
UNIVERSIDADE DE SÃO PAULO 

ESCOLA POLITÉCNICA 

DEPARTAMENTO DE ENGENHARIA DE MINAS E DE PETRÓLEO 

 

 

 

 

PAULO HENRIQUE RANAZZI 

 

 

 

 

 

Iterative Ensemble Smoother with adaptive localization and deep learning 

parameterization for carbonate reservoirs 

 

 

 

 

 

 

 

 

 

São Paulo 

2023  



 



 

 

 

 

PAULO HENRIQUE RANAZZI 

 

 

 

 

Iterative Ensemble Smoother with adaptive localization and deep learning 

parameterization for carbonate reservoirs 

 

 

Corrected Version 

 

 

 

Thesis presented to the Graduate Program in 

Mineral Engineering at the Polytechnic School, 

University of Sao Paulo to obtain the degree of 

Doctor of Science. 

 

Concentration Area: Mineral Engineering 

 

Advisor: Marcio Augusto Sampaio Pinto, PhD 

 

 

São Paulo 

2023  



 
Ranazzi, Paulo Henrique 

Iterative Ensemble Smoother with adaptive localization and deep learning 
parameterization for carbonate reservoirs / P. H. Ranazzi – versão corr. -- São 
Paulo, 2023. 

145p. 
 

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. 
Departamento de Engenharia de Minas e de Petróleo. 

 
1.Data Assimilation 2.Iterative Ensemble Smoother 4.Adaptive 

Localization 5.Generative Adversarial Networks I.Universidade de São 
Paulo. Escola Politécnica. Departamento de Engenharia de Minas e de 
Petróleo II.t. 

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio 
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Catalogação-na-publicação 
 

  



 

 

 

  



ACKNOWLEDGEMENTS 

I would like to express my heartfelt appreciation to my family and friends for their 

unwavering support and encouragement throughout this journey. Their belief in me 

and their constant presence have been a source of strength and motivation. 

 I am deeply grateful to my advisor, Prof. Marcio Sampaio, for his continuous 

support, guidance, and unwavering commitment to my academic and professional 

development. His expertise, invaluable insights, and willingness to share his 

knowledge have significantly influenced the outcome of this research. 

 I would like to extend my sincere thanks to the Energy Production Innovation 

Center (EPIC), FAPESP and Equinor for their generous financial support throughout 

the course of this research. Their investment in this project has enabled me to pursue 

in-depth investigations and achieve meaningful results. 

 I am grateful to the UNISIM group for providing the simulation models that 

were crucial for conducting this study. Their contribution has greatly enhanced the 

accuracy and reliability of the research outcomes. Additionally, I would like to 

acknowledge the Computer Modelling Group (CMG) for providing the essential 

licenses of the reservoir flow simulator. 

 Lastly, I want to express my gratitude to the Polytechnic School of the 

University of São Paulo (USP) and the Laboratory of Petroleum Reservoir Simulation 

and Management (LASG) for providing the necessary infrastructure and resources 

that facilitated the progress of this research. Their commitment to academic 

excellence and dedication to fostering a conducive research environment have been 

invaluable. 

  



 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Explore the world. Nearly everything is really 

interesting if you go into it deeply enough.” 

(Richard P. Feynman)  



 

 

  



ABSTRACT 

In last decade, iterative ensemble smoother methods have become the standard 

approach to perform history matching of petroleum reservoirs. However, their 

applicability is limited when it comes to more complex reservoirs. These limitations 

can be summarized by two main assumptions during the ensemble-based methods 

formulation: the use of an ensemble with finite size to represent the distributions and 

the assumption of Gaussianity in both parameter and data uncertainties. 

Unfortunately, Gaussian assumption is particularly significant in carbonate reservoirs 

where many uncertain parameters are non-Gaussian, such as matrix permeability 

containing Super-k layers - very thin layers with extremely high permeability. The 

standard approaches in the petroleum literature for handling the limited ensemble 

size and non-Gaussianity are Kalman gain localization and parameterization, 

respectively. Kalman-gain localization involves tapering the Kalman-gain matrix to 

reduce the effect of spurious correlations during the uncertain parameter updates, 

while parameterization involves mapping non-Gaussian parameters to a Gaussian 

field before the update and then mapping them back to the original domain to forward 

the ensemble through the reservoir simulator. These limitations motivated the 

evaluation and development of specific methods to improve the data assimilation 

workflow in large-scale carbonate reservoirs. An adaptive localization method was 

developed, which showed an improvement in posterior ensemble preservation, 

consequently reducing the ensemble collapse effect. A novel parameterization 

method was also applied using a generative adversarial network with discriminator 

regularization, combined with a data augmentation technique, which demonstrated 

improved network performance even with a small ensemble. Finally, both methods 

were integrated into a two-step data assimilation workflow applied to the UNISIM-II-H 

benchmark, showing satisfactory results in terms of preserving geological features 

after the assimilation. 

Keywords: Data Assimilation; Iterative Ensemble Smoother; Adaptive Localization; 

Parameterization; Generative Adversarial Networks. 

 

  



 

 

RESUMO 

Na última década, Conjuntos Suavizados Iterativos se tornaram o método padrão 

para a realização de ajuste de histórico de reservatórios de petróleo. Entretanto, sua 

aplicabilidade é limitada em reservatórios complexos. Estas limitações são 

relacionadas a duas das principais hipóteses durante a formulação destes métodos 

baseados em um conjunto de modelos: o uso de um conjunto de tamanho limitado 

para representar as distribuições e a hipótese de Gaussianidade em ambas as 

incertezas. Infelizmente, a hipótese de Gaussianidade é significativa em 

reservatórios carbonáticos onde muitos parâmetros incertos não possuem uma 

distribuição Gaussiana, como por exemplo a permeabilidade da matriz contendo 

camadas Super-k – camadas muito finas na direção vertical com uma 

permeabilidade extremamente elevada. Os métodos padrão para contornar os 

problemas relacionados com o tamanho do conjunto limitado e a não-Gaussianidade 

são Localização aplicada ao ganho de Kalman e parametrização, respectivamente. 

Localização aplicada ao ganho de Kalman refere-se à redução do impacto do ganho 

de Kalman para reduzir o efeito das correlações espúrias durante a atualização dos 

parâmetros incertos, enquanto a parametrização envolve um mapeamento do 

parâmetro não-Gaussiano para um domínio Gaussiano antes da etapa de 

atualização, então mapeando o parâmetro atualizado para seu domínio original para 

ser utilizado no simulador de reservatórios. Estas limitações motivaram a avaliação e 

desenvolvimento de métodos específicos para melhorar o processo de assimilação 

de dados em reservatórios carbonáticos de larga-escala. Um método de localização 

adaptativo foi desenvolvido, resultando em uma melhor preservação da variância do 

conjunto a posteriori, consequentemente reduzindo o efeito do colapso do conjunto. 

Um novo método de parametrização também foi avaliado, usando uma rede 

adversária generativa, em conjunto com uma técnica de aumento de dados, 

demonstrando melhorar no desempenho de treinamento mesmo com um conjunto 

de tamanho limitado. Finalmente, ambos os métodos foram integrados em uma 

assimilação de dados em duas etapas, aplicada ao benchmark UNISIM-II-H, 

resultando em resultados satisfatórios em termos da preservação das características 

geológicas após assimilação. 

Palavras-chave: Assimilação de Dados; Conjunto Suavizado Iterativo; Localização 

Adaptativa; Parametrização, Redes Adversárias Generativas.  
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CHAPTER 1 - INTRODUCTION 

 One of the most challenging tasks in the petroleum industry is to estimate the 

reservoir performance during its entire production life. This estimated behavior is 

used to define many practical aspects of the petroleum industry, for example, 

production systems sizing, exploitation resources priority, risk assessment, etc. 

Numerical reservoir simulation is the most used technique to predict this behavior 

nowadays, where computational advances are making possible the evaluation of 

large-scale and complex reservoir systems. The reservoir simulator is composed by a 

set of input parameters that describes the reservoir, and a set of partial differential 

equations that represents the fluid flow through the reservoir porous media, which 

are discretized in both space and time to be solved numerically. Several properties 

are used to construct the reservoir simulation model, some examples are porosity, 

permeability, fluid-contact depths, fault properties, relative permeability curves, etc. In 

this scenario of reservoir modeling and forecasting, many properties used as input 

data to the building of the reservoir simulation model have uncertainties. These 

uncertainties may arise from indirect acquisition methods, approximations to reduce 

the computational cost to solve the porous flow equations (e.g., upscaling), and even 

approximations in the set of equations, neglecting some physics of the phenomena 

(COATS, 1969). These uncertainties and approximations are guaranteed to result in 

discrepancies between the reservoir simulator response and its measurements 

(which also contains measurement errors), making this reservoir simulation model 

unable to predict the future reservoir performance. History matching might be defined 

as the process which modifies the uncertain properties values to reduce the 

discrepancy between the reservoir simulator response and the measurements. In this 

context, it is important to mention that the overwhelming increase in computational 

power is making possible the development of robust methodologies to build complex 

reservoir simulation models and robust methodologies to perform the history 

matching in this kind of reservoir.  

 The history matching methods can be divided into two main categories: 

manual and automatic (or assisted) history matching. Manual history matching refers 

to the trial-and-error procedure, where a few global reservoir parameters (such as 

zone property multiplier) are adjusted manually by the reservoir engineer until the 
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reservoir response achieves satisfactory results to obtain a single matched reservoir 

model (RWECHUNGURA; DADASHPOUR; KLEPPE, 2011). Due to the time-

consuming process of manual history matching and because of the non-uniqueness 

of the solution (OLIVER; CHEN, 2011), manual history matching is generally 

impractical and inefficient. Automatic history matching represents the class of 

methods that modifies the parameters automatically in an optimization problem, 

making it possible to adjust several reservoir uncertain parameters simultaneously. In 

this context, the main methods to perform the history matching are described in 

Rwechungura, Dadashpour, and Kleppe (2011), and Oliver and Chen (2011). 

 Automatic history matching might be considered as a type of data assimilation 

problem. Data assimilation is the science popularized by the meteorological and 

oceanography community which combines available data to improve the numerical 

model (AANONSEN et al., 2009). Generally, ensemble-based methods refer to the 

class of Monte Carlo methods which uses an ensemble to represent the model 

parameters and response uncertainties (AANONSEN et al., 2009; EVENSEN, 2009; 

OLIVER; CHEN, 2011). The advantages of the ensemble-based methods are its 

ease of application with relatively low computational cost, and the possibility to 

perform an uncertainty assessment since in this kind of method an ensemble of 

reservoir models is used to represent the model parameters and forecast 

uncertainties. Since its introduction with the Ensemble Kalman Filter – EnKF 

(EVENSEN, 1994), ensemble-based methods became the state-of-the-art approach 

in the petroleum industry. Among the ensemble-based methods, the class of Iterative 

Ensemble Smoothers (IES) has become popular in petroleum reservoir applications 

(EVENSEN, 2018). The main advantages of IES compared to other ensemble-based 

methods is its simultaneous assimilation scheme, instead the recursive EnKF 

workflow. 

 Although IES has been used extensively in large-scale realistic reservoir 

models(EMERICK, 2016; BRESLAVICH; SARKISOV; MAKAROVA, 2017; 

LORENTZEN et al., 2020), this kind of method still has some limitations. These 

limitations are mainly related with the limited ensemble size used to represent the 

uncertainties and the Gaussian assumptions during the formulation of the update 

equations. The former results in spurious correlations which induces a severe 

variance reduction of the posterior ensemble variance, (namely as ‘ensemble 
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collapse’ by the data assimilation community), and a divergence resulting in 

unrealistic posterior parameter values. Besides that, the Gaussian assumption 

makes the assimilation process to vanish any distribution which do not have a prior 

Gaussian, converting it to a Gaussian one, resulting in posterior fields that have no 

geological meaning. 

 The discoveries of the Brazilian Pre-salt reservoirs are among the most 

relevant discoveries in recent years. These reservoirs under the thick salt-layer are 

giant fields with light oil located in ultra-deep waters (approximately 1900-2400m), far 

from the coast (approximately 240 km from Rio de Janeiro state), consisting of 

heterogeneous carbonate rocks. In 2018, these reservoirs already accounted for 

almost half of all Brazilian oil production (BRUHN et al., 2017; PETROBRAS, 2022). 

Figure 1 shows the annual average daily production from all Brazilian gas and oil 

fields operated by Petrobras, the main Brazilian petroleum company, being possible 

to observe the growing importance of the pre-salt reservoirs. 

 The characteristics of this kind of reservoir converges towards the problems 

aforementioned about the ensemble-based methods to perform the data assimilation, 

making its evaluation challenging (DA ROCHA et al., 2021). 

Figure 1 – Annual average daily production from all Brazilian gas/oil fields operated by Petrobras. 

 

Source: BRUHN et al. (2017) 
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 Regarding the reservoir simulation models, carbonate reservoirs are among 

the most complex reservoir types to perform efficient forecasting. These difficulties 

arise from the fact that carbonate reservoirs are generally naturally fractured, 

requiring a dual-porosity, dual-permeability system to represent these fractures 

(MAUCEC et al., 2016). Furthermore, Super-K layers are present in several 

carbonate reservoirs (ALQAM; NASR-EL-DIN; LYNN, 2001), which refers to thin 

layers with exceptionally high permeability (MEYER; PRICE; AL-RAIMI, 2000). These 

layers are modeled using an object-based modeling procedure (CORREIA et al., 

2015), making the uncertain parameter distribution as non-Gaussian. However, as 

mentioned by Maschio and Schiozer (2019), despite the increasing body of literature 

on history matching in complex reservoirs, the majority of studies have focused on 

channelized systems. Consequently, there is a lack of applications specifically 

tailored for conducting history matching in carbonate reservoirs. 

 In this scenario, we might argue that the application of IES methods in large-

scale carbonate reservoirs is one of the researcher's nowadays goals. There are 

some techniques to remedy the limitations mentioned before. However, none of them 

has been developed or evaluated specifically for carbonate reservoirs. 

1.1 Objectives 

 As mentioned in the previous section, the main objective of this thesis is to 

improve the history matching process with iterative ensemble smoother when it is 

applied in carbonate reservoirs.  

 The objective of this work is to improve the state-of-the-art IES application in 

carbonate reservoir and might be summarized as follows: 

1. Developing a novel localization method that may be computationally 

inexpensive and suitable to be applied in carbonate reservoirs and 

parameterized properties. 

2. Developing a novel parameterization method that will be able to preserve the 

Super-K layers during the assimilation process. 

3. Integrating the previous methods to develop a robust workflow to apply IES in 

history matching in large-scale carbonate reservoirs. 
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CHAPTER 2 - LITERATURE REVIEW  

2.1 Ensemble-based methods  

 To introduce the ensemble-based theory, we need first introduce briefly the 

original Kalman Filter (KF). The Kalman Filter (KALMAN, 1960) is an optimal 

recursive parameter-state estimator for linear systems where the parameter and state 

estimates are ‘corrected’ according to available measurements contaminated with 

noise. Kalman Filter workflow might be divided into two main steps: forward and 

analysis (or update). In the forward step, the linear model is integrated forward in 

time, then the parameter, state, and model covariance are updated in the analysis 

step whenever measurements are available through the analysis equations. Several 

methods aim to adapt the Kalman Filter to non-linear models. For example, in the 

Extended Kalman Filter (MCELHOE, 1966) the nonlinear model is linearized, and the 

approximated equation is used to estimate the error statistics (EVENSEN, 2003). 

However, these equations might be impractical to be linearized in high-dimensional 

systems, and the errors might be significant in highly non-linear systems. 

 In this scenario, the Ensemble Kalman filter (EnKF) was developed by 

Evensen (1994), a Monte Carlo approximation of the traditional KF, being an 

attractive method because it avoids the forward operator linearization, and the huge 

computation efforts required to evolve and store the covariances matrices in high-

dimensional systems. Briefly, the Ensemble Kalman filter uses an ensemble of 

members to represent the prior statistics and estimate the covariances, in such a way 

that these covariances do not need to be evolved analytically. Thus, this ensemble is 

updated recursively whenever measurements are available, similarly to KF, in a 

parameter-state estimation problem. In the first known application of EnKF in 

reservoir literature, near-well permeabilities were updated using the continuous 

recursive methodology (NÆVDAL; MANNSETH; VEFRING, 2002). Since then, the 

literature of EnKF in field-scale history matching problems is vast (SKJERVHEIM et 

al., 2007; HAUGEN et al., 2008; SEILER et al., 2009; EMERICK; REYNOLDS, 

2011a; ZHANG; OLIVER, 2011). However, the recursive methodology may lead to 

some issues in history matching. As the EnKF is a recursive methodology where both 

the parameter and states are updated, the frequent simulation restarts increase the 

required time to read/write simulation files. In addition, the state updates at each 
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update step may lead to unphysical values. For more information about EnKF in 

history matching, Aanonsen et al. (2009) review the developments and applications 

of EnKF until 2009 and serve as an EnKF reference document. 

 To avoid the recursive methodology, van Leeuwen and Evensen (1996) 

developed the Ensemble Smoother (ES): a variance-minimizing analysis like EnKF 

update equation, however with a single update performed over the whole 

measurement domain in a parameter-estimation problem, avoiding the state updates. 

However, as mentioned by the authors, ES results in lower performance in 

comparison to the recursive methodology in non-linear systems, maybe because the 

recursive assimilations keep the ‘model on track’ (EVENSEN; EIKREM, 2018). This 

was also verified in the first ES experiment in history matching performed by 

Skjervheim et al. (2011), where the authors compared the EnKF and ES and 

concluded that ES resulted in poorer results, however requiring approximately 10% 

of the simulation time required by EnKF. 

 To overcome the poor quality of ES results, some iterative variants were 

developed. After the introduction of the Ensemble Randomized Maximum Likelihood 

(EnRML) (CHEN; OLIVER, 2012) and the Ensemble Smoother with Multiple Data 

Assimilations (ES-MDA) (EMERICK; REYNOLDS, 2013), the applications of iterative 

ensemble smoothers have become possible in large-scale field reservoirs. Some 

examples of field applications are found in Chen and Oliver (2013a) and Emerick 

(2016). Here, we recall the class of methods based on EnRML and ES-MDA as 

Iterative Ensemble Smoother (IES) methods. Since then, IES has become the 

preferred choice to perform history matching using ensemble-based methods (CHEN; 

OLIVER, 2017; EMERICK, 2018; EVENSEN, 2018; EVENSEN; EIKREM, 2018). 

Finally, after EnRML and ES-MDA introduction, several stochastic iterative ensemble 

smoothers variants were developed to overcome some IES drawbacks. Some 

examples are the methodologies developed by Chen and Oliver (2013b), Luo et al. 

(2015), Emerick (2016), Le et al. (2016), Rafiee and Reynolds (2017), Ma and Bi 

(2019), Luo (2021). Although these methods have revolutionized the history matching 

process, several issues still arise, mainly because even the iterative variants rely on 

Gaussian assumptions and have limited ensemble sizes. The following section 

introduces the basic theory of Iterative Ensemble Smoothers. 



28 

 

2.2 Kalman Gain Localization 

 To address the effects of limited ensemble size when computing covariances 

in ensemble-based methods, various approaches have been developed, including 

covariance inflation, local analysis and localization (covariance or Kalman gain). 

Covariance inflation involves artificially inflating the variance of the ensemble by 

using an inflation factor slightly greater than one to counteract the ensemble collapse 

(ANDERSON; ANDERSON, 1999; EVENSEN, 2009). Some examples of covariance 

inflation methods are found in Wang and Bishop (2003), Anderson (2007), Sacher 

and Bartello (2008), Anderson (2009). Local analysis decomposes the model into 

local domains and updates it only with data located within each subdomain 

(EVENSEN, 2003). Some examples of such works that used local analysis include 

(HOUTEKAMER; MITCHELL, 1998; OTT et al., 2004). 

 Localization generally refers to the tapering of either covariance matrices 

(HAMILL; WHITAKER; SNYDER, 2001; HOUTEKAMER; MITCHELL, 2001) or 

Kalman gain (CHEN; OLIVER, 2010, 2014). This tapering is performed using a 

localization matrix that is built based on some relationship between each parameter 

and data. In this context, Chen and Oliver (2017) compared the performance 

between localization and local analysis and concluded that both methods give 

equivalent results when applied in iterative ensemble smoothers. In reservoir history 

matching, localization is typically performed by applying the localization matrix 

directly to the Kalman gain. As a results, there is significant ongoing research in 

developing methods for constructing the tapering matrix (also known as localization 

matrix) for Kalman gain localization. 

 Developing a robust and efficient localization scheme is crucial for achieving 

optimal performance in data assimilation. For instance, the localization scheme can 

have a significant impact on the total number of iterations required for some adaptive 

IES variants (RANAZZI; SAMPAIO, 2019a). Therefore, it is important to consider the 

significance of a well-designed localization scheme to obtain accurate results. 

 Currently, the methods available to build the localization matrix can be 

classified into three main categories: distance-based; drainage-based and adaptive 

methods. Since its introduction by Houtekamer and Mitchell (2001), distance-based 

methods have become the standard approach for applying Kalman gain localization 
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in ensemble-based methods. This approach uses a monotonic covariance function to 

determine tapering values based on the distance between each model parameter 

and data. Two widely used functions to compute the tapering (or localization) values 

are the Gaspari and Cohn function (GASPARI; COHN, 1999) and the isotropic 

covariance function defined by Furrer and Bengtsson (2007). Distance-based 

localization has been applied in various reservoir applications, as demonstrated in 

Chen and Oliver (2010, 2014), Emerick and Reynolds (2011b), Silva et al. (2017), 

Emerick (2018, 2019), Ranazzi and Sampaio (2019a, 2019b). 

 Drainage-based methods aim to define the influence region based on the 

reservoir dynamics. They can be defined using streamlines (ARROYO-NEGRETE et 

al., 2008; DEVEGOWDA; ARROYO-NEGRETE; DATTA-GUPTA, 2010; 

WATANABE; DATTA-GUPTA, 2012), pseudo-tracer (DAMIANI, 2007), block 

velocities (YEO; JUNG; CHOE, 2014). 

 In addition, some methods combine distance- and drainage-based localization. 

For instance, Emerick and Reynolds (2011a, 2011b) combine the prior field 

correlation lengths with the range obtained by the pseudo-tracer. Another similar 

example is the method proposed by Soares et al. (2018), who use each producer-

injector well pair to determine the influence area used in the localization matrix 

definition. 

 In adaptive methods, the assimilation system itself (together with some 

statistical method) is used to determine the relationship between each parameter and 

data (EVENSEN, 2009). Examples in this aspect include the non-isotropic equation 

proposed by Furrer and Bengtsson (2007), the hierarchical localization method 

proposed by Anderson (2007), the smoothed ensemble correlations raised to a 

power (SENCORP) proposed by Bishop and Hodyss (2007), the bootstrap 

localization method developed by Zhang and Oliver (2010), and the sampling error 

correction (SEC) method (ANDERSON, 2012, 2016).  

 Luo et al. (2018; 2019), proposed the correlation-based localization method, 

where sample correlation is used to estimate the tapering values. Later, in Luo and 

Bhakta (2020), this method was improved by using the random-shuffle method in 

such way that the tapering values are computed automatically without tuning 

parameters. 
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 Lacerda et al. (2019, 2021) recalled the non-isotropic equation proposed by 

Furrer and Bengtsson (2007), as ‘pseudo-optimal’ localization, compared it with the 

other adaptive localization methods, while introducing a sensitivity-analysis based 

localization method to perform localization for non-local parameters. 

 Although distance-based methods are the most used in the literature, they 

have several noticed limitations. Distance-based methods rely on the existence of 

physical locations of both model parameters and data, which makes it challenging to 

apply them to non-local parameters, e.g., relative permeability curves, fluid-contacts, 

and property multipliers. The need for a robust localization method further uprise 

when incorporating into reservoir data assimilation more sophisticated 

parameterization methods which map either model parameters or data to other non-

physical domains (SEBACHER; HANEA, 2020; CANCHUMUNI et al., 2021). 

 Moreover, the values of tapering coefficients should also depend on a few 

other factors, e.g., the type of field data and the time instance (which means that 

even for the same type of data, the tapering coefficients at distinct time instances 

should be different). The drainage-based methods can address the data-type and 

time-dependence. However, its implementation might be difficult in certain 

circumstances. For example, the streamline tracing requires the availability of a 

streamline simulator. As for the block velocities, our previous experiments (not 

reported here for conciseness) showed that the localization matrix obtained through 

this method was not able to represent the tapering property. Furthermore, drainage-

based methods do not solve the need to develop a robust workflow to perform the 

localization in non-local parameters. 

 Regarding the adaptive methods, Lacerda et al. (2019) mentioned its inferior 

performance compared to the distance-based methods for certain experiments 

therein. However, adaptive localization methods appear to be more promising to 

remedy the issues described above (OLIVER et al., 2021). Some works that apply 

adaptive localization methods (at the current stage, only correlation-based) to large-

scale reservoir data assimilation problems appear to support this point of view (LUO 

et al., 2019; LORENTZEN et al., 2020; SOARES et al., 2021). 
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2.3 Parameterization 

Despite the great popularity and wide use of the iterative ensemble smoothers to 

perform data assimilation, limitations still rely upon the Gaussian assumptions in the 

actual IES formulations, making its applicability limited in complex petroleum 

reservoirs. The standard technique to remedy the non-Gaussianity in the uncertain 

parameters is to perform a mapping between the original parameter domain and a 

Gaussian one, performing the data assimilation in this ‘transformed’ ensemble, 

denoted as ‘parameterization’ or ‘re-parameterization’. Since the introduction of IES, 

several methods have been developed to perform parameterization, such as pluri-

Gaussian methods (LIU; OLIVER, 2005; SEBACHER; HANEA; HEEMINK, 2013; 

SEBACHER; HANEA; STORDAL, 2017; SEBACHER; STORDAL; HANEA, 2015), 

normal-score transform (ZHOU et al., 2011; LI et al., 2018), level-set (LORENTZEN; 

FLORNES; NÆVDAL, 2012; MORENO; AANONSEN, 2011), principal component 

analysis methods (PCA) methods (SARMA; DURLOFSKY; AZIZ, 2008; SARMA; 

CHEN, 2009; VO; DURLOFSKY, 2014, 2015; EMERICK, 2017), discrete cosine 

transform (DCT) method (ZHAO; FOROUZANFAR; REYNOLDS, 2017), high order 

singular value decomposition (SEBACHER; HANEA, 2020), support vector machine 

(JUNG et al., 2018), among others. 

 Due to the huge computational advances in the last decade, the application of 

deep learning techniques has become possible in the parameterization of complex 

reservoir models. One of the first methods which applied deep learning techniques to 

the parameterization problem was the application of a standard autoencoder 

(CANCHUMUNI; EMERICK; PACHECO, 2017), showing encouraging results. 

Another autoencoder application might be found in Kim et al. (2020a), which applied 

a stacked autoencoder (SAE) together with a distance-based model selection. 

However, as noticed in Canchumuni et al., (CANCHUMUNI; EMERICK; PACHECO, 

2019a), these models fail to represent complex reservoirs, leading to the 

investigation of other deep learning techniques such as deep belief networks 

(CANCHUMUNI; EMERICK; PACHECO, 2019a). One drawback of fully connected 

layers structures is the high number of parameters, making them infeasible to solve 

large problems. To address this issue, the use of convolutional layers has been 

explored as a more efficient alternative, improving the performance of autoencoder in 
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the parameterization problem, as reported in some works (LALOY et al., 2017; 

CANCHUMUNI; EMERICK; PACHECO, 2019b; KIM et al., 2020b). 

 Generative Adversarial Networks (GAN) were introduced by Goodfellow et al. 

(2014) in the field of deep learning, and have gained attention for their potential to 

learn high-dimensional data. Unlike autoencoders, which use a single network to 

minimize the difference between the original and the reconstructed samples using a 

single network, GANs introduced the concept of adversarial learning using two 

distinct networks: a generator and a discriminator. The generator produces data from 

a latent space and tries to deceive the discriminator, which classifies whether a 

sample is real or generated from the generator. The main difference between GANs 

and other generative methods is the fact that in adversarial training the original 

distribution is not defined explicitly, with the generator being trained based on the 

discriminator outputs. For a comprehensive review of the GANs basic theory and its 

applications in several science fields, readers are referred to Lucic et al. (2018), 

Gonog and Zhou (2019), Hong et al. (2020), and Iglesias et al. (2022). Furthermore, 

a general overview of different deep generative models might be found in Bond-

Taylor (2022). 

 Like the other science fields, GANs also gained attention in the data 

assimilation field. Maybe the first work which applied generative adversarial networks 

to the generation of geological facies was performed by Chan and Elsheikh (2017), 

with an extended version presented later (CHAN; ELSHEIKH, 2019a). This work 

applied a Wasserstein GAN (ARJOVSKY; CHINTALA; BOTTOU, 2017) to the 

parameterization problem, with later improvements to the conditional generation to 

honor hard data (CHAN; ELSHEIKH, 2019b). Zhang et al. (2021) proposed a 

different method to include conditional data in the realization generation, considering 

a U-Net as the generator network, where the inputs now are the latent space and a 

field containing the conditioning data. Canchumuni et al. (2021) analyzed different 

GANs architectures, including transfer learning techniques, in the data assimilation 

quality of facies and production data, showing promising results for its application in 

data assimilation. The authors also introduced two localization strategies in this kind 

of problem: a local analysis and the application of GANs containing the latent input 

with spatial relationship regarding the original facies. Since then, several examples of 

GANs applications might be found in the literature (MOSSER; DUBRULE; BLUNT, 
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2018, 2019; FENG et al., 2022; RAZAK; JAFARPOUR, 2022; ZHANG et al., 2022). 

Finally, Bao et al. (2022) compared the GAN and variational autoencoder (VAE) 

performance in the data assimilation problem, where GAN showed poor performance 

concerning the data assimilation, however with GAN generating more realistic facies, 

probably because the aforementioned differences between VAE and GAN  

formulation. 

 Despite the several works regarding GANs to facies generation, some 

questions remain open. First, the effect of different GAN losses and architectures 

might be evaluated quantitively with respect to. the generated distribution. Second, in 

many cases, the available size of the dataset is prohibitive to train a Generative 

Adversarial Network properly, being the evaluation of data augmentation techniques 

necessary. Finally, the performance of GAN is not well established since most works 

apply its methodologies in the same two facies channelized toy model, being 

required the performance evaluation in other reservoir types. 

 Data augmentation is the set of techniques that artificially increases the size of 

the training dataset to improve the training process. There are several methods to 

perform the data augmentation, for instance, geometric transformation, color space 

augmentations, mixing images, even GAN itself to generated new dataset samples 

(SANDFORT et al., 2019). For a comprehensive review about data augmentation 

techniques, reader are referred to Wong et al. (2016) and Shorten and Khoshgoftaar 

(2019). Although data augmentation is a well-established technique in several deep 

learning fields, such as text data (SHORTEN; KHOSHGOFTAAR; FURHT, 2021), 

vocal speech (JAITLY; HINTON, 2013; KIM et al., 2019), medical imaging 

(MOTAMED; ROGALLA; KHALVATI, 2021; ZHANG et al., 2023), nuclear physics 

(BAHTIYAR; SOYDANER; YÜKSEL, 2022), its application in generative adversarial 

networks is not well established. This is primarily due to the fact that when standard 

data augmentation techniques are applied, the generative models learn to generate 

the augmented distribution, rendering the need for explicit data augmentation less 

apparent in GANs.Karras et al. (2020) called this phenomenon as ‘leaky’ 

augmentations. To address this issue, various works have introduced state-of-the-art 

augmentation methods in GANs, having as principle the application of invertible 

transformations in both the real and fake samples before the discriminator in the 

workflow. One example is the Data Augmentation Optimized for GAN method – DAG 
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(TRAN et al., 2021), which uses different transformation operators in different 

discriminators, where the generator and the discriminator losses now includes the 

loss of the discriminator without any transformation as well as the losses from the 

discriminators that receives transformed samples with different operators. For our 

understanding, this more complex network structure might be prohibitive, especially 

for users with lower computational power. Other methodologies introduce these 

transformations without changing the loss structure. Zhao et al. (2020a) compared 

three cases: augment only real samples, augment all samples when training the 

discriminator, and augment all samples when training the discriminator and the 

generator, proposing the DiffAugment method. Zhao et al. (2020b) proposed a similar 

method, called Contrastive Loss for GAN Training, where the contrastive loss is 

applied to regularizing the discriminator on the augmented samples, the authors also 

analyzed the strength effect of each augmentation in the training, concluding that 

Instance Noise (SØNDERBY et al., 2017) does no showed good improvements 

during the GAN training. Regarding the strength of the data augmentation, it has 

been shown that it can vary depending on the dataset, network settings, and even 

over iterations during the training, as demonstrated by Karras et al. (2020). To 

address this issue, they introduced the Adaptive Discriminator Augmentation (ADA) 

method, which applies all possible augmentations to real and generated images only 

with a certain probability. This approach ensures that the generator avoids the 

leaking effect. Despite all these advances in data augmentation applied in GAN 

training, its performance is not known when applied to petroleum reservoir studies (to 

our knowledge, no work has applied data augmentation in petroleum reservoirs).  His 

evaluation is crucial as the augmentation behavior can vary from the current state-of-

the-art approaches due to the distinct nature of the reservoir samples. For instance, 

reservoir samples typically consist of single color channels containing integer values, 

which differ from the standard GAN applications that often involve diverse subjects 

like human faces, cars, and landscapes. 
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2.4 History Matching Problem 

2.4.1 Iterative Ensemble Smoothers 

In this section, we will introduce the mathematical background of the Iterative 

Ensemble Smoothers (IES) theory, and the localization methods used nowadays. 

First, in the general history matching formulation, the imperfect forward operator 

prediction 𝐝 ∈ ℜ𝑁𝑑 depends nonlinearly on the input model parameters 𝐦 ∈ ℜ𝑁𝑚 

(EVENSEN, 2019): 

 𝐝 = 𝐠(𝐦). (1)  

Here, the forward operator 𝐠 represents the reservoir simulator (i.e., usually a ‘black-

box’ operator). In the history matching inverse problem, we have some set of noisy 

measurements 𝐝obs of the true data value 𝐝true: 

 𝐝obs = 𝐝true + 𝜖, (2)  

where the error 𝜖 is usually drawn from 𝜖~𝒩(0, 𝐂D), with 𝐂D ∈ ℜ
𝑁𝑑×𝑁𝑑 representing 

the covariance matrix of measurement errors. Thus, is straightforward to define the 

history matching as the inverse problem 𝐝obs = 𝐠(𝐦). From Bayes’ theorem, 

Evensen (2018, 2019) demonstrated that the posterior marginal distribution can be 

obtained from: 

 𝑓(𝐦|𝐝obs) ∝ exp (−
1

2
𝐽(𝐦)), (3) 

where function 𝐽(𝐦) is given by: 

 𝐽(𝐦) = [𝐝obs − 𝐝]T𝐂D
−1[𝐝obs − 𝐝] + [𝐦−𝐦pr]

T
𝐂M
−1[𝐦−𝐦pr], (4) 

where the subscript pr denotes the priors. Thus, it is possible to conclude that the 

maximum pdf (3) is obtained minimizing the objective function (4). In ensemble-

based methods we can sample the priors to represent the covariances, defining the 

cost function for each sample realization (or ensemble member). In this sense, the 

cost function can be derived by the stochastic smoother by van Leeuwen (2020):  

 

𝐽(𝐦𝑗) = [𝐝obs − 𝐝𝑗 − 𝜖𝑗]
T
𝐂D
−1[𝐝obs − 𝐝𝑗 − 𝜖𝑗]

+ [𝐦𝑗 −𝐦pr,𝑗]
T
𝐂M
−1[𝐦𝑗 −𝐦pr,𝑗], 

(5) 
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for an ensemble {𝐦𝑗}𝑗=1
𝑁

 with 𝑁 members. In the following, we will analyze the 

general solution by the Ensemble Smoother with Multiple Data Assimilation. 

2.4.2 Ensemble Smoother with Multiple Data Assimilations 

 The Ensemble Smoother with Multiple Data Assimilation (ES-MDA) introduced 

by Emerick and Reynolds (2013) is a variant of the original Ensemble Smoother 

which performs multiple ES iterations using an inflated covariance measurement 

error to damp the iterations. To solve (5), ES-MDA uses a tempering procedure of the 

likelihood function (EMERICK, 2016; EVENSEN, 2018, 2019) over 𝑁𝑖 multiple 

assimilations: 

 𝑓(𝐦|𝐝obs) =∏𝑓(𝐦|𝐝obs)
1

𝛼𝑖

𝑁𝑖

𝑖=1

, (6) 

where 𝛼1, 𝛼2, … , 𝛼𝑁𝑖 is the inflation factor which damps each iteration 𝑖. From (6), we 

can conclude that the posterior variance is correct only if the following condition is 

satisfied: 

 ∑
1

𝛼𝑖
= 1

𝑁𝑖

𝑖=1

. (7) 

Now, combining the solution introduced by Evensen (2019) and the stochastic 

ensemble smoother introduced by van Leeuwen (2020). The cost function of the 

weak-constraint ES-MDA is given by recursive minimizations over 𝑁𝑖 iterations: 

 

𝐽(𝐝𝑖+1) = [𝐝obs − 𝐝𝑗 −√𝛼𝑖𝜖𝑗,𝑖]
T
α𝑖𝐂D

−1[𝐝obs − 𝐝𝑗 −√𝛼𝑖𝜖𝑗,𝑖]

+ [𝐦𝑗,𝑖+1 −𝐦𝑗,𝑖]
T
𝐂M,𝑖
−1 [𝐦𝑗,𝑖+1 −𝐦𝑗,𝑖]

T

. 
(8) 

Generally, in history matching problems, the number of model parameters is much 

higher than the number of ensemble members (𝑁𝑚 ≫ 𝑁). In this context, the ES-

MDA solution will be (EMERICK; REYNOLDS, 2013; EVENSEN, 2019): 

  𝐦𝑗,𝑖+1 = 𝐦𝑗,𝑖 + 𝐂MD,𝑖(𝐂DD,𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs − 𝐝𝑗,𝑖 −√𝛼𝑖𝜖𝑗), (9) 

where 𝜖𝑗~𝑁(0, 𝐂D). In ensemble-based methods, covariances are estimated around 

the ensemble mean with size 𝑁: 
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 𝐂MD =
1

𝑁 − 1
∑(𝐦𝑗,𝑖 − �̅�𝑖)(𝐝𝑗,𝑖 − �̅�𝑖)

T
𝑁

𝑗=1

, (10) 

and, 

 𝐂DD =
1

𝑁 − 1
∑(𝐝𝑗,𝑖 − �̅�𝑖)(𝐝𝑗,𝑖 − �̅�𝑖)

T
𝑁

𝑗=1

, (11) 

where overbars denote ensemble mean. In this stochastic iterative smoother, the 

model is integrated forward in time, and model parameters and errors are updated 

recursively at each iteration step until the condition in (7) is achieved. Thus, a critical 

choice parameter in ES-MDA is the inflation factors 𝛼𝑖 definition for all iterations, 

which determines the damping of each iteration and the algorithm termination. For 

simplicity, its common to define a predetermined number of 𝑁𝑖 updates with 𝛼𝑖 = 𝑁𝑖 

for all iterations. However, the inflation factor definition is an intensive research 

subject, with the development of methodologies to optimize this selection. For 

example, geometric selection (RAFIEE; REYNOLDS, 2017; EMERICK, 2019) and 

adaptive methodologies where either number of iterations or the inflations factors are 

determined automatically (LE; EMERICK; REYNOLDS, 2016; MA; BI, 2019). 

Independently of the inflation factor selection method, the general stochastic ES-

MDA algorithm may be summarized as follows: 
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Algorithm 1 General Stochastic ES-MDA 

Set {𝛼𝑖}𝑖=1
𝑁𝑖  definition scheme 

while ∑
1

𝛼𝑖
< 1

𝑁𝑖
𝑖=1  

 if 𝑖 = 1 

  Sample 𝐦𝑗,1 

 end if 

 for 𝑗 = 1:𝑁 

  Compute 𝐝𝑗,𝑖 = 𝐠(𝐦𝒋,𝒊) 

 end for 

 for 𝑗 = 1:𝑁 

  Compute 𝜖𝑗~𝑁(0, 𝐂D) 

  Compute 𝐦𝑗,𝑖+1 = 𝐦𝑗,𝑖 + 𝐂MD,𝑖(𝐂DD,𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs − 𝐝𝑗,𝑖 −√𝛼𝑖𝜖𝑗) 

 end for 

 𝑖 ← 𝑖 + 1 

end while 

In the following sections, we will introduce the existing techniques to reduce the 

effects of limited ensemble size and non-Gaussian parameters. 

2.4.3  Kalman Gain Localization 

 In Kalman gain localization, the analysis equation is rewritten adding the 

localization matrix which is applied to the entire Kalman gain matrix by the Schur 

product (element-wise matrix multiplication): 

 𝐦𝑗,𝑖+1 = 𝐦𝑗,𝑖 + 𝐏 ∘ [𝐂MD,𝑖(𝐂DD,𝑖 + 𝛼𝑖𝐂D)
−1
] (𝐝obs − 𝐝𝑗,𝑖 − √𝛼𝑖𝜖𝑗) (12) 

where 𝐏 represents the localization matrix, which is given by: 

 

𝐏 =

[
 
 
 
 
𝜌m1,d1 𝜌m1,d2 ⋯ 𝜌m1,d𝑁𝑑

𝜌m2,d1 𝜌m2,d2 𝜌m2,d𝑁𝑑

⋮ ⋱ ⋮
𝜌m𝑁𝑚 ,d1

𝜌m𝑁𝑚 ,d2
⋯ 𝜌m𝑁𝑚 ,d𝑁𝑑]

 
 
 
 

. (13) 

where each 𝜌𝑚,𝑑 represents the tapering value corresponding to 𝑚 parameter and 𝑑 

data. 



39 

 

 In distance-based, some monotonical covariance function is used to compute 

the entries of the localization matrix. The Gaspari and Cohn correlation (1999) is 

defined by: 

𝜌(𝑧) =  

{
 
 

 
 −

1

4
(
𝑧

𝐿
)
5

+
1

4
(
𝑧

𝐿
)
4

+
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8
(
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𝐿
)
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−
5

3
(
𝑧

𝐿
)
2
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12
(
𝑧

𝐿
)
5

−
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(
𝑧

𝐿
)
4

+
5

8
(
𝑧

𝐿
)
3

+
5

3
(
𝑧

𝐿
)
2

− 5(
𝑧

𝐿
) + 4 −

2

3
(
𝐿

𝑧
) 𝐿 ≤ 𝑧 ≤ 2𝐿

0, 2𝐿 ≤ 𝑧

 (14) 

where 𝑧 represents the Euclidean distance between each parameter and data, and 𝐿 

is a normalizing parameter denoted as critical length. Another example of correlation 

function is the isotropic covariance function given by Furrer and Bengtsson (2007). 

This function states that the tapering strength also depends on the ensemble size, 

such that the tapering values tends to one as ensemble size tends to infinity: 

 
𝜌(𝑧) =

1

1 + [1 + 𝑓(0)2 𝑓(𝑧)2⁄ ]/𝑁
. (15) 

Here, 𝑓(⋅) represents a covariance function. 

2.4.4 Adaptive localization 

This chapter will introduce two preexisting adaptive localization techniques: pseudo-

optimal and correlation-based localization. The motivation here is to further improve 

the adaptive localization scheme, by combining the strengths of these methods. 

 Furrer and Bengtsson (2007) derived a non-isotropic tapering function by 

minimizing the norm of the difference between the true covariance and the ensemble 

tapered covariance. This tapering function is in the following form: 

 
𝜌𝑝,𝑜 =

𝑐𝑝,𝑜
2

𝑐𝑝,𝑜
2 + (𝑐𝑝,𝑜

2 + 𝑐𝑝,𝑝𝑐𝑜,𝑜) 𝑁⁄
, (16) 

where 𝜌𝑝,𝑜 is the tapering value (entry of localization matrix 𝐏) for a given parameter 

𝑝 and data 𝑜, and 𝑐𝑝,𝑜 represents the true covariance between the 𝑝th model 

parameter and 𝑜th predicted data (LACERDA; EMERICK; PIRES, 2019). An 

important feature of this pseudo-optimal localization scheme is that this method will 

be optimal asymptotically (tapering values tend to one as the ensemble size 𝑁 
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approaches infinity). The authors propose an approximation that replaces 𝑐𝑝,𝑜 by the 

ensemble covariance estimate instead to obtain an inexpensive non-isotropic 

localization method. In addition, Furrer and Bengtsson (2007) suggest that 

sparseness may be introduced by setting 𝜌𝑝,𝑜 = 0 whenever 𝑐𝑝,𝑜 ≈ 0. In line with this 

idea, Lacerda et al. (2019) advocate to set: 

 𝜌𝑝,𝑜 = 0, if 
|𝑐𝑝,𝑜|

√𝑐𝑝,𝑝𝑐𝑜,𝑜
< 𝜃, (17) 

where |𝑐𝑝,𝑜|/√𝑐𝑝,𝑝𝑐𝑜,𝑜 is the sample correlation (normalized covariance), and 𝜃 is a 

user-defined threshold. The authors analyzed different threshold values and 

concluded that a threshold value equal to 𝜃 = 10−3 results in reasonably good 

assimilation results with satisfactory data mismatch. However, as we will see in the 

following sections, the pseudo-optimal localization will not always be able to 

appropriately suppress spurious correlations following the form in equation(16). 

 Similarly, the correlation-based localization scheme suggests defining the 

localization matrix entries equal to one if the sample correlation between the 𝑝th 

model parameter and 𝑜th predicted data is higher than a user-defined threshold: 

 𝜌𝑝,𝑜 = 𝐈(|�̂�𝑝,𝑜| > 𝜃), (18) 

where 𝐈 is the indicator function (1 if the condition is satisfied, 0 otherwise), �̂�𝑝,𝑜 is the 

sample correlation between the 𝑝th model parameter and the 𝑜th data, and 𝜃 is the 

threshold in correlation-based localization. Thus, analyzing equations (17) and (18), 

we can conclude that the same methodologies can be applied to estimate the 

threshold in both localization methods. Luo et al. (2018; 2019) suggest grouping 

similar model variables (e.g., the same type of petrophysical property) into a 

correlation field, to reduce the complexity to obtain this threshold. Furthermore, Luo 

et al. (2018) showed that the distribution of the sampling errors in this correlation field 

can be approximated by a Gaussian distribution with zero mean. Thus, it is possible 

to decompose the correlation field for a given group 𝐺, and a given data 𝑜 as follows: 

 �̂�𝐺,𝑜 = �̂�𝐺,𝑜
∞ + 𝜺𝐺,𝑜. (19) 

Here,  𝜺𝐺 is the vector with the sampling errors for all parameters which belong to the 

group 𝐺. Thus, with an estimated noise level of 𝜺𝐺,𝑜 we can calculate a unique 

threshold 𝜃𝐺,𝑜 for this group of petrophysical property.  More specifically, the authors 
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proposed the application of the median absolute deviation (MAD) estimator and the 

universal rule (UR) (DONOHO; JOHNSTONE, 1994, 1995) to estimate the threshold 

for a given group 𝐺: 

 
𝜎𝐺,𝑜 =

median(|𝜺𝐺.𝑜|)

0.6745
, (20) 

and, 

 
𝜃𝐺,𝑜 = √2 ln(#𝜺𝐺,𝑜) 𝜎𝐺,𝑜, (21) 

where #𝜺𝐺,𝑜 is the number of elements in group 𝐺. Luo and Bhakta (2020) suggested 

creating a substitute noise field �̃�𝐺,𝑜 to estimate the threshold, assuming that the 

noise field is induced by sampling errors. This substitute noise field can be generated 

by exploiting the fact that the true correlation between two statistically independent 

variables should be equal to zero. Using the ensembles 𝐌 = {𝐦𝑗}𝑗=1
𝑁

 and 𝐃 =

{𝐝𝑗}𝑗=1
𝑁

, one can shuffle the positions of the members in the ensemble of model 

parameters to obtain an ensemble �̃� with the same statistics as the original 

ensemble 𝐌, and with the additional property that the correlation between �̃� and 𝐃 

will be equal to zero for an infinite ensemble size. To do this, Luo and Bhakta (2020) 

suggest to randomly shuffle the column indexes of 𝐌. 

 To avoid the binary behavior of (18), Luo and Bhakta (2020) also developed a 

continuous tapering rule based on the sample correlations and the estimated noise 

level. Specifically, the tapering values in this continuous tapering method are 

estimated by the following relationship: 

 
𝜌𝑝,𝑜 = 𝑓𝑡 (

1 − |�̂�𝑝,𝑜|

1 − 𝜃𝐺,𝑜
), (22) 

where 𝑓𝑡 is a given tapering function. In their work, the authors adopted the Gaspari 

and Cohn function (GASPARI; COHN, 1999). 

 Correlation-based localization will be suboptimal asymptotically as ensemble 

size tends to infinity (or computing tapering coefficients with the true correlation 

value). This occurs because, in its present form, we will only obtain tapering values 

equal to one if the correlation between a given pair of variables and data is one. 
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Furthermore, when 𝑁 → ∞, 𝜃 → 0 and |�̂�𝑝,𝑜| → 0, one has 𝜌𝑝,𝑜 → 5 24⁄  instead of 

being 0. 

2.4.5 Parameterization 

The parameterization to perform the data assimilation using ensemble-based 

methods is based in the mapping between the original parameter domain to a 

domain which its value arises from a normal distribution. Mathematically, this might 

be represented by the operator 𝑝, responsible for the mapping between both fields: 

 𝑝 ∶ 𝐦 ∈ ℜ𝑁𝑚 → 𝐳 ∈ ℜ𝑁𝑧 (23) 

A fundamental aspect in parameterization is that this operator needs to be invertible, 

i.e., have an inverse transform 𝑝−1 to the original domain: 

 𝑝−1 ∶ 𝐳 ∈ ℜ𝑁𝑧 → 𝐦 ∈ ℜ𝑁𝑚 (24) 

Denoting parameter and data ensemble as 𝐌𝑖 = {𝐦𝑗
𝑖}
𝑖=1

𝑁
 and 𝐃𝑗

𝑖 = {𝐝𝑗
𝑖}
𝑗=1

𝑁
, the 

uncertain parameter ensemble is used to obtain the data ensemble and the 

parameterized one, then the analysis step is made using this parameterized 

ensemble as uncertain. In the ES-MDA solution this will be represented as: 

 𝐳𝑗,𝑖+1 = 𝐳𝑗 + 𝐂ZD,𝑖(𝐂DD,𝑖 + 𝛼𝑖𝐂D)
−1
(𝐝obs − 𝐝𝑗,𝑖 −√𝛼𝑖𝜖𝑗), (25) 

where 𝐳 represents the vector after the parameterization 𝐳 = 𝑝(𝐦). In this sense, the 

assimilation workflow considering the parameterized ensemble can be represented 

as Figure 2. 
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Figure 2 – Parameterization workflow. 

 

2.4.6 Parameterization with Generative Adversarial Networks 

Given the discriminator network 𝒟 and the generator network 𝒢, the groundbreaking 

work of Goodfellow et al. (2014) proposed an alternative rule where instead of a 

likelihood, where the discriminator serves as objective for a generative model, where 

the generator objective is to learn its output distribution 𝑝𝑔 to the original data 

distribution 𝑝𝑑. In this point of view the learning framework might be considered a 

two-player game between the generator and the discriminator: the generator aims to 

generate real-like samples and the discriminator aims to distinguish between real 

samples from the original data and the samples generated by the generator, thus, 

each network has its own objective where the convergence of this two-player game 

will be the Nash-equilibrium (HEUSEL et al., 2018; LUCIC et al., 2018). The 

formulation presented the problem as the following min-max objective: 

 min
𝒢
max
𝒟

𝔼𝑥~𝑝𝑑[log(𝒟(𝑥))] + 𝔼�̂�~𝑝𝑔[log(1 − 𝒟(𝑥))] (26) 

Prior Ensemble: 𝑖 = 1; 𝐌𝑝 𝑖𝑜 = 𝐌1

Posterior Ensemble: 𝐌 𝑜 𝑡  𝑖𝑜 = 𝐌𝑖+1

Forward step: 𝐃 𝑖 = 𝑔 𝐌𝑖

Analysis step:  𝑖+1

𝑖 = 𝑖 + 1

Parameterization:  𝑖 = 𝑝 𝐌𝑖

Inverse mapping: 𝐌𝑖 = 𝑝−1  𝑖
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In the optimization problem from (26), the generator learns to generate samples that 

have a low probability of being fake. However, in the early training, the large 

difference between generated and real samples can make 𝒟 reject samples. In this 

case, log(1 − 𝒟(�̂�)) saturates (GOODFELLOW et al., 2014). Thus, the authors 

proposed a variation in the generator objective, training 𝒢 to maximize the probability 

of generated images being real: log(𝒟(�̂�)). Here, we will refer to this version as Non-

saturating GAN (NS-GAN), and we will only evaluate the non-saturating version of 

the standard GAN. 

 Some works state that the Jensen-Shannon divergence used in the original 

formulation of GAN (GOODFELLOW et al., 2014) might be not the best option, since 

this divergence might be discontinuous with respect to the parameters of the 

generator (MESCHEDER; GEIGER; NOWOZIN, 2018). Thus, (ARJOVSKY; 

CHINTALA; BOTTOU, 2017) replaced the Jensen-Shannon divergence with the 

Wasserstein-Distance, proposing the Wasserstein GAN (WGAN). In WGAN, the role 

of the discriminator is no longer output probabilities, now the discriminator (also 

called critic) aims to measure the Wassertein-1 distance between the original and 

generated distributions. 

 min
𝒢
max
𝒟∈𝔇

𝔼𝑥~𝑝𝑑[𝒟(𝑥)] − 𝔼�̂�~𝑝𝑔[𝒟(𝑥)] (27) 

Where 𝔇 represents the set of 1-Lipschitz continuous functions. To enforce Lipschitz, 

Arjovsky et al. (2017)  proposed a weight clipping method for the discriminator lies in 

a compact space.  

 Unregularized GANs are not guaranteed to converge to the Nash-equilibrium, 

as shown in Mescheder et al. (2018). To address this issue, various regularization 

techniques have been developed to stabilize the training process, as they have 

shown to improve its robustness (ROSS; DOSHI-VELEZ, 2017). One such technique 

is instance noise, which involves add a decaying over time Gaussian noise into the 

inputs of the discriminator (SØNDERBY et al., 2017). In the context of Wasserstein 

GAN, weight clipping was demonstrated as not being the best method to ensure 

Lipschitz. In this way, Gulrajani (2017) introduced an alternative to ensure Lipschitz 

by introducing a gradient penalty regularization in the discriminator loss: 

 𝑅𝐺𝑃 = 𝜆𝔼�̃�~𝑝�̃�
[(‖∇𝒟(�̃�)‖ − 𝑔0)

2] (28) 
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where �̃� is implicitly defined sampling uniformly between the original and generated 

distributions, and 𝛾 is the penalty coefficient (a little modified from the original paper). 

In the original paper, the authors used 𝜆 = 10 and 𝑔0 = 1 for all experiments, 

suggesting that these values work across different architectures and datasets. 

2.5 Objective functions 

  In this section, we introduce some metrics, or objective functions used to verify 

the performance of the data assimilation methods. 

2.5.1 Normalized data-mismatch objective function 

For each ensemble member 𝑗, the normalized data-mismatch objective function 

represents the difference between simulator output and the measurements, 

normalized by the measurements error covariance matrix: 

 𝑂𝑁𝑑,𝑗 = (𝐝𝑗 − 𝐝obs,𝑗)
T
𝐂𝐃
−1(𝐝𝑗 − 𝐝obs,𝑗), (29) 

and its average: 

 
𝑂𝑁𝑑
̅̅ ̅̅ ̅ =

1

𝑁
∑𝑂𝑁𝑑,𝑗

𝑁

𝑗=1

. (30) 

2.5.2 Model-mismatch objective function 

As mentioned in other works (CHEN; OLIVER, 2017; RANAZZI; SAMPAIO, 2019a), 

the objective function of model mismatch in a form similar to that in equation (30) is 

impractical in high-dimensional models, due to the high computational cost in 

calculating the inverse matrix 𝐂𝐌
−1. Thus, we adopt an approximation to compute the 

discrepancy between the reference model and posterior model parameters: 

 
𝑂𝑁𝑚,𝑗 =

1

𝑁𝑚
∑(

𝐦𝑝,𝑗
𝑝𝑜 𝑡  𝑖𝑜 

−𝐦𝑝,𝑗
𝑝 𝑖𝑜 

𝜎𝑝
𝑝 𝑖𝑜 

)

2𝑁𝑚

𝑝=1

, (31) 

and its average: 
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𝑂𝑁𝑚
̅̅ ̅̅ ̅̅ =

1

𝑁
∑𝑂𝑁𝑚,𝑗

𝑁

𝑗=1

. (32) 

Here, it is important to note that in real case applications, the reference model is 

unknown, being impossible to compute the difference between the posterior 

ensemble and the true reservoir. In this scenario, the difference is calculated 

between the prior and posterior ensemble: because the ill-posedness it is desirable 

that the posterior ensemble be as close as possible to the prior ensemble. 

2.5.3 Normalized variance 

 Normalized variance represents the ratio between the variance of the posterior 

and prior parameter. Thus, averaged normalized variance is defined by the following 

formula (OLIVER; REYNOLDS; LIU, 2008; EMERICK, 2018): 

 
ANV =

1

𝑁𝑚
∑

𝑐𝑝,𝑝
𝑝𝑜 𝑡  𝑖𝑜 

𝑐𝑝,𝑝
𝑝 𝑖𝑜 

𝑁𝑚

𝑝=1

. (33) 

  



47 

 

CHAPTER 3 - METHODOLOGY 

3.1 Improving pseudo-optimal Kalman gain localization using the random-

shuffle method 

 To improve the performance of adaptive localization methods, we propose a 

new localization scheme that merges the positive aspects of the aforementioned 

methods: the optimality of the pseudo-optimal localization and the spurious 

correlation removal of the correlation-based localization.  

The methodology developed in this work is based on some assumptions. First, 

we can extend the idea behind the decomposition of the noise field with respect to 

the sample correlations to that with respect to the sample covariances. Following this 

notion, the sample covariances obtained through a finite ensemble size can be 

decomposed as: 

 𝑐𝑝,𝑜 = 𝑐𝑝,𝑜
∞ + 𝜀𝑝,𝑜, (34) 

where the obtained sample covariance 𝑐𝑝,𝑜 is the sum of the true covariance obtained 

with an infinite ensemble size 𝑐𝑝,𝑜
∞  and the noise due to the limited ensemble size. 

Finally, a threshold can be computed using the same method as in the correlation-

based localization, using the Median Absolute Deviation (MAD) and the Universal 

Rule (UR). 

 Following the rationale behind Luo and Bhakta (2020), a reasonable choice is 

to stay on the ‘safe side’ by setting the localization matrix values 𝜌𝑝,𝑜 = 0 whenever 

the sample covariance obtained is smaller than the noise level. In this regard, a 

simple idea is to set all sample covariances equal to 0 if their original values are 

lower than the threshold obtained, using (17). However, our experience with this 

truncation rule (not reported here for conciseness) indicates that it resulted in rough 

localization matrices (especially in high-dimensional systems) and consequently, 

poor assimilation results. 

 To perform a smoother tapering, an approximation of the pseudo-optimal 

localization needs to be performed, considering the hypothesis of Hamill, Withaker 

and Snyder (2001) and Lacerda et al. (2019) where the variances are correctly 
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estimated, while the covariances contain more substantial sampling errors due to the 

limited ensemble size: 

 
𝐂 = [

𝑐1,1 𝑐2,1 + 𝛽

𝑐1,2 + 𝛽 𝑐2,2
], (35) 

where 𝛽 represents the sampling errors in the estimated sample covariances. 

Using this generic covariance matrix, we can add sampling errors into the 

pseudo-optimal localization (POL) by inflating the sample covariances in the 

objective function obtained by Furrer and Bengtsson (2007), when 𝑖 ≠ 𝑗 (please see 

Lemma 7 of Furrer and Bengtsson, 2007): 

 

min
𝜌𝑝,𝑜

(∑𝑐𝑝,𝑜
2 − 2𝜌𝑝,𝑜𝑐𝑝,𝑜

2

𝑝,𝑜

+ 𝜌𝑝,𝑜
2 (𝑐𝑝,𝑜

2 +
𝑐𝑝,𝑜
2

𝑁
+
𝑐𝑝,𝑝𝑐𝑜,𝑜
𝑁

+ 𝛽𝑝,𝑜
2 )), (36) 

where 𝛽𝑝,𝑜
2  is the sampling errors, presented here as a penalty factor. Similarly, 

following the work of Furrer and Bengtsson (2007), the term-by-term minimization 

results in: 

 
𝜌𝑝,𝑜 =

𝑐𝑝,𝑜
2

𝑐𝑝,𝑜
2 + (𝑐𝑝,𝑜

2 + 𝑐𝑝,𝑝𝑐𝑜,𝑜) 𝑁⁄ + 𝛽𝑝,𝑜
2
. (37) 

Therefore, it is reasonable to use the random-shuffle method of Luo and 

Bhakta (2020) to compute a threshold for the covariance field in equation (34), and 

then use the obtained threshold as the penalty factor in (37). Moreover, as pointed 

out by Lacerda et al. (2019), weaker correlations are harder to estimate, or in other 

words, weaker correlations are more affected by the sampling errors. In the sequel, 

we evaluate four different methods to calculate the threshold based on the 

correlations between model parameters and data. It is important to note that in the 

current work, the calculation of this penalty factor is an ad hoc procedure because 

the non-isotropic tapering function of Furrer and Bengtsson (2007) will be guaranteed 

to be optimal only if the true covariances are used therein.  

3.1.1 Methods to compute the penalty factor 

 In the present work, we evaluate different methods to define the penalty term 

in equation (37), which is in a general form of  
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𝛽𝑝,𝑜
𝐹 = 𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜) × 𝜃𝑝,𝑜, where 𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜) is a “factor function” that 

potentially depends on 𝑐𝑝,𝑜, 𝑐𝑝,𝑝 and 𝑐𝑜,𝑜. Here we consider four choices for the factor 

function 𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜): 1) 𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜)  is a fixed constant (POL-F); 2)  

𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜) has a linear relation to the squared sample correlation 𝑐𝑝,𝑜
2 /(𝑐𝑝,𝑝𝑐𝑜,𝑜) 

(POL-L); 3)  𝐹(𝑐𝑝,𝑜, 𝑐𝑝,𝑝, 𝑐𝑜,𝑜) has a nonlinear relation to the squared sample 

correlation 𝑐𝑝,𝑜
2 /(𝑐𝑝,𝑝𝑐𝑜,𝑜) through the Gaspari and Cohn function  (POL-GC); 4) 

𝐹(𝑐𝑝,𝑜 , 𝑐𝑝,𝑝, 𝑐𝑜,𝑜) is an empirical exponential function of the sample covariance 𝑐𝑝,𝑜 

(POL-EXP).  

 Specifically, in the first case, the penalty term is simply the threshold obtained 

by the random shuffle method: 

 𝛽𝑝,𝑜
𝐹 = 𝜃𝑝,𝑜. (38) 

In the second choice, the penalty term equals the calculated threshold 

multiplied by a factor 1 − 𝑐𝑝,𝑜
2 /(𝑐𝑝,𝑝𝑐𝑜,𝑜), i.e.: 

 
𝛽𝑝,𝑜
𝐿 = (1 −

𝑐𝑝,𝑜
2

𝑐𝑝,𝑝𝑐𝑜,𝑜
)𝜃𝑝,𝑜, (39) 

which means that the closer the squared sample correlation 𝑐𝑝,𝑜
2 /(𝑐𝑝,𝑝𝑐𝑜,𝑜) to 1, the 

smaller the penalty term is. 

 In the third and the fourth methods, we consider the choice that the factor 

function is nonlinear. Specifically, in the third method, we let the factor function 

depend on the squared sample correlation through the Gaspari and Cohn (GC) 

function, as follows: 

 
𝛽𝑝,𝑜
𝐺𝐶 = 𝑓𝑡 (2

𝑐𝑝,𝑜
2

𝑐𝑝,𝑝𝑐𝑜,𝑜
)𝜃𝑝,𝑜. (40) 

In the fourth method, we performed a univariate experiment to develop an 

empirical factor function and transfer the learned empirical function to higher-

dimensional settings. In the experiment, for each different ensemble size 𝑁, we 

generate an ensemble of scalars 𝑚 and 𝑑 by drawing samples from a normal 

distribution: 

 [
𝑚
𝑑
] ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
0
] , [

1 𝑐true
𝑐true 1

]), (41) 
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where 𝑐true is the true covariance between 𝑚 and 𝑑. Then, we computed the tapered 

Kalman gain and the true Kalman gain with 𝐂𝐃 = 1 for each ensemble size. The 

tapering coefficient, following equation (16), was computed using a penalty factor 

equal to 𝛽 = 𝐿. 𝜃, with varying 𝑐𝑜,𝑝 and 𝐿. For each 𝑐𝑜,𝑝  and 𝐿 we repeated the 

computation several times, obtaining 𝐾𝑐,𝐿 = [𝐾𝑐,𝐿
1 , 𝐾𝑐,𝐿

2 , … , 𝐾𝑐,𝐿
𝑡 ] and computed the norm 

between these ensembles of tapered matrices and the true Kalman gain. We found 

that the curve which minimizes |𝜌 ∘ 𝐾𝑐,𝐿 − 𝐾true| follows approximately: 

 
𝛽𝑝,𝑜
 𝑥𝑝

= 𝜃𝑝,𝑜. exp (−
6𝑐𝑝,𝑜

𝐿
), (42) 

with 𝐿 = 1.5/√𝑁. Figure 3 shows the obtained 𝐿 values for different ensemble sizes. 

Furthermore, in Figure 4, it is possible to see the difference between the shape for 

each method to define the penalty factor for a general covariance varying between 0 

and 1 for a threshold 𝜃 = 0.2. 

Figure 3 - Empirical 𝐿 for different ensemble sizes. 

 

Figure 4 - Different methods to compute the penalty term. The blue line represents the fixed method, 
the red line is the linear method, the yellow line represents the ‘GC’ method, and the purple line 

represents the empirical exponential method. 
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3.1.2 An alternative method to compute the threshold 

In real history matching applications, some uncertain model parameters 

cannot be grouped, making it awkward to obtain a single threshold 𝜃. To avoid this 

problem, we propose an alternative rule: instead of estimating the sampling errors for 

a given group of parameters (shuffling a single time), we may shuffle the model 

parameters ensemble 𝑁  times to obtain the noise level for a given model parameter 

𝑚 and predicted data 𝑜. Thus, we can generate an ensemble of sampling errors for 

each 𝑝th parameter and 𝑜th data as: 

 �̃�𝑝,𝑜 = {𝜀�̃�,𝑜, } =1
𝑁𝑟 . (43) 

 To illustrate the feasibility of this method, we generated one-dimensional 

unconditioned random field realizations for two different ensemble sizes (𝑁 = 100 

and 𝑁 = 1000), discretized in 100 gridblocks, using an exponential covariance 

function with a practical range equal to 20 gridblocks, and the prior mean and 

variance both equal to one. Next, we computed the sample covariance between each 

element of the model parameters and the element in the gridblock 50. For simplicity, 

we chose 𝑁 = 𝑁 to estimate the noise levels. 

Figure 5 shows the true covariance and tapered covariances for all methods 

described above. It is possible to verify, especially for the lower ensemble size, the 

inaccuracy of the standard pseudo-optimal localization to suppress spurious 

covariances. In addition, it is possible to verify that the spurious covariances 

observed in the sample covariances have a similar magnitude to the noise levels 

estimated using the random shuffle method. Also, it is possible to see that the POL 

methods with the random-shuffle-based penalty factor tend to suppress low 

magnitude spurious covariances, while avoiding excessive tapering as observed in 

the correlation-based localization (CL). 
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Figure 5 - Covariance values between model parameter on each gridblock and that gridblock 50, for 
two ensemble sizes (𝑁 = 100 and 𝑁 = 1000). The black dashed lines represent the true covariance, 
black lines the sample covariance, gray lines the threshold obtained by the random shuffle method. 

The red lines represent the standard pseudo-optimal method, blue lines represent the pseudo-optimal 
method with POL-F, green lines represent the pseudo-optimal method with POL-L, orange lines 
represent the pseudo-optimal method with POL-GC, yellow lines represent the pseudo-optimal 

method with POL-EXP, and brown lines represent the tapered covariance with correlation-based 
localization. 

 

(a) Covariance values for 𝑁 = 100 

 

(b) Covariance values for 𝑁 = 1000 
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3.1.3 IES with Random-Shuffle-Based Pseudo-Optimal Localization 

In iterative ensemble smoother methods, intuitively it may seem reasonable to 

construct the localization matrix at every iteration step, since both model parameter 

and data spaces are updated. However, as mentioned by authors who applied 

adaptive localization methods, re-computing the localization matrix at every iteration 

showed similar or inferior results in comparison with the choice of constructing the 

localization matrix only at the first iteration (LUO; BHAKTA; NÆVDAL, 2018; 

LACERDA; EMERICK; PIRES, 2019). The reason for this is not completely 

understood, but a possible reason is the ‘inbreeding’ effect: the use of the same 

ensemble to compute the Kalman gain matrix and conduct the assimilation 

(HOUTEKAMER; MITCHELL, 1998; VAN LEEUWEN, 1999). Lacerda et al. (2019) 

pointed out that this effect is extended to the pseudo-optimal localization since we 

use ensemble covariances to compute the tapering values. Furthermore, computing 

the localization matrix at each assimilation step increases the computational time. 

Thus, in the present work, we only analyze the case where the localization matrix is 

computed from the prior ensemble. Finally, it is important to point out that the 

analysis steps in iterative ensemble smoothers with Kalman gain localization are 

generally computed row by row (EMERICK, 2016). Consequently, the Kalman gain 

matrix is never assembled in a practical implementation. For this reason, each entry 

of the localization matrix can be computed independently. The workflow of the 

pseudo-optimal localization with the random shuffle method can be seen in Figure 6. 
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Figure 6 - Workflow of the proposed localization methodology. Here, the localization matrix using the 
pseudo-optimal localization and the random shuffle method is computed only at the first iteration. After 
the construction of the localization matrix, the assimilation algorithm runs forward until it reaches the 

last iteration. 

 

3.2 GAN with R1 regularization and Adaptive Data Augmentation 

 Even with the WGAN with gradient penalty regularization, convergence is not 

always guaranteed (MESCHEDER; GEIGER; NOWOZIN, 2018). To address this, 

Mescheder et al. (2018) evaluated the use of zero-centered gradient penalties, 

suggesting improving the training convergence by penalizing the discriminator when 

it deviates from the Nash-equilibrium. This is done by the following regularization 

term: 

 𝑅1 =
𝛾

2
𝔼𝑥~𝑝𝑑[(‖∇𝒟(𝑥)‖

2)] (44) 

where 𝛾 is the 𝑅1 regularization term. 

 Karras et al. (2019, 2020) applied the 𝑅1 regularization in different datasets, 

and observed that the optimal value of 𝛾 is highly case-dependent. They found that a 

good starting point for the regularization term is 𝛾0 = 0.0002𝑛𝑝 𝑏 ⁄ , where 𝑛𝑝 

represents the number of pixels in the image and 𝑏  represents the batch size. 

Prior Ensemble: 𝑖 = 1; 𝐌𝑝 𝑖𝑜 = 𝐌1

Posterior Ensemble: 𝐌 𝑜 𝑡  𝑖𝑜 = 𝐌𝑖+1

𝑖=1

Noise level with 
RS:  

Threshold with 

MAD and UR:  

Forward step: 𝐃 𝑖

Analysis step: 𝐌𝑖+1 Localization with 

POL: 𝐏
Penalty factor:  
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However, this finding may not be applicable to GANs that generate reservoir 

realizations, which are typically represented as single-channel images, as shown 

later. 

 Table 1 summarizes the GAN losses used in this study. Although other GAN 

methods seem promising to generate facies realizations, we decided to evaluate only 

methods that do not change the discriminator/generator structure to perform a fair 

comparison. For instance, Boundary Equilibrium GAN (BEGAN), which uses an 

autoencoder as discriminator, being the loss the Wasserstein distance between 

autoencoding errors distribution (BERTHELOT; SCHUMM; METZ, 2017). 

Table 1 – Loss functions used in this work. 

 Discriminator Loss Generator Loss 

NS-GAN ℒ𝒟 = −𝔼𝑥~𝑝𝑑[log(𝒟(𝑥))] − 𝔼𝑥~𝑝𝑔[log(1 − 𝒟(�̂�))] ℒ𝒢 = −𝔼𝑥~𝑝𝑔[log(𝒟(�̂�))] 

NS-GAN-R1 ℒ𝒟 = −𝔼𝑥~𝑝𝑑[log(𝒟(𝑥))] − 𝔼𝑥~𝑝𝑔[log(1 − 𝒟(�̂�))]

+
𝛾

2
𝔼𝑥~𝑝𝑑[‖∇𝒟(𝑥)‖

2] 

ℒ𝒢 = −𝔼𝑥~𝑝𝑔[log(𝒟(�̂�))] 

3.2.1 Adaptive Data Augmentation applied to GAN 

One of the main challenges regarding generative adversarial networks is the 

required dataset size to perform the training with reasonable quality. Regarding the 

data assimilation field, the available dataset size can make the GAN training 

prohibitive (CANCHUMUNI et al., 2021). Following the main idea that augmentations 

must be invertible to work with generative adversarial networks, to avoid the leaking 

behavior described by Karras et al. (2020). Here, we will call the operator containing 

all possible transformations as 𝒜 = {𝑎}𝑘=1
𝐾 , where 𝑘 is the set of all possible 𝐾 

augmentations. Furthermore, Karras et al. (2020) showed the conditions to ensure 

the non-leaking behavior: the main principle is when augmenting both real and 

generated samples using the same invertible (only if the operator is invertible) 

operator, the generator will try to match both distributions: 

 𝒜(𝐱) = 𝒜(𝐲) (45) 

where 𝐱 and 𝐲 represents the original and generated distributions, respectively, and 

𝒜 denotes the augmentation operator. Karras et al. (2020) demonstrated that a wide 
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range of augmentation techniques can be made invertible by applying them only with 

a probability 𝑝, ensuring that the leaking behavior is guaranteed to not happen. More 

details about the behavior of non-leaking augmentations might be found in Karras et 

al. (2020). Furthermore, a reasonable choice is to make the probability definition over 

the iterations adaptive: the required augmentation strength is not the same across 

the GAN training process since GAN performance deteriorates when the 

discriminator overfits. 

 When the augmentation operator 𝒜 represents a sequence of different 

augmentations, the resulting augmentation pipeline might be depicted as shown in 

Figure 7. For a given set of possible augmentations, each augmentation 𝑎𝑘 is applied 

one at time with probability 𝑝𝑘. It is important to note that this probability value 

represents the fraction of the batch that will undergo augmentation. For instance, it 

represents the number of images that will be zoomed, rather than indicating the 

maximum zoom level in a random zoom augmentation operator. 

Figure 7 – Augmentation pipeline. 

 

Furthermore, the adversarial training workflow with the invertible data 

augmentation pipeline might be represented as Figure 8. 

Batch of images:  0

Augmented Batch:  𝑁 

Augment:  𝑘 = 𝑎𝑘 𝑝𝑘
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Figure 8 – Generative adversarial training with adaptive data augmentation workflow. 

 

In the following, we will introduce the set of individual augmentations that we 

evaluated. All possible augmentations might be divided into four categories: blitting 

transformations, geometric transformations, values transformations, and random 

noise. Blitting transformations move image pixels directly to another pixel of the 

image without any approximation. For example, x-flips and rotations by 90, 180 or 

270 degrees in square images do not require any approximation or specific 

computation. Geometric transformations refer to the general geometric 

transformations, such as rotating an image by a given angle or zooming an image by 

a given factor. Value transformations change the pixel values, which can include 

modifying the brightness and contrast of an RGB image. Finally, random noise 

involves adding Gaussian noise to the image. Table 2 introduces each augmentation 

operation in details. 

Generator: 𝒢 𝑔 𝐳

Discriminator: 𝒟  𝐱

Real:
𝐱    

Generated:
𝐱𝐠       𝐝

Latent 
representation:

𝐳

 = 0, 1

Augmentation: 𝒜 𝐱
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Table 2 – Augmentation pipeline (each applied only with probability 𝑝, except arbitrary rotations). 
Blitting and geometric transformations were based from Karras et al. (2020). Random numbers are 

generated for each image individually. In geometric pipeline, arbitrary rotation was split into two 

random rotations with probability 𝑝 𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 1 − √1 − 𝑝, to make possible anisotropic zoom in both 

image directions. 
Type Operation Description 

Blitting 

𝑥-Flip Flip images in 𝑥-direction 

90º rotations Rotate image 90º degrees 𝑛 times where 𝑛~𝒰{0, 3} 

Integer translation Translate image [round(𝑡𝑥𝑛𝑥), round(𝑡𝑦𝑛𝑦)] pixels, where 𝑡𝑥, 𝑡𝑦~𝒰(−0.125, 0.125) 

Geometric 

Isotropic zoom Zoom image by a factor [𝑠𝑥, 𝑠𝑦], where 𝑠𝑥, 𝑠𝑦~𝒰(−0.2, 0.2) 

Arbitrary rotation (1) Rotate image 𝜃 degrees, where 𝜃~𝒰(0, 0.25), with 𝑝 𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

Anisotropic zoom Zoom image by a factor [𝑠𝑥, 𝑠𝑦], where 𝑠𝑥~𝒰(−0.04, 0.04) and 𝑠𝑦~𝒰(−0.2, 0.2) 

Arbitrary rotation (2) Rotate image 𝜃 degrees, where 𝜃~𝒰(0, 0.25), with 𝑝 𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

Fractional translation Translate image [𝑡𝑥𝑛𝑥, 𝑡𝑦𝑛𝑦] pixels, where 𝑡𝑥, 𝑡𝑦~𝒰(−0.125, 0.125) 

Value 

Arbitrary sum Add to the image 𝑣 , where 𝑣 ~𝒰(−0.2, 0.2) 

Arbitrary product Multiply image by 𝑣𝑚, where 𝑣𝑚~𝒰(0.75, 1) 

Facies inversion Multiply image by −1 

Noise Gaussian noise Add to the image a random field 𝑔𝑓, where 𝑔𝑓~𝒩(0, 𝜎) and 𝜎~|𝒩(0, 0.1)| 

Karras et al. (2020) demonstrated that the discriminator outputs during the training is 

a reliable indicator of overfitting. Therefore, a reasonable choice is to make the 

augmentation probability adaptive over the training, based on a desired discriminator 

behavior, by monitoring the discriminator outputs. To evaluate the overfitting, the 

accuracy of the discriminator on real images was demonstrated as a suitable metric: 

 𝑟𝑡 = sgn(𝐷  𝑎𝑙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (46) 

where sgn(∙) represents the sign function and the overbar represents the mean. 

Here, 𝑟𝑡 values have a range between -1 and 1, where a value of 1 represents 

complete overfitting (i.e., the discriminator identifies all real images as real). To 

maintain this accuracy within a target range, the probability is updated after a certain 

number of generator iterations, with the augmentation probability adjusted by a 

constant value determined by the following equation: 

 
𝑝𝑡+1 = 𝑝𝑡 +

sgn(𝑟𝑡 − 𝑟𝑡𝑎 𝑔 𝑡)

ℓ
 (47) 

where 𝑟𝑡𝑎 𝑔 𝑡 is the desired target value and ℓ represents the integral gain that 

determines the velocity of change in the augmentation probability. In this work, we 

adopted a slightly different approach to update the augmentation probability. Instead, 

the original heuristic, we opted for a proportional-derivative (PD) controller (LIPTÁK, 
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2003, p. 109) to prevent the probability from exhibiting a high variance during the 

GAN training. 

 
𝑝𝑡+1 = 𝑝𝑡 +

𝑘1(𝑟𝑡 − 𝑟𝑡𝑎 𝑔 𝑡) + 𝑘2(𝑟𝑡 − 𝑟𝑡−1)

ℓ
 (48) 

where 𝑘1 and 𝑘2 represents the proportional and derivative coefficients, respectively. 

3.2.2 Quality metrics 

 Evaluating the quality of a GAN generator and comparing different GANs can 

be a challenging task as it involves a combination of subjective evaluation and 

objective measurement. One aspect that requires subjective assessment is the 

individual assessment of the generated samples, while quantitative methods must be 

used to determine the similarity between statistics of the generated and training 

datasets, such as identifying mode collapse, where the generated images are 

identical or highly similar despite appearing realistic. To assess these two features in 

a single metric, Salimans et al. (2016) used the Inception model, a classifier network 

trained on the ImageNet dataset (DENG et al., 2009), to obtain the conditional label 

distribution of the generated samples. The authors argue that meaningful samples 

should produce a conditional label (output) distribution 𝑝(𝑦|𝑥) with low-entropy. 

Additionally, the marginal probability density function should have high-entropy 𝑝(𝑦) 

when varied images are generated. In this setting, Salimans et al. (2016) proposed 

the Inception Score (IS), the computation of the Kullback–Leibler (KL) divergence 

between label distribution and the marginal distribution of the Inception v3 network 

(SZEGEDY et al., 2015). Although it presents reasonable results, the Inception Score 

(IS) has some limitations, such as not considering the statistics of the real dataset 

and comparing them with the generated ones. To address this issue, Heusel et al. 

(2018) proposed a new metric, called the Fréchet Inception Distance (FID), which 

overcomes this limitation. They achieved this by replacing the conditional output in 

the IS with the coding layer of the Inception Model, and then measuring the 

difference between the real and generated datasets by computing the Fréchet 

distance between the two distributions 𝑟𝐼 and 𝑔𝐼 obtained in the Inception coding 

layer: 
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FID(𝑟, 𝑔) = ‖𝜇 

𝐼 − 𝜇𝑔
𝐼 ‖

2

2
+ 𝑇𝑟 (𝐶 

𝐼 + 𝐶𝑔
𝐼 − 2(𝐶 

𝐼𝐶𝑔
𝐼)

1

2), (49) 

where 𝜇 and 𝐶 denote the mean and covariance of a given set, while 𝑇𝑟 to the trace 

of the matrix. For further information about GAN metrics, reader is directed to Borji 

(2018). However, computing the FID metric to assess the quality of generated 

reservoir realizations poses challenges. Firstly, the Inception Model used to compute 

FID was trained on the ImageNet dataset, which consists of large quality (minimum 

size of 75x75) RGB color images and only includes natural images such as animals, 

food, and objects. As a result, the accuracy of FID in evaluating reservoir realizations 

may be limited. Additionally, the Inception model’s high number of parameters (over 

21 million) results in a substantial computational demand. An alternative approach to 

apply the Fréchet Inception Distance in our case is expand the image to three 

channels by repeating the values and scaling it to the appropriate size for input into 

the Inception Model. However, inspired by previous works that computed the FID on 

the MNIST dataset (BIŃKOWSKI et al., 2021; TRAN et al., 2021) we decided to 

replace the Inception Model to a single-channel reservoir classifier, designed to 

classify input images among several toy reservoirs. We call this method as Fréchet 

Reservoir Distance (FRD). Thus, the Fréchet distance is now computed between the 

two distributions 𝑟𝑅 and 𝑔𝑅 obtained in the Reservoir Classifier coding layer: 

 
FRD(𝑟, 𝑔) = ‖𝜇 

𝑅 − 𝜇𝑔
𝑅‖

2

2
+ 𝑇𝑟 (𝐶 

𝑅 + 𝐶𝑔
𝑅 − 2(𝐶 

𝑅𝐶𝑔
𝑅)

1

2). (50) 

 We start the construction of the network architecture similarly to the Inception-

v3 network (SZEGEDY et al., 2015), to get the maximum performance regarding the 

feature extraction task. Our network architecture comprises two primary parts: 1) 

feature extraction; 2) classification. The feature extraction part contains Inception 

blocks, including convolutional layers, max and average pooling layers, and 

concatenation layers. On the other hand, the classification part consists of fully 

connected layers and a Softmax layer, with a Dropout layer (SRIVASTAVA et al., 

2014) before the fully connected layer. Figure 9 shows a summarized view of the 

Reservoir classifier architecture. When considering only the feature extraction block 

which will be used during the computation of the Fréchet Reservoir distance, the total 

number of parameters is equal to 83,806, whereas in the Inception-v3 network this 

number is equal to 21,802,784. This significantly increases the speed at which we 
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can obtain the coding layer values. Additionally, we reduced the dimension of the last 

feature extraction layer from 2,048 to 96, which reduces the number of members 

required to compute the Fréchet Distance, since this distance is computed using the 

ensemble mean and covariances. Table 3 shows the Reservoir Classifier architecture 

in detail. 

Figure 9 – Reservoir classifier architecture. The left and right dashed squares denote the feature 
extraction and classification blocks, respectively. 
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Table 3 – Reservoir Classifier network architecture. Here, 𝑛𝑓 refers to the number of base filters used, 

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 the number of classes. Each convolutional block is composed by a sequence of a 
convolutional layer, batch normalization layer and Rectified Linear Unit (ReLU) activation function. 

Layers that lack connection information are linked to the layer in the row above them. 
Layer Options Obs. 

Input Shape = (48, 48, 1) Input image 

Conv. block Filters = 1 × 𝑛𝑓, size = (3, 3), pad = same  

Conv. block Filters = 1 × 𝑛𝑓, size = (3, 3), pad = valid  

Conv. block Filters = 2 × 𝑛𝑓, size = (3, 3), pad = valid  

Max Pooling Size = (3, 3), strides = (2, 2)  

Conv. block Filters = 2.5 × 𝑛𝑓, size = (1,1), pad = valid  

Conv. block (C_5) Filters = 6 × 𝑛𝑓, size = (3, 3), pad = valid  

Inception block 1 

Avg. Pooling Size = (3, 3), strides = (1, 1), pad = same Connected to C_5 

Conv. block (B_I1_1) Filters = 1 4⁄ × 𝑛𝑓, size = (1, 1), pad = same  

Conv. block (B_I1_2) Filters = 2 4⁄ × 𝑛𝑓, size = (1, 1), pad = same Connected to C_5  

Conv. block Filters = 1.5 4⁄ × 𝑛𝑓, size = (1, 1), pad = same Connected to C_5 

Conv. block (B_I1_3) Filters = 2 4⁄ × 𝑛𝑓, size = (5, 5), pad = same  

Conv. block Filters = 2 4⁄ × 𝑛𝑓, size = (1, 1), pad = same Connected to C_5 

Conv. block Filters = 3 4⁄ × 𝑛𝑓, size = (3, 3), pad = same  

Conv. block (B_I1_4) Filters = 3 4⁄ × 𝑛𝑓, size = (3, 3), pad = same  

Concatenate (I1_c) B_I1_1, B_I1_2, B_I1_3, B_I1_4  

Inception block 2 

Max Pooling (B_I2_1) Size = (3, 3), strides = (2, 2) Connected to I1_c 

Conv. block Filters = 2 4⁄ × 𝑛𝑓, size = (1, 1), pad = same Connected to I1_c 

Conv. block Filters = 3 4⁄ × 𝑛𝑓, size = (3, 3), pad = same  

Conv. block (B_I2_2) Filters = 3 4⁄ × 𝑛𝑓, size = (3, 3), pad = valid  

Conv. block (B_I2_3) Filters = 3 × 𝑛𝑓, size = (3, 3), strides = (2, 2) pad = valid Connected to I1_c 

Concatenate (I2_c) B_I2_1, B_I2_2, B_I2_3  

Inception block 3 

Avg. Pooling Size = (3, 3), strides = (1, 1), pad = same Connected to I2_c 

Conv. block (B_I3_1) Filters = 6 4⁄ × 𝑛𝑓, size = (1, 1), pad = same  

Conv. block (B_I3_2) Filters = 6 4⁄ × 𝑛𝑓, size = (1, 1), pad = same Connected to I2_c 

Conv. block Filters = 1 × 𝑛𝑓, size = (1, 1), pad = same Connected to I2_c 

Conv. block (B_I3_3) Filters = 6 4⁄ × 𝑛𝑓, size = (4, 4), pad = same  

Conv. block Filters = 1 × 𝑛𝑓, size = (1, 1), pad = same Connected to I2_c 

Conv. block Filters = 6 4⁄ × 𝑛𝑓, size = (1, 4), pad = same  

Conv. block (B_I3_4) Filters = 6 4⁄ × 𝑛𝑓, size = (4, 1), pad = same  

Concatenate (I3_c) B_I3_1, B_I3_2, B_I3_3, B_I3_4  

Global Average Pooling Output Shape = (96)  

Dropout Rate = 0.3  

Fully-connected Units = 8 × 𝑛𝑓  

Softmax Units = 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠  

3.3 Two-step data assimilation in a three-dimensional carbonate reservoir 

 Parameterization in three-dimensional models remains a challenge in data 

assimilation due to the need to maintain vertical continuity between the layers when 

mapping to the Gaussian field. To address this issue, we propose using the initial 

ensemble of the three-dimensional reservoir to project its latent representations onto 
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a two-dimensional GAN. This projection has been already made in a two-dimensional 

reservoir (CANCHUMUNI et al., 2021) by using an encoder-decoder scheme. 

However, its behavior in three-dimensional cases is not known. The rationale behind 

this approach is that data assimilation only introduces minor changes to the 

ensemble, and projecting onto a two-dimensional space may preserve the vertical 

continuity of the three-dimensional realizations. Here, we aim to assess the validity of 

this assumption. This process might be shown by using a generic operator which 

map a reservoir 𝑘 −th layer to a respective latent representation ℰ:𝐦𝑘 → 𝐳𝑘 (Figure 

10). By using this operation, we project the initial three-dimensional ensemble 

(𝑁𝑖, 𝑁𝑗 , 𝑁𝑘, 𝑁 ) to the latent space performing a layer-per-layer operation, resulting in 

a (𝑁𝑧 , 𝑁𝑘, 𝑁 ) latent space. 

Figure 10 – Methodology to preserve vertical correlation during the data assimilation. 

 

 The problem of project real samples into a latent representation is known. 

Actually, there are two main methods to perform this projection: training an encoder-

decoder network structure using the trained generator (with frozen weights) as 

decoder, and from a random initial latent sample, apply a gradient-based technique 

(ABDAL; QIN; WONKA, 2019). As the encoder-decoder structure naturally introduces 

a bias when projected samples that are not used during the training, the development 

of techniques to improve the gradient-based projection has been proposed, for 

instance, Stochastic Clipping (LIPTON; TRIPATHI, 2017), and perceptual losses 

(JOHNSON; ALAHI; FEI-FEI, 2016; ABDAL; QIN; WONKA, 2019), however, the 

projection of real samples onto the latent space stills an open problem. 

 The problem of project real samples in the latent space is clearly an ill-posed 

inverse problem. Thus, we propose an alternative: the application of an ensemble-

based method to obtain the latent representation of a real sample. To our knowledge, 

𝑁𝑖, 𝑁𝑗 , 𝑁𝑘 , 𝑁 

for each 𝑘

𝑁𝑧 , 𝑁𝑘 , 𝑁 

for each 𝑘

𝑁𝑖, 𝑁𝑗 , 𝑁𝑘 , 𝑁 
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this will be the first attempt to perform this optimization problem by using a gradient-

free method. 

3.3.1 Ensemble-based real samples projection into the latent space 

 From a pre-trained generator 𝓖, we want to find its respective latent 

representation �̂� ∈ 𝕽𝑁𝑧 of a given real sample 𝐦 = �̂�r ∈ 𝕽
𝑁�̂� (this sample might be 

used during the network training or not). This ill-posed inverse problem might be 

defined as find the vector �̂� which satisfies: 

 �̂�r = 𝓖(�̂�). (51) 

Following the solution obtained in section 2.4, the ES-MDA solution might be 

obtained from: 

 �̂�𝑗,𝑖+1 = 𝐳𝑗,𝑖 + 𝐂ZD̂,𝑖(𝐂D̂D̂,𝑖 + 𝛼𝑖𝐂M)
−1
(�̂�r − �̂�𝑗,𝑖 −√𝛼𝑖𝜖𝑗). (52) 

 Using only the generator output to compute the innovation (difference between 

target sample and the ensemble of generated samples) does not provide consistent 

results. It happens because the pixel-per-pixel minimization might neglect some 

image details, for example low proportion facies. This raises the application of 

Perceptual losses to reduce the discrepancy between high-level features also 

(JOHNSON; ALAHI; FEI-FEI, 2016). In gradient-based methods a loss network is 

used to augment the optimization problem by computing the differences between the 

real and generated outputs at different layers of this loss network. Regarding 

ensemble-based methods, is straightforward to consider this high-level feature, by 

augmenting both data and observation ensembles. Denoting this loss network and its 

layers as  𝓒 = {𝓬ℓ}ℓ=1
𝑁ℓ , both data and observation vectors might be redefined as: 

 �̂�r = [𝐦, 𝓬1(𝐦), 𝓬2(𝐦),… , 𝓬ℓ(𝐦)]
T, (53) 

and, 

 �̂�𝑗 = [𝓖(𝐳𝑗), 𝓬1 (𝓖(𝐳𝑗)) , 𝓬2 (𝓖(𝐳𝑗)) , … , 𝓬ℓ (𝓖(𝐳𝑗))]
T
, (54) 

where 𝓬ℓ represents the flattened output of a given layer of the loss network used to 

extract high-level features. Usually, the VGG network (SIMONYAN; ZISSERMAN, 

2014) is used as loss function to compute the perceptual losses in gradient-based 
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applications (KARRAS et al., 2019). However, a more effective option in our problem 

is to employ the Reservoir Classifier network introduced before as this loss function. 

 Hence, the entire data assimilation workflow can be divided into two main 

steps. Starting from an initial ensemble 𝐦0, a projection loop is carried out to obtain 

the latent representations �̂� of this ensemble with respect to a pre-trained generator 

𝓖. In this step, high-level features are also assimilated using the reservoir classifier 

network 𝓒 as loss function. Subsequently, the obtained latent ensemble is used as 

the initial ensemble for classical history matching to minimize the discrepancy 

between the simulated output and the measurements. Figure 11 illustrates the 

complete workflow. Here, it is important to note that the projection loop is applied to 

each layer for all reservoir properties that need to be parameterized. 

Figure 11 – Two-step data assimilation workflow. 
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CHAPTER 4 - CASE STUDIES 

This section introduces the case studies used in the first two methodology 

sections (localization and parameterization) evaluated individually, the dataset used 

during the Reservoir Classifier training, and also the benchmark used in the complete 

workflow combining both adaptive localization and parameterization with GAN-ADA. 

Furthermore, this section introduces all settings used in all experiments. 

4.1 Adaptive Localization 

4.1.1 Simple model: ¼ five-spot 

The case study presented in this work evaluates the performance of different 

methods to compute the penalty factor in a simple model, which represents the 1/

4 five-spot with one producer and one injector well. The reservoir model dimension is 

51 × 51 × 1 with 2601 active blocks, and the uncertain parameters are the horizontal 

log-permeabilities log(𝑘) distributed on active gridblocks (𝑁𝑚 = 2601). We have 

monthly measurements for almost 10 years of production history (119 months) of oil 

and water production and water injection rates (𝑁𝑑 = 357). The prior ensemble of 

model parameters was generated using an isotropic exponential covariance function 

with a practical range equal to 20 gridblocks, the ensemble mean equal to 5, and the 

ensemble variance equal to 1, respectively. The reference model was generated in 

the same way as the prior ensemble, while white Gaussian noise with errors equal to 

15% of the production data was added to the true data of the reference model to 

obtain noisy measurements.  

 In the experiments, we generated an initial large ensemble with 5000 

members and defined it as the reference case. Then, we defined two distinct cases 

to evaluate the performance of data assimilation: the ensemble size 𝑁 = 50 and 𝑁 =

200, with a total number of iteration steps 𝑁𝑖 = 8 for both cases. To mimic the setting 

in real field applications, we adopt a relatively small ensemble size to evaluate the 

behavior of the proposed adaptive localization scheme. We also choose a larger 

ensemble size 𝑁 = 200 to verify how this method behaves as the ensemble size 

increases. In all the experiments below, initial ensembles consist of 𝑁 members 
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randomly drawn from the ensemble with 𝑁 = 5000, and we repeated the experiments 

10 times in total (resulting in 10 assimilated ensembles for each method).  

 Data assimilation in all experiments was performed using the ES-MDA with an 

inflation factor equals to the total number of iterations for all iterations {𝑁𝑖}𝑖=1
𝑁𝑖𝑡𝑒𝑟. In the 

analysis step, the inversion of the Kalman gain matrix was performed using the 

‘subspace inversion’ method (EVENSEN, 2004; EMERICK, 2016) with 99% of 

singular values retained. Here, we evaluated the performance of different localization 

methods and classified them using: NO LOC: assimilation without using any 

localization method; POL: assimilation using the pseudo-optimal localization in its 

standard form; POL-F: pseudo-optimal localization with fixed penalty; POL-L: 

pseudo-optimal localization with linear penalty; POL-GC: pseudo-optimal localization 

with GC penalty; and POL-EXP: pseudo-optimal localization with the empirical 

exponential penalty. 

4.1.2 UNISIM-I-H 

Next, we evaluate the performance of the methods described earlier in the 

benchmark UNISIM-I-H (MASCHIO et al., 2015) for history matching (Figure 12). 

More information about the UNISIM-I benchmark can be found in Avansi and 

Schiozer (2015). The reservoir model is composed of a corner point grid (81x58x20), 

with 38,466 active gridblocks and one main fault separating the entire reservoir in two 

sections. The benchmark has both local and non-local uncertain parameters. In 

terms of local parameters, the prior ensemble consists of equiprobable realizations of 

petrophysical porosities on gridblocks, including net-to-gross ratio and permeabilities 

in three orthogonal directions. Meanwhile, non-local uncertain properties contain the 

water-oil contact of the east sector, reservoir rock compressibility, vertical 

permeability multiplier, and two parameters (Corey exponent and maximum water 

relative permeability) used in Corey function which models the relative permeability 

curve of the reservoir.  

 In this history matching problem, production wells are controlled by liquid 

rates, and injector wells control is performed by injection rates. The benchmark 

contains 11 years of monthly measurements for all production and injection wells. Oil 

production rate, water production rate, and water injection rate have measurement 
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errors equal to 10% of the data value (minimum of 1 m³/d). Furthermore, bottom-hole 

pressures for both producers and injectors have measurement errors equal to 10 

kgf/cm². To evaluate the performance of the methods described before, data 

assimilation was performed using an ensemble size equal to 𝑁 = 200, 350, 𝑜𝑟 500, 

and in the assimilation scheme, we defined four iterations with equal inflation factors 

at all iteration steps. The total number of production data is 𝑁𝑑 = 5,552 and the total 

number of model parameters is 𝑁𝑚 = 192,335. Kalman gain matrix was inverted 

using the ‘subspace inversion’ method describe above, retaining 99% of the energy 

of the singular values (EVENSEN, 2004; EMERICK, 2016). For the case with 

distance-based localization, the critical length used was equal to 2000 meters, 

following other works that applied distance-based localization to UNISIM-I-H 

benchmark (SILVA et al., 2017; EMERICK, 2018; RANAZZI; SAMPAIO, 2019a). 

Figure 12 – First layer grid top of UNISIM-I-H benchmark (wells projected). 

 

Source: Ranazzi and Sampaio (2019a). 

4.2 Parameterization 

4.2.1 Reservoir classifier and Fréchet Reservoir Distance 

 To construct the dataset used in the Reservoir Classifier network, we 

considered two distinct cases, to make the classifier more able to generalize the 

feature extraction that will be used in the computation of the Fréchet Distance. Firstly, 

we considered realizations representing property values, where the variables arise 

from a continuous distribution. The second type of reservoir considered realizations 
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representing facies values, where the variables are originated from an integer 

distribution representing the facies indicator. 

 To build the training dataset containing facies, we used different training 

images found in the literature: the two-facies channelized training image from Caers 

and Zhang (2004); the “Stanford 5” three facies training image and the four facies 

training image (REMY; BOUCHER; WU, 2009, cap. 8); the four facies training image 

from Remy et al. (2009, cap. 8). Figure 13, Figure 14, Figure 15 show the Two facies 

channelized, “Stanford 5” three facies, and Four facies training images, respectively. 

For each training image, random realizations were generated with the Single Normal 

Equation Simulation Algorithm (STRÉBELLE, 2000, 2002), by using the Stanford 

Geostatistical Modeling Software - SGeMS (REMY; BOUCHER; WU, 2009), varying 

the angle rotation and affinity ratios in 𝑥 and 𝑦 directions. Additionally, a 

straightforward algorithm was developed to generate realizations consisting of 

property values. For a single realization, a Gaussian random field was generated, 

then, an exponential random field was generated for each facies using specific mean, 

variance, correlation length (or range), anisotropy, and angle parameters. Finally, the 

random fields were combined by truncating the Gaussian field based on a given 

facies proportion. 

Figure 13 – Two facies channelized 250 × 250 training image. 

 
Source: Caers and Zhang (2004). 
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Figure 14 – “Stanford 5” three facies 195 × 150 training image. 

 
Source: REMY; BOUCHER; WU (2009). 

Figure 15 – Four facies 150 × 150 training image. 

 
Source: REMY; BOUCHER; WU (2009). 
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Figure 16 – Examples of realizations used during the Reservoir Classifier Network training. Each row 
represents a different reservoir category, containing continuous (first three rows) and integer (last 

three rows) values, representing properties and facies realizations, respectively. 

 

4.2.2  GAN experiments 

We evaluated our method in the “Stanford 5” three-facies from (REMY; 

BOUCHER; WU, 2009). The dataset contains a total of 80,000 realizations, Figure 17 

shows some random realizations from the training dataset. 

Figure 17 - Random realizations from the training dataset. 

 

 The generative adversarial network, containing the generator and the 

discriminator was build following the architecture of Table 3. In this work, all models 

have a base filter number equal to 𝑛𝑓 = 32. Although more complex networks can 

give better results (with the cost of required computational power and available 

dataset size), we focused on the improvements of the regularization and 
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augmentation applications. Here, upsampling is performed through the combination 

of resize-convolution layers, to avoid checkerboard artifacts (ODENA; DUMOULIN; 

OLAH, 2016). In the generator, all layers (except the last one) are followed by a 

batch normalization layer as common practice during GAN experiments (YANG; JIN; 

XU, 2020). This is also valid for the discriminator only with the case without 

regularization, where the batch normalization is also skipped after the first 

convolution. Batch normalization changes the optimization problem, in such way that 

discriminator regularization will be infeasible since it compute gradients with respect 

to sample inputs (GULRAJANI et al., 2017). Thus, we follow another works with 

discriminator regularization application and do not use any batch normalization when 

it is applied (GULRAJANI et al., 2017; KARRAS et al., 2019; KARRAS; LAINE; AILA, 

2018). Table 4 shows the GAN discriminator and generator architectures in detail. 

 All models were optimized with Adam optimization algorithm (KINGMA; BA, 

2014) with a learning rate of 𝑙 = 0.0001 for both generator and discriminator, as well 

as 𝛽1 = 0.5 and 𝛽2 = 0.9. The batch size for all experiments was set to 32, and all 

networks were trained with 150,000 iterations. 
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Table 4 – Generative Adversarial Network generator and discriminator architectures. Here, 𝑛𝑓 refers 

to the number of base filters used, 𝑛𝑖  and 𝑛𝑗 the reservoir size in 𝑖 − and 𝑗 −directions, respectively. 
Layer Options Obs. 

Generator   

Input Shape = (512) Input latent vector 

Fully-connected Units = ((𝑛𝑖/8) × (𝑛𝑗/8) × 8 × 𝑛𝑓)  

Reshape Shape = (𝑛𝑖 8⁄ , 𝑛𝑗 8⁄ , 8 × 𝑛𝑓)  

Convolution 2D Filters = 8 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 8⁄ , 𝑛𝑗 8⁄ , 8 × 𝑛𝑓)  

Upsampling block Filters = 4 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 4⁄ , 𝑛𝑗 4⁄ , 4 × 𝑛𝑓)  

Upsampling block Filters = 2 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 2⁄ , 𝑛𝑗 2⁄ , 2 × 𝑛𝑓)  

Upsampling block Filters = 1 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 1⁄ , 𝑛𝑗 1⁄ , 1 × 𝑛𝑓)  

Convolution 2D Filters = 1, size = (5, 5), Shape = (𝑛𝑖 , 𝑛𝑗 , 1) Activation = tanh 

Discriminator   

Input Shape = (𝑛𝑖 , 𝑛𝑗 , 1) Input image 

Convolution 2D Filters = 1 × 𝑛𝑓, size = (5, 5), Shape = (𝑛𝑖 , 𝑛𝑗 , 1)  

Downsampling block Filters = 2 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 2⁄ , 𝑛𝑗 2⁄ , 2 × 𝑛𝑓)  

Downsampling block Filters = 4 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 4⁄ , 𝑛𝑗 4⁄ , 4 × 𝑛𝑓)  

Downsampling block Filters = 8 × 𝑛𝑓, size = (3, 3), Shape = (𝑛𝑖 8⁄ , 𝑛𝑗 8⁄ , 8 × 𝑛𝑓)  

Fully-connected Units = (1) Activation = linear 

4.3 Two-step data assimilation applied in the benchmark UNISIM-II-H 

The final case study involves the data assimilation of the large-scale three-

dimensional carbonate reservoir UNISIM-II (CORREIA et al., 2015; MASCHIO; 

SANTOS; CORREIA, 2018), which is a significant example of reservoir with 

carbonate features. This reservoir was created using data from Brazilian pre-salt 

reservoirs and the Ghawar giant field, and it is represented by a black-oil model with 

46 × 69 × 30 gridblocks (around 65,000 active cells) with dual-porosity dual-

permeability (DPDP) modelling. The benchmark contains a significant number of 

uncertain parameters, with many exhibiting non-Gaussian behavior. To enable data 

assimilation using an ensemble-based method, it is necessary to apply a 

parameterization technique. Table 5 illustrates the uncertain field properties of the 

UNISIM-II-H benchmark, including those that will require parameterization. 



74 

 

Table 5 – UNISIM-II-H field properties. Here, NTG denotes Net-to-gross ratio. 

Property Parameterization 

Porosity 
Matrix No 

Fracture Yes 

Permeability 
Matrix Yes 

Fracture Yes 

NTG Yes 

Fracture Spacing Yes 

Following Correia et al. (2015) and Maschio and Schiozer (2019), the rock 

type is defined based on a cutoff procedure with respect to the matrix permeability, 

where values higher than 800 mD are assigned as Super-K, following a different 

relative permeability curve (CORREIA; SCHIOZER, 2018). Figure 18 illustrates the 

matrix permeability of the three-dimensional reservoir. 

Figure 18 – UNISIM-II benchmark (matrix permeability). 

 

Source: Correia et al. (2015). 

This reservoir contains 11 producer and 9 injector wells, with 9 years of 

monthly measurements for all wells. The measurement errors used to build the 

covariance error measurements matrix was defined as 10% of the measurement 

value (with a minimum value equal to 1). The total number of significant 

measurements (excluding data of closed wells) is 𝑁𝑑 = 2,822. The total number of 

parameters is 𝑁𝑚 = 151,578. 

 The assimilation was performed using the ES-MDA with four iterations with 

constant inflation factors (𝑁𝑖 = 𝛼𝑖 = 4), and ensemble size equal to 𝑁 = 50 (due to 

the available computational resources). In addition, adaptive localization was 
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employed using the pseudo-optimal localization with random-shuffle and Gaspari and 

Cohn tapering (POL-GC) for rock compressibility and relative permeability curves 

parameters. The threshold value for non-local properties was determined by shuffling 

the ensemble 𝑁  times. 

 In our approach for projecting real samples onto the latent space, we found 

data downsampling the real sample reduces the inverse problem without losing 

performance. Thus, during the construction of the �̂�r vector in (53) real samples 𝐦 

are downsampled by a factor of 1 4⁄  before the flattening by simple resizing the input 

image. Additionally, we constructed the covariance matrix of the measurement errors 

considering only non-correlated measurements (diagonal matrix), with values of 0.01 

for image data and 0.05 for feature data. This choice was motivated by the 

observation that the image data occupy a space between 𝓖(𝐳𝑗) ∈ [−1, 1], while the 

feature data lie in a space between 𝓬1 (𝓖(𝐳𝑗)) ∈ [0,∞], as the features are obtained 

through rectified linear units (ReLU) activation functions in the Reservoir Classifier 

Network. 
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CHAPTER 5 - RESULTS AND DISCUSSIONS 

5.1 Localization 

5.1.1 Simple model: ¼ five-spot 

Table 6 shows the values of objective functions in the ¼ five-spot case study. 

Analyzing the results, it is possible to verify that the case without localization results 

in data overfitting with 𝑂𝑁𝑑
̅̅ ̅̅ ̅ (30) values than the reference case for both ensemble 

sizes, large model changes with high values for 𝑂𝑁𝑚
̅̅ ̅̅ ̅̅  (32) and ensemble collapse with 

ANV (33) almost zero.  Similar to what was found by Lacerda et al. (2019), the 

pseudo-optimal localization results in an improvement of data assimilation 

performance, reducing ensemble collapse and data overfitting with both higher ANV 

and 𝑂𝑁𝑑
̅̅ ̅̅ ̅ values. Furthermore, inspecting the performance of the four methods 

proposed in this work, one can verify that all these proposed methods achieved 

improved assimilation results in terms of 𝑂𝑁𝑚
̅̅ ̅̅ ̅̅  and ANV, when comparing them to the 

corresponding results in the reference case. Even with somewhat higher 𝑂𝑁𝑑
̅̅ ̅̅ ̅  values, 

all posterior ensembles obtained by these four methods exhibited reasonably good 

data match, close to that of the reference case. It is important to note that the 

improvements mentioned above have been observed even with a relatively small 

ensemble size of 50 members. Figure 19 and Figure 20 show the boxplots of 10 

ensembles for all methods analyzed in this work. 
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Table 6 – Results in the ¼ five-spot model. Here, 𝑂𝑁𝑑
̅̅ ̅̅ ̅ is the averaged normalized data-mismatch  

defined in equation (30), 𝑂𝑁𝑚̅̅ ̅̅ ̅̅  is the averaged model-mismatch defined in equation (32) and ANV is 

the averaged normalized variance defined in equation (33). The results are reported in the form of 

mean ± standard deviation over 10 ensembles of each experiment, except for the reference case (𝑁 =
5000). 

  𝑂𝑁𝑑
̅̅ ̅̅ ̅ 𝑂𝑁𝑚

̅̅ ̅̅ ̅̅  ANV 

 𝑁 = 5000 8.9935 0.6272 0.7450 

𝑁 = 50 

Prior 392.63 ± 148.32 - - 

NO LOC 01.0827 ± 0.0590 1.3754 ± 0.1252 0.0590 ± 0.0080 

POL 05.7002 ± 3.7025 1.1721 ± 0.1297 0.3871 ± 0.0686 

POL-F 14.1178 ± 4.7794 0.6710 ± 0.0502 0.5947 ± 0.0401 

POL-L 16.4024 ± 6.8490 0.7249 ± 0.0669 0.6000 ± 0.0485 

POL-GC 14.2850 ± 4.8839 0.6937 ± 0.0541 0.5998 ± 0.0451 

POL-EXP 16.0327 ± 8.1830 0.9642 ± 0.1117 0.5722 ± 0.0770 

CL 29.9590 ± 9.2037 0.2890 ± 0.0543 0.8750 ± 0.0434 

𝑁 = 200 

Prior 401.16 ± 92.50 - - 

NO LOC 02.6787 ± 0.3506 0.9716 ± 0.0278 0.3665 ± 0.0112 

POL 04.6470 ± 1.1783 0.8602 ± 0.0222 0.5889 ± 0.0282 

POL-F 11.8339 ± 3.4949 0.5465 ± 0.0221 0.7268 ± 0.0257 

POL-L 10.5968 ± 2.5628 0.5588 ± 0.0222 0.7212 ± 0.0235 

POL-GC 11.2693 ± 2.6187 0.5510 ± 0.0286 0.7236 ± 0.0240 

POL-EXP 10.5702 ± 4.0380 0.6600 ± 0.0288 0.7013 ± 0.0299 

CL 13.7150 ± 2.3787 0.3956 ± 0.0270 0.7365 ± 0.0237 

 It is possible to figure out the possible causes of the improvements of the 

methods proposed here by analyzing the localization matrices produced by these 

methods. For illustration, we generated localization matrices using the first 𝑛 

members of the reference case at the first iteration. Figure 21 and Figure 22 show 

the localization matrices using the first 50 members on Days 31 and 456, 

respectively; whereas Figure 23 and Figure 24 present the localization matrices 

using the first 100 ensemble members on Days 31 and 456, respectively. In addition, 

we generated localization matrices for both ensemble sizes using the covariances 

obtained from the reference ensemble with 5,000 members. Analyzing these figures, 

it is evident that the pseudo-optimal localization method can handle the time-lapse 

effect of observations, since it generates different tapering values adaptive to 

different simulation times. Furthermore, the proposed methods also produce different 

tapering values adaptive to different production data types (not reported here for 
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conciseness).  For comparison, one can see that the localization matrices generated 

by POL are highly affected by the sampling errors, deviating from the reference 

localization matrix estimated from the covariances of the reference case. In contrast, 

the introduction of the penalty term into equation (37) was able to reduce the effect of 

spurious correlations, even for the relatively small ensemble size with 50 members. 



79 

 

Figure 19 - Boxplots of log-data-mismatch values for posterior ensembles obtained in all experiments 
with 𝑁 = 50. Here, the horizontal axis represents the index of relevant ensembles, with the labels 

‘Prior’ and ‘R’ referring to the prior and posterior ensembles in the reference case (𝑁 = 5000). 

 

(a) NO LOC 

 

(b) POL 

 

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 
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Figure 20 - As in Figure 19, but with the ensemble size changed to 𝑁 = 200 in the experiments. 

 

(a) NO LOC 

 

(b) POL 

 

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 

Analyzing the localization matrices generated with the ensemble size 𝑁 = 50 

(Figure 21), one can also observe that the penalty factor resulted in certain extreme 

tapering in the localization matrix. Our explanation of this behavior is that almost all 
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covariances obtained using this ensemble size are found within the noise level. 

Therefore, it is reasonable to take these small tapering values to stay on the ‘safe 

side’ (LUO; BHAKTA, 2020). 

Figure 21 - Localization matrix of log(𝑘) for oil rate on Day 31, generated with 𝑁 = 50. 

 

(a) POL with 𝐂𝐌𝐃
𝑁=5000 

 

(b) POL 

  

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 
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Figure 22 - Localization matrix of log(𝑘) for oil rate on Day 456, generated with 𝑁 = 50. 

 

(a) POL with 𝐂𝐌𝐃
𝑁=5000 

 

(b) POL 

 

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 
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Figure 23 - Localization matrix of log(𝑘) for oil rate on Day 31, generated with 𝑁 = 200. 

 

(a) POL with 𝐂𝐌𝐃
𝑁=5000 

 

(b) POL 

  

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 
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Figure 24 - Localization matrix of log(𝑘) for oil rate on Day 456, generated with 𝑁 = 200. 

 

(a) POL with 𝐂𝐌𝐃
𝑁=5000 

 

(b) POL 

 

(c) POL-F 

 

(d) POL-L 

 

(e) POL-GC 

 

(f) POL-EXP 

 

(g) CL 

Figure 25, Figure 26 and Figure 27 show the posterior log(𝑘) ensemble mean 

of the ensemble obtained in the first experiment (called the first ensemble hereafter). 

There, one can see that the cases without localization and with pseudo-optimal 

localization resulted in rough estimates posteriors (extreme values) induced by 

spurious correlations. However, the presence of the penalty factor was able to help 

reduce this effect, even for the cases with an ensemble size equals to 50.  
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Figure 25 – Reference field, prior mean and posterior ensemble mean of log(𝑘) for 𝑁 = 5000. 

 

(a) Reference 

 

(b) Prior 

 

(c) 𝑁 = 5000 

Figure 26 - Posterior ensemble mean of log(𝑘) of the first ensemble for 𝑁 = 50. 

 

(a) NO LOC 𝑁 = 50 

 

(b) POL 𝑁 = 50 

 

(c) POL-F 𝑁 = 50 

 

(d) POL-L 𝑁 = 50 

 

(e) POL-GC 𝑁 = 50 

 

(f) POL-EXP 𝑁 = 50 

 

(g) CL 𝑁 = 50 
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Figure 27 - Posterior ensemble mean of log(𝑘) of the first ensemble for 𝑁 = 200. 

 

(a) NO LOC 𝑁 = 200 

 

(b) POL 𝑁 = 200 

 

(c) POL-F 𝑁 = 200 

 

(d) POL-L 𝑁 = 200 

 

(e) POL-GC 𝑁 = 200 

 

(f) POL-EXP 𝑁 = 200 

 

(g) CL 𝑁 = 200 

Figure 28, Figure 29 and Figure 30 show the normalized variance of log(𝑘) of 

the first ensemble in all the cases. For both ensemble sizes, the case without 

localization has a substantial variance reduction, or even ensemble collapse at 𝑁 =

50. Furthermore, it is possible to verify that all localization methods induce higher 

posterior variances, whereas the variances resulting from the standard pseudo-

optimal localization tend to be lower than the others. Finally, one can observe that 

the presence of the penalty term helped reduce the difference between the 

normalized variance of the reference case and those of the corresponding posterior 

ensembles, even with the ensemble size equals to 50. 

Figure 28 - Normalized variance of log(𝑘) of the first ensemble for 𝑁 = 5000. 
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Figure 29 - Normalized variance of log(𝑘) of the first ensemble for 𝑁 = 50. 

 

(a) NO LOC 𝑁 = 50 

 

(b) POL 𝑁 = 50 

 

(c) POL-F 𝑁 = 50 

 

(d) POL-L 𝑁 = 50 

 

(e) POL-GC 𝑁 = 50 

 

(f) POL-EXP 𝑁 = 50 

 

(g) CL 𝑁 = 50 
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Figure 30 - Normalized variance of log(𝑘) of the first ensemble for 𝑁 = 200. 

 

(a) NO LOC 𝑁 = 200 

 

(b) POL 𝑁 = 200 

 

(c) POL-F 𝑁 = 200 

 

(d) POL-L 𝑁 = 200 

 

(e) POL-GC 𝑁 = 200 

 

(f) POL-EXP 𝑁 = 200 

 

(g) CL 𝑁 = 200 

Analyzing the time series of production data (Figure 31), it is possible to 

confirm that ensemble collapse seems to take place in the case without localization 

at 𝑁 = 50. In addition, all cases with localization resulted in improvements in terms of 

ensemble spread. 
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Figure 31 - Time series of production data from the producer well. OPR refers to oil production rate 
and WPR refers to water production rate. Here, the gray lines represent the prior ensemble, blue lines 

represent the posterior ensemble, and the red dots represent the measurements. 

 

 

(a) OPR 𝑁 = 5000 

 

(b) WPR 𝑁 = 5000 

𝑁 = 50 

 

(c) OPR NO LOC 

 

(g) OPR POL 

 

(k) OPR POL-GC 

 

(d) WPR NO LOC 

 

(h) WPR POL 

 

(l) WPR POL-GC 

𝑁 = 200 

 

(c) OPR NO LOC 

 

(g) OPR POL 

 

(k) OPR POL-GC 

 

(d) WPR NO LOC 

 

(h) WPR POL 

 

(l) WPR POL-GC 
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5.1.2 UNISIM-I-H 

The prior and posterior data mismatch obtained with different ensemble sizes 

and localization schemes are shown in Figure 32, where it is possible to verify that in 

all cases data mismatch were reduced significantly. 

Figure 32 - Boxplots of data mismatch for the UNISIM-I-H case study. Here, the label ‘Pr’ refers to the 
prior ensemble, ‘DL’ to distance-based localization, ‘POL’ to pseudo-optimal localization, and ‘POL-
GC’ and ‘POL-EXP’ to the pseudo-optimal localization with Gaspari and Cohn penalty factor and 

exponential penalty factor, respectively. 

 

(a) 𝑁 = 200 

 

(b) 𝑁 = 350 

 

(c) 𝑁 = 500 

 Figure 33 shows the maps of tapering coefficients obtained by different 

localization schemes, for log-permeability in x-direction on Layer 9, with respect to 
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the producer well PROD023A water production rate at the last simulation period (Day 

4018). Here, for distance-based localization (DL), the localization matrix was made to 

contain nonzero values only in the same zone of the data.  One can observe that 

pseudo-optimal localization in its standard form is not able to properly suppress 

spurious correlations in the UNISIM-I-H case, even with the largest tested ensemble 

size (𝑁 = 500). Furthermore, the addition of the penalty factor resulted in smoother 

tapering values and spurious correlations reduction for all localization schemes 

where the penalty factor is introduced to equation (16). 
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Figure 33 - Map of tapering coefficients for log(𝑘𝑥) of Layer 9, PROD023A water production rate, on 
Day 4018, for the UNISIM-I-H case study. 

 

(a) DL 

 

(b) POL 𝑁 = 200 

 

(c) POL-GC 𝑁 = 200 

 

(d) POL-EXP 𝑁 = 200 

 

(e) POL 𝑁 = 350 

 

(f) POL-GC 𝑁 = 350 

 

(g) POL-EXP 𝑁 = 350 

 

(h) POL 𝑁 = 500 

 

(i) POL-GC 𝑁 = 500 

 

(j) POL-EXP 𝑁 = 500 

 In Figure 34, the prior and posterior ensemble means of the log-permeability in 

the x-direction (on Layer 9) are shown. Here, one can see how history matching with 

the standard pseudo-optimal localization resulted in extreme values and how the 

inclusion of the penalty factor mitigates this effect, making the posterior ensemble 

mean closer to the prior mean, even in comparison to history matching results with 

distance-based localization. 
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Figure 34 - Prior and Posterior ensemble mean of ln(𝑘𝑥) on Layer 9 of the UNISIM-I-H case study. 

 

(a) Prior 

 

(b) DL 𝑁 = 200 

 

(c) POL 𝑁 = 200 

 

(d) POL-EXP 𝑁 = 200 

 

(e) DL 𝑁 = 350 

 

(f) POL 𝑁 = 350 

 

(g) POL-EXP 𝑁 = 350 

 

(h) DL 𝑁 = 500 

 

(i) POL 𝑁 = 500 

 

(j) POL-EXP 𝑁 = 500 

 Inspecting the cumulative distribution function (CDF) of normalized variances 

of all reservoir uncertain parameters (Figure 35), one can see a sign of ensemble 

collapse (with a concentration of relatively small normalized variances) when the 

standard pseudo-optimal localization is applied, and the improvement when the 

penalty factor is introduced, with the POL-EXP results showing a slightly higher 

variance reduction. 
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Figure 35 - Cumulative distribution function (CDF) of normalized variance for the UNISIM-I-H case 
study. 

 

 The normalized variances of non-local and local parameters are analyzed 

separately in the sequence. Figure 36 shows the boxplots of maximum water relative 

permeability at each iteration step, and Figure 37 presents the normalized variance 

of the log-permeability in x-direction on Layer 9. When distance-based localization is 

applied only to local parameters, it results in an ensemble collapse in the estimated 

non-local parameters, independently on the ensemble size. Relatively small 

ensemble spread is also spotted in the standard pseudo-optimal localization, mainly 

due to the retained spurious correlations. In contrast, excessive uncertainty reduction 

was mitigated when the penalty factor is applied to the pseudo-optimal localization. 
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Figure 36 - Boxplots of maximum water relative permeability (krwiro) at all iteration steps of the 
UNISIM-I-H case study. 

 

(a) DL 𝑁 = 200 

 

(b) DL 𝑁 = 350 

 

(c) DL 𝑁 = 500 

 

(d) POL 𝑁 = 200 

 

(e) POL 𝑁 = 350 

 

(f) POL 𝑁 = 500 

 

(g) POL-GC 𝑁 = 200 

 

(h) POL-GC 𝑁 = 350 

 

(i) POL-GC 𝑁 = 500 

 

(j) POL-EXP 𝑁 = 200 

 

(k) POL-EXP 𝑁 = 350 

 

(l) POL-EXP 𝑁 = 500 

 Analyzing the normalized variance of log(𝑘𝑥) on Layer 9, one can see that 

distance-based localization reduces the posterior variance in almost the entire region 

around the wells. Furthermore, the standard pseudo-optimal localization induces a 

sign of ensemble collapse. As such, one can conclude that the application of the 
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penalty factor resulted in better variance preservation. In addition to data mismatch, 

the history matching performance can also be analyzed by having an examination on 

the time series of production data, with respect to the prior and posterior ensembles. 

Figure 38 shows the production data from the producer well NA1A, for the case with 

the ensemble size equals to 500. There, one can see slightly worse data match for 

the case with the penalty factor applied to the pseudo-optimal localization. On the 

other hand, the introduction of the penalty factor is clearly beneficial for preserving 

the ensemble varieties. 

Figure 37 - Normalized variance of  ln(𝑘𝑥) on Layer 9 of the UNISIM-I-H case study. 

 

(a) DL 𝑁 = 200 

 

(b) DL 𝑁 = 200 

 

(c) DL 𝑁 = 200 

 

(d) POL 𝑁 = 200 

 

(e) POL 𝑁 = 350 

 

(f) POL 𝑁 = 500 

 

(g) POL-GC 𝑁 = 200 

 

(h) POL-GC 𝑁 = 350 

 

(i) POL-GC 𝑁 = 500 

 

(j) POL-EXP 𝑁 = 200 

 

(k) POL-EXP 𝑁 = 350 

 

(l) POL-EXP 𝑁 = 500 
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Figure 38 - Time series of production data from the producer well NA1A, for the case with the 
ensemble size equals to 500. Here, OPR stands for oil production rate, WPR for water production rate, 

and BHP for bottom-hole pressure. 

 

(a) OPR DL 

 

(b) WPR DL 

 

(c) BHP DL 

 

(d) OPR POL 

 

(e) WPR POL 

 

(f) BHP POL 

 

(g) OPR POL-GC 

 

(h) WPR POL-GC 

 

(i) BHP POL-GC 

 

(j) OPR POL-EXP 

 

(k) WPR POL-EXP 

 

(l) BHP POL-EXP 

5.2 Parameterization 

5.2.1 Reservoir classifier and Fréchet Reservoir Distance results 

The Reservoir Classifier was trained with 40 epochs, being the best accuracy 

obtained in the validation set around 0.9987 at the end of the training process. Figure 

39 shows the loss function values during the training (a), and the accuracy measured 

using the training and validation dataset over the iterations (b). 
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Figure 39 – Loss (a) and accuracy (b) for training and validation dataset obtained after Reservoir 
Classifier training. In (b), the red dot represents the best accuracy obtained in the validation dataset. 

 

(a) 

 

(b) 

 Subsequently, an evaluation was conducted to assess the performance of the 

metrics while employing the Inception and Reservoir classifier networks under the 

influence of distortions with different disturbance levels. To avoid biased metric 

results, we used an ensemble sufficiently large (𝑁 = 20,000) and computed the 

metric between the original ensemble and the ensemble after introducing two types 

of distortions (Figure 40): Gaussian noise (a) and image rotation with a fixed angle 

(b). Based on the results, it is possible to confirm that the Reservoir Classifier 

network yielded improved results. Specifically, for certain rotated images, the FID 

results tend to 0. This implies that the Inception-v3 network was unable to extract 

features that differentiate between the two datasets. 

Figure 40 – FID and FRD for different disturbance levels. Left image represents the metric computed 
after the addition of a Gaussian random noise, while the right image represents the metric computed 
after an image rotation. In the Gaussian noise the disturbance level represents the noise variance, 

while the disturbance level represents the angle rotation varying between 0 and 𝜋. 

 

(a) 

 

(b) 
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 We also compared both metrics in terms of their evolution over the GAN 

training for two datasets. The first dataset consists of the two facies channelized 

reservoir built using properties that differ from those used during the Reservoir 

Classifier training. The second dataset comprises randomly cropped sections of the 

matrix permeability of the UNISIM-II-H benchmark, which was not used in the 

Reservoir Classifier training. The purpose of using these two datasets was to 

compare the metrics using datasets considering facies and property distributions. In 

terms of GAN training, both cases were training and its metrics evaluated with a 

dataset sufficiently large (𝑁 = 80,000) to prevent discriminator overfitting and biased 

metric computation. 

 Analyzing the FID and FRD results (Figure 41 and Figure 42), it can be 

observed that both metrics yielded similar results. It is worth noting that the best FID 

value for the two-facies channelized case was achieved approximately at the mid-

point of the training, due to the high variance of the FID metric. This behavior is 

significant since the dataset contains images with integer values, which were not 

included in the Inception-v3 network's training dataset, the ImageNet dataset (DENG 

et al., 2009). 

Figure 41 - FID and FRD evolution over iterations for NSGAN application in the 2 facies channelized 
dataset. The upper rows contain two random realizations for different iteration steps (represented by 

the vertical dashed lines). 

 



100 

 

Figure 42 – FID and FRD evolution over iterations for NSGAN application in the UNISIM-II-cropped 
dataset. The upper rows contain a random realization and its corresponding histogram for different 
iteration steps (represented by the vertical dashed lines). Regarding the histograms, the blue line 
represents the histogram of the training dataset, and the red line represent the histogram of the 

generated dataset. 

 

5.2.2 GAN regularization results 

Initially, we evaluated the impact of discriminator regularization on GAN 

training performance by training multiple networks with different regularization 

weights 𝛾𝑅1 = [0.002, 0.005, 0.01,… , 100, 200, 500], with a dataset size of 80,000 

samples. For each weight value, we conducted three network runs. Figure 43 shows 

the best obtained FRD after a given number of iterations (50,000; 100,000; and 

150;000) during the GAN training, and Figure 44 shows the FRD over the iterations 

for different regularization weights. Based on the results, it can be concluded that the 

optimum weight differs significantly from the recommended by Karras et al. (2020). 

This difference may be attributed to the fact that in simpler cases (single-channel 

petroleum reservoir realizations instead of more complex faces images), the 

discriminator has a tendency to learn the generated distribution at a much faster rate. 

Consequently, the discriminator loss function approaches zero, requiring higher 

values of the regularization weight. 
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Figure 43 – Best FRD obtained after a given number of iterations as function of the 𝛾 of the 𝑅1 
regularization. The lines represent the median, while the spread represents the maximum and 

minimum obtained value for each value of 𝛾. The red square area represents the range recommended 
by Karras et al. (2020) to choose the regularization weight. 

 

Figure 44 – FRD over iterations for different regularization weights. The lines represent the median, 
while the spread represent the maximum and minimum. The dots represent the best median value 

obtained for each case. 

 

5.2.3 Adaptive Discriminator Augmentation Results 

Before investigating the effect of adaptive augmentation on GAN performance, 

we conducted a prior investigation on the influence of dataset sample size. Figure 45 

depicts the FRD across iterations for different dataset sizes. From the figure, it is 

apparent that even ensemble sizes considered as large to data assimilation studies 
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(such as the case with 1,000 samples) are insufficient to train a generative 

adversarial network with reasonable performance. 

Figure 45 – FRD over iterations for different dataset sizes. Here, the dots represent the best FRD 
obtained. 

 

 According to the hypothesis from Karras et al. (2020), the quality of the 

generator begin to deteriorate when the discriminator overfits. This overfitting can be 

measured by the discriminator outputs across the training. In Figure 46 the 

discriminator outputs for the original and generated images are displayed for two 

distinct cases with different dataset sizes (𝑁 = 200 and 𝑁 = 80,000). Here, we can 

observe that the aforementioned hypothesis is still valid. In the case with the larger 

dataset, the discriminator outputs remain close to zero with both distributions 

overlapping, and the FRD consistently decreases throughout the entire training 

process. On the other hand, in the case where overfitting occurs, the discriminator 

outputs move away from zero, and the overlap between the real and generated 

distributions ends, coinciding with the points where the FRD starts to deteriorate. 
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Figure 46 – Discriminator outputs for different dataset sizes 𝑁. Here, the solid lines represent the 
mean and the spread represent the percentiles. The purple dashed line represents the iteration where 

the best FRD was obtained. 

 

(a) 𝑁 = 80,000 

 

(b) 𝑁 = 200 

 Next, we conducted an investigation into the effect of different augmentation 

categories on the performance of GANs in the context of petroleum reservoirs (Figure 

47). To evaluate the efficacy of each category, we trained a separate network with a 

fixed augmentation probability 𝑝 = [0.2, 0.4, 0.6, 0.8, 1.0] for each category. Our 

analysis revealed that only blitting and geometric augmentations had a positive 

impact on the GAN training. Specifically, the GANs trained using color and noise 

augmentations resulted in higher FRD values compared to those without 

augmentations (Figure 47, 𝑝 = 0). Moreover, we found that the cumulative 

augmentation of blitting and geometric transformations resulted in even lower FRD 

values. Furthermore, one interesting finding was that even with lower augmentation 

probability values, a significant improvement in the FRD was obtained, resulting in 

values that are closer to the reference case with 80,000 samples used during 

training. In addition, the leaking behavior is also observed when higher augmentation 

probabilities are applied, presenting higher FRD values. This suggests that the use of 

augmentation techniques can compensate the lack of training data, which is 

especially valuable in cases where generating a large prior dataset is costly or 

impractical. These findings are consistent with those made by Karras et al. (2020), 

who also applied the adaptive data augmentation to train a generative adversarial 

network with the FFHQ dataset (KARRAS; LAINE; AILA, 2018). Thus, it is possible to 

state that not all augmentations are effective in improving the GAN performance, 

beyond the petroleum reservoir context. Finally, it is possible to verify that even with 

lower augmentation probability values, good improvement in the FRD was obtained, 
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achieving values closer to the reference case with 80,000 samples used during the 

training. 

Figure 47 – FRD for different augmentation probabilities and categories. Here, ‘b’ represents blitting 
augmentations, ‘g’ represents geometric augmentations, ‘v’ represents value augmentations, ‘n’ 

represents Gaussian noise augmentation, and ‘b+g’ represents the cumulative case with blitting and 
geometric augmentations combined. The red dashed line represents the case using a dataset size 

equal to 80,000. 

 

 In order to assess the effectiveness of the heuristics presented in Equation 

(48), we conducted an experiment where the GAN performance was evaluated for 

different values of 𝑟𝑡𝑎 𝑔 𝑡. To carry out this experiment, we utilized the augmentation 

categories of blitting and geometric transformations, which were shown to be 

effective in the previous results. Multiple GANs were trained with 𝑟𝑡𝑎 𝑔 𝑡 values 

ranging from 0.4 to 0.975, as well as the case with 𝑟𝑡𝑎 𝑔 𝑡 = 1 which can be 

interpreted as the cases without any augmentation. The results of the experiment are 

displayed in Figure 48, where it can be observed that the adaptive augmentation 

method leads to lower FRD values compared to the best obtained FRD with fixed 

augmentation probability, indicating an improvement in the training performance. 

Additionally, the proposed heuristics using the PD controller was able to keep the 𝑟𝑡 

values on track with the 𝑟𝑡𝑎 𝑔 𝑡 values throughout the entire training process (as 

shown in Figure 49). As demonstrated in Figure 50, there were no significant 

variations in the augmentation probability for all cases, indicating that the PD 

controller was effective in control the augmentation probability properly. Furthermore, 

it is worth noting that the discriminator outputs remain close to zero when the 



105 

 

adaptive augmentation is applied, as shown in Figure 51, similarly as the case with 

𝑁 = 80,000 even with smaller dataset sizes. Consequently, the FRD decreases 

throughout the entire training process, indicating the effectiveness of the method in 

improving the GAN performance. Additionally, the figure demonstrates that 

increasing the augmentation probability also results in a slower convergence speed. 

This is evidenced by the fact that the best FRD is achieved at later iterations as the 

𝑟𝑡𝑎 𝑔 𝑡 becomes smaller. However, it is important to note that further analysis is 

required to make a final conclusion regarding the relationship between augmentation 

probability and convergence speed. 

 From Figure 52, we can conclude that the networks trained without adaptive 

augmentation resulted in samples that were visually distinguishable from the real 

ones and the case with a dataset equal to 𝑁 = 80,000, where the presence of some 

facies with blurred aspect are visible. Moreover, the cases with the adaptive 

discriminator augmentation resulted in samples that were more similar with the 

training and reference datasets (𝑁 = 80,000),compared to those generated by 

networks without any augmentation. 

Figure 48 – FRD for different 𝑟𝑡𝑎 𝑔 𝑡. Here, ‘best’ represents the lower FRD value obtained with a 

constant augmentation probability (Figure 47), and ‘80k’ represents the case with dataset size equal to 
80,000. 
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Figure 49 - 𝑟𝑡 over iterations for different 𝑟𝑡𝑎 𝑔 𝑡 (also represented here by the dashed lines). 

 

Figure 50 – Augmentation probability over iterations for different 𝑟𝑡𝑎 𝑔 𝑡. 
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Figure 51 - Discriminator outputs for different 𝑟𝑡𝑎 𝑔 𝑡. For image colors description, readers are 

referred to Figure 46. 

 

(a) 𝑟𝑡𝑎 𝑔 𝑡 = 0.5 

 

(b) 𝑟𝑡𝑎 𝑔 𝑡 = 0.7 

 

(c) 𝑟𝑡𝑎 𝑔 𝑡 = 0.9 

Figure 52 – Examples of realizations. Each row represents random realizations of a given dataset. 1) 
training; 2) 𝑁 = 200 without data augmentation; 3) 𝑁 = 200 with adaptive data augmentation and 

𝑟𝑡𝑎 𝑔 𝑡 = 0.5; 4) 𝑁 = 200 with adaptive data augmentation and 𝑟𝑡𝑎 𝑔 𝑡 = 0.7; 5) 𝑁 = 80,000. 

Training 

 

𝑁 = 200 

𝑁 = 200 and 

𝑟𝑡𝑎 𝑔 𝑡 = 0.5 

𝑁 = 200 and 

𝑟𝑡𝑎 𝑔 𝑡 = 0.7 

𝑁 = 80,000 
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5.3 UNISIM-II 

5.3.1 Generator and projection results 

After the training of all networks, one for each field parameter, consistent results 

were observed with respect to the Fréchet Reservoir Distance (FRD), as shown in 

Table 7. The networks with higher FRD values can be explained by the low variability 

in the prior ensemble, which have the same effect than a lower dataset training size. 

However, the implementation of adaptive discriminator augmentation yielded 

satisfactory results for all properties, indicating that this approach effectively mitigates 

the impact of the low variability on network training.  An effective way to determine 

whether a generator can successfully generalize the training distribution rather than 

simply memorize the image samples is by interpolating between two latent vectors 

and observing if the resulting generated samples exhibit a smooth transition between 

the bounds with a diverse range of outputs (BERTHELOT; SCHUMM; METZ, 2017). 

Here, we interpolate between two latent vectors by using the spherical linear 

interpolation (SLERP) instead of the traditional linear interpolation, following the 

approach described by White (2016). This technique involves interpolating the latent 

vectors along a great circle arc, rather than a straight line, resulting in a more 

continuous transition between the two points. Figure 54 depicts the interpolation 

between latent samples from some properties. The results show that all 

interpolations are smooth and continuous, even between two vastly different bounds, 

as can be seen in the net-to-gross ratio interpolation example between an image with 

almost zero values and an image containing higher property values. This result is 

particularly important in the context of data assimilation since it demonstrates the 

ability of the ill-posed inverse problem to search the solution in a space that is not 

constrained by the training dataset samples or the GAN generator itself. This 

behavior also can serve as a useful indicator of mode collapse in the GAN context, 

where the generator fails to learn the entire distribution (THANH-TUNG; TRAN, 2018; 

WIATRAK; ALBRECHT; NYSTROM, 2019; IGLESIAS; TALAVERA; DÍAZ-ÁLVAREZ, 

2022). In extreme cases of mode collapse, the generator produces identical images, 

independently of the latent input. Thus, besides the FRD which measures the 

difference between the distributions (using the features from a classifier network), 
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this obtained diversity in the interpolated samples indicates the generator ability to 

generalize and capture the variability of the training data. 

Figure 53 depicts various field properties of the training dataset and the 

generated by the networks. The results demonstrated that the generated dataset 

effectively captures the essential features of the training dataset for all properties, 

both in terms of generating images that are visually similar to those in the original 

dataset and in preserving the statistical characteristics of the real dataset. These 

findings highlight the robustness and efficacy of the generative models in reproducing 

complex field properties. 

Table 7 – Fréchet reservoir distance obtained for each parameter after the GAN training. 

Parameter FRD 

Fracture porosity 0.0199 

Permeability 

Matrix 
𝑥-direction 0.0107 

𝑧-direction 0.0082 

Fracture 
𝑥-direction 0.0162 

𝑧-direction 0.0591 

Net-to-gross ratio 0.0522 

Fracture Spacing 
𝑥-direction 0.0272 

𝑧-direction 0.0222 

 An effective way to determine whether a generator can successfully generalize 

the training distribution rather than simply memorize the image samples is by 

interpolating between two latent vectors and observing if the resulting generated 

samples exhibit a smooth transition between the bounds with a diverse range of 

outputs (BERTHELOT; SCHUMM; METZ, 2017). Here, we interpolate between two 

latent vectors by using the spherical linear interpolation (SLERP) instead of the 

traditional linear interpolation, following the approach described by White (2016). This 

technique involves interpolating the latent vectors along a great circle arc, rather than 

a straight line, resulting in a more continuous transition between the two points. 

Figure 54 depicts the interpolation between latent samples from some properties. 

The results show that all interpolations are smooth and continuous, even between 

two vastly different bounds, as can be seen in the net-to-gross ratio interpolation 

example between an image with almost zero values and an image containing higher 

property values. This result is particularly important in the context of data assimilation 

since it demonstrates the ability of the ill-posed inverse problem to search the 
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solution in a space that is not constrained by the training dataset samples or the GAN 

generator itself. This behavior also can serve as a useful indicator of mode collapse 

in the GAN context, where the generator fails to learn the entire distribution (THANH-

TUNG; TRAN, 2018; WIATRAK; ALBRECHT; NYSTROM, 2019; IGLESIAS; 

TALAVERA; DÍAZ-ÁLVAREZ, 2022). In extreme cases of mode collapse, the 

generator produces identical images, independently of the latent input. Thus, besides 

the FRD which measures the difference between the distributions (using the features 

from a classifier network), this obtained diversity in the interpolated samples indicates 

the generator ability to generalize and capture the variability of the training data. 
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Figure 53 – UNISIM-II-H fracture porosity (a), matrix permeability (𝑖-direction) (b), net-to-gross ratio 

(c), and fracture spacing (𝑧-direction) (d) for the training (upper row) and generated (bottom row) 
datasets. Here, left column shows the mean over the dataset, the mid column displays the standard 

deviation, and the right column shows a random realization for both datasets. Here, all properties were 
normalized between -1 and 1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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 Figure 54 – Interpolations of two generated images (represented here by the images at the corners). 
Here, upper row shows the matrix permeability (𝑖-direction) (a), mid row shows the fracture 

permeability (𝑧-direction) (b), and bottom row shows the net-to-gross ratio (c). Here, all properties 
were normalized between -1 and 1. 

 

(a) 

 

(b) 

 

(c) 

5.3.2 ES-MDA latent space projection 

Firstly, we conducted an investigation to determine the ensemble size and the 

number of iterations for projecting the real samples onto the latent space. Starting by 

fixing the total number of latents passed through the generator by 2000, we projected 

a fixed number of 15 images onto the latent space with different 𝑁/𝑁𝑖 ratio. Figure 55 

presents the statistics of the mean objective function defined in (29), for all projected 

samples of two different reservoir properties. Here, in higher 𝑁/𝑁𝑖 values, the main 

source of errors is the dominance of nonlinearities of the forward model in the 

update, while in lower 𝑁/𝑁𝑖 values, the main source of errors is spurious correlations 

due to the small ensemble size. Therefore, a tradeoff between these two sources 

with the optimal objective function results can be observed when 20 < 𝑁 𝑁𝑖⁄ < 80. In 
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the subsequently experiments, we decided for a high ensemble size to minimize the 

effect of spurious correlations. Consequently, all next experiments were performed 

with 𝑁 = 400 and 𝑁𝑖 = 5. 

Figure 55 – Objective function percentiles (transparent lines) and mean (solid line) for a fixed total 
number of forward runs equal to 2,000 runs, for matrix permeability (kx) and net-to-gross ratio (NG). 
Here, 𝑁/𝑁𝑖 represents the ratio between the ensemble size 𝑁 and the total number of iterations 𝑁𝑖. 

 

After applying the iterative ensemble smoother, the method successfully 

identified a latent representation that adequately represents the real sample for all 

prior ensemble and for all reservoir properties. This can be observed in Figure 56, 

which shows the boxplots of the mean objective function for all 15,000 samples over 

the iterations. To save computational time, the last forward step with the updated 

latent ensemble was not performed. Thus, horizontal axis shows only the 5 update 

steps. 

Figure 56 – Boxplot of the mean objective function for all projected images. (a) matrix permeability, (b) 
net-to-gross ratio. 

 

(a) 

 

(b) 
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Figure 57 and Figure 58 compare two randomly selected realizations with the 

generator outputs of their respective projections, while Figure 59 and Figure 60 show 

some examples of the ensemble variogram maps in both horizontal and vertical 

directions for both the original and the projected ensembles. The images 

demonstrate that the original and projected ensembles are almost indistinguishable, 

indicating that the projection method is effective in preserving the original spatial 

structure of the initial ensemble. 

Figure 57 – Vertical layer 12 (columns 1, 3) and layer 35 𝑗-sec (columns 2, 4) matrix permeability for 
two real random realizations (first row) and the samples generated from its respective latent 

projections (bottom row). Here, all properties were normalized between -1 and 1. 

 

Figure 58 – Vertical layer 12 (columns 1, 3) and layer 23 𝑖-sec (columns 2, 4) net-to-gross ratio for two 
real random realizations (first row) and the samples generated from its respective latent projections 

(bottom row). Here, all properties were normalized between -1 and 1. 
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Figure 59 - Vertical layer 12 (left column) and layer 23 𝑖-sec (right column) net-to-gross ratio variogram 
maps for the real dataset (upper row) and the ensemble generated from the projected latent vector 

(bottom row).Reference points to compute the variogram map is [25, 25] for the left column and 
[15, 15] for the right column. 

 

Figure 60 – Vertical layer 12 (left column) and layer 35 𝑗-sec (right column) matrix permeability 
variogram maps for the real dataset (upper row) and the ensemble generated from the projected latent 
vector (bottom row). Reference points to compute the variogram map is [25, 25] for the left column and 

[15, 15] for the right column. 

 

5.3.3 Data assimilation results 

The results of the data assimilation performed using an ensemble size of only 

50 members (considered too small) yielded satisfactory results, indicating the 

effectiveness of the proposed methodology. Figure 61 shows the boxplot of the 
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normalized objective function across the iterations (including the last forward step), 

where a significant reduction in the objective function values is observed.  

Figure 61 – Boxplot of 𝑂𝑁𝑑 across the iterations. 

 

The data assimilation process led to an ensemble collapse of the posterior 

ensemble, as evidenced by Figure 62 through Figure 65 (this can be attributed to the 

small ensemble size of 50 members used in the assimilation). However, despite this 

behavior, an interesting observation was made regarding the proposed 

parameterization method. Specifically, the posterior ensemble members 

demonstrated geological features that were consistent with the prior ensemble, 

despite the occurrence of ensemble collapse. This is noteworthy, as ensemble 

collapse typically leads to the posterior ensemble displaying extreme parameter 

values. Some examples of members of the posterior ensemble are shown in Figure 

66 through Figure 70. Furthermore, the methodology of considering each vertical 

reservoir layer separately during the parameterization, in addition to the initial 

ensemble projection, proved effective in maintaining satisfactory vertical correlation 

after the assimilation process, as demonstrated by the posterior ensemble results. 

The effect of the adaptive localization can be observed by comparing the prior and 

posterior relative permeability curves, which were generated from non-local uncertain 

parameters. As shown in Figure 71, the POL-GC adaptive localization method was 

effective in preventing ensemble collapse in non-local parameters. 
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Figure 62 – Fracture porosity standard deviation of prior (upper row) and posterior (bottom row) 
ensembles. 

 

Figure 63 – Matrix permeability (𝑖-direction) standard deviation of prior (upper row) and posterior 
(bottom row) ensembles. 
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Figure 64 - Fracture permeability (𝑖-direction) standard deviation of prior (upper row) and posterior 
(bottom row) ensembles. 

 

Figure 65 – Fracutre spacing (𝑖-direction) standard deviation of prior (upper row) and posterior (bottom 
row) ensembles. 
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Figure 66 – Fracture Porosity first ensemble member prior (upper row) and posterior (bottom row) the 
data assimilation. First column represents vertical layer 5, second column layer 23 𝑖-sec, third column 

vertical layer 12, and forth column layer 35 𝑗-sec. The dashed lines in vertical layers represent the 
cross sections. Here, all properties were normalized between -1 and 1. 

 

Figure 67 – Matrix permeability (𝑖-direction) first ensemble member prior (upper row) and posterior 

(bottom row) the data assimilation. First column represents vertical layer 5, second column layer 23 𝑖-
sec, third column vertical layer 12, and forth column layer 35 𝑗-sec. The dashed lines in vertical layers 

represent the cross sections. Here, all properties were normalized between -1 and 1. 
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Figure 68 - Fracture permeability (𝑖-direction) first ensemble member prior (upper row) and posterior 

(bottom row) the data assimilation. First column represents vertical layer 5, second column layer 23 𝑖-
sec, third column vertical layer 12, and forth column layer 35 𝑗-sec. The dashed lines in vertical layers 

represent the cross sections. Here, all properties were normalized between -1 and 1. 

 

Figure 69 – Net-to-gross ratio first ensemble member prior (upper row) and posterior (bottom row) the 
data assimilation. First column represents vertical layer 5, second column layer 23 𝑖-sec, third column 

vertical layer 12, and forth column layer 35 𝑗-sec. The dashed lines in vertical layers represent the 
cross sections. Here, all properties were normalized between -1 and 1. 

 



121 

 

Figure 70 – Fracture spacing (𝑖-direction) first ensemble member prior (upper row) and posterior 

(bottom row) the data assimilation. First column represents vertical layer 5, second column layer 23 𝑖-
sec, third column vertical layer 12, and forth column layer 35 𝑗-sec. The dashed lines in vertical layers 

represent the cross sections. Here, all properties were normalized between -1 and 1. 

 

Figure 71 – Relative permeability and capillary pressure curves. (a) Water relative permeability curves, 
(b) Capillary curves, (c) Gas relative permeability curves. Gray lines represent the prior ensemble, 

while blue lines represent the posterior ensemble. 

 

(a) 

 

(b) 

 

(c) 

 Despite achieving a significant reduction in data mismatch, the time series 

figures (Figure 72 and Figure 73) suggest that the observed production data cannot 
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be fully matched in some wells. This discrepancy can be attributed to several factors. 

Firstly, the producer well Prod-6 is a critical well to match production data, and its 

behavior poses challenges in ensemble-based methods. The prior ensemble fails to 

adequately cover the measurements associated with the particular well. Maschio and 

Schiozer (2019) extensively discuss the influence of Prod-6 on data assimilation 

outcomes. Another possible explanation is that parameterization increases the 

complexity and nonlinearity of the forward problem, represented now as 𝐝 = 𝑔(𝒢(𝐳)), 

where an increase in 𝐳 may not necessarily lead to an increase in 𝐝, representing a 

non-monotonic behavior. Evensen (2018) provides a detailed discussion of the 

behavior of ensemble-based methods in such models. Although, an increase number 

of iterations steps can help address this issue, the time-consuming forwards in 

complex reservoirs can be prohibitive. Regarding the adaptive localization, compute 

this only with the prior ensemble might amplify the errors, especially in small 

ensemble sizes where the sample covariances are found in the threshold level for 

almost all uncertain parameters, resulting in excessive damping. However, as can be 

observed in Figure 74, an excessive damping in the latent ensemble does not mean 

that the parameter ensemble will suffer from excessive damping. Both behaviors can 

be verified by interpolating a vector with constant elements �̃� = [𝑣1, 𝑣2, … , 𝑣𝑁𝑧]
T
, 

maintaining a given fraction of the realization unchanged (equal to minus one), 

simulating the localization process. Figure 74 shows the extrapolation between two �̃� 

vectors using as the extreme values of -1 and 1 as bounds. Each row represents this 

interpolation only between a fraction of the latent vector, with the rest kept 

unchanged. The image shows that Super-k appear in the same region of the 

realization at the latent limits, and tapering a higher number of parameters does not 

guarantee small changes in the original domain. 
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Figure 72 – Time series of production data. OPR refers to oil production rate (first column), WPR 
refers to water production rate (second column), BHP refers to well bottom-hole pressure (third 

column). Each row represents a single well: 1) Prod-2, 2) Prod-4, 3) Prod-6, 4) Prod-8, 5) Wildcat. 
Here, the gray lines represent the prior ensemble, blue lines represent the posterior ensemble, and 

the red dots represent the measurements. 
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Figure 73 – Time series of injection data. WIR refers to water injection rate (first column), BHP refers 
to well bottom-hole pressure (second column). Each row represents a single well: 1) Inj-1, 2) Inj-3, 3) 

Inj-5, 4) Inj-7, 5) Inj-9. Here, the gray lines represent the prior ensemble, blue lines represent the 
posterior ensemble, and the red dots represent the measurements. 
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Figure 74 - Interpolation with constant values for the latent vector. Each row represents a fraction 𝑘 of 

the parameters kept unchanged during the interpolation: 1) 𝑘 = 97%, 2) 𝑘 = 80%, 3) 𝑘 = 60%, 4) 𝑘 =
40%, 5) 𝑘 = 20%, 6) 𝑘 = 0%. Here, all properties were normalized between -1 and 1. 
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CHAPTER 6 - CONCLUSIONS 

6.1 Localization 

One of the main issues of the iterative ensemble smoother is the loss of 

variance and filter divergence due to sampling errors caused by the limited ensemble 

size. The main method in petroleum literature to reduce this effect is the application 

of distance-based Kalman gain localization. However, several issues regarding this 

kind of methodology arise, making it suboptimal or impractical in many cases. In this 

present work, we proposed an alternative adaptive pseudo-optimal localization 

method with the addition of a penalty factor similar to the noise level applied in the 

correlation-based localization method. Following the ideas of Lacerda et al. (2019), 

which demonstrated that a weaker correlation suffers more strongly the effects of the 

limited ensemble size, we proposed four distinct options to compute this penalty 

factor, based on the sample correlation between each parameter and data. Also, we 

proposed an alternative method to compute the threshold values. This might be 

useful to determine the threshold values for non-local parameters of parameters that 

might not be grouped. Moreover, the application of the penalty rule in the pseudo-

optimal localization method resulted in a fully automatic localization method that does 

not require any prior tuning.  

We applied the proposed method to two case studies: a 2D ¼ five-spot, and 

the large-scale UNISIM-I-H benchmark. The results showed a significantly higher 

posterior ensemble variance (with relatively small poorer data-matchings) to the 

distance-based and the standard pseudo-optimal methods. It is important to point out 

that these results were obtained even without the optimal definition of the penalty rule 

computation. Its development will be the subject of further investigation.  

6.2 Parameterization 

 Parameterization of petroleum reservoir is a challenging task that has been 

the subject of intense research in recent years. One promising approach is the use of 

generative adversarial networks (GAN). While this approach has shown great 

potential, there are still several points that need to be improved upon. For instance, 

there is a need to develop reliable methods for measuring the quality of the trained 
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generator in the reservoir context, evaluate the performance of GAN-based 

parameterization methods in other case studies beyond the well-studied two-facies 

channelized reservoir, and the limitations posed by the limited dataset size during the 

GAN training. Addressing these challenges will be important for advancing the field 

and making GAN-based parameterization a more widely applicable technique. 

 We applied a robust and stable GAN by using the R1 regularization technique, 

which has some advantages over the Wassertein GAN with gradient penalty (WGAN-

GP). Unlike WGAN-GP, GAN-R1 adopts a zero-centered regularization approach 

and does not require training the generator and the discriminator at different rates 

(such as using different learning rates or training the discriminator with more iteration 

steps). The experimental results exhibited significant improvements compared to the 

standard GAN. Moreover, we have found that the recommended regularization 

weight in our case is much higher than previously suggested, likely due to the 

discriminator’s ease in distinguishing between real and generated samples. 

 In addition, we proposed a novel approach to measuring the difference 

between two ensembles of realizations. From previous works that replaced the 

Inception-v3 network in the computation of the Fréchet Inception Distance (FRD), we 

developed a Reservoir Classifier Network and leveraged the feature extraction 

component of this network to compute the Fréchet distance, thus creating a new 

metric, the Fréchet Reservoir Distance. The results demonstrated that our proposed 

metric is effective and significantly reduces the computation time required to evaluate 

the distance between two distributions. 

 Finally, our study applied the adaptive data augmentation (ADA) method in 

training a GAN using a limited ensemble size of 200 petroleum reservoir realizations. 

First, different augmentation categories were evaluated, including value 

augmentations designed specifically to this problem. The cumulative augmentation 

consisting of blitting and geometric transformations was found to yield the best FRD 

results. Moreover, results showed good consistency between the network trained 

with limited data plus the adaptive data augmentation and the reference case 

considering a dataset with 80,000 samples, highlighting the potential of ADA in 

addressing limited dataset size challenges in parameterization of petroleum reservoir 

samples. 
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6.3  Two-step data assimilation applied in the benchmark UNISIM-II-H 

The application of data assimilation techniques in complex reservoirs models 

presents several challenges. In this study, we addressed these challenges by 

proposing a novel approach that combines the projection of original samples into the 

latent domain and the data assimilation into a two-step ES-MDA framework. The 

main goal was to improve the assimilation process and enhance the accuracy of the 

results in large-scale reservoir system. To handle three-dimensional reservoirs, we 

employ a mapping strategy that transforms each horizontal layer into the latent 

domain, resulting in a 𝑁𝑧 ×𝑁𝑘 matrix. Here, 𝑁𝑧 represents the dimension of the latent 

domain, and 𝑁𝑘 represents the vertical reservoir dimension. These layers are then 

updated using the analysis step of ensemble-based methods, and the updated 

ensemble is subsequently mapped back to the original three-dimensional domain. 

The application of adaptive data augmentation facilitated the training of distinct 

networks for each reservoir property, including those with limited variability such as 

fracture spacing. Furthermore, the successful projection of the initial ensemble into 

the latent space using ensemble-based methods was demonstrated, as the results 

indicated a high level of similarity between the ensemble projected from the initial 

latent space and the original ensemble. 

 The effectiveness of this method relies on preserving the vertical correlation 

when mapping the initial ensemble to the latent domain. Our results demonstrate a 

satisfactory reduction in data mismatch, with the data-mismatch values (30) 

decreasing from approximately 500 to 40. Regarding the non-local parameters 

(except latent parameters), the adaptive localization method was able to avoid 

ensemble collapse. However, the most notable outcome of our study is that despite 

using a small ensemble size with only 50 members that exhibits ensemble collapse in 

posterior ensemble, the generated posterior realizations maintained geological 

realism and vertical continuity. This finding underscores the robustness of our 

approach in capturing key geological features even under challenging conditions. 

The results highlight the potential of the method in improving the accuracy of 

reservoir characterization and provide a foundation for further advancements in the 

field of reservoir parameterization and data assimilation. 
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6.4 Broader discussion 

In the field of data assimilation for petroleum reservoirs, there remains a 

significant disparity between the techniques that have been developed and validated 

for small reservoirs and their application in large-scale models with numerous 

uncertain properties. Additionally, the computational resources required to execute 

forward models of reservoirs are limited, which restricts the feasible ensemble size 

for conducting data assimilation. This study aims to bridge this gap by introducing 

innovative methodologies within the context of a large-scale carbonate reservoir. The 

outcome is a robust workflow that successfully performs data assimilation and yields 

reasonable results in the context of the geological realism preservation. It is desirable 

that the methodology will facilitates the application of ensemble-based data 

assimilation in other large-scale reservoir models, thus addressing a critical need in 

the field. 

6.4.1 Contribution of this thesis 

Here, we summarize the key contributions of this work: 

• Novel adaptive localization method: we proposed a novel approach by 

combining the pseudo-optimal localization method with the random-shuffle 

method. This combination resulted in a new equation for computing tapering 

values, particularly when dealing with non-distance parameters or data in the 

update process. 

• GAN framework: we assessed the effectiveness of a novel GAN framework 

utilizing the R1 regularization during the training. This regularization technique 

proved to be beneficial in enhancing the stability and performance of the GAN 

when training reservoir samples. 

• Adaptive Data Augmentation: we introduced the application of adaptive data 

augmentation specifically tailored for reservoir realizations. This technique 

dynamically adjusts the augmentation power across the training process, 

resulting in improved training and generation of realistic samples. 

• Novel discrepancy metric: we proposed a new metric to measure the 

discrepancy between two ensembles of samples. This metric, called the 

Fréchet Reservoir Distance, provides a reliable measure of similarity between 
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reservoir realizations, and facilitates the evaluation of GAN training 

performance, requiring much lower computation effort in comparison with the 

original method. 

• Ensemble-based projection method: we introduced a novel method for 

projecting samples onto the latent space. This approach enables efficient and 

accurate mapping of reservoir properties from the original domain to the latent 

space. 

• Two-Step ES-MDA: we developed a two-step Ensemble Smoother with 

Multiple Data Assimilation (ES-MDA) specifically designed for three-

dimensional reservoirs. This approach makes possible the application of 

parameterization in complex reservoir systems.  
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