• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.3.2020.tde-21012021-114402
Document
Auteur
Nom complet
Flavio Pereira de Moraes
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Padilha, Angelo Fernando (Président)
Lima, Nelson Batista de
Zimmermann, Angelo José de Oliveira
Titre en portugais
Microestrutura e propriedades de um tubo de aço inoxidávelaustenítico AISI 316L após 100.700 horas de exposição a 640 °C.
Mots-clés en portugais
Aço inoxidável austenítico
AISI 316L
Corrosão
Microestrutura
Propriedades mecânicas
Resumé en portugais
O aço inoxidável austenítico AISI 316L é empregado na indústria petroquímica na fabricação de tubulações de processo e em vasos de pressão. Esta escolha se deve a boa combinação de propriedades, tais como resistência à corrosão e à oxidação, resistência mecânica a quente, trabalhabilidade e soldabilidade, entretanto, quando submetidos a campanhas prolongadas em alta temperatura ocorrem alterações microestruturais que impactam diretamente no desempenho do componente, e portanto, torna-se de fundamental importância o conhecimento das alterações microestruturais ocorridas em serviço e seus efeitos nas propriedades mecânicas e na resistência à corrosão do aço. No presente trabalho, foram analisadas amostras de um tubo soldado de aço inoxidável austenítico AISI 316L com diâmetro nominal de 8 polegadas exposto por cerca de 100.700 horas a 640 ºC, em um reator de uma planta petroquímica. As modificações na microestrutura, nas propriedades mecânicas e na resistência à corrosão foram investigadas com várias técnicas complementares tais como microscopia óptica e eletrônica de varredura (com microanálise química das fases por dispersão de energia), difração de raios X, ensaios mecânicos de dureza Vickers, de tração e de impacto (Charpy), e ensaios de corrosão para verificação de sensitização (Prática "A", ASTM A262). Intensa precipitação da fase sigma ocorreu nos contornos de grão e praticamente toda a ferrita delta , inicialmente presente no interior dos grãos, desapareceu, dando origem à fase sigma. Também existem fortes indícios da presença de M23C6 e fase de laves Fe2Mo principalmente no interior dos grãos. A precipitação causou aumento na dureza, nos limites de escoamento e de resistência e diminuição na ductilidade, na tenacidade e na resistência à corrosão intergranular. Tratamento térmico de solubilização realizado a 1050 ºC com duração de 120 minutos foi suficiente para dissolver os precipitados e reconstituir completamente a microestrutura austenítica.
Titre en anglais
Microstructure and properties of an AISI 316L steel pipe after 100,700 hours usage at 640°C.
Mots-clés en anglais
AISI 316
Corrosion
Mechanical properties
Microstructure
Resumé en anglais
AISI 316L austenitic stainless steel is used in the petrochemical industry in the manufacture of process pipes and pressure vessels. This choice is due to the good combination of properties, such as corrosion and oxidation resistance, hot mechanical strength, workability and weldability. However, when subjected to prolonged high temperature campaigns microstructural changes occur that directly affect the performance of the component, and therefore, it becomes of fundamental importance the knowledge of the microstructural changes occurred in service and its effects on the mechanical properties and corrosion resistance of the steel. In the present work, a welded pipe of AISI 316L austenitic stainless steel with nominal diameter of 8 inches exposed for about 100,700 hours at 640 °C in a reactor of a petrochemical plant was analyzed. Modifications in microstructure, mechanical properties and corrosion resistance have been investigated with various complementary techniques such as optical and scanning electron microscopy (with energy dispersive X-ray spectroscopy), X-ray diffraction, Vickers hardness, tension and impact (Charpy) mechanical tests and for corrosion test to check susceptibility to intergranular attack (Practice "A", ASTM A262). Intense precipitation of sigma phase occurred at the austenitic grain boundaries and practically all delta ferrite , initially present in the interior of the grains, vanished giving origin to sigma phase. There are also some strong indications of the presence of M23C6 and Laves phase Fe2Mo mainly in the interior of the grains. Precipitation caused increased hardness, yield strength and ultimate tensile strength (UTS), and decreased ductility, toughness and intergranular corrosion resistance. Solution annealing heat treatment performed at 1050 ºC lasting 120 minutes was sufficient to dissolve the precipitates and completely reconstitute the austenitic microstructure.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-02-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.