 ´ 1.311
0.677 ´ ´ 1.175 ´
0.750 0.862 0.877 ´ 0.883
0.903 ´ ´ 0.539 ´
1.000 0.385 0.383 ´ 0.394
1.250 0.221 0.218 ´ 0.226
1.355 ´ ´ 0.191 ´
1.500 0.178 0.185 ´ 0.178
1.750 0.184 0.195 ´ 0.186
2.000 0.224 0.239 ´ 0.207
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Figure 5.19: Added mass for sway motion in sway direction of a circular cylinder
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Table 5.13: Potential damping coefficient for circular section in sway b̂yy

ω̂
b̂yy

Vugts (1968) Pesce (1988) van Daalen (1993) USP (2011)

0.250 0.006 0.006 ´ 0.017
0.452 ´ ´ 0.123 ´
0.500 0.192 0.187 ´ 0.194
0.677 ´ ´ 0.594 ´
0.750 0.661 0.664 ´ 0.663
0.903 ´ ´ 0.786 ´
1.000 0.747 0.747 ´ 0.752
1.250 0.632 0.632 ´ 0.651
1.355 ´ ´ 0.641 ´
1.500 0.500 0.500 ´ 0.480
1.750 0.382 0.386 ´ 0.376
2.000 0.293 0.347 ´ 0.295
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Figure 5.20: Potential damping for sway motion in sway direction of a circular cylinder

The results for added mass and potential damping coefficient for the heave motion can be

seen in Tables (5.14) and (5.15), being the results plotted in Figures (5.21) and (5.22). The

conclusions were very similar to those concerning the sway motion analysis.
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Table 5.14: Added mass coefficient for circular section in heave âzz

ω̂
âzz

Vugts (1968) Pesce (1988) van Daalen (1993) BEM-2D (2011)

0.226 ´ ´ 1.189 ´
0.250 1.732 1.751 ´ 1.771
0.452 ´ ´ 0.766 ´
0.500 0.869 0.879 ´ 0.888
0.677 ´ ´ 0.638 ´
0.750 0.623 0.624 ´ 0.632
0.903 ´ ´ 0.628 ´
1.000 0.612 0.605 ´ 0.610
1.250 0.681 0.672 ´ 0.676
1.129 ´ ´ 0.660 ´
1.355 ´ ´ 0.735 ´
1.500 0.743 0.753 ´ 0.754
1.580 ´ ´ 0.801 ´
1.750 0.807 0.818 ´ 0.817
1.806 ´ ´ 0.848 ´
2.000 0.858 0.864 ´ 0.863
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Figure 5.21: Added mass for heave motion in heave direction of a circular cylinder
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Table 5.15: Potential damping coefficient for circular section in heave b̂zz

ω̂
b̂zz

Vugts (1968) Pesce (1988) van Daalen (1993) BEM-2D (2011)

0.226 ´ ´ 0.581 ´
0.250 0.482 0.484 ´ 0.481
0.452 ´ ´ 0.584 ´
0.500 0.616 0.622 ´ 0.632
0.677 ´ ´ 0.565 ´
0.750 0.553 0.553 ´ 0.561
0.903 ´ ´ 0.478 ´
1.000 0.398 0.397 ´ 0.412
1.250 0.244 0.245 ´ 0.264
1.129 ´ ´ 0.326 ´
1.355 ´ ´ 0.211 ´
1.500 0.135 0.138 ´ 0.158
1.580 ´ ´ 0.137 ´
1.750 0.072 0.077 ´ 0.093
1.806 ´ ´ 0.087 ´
2.000 0.037 0.041 ´ 0.056
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Figure 5.22: Potential damping for heave motion in heave direction of a circular cylinder
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5.2.2 Rectangular section cylinder

For the rectangular cylinder a similar procedure was adopted, with the dimensionless calculations

given by (5.27) and the arrangement considering a box with breadth of 6.4m and draft of 0.8m,

illustrated in Figure (5.23).

Figure 5.23: Rectangular section forced oscillation test

The numerical results of the present method were compared to the results of Pesce [1988],

Vugts [1968] and with the analytical solution of Black et al. [1971], as reproduced by Zheng et al.

[2004]. The analytic solution is built by an eigenvector expansion similar to the one developed

for the wave-maker but with 3 different regions. This solution requires some compatibility

conditions that avoid pressure or velocity jumps betweens the regions. The analytical results

presented were obtained considering the first 30 terms of the series.

ω̂ “ ω

d
B

g
, âxx “

axx

ρ@
, b̂xx “

bxx

ρ@

d
B

2g
, âzz “

azz

ρ@
, b̂zz “

bzz

ρ@

d
B

2g
(5.27)

Following the same analysis procedure adopted for the circular cylinder, the results for

swaying and heaving test were obtained and are presented next. The depth influence and

discretization convergence analyse were similar to the one applied for the circular section. The

determination of depth influence in the added mass and potential damping can be seen in
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Figures (5.24), (5.25) and (5.26), for the same dimensionless frequencies ω̂ “ 2.00, ω̂ “ 1.00 and

ω̂ “ 0.25.
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Figure 5.24: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 2.00 for the rectangular section.
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Figure 5.25: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 1 for the rectangular section.
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Figure 5.26: Variation of added mass (âyy, âzz) and potential damping (b̂yy, b̂zz) coefficients
changing depth H for the dimensionless frequency ω̂ “ 0.25 for the rectangular section.

This study defined the domain dimensions as given in Table (5.16). The meshes were also

created using stretching ranging the minimum panel size from 0.05m up to 0.8m, providing

meshes with the number of panels given in Table (5.17).

Table 5.16: Domain size for forced oscillation test of a rectangular section
ω̂ L (m) H (m)

2.00 60 20
1.00 140 20
0.25 1600 600

Table 5.17: Stretched meshes tested for numerical forced oscillation test of a rectangular section
ω̂ N1 N2 N3 N4 N5

2.00 165 199 241 304 408
1.00 163 196 241 305 412
0.25 269 305 350 419 526

The discretization convergence tests can be seen in Figures (5.27), (5.28), (5.29), (5.30),
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(5.31) and (5.32), with the hydrodynamic forces, added mass and potential damping coefficients

presented for sway and heave motions. It can be seen that the convergence is easier for this kind

of geometry, since the results almost do not change by increasing the panel number.
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Figure 5.27: Rectangular section. (a) Time series of hydrodynamic force per length Fy; Conver-
gence of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy

as function of the panel number N , for dimensionless frequency ω̂ “ 2.00.
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Table 5.18: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 2.00 for the
rectangular section

Number of panels âyy b̂yy

165 0.035 0.375
199 0.036 0.399
241 0.035 0.407
304 0.035 0.410
408 0.035 0.411
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Figure 5.28: Rectangular section. (a) Time series of hydrodynamic force per length Fz; Conver-
gence of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz

as function of the panel number N , for dimensionless frequency ω̂ “ 2.00.
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Table 5.19: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 2.00 for the
rectangular section

Number of panels âzz b̂zz

165 3.326 0.433
199 3.295 0.402
241 3.284 0.381
304 3.283 0.367
408 3.284 0.363
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Figure 5.29: Rectangular section. (a) Time series of hydrodynamic force per length Fy; Conver-
gence of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy

as function of the panel number N , for dimensionless frequency ω̂ “ 1.00.
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Table 5.20: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 1.00 for the
rectangular section

Number of panels âyy b̂yy

163 0.340 0.330
196 0.351 0.331
241 0.356 0.330
305 0.358 0.330
412 0.359 0.330
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Figure 5.30: Rectangular section. (a) Time series of hydrodynamic force per length Fz; Conver-
gence of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz

as function of the panel number N , for dimensionless frequency ω̂ “ 1.00.
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Table 5.21: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 1.00 for the
rectangular section

Number of panels âzz b̂zz

163 2.755 1.822
196 2.739 1.854
241 2.736 1.866
305 2.734 1.870
412 2.734 1.871
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Figure 5.31: Rectangular section. (a) Time series of hydrodynamic force per length Fy; Conver-
gence of (b) Added mass coefficient for swaying âyy and (c) Potential damping for swaying b̂yy

as function of the panel number N , for dimensionless frequency ω̂ “ 0.25.
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Table 5.22: Convergence analysis for swaying for the dimensionless frequency ω̂ “ 0.25 for the
rectangular section

Number of panels âyy b̂yy

269 0.389 0.003
305 0.392 0.003
350 0.393 0.003
419 0.394 0.003
526 0.395 0.003
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Figure 5.32: Rectangular section. (a) Time series of hydrodynamic force per length Fz; Conver-
gence of (b) Added mass coefficient for heaving âzz and (c) Potential damping for heaving b̂zz

as function of the panel number N , for dimensionless frequency ω̂ “ 0.25.
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Table 5.23: Convergence analysis for heaving for the dimensionless frequency ω̂ “ 0.25 for the
rectangular section

Number of panels âzz b̂zz

269 6.837 1.566
305 6.845 1.567
350 6.856 1.568
419 6.861 1.568
526 6.864 1.568

From this convergence analysis, the number of panels chosen for the dimensionless frequencies

ω̂ “ 2.00, ω̂ “ 1.00 and ω̂ “ 0.25 was 408, 241 and 305 panels, respectively. The results for

swaying of the rectangular section can be seen in Tables (5.24) and (5.25) and plotted in Figures

(5.33) and (5.34). It can be seen that the agreement between results is very good and in terms

of engineering the differences would be negligible. The results for swaying can be seen on Tables

(5.24) and (5.25) and to better visualize they are plotted on Figures (5.33) and (5.34). It can

be seen that the agreement between all results are very good, and the differences between the

present results and the analytical solution could be considered negligible from an engineering

point of view.

Table 5.24: Added mass coefficient for rectangular section in sway âyy

ω̂

âyy

Vugts (1968) Pesce (1988)
Black and Mei (1971)

BEM-2D (2011)
Zheng (2004)

0.250 0.390 0.357 0.390 0.388
0.500 0.430 0.426 0.455 0.455
0.750 0.454 0.441 0.473 0.446
1.000 0.350 0.336 0.356 0.351
1.250 0.215 0.205 0.216 0.217
1.500 0.115 0.113 0.120 0.120
1.750 0.057 0.050 0.062 0.063
2.000 0.023 0.027 0.032 0.033
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Figure 5.33: Added mass for sway motion in sway direction of a rectangular cylinder

Table 5.25: Potential damping coefficient for circular section in sway b̂yy

ω̂

b̂yy

Vugts (1968) Pesce (1988)
Black and Mei (1971)

BEM-2D (2011)
Zheng (2004)

0.250 0.000 0.001 0.001 0.005
0.500 0.026 0.026 0.027 0.031
0.750 0.150 0.142 0.152 0.160
1.000 0.318 0.307 0.330 0.325
1.250 0.428 0.407 0.438 0.429
1.500 0.448 0.428 0.463 0.458
1.750 0.440 0.428 0.447 0.444
2.000 0.405 0.396 0.411 0.409
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Figure 5.34: Potential damping for sway motion in sway direction of a rectangular cylinder

The results for heaving can be seen on Tables (5.26) and (5.27) and are plotted in Figures

(5.35) and (5.36), it can be seen that the agreement is good for the heave motion too recovering

the analytic solution very well.

Table 5.26: Added mass coefficient for rectangular section in heave âzz

ω̂

âzz

Vugts (1968) Pesce (1988)
Black and Mei (1971)

USP (2011)
Zheng (2004)

0.250 ´ 6.895 6.994 6.790
0.500 4.080 4.080 4.129 4.060
0.750 3.045 3.066 3.104 3.070
1.000 2.736 2.706 2.753 2.735
1.250 2.701 2.672 2.743 2.738
1.500 2.816 2.802 2.919 2.895
1.750 3.046 2.992 3.172 3.100
2.000 3.218 3.176 3.386 3.288
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Figure 5.35: Added mass for heave motion in heave direction of a rectangular cylinder

Table 5.27: Potential damping coefficient for circular section in heave b̂zz

ω̂

b̂zz

Vugts (1968) Pesce (1988)
Black and Mei (1971)

USP (2011)
Zheng (2004)

0.250 1.550 1.556 1.550 1.540
0.500 2.155 2.161 2.144 2.140
0.750 2.195 2.203 2.167 2.170
1.000 1.908 1.922 1.868 1.866
1.250 1.465 1.477 1.414 1.433
1.500 0.975 1.012 0.956 0.974
1.750 0.590 0.626 0.590 0.602
2.000 0.330 0.356 0.341 0.349
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Figure 5.36: Potential damping for heave motion in heave direction of a rectangular cylinder

5.3 Decay tests

Until this point, none of the simulations performed requested the acceleration potential in order

to guarantee the numerical stability, since the motion series is independent of the hydrodynamic

forces. In order to verify the fluid-structure interaction capabilities for floating bodies, numerical

decay test simulations were performed. The comparison was done for the circular and rectangular

cylinders and the results were compared to the numerical results of van Daalen [1993]. Since his

method is fully nonlinear, he presented the results for several initial displacements in order to

verify the influence of non-linearities. The comparison was done taking only the lowest initial

displacement in order to minimize the non-linear effects, although his conclusion was that the

non linear effects were minimum, but for the roll decay test.
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5.3.1 Circular cylinder

The circular section was the first one studied and a simulation considering the section at the

middle of the numerical tank was performed. An illustrative picture is shown in Figure (5.37)

and considers the center of gravity at the symmetry axis with coordinates pxG, zGq. Initially the

cylinder is at rest with the center of gravity at p20, 0qm and then moved upside by an initial

displacement of δz and released, irradiating waves (energy) and reducing it’s motion amplitude.

The simulation was performed until the motion amplitude becomes small, which does not take

more than 5 cycles, as can be seen in (5.38), as an example.

Figure 5.37: Circular section heave decay test

The simulation setup is shown in Table (5.28) and in order to keep the comparison as fair

as possible, the same tank dimensions of van Daalen (1993) were adopted. The panel size was

arbitrary chosen as 0.1m at all domain, since the domain dimensions were small compared to the

ones adopted for the forced oscillation test (described previously), allowing the mesh generation

without stretching.
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Figure 5.38: Example of cylinder section heave decay test

Table 5.28: Simulation setup for heave decay test of the circular cylinder
Description Value Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 s

Simulation time 15 s
Panel size (constant) 0.1 m

Initial displacement (δzq 0.05 m
Beach coefficient a 1 -

Beach length b 1 -

The comparison with van Daalen [1993] simulation are presented in Figure (5.39), with the

time series reduced in order to better visualize the comparison (he presented onyl the first 10s),

where the z coordinate is made non-dimensional by the initial displacement pzGp0q “ δzq. The

agreement of both curves are good for the first two cycles. After that, small differences appear,

however, the results for the present numerical method were considered consistent, since for the

last cycle the z coordinate still cross the zero, as should be expected, which does not happen in

van Daalen [1993] simulation. It should be remarked that the absolute values for z coordinates

on the last cycle are very small, which makes the accuracy hard to be guaranteed. Since the

results of van Daalen (1993) were taken from his thesis, there may also be some small deviations

from the original curve. Figure (5.38) shows that after 5 cycles, the body is already almost at

rest.
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Figure 5.39: Comparison of heave temporal series for the decay test of a circular cylinder

5.3.2 Rectangular cylinder

The same type of comparison was done for a rectangular cylinder with a 4m width and draft

of 1m. In addition, the roll decay test was performed in this case. The results are compared to

the ones presented by van Daalen [1993]. Actually, it is not exactly a rectangular section since

the corners were rounded by circles of 0.25m in order to avoid singularities at the sharp edges

and keep the potential flow hypothesis as well as possible, this reported by van Daalen [1993].

An illustration of the test can be seen in Figure (5.40) and the tank used was the same of

the circular cylinder. The simulation setup can be seen in Table (5.29). The mesh was kept

non-stretched with a constant panel size of 0.1m.
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Figure 5.40: Rectangular section heave decay test

Table 5.29: Simulation setup for heave decay test of the rectangular cylinder
Description Value Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 s

Simulation time 15 s
Panel size (constant) 0.1 m

Initial displacement (δzq 0.25 m
Beach coefficient a 1 -

Beach length b 1 -

The results of this simulation is shown in Figure (5.41) and in this case the agreement is

very good along the whole simulation time compared (van Daalen [1993] presented only 10s),

even for the small amplitudes, observed at the last cycles of the simulation.
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Figure 5.41: Comparison of heave temporal series for the decay test of a rectangular cylinder

The next simulation performed was the same section with rounded corners on roll decay test

(single degree of freedom), as can be seen in Figure (5.42), being the initial displacement a small

δθ. For this simulation, the moment of inertia need to be provided, since it cannot be evaluated

directly following the methodology presented in appendix A. The moment of inertia per length

can be evaluated by (5.28), where R is the radius concerning the rounded corner and H is the

box height (assumed as twice the draft), assuming an homogeneous mass distribution.

IG “ ρ
!HpB ´ 2Rq

12
rH2 `pB´2Rq2s`

RpH ´ 2RqrR2 ` pH ´ 2Rq2s
6

`2RpH ´2Rq
´B ´ R

2

ˉ2

`
πR4

4
` πR2

”´B

2
´ R

ˉ2
`

´H

2
´ R

ˉ2ı)
(5.28)
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Figure 5.42: Rectangular section roll decay test

The simulation setup can be seen in Table (5.30) and the results are presented in Figure

(5.43), compared with van Daalen [1993] numerical results. He states that, although there is

some non-linear behavior concerning the roll degree of freedom, observed because the roll period

slightly decreased when the initial roll angle is increased, the effect was small. The comparison

of linear method here presented and his nonlinear computations shows that in the first cycle

the agreement is very good, but there is differences concerning the next cycles. During the

simulation, the linear method provided a constant frequency of 1.795 rad/s, while the non-linear

computations of van Daalen [1993] provided a time varying frequency, although there was only

a few cycles to confirm this conclusion and some inaccuracy due to the scanning process of the

results. Maybe those differences were due to non-linear effects, but the agreement still good

enough for engineering purposes, specially because the viscous effects were not considered and

are very appreciable for this condition.

Table 5.30: Simulation setup for roll decay test of the rectangular cylinder
Description Value Unit
Tank length 40 m
Tank depth 10 m
Time-step 0.05 s

Simulation time 15 s
Panel size (constant) 0.1 m

Initial displacement (δθq 0.05 rad
Beach coefficient a 1 -

Beach length b 1 -
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Figure 5.43: Comparison of roll temporal series for the decay test of a rectangular cylinder

5.4 Response Amplitude Operator

In the simulations concerning the decay tests, it was verified that the acceleration potential

could provide a stable numerical scheme, verified through the comparisons with other numerical

method. The last analysis regards the response amplitude operator of a floating rectangular

cylinder, as shown in Figure (5.44), in order to confirm the acceleration potential capability and

the correct implementation of the analytic incident wave potential. The results are compared

with the numerical ones of Tanizawa et al. [1999], who used a fully non-linear boundary elements

method in time domain, and an analytic solution built using the excitation force and radiation

potential obtained by applying the methodology proposed by Zheng et al. [2004], already men-

tioned for the radiation problem, taking the first 40 terms of the series. All the simulations

were performed using numerical beaches in order to avoid wave reflection. It is important to

emphasize that the present method used an analytic incident potential (as shown in Chapter

2) in order to evaluate the implementation. Tanizawa et al. [1999] used a numerical wave tank

(NWT), therefore the wave was generated by a wave-maker.

The results taken from Tanizawa et al. [1999] were for the smaller incident waves and there
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Figure 5.44: Rectangular section for floating body simulation

may be some imprecisions since the results were taken directly from the graphs. The analytic

solution used for the response amplitude operator (RAO) was done considering the same depth of

the numerical computation in order to keep consistency. The depth is more than one wave-length

for all waves, but for the longest one, where it is «80%, so no bottom effects are expected.

The simulation setup can be seen in Table (5.31) and an example of the motion series can

be seen in Figure (5.4), which shows the signal periodicity and numerical beach effectiveness,

since no wave reflection was visually verified. The beach coefficients were kept fixed as one (both

a and b) during all simulations. The mesh was arbitrary chosen with a constant panel size of

0.05m in the body, in order to have an integer number of panels, and 0.10m in the free surface

and bottom.
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Table 5.31: Simulation setup for rectangular section RAO calculation
Description Value Unit
Tank length 50 m
Tank depth 5 m
Time-step 0.05 s

Simulation time 100 s
Panel size at the body (constant) 0.05 m

Panel size at the free surface and bottom (constant) 0.10 m
Body mass per length 125 kg/m

Moment of inertia 5.208 kg.m
KG 0.135 m

Beach coefficient ”a” 1 -
Beach length ”b” 1 -
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Figure 5.45: Motion series example for the rectangular section free floating

The regular waves tested are given in Table (5.32), together with the dimensionless factor

ξ “
ω2B

2g
used on Tanizawa’s results. The heave response operator is given in Figure (5.46),

where it can be seen that the numerical results had a good agreement with the analytic solution,

with small differences from the results of Tanizawa. Apparently in his results the heave peak

is a little bit further in frequency and with a smaller amplification factor, which could be due

to the fully non-linear approach, since the linear value is more than 2, which could generate a

considerable variations in the body submerged surface. Besides that, near resonance regions the

non-linear approach is difficult, specially considering higher wave amplitude, as was verified by
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him in the lack of convergence for some simulations. During the simulations, the three degrees

of freedom were free to oscillate.

Table 5.32: Regular waves used for RAO calculation
ξ ωprad{sq λpmq

0.25 3.13 6.28
0.50 4.43 3.14
0.55 4.65 2.86
0.60 4.85 2.62
0.65 5.05 2.42
0.70 5.24 2.24
0.75 5.42 2.09
1.00 6.26 1.57
1.25 7.00 1.26
1.50 7.67 1.05
1.75 8.29 0.90
2.00 8.86 0.79

The results for sway and roll can be seen in Figures (5.47) and (5.48), respectively, and the

agreement of all results are good, with the time domain simulation being capable of correctly

predicting the cancelation point on the sway response operator without any kind of additional

modelling, as was needed for the analytic solution due to the added mass and potential damping

cross terms, which generate the hydrodynamic coupling between these degrees of freedom. It

means that the presented numerical method, considering an unique disturbance potential, can

evaluate the hydrodynamic field entirely.
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Figure 5.46: Comparison of heave response operator for a rectangular section
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Figure 5.47: Comparison of sway response operator for a rectangular section
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Figure 5.48: Comparison of roll response operator for a rectangular section
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Chapter 6

Conclusion and final remarks

In this work a time domain low order panel method was developed using Rankine sources for

the prediction of hydrodynamic forces and motions of 2D floating structures. Two integral

equations were obtained for solving the more generic case containing floating bodies and bodies

with prescribed motion, being possible to reproduce both an experimental test at a wave basin

or an ocean condition in a simplified way, since it is a 2D method.

A linear approach was adopted, which means that the geometry is fixed during the simu-

lations since the boundary conditions are linearized and imposed at the mean surfaces. The

numerical scheme uses the collocation method for solving the integral equation with one collo-

cation point placed on the center of the linear panels. The free surface differential equations

and body motion equations were evaluated using the Runge-Kutta 4th order method, which

provided an accurate and stable numerical method, although required some evaluations of the

functions per time-step, that is time consuming. A possible next step would be a more focused

study on the stability conditions and time-step size in order to reduce the computational effort

by using an adaptative time-stepping procedure.

The integration processes were performed numerically to develop a flexible numerical scheme

that could be latter extended for a higher order method, when no analytical solutions are

available for the potential distribution inside the panels.

In order to avoid the presence of reflected waves, a numerical beach were also implemented

and applied in the simulations, showing good effectiveness despite the small numerical effort that

it requires. The method chosen was based on damping the waves through a sponge condition,

as first presented by Israeli and Orszag [1981].

The numerical results for the cases tested were in good agreement with analytic, numerical
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and/or experimental results. The first application studied was a classical wave-maker problem

and the numerical scheme was able to correctly predict the transfer function of piston and flap

type wave-makers.

The numerical tool was also used to evaluate the added mass and potential damping of

bidimensional circular and rectangular cylinders, obtaining good agreement with the results

available on the literature, including the experimental results of Vugts [1968].

Decay tests were also performed in the context of a wave tank and the results showed good

agreement with the ones of van Daalen [1993], even for rolling simulations.

The last result presented was the response amplitude operator (RAO) evaluation for a rect-

angular cylinder. The results were compared to an analytic solution and the fully non linear

numerical results of Tanizawa et al. [1999]. Once again a good agreement could be obtained.

Future works could be done in order to improve the tool for three-dimensional cases, still in

linear context. After that, the extension for non-linear simulations and multi-bodies could be

performed and validated in order to improve the numerical code. Other applications, such as the

integration with mooring line codes or structural ones would probably also lead to very interest-

ing results. These last goals would be a long term development for the Numerical Offshore Tank

(TPN) in order to attach a time domain boundary elements method for seakeeping prediction

(single and multi-bodies) to a mooring finite element method (FEM) software, in order to solve

the coupled dynamic of a floating body in time domain, which could be latter extended to fully

non-linear analysis.
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Gao, Z. and Zou, Z. (2008). A nurbs-based high-order panel method for three-dimensional

radiation and diffraction problems with forward speed. Ocean Engineering, 35:1271–1282.

Greco, M. (2001). A two-dimensional Study of Green-Water Loading. PhD thesis, NTNU -

Norwegian University of Science and Technology.

Havelock, T. H. (1963). Forced surface-waves on water. In The Collected Papers of Sir Thomas

Havelock on Hydrodynamics. C. Wigley.

Hermans, A. J. (2011). Water Waves and Ship Hydrodynamics. Springerlink, second edition.

Hess, J. L. and Smith, A. M. O. (1964). Calculation of nonlifting potential flow about arbitrary

three-dimensional bodies. Journal of Ship Research, pages 22–44.

Huang, Y. (1997). Nonlinear Ship Motions by a Rankine Panel Method. PhD thesis, Massachus-

sets Institute of Technology.

Israeli, M. and Orszag, S. A. (1981). Approximation of radiation boundary conditions. Journal

of Computational Physics.

John, F. (1949). On the motion of floating bodies i. Pure Applied Mathematics, pages 13–57.

John, F. (1950). On the motion of floating bodies ii. Pure and Applied Mathematics, pages

45–101.

123



Kacham, B. (2004). Inviscid and viscous 2d unsteady flow solvers applied to fpso hull roll

motions. Technical report, The University of Texas.

Kim, M. H. and Koo, W. C. (2005). Numerical Models in Fluid-Strucutre Interaction, chapter

2D Fully nonlinear wave tanks, pages 43–81. WIT Press.

Kim, Y. (2003). Artificial damping in water wave problems ii: Application to wave absorption.

International Journal of Offshore and Polar Engineering, 13(2).

Kim, Y., Kring, D. C., and Sclavounos, P. D. (1997). Linear and nonlinear interactions of surface

waves with bodies by a three-dimensional rankine panel method. Applied Ocean Research,

19:235–249.

Koo, W. (2003). Fully Nonlinear Wave-Body Interactions by a 2D Potential Numerical Wave

Tank. PhD thesis, Texas AM University.

Koo, W. and Kim, M.-H. (2004). Freely floating-body simulation by a 2d fully nonlinear nu-

merical wave tank. Ocean Engineering, 31:2011–2046.

Kring, D. C. (1994). Time Domain Ship Motions by a Three-Dimensional Rankine Panel Method.

PhD thesis, Massachussets Institute of Technology.

Kumar, S. and Narayan, J. P. (2008). Absorbing boundary conditions in a forth-order accurate

sh-wave staggered grid finite difference algorithm. Acta Geophysica, 56(4):1090–1108.

Kuznetsov, N., Maz’ya, V., and Vainberg, B. (2004). Linear Water Waves - A Mathematical

Approach. Cambridge University Press.

Lamb, H. (1945). Hydrodynamics. Dover Publishing Inc.

Lee, C.-H. and Newman, J. N. (2005). Numerical Models in Fluid-Structure Interaction, chapter

Computation of wave effects using the panel method, pages 211–251. WIT Press.

Lin, W. M. (1984). Nonlinear motion of free surface near a moving body. PhD thesis, Mas-

sachussets Institute of Technology - MIT.

Maniar, H. D. (1995). A thrre dimensional higher order panel method based on B-splines. PhD

thesis, MIT - Massachusset Institute of Technology.

Maruo, H. (1960). The drift of a body floating on waves. Journal of Ship Research, pages 1–10.

124



Mei, C. C., Stiassnie, M., and Yue, D. K.-P. (2005). Theory and Applications of Ocean Surface

Waves. Part 1: Linear aspects. World Scientific Publishing Co.

Milne-Thomson, L. M. (1968). Theoretical Hydrodynamics. Dover Publications Inc.

Moiseiwitsch, B. L. (2005). Integral Equations. Dover Publications Inc.

Nakos, D. E., Kring, D. C., and Sclavounos, P. D. (1993). Rankine panel methods for transient

free surface flows. 6th International Conference on Numerical Ship Hydrodynamics.

Nayfeh, A. H. (1973). Perturbation Methods. John Wiley Sons Inc,.

Newman, J. N. (1977). Marine Engineering. The MIT Press.

Pesce, C. P. (1988). Estudo do Comportamento de Corpos Flutuantes em Ondas sob um Enfoque

Variacional (in Portuguese). PhD thesis, Universidade de São Paulo.

Pinkster, J. A. (1980). Low frequency Second Order Wave Exciting Forces on Floating Structures .

PhD thesis, Delft University of Technology.

Prins, H. (1995). Time-Domain Calculations of Drift Forces and Moments. PhD thesis.

Qiu, W. (2001). A panel-free method for time-domain analysis of floating bodies in waves . PhD

thesis, Dalhousie University.

Qiu, W., Peng, H., and Chuang, J. M. (2006). Computation of wave-body interactions using the

panel-free method and exact geometry. Jounal of Offshore Mechanics and Arctic Engineering.

Queiroz Filho, A. d. N. and Tannuri, E. A. (2009). Dp offloading operation: A numerical

evaluation of wave shielding effect. Manoeuvring and Control of Marine Craft.

Rahman, M. (2007). Integral Equations and their Applications. WIT Press.

Shao, Y.-L. (2010). Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body Inter-

actions with/without Small Forward Speeds. PhD thesis, NTNU - Norwegian University of

Science and Technology.

Sommerfeld, A. (1949). Partial Differential Equations in Physics. Academic Press.

Stassen, Y., Le Boulluec, M., and Molin, B. (1998). High order boundary element model for 2d

wave tank simulation. International Offshore Polar Engineering Conference 3, pages 348–355.

125



Stoker, J. J. (1957). Water Waves - The Mathematical Theory with Applications. Interscience

Publisher.

Stokes, G. (1847). On the theory of oscillatory waves. Mathematical and Physical Papers -

Reprinted from the Original Journals and Transactions.

Tanizawa, K. (1995). A nonlinear simulation method of 3-d body motions in waves. Journal of

the Society of Naval Architects of Japan.

Tanizawa, K. (2000). The state of the art on numerical wave tank. In Proceeding of 4th Osaka

Coloquium on Seakeeping Performance of Ships, pages 99–114.

Tanizawa, K., Minami, M., and Naito, S. (1999). Estimation of wave drift force by a numerical

wave tank. 9th International Offshore and Polar Engineering Conference.

Tanizawa, K., Minami, M., and Sawada, H. (2000). Estimation of wave drift force by a numerical

wave tank, 2nd report. 10th International Offshore and Polar Engineering Conference.

Tanizawa, K. and Naito, S. (1997). A study of parametric roll motions by a fully nonlinear

numerical wave tank. 7th International Offshore and Polar Engineering.

Tanizawa, K. and Naito, S. (1998). An application of fully nonlinear numerical wave tank to the

study on chaotic roll motions. 8th International Offshore and Polar Engineering Conference.

Tannuri, E. A., Bravin, T. T., and Simos, A. N. (2004). Dynamic simulation of offloading

operation considering wave interaction between vessels. 23rd International Conference on

Offshore Mechanics and Arctic Engineering, pages 245–250.

Tricomi, F. G. (1985). Integral Equations. Dover Publications Inc.

van Daalen, E. F. G. (1993). Numerical and Theoretical Studies of Water Waves and Floating

Bodies. PhD thesis, University of Twente.

Vugts, J. H. (1968). The hydrodynamic coefficients for swaying, heaving and rolling cylinders

in a free surface. International Shipbuilding Progress, pages 251–275.

Yang, J. (2004). Time Domain Nonlinear Theories of Ship Motions. PhD thesis, University of

Hawaii.

126



Yee-Tak Ng, J. (1993). Time-domain second-order wace interactions with floating offshore struc-

tures. PhD thesis, The University of British Columbia.

Zhen, L., Bin, T., De-zhi, N., and Ying, G. (2010). Wave-current interactions with three dimen-

sional floating bodies. Journal of Hydrodynamics, pages 229–240.

Zheng, Y. H., You, Y. G., and Shen, Y. M. (2004). On the radiation and diffraction of water

waves by a rectangular buoy. Ocean Engineering, 31:1063–1082.

Zhu, X. (1997). A Higher-Order Panel Method for Third-Harmonic Diffraction Problems . PhD

thesis, MIT - Massachussets Institute of Technology.

127



Part I

Numerical calculation of volume and

water plane area
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Figure 6.1: Gauss theorem orientation

The volume and water plane area are needed for free floating simulations and so a numerical

automatic method for their calculation are required in order to makes the numerical method

generic. The volume calculation by the definition (6.1) can be changed for (6.2) using Gauss

theorem and considering an arbitrary vector field with unitary divergent. The volume is then

a simple calculation using the boundaries, which are exactly the entrances for a panel method.

Some simple fields are ~F1 “ x~i, ~F2 “ y~j or ~F3 “ z~k and any can be used for the calculations.

V “
ż

V
dV (6.1)

ż

V
∇ ¨ ~FdV “

£

BV

~F ¨ ~ndBV (6.2)

For the bidimensional case the volume (actually the volume per length) is evaluated by the

expression (6.3), considering the field x~i, where nxj is the x component of the normal vector

(which is constant for the low order approximation), xcj is the x coordinate of the centroid and

lj is the panel length. An analogous expression would be found for the fields y~j or z~k.

V “
£

BV

~F ¨ ~ndBV « ´
ÿ

jPBody

ż

Pj

xnxjdlj “ ´
ÿ

jPBody

nxj

ż

Pj

xdlj “ ´
ÿ

jPBody

nxjxcj lj (6.3)

The water plane area can be evaluated using Stokes theorem (6.4) and the identity (6.5) is

verified. The next step is to find any vector field, which the curl has z component equals to
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unity, so the calculations on (6.6) can be performed.

ż

S
p∇ ˆ ~F q ¨ ~ndS “

¿

BS

~F ¨ d~s (6.4)

ż

SWaterplane

p∇ ˆ ~F q ¨ ~kdS “
ż

SWetted

p∇ ˆ ~F q ¨ ~ndS (6.5)

∇ ˆ ~F “ α~i ` β~j ` 1~k ñ
ż

SWaterplane

p∇ ˆ ~F q ¨ ~kdS “
ż

SWaterplane

dS “ AWL (6.6)

An example of vector field that satisfies this condition is ~F “ x~j, which reduces the water

plane area calculation to the simple calculation (6.7). For the bidimensional case the results is

analogous.

AWL “
ż

SWetted

p∇ ˆ ~F q ¨ ~ndS “
ż

SWetted

nzdS «
ÿ

jPBody

ż

Pj

nzdS “
ÿ

jPBody

nzj

ż

Pj

dS “

ÿ

jPBody

nzjAj (6.7)
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