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ABSTRACT 

 

Boosted by recent developments in control techniques, computing power, 

communication capabilities and miniaturization technologies, the cooperative 

deployment of multi-agent systems has been drawing the attention of the scientific 

community and industry, for applications in distinct areas such as military battle 

systems, mobile sensor networks, survey & inspection, transport systems and others. 

Inspired by natural biological systems, the use of a cluster of cooperative distributed 

agents has proved to be advantageous in terms of cost, efficiency, flexibility and 

reliability, when compared to conventional monolithic structures relying on a single 

agent. These advantages become even more preeminent for marine applications, 

since autonomous marine vehicles are much cheaper than conventional vessels in 

terms of capital and operational costs, can safely explore previously impenetrable 

environments of the sea, are less subjected to be hampered by rough weather, and 

are more discrete in terms of magnetic and acoustic signatures. To solve the 

associated control problem, this thesis envisages a control strategy relying on two 

layers of implementation. The lower-level layer, based on the receding horizon 

concept (model predictive control and moving horizon estimation), controls the 

vehicles’ individual motion. The higher-level layer, based on consensus theory, 

controls the motion of the entire formation. The receding horizon concept is 

particularly interesting for motion control of marine vehicles due to its capability to 

deal with nonlinear dynamics, parametric uncertainties and external disturbances, 

besides its inherent ability to systematically handle practical constraints on control 

signals and states. Consensus theory is interesting for formation control due to the 

simplicity of the associated control law. The performance of the designed control 

system is assessed through numerical simulations. 

 

 

 

 

 

Keywords: nonlinear control. cooperative control. path following. model predictive 

control. moving horizon estimation. 



 

 

RESUMO 

 

Impulsionado pelos desenvolvimentos recentes nas áreas de controle, capacidade 

computacional, comunicações e miniaturização, o emprego de controle cooperativo 

de sistemas com vários agentes tem atraído a atenção da comunidade científica e 

da indústria, para aplicações em diversas áreas como sistemas militares de 

combate, redes de sensores móveis, pesquisa & inspeção, sistemas de transportes, 

dentre outras. Inspirado pelos sistemas biológicos da natureza, o uso de um grupo 

de agentes distribuídos, operando em modo cooperativo, prova ser vantajoso em 

termos de custo, eficiência, flexibilidade e confiabilidade, quando comparado com as 

estruturas monolíticas convencionais, baseadas num único agente. Estas vantagens 

se tornam ainda mais proeminentes em aplicações marítimas, uma vez que veículos 

marítimos autônomos são muito mais baratos do que navios convencionais em 

termos de custos de capital e de operação, podem operar com segurança em 

regiões do mar outrora inacessíveis, são menos sujeitos aos efeitos deletérios 

associados ao mal tempo, e são mais discretos em termos de assinaturas acústica e 

magnética. Para resolver o problema de controle em tela, esta tese considera o 

emprego de uma estratégia de controle baseada em duas camadas de 

implementação. A camada inferior, baseada no princípio de controle de horizonte 

retrocedido (controle preditivo baseado em modelo e estimação baseada em 

horizonte móvel), é responsável por controlar o movimento individual dos veículos. A 

camada superior, baseada na teoria de consenso, é responsável por controlar o 

movimento da formação. O conceito de horizonte retrocedido é particularmente 

interessante para aplicações de controle de veículos oceânicos devido a sua 

capacidade de lidar com dinâmicas não-lineares, incertezas paramétricas, 

perturbações externas, além da sua inerente capacidade de lidar sistematicamente 

com restrições práticas nos sinais de controle e nos estados. A teoria de consenso é 

interessante para aplicações de controle de formação devido a simplicidade da lei de 

controle associada. O desempenho do sistema de controle projetado é avaliado 

através de simulações numéricas. 

 

 
Palavras-chave: controle não-linear. controle cooperativo. seguimento de rota. 

controle preditivo baseado em modelo. estimação baseada em horizonte móvel.  
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NOTATION 

 

All mathematical variables used in this thesis are represented in italics. To 

reduce the math symbology and render the reading easier, they are written according 

to the following convention: 

Matrices are represented in upper-case letters (𝑀 represents matrix [𝑀]). 

Vectors are represented in lower-case bold letters (𝝂 represents vector 𝝂⃗⃗ ). 

Multidimensional functions are represented lower-case bold letters (𝒇(. )). 

Unidimensional functions are represented lower-case letters (𝑓(. )). 

 

The use of subscript and superscript indexes does not follow a general rule, 

and for that reason, the adopted conventions are explained not in this section, but in 

the main text. 

 

The sets of numbers are expressed by calligraphed letters, according to the 

common practice: 

ℕ is the natural number set. 

ℤ is the integer number set. 

ℤ+is the non-negative integer number set. 

ℝ is the real number set. 

 

The ship motions are named according to the Society of Naval Architects and 

Marine Engineers (SNAME) conventions, as indicated as follow: 

 

Degree of Freedom Motion Direction Operation 

1 Surge 𝑥 

Translation 2 Sway 𝑦 

3 Heave 𝑧 

4 Roll 𝑥 

Rotation 5 Pitch 𝑦 

6 Yaw 𝑧 
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1 INTRODUCTION 

 

This thesis addresses the problem of cooperative control of multi-agent 

systems. In this introductory chapter, the motivation and the main applications of this 

technology are presented. Afterwards, the concerned literature is reviewed, and the 

engineering control problem is formalized for a fleet of Autonomous Marine Vehicles 

(AMVs). Finally, the thesis’ main contributions are identified, and its documental 

structure is presented.  

1.1 Motivation 

The objective of multi-agent systems performing cooperative tasks is to 

accomplish complex missions through the synchronized work of its networked 

agents. The idea of a monolithic structure replaced by a cluster of distributed agents 

has proved to be advantageous in terms of cost (mass production), efficiency (work 

repartition), flexibility (reconfiguration capability) and reliability (redundancy) (Ferri, 

Munafo, & LePage, 2018). This statement is supported not only by artificial systems 

assisted by active control, but also by natural biological systems where strict 

cooperation can be observed, resulting in benefits for groups’ performance, as well 

as for individual’s survivability (Kyrkjebø, 2007). Typical examples of cooperation in 

nature are bacteria swarming, fish schools and bird flocks (Figure 1-1). 

 

Figure 1-1: Examples of cooperation in natural biological systems 

Bacteria swarming
1 Fish school2 Bird flock3 

   
 

Boosted by recent developments in control techniques, computing power, 

communication capabilities and miniaturization technologies, the cooperative 

 
1 Scientists discover bacterial colonies warn the community of deadly threats | SYFY WIRE 
2 https://allthatsinteresting.com/schooling-fish 
3 https://pixabay.com/illustrations/sunset-birds-flock-nature-sky-4576884/ 

https://www.syfy.com/syfy-wire/bacteria-emit-chemical-death-screams-to-warn-microscopic-buddies
https://allthatsinteresting.com/schooling-fish
https://pixabay.com/illustrations/sunset-birds-flock-nature-sky-4576884/
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deployment of multi-agent systems has been pushing the attention of the scientific 

community, for applications in distinct areas such as military battle systems, mobile 

sensor networks, survey & inspection, transport systems, and others (Fax & Murray, 

2004) and (Murray, 2007). 

1.1.1 Military Battle Systems 

Modern military systems are becoming increasingly sophisticated, combining 

the use of manned and unmanned vehicles in complex battlefield environments 

(Murray, 2007). It is expected that fully unmanned systems will be sufficiently robust 

until 2030, allowing them to significantly outnumber humans on the future battlefields 

(Verret, 2005). 

This trend can already be observed in modern battlespace management 

systems which are increasingly considering solutions based on decentralized 

resource allocation followed by centralized execution, relying on the cooperative 

operation of large collections of distributed vehicles, with local computation, global 

communication and decentralized control actions (Murray, 2007).  

The main tasks to be addressed by the military battle systems are (Murray, 

2007): 

1) Vehicle´s formation, where a set of vehicles, manned or unmanned, are 

requested to move in a desired geometric formation; 

2) Cooperative classification and surveillance, consisting in acquiring maximal 

amounts of relevant information using a collection of vehicles, to maintain the 

knowledge of the state of a geographical area. If the vehicles can communicate 

with each other, the shared information can be used to determine their motion; 

3) Cooperative attack and rendezvous, consisting in bringing a collection of 

vehicles to a common location, at a specific time, while minimizing their radar 

exposure through locally optimized individual paths; and 

4) Mixed initiative systems, where a collection of unmanned vehicles and human 

operators must collectively perform a task or a mission. 

 

Example 1-1 (Joint Unmanned Combat Air Systems (J-UCAS)): J-UCAS (Figure 1-2) is a 

“networked system of high performance, weaponized unmanned air vehicles to effectively and 

affordably perform 21st century combat missions, including Suppression of Enemy Air Defenses; 

Electronic Attack; Precision Strike; Surveillance/Reconnaissance; and, Persistent Global Attack within 

the emerging global command and control architecture” (Darpa, 2004). 
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Figure 1-2: Joint Unmanned Combat Air Systems 

 
(Darpa, 2004) 

 

Example 1-2 (Multistatic Antisubmarine Warfare Robotic Network):  The Multistatic Antisubmarine 

Warfare (ASW) Robotic Network (Figure 1-3) is a NATO program developed as an alternative 

approach to conventional ASW surveillance, carried out by submarines and frigates with towed arrays. 

In the proposed architecture, one or more sonar sources installed on stationary buoys or surface 

ships, transmit a sonar signal which reflects from objects and is collected by hydrophone arrays towed 

by Autonomous Underwater Vehicles (AUVs). Once a possible threat is detected, the AUVs track its 

path and transmit the acquired data to the Command and Control (C2) center through a 

communication network composed by mobile Autonomous Surface Crafts (ASCs) (wave gliders) and 

fixed buoys (gateways) (Ferri, Munafo, & LePage, 2018). 

 

Figure 1-3: Multistatic Antisubmarine Warfare Robotic Network 

 
(Ferri, Munafo, & LePage, 2018) 
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1.1.2 Mobile Sensor Networks 

The deployment of mobile networked sensors operating in cooperative mode 

aims to maximize the amount of information that they can gather, since the sensors 

can be repositioned to the most appropriate operating places. 

 
Example 1-3 (Distributed Aperture Observing): a) TechSat 21 Microsatellites: TechSat 21 

experiment, consisting of three microsatellites flying in formation to operate as a single larger 

conventional satellite, with a single and large aperture antenna (Figure 1-4 a) ) (Martin, Klupar, 

Kilberg, & Winter, 2001). b) Terrestrial Planet Finder: A NASA program aiming to detect Earth-like 

planets that orbit nearby stars and to study their atmosphere composition. It is based on a separated 

infrared interferometer composed by four spacecrafts equipped with telescopes that send their data to 

a fifth integrating data spacecraft (Figure 1-4 b) (US Naval observatory, 2017). 

 

Figure 1-4: Distributed aperture observing – a) TechSat 21 microsatellites and b) TPF interferometers 

  
(Martin, Klupar, Kilberg, & Winter, 2001) (US Naval observatory, 2017) 

 

For the marine field, the deployment of fleets of autonomous marine vehicles 

(AMVs) operating in cooperative mode to sample environmental data presents 

advantages compared to the conventional use of research platform vessels. The 

AMVs demand less capital investment to be built (small units), have the potential to 

operate at lower costs, can explore previously impenetrable environments of the sea, 

are less subjected to be hampered by rough weather and are extremely quiet, 

consequently subjected less to self-noise interference (Fernandes, Stevenson, & 

Brierley, 2002).  

Concerns related to the AMVs endurance are less prominent than before due 

to the rapid development of battery technology. The endurance, nowadays ranging 

from hours to several days, is expected to evolve for long-periods of deployments, 

ranging from weeks to months (Monk, et al., 2017). 
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Example 1-4 (Environmental Sampling): The Autonomous Ocean Sampling Network (AOSN), 

composed by a collection of smart and adaptive robotic vehicles (Figure 1-5) that move to areas in 

which they can maximize their gathering performance, as a function of previously acquired data 

(adaptive sampling). The gathered information is transmitted in near real-time to a shore facility to be 

processed by numerical models in order to predict the physical and biological state of the ocean in real 

time over sustained periods (Monterey Bay Aquarium Research Institute, 2016). 

 
Figure 1-5: Autonomous Ocean Sampling Network (AOSN) 

 
(Whitt & et. al, 2020) 

1.1.3 Survey & Inspection 

The deployment of AUVs supported by ASCs (Figure 1-6) offers a flexible and 

economical alternative to conduct underwater surveys and inspections by minimizing 

the need for surface support vessels, while performing more effectively the assigned 

tasks.  

Figure 1-6: AUV and ASC conducting survey & inspection 

 
(Woods Hole Oceanographic Institution, 2019) 

 
Example 1-5 (Survey & Inspection): a) Geophysical Surveys: marine habitat mapping (Figure 1-7 

a) and b) Subsea Inspections: pipeline mapping and inspection (Figure 1-7 b).  
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Figure 1-7: Survey & Inspection – a) Marine habitat mapping and b) Pipeline mapping and inspection 

  
(Hagen P. E., 2016) 

1.1.4 Transport Systems 

Self-driving cars on intelligent highways can no longer be a futuristic fictional 

scenario. The “Intelligent Vehicle/Highway System” (IVHS) profits from recent 

developments in the fields of electronics, information processing, communications 

and control, many of them derived from military programs. This system considers 

bidirectional communications between vehicles (equipped with specialized sensors 

and wireless communications systems), as well as between the vehicles and the 

highway traffic-control centers. While the former intends to assure safer operations 

(collision warning and avoidance), the latter intends to coordinate the formation of the 

vehicles at closely spaced intervals (platoons) (Martin, Marini, & Tosunoglu, 1999). 

The same concept has been extended for marine shipping, where fully autonomous 

ships are foreseen for the next decade.  

Example 1-6 (Transport Systems): a) Intelligent Highways: Futurist conception of intelligent 

airways at Coruscant planet (Figure 1-8 a) (http://starwars.wikia.com). b) Autonomous Ships: 

ROSATOM maritime autonomous surface ships in convoys following a nuclear-powered icebreaker to 

improve efficiency of shipping along the Northern Sea route (Figure 1-8 b) (Nielsen, 2018). 

 

Figure 1-8: Transport system – a) Intelligent airways and b) Autonomous surface ships 

  
(http://starwars.wikia.com) (Nielsen, 2018) 
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1.2 Literature Review 

The field of cooperative control of multi-agent systems dates to the late 1980s, 

initially in the area of mobile robotics. Prior to this time, research has never 

addressed the topics of robotic systems and distributed problem-solving systems 

together (Arai, Pagello, & Parker, 2002). In the 1990s, supported by the development 

of inexpensive and reliable wireless communication systems, research in this field 

increased significantly (Murray, 2007). 

In the late 1990s and early 2000s, research related to cooperative control of 

multiple Unmanned Aerial Vehicles (UAVs) gained momentum in the United States, 

prompting further advances which have spread throughout new applications in 

several areas such as military battle systems, mobile sensor networks, survey & 

inspection, and transport systems (Murray, 2007).  

In the 2000s, the scientific control community has increased its attention 

towards Autonomous Marine Vehicles (AMVs), with applications involving the 

deployment of Autonomous Underwater Vehicles (AUVs), Autonomous Surface 

Crafts (ASCs) and a combination of both. Although these applications present unique 

nuances linked to the constraints imposed by the marine environment, some control 

formation strategies derived from mobile robots and UAVs can be adapted and 

applied with minor changes (Li, Zhu, & Qian, 2014).   

Originally conceived for military applications, the AMVs have also found use in 

the marine geoscience domain. The AUVs, particularly, have become the best 

oceanography research tool due to their ability to explore autonomously extreme sea 

environments, while providing higher quality data if compared with conventional 

research surface vessels, especially in deep water. The primary applications concern 

volcanism and hydrothermal vent studies, mapping and monitoring of low-

temperature fluid escape features and chemosynthetic ecosystems, benthic habitat 

mapping in shallow and deep-water environments, and mapping of seafloor 

morphological features (Wynn, et al., 2014). 

For didactical purposes, the present review will be conducted in four stages, 

according to the control problem focus of the reference literature: 

• Individual Motion Control; 

• Model Predictive Control; 

• Formation Control Strategies; and 

• Cooperative Control.   
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1.2.1 Individual Motion Control 

The motion control problem for marine vehicles can be roughly categorized as 

point stabilization, trajectory tracking or path following. In point stabilization, the 

control objective is to stabilize the vehicle at a given point, with a desired orientation. 

In trajectory tracking, the objective is to track a geometric path with an associated 

timing specification. If the timing specification requirement is derogated, the problem 

reduces to path following (Encarnação & Pascoal, 2001). Therefore, trajectory 

tracking can be considered as a generalized case of point stabilization and path 

following can be considered as a relaxed case of trajectory tracking. 

The degree of difficulty involved in solving these problems is highly dependent 

on the vehicle’s configuration. For fully actuated systems, the problems are now 

reasonably well understood and can be solved by using the control allocation map. 

However, since it is usually costly or even unfeasible to fully actuate autonomous 

vehicles (due to weight, reliability, complexity, and efficiency considerations), most of 

these systems are underactuated and the design of their motion control system is 

subjected to challenging technical issues, normally associated with control 

performance and close-loop stability (Das, Subudhi, & Pati, 2016). 

The point stabilization problem for underactuated vehicles concerns the 

inexistence of smooth (or even continuous) constant state-feedback stabilizing 

control laws. Approaches to overcome this theoretical issue consider the use of 

periodic time-varying control laws, hybrid switched seesaw control laws and virtual 

velocity controls, under the premise that underactuated vehicles are locally 

controllable on a smaller scale (Greytak & Hover, 2008). Dynamic positioning, which 

is beyond the scope of the present thesis, can be categorized as a typical problem of 

point stabilization. 

The trajectory tracking problem for underactuated vehicles relies on the fact 

that most of these systems are not fully feedback linearizable and exhibit 

nonholonomic constraints, limiting the direct application of standard nonlinear control 

tools (Aguiar & Hespanha, 2003). Approaches to overcome these theoretical issues 

consider the use of local linearization combined with multi-variable model decoupling4 

(Pettersen & Nijmeijer, 2001) and (Lefeber, Pettersen, & Nijmeijer, 2003), 

linearization of the generalized vehicle error dynamics over the corresponding 

 
4 To steer the same number of degrees of freedom as the number of controls available. 
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trimming path5 combined with gain scheduling techniques (Kaminer, Pascoal, 

Hallberg, & Silvestre, 1998), and nonlinear Lyapunov-based designs (Aguiar & 

Hespanha, 2003). 

The use of path following control dates in the early 1990s, with applications in 

the field of ground robotics (Sansom, 1992). For marine applications, this topic has 

received relatively less attention than point stabilization and trajectory tracking until 

the early 2000s. The basic assumption in path following control is that the vehicle’s 

forward speed tracks a desired speed profile, while the controller acts on the vehicle 

orientation to drive it to the path. Compared to trajectory tracking, smoother 

convergence to the path can be achieved and the control signals are less subjected 

to saturation, due to derogation of the time-parameterized path requirement 

(Encarnação & Pascoal, 2001). It is particularly interesting for oceanographic 

applications since the missions are not normally driven by restrictive temporal 

specifications. 

 The first methodologies to solve the path following problem in AUV 

applications relied on nonlinear Lyapunov-based control strategies as presented in 

(Encarnação & Pascoal, 2000) and (Encarnação, Pascoal, & Arcak, 2000), where a 

kinematic controller is merged into a standard integrator backstepping framework. 

The task of the kinematic controller consists in tracking the orthogonal projection of 

the vehicle position on the path (virtual target point). 

 However, this methodology imposes a severe restriction in the vehicle’s initial 

position, which must lie inside a path centered tube with radius smaller than the 

path’s smallest radius of curvature. If this condition is not observed, the position of 

the virtual target projection on the path is not well defined, and singularities occur in 

the control design. 

This restriction is lifted in (Lapierre, Soetanto, & Pascoal, 2003b) by controlling 

the rate of progression of the virtual target along the path, thus introducing an extra 

degree of freedom that can be explored to avoid such singularities. Consequently, 

the problems that arise when the position of the virtual target point is simply defined 

by the projection of the actual vehicle on the path are bypassed. As in the previous 

work, the controller design starts at a kinematic level and evolves to a dynamic 

setting using backstepping techniques. 

 
5 To obtain a linear time invariant system. 
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In the previous works, the control design heavily relied on accurate knowledge 

of the vehicle dynamics. The effect of parametric modeling uncertainties is addressed 

in (Aguiar & Hespanha, 2004) and (Aguiar & Hespanha, 2007) for path following and 

trajectory tracking. Basically, a hybrid controller derived from the combination of an 

adaptive switching supervisory control with a nonlinear Lyapunov-based tracking 

control law was used. However, the effects of measurement noise and environmental 

disturbances were not considered in the analysis. 

Such effects are addressed in (Aguiar & Pascoal, 2007b), which also solved 

the problem of input saturations by considering surge and yaw speeds as controls. 

Additionally, the problem of unmodeled dynamics was tackled by merging the 

dynamic and kinematic tasks through extended Lyapunov/backstepping based 

techniques, however at the expense of obtaining more complex control laws. To 

overcome this problem, the authors proposed to separate these tasks again in an 

inner-outer loop control structure, so that the inner loop deals with the vehicle 

dynamics (speed tracking scheme), and the outer loop deals with the control laws 

(guidance scheme). 

This strategy is implemented by (Maurya, Aguiar, & Pascoal, 2009) for a path 

following controller. In this control architecture, the kinematic outer loop acts as a 

heading command generator, calculating the heading angle required to drive the 

vehicle along the desired path and issuing this information to the inner dynamic loop, 

composed by the feedback connection of the vehicle itself and a classical heading 

controller (autopilot). Since the two loops present decoupled dynamics and 

considering that the outer loop does not require in-depth knowledge of the vehicle’s 

internal dynamics, it is possible to use it on a wide range of vehicles already 

equipped with a heading autopilot. This approach has been widely used in 

combination with cooperative controllers. Focusing mainly on the experimental 

results, this work does not present the stability proof of the inner-outer loop control 

structure. 

This aspect is dealt with in (Morishita, 2018) and  (Maurya, Morishita, Pascoal, 

& Aguiar, 2022). Taking advantage of nonlinear control concepts such as system's 

input-output stability (IOS) properties and the small-gain theorem, it was possible to 

characterize the closed loop stability, while obtaining quantitative relationships of the 

tuning parameters. 
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As expected, trajectory tracking and path following approaches present both 

advantages and disadvantages. As an attempt to mutualize the benefits of both 

approaches, an intermediate strategy denominated path maneuvering was 

conceived. In path manoeuvring, the time-dependence derived from trajectory 

tracking exists, but is flexible. Roughly stating, while path following focuses on the 

geometric task and trajectory tracking focuses on the dynamic task, path 

manoeuvring takes both into account. In this context, (Burger & Pettersen, 2010) 

developed a path manoeuvring controller, in which the behavior can be smoothly 

changed between both modes. Using a trajectory tracking control structure, the real 

time is substituted by a virtual time, for which the rate of change is set as a function 

of the distance between the vehicle itself and its individual virtual target. 

An alternative control scheme mutualizing the advantages of PID and sliding 

mode control schemes is presented in (Burger, Pavlov, & Pettersen, 2009), where 

the use of conditional integrators is introduced. This approach inherits the robustness 

of integral action and sliding mode control, while avoiding their associated drawbacks 

such as chattering and integrator wind-up. The tuning process of the integrators is 

intuitive, taking advantage of the experience derived from these two well-known 

control methods. 

Many control solutions for the motion control problem do not consider the 

existing input constraints, thus the associated control laws hold locally, in regions of 

attraction where such constraints are not violated. However, it is very difficult to 

characterize such regions in order to determine the possible starting 

positions/orientations of the vehicle.  

In recent years, thanks to developments in computer technology and 

optimization theory, MPC has become one of the most popular control techniques 

also for fast dynamics applications such as motion control. Its ability to systematically 

handle physical constraints renders it particularly interesting to solve more 

challenging versions of the path following problem, while managing the previously 

mentioned issues (Said, 2018) and (Hung N. T., Rego, Crasta, & Pascoal, 2018). 

 Such approach is expected to outperform other path following strategies 

by pushing the actuators close to their limits. Additionally, it can easily deal with 

other tasks such as path planning (Shen, Shi, & Buckham, 2017) and obstacle 

avoidance (Hung N. , et al., 2022). 
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1.2.2 Model Predictive Control 

The literature presents several publications reviewing MPC, covering historic 

developments, concepts, algorithms, recent progress and future perspectives as 

presented in (Garcia, Prett, & Morari, 1989), (Mayne, Rawlings, Rao, & Skokaert, 

2000) and (Mayne, 2014). 

Optimal control theory plays an important role in the design of modern control 

systems, and also in the field of applied mathematics. Its objective is the minimization 

of the cost of specific processes6. Pioneer theoretical results mainly include 

Bellman’s principle of optimality and Pontryagin’s minimum principle (Kirk, 2004).  

In the late 1950s and early 1960s, the Smith Predictor (Smith, 1957), the 

Linear Quadratic Gaussian (LQG) / Linear Quadratic Regulator (LQR) algorithms 

(Kalman, 1960), the correlation of optimal control and linear programming (Zadeh & 

Whalen, 1962) and the RH control concept (Propoi, 1963) laid down the basis for the 

development of MPC (Garcia, Prett, & Morari, 1989). However, these control 

methods cannot handle system constraints7 on state, output and control variables, 

limiting their use in practical applications8. 

Motivated by the need of the oil industry to maximize its profitability by 

optimizing its internal processes, the MPC concept was conceived in the late 1960s, 

and intensively developed through the 1970s, as a solution for the previously 

mentioned limitation. It is relevant to mention the predictive functional control 

technique proposed by Jacques Richalet and the application of the RH control 

concept for state-space models (Wang, 2009).  

The first-generation of commercial MPC packages, dating back to the late 

1970s and the 1980s, include the Model Predictive Heuristic Control9 (Richalet, 

Rault, Testud, & Papon, 1978) and the Dynamic Matrix Control (DMC) (Cutler & 

Ramaker, 1980). In both algorithms, a dynamic model of the plant (respectively 

relying on impulse and step responses) is used to predict the effect of future control 

actions over the system outputs, and an algorithm is used to solve the open-loop 

optimal control problem (Garcia, Prett, & Morari, 1989). However, in both 

 
6 Or alternatively, the maximization of the return from specific processes. 
7 If the constraints are ignored in the problem formulation, the controller performance is endangered, demanding 

ad hoc fixups that also increase the commissioning costs of the system (Garcia, Prett, & Morari, 1989). 
8 The optimal solution can often be found near or on the boundary of the operational region defined by the 

system constraints. Consequently, it is mandatory to take them into account in order to assure the stability and 

performance of the control system, as well as the profitability of the controlled process. 
9 Later denominated “Identification Command” (IDCOM). 
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approaches, the treatment of control and output constraints is ad hoc (Mayne, 

Rawlings, Rao, & Skokaert, 2000).  

This limitation was lifted in the second-generation package, with the Quadratic 

Dynamic Matrix Control (QDMC) (Garcia & Morshedi, 1986), where quadratic 

programming is used to exactly solve the constrained open-loop optimal control 

problem, when the system is linear, the cost is quadratic, and the control and state 

constraints are defined by linear inequalities. This technique also allows, if 

necessary, temporary violation of some output constraints, enlarging the set of states 

that can be properly controlled  (Mayne, Rawlings, Rao, & Skokaert, 2000). 

Different from these algorithms, the Generalized Predictive Controller (GPC) 

(Clarke, Mohtadi, & Tuffs, 1987) focused on adaptive control. Incorporating a transfer 

function model, this algorithm applies for SISO systems in the absence of constraints 

(Garcia, Prett, & Morari, 1989). 

The third-generation package, dating the 1990s, considers several levels of 

constraints (hard, soft, ranked), provides mechanisms to recover from OCP recursive 

unfeasibility, addresses the issues related to time varying control structures, being 

able to deal with a wide range of process dynamics and controller specifications (Qin 

& Badgwell, 1997). 

Afterwards, different kinds of MPC products with different features and 

improvements have been developed and marketed by a number of companies in 

process industries (Hashizume, 2015). However, the requirement of heavy 

computational burden10 has limited MPC to applications with slow dynamics, with 

sample times measured in seconds or even in minutes (Wang & Boyd, 2009). 

With recent developments of computer technology and optimization theory, the 

computational barriers have been largely lifted and MPC has become one of the few 

control techniques that has been receiving an increasingly interest from researchers 

in both the academic and industrial11 sectors. 

In this context, (Hung, Rego, Crasta, & Pascoal, 2018) developed two input-

constrained nonlinear controllers, the first a Lyapunov-based control and the second 

a sample-data Lyapunov-Based MPC (L-MPC). The latter incorporates an additional 

constraint in the optimal control problem (OCP) that speeds up the convergence rate 

 
10 Associated with the online solution of the optimization problem. 
11 MPC is often cited as the Most Popular advanced Control method for industrial process applications. 

However, the PID controller is still the backbone of automatic control since it is industry proven, robust, 

transparent and simple, despite its inherent limitations (Wang, 2009). 
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of the Lyapunov function, when compared to the former. Both controllers are globally 

asymptotically stable, thus implying that the vehicles converge to and follow their 

assigned paths, regardless of their initial states. Similar approaches are found in 

(Budiyono, 2011) and (Steenson, et al., 2014). 

However, motion control in a three-dimensional space requires the use of 

higher-order models which, in traditional MPC schemes, leads to computational 

complexity and loss of controllability. To solve this issue (Jagtap, et al., 2016) 

proposes to treat the horizontal and vertical motions separately and independently, 

replacing the initial higher-order model by two independent time-varying linearized 

reduced-order models. In this way, the MPC problem is formulated as two 

independent optimization problems. 

The receding horizon (RH) principle in which MPC relies on can also be 

deployed to design high-performance state estimators and filters, as an alternative to 

the Extended Kalman Filter (EKF). Due to its relative simplicity and demonstrated 

efficacy, the EKF is widely used in control system applications. However, there are 

many barriers related to its practical implementation, some of them related to its 

inability to proper handle state constraints as well as its limitation to fully exploit the 

nonlinear internal model.  

Recently, due to its inherent characteristics, the Moving Horizon Estimator 

(MHE) has been increasingly used as a tool to solve the state estimation problem 

while solving the issues previously mentioned (Haseltine & Rawlings, 2005). 

Additionally, according to comparative studies, MHE tends to outperform EKF 

also in terms of initialization, convergence and accuracy, however at the expense 

of computational burden (Said, 2018). 

In fact, MHE can be understood as the dual of MPC and the development of 

both techniques has been strongly interconnected (Kuhl, Diehl, Kraus, Schloder, & 

Bock, 2011). As MPC, MHE is an optimization technique. It uses a series of past 

measurements, corrupted by noise and other inaccuracies, to produce precise 

estimates of unknown variables or parameters (Mehrez, 2019). The literature 

concerning MHE focuses mainly to UMR such the works of (Mehrez, 2019), 

(Brembeck, 2019) and (Jayasiri, Gros, & Mann, 2016), but a considerable number of 

strategies can be applied for AMV with minor adaptations. 

An important aspect to point out is that MHE approach is a reformulation of the 

general optimization objective of the Kalman filter theory (Simon, 2010), since it can 
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be understood as a real-time calculable approximation of the full-information filter 

(Brembeck, 2019), leading to advantages such as improved estimates, greater 

robustness against external disturbances, poor guesses of the initial state, and tuning 

parameters (Haseltine & Rawlings, 2005). However, the associated price of such 

benefits is the computational burden required to solve the optimization problem 

online. 

A challenging issue concerning the use of MHE refers to the definition of 

the arrival cost term in the OCP total cost function. This term is conceived to 

introduce information from past measurements into the current estimates, since 

the time window moves constantly. As stability and performance are strongly 

impacted by this term, research on this subject has gained significant momentum 

recently (Talla Ouambo, Boum, Imano, & Corriou, 2021). 

Finally, it is important to point out that topics such as automatic obstacle 

tracking, and collision avoidance (COLAV) are still at early stages of development. 

However, preliminary results indicate that it is advantageous to tackle these issues in 

the MPC framework, since it is possible to consider the obstacles’ motion, the 

evolution of the dynamic environment, and the different operational constraints. Thus, 

compared to other methods, it is possible to attain higher design flexibility combined 

with best performance (Hagen, Kufoalor, Brekke, & Johansen, 2018). 

1.2.3 Formation Control Strategies 

The literature concerning formation control strategies is vast, referring mainly 

to Unmanned Mobile Robots (UMRs) and Unmanned Aerial Vehicles (UAVs). 

Fortunately, a considerable number of strategies can be applied for Autonomous 

Marine Vehicles (AMVs) with minor adaptations (Li, Zhu, & Qian, 2014) and (Muchiri, 

Kamau, & Ikua, 2017). 

An extensive analysis of such strategies is a laborious task since many 

variations can be obtained from the combination of the existing algorithms. Therefore, 

for practical reasons, the strategies will be grouped into four main categories: 

behavior-based methods, artificial potential field techniques, leader-follower schemes 

and virtual structure schemes (Hadi, Khosravi, & Sarhadi, 2021). 

In behavior-based methods, each agent has several basic motor schemas 

representing different desired behaviors such as following-wall, collision and obstacle 

avoidance, source seeking and maintaining formation. Each motor schema generates 
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a vector to characterize the desired control response associated to the behavior. The 

resulting control action of the agent is the result of the hierarchization of the 

behaviors, obtained through the weighted average of the motor schema vectors. This 

approach is a simple and intuitive tool to achieve an adequate tradeoff between 

multiple competing objectives, however, due to the lack of a precise definition of the 

behaviors, it is difficult to formalize the problem mathematically, jeopardizing the 

formal proofs of convergence and stability. For that reason, this approach is normally 

associated with other control methods (Li, Zhu, & Qian, 2014). 

In artificial potential field techniques, each agent in the formation is driven by a 

field of forces associated with artificial potentials assigned to its neighborhood entities 

(target points, other vehicles and obstacles). Each agent moves freely, subjected to 

attractive and repulsive forces, in a flexible geometric formation. To deal with 

environmental complexities, new strategies based on queues and artificial potential 

trenches have been proposed. In the latter, each agent is attracted to and moves 

along the bottom of a potential field, while achieving its relative position in the 

formation. These techniques inherit a natural ability to deal with obstacle avoidance 

and inter-agent collision, in a movable formation pattern. Different from behavior-

based methods, this approach can be mathematically formalized, allowing the formal 

analysis of convergence and stability. However, designing potential field functions is 

not a straightforward task, and the classical problem of local minimum identification 

remains an issue to be dealt with (Li, Zhu, & Qian, 2014). 

In leader-follower schemes, an agent is set to be the leader of the formation 

while the remaining ones are set to be the followers. The key concept is that the 

leader tracks a predefined referenced trajectory (sometimes given by a virtual target) 

and the followers track transformed versions of the leader’s states, according to 

predefined plans. Conventionally, the information flow between agents is 

unidirectional, from the leader to the followers. This characteristic is particularly 

interesting for marine vehicles, which are subjected to underwater communication 

issues. The main advantage of this approach relies on its intuitiveness and simplistic 

implementation since the followers only need to maneuver according to the leader. 

However, in general, there is no feedback connection between the leader and the 

followers, so if the leader fails, the entire formation also fails (Li, Zhu, & Qian, 2014). 

In virtual structure schemes, a rigid geometric structure is introduced as a 

reference and the agents act as if they were embedded particles of such structure. 
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The formation control is derived in three steps. The first step consists in defining the 

dynamics of the virtual structure. In the second step, the desired motion of the virtual 

structure is translated into desired motions for each agent. Finally, the third step 

consists in designing the individual track controllers for each agent. This approach is 

commonly used in spacecraft or small satellite formation flight control (Chen & Wang, 

2005). Despite the simplicity to coordinate the behavior of the whole formation, the 

rigid body like motion of the virtual structure imposes several limitations on its 

potential applications. This approach is not indicated for time-varying formation 

patterns, subject to frequent reconfigurations. It is also not suitable for formations 

containing an elevated number of agents, due to the complexity induced by the inter-

agent constraints. Additionally, applications requiring obstacle avoiding capacity 

cannot be properly addressed following this approach (Li, Zhu, & Qian, 2014) and 

(Xiang, 2011). 

In (Ren, 2007), it is shown that the formation control algorithms previously 

mentioned can be unified in the general framework of consensus approach, which 

relies on the idea that each agent updates its synchronization state based on the 

synchronization states of its neighbors, so that they converge to a common value 

(consensus). By appropriately defining the synchronization states, and once 

consensus is achieved, the formation control problem is indirectly solved. Requiring 

only a communication topology among the agents, the main advantage of this 

approach concerns the simplicity of consensus control law (Olfati-Saber, Fax, & 

Murray, 2007) and (Gulzar, Rizvi, Javed, Munir, & Asif, 2018). 

There are many other methods in formation control such as generalized 

coordinates, navigation-based approach, genetic algorithm, neural networks, fuzzy 

logic, reinforcement learning, flocking, rendezvous, cyclic pursuing, etc., (Chen & 

Wang, 2005), which are beyond the scope of this thesis. However, it is relevant to 

mention that Model Predictive Control (MPC) has recently also been adopted to 

obtain distributed flocking cooperative control strategies (Lyu, Hu, Chen, Zhao, & 

Pan, 2019). 

There are no strict rules to choose the most suitable method for a given 

application. The designer is even free to combine several methods, as reported in 

(Beard, Lawton, & Hadaegh, 2001), which proposes a coordination architecture that 

combines leader-follower, behavior-based and virtual structure approaches, applied 

to multiple spacecraft formation control in deep space. 
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The ultimate goal of all of these strategies is to synchronize the formation. 

Inspired by the examples observed in nature, the synchronized motion of artificial 

systems assisted by active control dates to the 1980s in the academic and research 

domains, and to the 2000s in the commercial industry. Synchronization can be 

understood as a type of time conformity between systems and can be categorized 

into the concepts of cooperation and coordination. The choice of the synchronization 

strategy affects the systems behaviors (Kyrkjebø, 2007). 

In cooperation, all agents are equally responsible for performing the motion 

paths/trajectories (group objective), while assuring the desired geometry formation 

(geometric objective). Since the agents must have some knowledge of the states of 

other agents, the information flow among them is bidirectional.  

Differently, coordination requires that one agent (leader) takes the 

responsibility for achieving the group objective, while the other agents (followers) 

remain responsible only for attaining the geometric objective. The leader governs the 

motion of the followers, but its behavior is not influenced by them. Since the 

information flow is unidirectional, from the leader to the followers, the coordination 

strategy attenuates information flow issues (Kyrkjebø, 2007). 

The degree of synchronization, ranging from strictly cooperative to strictly 

coordinated, determines the group behavior in case of individual faults. For example, 

in a strictly cooperative redundant group, if one agent fails, the group behavior is 

endangered. On the other hand, in a strictly coordinated redundant group, this 

problem does not happen. 

However, the way in which the group behavior will respond to individual faults 

depends mainly on the control design itself. It is possible to design cooperative 

systems that disregard faulty agents, thus not impacting the group behavior or 

coordinated systems that keep a feedback connection between faulty followers and 

the leader, thus affecting the group behavior. Consequently, a nominally cooperative 

system may behave as a coordinated system in a situation of failure and vice-versa 

(Kyrkjebø, 2007).  

Furthermore, the control scheme can be designed to reconfigure itself in case 

of failure. For example, if the leader fails in a cooperative control scheme, one of the 

remaining agents can be converted into leader (sleeping leader) to govern the motion 

of the group (Kyrkjebø, 2007). 
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The main technical issues associated with the synchronized motion of marine 

vehicles refer to their inherent dynamics characteristics, environmental complexity, 

and underwater communication constraints (Li, Zhu, & Qian, 2014). 

The motion control problem of marine vehicles faces particular problems. 

Besides the high inertia-damping ratio, there are also difficulties related to the 

hydrodynamic aspects, reflected in a set of complex hydrodynamic coefficients that 

must be determined and taken into account in the associated formulation 

(Encarnação & Pascoal, 2000). However, some coefficients cannot be accurately 

measured or determined due to technological constraints (Li, Zhu, & Qian, 2014). 

Additionally, the assessed values may not hold during extreme maneuvers, when the 

vehicle experiences large angles of attack and sideslip, emphasizing nonlinearities 

and cross couplings (Aguiar & Hespanha, 2007). Consequently, control applications 

normally adopt simplified mathematical models, thus inheriting the drawbacks 

correlated to neglected dynamics (Li, Zhu, & Qian, 2014). 

Another aspect that differentiates marine vehicle applications is the 

environmental complexity, reflected in two problems: obstacle avoidance and 

environmental disturbances. The former problem is commonly dealt with by behavior-

based and/or artificial potential field techniques. An alternative method consists in 

modifying the formation structure (size and shape) when it passes through restricted 

areas, restoring its original configuration immediately after the passage. More 

recently, MPC has also been used to tackle this problem, for fixed and/or moving 

obstacles. Unfortunately, for the latter problem, many potential sea-proven solutions 

are still stagnating on theoretical stages due to its inherent complexity (Li, Zhu, & 

Qian, 2014).  

The last issue concerns underwater communication constraints. Marine 

vehicles operating in synchronized mode need to exchange information such as 

position and velocity to accomplish the geometric task. Nowadays, underwater 

communications rely mainly on acoustic systems. However, underwater acoustic 

communications are plagued with intermittent failures, latency, and multipath effects. 

Additionally, they are limited in range and bandwidth. Different approaches have 

been proposed to overcome these constraints, most of them relying on the 

minimization of the information flow (Li, Zhu, & Qian, 2014) and (Gulzar M. M., Rizvi, 

Javed, Munir, & Asif, 2018). 
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Currently, from the aspect of communication technology, topics concerning 

marine wireless communication systems are gaining momentum, combined with key 

technologies of multi-agent cluster cooperation such as information fusion, mission 

planning and cooperative control (Ma, Liu, Zhao, & Zhao, 2022) and (Liu, Shan, Mao, 

& Wang, 2022). 

1.2.4 Cooperative Control 

Although cooperative control of AMVs dates back the early 1980s (Oh, Park, & 

Ahn, 2015) and (Das, Subudhi, & Pati, 2016), the migration of this application from 

academic to marine industry domain took place in the 2000s (Blidberg, 2001).  

In this context, it is relevant to mention the pioneer ASIMOV project, a 

research and development effort started in 1998 with the help and support of the 

Commission of the European Communities, for marine data acquisition and 

transmission. The key concept of the project consists in the coordinated operation of 

an ASC and AUV (Pascoal, et al., 2000).  

In this project, the cooperative control problem was firstly addressed in 

(Encarnação & Pascoal, 2001)12, considering a leader-follower approach, where a 

slave vehicle (AUV) is forced to track the projection of the master vehicle (ASC) into 

the 2D nominal path. However, this strategy demands a significant amount of 

information exchange among the vehicles and can´t be easily generalized to more 

than two vehicles.   

To attenuate this drawback, (Lapierre, Soetanto, & Pascoal, 2003a) proposes 

a leader-follower approach in which a Lyapunov-based backstepping control law 

steers two vehicles along identical parallel paths, while ensuring that the lateral 

distance among them remains constant. Executing the same path following 

algorithm, the leader travels along its assigned path, while the follower adjusts its 

speed based on the "along-path distance" gap related to the leader (the coordination 

variable). Consequently, only the leader “along-path distance” is required to be sent 

to the follower and the amount of information exchanges are kept to a minimum. 

Based on the virtual structure method, (Skjetne, Moi, & Fossen, 2002) 

proposes a flexible backstepping-based control scheme in which the vehicles 

maneuver as a single unit, following a virtual Formation Reference Point (FRP) that 

tracks a predefined path (geometric task), complying with a predefined speed profile 

 
12 For the motion control problem, trajectory tracking and path following approaches were considered. 
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(dynamic task). In this case, the geometric and dynamic tasks rely on decentralized 

and centralized control systems, respectively.  

However, as the centralized control system receives full state information of all 

vehicles and returns the path and speed information for each vehicle, the volume of 

communicated real-time signals is not irrelevant. This drawback is solved in (Skjetne, 

Ihle, & Fossen, 2003), where a decentralized dynamic control system was conceived 

to coordinate each vehicle based only on the scalar path variables of other vehicles, 

thus drastically reducing the volume of communicated signals. 

Since the information flow plays an essential role in the formation control 

problem, it is necessary to define what information must be exchanged and how to 

enable this exchange. Concerning the first aspect, the definition of the coordination 

(or synchronization) variable does not have a straightforward answer, since its choice 

depends on path characteristics (Ghabcheloo, Pascoal, Silvestre, & Kaminer, 2005) 

and (Ghabcheloo, Pascoal, Silvestre, & Kaminer, 2007)13. Concerning the second 

aspect, a consecrated tool used to model the inter-vehicle communication topology is 

the Graph Theory, involving the elegant concept of Graph Laplacian, a matrix 

representation of the graph associated with a given communication network.  

It is relevant to mention that the relationship between the location of the 

Laplacian eigenvalues and the graph structure can be used to identify desirable and 

undesirable formation interconnection topologies based on a Nyquist-like stability 

criterion as presented in (Fax & Murray, 2002) and (Fax & Murray, 2004). An 

overview of networked control systems is presented in (Zampieri, 2008). 

In 2006, the 6th framework of the European Commission (FP6) launched the 

multinational GREX14 project, entitled “Coordination and Control of Cooperating 

Heterogeneous Unmanned Systems in Uncertain Environments”.  Its main objective 

was to develop theoretical methods and practical tools for multiple vehicle 

cooperation. Emphasis was placed on the coordination of marine vehicles, the 

promising main tool for exploration and exploitation of the ocean (European 

Commission, 2008), (MC Marketing Consulting, n.d.), (Aguiar, et al., 2009), (Kalwa, 

2009) and (Yao, 2013). 

 
13 In these references, the concept of path re-parametrization was introduced in applications of multiple wheeled 

vehicles following parallel straight lines and scaled circumference paths. 
14 Latin word for “herd”. 
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In the field of marine geosciences, it is relevant to mention the EC WiMUST 

(Widely scalable Mobile Underwater Sonar Technology) project, supported by the 

European Commission under the Horizon 2020 Framework Program. Its main goal is 

to conceive and design an intelligent team of cooperative AMVs, acting as intelligent 

sensing and communicating nodes of a reconfigurable moving acoustic network, to 

perform geophysical and geotechnical acoustic surveys at sea (WiMUST Project, 

2019). Under this project, (Abreu, Morishita, Pascoal, Ribeiro, & Silva, 2016) 

developed a cooperative controller for a fleet of streamer-vehicle systems. 

For marine vehicles, a relatively common practice to solve the cooperative 

deployment problem is the adoption of a segregated control architecture, unfolded in 

two control layers. The lower layer is responsible for the individual motion control of 

the vehicles, while the higher layer is in charge of the collective motion control of the 

entire formation. This strategy is adopted in (Ghabcheloo, et al., 2009), by combining 

a path following controller and a consensus-based cooperative controller. In the 

consensus-based framework, the control laws adjust the vehicles’ speeds around 

their nominal values to achieve the desired formation pattern (synchronization). Even 

considering the occurrence of time delays, this reference is based on the unrealistic 

premise that each vehicle transmits continuously its coordination state to a subset of 

other vehicles, according to a predefined communication topology. 

This limitation is lifted in (Vanni, 2007), (Vanni, Aguiar, & Pascoal, 2007), 

(Aguiar & Pascoal, 2007a) and (Vanni, Aguiar, & Pascoal, 2008) by incorporating a 

logic-based communication module at the cooperative controller level. This 

architecture considers the fact that communication does not occur in a continuous 

manner15, has an associated cost, and is subjected to non-homogeneous time 

delays. Essentially, each vehicle estimates, in a synchronized way, its own state16 

and the states of the other neighboring vehicles. When the difference between the 

actual and the estimated own states exceeds a certain threshold, the vehicle 

transmits its synchronization parameter to allow the other vehicles to update their 

estimates. Consequently, communication occurs asynchronously at discrete instants 

of time. 

 
15 It is important to quote that continuous communication is undesirable, and perhaps even not necessary in 

practice. 
16 Self-state estimation. 
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Another problem concerning underwater communication is data loss. This 

issue is properly addressed in (Rout & Subudhi, 2016), where an event-based 

communication algorithm, based on a continuous-discrete extended Kalman Filter 

(CD-EKF), is conceived to solve the problem of lack of information during 

communication failures. Using a Lyapunov-based backstepping approach in a leader-

follower framework, when data loss occurs, the filter algorithm is activated for each 

follower vehicle to estimate the states of the leader.  

Thus far, all the listed references considered only fixed reference paths. In 

(Jain, Alessandretti, Aguiar, & de Souza, 2018) the reference paths are time-varying, 

since the inertial reference frame moves. This approach is particularly interesting for 

applications such as convoy protection, underway replenishment, source seeking and 

autonomous landing on moving platforms. Additionally, the decentralized cooperative 

controller incorporates a self-triggered algorithm to reduce the frequency of 

communication in relation to traditional periodic transmission methods. However, 

practical issues such as communication losses and time delays are not considered.  

In (Hung & Pascoal, 2018), a decentralized consensus-based cooperative 

controller was combined with the sampled-data L-MPC developed in (Hung, Rego, 

Crasta, & Pascoal, 2018). This strategy proved to be capable of handling practical 

constraints on vehicle inputs and the inter-vehicle communication topology network. 

The cooperative control module also incorporates an event triggered communication 

(ETC) mechanism to minimize the information flow among vehicles. 

Besides its use in motion control problems, MPC has also been employed for 

marine cooperative applications. In (Lyu, Hu, Chen, Zhao, & Pan, 2019), MPC is 

used to obtain a distributed flocking control strategy for a fleet of AMV, with limited 

communication range. 

In the domain of estimation, differently from MPC, the use of MHE in 

cooperative applications is still at early stages of development. As an example, in 

(Wang, Chen, Gu, & Hu, 2014), MHE is used to solve the cooperative localization 

problem of AUVs, based on range measurements from a single surface mobile 

beacon. 

Nevertheless the advances in many modern control techniques such as 

backstepping and MPC, consensus still remains a popular strategy to solve 

cooperative control problems due to its simplicity and inherent ability to deal with 

inter-vehicle communication issues (Yu, Zeng, & Guo, 2022). 
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1.3 Objectives 

The main objectives of this thesis are to design a path following controller fully 

based on the RH control concept, and to integrate it into the structure of an upper-

level cooperative consensus-based controller. Additionally, it is also intended to 

investigate the closed-loop stability and robustness of the entire system through 

numerical simulations. 

Due to the intricate nature of the optimization problem in which the RH 

concept is based, an in-depth mathematical analysis of stability and robustness is not 

dealt with in this thesis. This analysis is envisaged for future research, taking 

advantage of concepts such as Input-to-State-Stability (ISS) and Input-to-Output-

Stability (IOS) combined with the small gain theorem (Appendix A). 

1.3.1 Problem Statement 

Under the perspective of systems engineering (NASA, 2016), the cooperative 

path following control problem can be stated considering the following requirements 

and constraints: 

A) Requirements: 

• R1:  To steer a group of underactuated17 AMV along given spatial 

paths, without time specification requirements (path following control 

problem)… 

• R2: …while holding a desired time-varying inter-vehicle formation 

pattern (cooperative control problem). 

B) Constraints: 

• C1: The vehicles are collectively coupled. 

• C2: The underwater inter-vehicle communications are plagued with 

intermittent failures, latency and multipath effects. 

• C3: The vehicles are subjected to environmental disturbances. 

• C4: The vehicles must avoid obstacles. 

• C5: The vehicles must not collide before reaching their reference paths. 

 
17 Differently from fully actuated systems, the motion control of underactuated systems is still an active research 

topic due to challenges related to the design of stabilizing control law which combines performance and stability 

(Das, Subudhi, & Pati, 2016). 
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Thus, since the vehicles are collectively coupled (C1), they must communicate 

with each other to accomplish the common task. However, the underwater 

communications are subjected to severe restrictions (C2). In order to solve this 

paradox, it is mandatory to adopt a new control paradigm departing from classical 

centralized control strategies, in which a single controller possesses all the 

information required to achieve the desired control objectives (Ghabcheloo, et al., 

2009). 

1.3.2 Proposed Control Strategy 

The proposed control strategy considers two distinct layers of implementation, 

as shown in Figure 1-9, to solve the cooperative path following control problem of 

marine vehicles. The lower-level layer, comprising the path following controller, is 

responsible for controlling the individual motion of the vehicles, while the higher-level 

layer, encompassing the consensus-based cooperative controller, is in charge of 

controlling the whole formation.  

Figure 1-9: Control levels 

 
(From Author) 

1.3.2.1 Individual Motion Control (lower layer) 

The path following controller design is decoupled in an inner-outer loop 

structure. The outer loop acts as a guidance system, calculating and issuing the 

speeds required to drive the vehicle up to its predefined speed parameterized path 

(kinematic task). The inner loop acts as a speed tracker system, assuring that the 

propulsion system of the vehicle supplies the forces and moments required to attain 

the required speeds (dynamic task). 

This architecture presents advantages for practical implementation. Since the 

kinematic and dynamic tasks are addressed independently, simpler control laws can 

be obtained, and the tuning process is simplified due to fast-slow temporal scale 

separation. Additionally, since the loops are decoupled, it is possible to use the same 
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outer loop in a wide range of vehicles already equipped with factory-assembled inner 

loops. (Maurya, Aguiar, & Pascoal, 2009). However, the control laws are more 

subjected to smoothness and saturation issues (Vanni, 2007). 

The outer loop is fully based on the RH concept18, comprising a Lyapunov-

Based Model Predictive Control (L-MPC) and a Moving Horizon Estimator (MHE). 

This technique, initially conceived in the 1960s mainly for the petrochemical industry, 

is nowadays successfully used in different segments of the industry (Garcia, Prett, & 

Morari, 1989), (Wang, 2009) and (Seborg, Edgar, Mellichamp, & Doyle III, 2016).  

This success is intrinsically linked to its specific ability to systematically handle 

practical constraints during the design and implementation phases of the system. 

This aspect results in transparent performance criteria specifications, avoiding ad hoc 

fixups which compromise the performance of the control system and increase its 

commissioning costs (Garcia, Prett, & Morari, 1989).  

Besides this aspect, the capability to deal with nonlinear complex dynamics, 

parametric uncertainties, and external disturbances make it an interesting technique 

for the motion control of marine vehicles. The list of advantages and disadvantages 

of this technique is summarized as follows (Garcia, Prett, & Morari, 1989), (Wang, 

2009) and (Seborg, Edgar, Mellichamp, & Doyle III, 2016): 

Advantages:  

• It relies on a multivariable control theory; 

• The controller design is simple and directly related to the physics of the 

problem; 

• Its implementing time is much shorter than other competing advanced 

control methods; 

• It easily handles with complicated dynamics;  

• It has an inherent ability to handle, easily and systematically, the 

applicable constraints; 

• It has anticipation capability19, allowing the controller to make better 

decisions at the current time to account for future possibilities; 

• The tuning process is simplified, since the performance parameters of 

the controller are strongly related to well understood physical aspects;  

 
18 It includes also a state observer to provide estimates of the ocean current’s velocity. 
19 Similar to feedforward control. 
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• It has the ability to manage different levels of the control hierarchy; 

• It systematically handles multi-rate measurements and missed 

measurement points; and 

• Its maintenance is simple. Modifications in the model or in the control 

specifications do not require a complete redesign of the system. If the 

plant changes, “on the fly” reconfiguration is sometimes possible. 

Disadvantages: 

• The characterization of the closed-loop system stability; 

• The performance of the control law; 

• The choice of the optimization horizon length; and 

• The online numerical implementation. 

 
The inner loop (which is normally supplied as a factory-assembled component 

of the vehicle) was conceived using the feedback linearization technique. 

1.3.2.2 Formation Control (higher layer) 

The formation control is based on a consensus-based decentralized 

cooperative controller. In this approach, the decision-making process is assigned 

directly to the vehicles, instead of a centralized single global controller.  

Essentially, the vehicles exchange information over a communication network 

in order to achieve agreement (consensus) regarding a certain variable of interest. 

The main advantages and disadvantages are listed as follows (Olfati-Saber, Fax, & 

Murray, 2007): 

Advantages: 

• Control law simplicity; 

• Less stringent communication requirements; 

• Robustness; and 

• Scalability. 

Disadvantages: 

• Limited to enforce desired behaviors; and 

• General location issue (only relative position). 
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The proposed control architecture reflecting the adopted strategy is presented 

in Figure 1-10. 

Figure 1-10: Proposed control strategy 

 
(From Author) 

1.3.3 Application Case 

The application case intends to reproduce three mission scenarios envisaged 

by the GREX project20, consisting in the simultaneous operation of ASCs and/or 

AUVs performing a series of coordination tasks such as Cooperative Path Following 

(CPF), Formation Manoeuvres (FM), and Cooperative Line of Sight Target Following 

(CLOST). 

In Cooperative Path Following (CPF), the vehicles run their own tracks while 

adjusting their speeds to reach the desired formation pattern.  

If the pattern is time-varying, the problem is categorized as Formation 

Maneuvers (FM)21.  

Differently, in Cooperative Line of Sight Target Following (CLOST), the 

formation receives the location of a target through an acoustic channel and tracks it, 

while keeping the desired geometric pattern. 

 

 
20The GREX project was launched in June 2006 within the 6th framework programme of the European Union. 

It´s main objective was to create conceptual and practical techniques to coordinate a swarm of diverse, 

heterogeneous physical robotic vehicles working in cooperation to achieve a defined practical goal in an 

optimized manner. Emphasis was placed on the coordination of marine vehicles, the promising main tool for the 

exploration and exploitation of the ocean (European Commission, 2008) and (MC Marketing Consulting, n.d.) . 
21 Also referenced as “Go to Formation”. 
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Once such definitions are posed, the current thesis will consider three possible 

mission scenarios, comprising each type of task, respectively: 

1.3.3.1 Scenario 1 (CPF): Quest for Hydrothermal Vents 

Deep-water hydrothermal vents can be understood as natural plumbing 

systems that transport heat and chemicals from the interior of the Earth to the ocean, 

regulating its chemistry. Marine geologists and biologists have acquired considerable 

knowledge about such vents and their associated ecosystems and chemosynthetic 

life forms.  

Besides their importance for the biotechnological industry, the vents also 

contain valuable clues about the evolution of life on Earth (Aguiar, et al., 2009). This 

subject also concerns the promising deep-water mining industry, since valuable 

mineral deposits are supposed to exist on the seafloor near hydrothermal vents.  

The mission scenario for the “Quest of Hydrothermal Vents” (Figure 1-11) 

consists in the deployment of AUVs equipped with methane sensors, capable of 

cooperatively computing the spatial estimates of the methane concentration gradient. 

Based on such data, the formation heads towards the region of higher concentration 

until finding the vent source (Aguiar, et al., 2009). 

 
Figure 1-11: Mission 1 – Quest for hydrothermal vents 

 

(Aguiar, et al., 2009) 

1.3.3.2 Scenario 2 (FM): Marine Habitat Mapping 

Mapping the marine environment in terms of biological life composition and 

distribution, bathymetry and seabed characteristics are essential to understand the 

marine habitats and to establish sensible approaches aiming for the conservation of 

such habitats and the rational and sustainable exploitation of the sea resources. 



30 

 

This subject is receiving increasing attention worldwide since guidelines, 

policies and directives for the study and preservation of marine environment strongly 

rely on the mapped data (Aguiar, et al., 2009).  

The mission scenario for “Marine Habitat Mapping” (Figure 1-12) consists in 

an ASC connected to a ROV through a thin umbilical for fast data transmission. The 

ASC executes lawn-mowing maneuvers on the surface, followed by the ROV in a 

proper depth. The ROV transmits pictures of the seabed back to the support ship 

through a radio link installed on the ASC. 

Once an interesting pattern on the seabed is identified by the scientific crew in 

the support ship, two dormant AUVs (on the seabed and/or at the surface) are 

activated22 and dispatched to the spotted site in order to map the surrounding region. 

Meanwhile, the ASC/ROV continue to execute the lawn-mowing manoeuvres, 

searching other sites of interest (Aguiar, et al., 2009). 

 
Figure 1-12: Mission 2 – Marine habitat mapping 

 

(Aguiar, et al., 2009) 

1.3.3.3 Scenario 3 (CLOST): Fish Data Download 

The use of passive and active telemetry devices to tag marine animals with 

data collecting devices is a practice that has been widely used by marine scientists in 

research concerning the dispersal, spawning dynamics and thermoregulatory 

mechanisms of such animals.  

All these topics can be contextualized in the general framework of spatial 

management of marine living resources. Critical impacts include the use of spatial 

 
22 Via an acoustic communication link installed onboard the ASC. 
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behavior in fisheries stock assessment and the design of marine protected areas 

(Aguiar, et al., 2009).  

The mission scenario for “Fish Data Download” (Figure 1-13) consists in the 

deployment of two ASCs equipped with acoustic receivers23 and one AUV. While 

navigating in cooperative formation, the ASCs sweep the water column and search 

for sounds emitted by an acoustic tag.  

Once the tag is detected and marked, one ASC communicates its position to 

the AUV which starts to track it. Once the fish data download task is concluded, the 

AUV manoeuvres back to the vicinity of the steadily moving ASCs to wait for further 

instructions (Aguiar, et al., 2009). 

 
Figure 1-13: Mission 3 – Fish data download 

 

(Aguiar, et al., 2009) 

1.4 Thesis Contributions 

1.4.1 Contributions 

The RH concept (MPC) is a powerful framework for solving a broad spectrum 

of control problems. Considered by many engineers as the Most Popular Control 

technique, its popularity derives from its ability to systematically handle multivariable 

constrained systems. 

Besides the considerable progress achieved in recent years, this technique 

still suffers from a gap in the characterization of closed-loop stability and robustness 

for marine control systems. Despite the implicit nature of the optimization procedure, 

the intricate dynamics24 of the vehicles combined with the restrictions imposed by the 

 
23 Using more than one ASC, the position of the tags can be determined more precisely. 
24 Characterized by a high inertia-damping ratio. 
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marine environment render this issue particularly challenging. This problem becomes 

even more noticeable when MPC is used in combination with other controllers and/or 

state observers, sometimes at different architectural levels, such as in cooperative 

applications. 

The first contribution of this thesis is to design a Globally Asymptotically Stable 

(GAS) path following controller, fully based on the RH control concept. The control 

problem is solved by a sampled-data L-MPC (guidance system) combined with a 

feedback linearization controller (speed tracker system), in an inner-outer loop 

structure. The estimation problem is solved by an MHE.  

The key point concerning GAS characterization is the incorporation of a 

contractive constraint in the L-MPC OCP formulation, derived from a GAS reference 

controller. This approach suppresses the need to incorporate a terminal cost and a 

terminal set in the associated OCP. 

The second contribution, strictly linked to the main goal of this thesis, is to 

incorporate the path following controller in a distributed upper-level consensus-based 

cooperative controller, while pushing forward the numerical investigation related to 

the system closed-loop stability and robustness, in order to reduce the previously 

mentioned gap. 

1.4.2 Limitations 

The control system developed in this thesis is limited to the case of 

bidirectional communication, in the absence of time delays (latency) and information 

(data) loss. Additionally, it does not incorporate a module that avoids inter-vehicle 

collisions before reaching the reference trajectories, or during obstacle avoidance 

maneuvers. 

1.5 Thesis Organization 

This section provides a roadmap of this thesis in order to facilitate its reading 

and comprehension. 

Chapter 1 initially introduces the thesis motivation and the associated 

literature review. Just after, it unfolds the thesis objectives by considering the 

problem statement, the proposed control strategy, and the application case. 

Additionally, it points out the thesis contributions, as well as its structural 

organization. 
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Chapter 2 reviews the fundamentals of the RH principle applied for control 

and estimation (MCP/MHE), presents the basic formulation applied to MIMO linear 

systems, and introduces some consideration concerning stability and robustness.  

Chapter 3 presents the mathematical model of the AMV (AUV and ASC). The 

model is initially deduced for six degrees of freedom and then, after assuming some 

simplifying hypothesis, is reduced to three degrees of freedom. The chapter closes 

with the presentation of the reference vehicles to be used in the numerical 

simulations. 

Chapter 4 develops the path following controller, decoupled in an inner-outer 

loop structure, combining a L-MPC (guidance system) and a feedback linearization 

controller (speed tracker system). This module also encompasses an MHE to provide 

noise attenuated estimates of position/heading and speed measurements. 

Additionally, the system comprises a state observer to estimate the ocean current 

velocity. Representing the lower level of the control architecture, this module is 

responsible for controlling the individual motion of the vehicles. 

Chapter 5 develops the cooperative controller, designed based on consensus 

and Lyapunov theories. The controller also incorporates an event-based 

communication algorithm to assure that the inter-vehicle communication occurs on a 

discrete basis, only when strictly necessary. Additionally, it updates the formulation of 

the L-MPC OCP for cooperative application. Representing the higher level of the 

control architecture, this module is responsible for controlling the collective motion of 

the vehicles (formation). 

Chapter 6 presents the numerical simulations performed to verify and validate 

the designed control system. This process is conducted on an incremental basis, 

considering a bottom-top approach (from the L-MPC based path following controller 

to the consensus-based cooperative controller). 

Chapter 7 consolidates the conclusions obtained in the previous chapters and 

presents recommendations for future research. 

Chapter 8 lists the reference bibliography. 

Appendix A presents the mathematical tools and definitions required to 

support the reading of the main text, presenting topics concerning nonlinear system 

theory and graph theory. 

Appendix B consolidates the numerical data used in the simulations (vehicle 

parameters and control gains).  
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2 PRELIMINARIES ON THE RECEDING HORIZON PRINCIPLE 

 

This chapter presents a brief overview of the Receding Horizon (RH) control 

concept, encompassing MPC and MHE techniques. The basic formulation is 

reproduced25, and some considerations about stability and robustness are presented. 

The key concept of MPC (MHE) is to predict, through a model, the future (the past) 

behavior of a system and select the best control action (the best state trajectory that 

fits the considered measurements window), according to a predefined optimization 

problem, while dealing systematically with constraints. Since both approaches are 

conceptually similar26, this chapter will focus, without loss of generality, on the MPC 

framework. 

2.1 General Overview 

Essentially, the MPC framework has three stages: prediction, online 

optimization and control (RH implementation). A typical block diagram27 is presented 

in Figure 2-1. An explicit dynamic model of the process/plant predicts its future 

behavior28, and an optimization algorithm uses this information to calculate the best 

control sequence, according to a predefined Optimal Control Problem (OCP). 

 

Figure 2-1: MPC basic block diagram 

 
(From Author) 

 

 
25 A full derivation of the algorithm is presented in (Wang, 2009). 
26 MHE can be understood as a MPC deployed in the past instead of the future. 
27 In the literature, different configurations can be found, however the prediction model and the optimization 

algorithm are common to all of them. 
28 The behavior of the system is characterized by its state and output vectors. 
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2.2 The Receding Horizon Concept 

The calculation of the best control sequence relies on the RH principle, in 

which the current control action is obtained by solving online, at each sampling 

instant, a finite horizon open-loop OCP, taking the current state of the plant as the 

initial state.  

For the Figure 2-1 structure, the OCP considers 𝑁 elements of predicted errors 

(the prediction horizon) as input data and yields an optimal control sequence of 𝑁𝑐 

elements (the control horizon), with 𝑁𝑐 ≤ 𝑁. Only the first control of this sequence is 

applied to the plant. This procedure is then repeated for future sampling times, 

resulting in a sampled data closed-loop feedback control law (Mayne, Rawlings, Rao, 

& Skokaert, 2000) and (Murray, et al., 2002).  

 

Formally, consider a general discrete nonlinear system: 

 

𝒙(𝑘 + 1) = 𝒇(𝒙(𝑘), 𝒖(𝑘)),     𝒙(0) = 𝒙𝟎  

 

where 𝒇: ℝ𝑛𝑥ℝ𝑚 → ℝ𝑛 is the vector containing the system dynamics and 𝒙𝟎 is the 

system initial state.  

Without loss of generality, the origin is assumed to be the equilibrium point, 

and the control objective is to assure that this point is GAS. Thus, the finite horizon 

OCP is defined as follow29: 

 

min
𝒖

[𝐽(𝒙, 𝒖) = ∑ 𝑙(𝒙(𝑘) , 𝒖(𝑘)) + 𝑭(𝒙𝑵)

𝑁−1

𝑘=0

] 

 
𝑠. 𝑡  

𝒙𝒖(𝒌 + 𝟏) = 𝒇(𝒙𝒖(𝒌), 𝒖(𝒌)) 

𝒙𝒖(𝟎) = 𝒙𝟎 

𝒙𝑵 ∈ 𝝌𝒇 

𝒙𝒖(𝒌) ∈  𝕏,  ∀ 𝒌 ∈ [𝟎,  𝑵 − 𝟏] 

𝒖(𝒌) ∈  𝕌,  ∀ 𝒌 ∈ [𝟎,  𝑵] 

 

 
29 Ideally, the OCP should be solved considering an infinite horizon, however it is not possible since it would 

lead to an “ill-behaved” cost function 𝐽. A customary practice is to truncate it up to a maximum number of 

samples 𝑁, and to consider, for 𝑘 > 𝑁, the infinite horizon cost 𝑭(𝒙𝑵), starting from state 𝒙𝑵. 
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where 𝐽(𝒙, 𝒖) is the cost (or value) function, 𝑙(𝒙, 𝒖) is the stage (or running) cost30, 

𝑭(𝒙𝑵) is the nonnegative terminal cost31 that penalizes the state attained at the 

terminal sample, and 𝝌𝒇 is the terminal set associated to the terminal constraint.  

The compact sets 𝕏 and 𝕌 represent the system constraints on the states and 

on the controls, respectively. 

  

The RH control concept is summarized as follow: 

• Step 1: Sense the initial condition state vector 𝒙𝟎; 

• Step 2: At the first sampling instant, compute a finite-time optimal trajectory 

𝒙 considering the initial condition state vector 𝒙𝟎, resulting in the solution 

curve 𝒖(𝑘),   𝑘 ∈  [0,   𝑁]; 

• Step 3: Only the first set of elements of 𝒖(𝑘) is implemented as a control 

input; and 

• Step 4: At the next sampling instant, repeat Step 1 considering the plant 

state vector as the new initial condition state vector32. 

 
Many aspects must be considered when applying the RH concept. The 

sampling time must be long enough for step 2 to find an optimal trajectory. Second, 

the time window used in step 2 should be long enough to benefit from predictive 

feedforward, but not too long to make computational time exceed the sampling time. 

Third, for a finite-time optimal control problem, the terminal cost must be close to the 

optimization problem’s value function, otherwise the system may not converge 

properly. Finally, the optimization method must be reliable33. Due to these aspects, 

any control/estimation technique based on the RH principle is difficult to be 

mathematically analyzed (Hauser, 2020). 

For didactical purposes, Figure 2-2 and Figure 2-3 (Mehrez, 2019) reproduce 

the RH concept implementation for MPC and MHE, respectively. 

 
30 The designer is free to set the stage cost according to the control objectives. For example, if the objective is to 

penalize state errors and control efforts, one could set 𝑙(𝒙, 𝒖) = ‖𝒙𝒖𝒅
− 𝒙𝒓𝒆𝒇‖𝑄

2
+ ‖𝒖𝒅 − 𝒖𝒓𝒆𝒇‖𝑅

2
, where 𝑄 and 𝑅 

are ponderation matrices. 
31 As previously stated, the infinite horizon cost starting at 𝒙𝑵. 
32 MPC computes an open-loop trajectory to obtain a closed-loop feedback control law by means of the repeated 

replanning. 
33 Failures in step 2 can be tolerated to some extent simply by using the previous trajectory segment, but to 

achieve good performance Step 2 should succeed regularly. 
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Figure 2-2: RH concept for MPC 

 

 
(Mehrez, 2019) 

 

Figure 2-3: RH concept for MHE 

 

 
(Mehrez, 2019) 

2.3 MPC Formulation 

For didactical purposes, this item introduces the MPC concept for linear MIMO 

systems, based on (Wang, 2009). However, without loss of generality, it can be 

extended for nonlinear systems34. 

 
34 Linear or nonlinear MPC is linked to the characteristics of the internal prediction model. 
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2.3.1 Prediction Model 

The first step in MPC design consists in formulating its internal plant model.  

For a given plant with 𝑚 inputs, 𝑞 outputs (𝑞 ≤ 𝑚) and 𝑛 states, the state-space 

model written on discrete basis is given by: 

 
𝒙𝒎(𝑘 + 1) = 𝐴𝑚𝒙𝒎(𝑘) + 𝐵𝑚𝒖(𝑘) + 𝐵𝑑𝝎(𝑘) (2.1) 

𝒚(𝑘) = 𝐶𝑚𝒙𝒎(𝑘) (2.2) 

 
where 𝐴𝑚 ∈ ℝ𝑛 𝑥 𝑛, 𝐵𝑚 ∈ ℝ𝑛 𝑥 𝑚, 𝐶𝑚 ∈ ℝ𝑞 𝑥 𝑛 are the system matrices, 𝒖 ∈  ℝ𝑚 is the 

vector containing the input (or manipulated) variables, 𝒚 ∈  ℝ𝑞 is the vector 

containing the plant outputs and 𝒙 ∈  ℝ𝑛 is the state vector35. Furthermore, a 

sequence of integrated zero-mean white noise is used to construct the disturbance 

vector 𝝎 ∈ ℝ𝑛, which is multiplied by an appropriate matrix 𝐵𝑑 ∈ ℝ𝑛 𝑥 𝑛. The 

incremental variation of this vector is given by: 

 

𝝐(𝑘) = 𝝎(𝑘) − 𝝎(𝑘 − 1) (2.3) 

  

Equation (2.1) can be written in a one-time step backwards as: 

 

𝒙𝒎(𝑘) = 𝐴𝑚𝒙𝒎(𝑘 − 1) + 𝐵𝑚𝒖(𝑘 − 1) + 𝐵𝑑𝝎(𝑘 − 1) (2.4) 

 

To incorporate integral action into the MPC algorithm, the design model must 

embed an integrator on its structure. The first step to carry out this task consists in 

defining the state and input vectors on an incremental basis: 

 

𝚫𝒙𝒎(𝑘) = 𝒙𝒎(𝑘) − 𝒙𝒎(𝑘 − 1) (2.5) 

𝚫𝒖(𝑘) = 𝒖(𝑘) − 𝒖(𝑘 − 1) (2.6) 

 

By subtracting (2.4) from (2.1) yields: 

 

𝚫𝒙𝒎(𝑘 + 1) = 𝐴𝑚𝚫𝒙𝒎(𝑘) + 𝐵𝑚𝚫𝒖(𝑘) + 𝐵𝑑𝜺(𝑘) (2.7) 

  

 
35 In the RH control concept, it is assumed that the input 𝒖(𝑘) does not affect the output 𝒚(𝑘) at the same time, 

thus, 𝐷𝑚 = 0 in the plant model. 
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Associating the output 𝒚(𝑘) to the incremental state variable 𝚫𝒚(𝑘), yields: 

 

𝚫𝒚(𝑘 + 1) = 𝒚(𝑘 + 1) − 𝒚(𝑘)  (2.8) 

 

Considering (2.2) and (2.7), the following equation is obtained: 

 

𝚫𝒚(𝑘 + 1) = 𝐶𝑚𝚫𝒙𝒎(𝑘 + 1) = 𝐶𝑚𝐴𝑚𝚫𝒙𝒎(𝑘) + 𝐶𝑚𝐵𝑚𝚫𝒖(𝑘) + 𝐶𝑚𝐵𝑑𝜺(𝑘) (2.9) 

 

 By replacing (2.9) into (2.8), the resulting equation can be lumped together 

with (2.7), resulting in the following state-space description: 

 

[
𝚫𝒙𝒎(𝑘 + 1)

𝒚(𝑘 + 1)
] = [

𝐴𝑚 0𝑇

𝐶𝑚𝐴𝑚 𝐼
] [

𝚫𝒙𝒎(𝑘)

𝒚(𝑘)
] + [

𝐵𝑚

𝐶𝑚𝐵𝑚
] 𝚫𝒖(𝑘) + [

𝐵𝑑

𝐶𝑚𝐵𝑑
] 𝜺(𝑘) (2.10) 

  

𝒚(𝒌) = [0 𝐼] [
𝚫𝒙𝒎(𝑘)

𝒚(𝑘)
] (2.11) 

 

where 0 ∈ ℝ𝑞 𝑥 𝑛 and 𝐼 ∈ ℝ𝑞 𝑥 𝑞. By defining the new state vector 𝒙 ∈ ℝ𝑛+𝑞 : 

 

𝒙(𝑘) = [𝚫𝒙𝒎(𝑘)𝑇 𝒚(𝑘)𝑇]𝑇 (2.12) 

  

equations (2.10) and (2.11) can be written as: 

 

𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵𝚫𝒖(𝑘) + 𝐵𝜀𝜺(𝑘) (2.13) 

𝒚(𝑘) = 𝐶𝒙(𝑘) (2.14) 

 

where 𝐴, 𝐵 and 𝐶 are matrices corresponding to the forms given in (2.10) and (2.11). 

The triplet (𝐴, 𝐵, 𝐶) characterizes the augmented model to be used in the MPC 

design. 

  It is important to mention that controllability and observability are prerequisites 

for the augmented system, especially for unstable dynamics. While the former is 

essential to assure the closed-loop control performance, the latter is a precondition to 

assure the feasibility of the state observer design. However, if only closed-loop 
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stability is a matter of concern, these conditions may be relaxed to stabilizability and 

detectability, respectively. 

Once the mathematical model is deduced, it is possible to calculate the 

predicted plant outputs, considering the future control inputs as the adjustable 

manipulated variables. The future incremental control trajectory, composed by 𝑁𝑐 

elements, is given by: 

 

𝚫𝑼 = [𝚫𝒖(𝑘𝑖)
𝑇 𝚫𝒖(𝑘𝑖 + 1)𝑇 … 𝚫𝒖(𝑘𝑖 + 𝑁𝑐 − 1)𝑇]𝑇 (2.15) 

 

Assuming that the state vector 𝒙(𝑘𝑖) is available at sampling instant 𝑘𝑖 > 0, its 

future trajectory evolution along 𝑁𝑝 elements can be computed considering the state-

space model (𝐴, 𝐵, 𝐶) and the future control trajectory 𝚫𝑼 (2.15), comprising all 

controls 𝚫𝒖 in the corresponding time instant: 

 

𝒙(𝑘𝑖 + 1|𝑘𝑖) = 𝐴𝒙(𝑘𝑖) + 𝐵𝚫𝒖(𝑘𝑖) + 𝐵𝑑𝜺(𝑘𝑖) (2.16) 

𝒙(𝑘𝑖 + 2|𝑘𝑖) = 𝐴𝒙(𝑘𝑖 + 1|𝑘𝑖) + 𝐵𝚫𝒖(𝑘𝑖 + 1)+ 𝐵𝑑𝜺(𝑘𝑖 + 1|𝑘𝑖) 
(2.17) 

= 𝐴2𝑥(𝑘𝑖) + 𝐴𝐵Δ𝑢(𝑘𝑖) + 𝐵Δ𝑢(𝑘𝑖 + 1) + 𝐴𝐵𝑑𝜀(𝑘𝑖) + 𝐵𝑑𝜀(𝑘𝑖 + 1|𝑘𝑖) 

                     . 
                     . 

                     .          

 

𝒙(𝑘𝑖 + 𝑁𝑝|𝑘𝑖) = 𝐴𝑁𝑝𝒙(𝑘𝑖) + 𝐴𝑁𝑝−1𝐵𝚫𝒖(𝑘𝑖) + 𝐴𝑁𝑝−2𝐵𝚫𝒖(𝑘𝑖 + 1) + ⋯

+ 𝐴𝑁𝑝−𝑁𝑐𝐵𝚫𝒖(𝑘𝑖 + 𝑁𝑐 − 1) + 𝐴𝑁𝑝−1𝐵𝑑𝜺(𝑘𝑖)

+ 𝐴𝑁𝑝−2𝐵𝑑𝜺(𝑘𝑖 + 1|𝑘𝑖) + ⋯+ 𝐵𝑑𝜺(𝑘𝑖 + 𝑁𝑝 − 1|𝑘𝑖) 

(2.18) 

 

where 𝒙(𝑘𝑖 + 𝑚|𝑘𝑖) is the predicted state variable at 𝑘𝑖 + 𝑚 with given current plant 

information 𝒙(𝑘𝑖). 

 

With the hypothesis that 𝜺(𝑘) is a zero-mean white noise sequence, the 

predicted value of 𝜺(𝑘𝑖 + 1|𝑘𝑖) at future sample 𝑖 is assumed to be zero36. 

Consequently, for notational simplicity, this term will be omitted henceforward. 

 

Considering (2.16) - (2.18), the output vector (2.14) can be expressed in a 

compact matrix form as:  

 
36 Null noise effect over the predicted values. 
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𝒀 = 𝐹𝒙(𝑘𝑖) + 𝜙𝚫𝑼 (2.19) 

where: 

 𝐹 =

[
 
 
 
 

𝐶𝐴
𝐶𝐴2

𝐶𝐴3
...

𝐶𝐴𝑁𝑝]
 
 
 
 

 (2.20) 

  

𝜙 =

[
 
 
 
 

𝐶𝐵 0 0 … 0
𝐶𝐴𝐵 𝐶𝐵 0 … 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 … 0

⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−3𝐵 … 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]

 
 
 
 

 (2.21) 

2.3.2 Optimal Control Problem 

The second step in the MPC design is to solve the OCP, according to a 

predefined control objective. Initially, the set-point signal at sampling time 𝑘𝑖, and the 

associated set-point reference vector are defined respectively as: 

 

𝒓(𝑘𝑖) = [𝑟1(𝑘𝑖) 𝑟2(𝑘𝑖) ⋯ 𝑟𝑞(𝑘𝑖)] (2.22) 

  

𝑹𝒔 = [𝟏]𝑇𝒓(𝑘𝑖) = 𝑹̅𝒔𝒓(𝑘𝑖) (2.23) 

 

where 𝒓(𝑘𝑖) ∈ ℝ𝑞 and [𝟏] = [1 1 ⋯ 1] ∈ ℝ𝑁𝑝. 

 

The cost function, comprising the terms associated to the control objectives, is 

defined as: 

𝐽 = (𝑹𝒔 − 𝒀)𝑇(𝑹𝒔 − 𝒀) + (𝚫𝑼)𝑇𝑅̅(𝚫𝑼) (2.24) 

 

where 𝑅 ̅ ∈  ℝ𝑚𝑁𝑐 𝑥 𝑚𝑁𝑐 is a weight matrix to be tuned according to such objectives. 

  

The incremental optimal control 𝚫𝑼 that minimizes 𝐽 along one optimization 

window is given by: 

 

𝚫𝑼 = (𝜙𝑇𝜙 + 𝑅̅)−1(𝜙𝑇𝑹̅𝒔𝒓(𝑘𝑖) − 𝜙𝑇𝐹𝒙(𝑘𝑖)) (2.25) 

 

with the assumption that matrix (𝜙𝑇𝜙 + 𝑅̅)−1 exists.  
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Applying the RH control principle, only the first 𝑚 elements in 𝚫𝑼 are taken to 

form the incremental optimal control:  

 

𝚫𝒖(𝑘𝑖) = [𝑰 𝟎 ⋯ 𝟎][(𝜙𝑇𝜙 + 𝑅̅)−1(𝜙𝑇𝑹̅𝑠𝒓(𝑘𝑖) − 𝜙𝑇𝐹𝒙(𝑘𝑖))] (2.26) 

 

where 𝑰 ∈  ℝ𝑚 𝑥 𝑚 and 𝟎 ∈  ℝ𝑚 𝑥 𝑚. 

 

The actual control signal applied to the plant is computed according to: 

 

𝒖(𝑘𝑖) = 𝒖(𝑘𝑖 − 1) + 𝚫𝒖(𝑘𝑖) (2.27) 

 

and the process is repeated for the next sampled time. 

2.3.3 Constrained Case 

Up to now, the OCP was solved without considering the physical constraints of 

the system. The third step in MPC design consists in incorporating such constraints 

in the formulation. They are normally encountered in the controls and in the 

states/outputs37 as summarized in Table 2-1 (for a given sampling time 𝑘):  

 

Table 2-1: Types of constraints38 

Control 

Rate of Change Amplitude 

𝚫𝒖𝒎𝒊𝒏 ≤ 𝚫𝒖(𝒌) ≤ 𝚫𝒖𝒎𝒂𝒙 

⋮ 

𝚫𝒖𝒎𝒊𝒏 ≤ 𝚫𝒖(𝒌 + 𝒏) ≤ 𝚫𝒖𝒎𝒂𝒙 

𝒖𝒎𝒊𝒏 ≤ 𝚫𝒖(𝒌) ≤ 𝒖𝒎𝒂𝒙 

⋮ 

𝒖𝒎𝒊𝒏 ≤ 𝚫𝒖(𝒌 + 𝒏) ≤ 𝒖𝒎𝒂𝒙 

State/Output 

Amplitude 

𝒙𝒎𝒊𝒏 ≤ 𝒙(𝒌) ≤ 𝒙𝒎𝒂𝒙 

⋮ 

𝒙𝒎𝒊𝒏 ≤ 𝒙(𝒌 + 𝒏) ≤ 𝒙𝒎𝒂𝒙 

𝒚𝒎𝒊𝒏 ≤ 𝒚(𝒌) ≤ 𝒚𝒎𝒂𝒙 

⋮ 

𝒚𝒎𝒊𝒏 ≤ 𝒚(𝒌 + 𝒏) ≤ 𝒚𝒎𝒂𝒙 

 

After incorporating the constraints as part of the design requirements, it is 

necessary to translate them into linear inequalities. In this way, developing (2.27) for 

𝑁𝑐 elements, results: 

 
37 State and output constraints are intrinsically linked due to relation (2.14).  
38 The constraints are valid for the entire horizons. The constraint set is not unique. Other constraints can be 

added to it. 



43 

 

[
 
 
 
 

𝒖(𝑘𝑖)

𝒖(𝑘𝑖 + 1)

𝒖(𝑘𝑖 + 2)
⋮

𝒖(𝑘𝑖 + 𝑁𝑐 − 1)]
 
 
 
 

=

[
 
 
 
 
𝐼
𝐼
𝐼
⋮
𝐼]
 
 
 
 

𝒖(𝑘𝑖 − 1) +

[
 
 
 
 
𝐼 0 0 ⋯ 0
𝐼 𝐼 0 ⋯ 0
𝐼 𝐼 𝐼 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
𝐼 𝐼 𝐼 ⋯ 𝐼]

 
 
 
 

[
 
 
 
 

𝚫𝒖(𝑘𝑖)

𝚫𝒖(𝑘𝑖 + 1)

𝚫𝒖(𝑘𝑖 + 2)
⋮

𝚫𝒖(𝑘𝑖 + 𝑁𝑐 − 1)]
 
 
 
 

 (2.28) 

 

Re-writing (2.28) in a compact matrix form, with 𝐶1 and 𝐶2 corresponding to the 

appropriate matrices, yields: 

 
𝑼 = 𝐶1𝒖(𝑘𝑖 − 1) + 𝐶2𝚫𝑼 (2.29) 

 
The imposition of constraints in 𝑼 yields: 

 

𝑼𝒎𝒊𝒏 ≤ 𝑼 ≤ 𝑼𝒎𝒂𝒙 (2.30) 

 

 which can be broken down as: 

−𝑼 ≤ −𝑼𝒎𝒊𝒏 (2.31) 

𝑼 ≤ 𝑼𝒎𝒂𝒙 (2.32) 

 

where 𝑼𝒎𝒊𝒏 and 𝑼𝒎𝒂𝒙 are column vectors with 𝑁𝑐 elements of 𝒖𝒎𝒊𝒏 and 𝒖𝒎𝒂𝒙, 

respectively. Replacing (2.29) into (2.31) - (2.32), yields: 

 

−(C1𝒖(𝑘𝑖 − 1) + 𝐶2𝚫𝑼) ≤ −𝑼𝒎𝒊𝒏 ⟹ −𝐶2𝚫𝑼 ≤ −𝑼𝒎𝒊𝒏 + C1𝒖(𝑘𝑖 − 1) (2.33) 

   (C1𝒖(𝑘𝑖 − 1) + 𝐶2𝚫𝑼) ≤ 𝑼𝒎𝒂𝒙    ⟹     𝐶2𝚫𝑼 ≤ 𝑼𝒎𝒂𝒙 − C1𝒖(𝑘𝑖 − 1) (2.34) 

 

  In the same way, the imposition of constraints in 𝚫𝑼 yields: 

 

−𝚫𝑼 ≤ −𝚫𝑼𝒎𝒊𝒏 (2.35) 

𝚫𝑼 ≤ 𝚫𝑼𝒎𝒂𝒙 (2.36) 

 

where 𝚫𝑼𝒎𝒊𝒏 and 𝚫𝑼𝒎𝒂𝒙 are column vectors with 𝑁𝑐 elements of Δ𝑢𝑚𝑖𝑛 and Δ𝑢𝑚𝑎𝑥, 

respectively.  

 

The imposition of constraints in 𝒀 derives from (2.19) and yields: 

 

𝒀𝒎𝒊𝒏 ≤ 𝐹𝒙(𝑘𝑖) + 𝜙𝚫𝑼 ≤ 𝒀𝒎𝒂𝒙 (2.37) 
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which can be broken down as: 

 

−𝐹𝒙(𝑘𝑖) − 𝜙𝚫𝑼 ≤ −𝒀𝒎𝒊𝒏 (2.38) 

𝐹𝒙(𝑘𝑖) + 𝜙𝚫𝑼 ≤ 𝒀𝒎𝒂𝒙 (2.39) 

 
Updating (2.24) with the constraints yields: 

 

𝐽 = (𝑹𝒔 − 𝐹𝒙(𝑘𝑖))
𝑇
(𝑹𝒔 − 𝐹𝒙(𝑘𝑖)) − 2𝚫𝑼𝑻𝜙𝑇(𝑹𝒔 − 𝐹𝒙(𝑘𝑖)) + 𝚫𝑼𝑻(𝜙𝑇𝜙 + 𝑅̅)𝚫𝑼 (2.40) 

 
subjected to the following inequality constraints: 

 

[
𝑀1

𝑀2

𝑀3

] 𝚫𝑼 ≤ [
𝑁1

𝑁2

𝑁3

] (2.41) 

where: 

𝑀1 = [
−𝐶2

𝐶2
] 𝑁1 = [

−𝑼𝒎𝒊𝒏 + C1𝒖(𝑘𝑖 − 1)

𝑼𝒎𝒂𝒙 − C1𝒖(𝑘𝑖 − 1)
] 

  

𝑀2 = [
−𝐼
I

] 𝑁2 = [−𝚫𝑼𝒎𝒊𝒏

𝚫𝑼𝒎𝒂𝒙 ] 

  

𝑀3 = [
−𝜙
𝜙

] 𝑁3 = [
−𝒀𝒎𝒊𝒏 + 𝐹𝒙(𝑘𝑖)

𝒀𝒎𝒂𝒙 − 𝐹𝒙(𝑘𝑖)
] 

  
 The OCP solution consists in finding the incremental optimal control 𝚫𝑼 that 

minimizes (2.40), along one optimization window, considering the constraints (2.41). 

Since (2.40) is quadratic, and the constraints are linear inequalities, the problem 

resumes to find an optimal solution in the framework of a standard quadratic 

programming problem (Wang, 2009). For nonlinear MPC, the OCP can be solved by 

transforming it into a Nonlinear Program Problem (NLP) as detailed in item 4.2.1.2. 

2.4 Stability and Robustness 

2.4.1 Stability 

Ideally, it would be desirable to solve an infinite horizon OCP in the MPC 

formulation, however this problem is rather “ill-behaved” since it would involve a 

summation of infinite terms which could lead to an infinite cost even for well-behaved 

trajectories.  
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A solution to overcome this problem consists in truncating the problem at 

some maximum number of samples 𝑁, leading to a finite horizon OCP. In this case, a 

terminal cost might be added to the finite horizon cost function in order to penalize 

the state attained at the terminal sample. 

However, in general, it is not true that repeated minimizations over a finite 

receding horizon objective lead to the optimal solution of the associated infinite 

horizon problem39. Consequently, the actual closed-loop trajectories, obtained by 

means of repeated replanning40, will differ from the predicted open-loop trajectories, 

thus there is no guarantee that the closed-loop system will be stable. Even optimality 

and recursive feasibility cannot be assured. (Mayne, Rawlings, Rao, & Skokaert, 

2000). 

The strategy originally adopted to overcome the stability issue in practical 

applications (normally with slow dynamics) was to consider a sufficiently large 

horizon. Because satisfactory results were obtained, research concerning formal 

conditions to assure stability did not receive attention in the industry and early 

academic literatures.   

This limitation was lifted in (Mayne, 2014) and (Mayne, Rawlings, Rao, & 

Skokaert, 2000), which concluded that the imposition of a terminal cost and a 

terminal constraint set in the finite horizon OCP would render sufficient conditions 

to assure nominal stability in constrained MPC. This strategy is based on the fact 

that stability, under certain conditions41, can be verified in finite horizon optimal 

controllers if an appropriate Lyapunov function, performing the function of a 

terminal cost, is added to the original finite horizon cost function.  This approach 

is consistent with the fact that “optimality does not imply stability” (Kalman, 1960). 

Ideally, the terminal cost 𝐹(. ) should be the infinite horizon cost function 

𝐽∞
0 (. ). In this hypothetical situation, 𝐽𝑁

0(. ) = 𝐽∞
0 (. ), thus the control sequence 

obtained in the first optimization would be applied for all future instants42, while 

recursive feasibility43, stability and robustness would be automatically assured. 

However, in practice, nonlinearities and/or constraints render this situation 

 
39 Even assuming a perfect model, in the absence of disturbances. 
40 MPC turns open-loop trajectory optimization into a closed-loop controller by means of repeated replanning. 
41 Stabilizability and detectability. 
42 In this situation, online optimization would be no longer necessary. 
43 The OCP is called recursively feasible, if for all feasible initial states, feasibility (existence of a feasible 

control sequence) is guaranteed at every state along the closed-loop trajectory. 
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impossible, but it is still possible to choose 𝐹(. ) so that it approximately matches 

𝐽∞
0 (. ) in a suitable neighborhood of the origin. So, the task consists in defining a 

proper set 𝑋𝑓  ∈  ℝ𝑛 in this neighborhood (Mayne, Rawlings, Rao, & Skokaert, 

2000). 

Formally, if further minor assumptions are satisfied, nominal stability is 

assured if the following necessary conditions are attained, (Mayne, Rawlings, 

Rao, & Skokaert, 2000): 

• A1: 𝑋𝑓  ⊂  𝕏, 𝑋𝑓 closed, 0 ∈  𝑋𝑓  (state constraint satisfied in 𝑋𝑓); 

• A2: 𝒖 ∈  𝕌, for all 𝒙 ∈  𝑋𝑓 (control constraint satisfied in 𝑋𝑓); 

• A3: 𝒇(𝒙(𝑘), 𝒖(𝒙(𝑘))  ∈  𝑋𝑓, for all 𝒙 ∈  𝑋𝑓; and 

• A4: [𝑙 + 𝐹](𝒙(𝑘), 𝒖(𝒙(𝑘)))  ≤ 0 for all 𝒙 ∈  𝑋𝑓, and 𝐹(𝒙(𝑘)) is a local 

Lyapunov function. 

However, besides the difficulties associated to the definition of the terminal 

cost and terminal constraint set, it is not possible to assure GAS convergence 

(Alessandretti, Aguiar, & Jones, 2013) and (Yu, Li, Chen, & Allgöwer, 2015). A 

solution to overcome this problem is to incorporate a contractive constraint in the 

OCP formulation.  

This constraint is designed based on the knowledge of an existing global 

stabilizing control law, associated to a reference controller. Thus, the designed 

system inherits such global asymptotic stability. Since the contractive constraint 

represents a sufficient condition to assure stability, the terminal cost and the terminal 

constraint set can be derogated from the OCP formulation (Hung, Rego, Crasta, & 

Pascoal, 2018).  

2.4.2 Robustness 

The introduction of uncertainties in the system, lumped together in vector 

𝒘(𝑘)44 ∈ 𝑊(𝒙(𝑘), 𝒖(𝑘)), raises questions concerning robustness45, since the 

positive invariance property (A3) is no longer valid46. However, it can be 

 
44 Uncertainty can be a combination of additive disturbances, state estimation errors and model errors. 
45 Defined as the ability to keep certain properties such as stability and performance in the presence of 

uncertainty. 
46 Due to modeling uncertainty and exogenous disturbances, the actual state trajectory will deviate from the 

predicted trajectory. 



47 

 

recovered if all possible realizations of 𝒘(𝑘) in the OCP are considered, and the 

applicable constraints are satisfied.  

The key parameters 𝐹(𝒙(𝑘)), 𝑋𝑓 and 𝒖(𝒙(𝑘)) must satisfy, besides A1-A2, 

the following robust variations of requirements A3-A4 (Mayne, Rawlings, Rao, & 

Skokaert, 2000): 

• A3r: 𝒇(𝒙(𝑘), 𝒖(𝒙(𝑘)),𝒘)  ∈  𝑋𝑓, for all 𝒙 ∈  𝑋𝑓 and for all 𝒘 ∈  𝑊(𝒙, 𝒖(𝒙)); 

• A4r: [𝑙 + 𝐹](𝒙(𝑘), 𝒖(𝒙(𝑘)),𝒘)  ≤ 0 for all 𝒙 ∈  𝑋𝑓, for all 𝒘 ∈  𝑊(𝒙, 𝒖(𝒙)) 

and 𝐹(𝒙(𝑘)) is a robust terminal cost (Lyapunov function) in a 

neighborhood of the origin. 

Most of the existing literature on the topic of robust MPC may be broadly 

categorized into three branches: inherent robustness, min-max formulations, and 

tube MPC approaches (Mayne, 2014). 

Inherent robustness is the simple approach since it just neglects the 

uncertainties, i.e., considers only the nominal model in the controller design. 

Under certain conditions, the resultant controller is robustly stable against 

sufficiently small additive disturbances (Mayne, 2014). 

In the min-max formulation, open-loop performance is optimized assuming a 

worst-case uncertainty/disturbance realization. This leads to extremely conservative 

control policies and a small domain of feasibility47, since the “diameter” of the tube 

that contains the nominal trajectory is not negligible (Mayne, 2014).  

Alternatively, closed-loop min-max formulations (usually termed “feedback 

MPC”)48, while having improved feasibility properties, are prohibitively complex to 

implement since the optimization involves searching over control policies (Singh, 

Pavone, & Slotine). Additionally, as a consequence of feedback introduction, 

optimality is no longer guaranteed. (Mayne, 2014). 

In the tube MPC approach, an auxiliary feedback controller acts to minimize 

the deviation between the actual and nominal state trajectories49, therefore it ensures 

that even in the presence of uncertain dynamics and bounded exogenous 

disturbances, the deviation remains bounded.  Normally it employs two parallel MPC 

 
47 In this case, there is no control sequence such that the constraints are satisfied. 
48 This technique employs local feedback around a nominal or reference trajectory so that the trajectories 

associated with the uncertainties’ realizations remain in a possible small neighborhood of the nominal trajectory 

(in other words, it shrinks the “diameter” of the previously mentioned tube). 
49 It keeps the actual trajectory within an invariant “tube” around the nominal trajectory. 
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algorithms. The first algorithm generates a nominal state and control sequence 

assuming no disturbances. The second algorithm acts as an effective auxiliary 

controller by penalizing deviations from the nominal trajectory computed within the 

first algorithm. Differently from the previous approach, the online OCP is converted 

back into a search over control sequences rather than control policies, thereby 

reducing computational complexity (Singh, Pavone, & Slotine). 

Concluding, for the sake of clarity, it is important to emphasize that as any 

other model-based control technique, the MPC robustness is intrinsically linked to 

the precision of its internal model. Consequently, MPC is not inherently more or 

less robust than classical feedback as has been falsely claimed. On the other 

hand, MPC can be tuned more easily for robustness than classic feedback 

controllers,50 taking advantage of the future outputs predicted by the internal 

model51 (Garcia, Prett, & Morari, 1989). 

2.5 Summary 

This chapter presented a brief overview of the RH principle, encompassing 

the MPC/MHE techniques, the basic formulation related to MIMO linear systems, and 

some considerations about stability and robustness.  

The MPC optimization problem predicts an optimal state trajectory and 

supplies the corresponding open-loop control sequence for a finite time interval. In 

order to incorporate some feedback mechanism, it executes some small portion of 

the control sequence52, senses the new state, and repeats the procedure again.  

Its main advantages are the ability to take better decisions at the current time 

to account for future possibilities, as well as the capacity to systematically handle 

practical constraints. 

It is relevant to stress that constrained MPC is intrinsically a nonlinear 

problem, even if the controlled plant is linear.  While main aspects concerning 

nominal stability of deterministic systems are well understood, robustness of 

uncertain systems53 still represents a major challenge, requiring substantial work 

in extending the associated theory.   

 
50 This fact might be responsible for the misconception regarding MPC robustness. 
51 Transparent online tuning. 
52 The open-loop manipulated input function. 
53 The trademark of modern control theory. 
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3  AUTONOMOUS MARINE VEHICLE MODEL 

 

This chapter presents the Autonomous Marine Vehicle (AMV) model borrowed 

from (Fossen, 1999) and (Fossen, 2002), described by its kinematic and dynamic 

equations. Initially described in 6 DOF, the model is reduced to 3 DOF (horizontal 

motion) after assuming some simplifying hypothesis. The chapter also describes the 

reference vehicles used in the numerical simulations. 

3.1  Reference Frames 

To derive the vehicle’s equations of motion, it is a common practice to define 

two reference frames: an Earth-Fixed inertial frame {𝐼}, composed by the 

orthonormal axes {𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼}, and a Body-Fixed frame {𝐵}, composed by the 

orthonormal axes {𝑋𝐵, 𝑌𝐵, 𝑍𝐵}, as presented in Figure 3-1. 

 

Figure 3-1: Earth-fixed and Body-Fixed reference frames 

 

DOF 
Forces and 
Moments 

Velocities 
Positions and 
Euler Angles 

1. Surge 𝑋 𝑢 𝑥 

2. Sway 𝑌 𝑣 𝑦 

3. Heave 𝑍 𝑤 𝑧 

4. Roll 𝐾 𝑝 𝜙 

5. Pitch 𝑀 𝑞 𝜃 

6. Yaw 𝑁 𝑟 𝜓 

(Loc, Choi, You, Kim, & Kim, 2012) 

 

To describe the vehicle motion, the following entities are defined according to 

SNAME nomenclature (Table 3-1). 

 

Table 3-1: Describing vectors 

Vector Description Referenced to: Type: 

𝜼 = [𝜼𝟏
𝑻, 𝜼𝟐

𝑻]
𝑇
 

𝜼𝟏 = [𝑥, 𝑦, 𝑧]𝑇 Position of the origin of {𝐵} {𝐼} Measurement 

𝜼𝟐 = [𝜙, 𝜃, 𝜓]𝑇 Orientation of {𝐵}, in Euler Angles {𝐼} Measurement 

𝝂 = [𝝂𝟏
𝑻, 𝝂𝟐

𝑻]
𝑇
 

𝝂𝟏 = [𝑢, 𝑣, 𝑤]𝑇 Linear velocities of the origin of {𝐵} {𝐵} Measurement 

𝝂𝟐 = [𝑝, 𝑞, 𝑟]𝑇 Angular velocities of {𝐵} {𝐵} Measurement 

𝝉 = [𝝉𝟏
𝑻, 𝝉𝟐

𝑻]
𝑇
 

𝝉𝟏 = [𝑋, 𝑌, 𝑍]𝑇 External forces {𝐵} Actuation 

𝝉𝟐 = [𝐾,𝑀,𝑁]𝑇 External torques {𝐵} Actuation 
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3.2  Equations of Motion 

3.2.1 Kinematic Equations 

The kinematic equations (Fossen, 2002) can be written in compact form as  

 

𝜼̇ = 𝐽(𝜼)𝝂 (3.1) 

with 

 

𝐽(𝜼) = [
𝑅𝐵

𝐼 (𝜼𝟐) 03𝑥3

03𝑥3 𝑇𝜂2
(𝜼𝟐)

] (3.2) 

 

where 

𝑅𝐵
𝐼 (𝜼𝟐) = [

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜃 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜃 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑠𝜙

] (3.3) 

 

is the rotation matrix from {𝐵} to {𝐼}, defined by means of three successive rotations 

(Euler’s angles - 𝑧𝑦𝑥 convention), and 

 

𝑇𝜂2
(𝜼𝟐) = [

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

] (3.4) 

 

is the matrix54 which correlates the Body-Fixed angular velocity vector (𝑝, 𝑞, 𝑟) with 

roll, pitch and yaw rate vector (𝜙̇, 𝜃̇, 𝜓̇). 

3.2.2 Dynamic Equations 

For marine vehicles, it is convenient to express the dynamic equations in the 

Body-Fixed reference frame {𝐵}, centered at the vehicle’s center of gravity (CG).  

 

The rigid-body dynamic equations can be expressed in vectorial form as 

 

𝑀𝑅𝐵𝝂̇ + 𝐶𝑅𝐵(𝝂)𝝂 = 𝝉𝑅𝐵 (3.5) 

 

 
54 This matrix is undefined for a pitch angle (𝜃) =  𝜋/2. However, for practical applications, the representation 

still remains valid since the marine vehicle will operate far from this singular point. 
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where 𝑀𝑅𝐵 is the rigid-body inertia matrix,  𝐶𝑅𝐵(𝝂) is the rigid-body Coriolis and 

centripetal matrix and 𝝉𝑅𝐵 is a generalized vector of external forces and moments, 

which can be decomposed as 

 
𝝉𝑅𝐵 = 𝝉𝐴 + 𝝉𝐷 + 𝝉𝑅 + 𝝉𝒄 (3.6) 

 
where: 

 

• 𝝉𝐴 is the force and moment vector due to hydrodynamic added mass 

 
𝝉𝐴 = −𝑀𝐴𝝂̇ − 𝐶𝐴(𝝂)𝝂 (3.7) 

 

• 𝝉𝑫 is the force and moment vector due to hydrodynamic effects (damping, lift 

and skin friction) 

 
𝝉𝐷 = −𝐷(𝝂)𝝂 (3.8) 

 

• 𝝉𝑹 is the force and moment vector due to gravity and fluid density (weight and 

buoyancy) 

 
𝝉𝑅 =  𝐶(𝜼) (3.9) 

 

• 𝝉𝒄 is the force and moment vector due to thrusters and surfaces (normally 

considered as control input) 

 

Combining (3.6) - (3.9) into (3.5), the 6 DOF dynamic equations can be expressed 

as 

 

𝑀𝑅𝐵𝝂̇ + 𝐶𝑅𝐵(𝝂)𝝂 + 𝑀𝐴𝝂̇ + 𝐶𝐴(𝝂)𝝂 + 𝐷(𝝂)𝝂 + 𝑔(𝜼) = 𝝉𝒄  (3.10) 

 

  Rigid-Body Terms 

      

       Hydrodynamic Terms 

 

Restoring Term 

 

 Or equivalently 

 

𝑀𝝂̇ + 𝐶(𝝂)𝝂 + 𝐷(𝝂)𝝂 + 𝑔(𝜼) = 𝝉𝒄  (3.11) 

where 



52 

 

𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴 (3.12) 

  

𝐶 = 𝐶𝑅𝐵(𝝂) + 𝐶𝐴(𝝂) (3.13) 

 
The properties of these matrices are summarized in Table 3-2. Properties such 

as symmetry, skew-symmetry and positive-definiteness are intrinsically linked to the 

physical characteristics of the system and can be exploited in the control system 

design as well as in the associated stability analysis. 

 

Table 3-2: Properties of the matrices55 

Rigid-Body Matrices Hydrodynamic Matrices 

𝑀𝑅𝐵 = 𝑀𝑅𝐵
𝑇 > 0 𝑀𝐴 = 𝑀𝐴

𝑇 > 0 

𝑀̇𝑅𝐵 = 0 𝑀̇𝐴 = 0 

𝐶𝑅𝐵(𝝂) =  −𝐶𝑅𝐵
𝑇 (𝝂)56 𝐶𝐴(𝝂) =  −𝐶𝐴

𝑇(𝝂)39 

- 𝐷(𝜈) >  0 

 

3.2.3 Simplified Model 

The AMV simplified mathematical model is obtained considering the following 

assumptions57 

• A1: The vehicle motion is restrained to a horizontal plane58, in an even 

keel condition (heave and pitch negligible); 

• A2: Negligible roll; 

• A3:  The vehicle presents neutral buoyancy, and the center of buoyancy 

(CB) coincides with the center of gravity (CG); and 

• A4: The axes of the body-fixed reference frame are chosen to coincide 

with the vessel’s principal axis. 

 

Under these assumptions, the 6 DOF kinematic and dynamic models reduces 

respectively to 

 
55 The extended expressions of these matrices are presented in (FOSSEN, 1994) and (FOSSEN, 2011). 
56 This matrix can be parameterized to be skew-symmetrical. 
57 Under these assumptions, the model is valid for AUVs and ASCs. 
58 The depth and the pitch angle can be controlled by a specific and independent control system. 
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• Kinematic Model: 

 

𝜼̇ = 𝐽(𝜓)𝝂  ⇒  [ 

𝑥̇
𝑦̇

𝜓̇
] = [

𝑐𝑜𝑠 𝜓 − 𝑠𝑖𝑛 𝜓 0
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] [ 
𝑢
𝑣
𝑟
] (3.14) 

 

Defining 

𝒑 =  [ 
𝑥
𝑦]  (3.15) 

  

𝑅(𝜓) = [
𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛 𝜓
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓

] (3.16) 

 

equation (3.14) can be rewritten as 

 

𝜼̇ = [ 
𝒑̇

𝜓̇
] = [

𝑅(𝜓) 02𝑥1

01𝑥2 1
] [ 

𝑢
𝑣
𝑟
] (3.17) 

 

• Dynamic Model: 

 

𝑀𝝂̇ + 𝐶(𝝂)𝝂 + 𝐷(𝝂)𝝂 = 𝝉𝒄 (3.18) 

 
where 

 

𝑀 = [

𝑚 − 𝑋𝑢̇ 0 0
0 𝑚 − 𝑌𝑣̇ −𝑌𝑟̇

0 −𝑁𝑣̇ 𝐼𝑍−𝑁𝑟̇

] (3.19) 

 

𝐶(𝝂) = [

0 0 −(𝑚 − 𝑌𝑣̇)𝑣
0 0 (𝑚 − 𝑋𝑢̇)𝑢

(𝑚 − 𝑌𝑣̇)𝑣 −(𝑚 − 𝑋𝑢̇)𝑢 0
] (3.20) 

 

𝐷(𝝂) = 𝐷𝐿(𝝂) + 𝐷𝑁𝐿(𝝂) (3.21) 

 

where the linear and nonlinear damping matrices are given by 
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𝐷𝐿(𝝂) = − [

𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟

0 𝑁𝑣 𝑁𝑟

] (3.22) 

 

𝐷𝑁𝐿(𝝂) = − [

𝑋𝑢|𝑢||𝑢| 0 0

0 𝑌𝑣|𝑣||𝑣| 𝑌𝑟|𝑟||𝑟|

0 𝑁𝑣|𝑣||𝑣| 𝑁𝑟|𝑟||𝑟|

] (3.23) 

 

and the vector of control forces and moments is given by 

  

𝝉 = [

𝜏𝑢

𝜏𝑣

𝜏𝑟

] (3.24) 

 

To support the control system design59, an additional simplification can be 

made. For an underactuated low-speed vehicle, without lateral actuation, presenting 

port/starboard and fore/aft symmetries, the off-diagonals elements of matrices 𝑀 and 

𝐷 can be neglected, resulting in a decoupled model. Thus, if only the actuated 

dynamics is considered, the dynamic model (3.18) can neglect the sway DOF 

resulting 

 
𝑀𝒖̇ + 𝐶(𝒖)𝒖 + 𝐷(𝒖)𝒖 = 𝝉𝒄 (3.25) 

 

where 𝒖 = [𝑢 𝑟]𝑇. For the sake of simplicity, the notations of the associated inertia, 

Coriolis/centripetal and damping new matrices ∈ ℝ2𝑥2 are kept as 𝑀, 𝐶 and 𝐷, 

respectivelly. 

3.2.4 Ocean Current Model 

In the presence of constant irrotational ocean current 𝒗𝒄 = [𝑢𝑐 𝑣𝑐]𝑇, related to 

the Body-Fixed reference frame {𝐵}, the kinematic model (3.14) holds if the following 

adjustments are made 

 

[ 

𝑥̇
𝑦̇

𝜓̇
] = [

𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛 𝜓 0
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] [ 
𝑢𝑟 + 𝑢𝑐

0 + +𝑣𝑐

𝑟
]   (3.26) 

where 

 
59 Not plant simulation. 
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𝑢 = 𝑢𝑟 + 𝑢𝑐 

𝑣 = 𝑣𝑟 + 𝑣𝑐 
 

 
where the sub-index  𝑟 denotes the vehicle’s velocity relative to the ocean current, 

and the sub-index 𝑐 denotes the ocean current’s velocity relative to the Body-Fixed 

reference frame {𝐵}.  

In the dynamic model (3.25), the velocity vector must consider 𝒖 = [𝑢𝑟 𝑟]𝑇. 

Moreover, matrices 𝐶 and 𝐷 must consider 𝑢𝑟 and 𝑣𝑟 instead of 𝑢 and 𝑣. 

3.3 The Reference Vehicles 

In order to perform the numerical simulations, two reference vehicles were 

chosen; the ASC Medusa and the AUV Mares. Their physical and functional 

characteristics are presented in Table 3-3: 

 

Table 3-3: AMV physical and function characteristics 

Characteristic ASC Medusa AUV Mares 

Hull Diameter 150 mm 200 mm 

Width 350 mm 200 mm 

Length 1035 mm 1500 mm 

Height 875 mm 200 mm 

Dry Weight 27 kg 32 kg 

Max. Depth 0 m49 100 m 

Velocity Range 0,0 - 1,5 m/s 0,0 - 1,5 m/s 

Typical Endurance 12 hours @ 1,0 m/s 10 hours @ 1,0 m/s 

Photo 

 

 

 

3.3.1 ASC Medusa 

The reference ASC is the Medusa60 vehicle developed by Instituto Superior 

Técnico (IST) of Lisbon, Portugal (IST Lisboa, 2020). The vehicle is composed of two 

 
60 Medusa can be deployed as ASC and AUV. 



56 

 

acrylic cylinder hulls, covered in both ends by aluminum caps, and attached to a 

central aluminum framework.  

The lower submerged hull houses the batteries, sensors, a hi-resolution 

camera, and an acoustic modem. The upper semi-submerged hull houses sensors, 

computers and a low-resolution camera, and connects to a mast equipped with GPS 

and radio frequency antennas.  

It is propelled by two stern axial thrusters that control surge and yaw motions. 

In terms of automation, the Medusa is equipped with an inner loop for speed and 

heading control (Abreu, et al., 2016).  

Combined with AUVs, the ASC Medusa can be used in research and 

commercial applications, deployed in missions such as data download and water 

column profiling, resource exploration and mapping, and high-resolution habitat 

mapping (Cardeira, 2017).  

The numerical simulations employing ASC Medusa borrow the inertia 

properties and hydrodynamic coefficients from (Abreu P. C., 2014), as summarized in 

Table 3-4.   

Table 3-4: ASC Medusa inertia and hydrodynamic properties at the surface61. 

Inertia Added Mass Linear damping Nonlinear damping 

𝑚 = 17 𝑘𝑔 𝑋𝑢̇ = −20 𝑘𝑔 𝑋𝑢 = −0.2 𝑘𝑔/𝑠 𝑋|𝑢|𝑢 = −25 𝑘𝑔/𝑚 

𝐼𝑧 = 1 𝑘𝑔. 𝑚2 𝑌𝑣̇ = −30 𝑘𝑔 𝑌𝑣 = −50 𝑘𝑔/𝑠 𝑌|𝑣|𝑣 = −0.01 𝑘𝑔/𝑚 

 𝑁𝑟̇ = −8.69 𝑘𝑔.𝑚2 𝑁𝑟 = −4.14 𝑘𝑔.𝑚2/𝑠 𝑁|𝑟|𝑟 = −6.23 𝑘𝑔.𝑚 

 𝑁𝑣̇ = 0 kg.m - 𝑁𝑣|𝑣| = 0 kg 

 𝑌𝑟̇ = 0 kg.m - 𝑌𝑟|𝑟| = 0 kg.m 

 

3.3.2 AUV Mares 

The reference AUV is the Mares62 vehicle, designed and built by Ocean 

Systems Group (Auvac - Autonomous Undersea Vehicle Applicantions Center, n.d.). 

It is a torpedo shaped vehicle constructed in a modular framework, composed by a 

central hull and several interchangeable and reconfigurable sections, most of them 

manufactured in acetal copolymer.  

 
61 For horizontal motion, if the vessel presents port/starboard and fore/aft symmetries, them the off-diagonals 

elements of matrices 𝑀 and 𝐷 can be neglected for low-speed applications. 

62 Modular Autonomous Robot for Environment Sampling. 
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It can be configured to carry a wide variety of sensors, collecting data while 

following predefined trajectories. Major application areas include pollution monitoring, 

scientific data collection, sonar mapping, and mine countermeasures.  

The electronic circuits and the batteries are located in the central hull. The 

main computer is a PC-104 stack, with a power supply, the CPU, a communications 

board and a solid-state disk. The navigation system is based on a LBL acoustic 

network. The vehicle software continuously fuses range (from the acoustic beacons), 

compass heading, and thruster RPM to compute the estimated position.  

It is propelled by two stern axial thrusters that control surge and yaw motions 

and, differently from similar-sized vehicles, it also has vertical thrusters to control 

surge and pitch motions. This arrangement permits operations in very confined 

areas, with virtually independent horizontal and vertical motion, for near zero speeds. 

The numerical simulations employing AUV Mares borrow the inertia properties 

and hydrodynamic coefficients from (Ferreira, Pinto, Matos, & Cruz, 2009), as 

summarized in Table 3-5. 

Table 3-5: AUV Mares inertia and hydrodynamic properties 

Inertia Added Mass Linear damping Nonlinear damping 

𝑚 = 32 𝑘𝑔 𝑋𝑢̇ = −1.74 𝑘𝑔 𝑋𝑢 = 0 𝑘𝑔/𝑠 𝑋|𝑢|𝑢 = −4.05 𝑘𝑔/𝑚 

𝐼𝑧 = 4.73 𝑘𝑔.𝑚2 𝑌𝑣̇ = −42.8 𝑘𝑔 𝑌𝑣 = 0 𝑘𝑔/𝑠 𝑌|𝑣|𝑣 = −113 𝑘𝑔/𝑚 

 𝑁𝑟̇ = −6.32 𝑘𝑔.𝑚2 𝑁𝑟 = 0 𝑘𝑔.𝑚2/𝑠 𝑁|𝑟|𝑟 = −1.57 𝑘𝑔.𝑚2 

 𝑁𝑣̇ = 0.0289 kg.m - 𝑁𝑣|𝑣| = 2.38 kg 

 𝑌𝑟̇ = 0.0289  kg.m - 𝑌𝑟|𝑟| = 1.88 kg.m 

 

3.4 Summary 

In this chapter, the mathematical model of the AMV (AUV or ASC) was 

developed, considering its kinematic and dynamic components.  

The kinematic model is of particular importance since it is also used as the 

MPC internal predictive model. Important model properties, reflected on its matrices’ 

properties, were highlighted in order to support the control system design. Initially 

described in 6 DOF, the model was reduced to 3 DOF after assuming some 

simplifying hypothesis.  

Finally, the sea proven ASC Medusa and AUV Mares were selected as 

reference vehicles to support the numerical simulations.  
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4 PATH FOLLOWING CONTROLLER 

 

In this chapter, the path following controller is developed. Representing the 

lower level of the control architecture, this module is responsible for controlling the 

individual motion of the vehicles, ensuring that they converge to a predefined speed 

parameterized path. Its design is decoupled in an inner-outer loop structure. The 

outer loop comprises a Lyapunov-Based Model Predictive Control (L-MPC) 

responsible to calculate and issue the speed assignment (the guidance system). The 

inner loop consists in a feedback linearized controller responsible to execute the 

speed assignment (the speed tracker system). This module also encompasses a 

Moving Horizon Estimator (MHE) to provide noise attenuated estimates of position 

and heading measurements, and a state observer to provide estimates of the ocean 

current’s velocity. 

4.1 Problem Statement 

Let 𝒑(𝑡) ∈ ℝ2 be the vector containing the position of an underactuated vehicle 

with no lateral thrusters, and 𝒑𝑹𝒆𝒇(𝛾(𝑡)) ∈  ℝ2 be the desired path, parameterized by 

𝛾(𝑡)  ∈  ℝ, with 𝜕𝑷𝑹𝒆𝒇/𝜕𝛾 bounded. Let 𝑢𝑅𝑒𝑓(𝛾(𝑡)) ∈  ℝ be the speed assignment 

associated with the desired path. As proposed by (Vanni, Aguiar, & Pascoal, 2008), 

the control problem can be stated in two parts63 

 

DEFINITION 4.1: (Constrained Path Following Problem): Let 𝒑𝑹𝒆𝒇(𝛾) ∈  ℝ2 

be the desired path parameterized by 𝛾 ∈ ℝ, and 𝑢𝑅𝑒𝑓(𝛾) ∈  ℝ be its associated 

positive speed assignment. Considering the input constrained set 𝕌𝑣 ∶= {(𝑢, 𝑟): 0 ≤

𝑢 ≤ 𝑢𝑚𝑎𝑥  , |𝑟| ≤ 𝑟𝑚𝑎𝑥} , derive control laws for 𝒖 = [𝑢 𝑟]𝑇 and 𝛾̇ such that all closed-

loop signals are bounded and both ‖𝒆‖ and ‖𝑧‖ converge asymptotically to a 

neighborhood of the origin of radius 𝛿. 

 

where 𝒆 and 𝑧 are the path following and speed assignment tracking errors, given by  

 
𝒆 ∶= 𝒑 − 𝒑𝑹𝒆𝒇(𝛾) (4.1) 

𝑧 = 𝛾̇ − 𝑢𝑅𝑒𝑓(𝛾) (4.2) 

 
63 For notational simplicity, the time dependency is dropped in the incoming formulation. 
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It can be noticed that forcing ‖𝑧‖ to converge to the origin, implicitly defines 

the path following strategy (𝛾̇ = 𝑢𝑅𝑒𝑓(𝛾))64. In this case, the speed assignment 𝑢𝑅𝑒𝑓 

expresses the rate of change of 𝛾. Thus, the speed of the virtual reference point is 

given by 
𝜕𝒑𝑹𝒆𝒇(𝛾)

𝜕𝛾
𝛾̇ =

𝜕𝒑𝑹𝒆𝒇(𝛾)

𝜕𝛾
𝑢𝑅𝑒𝑓

65. 

 
DEFINITION 4.2: (Speed Tracking Problem): Supposing that  𝒖𝒅 is 

sufficiently smooth and its time derivative is bounded, derive a feedback control law 

𝝉 = [𝜏𝑢 𝜏𝑟]𝑇  such that 𝒖 converges asymptotically to 𝒖𝒅. 

 
 The path following controller basic structure is decoupled in two independent 

control loops (Maurya, Aguiar, & Pascoal, 2009), as presented in Figure 4-1. The 

outer (kinematic) loop calculates and issues the speed assignment required to drive 

the vehicle into the desired path, while respecting the associated speed assignment 

(guidance scheme – Definition 4.1). In turn, the inner (dynamic) loop assures that the 

speed assignment is properly tracked (speed tracker scheme – Definition 4.2). 

 

Figure 4-1: Basic inner-outer loop structure 

 

(From Author) 

 
64 The path following strategy is not unique. In this strategy, the virtual reference point is forced to move at the 

desired speed, by assigning 𝛾̇ = 𝑢𝑅𝑒𝑓(𝛾). Another strategy could envisage the introduction of an additional 

control variable, by setting a control law for 𝛾̈ (using backstepping, for example). Differently from the first 

strategy, the virtual reference point would move faster/slower if the vehicle is ahead/behind it. 

65 Note that if  
𝜕𝒑𝑹𝒆𝒇(𝛾)

𝜕𝛾
 = 1, then the speed of the virtual reference point coincides with the speed assignment. 
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This architecture presents advantages for practical implementation such as 

simpler control laws, and fast-slow temporal scale separation which simplifies the 

tuning process. Additionally, since the loops are dynamically decoupled and 

considering that the outer loop does not require an in-depth knowledge of the 

vehicle’s internal dynamics, it is possible to use the same outer loop in a wide range 

of vehicles already equipped with factory-assembled speed control systems (Maurya, 

Aguiar, & Pascoal, 2009)66. However, the control laws are more subjected to 

smoothness and saturation issues (Vanni, 2007). 

4.2 Path Following Controller 

4.2.1 Outer (Kinematic) Loop 

The outer (kinematic) loop comprises a sampled-data L-MPC. As mentioned in 

item 2.4.1, the adoption of a terminal cost and a terminal constraint set in the OCP 

formulation assures recursive feasibility and stability of the controller. However, these 

two figures can be neglected in the OCP formulation if a contractive constraint is 

adopted instead. This constraint is constructed based on a global Lyapunov function 

and its associated stabilizing constrained control law, which both of them inherited 

from a generic reference controller. So, the outer loop design is performed in two 

steps. Firstly, the contractive constraint is formulated, and after the L-MPC is 

designed considering this constraint in the OCP. 

4.2.1.1 Contractive Constraint Formulation 

The contractive constraint is derived from the feedback linearization controller 

developed in (Vanni, 2007) and (Vanni, Aguiar, & Pascoal, 2008). Once incorporated 

into the OCP formulation, the contractive constraint assures that the MPC inherits 

global asymptotic stability of the reference controller. In this way, regardless of any 

initial position and orientation, the vehicle always converges to the path 

asymptotically (global region of attraction).  

The path following tracking error, expressed in the Body-Fixed frame {𝐵}, and 

its associated time derivative are given by 

 

 
66 The outer loop is designed separately from the whole loop, assuming that its output variables can be tracked 

instantaneously by the inner loop. This premise is unrealistic since the inner loop also has its own dynamics.  For 

this reason, in practice, the outer loop must be tuned considering the characteristics of the inner loop (Maurya, 

Aguiar, & Pascoal, Marine vehicle path following using inner-outer loop control, 2009). 
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𝒆(𝑡) ∶= 𝑅𝑇(𝜓)(𝒑 − 𝒑𝑹𝒆𝒇) (4.3) 

  

𝒆̇(𝑡) ∶= 𝑅̇𝑇(𝜓)(𝒑 − 𝒑𝑹𝒆𝒇) + 𝑅𝑇(𝜓)(𝒑̇ − 𝒑̇𝑹𝒆𝒇) (4.4) 

where 

𝑅̇𝑇(𝜓) = −𝑆(𝑟)𝑅𝑇(𝜓)  with 𝑆(𝑟) = [
0 −𝑟
𝑟 0

] (4.5) 

 
and 

𝒑̇𝑹𝒆𝒇 =
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.6) 

 
Substituting (4.5) and (4.6) into (4.4) yields 

 

𝒆̇ ∶= −𝑆(𝑟)𝑅𝑇(𝜓)(𝒑 − 𝒑𝑹𝒆𝒇) + 𝑅𝑇(𝜓) (𝒑̇ −
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇) (4.7) 

 
Replacing (3.14) and (4.3) into (4.7), and introducing the vector 𝜹 yields 

 

𝒆̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) − 𝑆(𝑟)𝜹 + 𝑅𝑇(𝜓) (𝑅(𝜓) [
𝑢𝑟 + 𝑢𝑐

𝑣𝑟 + 𝑣𝑐
] −

𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇) (4.8) 

  

𝒆̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) + [
0 𝑟
−𝑟 0

] [
𝛿
0
] + [

𝑢𝑟

𝑣𝑟
] + [

𝑢𝑐

𝑣𝑐
] − 𝑅𝑇(𝜓)

𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.9) 

 
where 𝜹 = [𝛿 0]𝑇, with 𝛿 being an arbitrarily small negative constant, is a constant 

vector introduced to incorporate the angular velocity 𝑟 in the error dynamics 

formulation. Developing (4.9) yields 

 

𝒆̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) + [
0

−𝑟𝛿
] + [

𝑢𝑟

𝑣𝑟
] + 𝒗𝒄 − 𝑅𝑇(𝜓)

𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.10) 

 

𝑒̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) + [
𝑢𝑟

−𝑟𝛿
] + [

0
𝑣𝑟

] + 𝒗𝒄 − 𝑅𝑇(𝜓)
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.11) 

 

𝑒̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) + [
1 0
0 −𝛿

] [
𝑢𝑟

𝑟
] + [

0
𝑣𝑟

] + 𝒗𝒄 − 𝑅𝑇(𝜓)
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.12) 

    
By setting   

 Δ = [
1 0
0 −𝛿

]  and  𝒖̅𝒅 = [
𝑢𝑟

𝑟
] (4.13) 
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equation (4.12) can be written as 

 

𝑒̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) + Δ𝒖̅𝒅 + [
0
𝑣𝑟

] + 𝒗𝒄 − 𝑅𝑇(𝜓)
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇ (4.14) 

 
A stabilizing control law for the path following error dynamics (4.14), imported 

from the GAS reference controller (Vanni, 2007), is given by 

 

𝒖̅𝒅 ∶= Δ−1 [−𝐾𝑘 tanh(𝒆 − 𝜹) − [
0
𝑣𝑟

] − 𝒗𝒄 + 𝑅𝑇(𝜓)
𝜕𝒑𝑹𝒆𝒇

𝜕𝛾
𝛾̇] (4.15) 

 
where 

𝐾𝑘 = [
𝐾𝑘𝑥 0
0 𝐾𝑘𝑟

] (4.16) 

 
 Defining the following Lyapunov function 

 

𝑉(𝒆) =
1

2
(𝒆 − 𝜹)𝑇(𝒆 − 𝜹) (4.17) 

 
its time derivative is given by 

 

𝑉̇(𝒆) = (𝒆 − 𝜹)𝑇 𝒆̇ (4.18) 

 
 Replacing (4.15) into (4.14) yields 

 
𝑒̇ ∶= −𝑆(𝑟)(𝒆 − 𝜹) − 𝐾𝑘 tanh(𝒆 − 𝜹) (4.19) 

 
 Replacing (4.19) into (4.18) yields 

 

𝑉̇𝑢𝑑
(𝒆) = −(𝒆 − 𝜹)𝑇𝑆(𝑟)(𝒆 − 𝜹) − (𝒆 − 𝜹)𝑇𝐾𝑘 tanh(𝒆 − 𝜹) (4.20) 

 
 Since 𝑆(𝑟) is skew-symmetric, results 

 

𝑉̇𝑢𝑑
(𝒆) = −(𝒆 − 𝜹)𝑇𝐾𝑘 tanh(𝒆 − 𝜹) (4.21) 

  
So, the contractive constraint can be stated as 

 

𝑉̇𝑢𝑑
(𝒆) ≤ 𝑉̇𝑢̅𝑑

(𝒆) = −(𝒆 − 𝜹)𝑇𝐾𝑘 tanh(𝒆 − 𝜹) (4.22) 
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4.2.1.2 Lyapunov-Based MPC (L-MPC) 

The introduction of the contractive constraint in the MPC formulation leads to 

the Lyapunov-Based MPC (L-MPC). Initially, the controller is designed considering 

the kinematic model as the system reference internal model. From (3.14), imposing 

no sway motion, results 

 

 [ 

𝑥̇
𝑦̇

𝜓̇
] = [

𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛 𝜓 0
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] [ 
𝑢𝑟

0
𝑟

] + [ 
𝑢𝑐𝑖

𝑣𝑐𝑖

0
]   

≝ 

𝜼̇(𝑡) = 𝑓(𝜼(𝑡), 𝒖(𝑡), 𝒗𝒄𝒊 (𝑡)) 

(4.23) 

  
To implement the L-MPC, (4.23) must be discretized. Applying Euler’s method 

with sampling time Δ𝑇 yields 

 

[ 

𝑥(𝑘 + 1)

𝑦(𝑘 + 1)

𝜓(𝑘 + 1)
] = [ 

𝑥(𝑘)

𝑦(𝑘)

𝜓(𝑘)
] + Δ𝑇 [

𝑢𝑟(𝑘)𝑐𝑜𝑠 𝜓(𝑘) + 𝑢𝑐𝑖 (𝑘)

𝑢𝑟(𝑘)𝑠𝑖𝑛 𝜓(𝑘) + 𝑣𝑐𝑖(𝑘)

𝑟(𝑘)
]   

≝ 

𝜼(𝑘 + 1) = 𝑓(𝜼(𝑘), 𝒖(𝑘), 𝒗𝒄𝒊 (𝑘) 

(4.24) 

 
 The L-MPC controller is them formulated as an OCP, incorporating the cost 

function 𝐽(. ) and all applicable constraints, including the contractive constraint. The 

optimization window is limited to a predefined length 𝑁 of future time instances and is 

shifted in every sample step (Hung, Rego, Crasta, & Pascoal, 2018) 

 

min
𝑢𝑑

[𝐽(𝜼𝟎 , 𝒖𝒅) = ∑ 𝑙 (𝜼𝒖𝒅
(𝛾(𝑘)) , 𝒖𝒅(𝑘))

𝑁−1

0

] (4.25) 

𝑠. 𝑡  

𝜼𝒖𝒅
(𝛾(𝑘 + 1)) = 𝑓(𝜼𝒖𝒅

(𝛾(𝑘),𝒖𝒅(𝑘),𝒗𝒄𝒊 (𝑘)) (4.26) 

𝜼𝒖𝒅
(0) = 𝜼𝟎 (4.27) 

𝛾̇ (𝑘) = 𝑢𝑅𝑒𝑓(𝑘) (4.28) 

𝜼𝒖𝒅
(𝛾(𝑘)) ∈  𝕏, ∀ 𝑘 ∈ [0,𝑁 − 1] (4.29) 

𝒖𝒅(𝑘) ∈  𝕌, ∀ 𝑘 ∈ [0, 𝑁] (4.30) 

𝑉̇𝒖𝒅
(𝑒(𝛾(𝑘))) ≤ 𝑉̇𝒖̅𝒅

(𝑒(𝛾(𝑘))) (4.31) 
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where the stage cost 𝑙(𝜼𝒖𝒅
, 𝒖𝒅) is given by: 

 

𝑙(𝜼𝒖𝒅
, 𝒖𝒅) = ‖𝜼𝒖𝒅

− 𝜼𝒓𝒆𝒇‖𝑄

2
+ ‖𝒖𝒅 − 𝒖𝒓𝒆𝒇‖𝑅

2
 (4.32) 

 
and the weighing (tuning) matrices 𝑄 and 𝑅 are given respectively by 

 

𝑄 = [

𝑞𝑥 0 0
0 𝑞𝑦 0

0 0 𝑞𝜓

]  (4.33) 

 

𝑅 = [
𝑟𝑢 0
0 𝑟𝑟

]  (4.34) 

 
For the current application, the OCP does not foresee the use of slack 

variables67 since the applicable constraints can be categorized as “hard constraints” 

such as minimum and maximum speeds (associated to the limitations of the 

propulsion system) as well as forbidden positions (to avoid collisions with obstacles). 

The OCP (4.25) - (4.31) can be solved by three basic approaches (Diehl, 

Bock, Diedam, & Wieber, 2006):  

• Dynamic Programing (relying on the optimality principle associated to the 

Hamilton-Jacobi-Bellman equation); 

• Indirect Methods (relying on a boundary value problem solved by 

variational calculus, Euler-Lagrange differential equations or Pontryagin’s 

maximum principle); and 

• Direct Methods (relying on the transformation of the original infinite OCP 

into a finite dimensional NLP. 

Direct Methods are nowadays the most successful approach used to solve 

constrained OCP. The main advantage of this approach consists in its ability to easily 

treat inequality constraints subjected to structural changes during the optimization 

process. Generally, Direct Methods can be categorized into sequential and 

simultaneous approaches (Diehl, Bock, Diedam, & Wieber, 2006). 

In the sequential approach, the state trajectory is considered as an implicit 

function of the controls, and of the initial state. Simulation and optimization steps run 

 
67 The system can be eventually driven into a region where the MPC problem is infeasible and hence no control 

action can be computed. Feasibility can be recovered by softening the constraints using slack variables, during 

intermediate stages of the process. 
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sequentially, and the discretized control is the only decision variable in the 

optimization process.  

The most popular variant of this approach is direct single shooting (Diehl, 

Bock, Diedam, & Wieber, 2006). Besides its advantage concerning simplicity, direct 

single shooting is not suitable for nonlinear and/or unstable systems, in long 

prediction horizon applications, due to nonlinearity propagation (Mehrez, 2019). 

Differently, in the simultaneous approach, the parameterized state trajectory is 

also a decision variable in the optimization process, being computed as an equality 

constraint. In this way, the effect of nonlinearity propagation is reduced compared to 

the sequential approach. Simulation and optimization steps run simultaneously, and 

only the NLP solution that complies with the equality constraints imposed by the 

system dynamics represents a valid control. 

The most popular variant of this approach is direct multiple shooting, 

considered to be the best choice to solve nonlinear OCP in robotics. (Diehl, Bock, 

Diedam, & Wieber, 2006). The key idea is to break down the system integration into 

short time intervals, i.e., to use the system model as a state constraint at each 

optimization step. It exhibits good convergence properties and can be easily 

parallelized (Andersson, Gillis, Horn, Rawlings, & Diehl, 2019). Adopting such 

approach, the OCP (4.25) - (4.31) can be transcribed into a direct multiple shooting 

NLP as: 

 
𝑚𝑖𝑛

𝑤
𝛷(𝑤) (4.35) 

𝑠. 𝑡   

𝒈𝟏(𝑤) = [

𝑔1(𝒙𝟎, 𝒖𝟎)
⋮

𝑔1(𝒙𝑵−𝟏, 𝒖𝑵−𝟏)
𝑔1(𝒙𝑵)

] ≤ 0 (4.36) 

  

𝒈𝟐(𝑤) = [

𝒙̅𝟎 − 𝒙𝟎

𝑓(𝒙𝟎, 𝒖𝟎)−𝒙𝟏

⋮
𝑓(𝒙𝑵−𝟏, 𝒖𝑵−𝟏)−𝒙𝑵

] = 0 (4.37) 

 

where 𝜱 is the objective function, 𝒘 = [𝒖𝟎 ⋯ 𝒖𝑵−𝟏    , 𝒙𝟎 ⋯ 𝒙𝑵] is the decision 

variable, 𝒈𝟏 are the inequality constraints and 𝒈𝟐 are the equality constraints. 
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4.2.2 Inner (Dynamic) Loop 

Once issued the speed assignment, the next task consists in assuring its 

tracking. For that, let’s consider the speed assignment tracking error 

  

𝒖̃(𝑡) ∶= 𝒖(𝑡) − 𝒖𝒅(𝑡) (4.38) 

 

where 𝒖 and 𝒖𝒅  ∈  ℝ2 are the vectors of real and assigned speeds, respectively. 

Thus, the speed assignment tracking error dynamics is given by 

 

𝒖̇̃(𝑡) ∶= 𝒖̇(𝑡) − 𝒖̇𝒅(𝑡) (4.39) 

 

Inserting (3.25) into (4.39) results 

 

𝒖̇̃ = 𝑀−1(−𝐶(𝒖)𝒖 − 𝐷(𝒖)𝒖 + 𝝉𝒄) − 𝒖̇𝒅 (4.40) 

 

The control objective consists in assuring that 𝒖̃ converges asymptotically to 

the origin, which can be accomplished by setting the following control law 

 

𝝉𝒄 = −𝐾𝐷(𝒖 − 𝒖𝒅) + 𝑀𝒖̇𝒅 + 𝐶(𝒖)𝒖 + 𝐷(𝒖)𝒖𝒅 (4.41) 

 

where 𝐾𝑑  ∈  ℝ2x2. If the terms 𝐶(𝒖)𝒖68 and 𝒖̇𝒅
69 are neglected and considered as 

input perturbations, them (4.41) reduces to 

 

𝝉𝒄 = −𝐾𝑑(𝒖 − 𝒖𝒅) + 𝐷(𝒖)𝒖𝒅 (4.42) 

 

and (4.40) reduces to  

 

𝒖̇̃ = −𝑀−1( 𝐷(𝒖)𝒖̃ + 𝐾𝐷𝒖̃) (4.43) 

 

So, since 𝐷(𝒖) is positive-definite, and 𝐾𝑑 can be set to be diagonal positive-

definite, them the origin 𝒖̃ = 𝟎 is globally asymptotically stable. 

 
68 To avoid the need of a sway sensor. 
69 To decouple the dynamics of inner and outer loops. 
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4.3 Moving Horizon Estimator (MHE) 

The design of high-performance state estimators for robotics applications has 

become a key issue due to increasing complexity and more stringent operational 

safety requirements (Brembeck, 2019). To solve the state estimation problem, this 

thesis anticipates the use of an MHE. The MHE, differently from EKF, supplies its 

estimates based on the most recent windows of previous states and control actions70.  

The MHE acts as a filter, providing noise attenuated estimates of position and 

heading measurements for the L-MPC. The optimization window is limited to a 

predefined length of previous time instances (𝑁𝑀𝐻𝐸 ) and is shifted in every sample 

step. The length of the sliding window is intrinsically linked to the estimates’ 

smoothness. 

To deal with measurement noise, it is necessary to consider a measurement 

model in the MHE structure 

 

[

𝑧𝑥

𝑧𝑦

𝑧𝜓

] = [

𝑥
𝑦
𝜓

] + [

𝑛𝑥

𝑛𝑦

𝑛𝜓

]  ⇒   𝒛 = 𝒉(𝜼) + 𝒏𝜼 (4.44) 

 

where sensor noises are distributed as 𝑛𝑥~𝒩(0 , 𝜎𝑥
2), 𝑛𝑦~𝒩(0 , 𝜎𝑦

2) and 

𝑛𝜓~𝒩(0 , 𝜎𝜓
2), resulting in the following covariance matrix 

 

𝑄∗ = [

𝜎𝑥
2 0 0

0 𝜎𝑦
2 0

0 0 𝜎𝜓
2

]  (4.45) 

 
Additionally, the MPC motion model must be adjusted to take into account the 

presence of noise in the velocity measurements 

 

[
𝑧𝑢

𝑧𝑟
] = [

𝑢
𝑟
] + [

𝑛𝑢

𝑛𝑟
] ⇒  𝒖𝑴 = 𝒖 + 𝒏𝒖 (4.46) 

 
where 𝑧𝑢 and 𝑧𝑟 are the control commands measured by dedicated sensors.  

 
The associated noises are modeled as 𝑛𝑢~𝒩(0 , 𝜎𝑢

2) and 𝑛𝑟~𝒩(0 , 𝜎𝑟
2), 

resulting in the following covariance matrix 

 
70 In EKF, the most recent estimate depends on the previous state and last control action (Markov assumption). 
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𝑅∗ = [
𝜎𝑢

2 0

0 𝜎𝑟
2]  (4.47) 

 
The MHE is them formulated as an OCP, incorporating the cost function 𝐽(. ) 

and all applicable constraints. The optimization window is limited to a predefined 

length 𝑁𝑀𝐻𝐸  of previous time instances and is shifted in every sample step: (Mehrez, 

2019) 

 

min
𝜂,𝑢

[𝐽(𝜼 , 𝒖)  = ∑ ‖𝒛𝑴(𝒊) − 𝒉(𝜼(𝒊))‖𝑄∗
−1

2  + ∑ ‖𝒖𝑴(𝒊) − 𝒖(𝒊)‖𝑅∗
−1

2

𝑘−1

𝑖=𝑘−𝑁𝑀𝐻𝐸 

𝑘

𝑖=𝑘−𝑁𝑀𝐻𝐸 

] (4.48) 

𝑠. 𝑡 
 

𝜼𝒖(𝑖 + 1) = 𝑓(𝜼𝒖(𝑖), 𝒖(𝑖)) (4.49) 

𝜼𝒖(𝑖) ∈  ℕ, ∀ 𝑖 ∈ [𝑘 − 𝑁𝑀𝐻𝐸 , 𝑘] (4.50) 

𝒖(𝑖) ∈  𝕌, ∀ 𝑖 ∈ [𝑘 − 𝑁𝑀𝐻𝐸 , 𝑘 − 1] (4.51) 

 
where 𝒛𝑴 and 𝒖𝑴 are the vectors containing the measurement of position/heading 

and velocities, respectively, and the weighing (tuning) matrices 𝑄∗
−1 and 𝑅∗

−1 are the 

inverse of the covariance matrices (4.45) and (4.47)71. 

4.4 Ocean Current State Observer 

In the presence of an ocean current, the L-MPC needs to receive information 

about its velocity, in order to issue the proper speed assignment. However, to avoid 

the need of a dedicated sensor, the system encompasses an ocean current state 

observer. 

The ocean current state observer is designed based on the kinematic model 

(3.17), corrected with the velocity components of the ocean current (3.26), referenced 

to the Earth-Fixed inertial frame {𝐼} 

 

𝒑̇ = 𝑅(𝜓)𝒗𝒓 + 𝒗𝒄𝒊  (4.52) 

 

The following ocean current observer is borrowed from (Aguiar & Pascoal, 

2007b): 

 
71 If the measurement covariance is high, the associated penalizing factor will be low and the contribution of 

such measurement in the OCP will be reduced, and vice versa. 
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𝒑̇ = 𝑅(𝜓)𝒗𝒓 + 𝒗̂𝒄𝒊 + 𝐾𝑝_𝑜𝑏𝑠𝒑̃  (4.53) 

  

𝒗̇̂𝒄𝒊 = 𝐾𝑐_𝑜𝑏𝑠𝒑̃  (4.54) 

 
where 𝐾𝑝_𝑜𝑏𝑠 and 𝐾𝑐_𝑜𝑏𝑠 are the observer diagonal gain matrices. The estimation 

errors are given by: 

𝒑̃ = 𝒑 − 𝒑̂  (4.55) 
  

𝒗̃𝒄𝒊 = 𝒗𝒄𝒊 − 𝒗̂𝒄𝒊  (4.56) 

 
For constant current (𝒗̇𝒄𝒊 = 0), the estimation errors dynamics are: 

 

𝒑̇̃ = −𝐾𝑝_𝑜𝑏𝑠𝒑̃ + 𝒗̃𝒄𝒊  (4.57) 

  

𝒗̇̃𝒄𝒊 = −𝐾𝑐_𝑜𝑏𝑠𝒑̃  (4.58) 

 
 If the observer gain matrices are tuned to be strictly positive, then the 

estimation errors will converge asymptotically to zero. 

4.5 Summary 

In this chapter, the Path-Following Controller responsible for the individual 

motion control of the vehicles was designed, split in an inner-outer loop structure. 

The outer loop, composed by a L-MPC, solved the kinematic task (guidance 

scheme), while the inner loop, composed by a Feedback Linearization controller, 

solved the dynamic task (speed tracking scheme). The controller also encompasses 

a MHE and an ocean current state observer. 

To assure L-MPC recursive feasibility and stability, a contractive constraint, 

inherited from a reference globally asymptotically stable controller, was included in 

the associated OCP formulation. This approach suppressed the need to adopt a 

terminal cost and a terminal constraint set in the associated OCP. 

In order to provide noise attenuates estimates of position and heading 

measurements for the L-MPC, the system also foresees an MHE. Fully based on the 

receding horizon concept, it can handle the applicable physical constraints while fully 

exploiting its own internal model. Another advantage concerns the simplicity of its 

tuning process, relying exclusively on the knowledge of measurement noise 

covariances. Additionally, an ocean current state observer was designed to avoid the 

need to measure the ocean current’s velocity.  
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5 COOPERATIVE CONTROLLER 

 

In this chapter, the cooperative controller is developed. Representing the 

higher layer of the control architecture, this module is responsible for controlling the 

collective motion of the vehicles, assuring that a desired geometric pattern 

(formation) is reached. It relies on a decentralized consensus strategy in which the 

vehicles exchange information over a communication network, to agree on a certain 

variable of interest. The controller also incorporates a logic-based communication 

algorithm to assure that communication occurs only when strictly necessary, on a 

discrete basis. 

5.1 Problem Statement 

Technical issues associated with underwater communication such as limited 

bandwidth and range, latency, intermittent failures and multipath effects 

(Ghabcheloo, et al., 2009) impose severe restrictions on the information flow among 

the vehicles, leading to the need to reduce it as much as possible. For that reason, a 

centralized control system based on the knowledge of all coordination parameters of 

all vehicles is not a practical solution for this type of application72 (Vanni, 2007).  

An alternative to minimize the information flow is to adopt a decentralized 

control strategy at the vehicle level. In this approach, for a given vehicle, the control 

action is obtained locally, based only on the knowledge of the coordination 

parameters of the neighboring vehicles that communicate with it. Due to the simplicity 

of the control law, consensus theory73 has normally been chosen to tackle the 

problem. 

To solve the formation control problem in the framework of consensus 

strategy, it is necessary to synchronize the formation (more specifically, to 

synchronize some pre-defined states of the vehicles). Once the synchronization 

states reach agreement, the formation control problem is indirectly solved, and the 

desired geometric pattern is achieved (Ghabcheloo, et al., 2009). 

  Consider a group of 𝑛 vehicles 𝒩 ∶= {1, . . . , 𝑛}, each with its own 

parameterized path 𝒑𝑹𝒆𝒇
𝒊 (𝛾𝑖), 𝑖 ∈ 𝒩. Additionally, let 𝒩𝑖 be the set of vehicles that 

 
72 Every vehicle would have to receive, either directly or through other vehicles, information about the rest of the 

formation, resulting in a significant information flow (Vanni, 2007). 
73 Supported by graph theory, to model the communication network. 
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vehicle 𝑖 communicates with (the neighboring vehicles). By setting 𝛾𝑖 as the 

synchronization states of the vehicles, consensus (or agreement) among such states 

is reached when the following condition is attained (Ghabcheloo, et al., 2009) 

  
𝛾𝑖𝑗(𝑡) ∶= 𝛾𝑖(𝑡) − 𝛾𝑗(𝑡) → 0   𝑖, 𝑗 ∈  𝒩  (5.1) 

 
where the term 𝛾𝑖𝑗, denominated “along-path distance”, represents an appropriate 

measure of the distance between vehicles 𝑖 and 𝑗 in the formation74. 

To achieve its goal, the cooperative controller must adjust the desired speeds 

of the vehicles (𝑢𝑅𝑒𝑓
𝑖 ) according to the “along-path distances”. The key concept 

behind its implementation is to set a common speed profile (𝑢̅𝑟(𝛾)) to all paths, and 

to introduce a control variable for each vehicle, in the form of a correction speed term 

(𝑢̃𝑐
𝑖 ) 

𝑢𝑅𝑒𝑓
𝑖 = 𝑢̅𝑟(𝛾) + 𝑢̃𝑐

𝑖  (5.2) 

 

where the correction speed term 𝑢̃𝑐
𝑖  is determined based on the “along-path 

distances” among vehicle 𝑖 and the vehicles that communicate with it75. After 

reaching consensus, 𝛾𝑖(𝑡) = 𝛾𝑗(𝑡) = 𝛾, and 𝑢̃𝑐
𝑖 = 0, which means that the whole 

formation travels synchronized at an assigned speed profile 𝑢̅𝑟(𝛾).  

 

DEFINITION 5.1: (Cooperative Control Problem): For each vehicle 𝑖 ∈  𝒩, 

derive a control law for the correction speed 𝑢̃𝑐
𝑖 = 𝑓(𝛾𝑖, 𝛾𝑗), with 𝑗 ∈  𝒩𝑖, such that 

𝑙𝑖𝑚
𝑡→∞

[𝛾𝑖(𝑡) − 𝛾𝑗(𝑡)] = 0,   𝑖, 𝑗 ∈  𝒩, and 𝑙𝑖𝑚
𝑡→∞

[𝛾̇𝑖(𝑡) − 𝑢̅𝑟(𝛾(𝑡))] = 0,   𝑖 ∈  𝒩.The 

former condition imposes that all synchronization errors converge to zero, while the 

latter imposes that the formation speed converges to the common speed assignment 

(Ghabcheloo, et al., 2009) and (Vanni, Aguiar, & Pascoal, 2008). 

 

To implement the inter-vehicle communication, the communication topology is 

modeled using Graph Theory (Appendix A2). The vehicles are represented by 

vertices in a graph, and the communication links are represented by its edges. It is 

 
74 The “along-path distance” definition is intrinsically linked to the path parametrization, as detailed in 

(Ghabcheloo, et al., 2009). 
75 This strategy is categorized as a decentralized one, since the calculation of 𝑣̃𝑑𝑖 relies exclusively on 

information available to vehicle 𝑖, i.e., its own synchronization state and the synchronization states of the 

vehicles that communicate with it. 
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assumed that each vehicle is capable of communicating bidirectionally with their 

neighboring vehicles (bidirectional interconnection network, represented by 

undirected edges).  

The Cooperative Control scheme, already incorporated in the whole control 

system, is illustrated in Figure 5-1. 

 

Figure 5-1: Path following controller + cooperative controller 

 

(From Author) 

5.2 Cooperative Controller 

The cooperative controller design is performed in two steps. Firstly, 

considering continuous communication76, and after considering discrete 

communication through the implementation of a logic-based communication 

algorithm. 

5.2.1 Continuous Communication 

Let the communication network topology be represented by Graph 𝐺(𝜈, 𝜀). The 

error vector describing its restrictions is given by 

 
𝝃 = 𝐿𝐷𝜸 (5.3) 

 
where 𝝃 ∈ ℝ𝑛 is the error vector, 𝐿𝐷 = 𝐷−1(𝐷 − 𝐴)  ∈ ℝ𝑛𝑥𝑛 is the normalized Graph 

Laplacian associated to the communication network topology and 𝜸 ∈ ℝ𝑛is the vector 

 
76 Performed at constant predefined time intervals. 
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containing the synchronization states of the vehicles. The elements of the error 

vector 𝝃 are defined as 

𝜉𝑖 = 𝛾𝑖 −
1

|𝒩𝑖|
∑ 𝛾𝑗

𝑗 ∈ 𝒩𝑖

 (5.4) 

 
The dynamics of the error vector is given by 

 

𝝃̇ = 𝐿𝐷𝜸̇ (5.5) 

 
The dynamics of the synchronization state vector is given by 

 
𝜸̇ =  𝒖̅𝒓(𝜸) + 𝒖̃𝒄 (5.6) 

 
PROPOSITION 5.1 (Cooperative Control – Continuous Communications): 

The error vector converges asymptotically to the origin (synchronization) if the 

following decentralized control law is imposed over the correction speed term vector:  

 
𝒖̃𝒄 = −𝐾𝜉 tanh(𝐿𝐷𝜸) (5.7) 

5.2.2 Event-Based Communication 

Continuous communication is a costly and even an unnecessary practice. 

Particularly for underwater applications, it is unfeasible due to the technical issues 

previously mentioned. In this step, the cooperative control law is adjusted considering 

the inclusion of a logic-based communication algorithm, so that communication 

occurs on a discrete basis, strictly when really necessary. 

Based on (Aguiar & Pascoal, 2007a) and (Vanni, Aguiar, & Pascoal, 2008) 

each vehicle is equipped with a supervisory logic-based communication algorithm 

that decides the moment to update and broadcast an information pack to the 

neighbors, based on a predefined criterion. During the time interval between two 

consecutive broadcasts, each vehicle runs estimates of the synchronization states of 

its neighbors as well as of its own state (self-state estimation). If the self-estimation 

error reaches a predefined threshold, the communication is triggered, and the 

associated information pack is broadcasted.  

Let 𝑡𝑘
𝑖  for all 𝑘 ∈  ℤ+ be the time instants in which vehicle 𝑖 updates its 

cooperative control signal 𝑢̃𝑐
𝑖 (𝑡) = 𝑢̃𝑐

𝑖 (𝑡𝑘
𝑖 ) for all 𝑡 ∈  [𝑡𝑘

𝑖 ,  𝑡𝑘+1
𝑖 ] and transmits the 
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information pack 𝑪𝒊(𝑡𝑘
𝑖 ) ∶= [𝑡𝑘

𝑖 𝛾𝑖(𝑡𝑘
𝑖 ) 𝑢̃𝑐

𝑖 (𝑡𝑘
𝑖 )] to its neighbors. Based on such 

information, the state of vehicle 𝑖 is estimated by vehicle 𝑖 itself (self-state estimation) 

and by vehicles 𝑗 ∈ 𝒩𝑖, according to: 

 

𝛾𝑖
𝑖 (𝑡) = 𝛾𝑖

𝑗
(𝑡) = 𝛾𝑖(𝑡𝑘

𝑖 ) + (𝑡 − 𝑡𝑘
𝑖 ) [𝑢̅𝑟 + 𝑢̃𝑐

𝑖 (𝑡𝑘
𝑖 )] (5.8) 

 
Vehicle 𝑖 communicates its information pack to its neighbors if the following 

Event-Trigger Condition (ETC) is violated77: 

 

ETC = 𝛾̃𝑖
𝑖(𝑡) = |𝛾𝑖(𝑡) − 𝛾𝑖

𝑗(𝑡)| ≥ 𝜀2  (5.9) 

 
PROPOSITION 5.2 (Cooperative Control – Discrete Communications): 

The error vector converges asymptotically to the origin (synchronization) if the 

following decentralized control law is imposed over the correction speed term vector:  

 
𝒖̃𝒄 = −𝐾𝜉 tanh(𝜸 − 𝐷−1𝐴𝜸̂) (5.10) 

 
The logic-based communication algorithm for an individual vehicle is 

presented in Table 5-1: 

Table 5-1: Logic-based communication algorithm 

Input: Information received 𝐶𝑗(𝑡𝑘
𝑗
)   𝑗 ∈  𝒩𝑖 and 𝛾𝑖 

Output: Communication Pack 𝐶𝑖 and control output 𝑣̃𝑑𝑖 

1: Initialization 

2: Define 𝐾 ← 0 ; 𝑡𝑘
𝑖 ← 𝑡 ;  𝑢̃𝑐

𝑖 (𝑡𝑘) ← 0 ;  𝛾𝑖(𝑡𝑘) ←  𝛾𝑖 

3: Transmit 𝑪𝒊(𝒕𝒌
𝒊 ) 

4: For 𝒕 = 𝒉𝝉𝑺 where 𝒉 ∈  ℤ+
 

5:      Estimate 𝛾𝑖
𝑗
   𝑗 ∈  𝒩𝑖, using (5.8) 

6:      Compute ETC using (5.9) 

7:      If 𝝃 = |𝜸𝒊 − 𝜸̂𝒊
𝒊| ≤ 𝜺𝟐 them 

8:      𝐾 ← 𝐾 + 1 ;  𝑡𝑘
𝑖 ← 𝑡 ;  𝛾𝑖(𝑡𝑘

𝑖 )  ←   𝛾𝑖(𝑡) 

9:      Compute 𝑢̃𝑐
𝑖 (𝑡𝑘

𝑖 ) using (5.10) 

10:     Reset 𝜉(𝑡𝑘
𝑖 ) to zero 

11:     Transmit 𝑪𝒊(𝒕𝒌
𝒊 ) 

12:     End If 

13: Output 𝑢̃𝑐
𝑖 (𝑡) = 𝑢̃𝑐

𝑖 (𝑡𝑘
𝑖 ) 

14: End For 

 
77 Lower tolerance 𝜀2 reduces the neighborhood of the origin to which ξ converges but increases the number of 

messages exchanged among 
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5.3 Adjustment of the L-MPC Formulation 

In cooperative mode, the OCP (4.25) - (4.31) associated to vehicle 𝑖 must be 

adjusted to take into account the correction speed term 𝑢̃𝑐
𝑖 . To accomplish that, the 

OCP must predict, over the prediction horizon 𝑁, the value of the path parameter 𝛾𝑖 

(𝛾𝑖
𝑖 ) driven by the path following input 𝒖𝒅

𝒊  , as well as the values of the path parameter 

𝛾𝑗 (𝛾𝑗
𝑖 ) of its neighboring vehicles (Hung & Pascoal, 2018). In this way, the adjusted 

OCP results 

min
𝒖𝒅

𝒊
[𝐽𝑖(𝜼

𝟎
𝒊 , 𝒖𝒅

𝒊 ) = ∑ 𝑙 (𝜼
𝒖𝒅

𝒊 (𝛾(𝑘)) , 𝒖𝒅
𝒊 (𝒌))

𝑁−1

0

] (5.11) 

𝑠. 𝑡  

𝜼𝒖𝒅
𝒊 (𝛾(𝑘 + 1)) = 𝑓𝑖(𝜼𝒖𝒅

𝒊 (𝛾(𝑘)), 𝒖𝒅
𝒊 (𝑘), 𝑢̃𝑐

𝑖
 , 𝒗𝒄𝒊(𝑘)) (5.12) 

𝜼𝒖𝒅
𝒊 (0) = 𝜼𝟎

𝒊  (5.13) 

𝛾̇𝑖
𝑖 (𝑘) = 𝑢𝑖 = 𝑢̅𝑟

𝑖 (𝑘) + 𝑢̃𝑐
𝑖  (5.14) 

𝛾̇𝑗
𝑖 (𝑘) = 𝑢𝑗 = 𝑢̅𝑟

𝑗(𝑘) + 𝑢̃𝑐
𝑗
      𝑗 ∈  𝒩𝑖 (5.15) 

𝜼𝒖𝒅
𝒊 (𝛾(𝑘)) ∈  𝕏, ∀ 𝑘 ∈ [0,𝑁 − 1] (5.16) 

𝒖𝒅
𝒊 (𝑘) ∈  𝕌, ∀ 𝑘 ∈ [0, 𝑁] (5.17) 

𝑉̇𝒖𝒅
𝒊

𝒊
(𝑒(𝛾(𝑘))) ≤ 𝑉̇𝒖̅𝒅

𝒊
𝒊

(𝑒(𝛾(𝑘))) (5.18) 

 

where the stage cost 𝑙 (𝜼
𝒖𝒅

𝒊  , 𝒖𝒅
𝒊 ) is given by 

 

𝑙 (𝜼
𝒖𝒅

𝒊  ,𝒖𝒅
𝒊 ) = ‖𝜼

𝒖𝒅

𝒊 − 𝜼
𝒓𝒆𝒇
𝒊 ‖

𝑄

2

+ ‖𝒖𝒅
𝒊 − 𝒖𝒓𝒆𝒇

𝒊 ‖
𝑅

2
 (5.19) 

5.4 Summary 

In this chapter, the cooperative controller responsible for the vehicles’ 

collective motion (formation) was designed. The cooperative control problem was 

solved in a decentralized framework at vehicle level, based on consensus and 

Lyapunov theories. The inter-vehicle communication network was modeled using 

graph theory, considering that each vehicle was capable of communicating with its 

neighbors and vice versa. The controller was initially designed considering the 

premise of continuous communication and then, by incorporating a logic-based 

communication algorithm, it was adjusted for discrete communication, assuring that 

the vehicles communicate only when strictly necessary. 
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6  NUMERICAL RESULTS 

 

The simulations were performed utilizing the interior-point optimization 

method, provided by the IPOPT (Interior Point Optimizer) package78 (Wächter & 

Biegler, 2006), coupled with MATLAB/SIMULINK via the CasADi toolbox (Andersson, 

Gillis, Horn, Rawlings, & Diehl, 2019). 

CasADi (CasADi Software, 2018) is an open-source symbolic framework for 

algorithmic differentiation and numerical optimization. This tool provides a low-level 

framework for rapid and efficient implementation of algorithms for nonlinear numerical 

optimization such as nonlinear model predictive control79 and other online and offline 

techniques.  

The control scheme adopted in the simulations is presented in Figure 5-1 (for 

circular paths, the cooperative control scheme must be adjusted as shown in Figure 

6-2). For one specific simulation case, this scheme was adapted to allow the 

suppression of dedicated speed sensors, as shown in Figure 6-1. In this case, the L-

MPC outer loop signal (blue line) was used to feed directly the MHE and the ocean 

current state observer. 

 

Figure 6-1: Adapted control scheme for speed sensors suppression 

 

(From Author) 

 
78 IPOPT is an open-source software package for large-scale nonlinear optimization. 
79 CasADi in fact doesn’t solve the problems but facilitates the implementation of different methods for 

numerical optimal control, by allowing post-installation addition of solvers and plugins. 
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Figure 6-2: Cooperative control scheme correction (circular paths) 

 

(From Author) 

 
The system gains are summarized in Appendix B. 

6.1 Simulation Description 

In general terms, the main objective of this set of simulations is to assess 

recursive feasibility, stability and performance. To conduct this verification and 

validation step, five (5) simulation scenarios were envisaged: 

• Scenario 1: Intends to assess the path following controller (MPC and L-

MPC) convergence, compared to the reference feedback linearization path 

following controller (FLC). Intends also to evaluate the effect of the 

contractive constraint in the OCP solution. 

• Scenario 2: Intends to verify the path following controller convergence 

(MPC x L-MPC) combined with obstacle avoidance capabilities, in single 

non-cooperative missions. 

• Scenario 3: Intends to assess the performance of the cooperative path 

following controller, in multi-vehicle cooperative missions, however without 

considering measurement noise and ocean currents. 

• Scenario 4: Intends to verify the performance of the cooperative path 

following controller, in multi-vehicle cooperative missions, however 

considering the presence of measurement noise and ocean currents. 

Thus, in this scenario, the estimators (MHE and ocean current observer) 

are included into the control loop. Particularly for this setting, the L-MPC 

outer loop signal is used to feed the estimators. 

• Scenario 5: Similar to scenario 4, however incorporating the dynamics of 

the actuators and using the speed measurements to feed the estimators. 
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Each scenario is conceived considering particular cases in order to check the 

effects of different initial conditions and path types, as summarized in Table 6-1. 

 

Table 6-1: Simulation summary 

Scenario Path 
Speed  

Profile  
Mode Vehicles 

Current 

(0,2 m/s) 

Obstacle  

Avoidance  
Noise 

1 

a Straight Constant Single 1 ASC x x x 

b Circular Constant Single 1 ASC x x x 

2 

a Straight Constant Single 1 ASC x   x 

b Sinusoidal Variable Single 1 ASC x  x 

3 

a Circular Variable Cooperative 1 ASC / 2 AUV x x x 

b Mooring  Variable Cooperative 3 AUV x x x 

4 

a Circular Constant Single 1 AUV x x  

b Circular Variable Cooperative 3 AUV     

580 - Circular Variable Cooperative 3 AUV     

 

The speed limits of the vehicles (physical hard constraints) are presented in 

Table 6-2. The OCP (𝑡, 𝑥(𝛾(𝑡)), 𝑇𝑝) parameters are summarized in Table 6-3. 

 

Table 6-2: Speed limits 

Vehicle 𝒖 (m/s) 𝐫 (𝐫𝐚𝐝/𝐬) 

ASC / AUV 0,00 ≤ u ≤ 1,50   |r| ≤ 0.50 

 

Table 6-3: OCP parameters 

Cases Module 𝒕𝒔(s) 𝑻𝒑(s) 𝑵𝒑 𝑵𝒄 

1, 2 and 3 - MPC 0,2 2,0 10 9 

4a 

i /ii MPC 0,2 2,0 10 9 

i MHE 0,2 1,0 5 4 

ii MHE 0,1 1,0 10 9 

4b 
- MPC 0,1 1,0 10 9 

- MHE 0,1 1,0 10 9 

5 
- MPC 0,1 1,0 10 9 

- MHE 0,1 1,0 10 9 

 
80 Similar to 4b, however incorporating the dynamics of the actuators and using speed measurements to feed the 

estimators (MHE and ocean current observer). 
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In the path figures, the vehicle’s position/heading is represented by a filled 

arrow (out of scale to improve visualization), and the trajectory by a dashed line. For 

path zoomed figures, the vehicles' predicted positions are represented by asterisks 

and their associated boundaries are represented by circles. 

6.1.1 Scenario 1 

In this scenario, the convergence of the path following controller is compared 

with the feedback linearization controller given by (4.15). Two cases were envisaged: 

a) Starting at (𝑥 = 55, 𝑦 = 10, 𝜓 = − 𝜋/2), the vehicle is supposed to follow 

a straight-line reference path, parameterized by 𝑃𝑑(𝛾(𝑡)) = (30 +

0.7𝛾(𝑡) , 30 + 0.7𝛾(𝑡)), with constant speed of 1 m/s; and 

b) Starting at (𝑥 = 35, 𝑦 = 35, 𝜓 =  0), the vehicle is supposed to follow a 

circular reference path, parameterized by 𝑃𝑑(𝛾(𝑡)) =

(30 cos(𝛾(𝑡)) , 30 sin(𝛾(𝑡))), with a constant speed of 1 m/s. 

6.1.2 Scenario 2 

In this scenario, the obstacle avoidance capability of the path following 

controller is analyzed. Two cases were envisaged: 

a) Starting at (𝑥 = 10, 𝑦 = 55, 𝜓 = − 𝜋), the vehicle is supposed to follow a 

parameterized straight-line reference path 𝑃𝑑(𝛾(𝑡)) = (30 + 0.7𝛾(𝑡) , 30 +

0.7𝛾(𝑡)), with constant speed of 1 m/s, while avoiding collision with a 5 m 

diameter circular obstacle; and 

b) Starting at (𝑥 = 10, 𝑦 = 25, 𝜓 = − 𝜋), the vehicle is supposed to follow a 

parameterized sinusoidal reference path 𝑃𝑑(𝛾(𝑡)) = 10 sin(0.1𝛾(𝑡)), with a 

variable speed profile 𝑢(𝛾(𝑡)) = 1 + 0.5 sin(0.1𝛾(𝑡)), while avoiding 

collision with a 5 m diameter circular obstacle. 

6.1.3 Scenario 3 

In this scenario, the cooperative path following controller is tested in multi-

vehicle cooperative missions, without considering measurement noise and ocean 

currents. Two cases were envisaged to check the effect of adopting different 

parametrizations of the synchronization state 𝛾, according to the path characteristics: 

a) Considering concentric circular paths, as summarized in Table 6-4; and 

b) Considering lay-mooring “U” paths, as summarized in Table 6-5. 



80 

 

Table 6-4: Scenario 3 – Case A (mission characteristics) 

Vehicle Starting Position 
Circular  

Radius (m) 
Graph 

Laplacian (L) 

Formation Pattern (“s”) 

1st / 2nd Q 3rd / 4th Q 

AUV1 (𝑥 = 25, 𝑦 = 0, 𝜓 =  𝜋/2) 30 

[
2 −1 −1

−1 2 −1
−1 −1 2

] 

0 0,2 

ASC1 (𝑥 = 30, 𝑦 = 0, 𝜓 =  𝜋/2) 35 0,2 0,2 

AUV2 (𝑥 = 45, 𝑦 = 0, 𝜓 =  𝜋/2) 40 0 0,2 

ASC1 (leader) Speed Assignment (rad/s) 0,020 0,033 

 

Table 6-5: Scenario 3 – Case B (mission characteristics) 

Vehicle Starting Position 
Semicircular  
Radius (m) 

Graph 
Laplacian (L) 

Formation Pattern (“s”) 

1st Part 2nd Part 

AUV1 (𝑥 = 25, 𝑦 = −5, 𝜓 =  0) 10 

[
2 −1 −1

−1 2 −1
−1 −1 2

] 

0 0 

AUV2 (𝑥 = 20, 𝑦 = −10, 𝜓 =  0) 15 0 2 

AUV3 (𝑥 = 35, 𝑦 = −25, 𝜓 =  0) 20 0 0 

AUV2 (leader) Speed Assignment (m/s) 1,0 

6.1.4 Scenario 4 

In this scenario, the MHE is tested according to the following cases: 

a) Single mission, varying the OCP parameters, according to Table 6-3; and 

b) Cooperative mission, considering three AUV deployed along concentric 

circular paths, where only AUV2 is equipped with MHE and subjected to 

measurement noise. The measurement noises were set as (𝜎𝑥
2 = 0.1 𝑚, 

𝜎𝑦
2 = 0.1 𝑚, 𝜎𝜓

2 = 0.01 𝑟𝑎𝑑,  𝜎𝑢
2 = 0 𝑚/𝑠,  𝜎𝑟

2 = 0 𝑟𝑎𝑑/𝑠)81 . Additionally, a 3 

m circular obstacle is considered in the AUV2 path to check its obstacle 

avoidance capability. The initial conditions and the formation patterns are 

the same as scenario 3 – case a) (Table 6-4). 

6.1.5 Scenario 5 

Similar to scenario 4-b, however emulating the dynamics of the actuators 

(using a Simulink rate limiter dynamic block). Additionally, differently from the 

previous case, the MHE and the ocean current observer were fed with speed 

measurements instead of outer loop signals (𝜎𝑥
2 = 0.1 𝑚, 𝜎𝑦

2 = 0.1 𝑚, 𝜎𝜓
2 = 0.01 𝑟𝑎𝑑, 

 𝜎𝑢
2 = 0.1 𝑚/𝑠,  𝜎𝑟

2 = 0.01 𝑟𝑎𝑑/𝑠).  

 
81 To suppress the need for speed sensors, the speed measurements required to run the MHE, and the ocean 

current state observer were replaced by the L-MPC speed outputs, thus measurement noise does not apply for 

them. 
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6.2 Simulation Results 

6.2.1 Scenario 1 

The simulation has shown that, for the considered initial conditions, MPC is 

stable and presents better performance than FLC, since it converges faster to the 

reference path. On the other hand, L-MPC which is globally asymptotically stable due 

to the contractive constraint, presents intermediate performance compared to MPC 

and FLC.  

In this way, a clear compromise is noticed between global asymptotic stability 

and performance. This fact is consistent with the contractive constraint concept, 

which limits L-MPC Lyapunov function time derivative, producing the same effect of a 

terminal constraint. 

Case A 

The paths are presented in Figure 6-3. It can be noticed that both MPC and L-

MPC converge to the path much faster than FLC. However, the difference between 

MPC and L-MPC is not so significant. The outer-loop control signals are presented in 

Figure 6-4, showing that linear speeds attain its maximum allowable value (1,5 m/s) 

during path approaching phase and, after that, converge for the assigned speed (1,0 

m/s). The position error norm is presented in Figure 6-5, indicating that L-MPC 

presents an intermediate convergence time, if compared to MPC and FLC. The effect 

of the contractive constraint (FLC blue curve) limiting the outer-loop Lyapunov 

function time derivative can be noticed in Figure 6-6.  

Case B 

The paths are presented in Figure 6-7. It can be noticed that both MPC and L-

MPC converge to the path much faster than FLC. However, contrary to the previous 

case, the difference between MPC and L-MPC is not negligible. The outer-loop 

control signals are presented in Figure 6-8. The linear speed attains its maximum 

allowable value (1,5 m/s) during the path approaching phase and, after that, it 

converges for the assigned speed (1,0 m/s). The position error is presented in Figure 

6-9, indicating that L-MPC shows an intermediate convergence time if compared to 

MPC and FLC. The effect of the contractive constraint (FLC blue curve) limiting the 

outer-loop Lyapunov function time derivative can be noticed in Figure 6-10. 
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Figure 6-3: Scenario 1 (Case A) – Paths 

 
 

FLC MPC 

 

L-MPC 

Figure 6-4: Scenario 1 (Case A) – FLC/MPC/L-MPC control signals (outer loop) 
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Figure 6-5: Scenario 1 (Case A) – Position error norms 

 

Figure 6-6: Scenario 1 (Case A) – Contractive constraint (blue curve) 
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Figure 6-7: Scenario 1 (Case B) – Paths 

 
 

FLC MPC 

  

 

L-MPC 

Figure 6-8: Scenario 1 (Case B) – FLC/MPC/L-MPC control signals (outer loop) 
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Figure 6-9: Scenario 1 (Case B) – Position error norms 

 

Figure 6-10: Scenario 1 (Case B) – Contractive constraint (blue curve) 
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6.2.2 Scenario 2 

The simulation has shown that, for the considered initial conditions, MPC is 

stable and presents a better performance than L-MPC, since it converges faster to 

the reference path. On the other hand, due to the contractive constraint, L-MPC is 

globally asymptotically stable.  

Again, it can be noticed that there is a compromise between global asymptotic 

stability and performance. This fact is consistent with the contractive constraint 

concept, which limits L-MPC Lyapunov function time derivative. 

Case A 

The paths are presented in Figure 6-11 and Figure 6-12. It can be noticed that 

MPC converges slightly faster to the path than L-MPC. However, after reaching the 

path, the performance of both controllers is practically the same, even during the 

obstacle avoidance phase. The outer-loop control signals are presented in Figure 

6-13. The linear speed attains its maximum allowable value (1,5 m/s) during path 

approaching phase and, after that, it converges for the assigned speed (1,0 m/s). 

The same occurs during the obstacle avoidance phase. The comparison between L-

MPC inner-outer loop control signals is presented in Figure 6-14, where proper inner-

loop tracking can be observed. The position error norm is presented in Figure 6-15. 

The effect of the contractive constraint (FLC blue curve) limiting the outer-loop 

Lyapunov function time derivative can be noticed in Figure 6-16.  

Case B 

The paths are presented in Figure 6-17 and Figure 6-18. It can be noticed that 

MPC converges faster to the path than L-MPC. However, after reaching the path, the 

performance of both controllers is practically the same, even during the obstacle 

avoidance phase. The outer-loop control signals are presented in Figure 6-19. The 

linear speed attains its maximum allowable value (1,5 m/s) during path approaching 

phase and, after that, it converges for the assigned sinusoidal speed. The same 

occurs during the obstacle avoidance phase. The comparison between L-MPC inner-

outer loop control signals is presented in Figure 6-20, where proper inner-loop 

tracking can be observed. The position error norm is presented in Figure 6-21. The 

effect of the contractive constraint (FLC blue curve) limiting the outer-loop Lyapunov 

function time derivative can be noticed in Figure 6-22.   



87 

 

 

Figure 6-11: Scenario 2 (Case A) – Paths 

 

Figure 6-12: Scenario 2 (Case A) – MPC / L-MPC paths (zoom) 

  

Figure 6-13: Scenario 2 (Case A) – MPC / L-MPC control signals (outer loop) 
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Figure 6-14: Scenario 2 (Case A) – L-MPC control signals 

  

Figure 6-15: Scenario 2 (Case A) – Position error norm 

 

Figure 6-16: Scenario 2 (Case A) – Contractive constraint (blue curve) 
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Figure 6-17: Scenario 2 (Case B) – Paths 

  

Figure 6-18: Scenario 2 (Case B) – MPC / L-MPC paths (zoom) 

  

Figure 6-19: Scenario 2 (Case B) – MPC / L-MPC control signals (outer loop) 
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Figure 6-20: Scenario 2 (Case B) – L-MPC control signals 

  

Figure 6-21: Scenario 2 (Case B) – Position error norms 

 

Figure 6-22: Scenario 2 (Case B) – Contractive constraint (blue curve) 
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6.2.3 Scenario 3 

The performance of the cooperative path following controller in a multi-vehicle 

mission was assessed, without considering measurement noise. 

Case A 

One (1) ASC (yellow) and 2 AUV (green) are assigned to follow concentric 

circular paths, with a variable speed profile, while adopting two different formation 

patterns (triangular in the 1st / 2nd quadrants and aligned in the 3rd / 4th quadrants). 

The paths are presented in Figure 6-23 and Figure 6-24, where a path convergence 

and formation pattern compliance can be noticed. The vehicles’ outer loop control 

signals are presented in Figure 6-25, where the speed assignment change can be 

observed.  The path convergence can also be seen in Figure 6-26, since error norms 

vanish to zero. The last two figures concern the performance of the cooperative 

controller. Figure 6-27 presents the correction speeds and the coordination 

parameter (). Initially, to implement the triangular pattern, the cooperative controller 

increases the speed of the ASC and reduces the speeds of the AUV. Later, when the 

aligned pattern is activated, the opposite occurs. The communication events are 

presented in Figure 6-29, showing that inter-vehicle communication practically 

vanishes when the path parameters reach consensus. 

Case B 

Three (3) AUV (green) are assigned to follow parallel mooring paths, also with 

a variable speed profile. In the upwards path, the formation is set to be aligned, while 

in the downwards path it is set to be triangular. The paths are presented in Figure 

6-30 and Figure 6-31 where a path convergence and formation pattern compliance 

can be noticed. The vehicles’ outer loop control signals are presented in Figure 6-32, 

where the speed assignment change can be observed. The path convergence can 

also be seen in Figure 6-33, since error norms vanish to zero. The performance of 

the cooperative controller is exhibited by the last two figures. Figure 6-35 presents 

the correction speeds and the coordination parameter (). Starting with the aligned 

formation, the cooperative controller acts only when the triangular pattern is 

activated, increasing the speed of the central AUV and reducing the speed of the 

others. The communication events are presented in Figure 6-36, showing that inter-

vehicle communication practically vanishes when the path parameters reach 

consensus. 
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Figure 6-23: Scenario 3 (Case A) – Cooperative L-MPC path 

 

Figure 6-24: Scenario 3 (Case A) – Cooperative L-MPC path (zoom) 
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AUV1 ASC1 

 
AUV 2 

Figure 6-25: Scenario 3 (Case A) – L-MPC control signals (outer loop) 

 

Figure 6-26: Scenario 3 (Case A) – Position error norms 
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Figure 6-27: Scenario 3 (Case A) – Correction speeds 

 

Figure 6-28: Scenario 3 (Case A) – Synchronization parameter  

 

Figure 6-29: Scenario 3 (Case A) – Communication events 
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Figure 6-30: Scenario 3 (Case B) – Cooperative L-MPC path 

 

Figure 6-31: Scenario 3 (Case B) – Cooperative L-MPC path (zoom) 
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AUV1 AUV2 

 

AUV3 

Figure 6-32: Scenario 3 (Case B) – L-MPC control signals (outer loop) 

 

Figure 6-33: Scenario 3 (Case B) – Position error norms 
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Figure 6-34: Scenario 3 (Case B) – Correction speeds 

 

Figure 6-35: Scenario 3 (Case B) – Synchronization parameter  

 

Figure 6-36: Scenario 3 (Case B) – Communication events 
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6.2.4 Scenario 4 

The performance of the cooperative path following controller in a multi-vehicle 

mission was assessed, considering the presence of measurement noise. The second 

case considered also the presence of a constant irrotational ocean current. 

Case A 

The AUV was able to follow its path as presented in Figure 6-37 and Figure 

6-38. The effect of the OCP parameters over the MHE performance can be observed 

in Figure 6-39 (filtered measurements), Figure 6-40 (noise attenuation), and Figure 

6-41 (L-MPC output signals). It can be noticed that Case A-ii outperforms Case A-I, 

which is on the verge of instability. 

Concerning this aspect, it was noticed that the quality of the MHE estimates 

increases with the number of samples, but the closed loop stability is jeopardized if 

the time window associated with the prediction horizon increases. This occurs 

because the higher the time window is, the slower the MHE responds, and if the MHE 

is not fast enough to couple the system dynamics, the system destabilizes. 

Consequently, reducing the sample time coherently with the system dynamics proved 

to be a solution, however, at the expense of computational burden. For the current 

application, a prediction horizon of 2 s combined with a sampling time of 0,1 s proved 

to be a good trade-off between stability, quality and recursive feasibility. 

  Case B 

The AUVs were able to follow the concentric circular paths, while respecting 

the desired formation pattern and complying with the path assigned speeds, as 

shown in Figure 6-42 and Figure 6-43, respectively. Intentionally, the vehicles 

departed from different initial conditions in order to check the occurrence of 

convergence issues, but they reached their assigned paths without problems. The 

“triangular” pattern was attained in the middle of the 1st quadrant, lost during the 

obstacle avoidance phase, but recovered again in the middle of the 2nd quadrant. At 

the beginning of the 3rd quadrant, the formation pattern was changed to “aligned” 

which was attained just after the beginning of the 4th quadrant. 

The compliance with the path assigned speeds can be noticed in Figure 

6-4382. At around 𝑡 = 160 s the vehicles reached the 3rd quadrant and the path 

assigned speeds were increased as previously described. These speeds do not 
 

82 In this figure, the angular speeds were already converted into linear speeds. 
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present periodic components, indicating that the L-MPC compensated properly the 

kinematic effect of the ocean current. Considerations about the cooperative 

correction speeds are presented in the next paragraphs. 

The path following error norms (Figure 6-44) indicate convergence to near 

zero values for all vehicles. The steady state error for AUV2 is slightly larger 

compared to the others but it remains acceptable (< 0,5 m). This behavior is 

expected since AUV2 is the only vehicle subjected to measurement noise. Even 

during the obstacle avoidance phase, the error remained acceptable, considering the 

size of the obstacle. 

Particularly in this phase, AUV2 was able to avoid the obstacle (Figure 6-42). 

It can be noticed that the L-MPC, zeroed the 𝑢 signal as soon as the vehicle reached 

the obstacle but not the 𝑟 signal (Figure 6-45). Consequently, the vehicle turned 

anticlockwise and drifted slightly westwards due to the current.  After that, the L-MPC 

resumed to issue non null values of 𝑢 and the vehicle started to properly circumvent 

the obstacle. 

The speed tracking performance of the inner loop is displayed in Figure 6-46, 

where close adherence among the outer loop commanded speeds and the vehicle 

real speeds can be noticed. Due to this fact, it was possible to use the outer loop 

signals (linear and angular speeds) as input data for the MHE and for the ocean 

current state observer, thus suppressing the need for dedicated sensors. The close 

adherence can be justified by neglected dynamics in the vehicle's mathematical 

model. 

It is known that in practical experiments, this level of adherence will not be 

attained. However, as long as the inner loop is properly tuned and there is an 

adequate time scale separation among both loops, the obtained inner loop results, 

even not being fully realistic, do not compromise the considerations about the L-MPC 

design (Hung N. , et al., 2022). 

The effect of the contractive constraint over vehicles' trajectories is 

summarized in Figure 6-47. It can be seen that only the AUV2 trajectory was 

impacted during the maneuver's initial stages. This behavior can be better 

understood when analyzing the associated Lyapunov function time derivatives. 

For this particular scenario, it can be noticed that the system would be stable 

even if the contractive constraint was not considered in the OCP formulation (MPC - 
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green curve). This characteristic can be associated with the adopted prediction 

horizon length. 

When it is considered (L-MPC), the system converges slowly since the 

contractive constraint (red curve) pushes its Lyapunov function time derivative (blue 

curve) down, attempting to limit it. After reaching zero, the red curve acts as a 

stability barrier (such as a terminal set), avoiding the blue curve to become positive, if 

it would be the case.  

The MHE performance can be inferred in Figure 6-48, which presents its 

estimates and the associated noise attenuation levels (filtering), respectively. The 

quality of the estimates was satisfactory enough to assure the proper functioning of 

the closed loop control system. 

The performance of the cooperative controller is summarized in Figure 6-49. 

Initially, to implement the “triangular” pattern, the cooperative controller increases the 

speed of the AUV2 and reduces the speeds of AUV 1 and 3. Later, when the 

“aligned” pattern is commanded, the opposite occurs. It can be clearly noticed that 

correction speeds vanish to zero after the coordination parameters reach consensus 

(Figure 6-50). 

The communication events are presented in Figure 6-51, showing that inter-

vehicle communication is necessary only during the synchronization phases, since it 

practically vanishes as soon as the coordination parameters reach consensus. 

 

 

Figure 6-37: Scenario 4 (Cases A-i and A-ii) – Paths 
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Figure 6-38: Scenario 4 (Cases A-i and A-ii) – Paths (zoom) 

   

   

Figure 6-39: Scenario 4 (Cases A-i and A-ii) – MHE filtering 

   

   

Figure 6-40: Scenario 4 (Cases A-i and A-ii) – MHE noise attenuation 
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Figure 6-41: Scenario 4 (Cases A-i and A-ii) – Outer loop control signals 

 

 

Figure 6-42: Scenario 4 (Case B) – Paths 

 

Figure 6-43: Scenario 4 (Case B) – Speed assignments 
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Figure 6-44: Scenario 4 (Case B) – AUV error norms 

 

Figure 6-45: Scenario 4 (Case B) – AUV2 outer loop performance 

  

Figure 6-46: Scenario 4 (Case B) – Inner loop performance 
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Figure 6-47: Scenario 4 (Case B) – Effect of the contractive constraint 

   

   

Figure 6-48: Scenario 4 (Case B) – MHE filtering performance 
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Figure 6-49: Scenario 4 (Case B) – Correction speeds 

 

Figure 6-50: Scenario 4 (Case B) – Synchronization parameter  

 

Figure 6-51: Scenario 4 (Case B) – Communication events 
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6.2.5 Scenario 5 

This scenario, even considering the dynamics of the actuators, presents 

results that are quite similar to the previous one. Additionally, feeding the MHE and 

the ocean current state observer with speed measurements instead of outer loop 

signals did not significantly change the performance of the system. 

 The AUVs were able to follow the concentric circular paths, while respecting 

the desired formation pattern and complying with the path assigned speeds, as 

shown in Figure 6-52 and Figure 6-53, respectively. Intentionally, the vehicles 

departed from different initial conditions in order to check the occurrence of 

convergence issues, but they reached their assigned paths without problems. The 

“triangular” pattern was attained in the middle of the 1st quadrant, lost during the 

obstacle avoidance phase, but recovered again in the middle of the 2nd quadrant. At 

the beginning of the 3rd quadrant, the formation pattern was changed to “aligned” 

which was attained just after the beginning of the 4th quadrant. 

The compliance with the path assigned speeds can be noticed in Figure 

6-5383. At around 𝑡 = 160 s the vehicles reached the 3rd quadrant and the path 

assigned speeds were increased as previously described. These speeds do not 

present periodic components, indicating that the L-MPC compensated properly the 

kinematic effect of the ocean current (Figure 6-54). Considerations about the 

cooperative correction speeds are presented in the next paragraphs. 

The path following error norms (Figure 6-55) indicate convergence to near 

zero values for all vehicles. The steady state error for AUV2 is slightly larger 

compared to the others but it remains acceptable (< 0,5 m). This behavior is 

expected since AUV2 is the only vehicle subjected to measurement noise. Even 

during the obstacle avoidance phase, the error remained acceptable, considering the 

size of the obstacle.  

Particularly in this phase, AUV2 was able to avoid the obstacle (Figure 6-52). 

It can be noticed that the L-MPC, zeroed the 𝑢 signal as soon as the vehicle reached 

the obstacle but not the 𝑟 signal (Figure 6-56). Consequently, the vehicle turned 

anticlockwise and drifted slightly westwards due to the current.  After that, the L-MPC 

resumed to issue non null values of 𝑢 and the vehicle started to properly circumvent 

the obstacle. 

 
83 In this figure, the angular speeds were already converted into linear speeds. 
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The speed tracking performance of the inner loop is displayed in Figure 6-57, 

where close adherence among the outer loop commanded speeds and the vehicle 

real speeds can be noticed, even considering the actuators’ dynamics. The 

associated delay, for the current case, did not significantly change the performance 

of the system. 

The effect of the contractive constraint over vehicles' trajectories is 

summarized in Figure 6-58. It can be seen that only the AUV2 trajectory was 

impacted during the maneuver's initial stages. This behavior can be better 

understood when analyzing the associated Lyapunov function time derivatives.  

For this particular scenario, it can be noticed that the system would be stable 

even if the contractive constraint was not considered in the OCP formulation (MPC - 

green curve). This characteristic can be associated with the adopted prediction 

horizon length. 

When it is considered (L-MPC), the system converges slowly since the 

contractive constraint (red curve) pushes its Lyapunov function time derivative (blue 

curve) down, attempting to limit it. After reaching zero, the red curve acts as a 

stability barrier (such as a terminal set), avoiding the blue curve to become positive, if 

it would be the case.  

The MHE performance can be inferred in Figure 6-59, which presents its 

estimates and the associated noise attenuation levels (filtering), respectively. The 

quality of the estimates was satisfactory enough to assure the proper functioning of 

the closed loop control system. However, the L-MPC output signals (Figure 6-56) 

presented an oscillatory behavior (chattering) linked to the MHE estimates, indicating 

that performance improvements must still be pursuit. 

The performance of the cooperative controller is summarized in Figure 6-60. 

Initially, to implement the “triangular” pattern, the cooperative controller increases the 

speed of the AUV2 and reduces the speeds of AUVs 1 and 3. Later, when the 

“aligned” pattern is commanded, the opposite occurs. It can be clearly noticed that 

correction speeds vanish to zero after the coordination parameters reach consensus 

(Figure 6-61).  

The communication events are presented in Figure 6-62, showing that inter-

vehicle communication is necessary only during the synchronization phases, since it 

practically vanishes as soon as the coordination parameters reach consensus. 
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 Figure 6-52: Scenario 5 – Paths 

 

Figure 6-53: Scenario 5 – Speed assignments 

 

Figure 6-54: Scenario 5 – Ocean current state observer performance 



109 

 

 

Figure 6-55: Scenario 5 – AUV error norms 

 

Figure 6-56: Scenario 5 – AUV2 outer loop performance 

  

Figure 6-57: Scenario 5 – Inner loop performance 
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Figure 6-58: Scenario 5 – Effect of the contractive constraint 

 

 

Figure 6-59: Scenario 5 – MHE filtering performance 
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Figure 6-60: Scenario 5 – Correction speeds 

 

Figure 6-61: Scenario 5 – Synchronization parameter  

 

Figure 6-62: Scenario 5 – Communication events 
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6.3 Sensitivity Analysis for Robustness 

The proposed sensitivity analysis intends to check the robustness of the 

developed control system84 by varying the plant parameters. In the current analysis, 

the plant parameters were subjected to random variations of up to ±50% of their 

nominal values, following a uniform probability distribution, as presented in Figure 

6-63. The number of samples was set as 30, as showed in Table 6-6. 

 

Figure 6-63: Plant parameters distribution 

 

Table 6-6: Plant samples (30) 

 
 

84 More specifically the robustness of the inner (dynamic) loop. The outer (kinematic) loop and the cooperative 

controller are fully independent of the plant, therefore they are not subjected to parametric uncertainty. 
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The target function evaluated in the analysis was the path following error norm 

signal matching, as presented in Figure 6-64.    

 

Figure 6-64: Cost function plot85 

 
 

The path following error norms related to the nominal plant (blue curve) and 

sampled plants (red curves) are presented in Figure 6-65. It shows that the control 

system keeps its efficacy even in the presence of the considered parametric 

uncertainties, however, as expected, at the expense of the performance. These 

results demonstrate that the control system is robust up to this level of parameter 

incertitude.  

Figure 6-65: Path following error norms (nominal and sampled plants) 

 
 

85 The plot displays the evaluated target function value as a function of each parameter in the parameter set. The 

last column of subplots displays histograms of the probability distribution of the evaluated target function values. 
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6.4 Summary 

In this chapter, the proposed control system was verified and validated 

through numerical simulations, on an incremental basis, considering a bottom-top 

approach (NASA, 2016).  

Initially, the path following controller outer loop (L-MPC) was tested and 

compared with a feedback linearized controller, considering a straight invariable 

speed parameterized path. The effect of the contractive constraint over the controller 

performance was assessed. Even being slower than MPC in the considered 

scenarios, the L-MPC approach is recommended because there is no guarantee that 

MPC is recursively feasible and stable for other initial conditions. The results 

confirmed the effectiveness of the controller in terms of recursive feasibility, stability 

and convergence. Just in the sequence, the L-MPC was tested considering a 

sinusoidal speed parameterized path, with a fixed obstacle, in the presence of ocean 

currents, and consistent results, like the previous ones, were attained. 

In parallel, the path following controller inner loop (feedback linearization 

speed tracker controller) was also assessed, and its tracking performance was 

confirmed. Due to the close adherence between commanded speeds and real 

vehicle’s speeds, it was concluded that the outer loop speed assignment could 

eventually replace the surge and yaw speed measurements required to run the MHE 

and the ocean current state observer. 

In the next step, the path following controller was integrated with the 

cooperative controller and the combined system was tested considering multi-vehicle 

mission scenarios. The system was capable of controlling the formation pattern, 

along their speed parameterized assigned paths. Its logic-based communication 

algorithm was capable of keeping the communication flow among the vehicles at a 

minimum level.  

Finally, the MHE and the ocean current state observer were integrated to the 

cooperative path following controller, and the resulting system was tested in similar 

conditions as it had been tested before, however considering the presence of 

measurement noise and ocean currents. The performance of the system was 

preserved, thanks to the quality of the estimated feedback states (position/heading 

and speeds) supplied by the MHE, however improvements must be pursuit in order to 

reduce the chattering effect in the outer loop control signals. 
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Concerning the MHE performance, it was noticed that the quality of its 

estimates increases with the number of samples, but the closed loop stability is 

jeopardized if the time window associated with the prediction horizon increases. This 

occurs because the higher the time window is, the slower the MHE responds, and if 

the MHE is not fast enough to couple the system dynamics, the system destabilizes.  

Reducing the sample time coherently with the system dynamics proved to be a 

solution, however, at the expense of computational burden. 

The ocean current state observer was able to provide estimates of the 

irrotational and constant ocean current velocity. However, for ASCs, this figure could 

be easily obtained using measurements of the vehicle’s relative velocity with respect 

to the fluid (for example, using a Doppler log working in water locked 

mode), combined with the position measurements supplied by the GPS. Differently, 

for AUVs, estimating/measuring the ocean current speed poses considerable 

challenges due to the unavailability of the GPS signal. 

Concerning the simulation environment, for the sake of fairness, it must be 

pointed out that it still suffers from the lack of some important realistic phenomena 

like a more precise model for the actuators’ dynamics and the inclusion of 

an acoustic underwater communications algorithm that takes into account time 

delays and data loss86. These issues must be solved before starting the experimental 

phase, combined with a formal characterization of the control system overall 

stability87. 

Additionally, it must be registered that certain behaviors in the control signals 

are still not acceptable from the experimental perspective. In general, these signals 

are too large and aggressive, indicating that a better tuning set88 must be 

pursuit. The same conclusion applies to the estimator signals. In some parts of the 

simulations, the gap between real and estimated values would not be acceptable for 

practical applications. 

The system’s robustness was assessed by considering variations in the plant 

parameters up to 50% of their nominal values, along 30 combination samples. The 

results indicate that the control system was able to keep its stability and convergence 

properties however, as expected, at the expense of performance. 

 
86 For an “experimental-free” validation, the simulation environment shall be as realistic as possible. 
87 A control solution without stability proof, even valid for very stringent conditions, would never be reasonably 

experimented in real life applications. 
88 Including the OCP parameters such as the prediction horizon and the sample time. 
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7 CONCLUSIONS AND FURTHER RESEARCH 

 

This thesis addressed the motion control problem of multiple ocean vehicles 

operating in cooperative mode to accomplish common missions. Its main contribution 

was to design a path following controller fully based on the receding horizon 

principle, combining L-MPC and MHE, and to integrate it with a consensus-based 

distributed cooperative controller. The numerical performance of the designed system 

demonstrated its good behavior in terms of recursive feasibility, stability, 

convergence and robustness, indicating its potential for future experimental 

implementation. 

7.1 Conclusions 

The main conclusion of this work refers to the successful coupling of L-MPC 

and MHE, resulting in a path following controller (the guidance system) fully based on 

the receding horizon principle. Even not performing quantitative comparisons with 

many other path following strategies, the receding horizon approach (MPC/MHE) is 

expected to outperform them. Besides its unique capability to deal with obstacle 

avoidance scenarios, this strategy has also an inherent ability to allow the system to 

operate near to or at the boundaries of the allowable state-space region, where the 

(sub)optimal solution can normally be found, thus maximizing performance and 

avoiding the occurrence of actuators’ saturation. 

The MHE, even relying on its simplest form, without an arrival cost in the 

associated OCP cost function formulation, was able to provide estimates precise 

enough to assure the proper functioning of the closed loop system at numerical level. 

Consequently, there is margin for performance improvements if such term is 

incorporated into the formulation.  

The strategy to use a contractive constraint in the L-MPC finite horizon OCP 

formulation as a sufficient condition to assure stability, besides its theoretical appeal, 

proved to be unnecessary. The results indicated that it can be derogated for the sake 

of simplicity if the prediction horizon is chosen large enough to assure stability 

(approximating the effect of the infinite horizon OCP). 

The receding horizon approach applied for control and estimation resulted in a 

reduced number of gains which proved to be easily tuned. The L-MPC (outer loop) 

gains (5) were tuned by trial-and-error at once, while the MHE gains (5) were tuned 



117 

 

by conceptual rules of thumb. Additionally, the feedback linearized controller (inner 

loop) gains (2) were also easily tuned due to the fast-slow temporal scale separation 

verified among both loops. However, certain behaviors in the controller/estimator 

signals are still not acceptable from the experimental perspective, demanding 

additional tuning efforts. 

Concerning the simulation environment, there are still some aspects that must 

be developed in order to improve its level of  representativeness. The main points to 

be considered refer to actuators’ dynamics and acoustic underwater communications.  

 These issues must be properly solved before starting the experimental 

phase, combined with a formal characterization of stability. 

7.2 Future Research 

Future works, besides experimental implementation, envisages: 

• The development of stability proof demonstrations, even considering that 

any control/estimation technique based on the receding horizon principle 

is difficult to be analyzed and, when employed in practice, it usually does 

not satisfy many theoretical stability/convergence properties; 

• A formal investigation of robustness;   

• The use of an MHE based on active range-only beacon measurements, 

while dealing with the observability problem at near zero surge speeds; 

• The investigation of arrival cost approximations in the MHE OCP; 

• The incorporation of an MPC-based path planning module for set-point 

assignment. 

• An ocean current state observer fully integrated in the MHE framework; 

• The incorporation of an inter-vehicle collision avoidance module in the 

path following controller using Distributed Model Predictive Control, where 

each vehicle shares its predicted trajectory so that the others can avoid it; 

• The update of the cooperative controller logic-based communication 

algorithm, considering time delays, data loss and communication 

sequencing; and 

• To develop a path following controller using learning-based techniques 

such as learning-MPC or reinforcement learning, in order to better deal 

with uncertainty in vehicle and actuator models.  

https://context.reverso.net/traducao/ingles-portugues/representativeness
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APPENDIX A – MATHEMATICAL TOOLS AND DEFINITIONS 

 

A1) Nonlinear System Theory 

The theorems and definitions presented in the current item were borrowed 

from (Khalil, 2002), without the associated proofs. 

 

A1.1) Types of Functions 

A system composed by 𝑛 first order differential equations can be represented 

by the following vectorial equation, with the associated initial conditions vector (initial-

value problem): 

𝑑𝑥 

𝑑𝑡
= 𝑥 ̇ = 𝑓 (𝑡, 𝑥 ),     𝑥 (𝑡0) = 𝑥 0 (A1.1) 

 

where 𝑥  ∈  ℝ𝑛  is the state vector, 𝑓  ∈  ℝ𝑛 is the system velocity field vector and 

𝑥 (𝑡0) = 𝑥 0  ∈  ℝ𝑛 is the initial conditions vector. For notation simplicity, the system 

(A1.1) can be written as: 

 

𝑥̇ = 𝑓(𝑡, 𝑥),     𝑥(𝑡0) = 𝑥0 (A1.2) 

 
To predict the evolution of the state vector 𝑥(𝑡) from its initial conditions vector 

𝑥(𝑡0) = 𝑥0, the initial value problem given by (A1.2) must have a unique solution. The 

solution existence and uniqueness can be assured if a key constraint, named 

Lipschitz condition, is imposed on the function 𝑓(𝑡, 𝑥). 

 

Definition A1.1 (Lipschitz function): A function 𝑓(𝑡, 𝑥) satisfying the Lipschitz 

condition: 

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ (A1.3) 

 

for all (𝑡, 𝑥) and (𝑡, 𝑦) in some neighborhood of (t0, x0) is said to be Lipschitz in 𝑥 and 

the positive constant L is called the Lipschitz constant. 
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Theorem A1.1 (Local Existence and Uniqueness): For the initial-value 

problem (A1.2), let 𝑓(𝑡, 𝑥) be a piecewise continuous function in 𝑡, satisfying the 

Lipschitz condition (A1.3) ∀ 𝑥, 𝑦 ∈ 𝐵 = {𝑥 ∈ ℝ𝑛  ∥ 𝑥 − 𝑥0 ∥ ≤ 𝑟}, with 𝑟 > 0, and for 

all 𝑡 ∈ [𝑡0 , 𝑡0 + 𝛿], with 𝛿 > 0. Then (A1.2) has unique solution over [𝑡0 , 𝑡0 + 𝛿]. 

Notice that the result of theorem A1.1 holds only locally, in the interval 

[𝑡0 , 𝑡0 + 𝛿], where 𝛿 can be significantly small. To assure a global result, holding 

beyond the time interval [𝑡0 , 𝑡0 + 𝛿], it is necessary to define a globally Lipschitz 

function. 

 

Theorem A1.2 (Global Existence and Uniqueness): For the initial-value 

problem (A1.2), let 𝑓(𝑡, 𝑥) be piecewise continuous in 𝑡 and satisfy the Lipschitz 

condition (A1.3) ∀ 𝑥, 𝑦 ∈  ℝ𝑛 and for all 𝑡 ∈ [𝑡0 , 𝑡1]. Then (A1.2) has unique solution 

over [𝑡0 , 𝑡1]. 

 

Due to the restrictiveness nature of the global Lipschitz condition, it would be 

useful to obtain a global result considering the local Lipschitz condition instead. As 

presented in the next theorem, this can be attained if further knowledge of the system 

solution is known. 

 

Theorem A1.3 (Global Existence and Uniqueness for Locally Lipschitz 

Functions): For the initial-value problem (A1.2), let 𝑓(𝑡, 𝑥) be piecewise continuous in 

𝑡 and locally Lipschitz in 𝑥,  for all 𝑡 ≥  𝑡0  and all 𝑥 in a domain  𝐷 ⊂  ℝ𝑛. Let 𝑊 be a 

compact subset of 𝐷, assume that 𝑥0  ∈  𝑊, and every solution of (A1.2) remains 

entirely in 𝑊. Then, (A1.2) has unique solution for all 𝑡 >  𝑡0. 

 

Definition A1.2 (𝒦 Class Function): A continuous function 𝛼: [0, 𝑎)  → [0,∞) is 

said to belong to class 𝒦, if it is strictly increasing and 𝛼(0) = 0. It is said to belong to 

class 𝐾∞ if 𝑎 =  ∞ and 𝛼(𝑟)  →  ∞ as 𝑟 →  ∞. 

 

Definition A1.3 (𝒦ℒ Class Function): A continuous function 𝛽: [0, 𝑎) 𝑥 [0,∞) →

[0,∞) is said to belong to class 𝒦ℒ if, for each fixed 𝑠, the mapping 𝛽(𝑟, 𝑠) belongs to 

class 𝒦, with respect to 𝑟, and for each fixed 𝑟, the mapping 𝛽(𝑟, 𝑠) is decreasing 

with respect to 𝑠 and 𝛽(𝑟, 𝑠)  → 0 as 𝑠 →  ∞. 
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A1.2)  Lyapunov Stability 

The objective of this item is to present the Lyapunov Direct Method, by which, 

sometimes, it´s possible to assess the stability of an equilibrium point, without the 

need to proceed the linearization of the system around this point or to apply the 

central manifolds theory. The Lyapunov Direct Method allows to get a set of initial 

conditions whose trajectories converge to the equilibrium point, if it is asymptotically 

stable. In this way, it´s possible to assess the extension of its attraction domain. 

 

Definition A1.4 (Stability of autonomous systems): For the initial-value 

problem (A1.2), assume that 𝑓(𝑡, 𝑥) = 𝑓(𝑥). Without loss of generality89, assume that 

𝑥 = 0 is an equilibrium point of (A1.2) so that 𝑓(0) = 0. Them, the equilibrium point 

𝑥 = 0 is: 

• Stable if, for each 𝛿 > 0, there is some 𝜀(𝛿) > 0 such that 

‖𝑥(0)‖  <  𝜀 ⇒ ‖𝑥(𝑡)‖  <  𝛿, ∀ 𝑡 > 0 (A1.4) 

• Instable, if it is not stable; and 

• Asymptotically stable, if it is stable and 𝛿 can be chosen such that: 

‖𝑥(0)‖  <  𝜀 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0 , ∀ 𝑡 > 0 (A1.5) 

 

Theorem A1.4 (Lyapunov Direct Method for autonomous systems): Let 𝑥 = 0 

be an equilibrium point for (A1.2) and 𝐷 ⊂  ℝ𝑛 be a domain containing 𝑥 = 0. Let 

𝑉:𝐷 → ℝ be a continuously differentiable function such that:  

𝑉(0) = 0 and 𝑉(𝑥) > 0 in 𝐷 − {0} (A1.6) 

Them, the equilibrium point 𝑥 = 0 is: 

 

• Stable if,  

𝑉̇(𝑥) ≤ 0, ∀ 𝑥 ∈ 𝐷 (A1.7) 

• Asymptotically stable if, 

𝑉̇(𝑥) < 0, ∀ 𝑥 ∈ 𝐷 (A1.8) 

 
89 Any equilibrium point can be shifted to the origin by a coordinate change, without affecting its stability 

properties. 
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• Globally asymptotically stable if: 

𝑉̇(𝑥) < 0, ∀ 𝑥 ∈ 𝐷 =  ℝ𝑛 (A1.9) 

As can be noticed in the method, if 𝑉̇(𝑥) ≤ 0, it´s not possible to assure the 

asymptotic stability of the origin. However, if the only trajectory belonging to the set in 

which 𝑉̇(𝑥) = 0 is the origin, its asymptotic stability is assured, according to the 

following theorems. 

 

Theorem A1.5 (Barbashin’s Theorem): Let 𝑥 = 0 be an equilibrium point for 

(A1.2). Let 𝑉:𝐷 →  ℝ be a continuously differentiable positive definite function on a 

domain 𝐷 ⊂ ℝ𝑛 containing the origin 𝑥 = 0, such that 𝑉̇(𝑥) ≤ 0 in 𝐷. Let 𝑆 = {𝒙 ∈ 𝐷  

𝑉̇(𝒙) = 0} and suppose that no solution can stay identically in 𝑆, other than the trivial 

solution 𝒙(𝑡) ≡ 0. Them, the origin is asymptotically stable. 

 

Theorem A1.6 (Krasovskii’s Theorem): Let 𝑥 = 0 be an equilibrium point for 

(A1.2). Let  𝑉:ℝ𝑛  →  ℝ be a continuously differentiable, radially bounded, positive 

definite function, such that 𝑉̇(𝑥) ≤ 0 for all 𝒙 ∈  ℝ𝑛. Let 𝑆 = {𝒙 ∈ ℝ𝑛 𝑉̇(𝒙) = 0} and 

suppose that no solution can stay identically in 𝑆, other than the trivial solution 𝒙(𝑡) ≡

0. Them, the origin is globally asymptotically stable. 

 

Definition A1.5 (Stability of non-autonomous systems): For the initial-value 

problem (A1.2), 𝑥 = 0 is an equilibrium point if: 

𝑓(𝑡, 0) = 0  ∀ 𝑡 > 0 (A1.10) 

This equilibrium point is: 

• Stable if, for each 𝜀 > 0, there exists some 𝛿(𝜀, 𝑡0) > 0 such that 

‖𝑥(𝑡0)‖  <  𝛿 ⇒ ‖𝑥(𝑡)‖  <  𝜀, ∀ 𝑡 ≥ 𝑡0  ≥ 0 (A1.11) 

• Uniform stable if, for each 𝜀 > 0, there exists some 𝛿(𝜀)  > 0, 

independent of 𝑡0, such that (A1.11) is satisfied; 

• Instable, if it is not stable; 

• Asymptotically stable, if it is stable and there exists a constant 𝑐(𝑡0)  >

0 such that: 

‖𝑥(𝑡0‖  <  𝑐 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0 (A1.12) 
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• Uniformly asymptotically stable if it is uniformly stable and there exists a 

positive constant 𝑐, independent of 𝑡0, such that for all  

‖𝑥(𝑡0‖  <  𝑐 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0 uniformly in 𝑡0; that is, for each 𝜂 > 0, there 

is 𝑇(𝜂)  > 0 such that 

‖𝑥(𝑡)‖  < 𝜂, ∀  𝑡 ≥ 𝑡0 + 𝑇(𝜂), ∀ ‖𝑥(𝑡0)‖  <  𝑐 (A1.13) 

• Globally uniformly asymptotically stable, if it is stable, 𝛿(𝜀) can be 

chosen such that lim
𝜀→∞

𝛿(𝜀) = ∞ and, for each pair of positive numbers 𝜂 

and 𝑐, there exists 𝑇(𝜂, 𝑐)  > 0 such that 

‖𝑥(𝑡)‖  < 𝜂, ∀  𝑡 ≥ 𝑡0 + 𝑇(𝜂, 𝑐), ∀ ‖𝑥(𝑡0)‖  <  𝑐 (A1.14) 

 

For non-autonomous systems, it is more convenient to refine de definitions of 

stability and asymptotic stability using the comparison functions 𝒦 and 𝒦ℒ, 

previously defined. 

 

Theorem A1.7 (Lyapunov Direct Method for non-autonomous systems): Let 

𝒙 = 𝟎 be an equilibrium point for (A1.10) and 𝐷 ⊂  ℝ𝑛 be a domain containing 𝑥 = 0. 

Let 𝑉: [0,∞) 𝑥 𝐷 → ℝ be a continuously differentiable function such that:  

𝑊1(𝑥)  ≤ 𝑉(𝑡, 𝑥) ≤ 𝑊2(𝑥) (A1.15) 

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥
𝑓(𝑡, 𝑥) ≤ 0 (A1.16) 

∀ 𝑡 ≥ 0 and ∀ 𝒙 ∈ 𝐷, where 𝑊1(𝑥) and 𝑊2(𝑥) are continuous positive definite 

functions on 𝐷. Them, the equilibrium point 𝑥 = 0 is stable. 

 

If (A1.16) can be replaced by a more stringent inequality such as:  

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥
𝑓(𝑡, 𝑥) ≤ −𝑊3(𝒙) (A1.17) 

∀ 𝑡 > 0 and ∀ 𝒙 ∈ 𝐷, where 𝑊3(𝑥) is continuous positive definite function on 𝐷, 

them, the equilibrium point 𝑥 = 0 is uniformly asymptotically stable. Additionally, if 

𝐷 =  ℝ𝑛 and 𝑊1(𝑥) is radially unbounded, them the equilibrium point 𝑥 = 0 is globally 

uniformly asymptotically stable.  
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In (Khalil, 2002), additional results for proving exponential stability using 

Lyapunov functions are presented. 

 

A1.3)  Boundedness 

 Even when the origin is not an equilibrium point, the Lyapunov analysis can be 

used to demonstrate the boundedness of the system trajectories. 

Definition A1.6 (Boundedness): For the initial-value problem (A1.2), its 

solutions are: 

• Uniformly bounded if there exists a positive constant 𝑐, independent of 

t0 ≥ 0, and for every a ∈ (0,c), there is 𝛽 =  𝛽(𝑎)  > 0, independently of 

𝑡0 , such that: 

‖𝒙(𝑡0)‖ ≤ 𝛼 ⟹ ‖𝒙(𝑡)‖ ≤ 𝛽 , ∀  𝑡 ≥ 𝑡0 (A1.18) 

• Globally uniformly bounded if (A1.18) holds for an arbitrarily large 𝑎. 

• Uniformly ultimately bounded with ultimate bound 𝑏 if there exist 

positive constants 𝑏 and 𝑐, independently of t0 ≥ 0, and for every a ∈ 

(0,c), there is 𝑇 = 𝑇(𝑎, 𝑏)  ≥ 0, independently of 𝑡0, such that: 

‖𝒙(𝑡0)‖ ≤ 𝛼 ⟹ ‖𝒙(𝑡)‖ ≤ 𝛽 , ∀  𝑡 ≥ 𝑡0 + T (A1.19) 

• Globally uniformly ultimately bounded if (A1.19) holds for an arbitrarily 

large 𝑎. 

For autonomous systems, the term “uniform” can be dropped since the 

solution depends only on 𝑡 − 𝑡0. 

 

A1.4) Input-to-State-Stability (ISS) / Input-to-Output-Stability (IOS) / Input-to-Output 

Practically Stable (IOpS) 

 

Consider the system 

𝑥̇ = 𝑓(𝑡, 𝑥, 𝑢) (A1.20) 

where 𝑓: [0,∞) 𝑥 ℝ𝑛 𝑥 ℝ𝑚 → ℝ𝑛 is piecewise continuous in 𝑡 and locally Lipschitz in 

𝑥. The input 𝑢(𝑡) is a piecewise continuous bounded function of 𝑡 for all 𝑡 ≥ 0. 

Supposed that the unforced system 
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𝑥̇ = 𝑓(𝑡, 𝑥, 0) (A1.21) 

has a globally uniformly asymptotically equilibrium point at the origin 𝒙 = 0. 

 

Definition A1.7 (Input-to-State-Stability): the system (A1.20) is said to be 

input-to-state-stable if there exist a class 𝒦ℒ function 𝛽 and a class 𝒦 function 𝛾 

such that for any initial state 𝒙(𝑡0) and any bounded input 𝒖(𝑡), the solution 𝒙(𝑡) 

exists for all 𝑡 ≥ 𝑡0 and satisfies: 

‖𝒙(𝑡)‖ ≤ 𝛽(‖𝒙(𝑡0)‖, 𝑡 − 𝑡0)  +  𝛾 ( sup
𝑡0<𝜏<𝑡

‖𝒖(𝜏)‖) (A1.22) 

 

Definition A1.8 (Input-to-Output-Stability): the system (A1.20) is said to be 

input-to-output-stable if there exist a class 𝒦ℒ function 𝛽 and a class 𝒦 function 𝛾 

such that for any initial state 𝒙(𝑡0) and any bounded input 𝒖(𝑡), the solution 𝒙(𝑡) 

exists for all 𝑡 ≥ 𝑡0 and satisfies: 

‖𝒚(𝑡)‖ ≤ 𝛽(‖𝒙(𝑡0)‖, 𝑡 − 𝑡0)  +  𝛾 ( sup
𝑡0<𝜏<𝑡

‖𝒖(𝜏)‖) (A1.23) 

 

Definition A1.9 (Input-to-Output Practically Stability): the system (A1.20) is 

said to be input-to-output-practically stable if there exist a class 𝒦ℒ function 𝛽 and a 

class 𝒦 function 𝛾 such that for any initial state 𝒙(𝑡0) and any bounded input 𝒖(𝑡), 

the solution 𝒙(𝑡) exists for all 𝑡 ≥ 𝑡0 and satisfies: 

‖𝒚(𝑡)‖ ≤ 𝛽(‖𝒙(𝑡0)‖, 𝑡 − 𝑡0)  +  𝛾 ( sup
𝑡0<𝜏<𝑡

‖𝒖(𝜏)‖) + 𝑑 (A1.24) 

 

A1.5) Small Gain Theorem 

 Consider the two systems 𝐻1 and 𝐻2 (Figure A1), supposed to be finite gain ℒ 

stable, thus holding the following properties: 

‖𝒚𝟏‖ℒ ≤ 𝛾1‖𝒆𝟏‖ℒ  +  𝛽1 (A1.25) 

‖𝒚𝟐‖ℒ ≤ 𝛾2‖𝒆𝟐‖ℒ  +  𝛽2 (A1.26) 
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Figure A1: Feedback connected systems 

 

 (Khalil, 2002) 

 

Theorem A1.8 (Small Gain Theorem): Under the preceding assumptions, the 

feedback connection of systems 𝐻1 and 𝐻2 is finite gain ℒ stable if 𝛾1𝛾2 < 1. 

 

A2) Graph Theory 

The coordinated motion of a multi-agent system requires that the individual 

agents (vehicles, in the current case) exchange their states through a communication 

network. The constraints imposed by the communication topology among them can 

be modeled using the graph theory. The concepts and definitions presented in the 

current item were borrowed from  (Ghabcheloo, et al., 2009))90. 

 

Definition A2.1 (Graph): A graph, induced by the intervehicle communication 

network, is a set 𝒢(𝜈, 𝜀), where 𝜈 = {𝑣1, … , 𝜈𝑛} denotes the set of 𝑛 nodes (each 

corresponding to a vehicle) and 𝜀 ⊂  𝜈2 denotes the set of ordered pair of nodes, 

called edges (each representing a data link). If the edges are not oriented, the graph 

is called “undirected” (Figure A2). 

 
Figure A2: Undirected and directed graphs 

 
https://en.wikipedia.org/wiki/Graph_theory 

 
90 The reference refers to undirected graphs, used to model bi-directional communications networks. 
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Definition A2.2 (Set  𝒩𝑖): The set of vehicles that vehicle 𝑖 communicates is 

denominated 𝒩𝑖, defined as: 

𝒩𝑖, = {𝑣𝑗  ∈  𝜈 ∶ 𝑒𝑖𝑗  ∈  𝜀}  (A2.1) 

For undirected graphs, 𝑖 ∈ 𝒩𝑗 ↔ 𝑗 ∈ 𝒩𝑖 (bi-directional communication). 

 

Definition A2.3 (Connected): 𝒢(𝜈, 𝜀) is connected if there exists a path 

connecting every two nodes. 

 

Definition A2.4 (Complete Graph): 𝒢(𝜈, 𝜀) is completed if there exists a path 

connecting each pair of nodes.  

 

Definition A2.5 (Adjacent Matrix): The adjacent matrix 𝐴(𝒢) of an undirected 

graph is a square matrix with rows and columns indexed by the nodes such that 

𝐴𝑖𝑗 = 1 if 𝑗 ∈ 𝒩𝑖 and 𝐴𝑖𝑗 = 0, otherwise. 

 

Definition A2.6 (Degree Matrix): The degree matrix 𝐷(𝒢) of an undirected 

graph is a diagonal square matrix such that 𝐷𝑖𝑖 = |𝑁𝑖| (the cardinality of 𝑁𝑖). 

 

Definition A2.7 (Laplacian): The Laplacian 𝐿 of a graph is defined as: 

𝐿 = 𝐷 − 𝐴  (A2.2) 

The Laplacian 𝐿 presents the following properties: 

P1: 𝐿 is positive semi-definite by construction. 

P2: If 𝒢 is undirected, 𝐿 is symmetric. 

P3: If 𝒢 is undirected, 𝐿 has an eigenvalue at zero with an associated right 

eigenvector 1 (𝐿[𝟏]𝑛𝑥1 = [𝟎]𝑛𝑥1). 

P4: If 𝒢 is connected, 𝐿 has a simple eigenvalue at zero with an associated 

right eigenvector 1 and the remaining eigenvalues are all positive. 

 

Definition A2.8 (Normalized Laplacian): The normalized Laplacian 𝐿𝐷 of a 

graph is defined as: 

𝐿𝐷 = 𝐷−1(𝐷 − 𝐴) (A2.3) 
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APPENDIX B – NUMERICAL DATA 

 

Table B1: Controller / estimator gains 

PFC 

Outer-Loop L-MPC 𝐾𝑘 = [
1 0
0 0.6

]        𝑄 =  [
2 0 0
0 2 0
0 0 0.1

]        𝑅 =  [
1 0
0 0.5

] 

Inner-Loop FLC 𝐾𝑑 = [
−50 0
0 −50

] 

- MHE 𝑄∗ = [
100 0 0
0 100 0
0 0 1000

]         𝑅∗ = [
0 0
0 0

] 

- OCSO 𝐾𝑝𝑜𝑏𝑠
= [

1 0
0 1

]          𝐾𝑐_𝑜𝑏𝑠 = [
1 0
0 1

] 

CC - - 𝐾𝜉 = 0.5 (for all vehicles) 

 

Table B2: Medusa ASC inertia and hydrodynamic properties at the surface 

Inertia Added Mass Linear damping Nonlinear damping 

𝑚 = 17 𝑘𝑔 𝑋𝑢̇ = −20 𝑘𝑔 𝑋𝑢 = −0.2 𝑘𝑔/𝑠 𝑋|𝑢|𝑢 = −25 𝑘𝑔/𝑚 

𝐼𝑧 = 1 𝑘𝑔. 𝑚2 𝑌𝑣̇ = −30 𝑘𝑔 𝑌𝑣 = −50 𝑘𝑔/𝑠 𝑌|𝑣|𝑣 = −0.01 𝑘𝑔/𝑚 

 𝑁𝑟̇ = −8.69 𝑘𝑔.𝑚2 𝑁𝑟 = −4.14 𝑘𝑔.𝑚2/𝑠 𝑁|𝑟|𝑟 = −6.23 𝑘𝑔.𝑚 

 𝑁𝑣̇ = 0 kg.m - 𝑁𝑣|𝑣| = 0 kg 

 𝑌𝑟̇ = 0 kg.m - 𝑌𝑟|𝑟| = 0 kg.m 

 

Table B3: Mares AUV inertia and hydrodynamic properties 

Inertia Added Mass Linear damping Nonlinear damping 

𝑚 = 32 𝑘𝑔 𝑋𝑢̇ = −1.74 𝑘𝑔 𝑋𝑢 = 0 𝑘𝑔/𝑠 𝑋|𝑢|𝑢 = −4.05 𝑘𝑔/𝑚 

𝐼𝑧 = 4.73 𝑘𝑔.𝑚2 𝑌𝑣̇ = −42.8 𝑘𝑔 𝑌𝑣 = 0 𝑘𝑔/𝑠 𝑌|𝑣|𝑣 = −113 𝑘𝑔/𝑚 

 𝑁𝑟̇ = −6.32 𝑘𝑔.𝑚2 𝑁𝑟 = 0 𝑘𝑔.𝑚2/𝑠 𝑁|𝑟|𝑟 = −1.57 𝑘𝑔.𝑚2 

 𝑁𝑣̇ = 0.0289 kg.m - 𝑁𝑣|𝑣| = 2.38 kg 

 𝑌𝑟̇ = 0.0289  kg.m - 𝑌𝑟|𝑟| = 1.88 kg.m 

 


