Freddy Naranjo Pérez

Técnicas de Linearização para o Controle de Sistemas Não-Lineares

Dissertação apresentada à Escola Politécnica da USP para a obtenção do Título de Mestre em Engenharia.

Orientador: Prof. Dr. Eduardo Akira Misawa
Depto de Eng. Mecânica da EPUSP

São Paulo, 1990
À Mayita
AGRADECIMENTOS

Aos Professores Luis N. França e Eitaro Yamane pela colaboração no momento do meu ingresso na Escola Politécnica.

À CODAC (USP), à CCINT (USP) e à CAPES, cujo apoio financeiro possibilitou este trabalho.

Ao Professor Eduardo Akira Misawa, pela sua orientação.
RESUMO

Apresenta-se uma revisão bibliográfica das técnicas de linearização (por série de Taylor, global, entrada-saída, estendida e pseudo-linearização) utilizadas no controle de sistemas não-lineares. A aplicação destas técnicas permite obter um modelo linearizado do sistema original, o qual é utilizado no projeto do controlador. Este projeto pode ser realizado através de técnicas convencionais de controle linear ou mediante técnicas avançadas como, por exemplo, o controle de estrutura variável. Ambos os casos são considerados nesta dissertação e aplicados a sistemas de uma entrada e uma saída e a sistemas multivariáveis. Algumas aplicações destas técnicas são ilustradas através de exemplos simples.

A linearização estendida e a linearização entrada-saída são aplicadas no controle de um processo de fermentação alcoólica contínua. Descreve-se o modelo do processo, definem-se os objetivos de controle e projetam-se controladores cujo desempenho é avaliado por simulação.
ABSTRACT

This work presents a review of linearization techniques (by Taylor series, global, input-output, extended, and pseudolinearization) used in nonlinear control systems. The application of such techniques allow to obtain a linearized model of the original system, which is used in the controller design. This design can be done through conventional techniques of linear control or by means of advanced techniques, e.g., the variable structure control. Both ways are considered in this work, and applied to SISO and MIMO systems. Some applications of these techniques are illustrated through simple examples.

The extended linearization and the input-output linearization are applied in the control of a continuous fermentation process. We describe the process model, define the control aims, and design the controller whose performance is evaluated by simulation.
ÍNDICE

1 Introdução 1

2 Técnicas de Linearização 4
 2.1 Linearização por Expansão em Série de Taylor 4
 2.2 Linearização Global 7
 2.2.1 A Idéia de Transformação Global Não-Lineal 8
 2.2.2 Sistemas com uma Entrada e uma Saída 12
 2.2.3 Sistemas Multivariáveis 15
 2.2.4 Controle de Sistemas Globalmente Linearizados 20
 2.3 Linearização Entrada-Saída 23
 2.3.1 Sistemas com uma Entrada e uma Saída 23
 2.3.2 Sistemas Multivariáveis 27
 2.3.3 Controle de Sistemas Linearizados (E-S) 28
 2.4 Linearização Estendida 38
 2.4.1 Controle por Realimentação de Estados 39
 2.4.2 Controle a partir de uma Função de Transferência Parâmetrizada 45
 2.5 Pseudo-Linearização 48

3 Controle de um Fermentador Continuo 55
 3.1 Modelo matemático do Processo 56
 3.2 Análise em Estado Estacionário 59
 3.3 Objetivos de Controle 60
 3.4 Controle do Sistema com Uma Entrada e Uma Saída 64
 3.4.1 Projeto do Controlador por Linearização Estendida 64
 3.5 Controle Multivariável 70
3.5.1 Projeto do Controlador Utilizando Linearização Entrada-Saída .. 71

4 Conclusões e Sugestões para Trabalhos Futuros .. 89

A Conceitos de Geometria Diferencial ... 99
Lista de Figuras

2.1 Plano tangente correspondente à aproximação linear de uma função f ... 5
2.2 Configuração conceitual da transformação não-linear ... 9
2.3 Tanque hemisférico ... 10
2.4 Sistema com controle não-linear .. 11
2.5 Sistema linearizado entrada-saída com controlador externo ... 26
2.6 Regime deslizante sobre uma superfície de chaveamento ... 30
2.7 Construção da camada limite ... 34
2.8 Interpolação da lei de controle na camada limite ... 34
2.9 Função sat ($\hat{\xi}$) ... 35
2.10 Função cont (\tilde{S}) .. 36
2.11 Sistema não-linear em malha fechada .. 46
2.12 Estrutura do sistema pseudo-linearizado ... 51

3.1 Reator Contínuo Agitado .. 57
3.2 Plano de Estados Estacionários ... 61
3.3 Trajetórias no plano de fase do modelo reduzido, com $D = 0.06$ h^{-1}, $s_0 = 150$ g/l. .. 61
3.4 Concentrações no fermentador sem controle: (a) $s_0 = 150$ g/l, $u = 0.04$ h^{-1}; (b) $s_0 = 80$ g/l, $u = 0.07$ h^{-1}; (c) $s_0 = 150$ g/l, $u = 0.1$ h^{-1}; (d) $s_0 = 150$ g/l, $u = 0.07$ h^{-1} .. 62
3.5 Concentrações no fermentador, operando com $x_0 = 50$ g/l (a) Tempo de resposta: 6 h (b) Tempo de resposta: 5 h. .. 68
3.6 Concentrações no fermentador, operando com $x_0 = 55$ g/l (a) Tempo de resposta: 9 h (b) Tempo de resposta: 10 h. .. 68
3.7 Concentrações no fermentador, operando com $x_0 = 60$ g/l. (a) Tempo de resposta: 16 h (b) Tempo de resposta: 17 h. .. 69
3.8 Sinais de controle e erros de resposta em diferentes condições de operação. (a) \(x_{3r} = 50 \text{ g/l} \) (b) \(x_{3r} = 55 \text{ g/l} \) (c) \(x_{3r} = 60 \text{ g/l} \). 69

3.9 Função de custo \(J \) para diferentes condições de operação. (a) \(x_{3r} = 50 \text{ g/l} \) (b) \(x_{3r} = 55 \text{ g/l} \) (c) \(x_{3r} = 60 \text{ g/l} \). 70

3.10 Concentrações reguladas. (a) \(k_1 = k_3 = 1; k_2 = k_4 = 0.5 \). (b) \(k_1 = k_2 = k_3 = k_4 = 2 \). 73

3.11 Concentrações reguladas, sinais de controle e erros de resposta. \(k_1 = k_3 = 2; k_2 = k_4 = 1 \). 74

3.12 Concentrações reguladas e sinais de controle introduzindo variações nos sinais de referência. \(k_1 = k_3 = 2; k_2 = k_4 = 1 \). 76

3.13 Sinais de controle e erros de resposta. \(\eta_1 = \eta_2 = 2 \). 78

3.14 Concentrações reguladas e superfícies de chaveamento. \(\eta_1 = \eta_2 = 2 \). 78

3.15 Sinais de controle e erros de resposta. \(\eta_1 = 5; \eta_2 = 2 \). 79

3.16 Concentrações reguladas e superfícies de chaveamento. \(\eta_1 = 5; \eta_2 = 2 \). 79

3.17 Sinais de controle e erros de resposta. \(\eta_1 = \eta_2 = 2; \phi_1 = 0.15; \phi_2 = 0.1 \). 80

3.18 Sinais de controle e erros de resposta. \(\eta_1 = 5; \eta_2 = 2; \phi_1 = 0.15; \phi_2 = 0.1 \). 80

3.19 Sinais de controle, erros de resposta, concentrações reguladas e superfícies de chaveamento para \(\eta_1 = 5; \eta_2 = 3; \phi_1 = 0.5; \phi_2 = 0.5 \). 82

3.20 Sinais de controle, erros de resposta, concentrações reguladas e superfícies de chaveamento para \(\eta_1 = 8; \eta_2 = 5; \phi_1 = 0.8; \phi_2 = 0.8 \). 83

3.21 Influência do parâmetro \(b \), no transitório. (a) \(b_1 = b_2 = 1 \); (b) \(b_1 = 5; b_2 = 3 \). 84

3.22 Regulação das concentrações introduzindo variações nos valores de referência. 85

3.23 Eliminação do “chattering” utilizando a função \(\text{cont}(S) \). Sinais de controle e erros de resposta. \(\eta_1 = 8; \eta_2 = 5; b_1 = b_2 = 2 \). 86

3.24 Entradas de referência e respostas do sistema. \(\eta_1 = 8; \eta_2 = 5; b_1 = 5; b_2 = 3; \delta_1 = \delta_2 = 0.8 \). 87
Capítulo 1

Introdução

O fato de existirem poderosas ferramentas para o controle de sistemas lineares é talvez a principal justificativa para linearizar um sistema não-linear.

Um dos procedimentos mais utilizados para projetar controladores em sistemas não-lineares, consiste em linearizar o sistema em torno de um ponto nominal de operação, utilizando a primeira aproximação de uma expansão em série de Taylor. Esta abordagem, apesar de limitar a validade do controle projetado a uma vizinhança do ponto considerado, tem sido aplicada com sucesso em diversos campos da engenharia.

Uma extensão deste procedimento consiste em linearizar o sistema em torno de vários pontos de operação, projetando, através de técnicas lineares, um controle para cada ponto e juntando-os depois num único controle. Esta técnica é conhecida como escalonamento de ganhos (“gain scheduling”) [36] e é geralmente aplicada de uma maneira ad hoc.

Uma outra abordagem muito utilizada em problemas com plantas cujas não-linearidades são descontínuas ou com vários valores num ponto (saturação, histerese, etc.) é a chamada linearização harmônica ou quase-linearização [24]. Esta consiste em substituir cada não-linearidade por um ganho quase-linear (função descritiva) [22], o qual é obtido considerando a resposta do correspondente elemento não-linear a uma entrada específica. Existem procedimentos sistematizados para o projeto de controladores em sistemas não-lineares, baseados neste enfoque [60] [46].
Nos últimos anos, a introdução da *geometria diferencial* na teoria de controle [12], o desenvolvimento dos métodos qualitativos na teoria de sistemas dinâmicos [25] e os avanços nas técnicas computacionais, têm produzido uma revolução no tratamento dos fenômenos não-lineares.

As novas técnicas de linearização: a linearização global, a linearização entrada-saída, a pseudo-linearização e a linearização estendida fazem parte dos chamados métodos geométricos de controle [5] [31] [32], os quais têm a geometria diferencial como sua principal ferramenta matemática. A idéia comum em todas elas é a de transformar um sistema não-linear num sistema linear “equivalente” que independe do ponto de operação, para aproveitar as técnicas lineares disponíveis para o projeto de controladores.

A **linearização global** [30] consiste em obter, mediante transformações de coordenadas nos espaços de estado e de controle, e de uma realimentação de estados, um sistema linear equivalente. Neste caso, as saídas não são consideradas.

Na **linearização entrada-saída** [37] obtem-se, mediante a manipulação das saídas do sistema, um sistema geralmente de ordem reduzida cujo comportamento do ponto de vista entrada-saída é linear.

Na **pseudo-linearização** realiza-se uma transformação de coordenadas e uma realimentação de estados para obter um sistema linear aproximado, cujo domínio de validade não é todo o espaço de estados, como na transformação global, mas um conjunto de pontos nas vizinhanças dos pontos de operação do sistema.

A **linearização estendida** [8] consiste em obter uma família parametrizada de sistemas linearizados em torno de pontos nominais de operação. Um controlador parametrizado é projetado, de maneira que quando linearizado, o sistema em malha fechada terá as características dinâmicas lineares desejadas.

Embora subsista a idéia da “linearização”, os méritos destas técnicas estão na ampliação do domínio de validade do sistema linearizado e na consideração explícita das não-linearidades.
Esta dissertação está dividida em duas partes. No segundo capítulo apresenta-se uma revisão das mencionadas técnicas de linearização, começando pela linearização local (por série de Taylor) e seguindo com a linearização global e a linearização entrada-saída, aplicadas a sistemas de uma entrada e uma saída e a sistemas multivariáveis. Nos casos da pseudo-linearização e da linearização estendida, somente serão considerados sistemas com uma entrada e uma saída. Apresentam-se procedimentos para o projeto dos controladores a partir dos sistemas linearizados. Alguns exemplos ilustram a aplicação destas técnicas.

O terceiro capítulo é dedicado ao controle de um fermentador alcoólico contínuo, utilizando algumas das técnicas de linearização mencionadas. Apresenta-se uma análise do modelo em estado estacionário, definem-se os objetivos de controle e projetam-se controladores cujo desempenho é comparado e avaliado mediante simulações.

Os requisitos matemáticos básicos para a manipulação das técnicas de linearização, estão incluídos no Apêndice.
Capítulo 2

Técnicas de Linearização

Neste capítulo apresenta-se uma revisão das técnicas de linearização, começando pela bem conhecida linearização local (por série de Taylor), seguindo com a linearização global e a linearização entrada-saída, aplicadas a sistemas de uma entrada e uma saída e a sistemas multivariáveis. Seguem-se a linearização estendida e a pseudo-linearização nas quais somente será considerado o caso de sistemas com uma entrada e uma saída.

São apresentados vários métodos para o projeto do controlador do sistema linearizado. A maior ênfase é colocada no caso da linearização entrada-saída, já que esta técnica permite uma aplicação direta e sistemática tanto de métodos de projeto convencionais (controle clássico, alocação de pólos, etc.), quanto de métodos avançados (p. ex. "sliding mode control").

Alguns exemplos ilustram a aplicação destas técnicas. Para uma familiarização com a notação matemática, recomenda-se uma leitura prévia do apêndice.

2.1 Linearização por Expansão em Série de Taylor

Este tipo de linearização é o mais utilizado na prática, apesar de produzir um modelo linear válido numa vizinhança do ponto de operação considerado.
Figura 2.1: Plano tangente correspondente à aproximação linear de uma função f.

Considere-se um sistema não-linear, definido por:

$$\dot{z} = f(z, u)$$

onde f é uma função suave1 de $z \in \mathbb{R}^n$ e $u \in \mathbb{R}^m$.

Sejam z_0 e u_0 tais que

$$f(z_0, u_0) = 0$$

são valores constantes das variáveis de estado e de controle respectivamente, correspondentes a um ponto de operação.

Expandindo $f(z, u)$ numa série de Taylor em torno de (z_0, u_0), temos:

$$f(z, u) = f(z_0, u_0) + \frac{\partial f(z, u)}{\partial z}(z - z_0) + \frac{\partial f(z, u)}{\partial u}(u - u_0) + t.o.supp.$$

1Vide Apêndice
Geometricamente, linearizar um sistema mediante Série de Taylor, é equiva-
mente a colocar um plano tangente sobre a superfície não-linear \(f \) no ponto
\((x_0, u_0)\), como mostra a figura (2.1).

Definem-se as matrizes \(A \) e \(B \) como:

\[
A = \begin{bmatrix}
\frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n}
\end{bmatrix}, \quad
B = \begin{bmatrix}
\frac{\partial f}{\partial u_1} & \cdots & \frac{\partial f}{\partial u_m}
\end{bmatrix}
\]

Então o sistema não-linear (2.1) é aproximado localmente por:

\[
\dot{z} = Az + Bv
\]

onde \(z = x - x_0 \) e \(v = u - u_0 \).

Exemplos de aplicação deste tipo de linearização encontram-se em todos os
textos básicos de controle. Um caso em que esta técnica falha é apresentado
a seguir.

EXEMPLO 2.1

O sistema considerado representa, de maneira simplificada, a dinâmica de
um satélite rígido não-esférico, impulsionado por um par de jatos (Levine
[38]):

\[
\begin{align*}
\dot{x}_1 &= a_1 x_2 x_3 + b_1 u \\
\dot{x}_2 &= a_2 x_1 x_3 + b_2 u \\
\dot{x}_3 &= a_3 x_1 x_2
\end{align*}
\]

com \(|u| \leq 1 \) e \(a_3 \neq 0, a_1 b_2 \neq a_2 b_1 \).

Pode-se mostrar que o sistema não-linear é controlável em todo o espaço de
estado.

Linearizando em torno do ponto \((0, 0, 0, u)\), obtem-se o sistema:

\[
\dot{z} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} z + \begin{bmatrix}
b_1 \\
b_2 \\
o
\end{bmatrix} u
\]

o qual evidentemente não é controlável.
OBSERVAÇÕES

- Uma questão importante no projeto de controladores a partir de um sistema linearizado por série de Taylor é a definição do "tamanho" da vizinhança em torno do ponto de operação, na qual a aproximação linear é válida.

- As não-linearidades descontínuas ou com vários valores num ponto não podem ser linearizadas por série de Taylor.

- Projetar um controle a partir de um sistema linearizado, sem uma análise prévia do sistema não-linear, pode ter consequências sérias nos casos em que o sistema original apresente bifurcações [29] ou comportamento caótico [15].

2.2 Linearização Global

Mediante transformações de coordenadas nos espaços de estado e de controle, e uma realimentação de estados, um sistema de controle não-linear pode ser transformado num sistema linear equivalente. Tal transformação, quando definida em todo o espaço de estados produz um sistema globalmente linearizado.

Utilizando a geometria diferencial como ferramenta matemática e seguindo os trabalhos originais de Brockett [11], Jakubczyk e Respondek [34], e Su [56], Hunt, Su e Meyer [30] apresentam as condições necessárias e suficientes para a existência das transformações que linearizam globalmente um sistema não-linear. Zak e Macarley [69] apresentam três métodos para a determinação das transformações, ilustrando-os com exemplos.

Nesta seção introduzimos a ideia de transformação global partindo do caso mais simples -um sistema não-linear unidimensional. Posteriormente consideramos o caso de sistemas de dimensão n com uma entrada e uma saída, e finalmente estudamos o problema em sistemas multivariáveis.
2.2.1 A Idéia de Transformação Global Não-Linear

Consideremos o sistema de controle não-linear

\[\dot{z} = f(z) + g(z)u \] (2.4)

onde \(f \) e \(g \) são funções suaves de \(z \in \mathcal{R} \) e \(u \in \mathcal{R} \).

Por simplicidade, estamos considerando um sistema com uma variável de estado \(z \) e uma entrada \(u \).

Deseja-se “converter” o sistema (2.4), que é não-linear na variável \(z \), num sistema linear na variável \(z \). A vantagem de tal transformação é evidente no momento de projetar o controlador, já que então é possível aproveitar as técnicas disponíveis para os sistemas lineares. Depois de projetado o controlador linear na variável \(z \), obtém-se mediante uma transformação inversa, o controlador não-linear a ser implementado no sistema original.

Seja

\[\dot{z} = a + bv \] (2.5)

o sistema linear obtido mediante a transformação

\[z = T(z) \] (2.6)

onde \(a, b \) são parâmetros do sistema, \(v \) é a variável de controle linear e \(T(\cdot) \)

\[\text{é uma função suave e inversível de } z \text{ a ser determinada.} \]

Derivando (2.6) com respeito a \(t \):

\[\frac{dz}{dt} = \frac{dT}{dz} \frac{dz}{dt} \] (2.7)

Substituindo (2.4) em (2.7):

\[\dot{z} = \frac{dT}{dz} (f(z) + g(z)u) \] (2.8)

Comparando (2.5) e (2.8), obtém-se:

\[\frac{dT}{dz} f(z) = a \] (2.9)

\[\frac{dT}{dz} g(z) = bv \] (2.10)
Figura 2.2: Configuração conceitual da transformação não-linear.

A expressão (2.9) pode ser resolvida para \(T(x) \), por integração. De (2.9) e (2.10), obtém-se a lei de controle não-linear:

\[
 u = f(x,v) = \frac{b vf(x)}{ag(x)} \tag{2.11}
\]

com \(ag(x) \neq 0 \), a qual é a lei de controle a ser implementada. Nesta expressão, \(v \) é uma lei de controle linear (PI, PID, etc.) projetada de maneira que o sistema linear equivalente (2.5) satisfaca os objetivos de controle desejados.

A figura (2.2) ilustra estas transformações.

EXEMPLO 2.2. Controle de nível num tanque hemisférico.

Considere-se o tanque mostrado na figura (2.3). Um balanço de matéria no sistema produz uma expressão da forma (2.4), onde:

\[
 f(x) = -\frac{kz^{1/2}}{2Rx - z^2}
\]

9
Figura 2.3: Tanque hemisférico

\[g(z) = \frac{1}{\pi(2Rx - z^2)} \]

com \(z \equiv h, \ u \equiv F_1 \) e \(k \) constante.

Da equação (2.9):

\[\frac{dT}{dx} \left[\frac{-kz^{1/2}}{2Rx - z^2} \right] = \alpha \]

Integrando, obtém-se

\[T(z) = k_1 z^{3/2} \left[\frac{4R}{3} - \frac{2x}{5} \right] \]

e da equação (2.11) determina-se a lei de controle não-linear:

\[u = k_2 z^{1/2} v \]

onde \(k_1 = -\alpha/k, \ k_2 = \pi/k_1. \)

O controle \(v \) é projetado considerando o sistema linear equivalente. Seja, por exemplo, um controlador proporcional integral (PI):

\[v = k_z \left[(z_r - z) + \frac{1}{\tau} \int_0^t (z_r - z) dt \right] \]

onde \(z_r \) é a entrada de referência e \(k_z, \tau \) são parâmetros do controlador.
Figura 2.4: Sistema com controle não-linear

Aplicando este controlador ao sistema linear (2.5), obtém-se um sistema em malha fechada cujo polinômio característico é:

\[s^2 + bk_e s + \frac{bk_e}{\tau} = 0 \]

Escolhendo valores para as constantes \(a \) e \(b \), determinam-se as constantes \(k_e \) e \(\tau \) de maneira que as raízes do polinômio característico (pólos do sistema linear) garantam estabilidade e proporcionem o tipo de resposta desejada. Na figura (2.4) apresenta-se um diagrama do sistema resultante.

Com um exemplo semelhante, Ogunnaike [47] realiza simulações e compara as características do controlador não-linear com as de um controlador PI convencional, mostrando algumas vantagens do primeiro.

OBSERVAÇÃO

O exemplo apresentado ilustra claramente os aspectos fundamentais a serem formalizados no caso de sistemas de ordem maior que um:

- A transformação de coordenadas no espaço de estado, \(z = T(x) \).
A transformação de coordenadas no espaço de controle e a realimentação de estados \(u = \hat{T}(z, v) \).

A linearização global é o resultado destas operações.

2.2.2 Sistemas com uma Entrada e uma Saída

Considere-se o sistema não-linear

\[
\dot{z} = f(z) + g(z)u
\]

(2.12)

onde \(z \in \mathcal{R}^n \), \(u \in \mathcal{R} \), \(f \) e \(g \) são campos vetoriais suaves, definidos sobre uma vizinhança aberta \(U \) da origem, com \(f(0) = 0 \).

O problema consiste em determinar as condições suficientes sobre \(f \), \(g \) e \(u \), para que exista uma transformação suave, \(T = T(T_1, T_2, \ldots, T_{n+1}) \) de \(\mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n+1} \), tal que nas novas variáveis de estado \(\dot{z}_i = T_i(z) \) e de controle \(\dot{v} = T_{n+1}(z, u) \), o sistema tenha a forma linear

\[
\begin{align*}
\dot{z}_1 &= z_2 \\
\dot{z}_2 &= z_3 \\
&\vdots \\
\dot{z}_n &= v
\end{align*}
\]

(2.13)

A transformação tem as seguintes propriedades:

1. \(T_i(0) = 0 \).
2. O Jacobiano de \(T_1, \ldots, T_n \) é não singular em \(\mathcal{R}^n \).
3. \(T_{n+1} \) pode ser invertida como função de \(u \).
4. \(T_1, \ldots, T_{n+1} \) satisfazem \(\hat{T}_1 = T_2, \hat{T}_2 = T_3, \ldots, \hat{T}_n = T_{n+1} \).

Hunt, Su e Meyer [30] mostram que as condições necessárias e suficientes para a existência de tal transformação são:

1. A matriz de controlabilidade \([g, (ad_f, g), \ldots, (ad_f^{n-1}, g)]\) é não-singular.
2. O conjunto de campos vetoriais \(\{ g, (ad_f, g), \ldots, (ad_{d-2}^f, g) \} \) é involutivo\(^2\).

Para obter as equações que determinam a transformação, procede-se como segue:

Derivando \(z_i = T_i(x) \) com respeito ao tempo:

\[
\dot{T}_i = \frac{\partial T_i}{\partial x}[f(x) + g(x)u] = T_{i+1}
\]

Dado que \(T_1, \ldots, T_n \) não dependem de \(u \), verifica-se que:

\[
\frac{\partial T_i}{\partial x} f(x) = T_{i+1} \quad i = 1, 2, \ldots, n - 1
\]

\[
\frac{\partial T_n}{\partial x}[f(x) + g(x)u] = T_{n+1}
\]

Assim, para construir a transformação que lineariza globalmente o sistema (2.12), é necessário resolver o seguinte sistema de equações diferenciais parciais:

\[
\frac{\partial T_i}{\partial x_1} g_1 + \cdots + \frac{\partial T_i}{\partial x_n} g_n = 0
\]

\[
\frac{\partial T_i}{\partial x_1} f_1 + \cdots + \frac{\partial T_i}{\partial x_n} f_n = T_{i+1} \quad i = 1, 2, \ldots, n - 1
\]

\[
\frac{\partial T_n}{\partial x_1}(f_1 + ug_1) + \cdots + \frac{\partial T_n}{\partial x_n}(f_n + ug_n) = T_{n+1}
\]

Isto pode expressar-se como:

\[
<dT_i, g> = 0
\]

\[
<dT_i, f> = L_f T_i = T_{i+1} \quad i = 1, 2, \ldots, n - 1
\]

\[
<dT_n, f + ug> = L_{f+ug} T_n = T_{n+1} = v
\]

\(^2\)Vide Apêndice
Mostra-se [30] que a transformação T fica determinada encontrando o componente T_1, tal que $T_1(0) = 0$ e:

$$
<dT_1,(ad_f^k,g)> = 0 \quad k = 0,1,\ldots,n-2
$$
$$
<dT_1,(ad_f^{n-1},g)> \neq 0
$$

(2.14)

As T_i, restantes obtém-se de:

$$
T_{n+1} = <dT_i,f> = L_fT_i
$$

(2.15)

EXEMPLO 2.3 [57]

Considere-se o sistema não-linear $\dot{x} = f(x) + g(x)u$, com

$$
f(x) = \begin{bmatrix}
\sin z_2 \\
0
\end{bmatrix} \quad g(x) = \begin{bmatrix}
0 \\
1
\end{bmatrix}
$$

Neste caso, $C = [g,(ad_f,g)]$, isto é:

$$
C = \begin{bmatrix}
0 & -\cos z_2 \\
1 & 0
\end{bmatrix}
$$

Como $\det C \neq 0$, o sistema é controlável em $-\pi/2 < z_2 < \pi/2$.

Transformação:

De (2.14), $<dT_1,g> = 0$, $<dT_1,(ad_f,g)> \neq 0$. Então:

$$
\frac{dT_1}{dz_2} = 0
$$
$$
\frac{dT_1}{dz_2} = 0
$$

É fácil ver que $T_1 = z_1$ é uma solução em $-\pi/2 < z_2 < \pi/2$. Então, a transformação é:

$$
T_1 = z_1
$$
$$
T_2 = L_fT_1 = \sin z_2
$$
$$
T_3 = L_fz_2T_2 = u\cos z_2 = v
$$

14
Assim, o sistema linear equivalente é:

\[\begin{align*}
 \dot{x}_1 &= x_2 \\
 \dot{x}_2 &= v
\end{align*} \]

onde \(x_1 = x_1, \ x_2 = \text{sen} \ x_2, \ v = \text{ucos} \ x_2. \)

2.2.3 Sistemas Multivariáveis

Considere-se um sistema de controle não-linear, da forma

\[\dot{x}_1 = f(x) + \sum_{i=1}^{m} g_i(x)u_i \quad (2.16) \]

onde \(x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ f \) e cada \(g_i \) são campos vetoriais suaves definidos sobre uma vizinhança aberta \(U \) da origem, com \(f(0) = 0. \)

Seja \(T(x, u) \) um vetor de \((n+m)\) transformações contínuas e inversíveis, com \(T(x(0), 0) = 0, \) tais que \(T_1, T_2, \ldots, T_m \) são funções de \(x \) e \(T_{m+1}, \ldots, T_{n+m} \) são funções de \(x \) e \(u. \)

O problema consiste em encontrar as condições necessárias e suficientes para a existência das transformações que convertam o sistema (2.16) num sistema linear na forma canônica de Brunovsky:

\[\begin{align*}
 \sigma_1 &= k_1 \\
 \dot{x}_1 &= x_2 \\
 \dot{x}_2 &= x_3 \\
 & \vdots \\
 \dot{x}_{\sigma_1} &= v_1 \\
 \sigma_2 &= k_2 + \sigma_1 \\
 \dot{x}_{\sigma_1+1} &= x_{\sigma_1+2} \\
 \dot{x}_{\sigma_1+2} &= x_{\sigma_1+3} \\
 & \vdots \\
 \dot{x}_{\sigma_2} &= v_2 \\
 & \vdots \\
 \sigma_m &= k_m + \sigma_{m-1} \\
 \dot{x}_{\sigma_{m-1}+1} &= x_{\sigma_{m-1}+2}
\end{align*} \]
\[i_{x_{m-1+2}} = i_{x_{m-1+3}} \]
\[\vdots \]
\[i_{x_m} = v_2 \] (2.17)

Tais transformações produzem um conjunto de m subsistemas, cada um deles com k, variáveis de estado.

O inteiro \(k \) é chamado de índice de controlabilidade do sub sistema \(i \). As constantes \(\sigma_i \), \(i = 1, \ldots, m \) são definidas como \(\sigma_1 = k_1 \), \(\sigma_2 = k_1 + k_2 \), \ldots, \(\sigma_m = k_1 + k_2 + \ldots + k_m = n \).

De maneira análoga ao caso dos sistemas de uma entrada e uma saída, Hunt, Su e Meyer [31] apresentam as condições necessárias e suficientes para a existência das transformações:

1. A matriz de controlabilidade \(C = [g_1, (ad_f, g_1), \ldots, (ad_f^{k_1-1}, g_1), g_2, (ad_f, g_2), \ldots, (ad_f^{k_2-1}, g_2), \ldots, g_m, (ad_f, g_m), \ldots, (ad_f^{k_m-1}, g_m)] \) é não singular em \(U \).

2. O conjunto de campos vetoriais \(C_j = \{g_1, (ad_f, g_1), (ad_f^{k_j-2}, g_1), g_2, (ad_f, g_2), \ldots, (ad_f^{k_j-2}, g_2), \ldots, g_m, (ad_f, g_m), \ldots, (ad_f^{k_j-2}, g_m)\} \), \(j = 1, 2, \ldots, m \) é involutivo.

3. O espaço definido por cada \(C_j \) é igual ao espaço definido por \(C_j \cap C \).

Como no caso de sistemas de uma entrada e uma saída, no qual somente era necessário determinar a primeira componente da transformação \(T_1 \), para obter diretamente as outras componentes, nos sistemas multivariáveis é suficiente determinar os primeiros elementos dos subsistemas, \(T_1(x), T_{x_1+1}, \ldots, T_{x_{m-1+1}}(x) \), para construir a transformação.

As equações diferenciais a serem resolvidas são:

\[<dT_{x_1}, (ad_f^j, g_i)> = 0 \quad j = 0, 1, \ldots, k_1 - 1 \]
\[<dT_{x_1+1}, (ad_f^j, g_i)> = 0 \quad j = 0, 1, \ldots, k_2 - 2 \]
\[\vdots \]
\[<dT_{x_{m-1+1}}, (ad_f^j, g_i)> = 0 \quad j = 0, 1, \ldots, k_m - 2 \]
\[i = 1, 2, \ldots, m \] (2.18)
As restantes transformações para as variáveis de estado são determinadas diretamente de:

\[T_2 = <dT_1, f > \]
\[T_3 = <dT_2, f > \]
\[\vdots \]
\[T_{r_1} = <dT_{r_1-1}, f > \]
\[\vdots \]
\[T_{r_2} = <dT_{r_1+1}, f > \]
\[\vdots \]
\[T_{r_3} = <dT_{r_1+2}, f > \]
\[\vdots \]
\[T_{v_m} = <dT_{v_{m-1}}, f > \] \hspace{1cm} (2.19)

Depois de determinar as \(n \) novas variáveis de estado, as \(m \) novas variáveis de controle \(T_{n+1}, T_{n+2}, \ldots, T_{n+m} \), encontram-se diretamente de:

\[T_{n+1} = <dT_{r_1}, f > + \sum_{i=1}^{m} <dT_1, (ad_f^{i-1}, g_i)> u_i \]
\[T_{n+2} = <dT_{r_1}, f > + \sum_{i=1}^{m} <dT_{r_1+1}, (ad_f^{i-1}, g_i)> u_i \]
\[\vdots \]
\[T_{n+m} = <dT_{r_1}, f > + \sum_{i=1}^{m} <dT_{r_{m-1}+1}, (ad_f^{i-1}, g_i)> u_i \] \hspace{1cm} (2.20)

Para que seja possível resolver para \(u_1, u_2, \ldots, u_m \) nas equações (2.20), a
A seguinte matriz deve ser não-singular:

\[
\begin{bmatrix}
<dT_1, (ad_f^{b_1-1}, g_1)> & \ldots & <dT_1, (ad_f^{b_1-1}, g_m)> \\
<dT_{e_1+1}, (ad_f^{b_1-1}, g_1)> & \ldots & <dT_{e_1+1}, (ad_f^{b_1-1}, g_m)> \\
\vdots & \ddots & \vdots \\
<dT_{e_m+1}, (ad_f^{b_1-1}, g_1)> & \ldots & <dT_{e_m+1}, (ad_f^{b_1-1}, g_m)>
\end{bmatrix}
\]

OBSERVAÇÕES

- A solução das \(n \) equações diferenciais parciais (2.18) não é única. A solução particular utilizada para o projeto do controle deve ser escolhida tendo em conta critérios físicos.

- Os índices de controlabilidade \(k_1, k_2, \ldots, k_m \), são invariantes sob uma transformação de coordenadas e uma realimentação de estados. A escolha destes índices determina a estrutura das transformações, tendo em conta que \(\sum_{j=0}^{m} k_j = n \). Assim, por exemplo, para um sistema com \(n = 3, m = 2 \), se \(k_1 = 1, k_2 = 2 \), a matriz de controlabilidade será \(C = \{g_1, g_2, (ad_f, g_3)\} \). Se \(k_1 = 2, k_2 = 1 \), a matriz de controlabilidade será \(C = \{g_1, (ad_f, g_1), g_2\} \).

EXEMPLO 2.4

Considere-se o sistema não-linear

\[
\begin{align*}
\dot{x}_1 &= x_1x_2 + u_1 \\
\dot{x}_2 &= 2x_1x_2 + x_2 + 2u_1 \\
\dot{x}_3 &= x_1x_3 - x_3u_1 + u_2
\end{align*}
\]

Neste caso:

\[
f(x) = \begin{bmatrix}
x_1x_2 \\
2x_1x_2 + x_2 \\
x_1x_3
\end{bmatrix} \quad g_1(x) = \begin{bmatrix} 1 \\
2 \\
-x_3
\end{bmatrix} \quad g_2(x) = \begin{bmatrix} 0 \\
0 \\
1
\end{bmatrix}
\]

Sejam, por exemplo, \(k_1 = 2, k_2 = 1 \) os índices de controlabilidade. Assim, a matriz \(C = \{g_1, (ad_f, g_1), g_2\} \) deve ser não-singular e os vetores \(g_1 \) e \(g_2 \) devem
ser involutivos. É fácil verificar que

\[[g_1, g_2] = g_2 \]

e que a matriz de controlabilidade é

\[
C = \begin{bmatrix} 1 & -2x_1 - x_2 & 0 \\ 2 & -4x_1 - 2x_2 - 1 & 0 \\ -x_3 & -x_3 & 1 \end{bmatrix}
\]

com \(\det C = -2 \). Isto é, os campos vetoriais \(g_1 \) e \(g_2 \) são involutivos e o sistema é controlável.

De (2.18), com \(\sigma_1 = 1, \sigma_2 = 3 \):

\[<dT_1, g_1> = 0 \]
\[<dT_1, g_2> = 0 \]

ou

\[
\frac{\partial T_1}{\partial x_1} + 2\frac{\partial T_1}{\partial x_2} - \frac{\partial T_1}{\partial x_3} x_3 = 0 \\
\frac{\partial T_1}{\partial x_1} = 0
\]

Uma solução é \(T_1 = -2x_1 + x_2 \). De (2.19):

\[T_2 = <dT_1, f> = x_2 \]

Neste caso, pelos índices de controlabilidade escolhidos, \(T_3 \) é determinado de maneira independente. De (2.20):

\[T_4 = <dT_3, f> + <dT_3, g_1> u_1 + <dT_3, g_2> u_2 = v_1 \]
\[T_5 = <dT_5, f> + <dT_5, g_1> u_1 + <dT_5, g_2> u_2 = v_2 \]

ou,

\[
\begin{bmatrix} <dT_3, g_1> & <dT_3, g_2> \\ <dT_5, g_1> & <dT_5, g_2> \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v_1 - <dT_1, f> \\ v_2 - <dT_3, f> \end{bmatrix}
\]
Existe solução para \(u_1 \) e \(u_2 \) se

\[
<dT_3, g_1> <dT_3, g_2> - <dT_3, g_1> <dT_3, g_2> \neq 0
\]

A componente \(T_3 \) deve ser escolhida levando em conta esta condição.

Neste caso, \(<dT_3, g_2> = 0 \), então é necessário que \(<dT_3, g_2> \neq 0 \). Uma solução é \(T_3 = z_3 \).

Depois de alguns cálculos, obtém-se as leis de controle seguintes:

\[
u_1 = 0.5(v_1 - 2z_1z_2 + z_2)
\]

\[
u_2 = 0.5(z_3v_1 + 2v_2 - 2z_1z_3 + z_2z_3 - 2z_1z_2z_3)
\]

Estas leis de controle e a transformação de variáveis de estado \(x_1 = -2z_1 + z_2 \), \(x_2 = z_2 \), \(x_3 = z_3 \), transformam o sistema não linear original, no sistema linear:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\]

2.2.4 Controle de Sistemas Globalmente Linearizados

Depois de realizada a linearização global de um sistema não-linear, a lei de controle que estabiliza o sistema em um dado ponto de operação pode ser determinada aplicando técnicas de controle linear ao sistema linearizado obtido.

Exemplos de aplicação da técnica de linearização global no controle de sistemas não-lineares encontram-se nos trabalhos de Alvarez-Gallegos [2], Zak e Maccarley [69], Marino [39] e Meyer et alii [41], os quais utilizam alocação de pólos para estabilizar o sistema linearizado. De Luca e Ulivi [17] utilizam controladores \(PI \) e \(PID \) num sistema multivariável, e Alvarez et alii [1] projetam controladores \(P \) e \(PI \) para um sistema com uma entrada e uma saída. Matthews et alii [40] combinam a linearização global com a técnica de controle de estrutura variável.

O exemplo seguinte ilustra a aplicação da alocação de pólos a um sistema globalmente linearizado.
EXEMPLO 2.5 [57]
No exemplo 2.3 mostrou-se que o sistema

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
\sin x_2 \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} u
\]

é transformado, mediante a transformação:

\[
\begin{align*}
z_1 &= x_1 \\
z_2 &= \sin x_2 \\
z_3 &= u \cos z_2 = v
\end{align*}
\]

num sistema canônico não-linear

\[
\begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
z_1 \\
z_2
\end{bmatrix} + \begin{bmatrix}
0 \\
1
\end{bmatrix} v
\]

Verifica-se que com \(v = -2z_1 - 2z_2 \), os pólos do sistema em malha fechada são \(\lambda = -1 \pm i \). Assim,

\[
\begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-2 & -2
\end{bmatrix} \begin{bmatrix}
z_1 \\
z_2
\end{bmatrix} = A_0 z
\]

Com

\[
Q = \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}
\]

Resolvendo \(A_0^T P + PA_0 = Q \), encontra-se:

\[
P = \begin{bmatrix}
5/4 & 1/4 \\
1/4 & 3/8
\end{bmatrix}
\]

Então, \(V(x) = x^T P x = \frac{5}{8} x_1^2 + \frac{1}{2} x_1 x_2 + \frac{3}{8} x_2^2 \) é uma função de Lyapunov para \(i = A_0 z \) na origem.

A lei de controle não-linear é obtida de:

\[
\cos z_2 = -2z_1 - 2z_2
\]

21
Mas \(x_1 = x_1 \) e \(x_2 = \text{sen} \ x_2 \), então:

\[
 u = -\frac{2x_1}{\cos x_2} - 2 \tan x_2
\]

Substituindo no sistema original, obtém-se:

\[
 \begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
 \end{bmatrix} = \begin{bmatrix}
 \text{sen} \ x_2 \\
 -\frac{2x_1}{\cos x_2} - 2 \tan x_2
 \end{bmatrix}
\]

A função \(V(x(x)) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2 \text{sen} \ x_2 + \frac{1}{2} \text{sen}^2 x_2 \) é uma função de Lyapunov para a origem. Esta função poderia ser utilizada, por exemplo, para determinar o domínio de atração do ponto de equilíbrio considerado.

Verifica-se que os autovalores da matriz jacobiana local deste sistema são \(\lambda = -1 \pm i \), isto é, exatamente os mesmos do sistema linearizado.

OBSERVAÇÕES

- As condições necessárias e suficientes para a existência da transformação global –particularmente a condição de involutividade– são muito restritivas e difíceis de verificar manualmente.

- A construção da transformação envolve a solução de equações diferenciais parciais lineares; estas podem não admitir uma solução exata e sua solução numérica pode resultar complicada.

- Se as condições são atendidas, o domínio da transformação deve ser estabelecido; se ele estiver limitado às vizinhanças de um ponto de operação, as vantagens do projeto não-linear ficam em dúvida.

- A lei de controle final pode ser extremamente complicada, ocasionando problemas para a implementação.

- As incertezas nos parâmetros, no modelo e as perturbações externas não são levadas em conta. A robustez do método é um assunto ainda aberto; para sua verificação, a simulação é a ferramenta mais utilizada.
2.3 Linearização Entrada-Saída

A técnica de linearização entrada-saída consiste em determinar uma lei de realimentação de estados tal que o comportamento entrada-saída do sistema não-linear seja equivalente ao de um sistema linear. Esta ideia, baseada na teoria de inversão e desacoplo de sistemas não-lineares (Hirschorn [28]), foi introduzida recentemente por Gilbert e Ha [23] e desenvolvida depois por Kravaris e Chung [37], os quais a aplicaram no controle de processos.

2.3.1 Sistemas com uma Entrada e uma Saída

Considere-se o sistema de controle não-linear

\[
\dot{x} = f(x) + g(x)u \\
y = h(x)
\]

(2.21)

onde o estado \(x \in \mathbb{R}^n \), o controle \(u \in \mathbb{R} \), e \(f, g \), são campos vetoriais suaves em \(\mathbb{R}^n \). A saída \(y \) é um campo escalar suave em \(\mathbb{R}^n \).

Derivando a saída \(y \) com respeito ao tempo, obtém-se

\[
\dot{y} = \frac{\partial h}{\partial x}(f(x) + g(x)u) \\
\dot{y} = L_f h + L_g h u
\]

(2.22)

onde \(L_f h \) e \(L_g h \) são as derivadas de Lie \(^5\) de \(h \) com relação a \(f \) e \(g \) respectivamente. Se \(L_g h \neq 0 \), então a lei de controle \(u = \psi(x, v) \),

\[
u = \frac{1}{L_g h} (v - L_f h)
\]

produz o sistema linear

\[\dot{y} = v\]

Se \(L_g h = 0 \), então derivamos (2.22) para obter:

\[
\ddot{y} = L_f^2 + L_g (L_f h) u
\]

(2.23)

\(^5\)Ver Apêndice

23
Então, se \(L_g(L_f)h \neq 0 \), a lei de controle

\[
 u = \frac{1}{L_g(L_f)h} (v - L_f^2 h)
\]

lineariza o sistema (1.21) para produzir

\[
 \ddot{y} = v
\]

Em geral, se \(r \) é o menor inteiro positivo tal que \(L_g(L_f^k h) = 0 \) para \(k = 0, 1, \ldots, r - 2 \) e \(L_g(L_f^{r-1} h) \neq 0 \), então a lei de controle

\[
 u = \frac{1}{L_g(L_f^{r-1} h)} (v - L_f^r h)
\]

produz

\[
 y^{(r)} = v
\]

DEFINIÇÃO. Define-se o índice de linearisabilidade do sistema (2.21) como o menor inteiro \(r \) para o qual

\[
 L_g(L_f^{r-1} h) \neq 0
\]

(2.24)

O índice de linearisabilidade também é conhecido como a ordem relativa do sistema.

Kravaris e Chung [37] mostram que uma condição necessária e suficiente para a existência de uma transformação que lineariza o sistema (2.21) do ponto de vista entrada-saída, é que o sistema tenha uma ordem relativa finita.

Da definição de índice de linearisabilidade é evidente que:

\[
 \frac{d^k y}{dt^k} = L_f^k h \quad k = 1, \ldots, r - 1
\]

\[
 \frac{d^r y}{dt^r} = L_f^r h + L_g(L_f^{r-1} h)u
\]

(2.25)

Agora, seja

24
\[
\frac{d^r y}{dt^r} + \beta_{r-1} \frac{d^{r-1} y}{dt^{r-1}} + \ldots + \beta_0 y = v
\] (2.26)

a dinâmica linear desejada, isto é,
\[
\sum_{k=0}^{r} \beta_k \frac{d^k y}{dt^k} = v, \quad \beta_r = 1
\]

Então, de (2.26):
\[
\frac{d^r y}{dt^r} = v - \sum_{k=0}^{r-1} \beta_k \frac{d^k y}{dt^k}
\]

Comparando com (2.25):
\[
L_f^r h + L_g(L_f^{r-1} h) u = v - \sum_{k=0}^{r-1} \beta_k L_f^k h
\]

ou,
\[
u = \frac{v - L_f^r h - \sum_{k=0}^{r-1} \beta_k L_f^k h}{L_g(L_f^{r-1} h)}
\]

Em conclusão, a lei de controle
\[
u = \psi(x, v) = \frac{v - k(x)}{\lambda(x)}
\] (2.27)

onde
\[
k(x) = \sum_{k=0}^{r} \beta_k L_f^k h
\]
\[
\lambda(x) = L_g(L_f^{r-1} h)
\] (2.28)

transforma o sistema (2.21) no sistema linear
\[
\sum_{k=0}^{r-1} \beta_k \frac{d^k y}{dt^k} = v = \Omega(z, u)
\] (2.29)

Os coeficientes \(\beta_0, \beta_1, \ldots, \beta_{r-1}\) são selecionados arbitrariamente.
Figura 2.5: Sistema linearizado entrada-saída com controlador externo

A entrada ao sistema linearizado, é função do erro de resposta e é a saída do "controlador externo". Aqui denominamos "controlador interno" à transformação que lineariza o sistema do ponto de vista entrada-saída. O controlador externo é aquele que atua sobre o sistema linearizado. A estrutura do sistema controlado é mostrada na figura (2.5).

OBSERVAÇÕES

- Em sistemas lineares, a ordem relativa \(r \) é igual à diferença entre os graus dos polinômios do denominador e do numerador da função de transferência. Em geral, a ordem relativa da saída com respeito à entrada é igual à derivada da saída de menor ordem que depende explicitamente da entrada. Esta proporciona uma medida de que tão direto é o efeito dinâmico da entrada sobre a saída.

 No controle de processos, por exemplo, é comum encontrar sistemas de ordem relativa igual a um.

- Quando o índice de linearizabilidade é igual à ordem do sistema \((r = n) \), a transformação \(v = \Omega(x, u) \) junto à transformação de variáveis de
estado

\[z_i = L_{f}^{i-1} \quad i = 1, \ldots, n \]

também lineariza as equações de estado. Assim, a linearização global pode considerar-se como um caso especial da linearização entrada-saída quando \(r = n \).

2.3.2 Sistemas Multivariáveis

Seja um sistema não-linear com \(m \) entradas e \(m \) saídas:

\[
\begin{align*}
\dot{z} &= f(z) + g_1(z)u_1 + \cdots + g_m(z)u_m \\
\psi_i &= h_i(z) \\
& \quad \vdots \\
\psi_m &= h_m(z)
\end{align*}
\]

(2.30)

onde \(z \in \mathbb{R}^n, u \in \mathbb{R}^m, \psi \in \mathbb{R}^m, \) e \(f, g_i, h_i \) são suaves e definidos sobre uma vizinhança aberta \(U \) da origem.

Diferenciando as saídas \(\psi_j \) com respeito ao tempo, temos:

\[
\frac{d\psi_j}{dt} = \frac{\partial h_j}{\partial z}[f(z) + \sum_{i=1}^{m} g_i(z)u_i]
\]

ou

\[
\dot{\psi}_j = L_f h_j + \sum_{i=1}^{m} (L_{g_i} h_j)u_i
\]

(2.31)

Observe-se que se cada \((L_{g_i} h_j) = 0 \), então a entrada não aparece em (2.31).

DEFINIÇÃO. Define-se \(r_j \) como o menor inteiro tal que ao menos uma das entradas apareça em \(\psi_j^{(r_j)} \), isto é:

\[
\psi_j^{(r_j)} = L_f^{r_j} h_j + \sum_{i=1}^{m} L_{g_i}(L_f^{r_j-1} h_j)u_i
\]

(2.32)

com ao menos uma das \(L_{g_i}(L_f^{r_j-1} h_j) \neq 0 \). Se o sistema é linearizável do ponto de vista entrada saída, então para cada saída \(\psi_j \) existe um índice de linearizabilidade \(r_j \).
Define-se a matriz $A(x)$, $m \times m$ como:

$$
A(x) = \begin{bmatrix}
L_{g_1}(L_f^{-1}h_1) & \cdots & L_{g_m}(L_f^{-1}h_m) \\
\vdots & \ddots & \vdots \\
L_{g_1}(L_f^{-m}h_m) & \cdots & L_{g_m}(L_f^{-m}h_m)
\end{bmatrix}
$$

(2.33)

Assim, as equações (2.32) podem-se escrever como:

$$
\begin{bmatrix}
y_1^{(r_1)} \\
\vdots \\
y_m^{(r_m)}
\end{bmatrix}
= \begin{bmatrix}
L_f^1h_1 \\
\vdots \\
L_f^mh_m
\end{bmatrix} + A(x) \begin{bmatrix}
u_1 \\
\vdots \\
u_m
\end{bmatrix}
$$

(2.34)

Se a matriz $A(x)$ é não-singular, a lei de controle por realimentação de estados:

$$
u = -A^{-1}(x) \begin{bmatrix}
L_f^1h_1 \\
\vdots \\
L_f^mh_m
\end{bmatrix} + A^{-1}(x)\nu
$$

(2.35)

produz o sistema desacoplado:

$$
\begin{bmatrix}
y_1^{(r_1)} \\
\vdots \\
y_m^{(r_m)}
\end{bmatrix}
= \begin{bmatrix}
v_1 \\
\vdots \\
v_m
\end{bmatrix}
$$

(2.36)

Mostra-se então, que um sistema não-linear da forma (2.30) é linearizável do ponto de vista entrada-saida se e somente se:

1. Cada saída y_i tem um índice de linearizabilidade r_j.

2. A matriz de desacoplamento A é não-singular para todo $x \in U$

2.3.3 Controle de Sistemas Linearizados (E-S)

Para o projeto do controlador externo de um sistema linearizado do ponto de vista entrada-saida, apresentam-se dois métodos:

- Projeto de um controlador linear convencional
- Projeto de um controlador de estrutura variável

Esta matriz é conhecida como a matriz de desacoplamento
Controlador Linear Convencional

Da mesma maneira que na linearização global, o controlador para o sistema linearizado do ponto de vista entrada-saída (controlador externo) pode ser projetado utilizando técnicas de controle linear.

No caso de sistemas de uma entrada e uma saída, depois de aplicada a lei de controle que lineariza o sistema (2.21), este se comporta como o sistema linear (2.29):

\[\sum_{k=0}^{n} \beta_k \frac{dy}{dt}^k = v \]

Como os coeficientes \(\{\beta_k\} \) são arbitrários, o problema consiste em escolher uma estrutura para o controlador e determinar os ganhos de maneira que o sistema seja estável e produza o tipo de resposta desejada.

O procedimento geral pode resumir-se nos seguintes pontos:

1. Compute a transformação que lineariza o sistema (controlador interno) de equação (2.27).

2. Selecione uma estrutura para o controlador externo (PI, PID, avançado, etc.).

3. Determine os coeficientes \(\{\beta_k\} \) de maneira que as raízes do polinômio

\[\beta_n s^n + \cdots + \beta_1 s + \beta_0 = 0 \]

estejam suficientemente à esquerda do plano complexo (dinâmica rápida e estável).

4. Afinie os parâmetros do controlador até obter o tipo de resposta desejada.

5. A robustez pode ser testada por simulação.

Controlador de Estrutura Variável

Recentemente tem-se obtido avanços consideráveis no controle de sistemas não-lineares com incertezas, utilizando sistemas de estrutura variável e o
Figura 2.6: Regime deslizante sobre uma superfície de chaveamento

método de Liapunov. Esta técnica foi desenvolvida inicialmente na URSS (Utkin [61],[62]) e hoje é bastante utilizada nos mais variados campos da engenharia de controle. Os fundamentos e algumas aplicações da teoria de controladores de estrutura variável encontram-se, entre outros, nos trabalhos de Utkin [63], Itkis [33], De Carlo et alii [16], Young [67], Slotine e Sastry [54], Fernandez e Hedrick [20], Sira-Ramirez [51] e Singh [50].

Os sistemas de estrutura variável são caracterizados por uma lei descontínua de controle, a qual produz um chaveamento que faz com que as trajetórias do sistema permaneçam sobre uma dada superfície, $S = 0$, no espaço de estados (figura (2.6)). A estrutura do controlador é variada intencionalmente para obter-se uma dinâmica desejada no sistema. Numa primeira fase (fase de alcance), a trajetória que começa numa condição inicial arbitrária move-se para a superfície de chaveamento. Na fase seguinte, o movimento restringe-se à superfície (fase de deslizamento ou "sliding mode").

Uma característica importante dos controladores de estrutura variável é que na fase de deslizamento, a dinâmica do sistema está determinada pelos parâmetros de projeto e pelas equações que definem a superfície, sendo insensível
às variações dos parâmetros e distúrbios no sistema.

Na realidade, o "sliding mode" ideal não pode ser alcançado. As imperfeições no sistema de controle (descontinuidade, atraso, etc.) produzem "chattering", o qual é um efeito não desejável que deve ser minimizado.

Assim, os dois problemas a serem resolvidos no projeto de controladores de estrutura variável são:

- a especificação do controle para levar o sistema até a superfície de chaveamento e,
- a redução do "chattering" em torno da superfície de chaveamento.

Sistemas de uma Entrada e uma Saída Considere-se o sistema não-linear com uma entrada e uma saída,

\[
\begin{align*}
\dot{x} &= f(x) + g(x)u \\
y &= h(x)
\end{align*}
\]

(2.37)

onde \(x \in \mathbb{R}^n\), \(u \in \mathbb{R}\), \(f\) e \(g\) são campos vetoriais suaves em \(\mathbb{R}^n\); \(h\) é um campo escalar suave sobre \(\mathbb{R}^n\). O objetivo de controle é fazer com que \(y(t)\) acompanhe uma entrada \(y_d(t)\) ("tracking") na presença de erros limitados de modelagem e incertezas nos parâmetros de \(f(x)\) e \(g(x)\). Supõe-se que o sistema é linearizável no ponto de vista entrada-saída, com índice de linearizabilidade \(r\).

Seja uma superfície escalar \(S(x)\) definida como um operador diferencial linear, estável:

\[
S = \sum_{k=0}^{r-1} \beta_k e^{(k)}
\]

(2.38)

onde \(e^{(k)} = \frac{d^k e}{dt^k}\), sendo \(e = y_d - y\) o erro de resposta e \(r\) o índice de linearizabilidade do sistema.

O problema consiste em determinar a lei de controle \(u(t)\) tal que todas as trajetórias alcançem a superfície \(S = 0\) em tempo finito e que além disso, permaneçam sobre ela.
Uma maneira de garantir que \(S \) seja atrativa é fazer com que \(S^2 \) seja uma função de Liapunov, isto é:

1. \(\frac{1}{2} \dot{S}^2 > 0 \)
2. \(\frac{1}{2} \ddot{S}^2(S^2) < 0 \), ou \(SS < 0 \).

A condição 2 é satisfeita impondo que

\[
S \dot{S} \leq -\eta |S|, \quad \eta > 0
\]

ou, tomando a igualdade,

\[
|S| \text{sgn} (S) \dot{S} = -\eta |S|
\]

isto é:

\[
\dot{S} = -\eta \text{sgn} (S)
\] (2.39)

Integrando (2.39), verifica-se que o sistema alcança a superfície \(S(t) = 0 \) num tempo finito, \(t_r \), dado por:

\[
t_r \leq \frac{|S(0)|}{\eta}
\] (2.40)

Supondo que o índice de linearizabilidade do sistema é \(r = 1 \), então a primeira derivada da saída é:

\[
\dot{y} = L_f h + L_f u
\] (2.41)

Neste caso, a superfície de chaveamento (eq.(2.38)) será:

\[
S = \beta_0 e = \beta_0 (y_d - y)
\]

Sem perda de generalidade, supõe-se que \(\beta_{r-1} = 1 \). Então,

\[
\dot{S} = \dot{y}_d - \dot{y}
\] (2.42)

Substituindo (2.39) e (2.41) em (2.38), e resolvendo para \(u \), obtém-se:

\[
u = \frac{1}{L_f h} [\dot{y}_d - L_f h + \eta \text{sgn} (S)]
\] (2.43)
No caso de \(r = 2 \), tem-se:

\[
\ddot{y} = L_2^2 h + L_y(L_f h) u \tag{2.44}
\]

A superfície de chaveamento é:

\[
S = \dot{e} + \beta e
\]

Então:

\[
\dot{S} = \ddot{y} - \ddot{\dot{y}} + \beta(\ddot{y} - \ddot{\dot{y}}) \tag{2.45}
\]

Substituindo (2.39) e (2.44) em (2.45), obtém-se:

\[
u = \frac{1}{L_y(L_f h)} \left[\ddot{y} - L_2^2 h + \beta(\ddot{y} - L_f h) + \eta \text{sgn} (S) \right] \tag{2.46}
\]

Em geral, para um sistema com índice de linearizabilidade \(r \), tem-se:

\[
u = \frac{1}{L_y(L_f^{r+1} h)} \left[\frac{d^r \ddot{y}}{dt^r} - L_f^r h + \sum_{k=0}^{r-1} \beta_k \left[\frac{d^{k+1} \ddot{y}}{dt^{k+1}} - L_f^{k+1} h \right] + \eta \text{sgn} (S) \right] \tag{2.47}
\]

Um dos problemas destes tipos de controle é o "chattering" produzido pela descontinuidade de \(\text{sgn} (S) \). Esta situação pode ser remediada suavizando a descontinuidade de controle numa camada limite em torno da superfície de chaveamento (Slotine [53]):

\[
B(t) = \{ x | |S| \leq \phi \}, \quad \phi > 0
\]

onde \(\phi \) é a espessura da camada limite (figura 2.7).

Uma lei contínua para aproximar o controle por chaveamento obtém-se interpolando \(u \) no interior de \(B(t) \) (figura 2.8), substituindo \(\text{sgn} (S) \) por \(\text{sat} \left(\frac{x}{\phi} \right) \) (figura 2.9).

Mostra-se que ao suavizar a descontinuidade do controle dentro de \(B(t) \), designa-se uma estrutura de filtro passa-baixas à dinâmica local da variável \(S \), eliminando o "chattering" [53]. A frequência de corte é:

\[
\lambda_f \approx \frac{\eta}{\phi} \tag{2.48}
\]
Figura 2.7: Construção da camada limite

Figura 2.8: Interpolação da lei de controle na camada limite.
Os parâmetros deste "filtro" são escolhidos de maneira que a lei de controle seja um compromisso entre a precisão do "tracking" e a robustez às dinâmicas não modeladas.

Uma outra maneira de suavizar a lei de controle (Ambrosino et alii [3]) consiste em substituir a função $sgn(S)$ pela função contínua (figura 2.10):

$$
cont(S) = \frac{S}{|S| + \delta}
$$

(2.49)

onde δ é uma constante positiva.

OBSERVAÇÕES

- No procedimento apresentado, não foram consideradas explicitamente as incertezas no modelo, nem as perturbações. Porém, nas metodologias em que tais aspectos são considerados explicitamente, resulta muitas vezes complicado determinar uma expressão analítica para o ganho η (parâmetro de robustez). Neste caso o valor de η é obtido por simulação.
Figura 2.10: Função $\text{cont}(S)$

- Quando é utilizada a função $\text{sgn}(S)$ na lei de controle, a magnitude do "chatter" é proporcional ao parâmetro de robustez η.

Sistemas Multivariáveis Seguindo um procedimento semelhante ao utilizado no caso dos sistemas com uma entrada e uma saída, é possível aplicar a técnica de controle de estrutura variável a sistemas multivariáveis linearizados do ponto de vista entrada-saída.

Seja um sistema não-linear com m entradas e m saídas como definido por (2.30).

Considere-se uma superfície de chaveamento:

$$S_i = \sum_{k=-1}^{r-1} \beta_k e^{(k)}$$ \hspace{1cm} (2.50)

onde

$$e^{(-1)}_i = \int_0^t e_i \, dt$$
é uma ação integral de controle.

Como no caso de uma entrada e uma saída, a superfície \(S_1 \) é atrativa se:

\[
\dot{S}_i = -\eta_i \operatorname{sgn}(S_i)
\]
(2.51)

Derivando a equação (2.50), obtém-se:

\[
\dot{S}_i = \sum_{k=1}^{r_i-1} \beta_{i,k} e^{(k+1)}
\]
(2.52)

Lembrando que a expressão correspondente às derivadas das saídas é (eq. (2.34)):

\[
\begin{bmatrix}
y_1^{(r_1)} \\
\vdots \\
y_m^{(r_m)}
\end{bmatrix} = \begin{bmatrix}
L_{r_1}^i \chi_1 \\
\vdots \\
L_{r_m}^i \chi_m
\end{bmatrix} + A(x) \begin{bmatrix}
u_1 \\
\vdots \\
u_m
\end{bmatrix}
\]
(2.53)

e que o erro de resposta é:

\[
e_i = y_{di} - y_i
\]
(2.54)

substituindo (2.54) e (2.53) em (2.52) e igualando com (2.51), obtém-se uma expressão geral para \(u \).

Considere-se, por exemplo, um sistema com duas entradas e duas saídas:

\[
\begin{align*}
\dot{x} &= f(x) + g_1(x)u_1 + g_2(x)u_2 \\
y_1 &= h_1(x) \\
y_2 &= h_2(x)
\end{align*}
\]

Suponha-se que os índices de linearizabilidade são \(r_1 = 1 \) e \(r_2 = 1 \). De (2.50), as superfícies de chaveamento serão:

\[
\begin{align*}
S_1 &= e_1 + \beta_1 \int_0^1 e_1 \, dt \\
S_2 &= e_2 + \beta_2 \int_0^1 e_2 \, dt
\end{align*}
\]
(2.55)

37
Neste caso, a expressão (2.51) será:

\[\dot{S}_1 = -m \text{sgn}(S_1) \]
\[\dot{S}_2 = -m \text{sgn}(S_2) \] \hspace{1cm} (2.56)

Derivando (2.55) e substituindo \(\dot{e}_1 \) e \(\dot{e}_2 \):

\[\dot{S}_1 = \dot{y}_{1d} - \dot{y}_1 + \beta_1(y_{1d} - y_1) \]
\[\dot{S}_2 = \dot{y}_{2d} - \dot{y}_2 + \beta_2(y_{2d} - y_2) \] \hspace{1cm} (2.57)

De (2.53):

\[
\begin{bmatrix}
\dot{y}_1 \\
\dot{y}_2
\end{bmatrix} =
\begin{bmatrix}
L_f h_1 \\
L_f h_2
\end{bmatrix}
+ \begin{bmatrix}
L_m h_1 & L_m h_1 \\
L_m h_2 & L_m h_2
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
\] \hspace{1cm} (2.58)

De (2.56), (2.57) e (2.58) obtém-se finalmente:

\[
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
L_m h_1 & L_m h_1 \\
L_m h_2 & L_m h_2
\end{bmatrix}^{-1}
\begin{bmatrix}
\dot{y}_{1d} \\
\dot{y}_{2d}
\end{bmatrix} - \begin{bmatrix}
\beta_1(y_{1d} - y_1) \\
\beta_2(y_{2d} - y_2)
\end{bmatrix} + \begin{bmatrix}
m \text{sgn}(S_1) \\
m \text{sgn}(S_2)
\end{bmatrix}
\] \hspace{1cm} (2.59)

2.4 Linearização Estendida

A técnica conhecida com o nome de linearização estendida pode ser considerada como uma formalização de um procedimento ad hoc conhecido como escalonamento de ganhos ("gain scheduling").

No escalonamento de ganhos obtém-se, mediante linearizações por série de Taylor, um conjunto de sistemas linearizados, correspondentes a diferentes pontos constantes de operação. Uma vez escolhida a estrutura para o controlador, determinam-se os ganhos para cada sistema, baseados em critérios lineares de projeto. A etapa seguinte consiste em obter, mediante ajuste de curvas, expressões analíticas para os ganhos, os quais serão funções, em geral não-lineares, de um parâmetro selecionado.

O controlador resultante, com ganhos variáveis, fará com que o sistema não-linear em malha fechada tenha as características dinâmicas lineares desejadas.
Na linearização estendida, supõe-se que o sistema não-linear tenha uma família contínua de pontos constantes de operação e procura-se obter, a partir de uma expressão analítica do sistema linearizado (família parametrizada de linearizações), uma expressão exata para os ganhos do controlador, o qual é projetado utilizando técnicas lineares. Finalmente, é deduzida uma lei de controle para o sistema não-linear original, de maneira que o sistema não-linear resultante, em malha fechada, tenha a dinâmica desejada em cada ponto de operação.

Observe-se a diferença com o método de escalonamento de ganhos, onde um número finito de pontos de operação e o correspondente número finito de linearizações são as bases para o projeto.

A técnica de linearização estendida foi desenvolvida durante a última década, tendo especial importância os trabalhos de Baumann e Rugh [7,8,49].

A seguir apresentam-se os fundamentos desta técnica, visando oferecer os elementos básicos para sua aplicação. Consideraremos o projeto de controladores utilizando variáveis de estado e funções de transferência, no caso de sistemas de uma entrada e uma saída.

2.4.1 Controle por Realimentação de Estados

Seja o sistema não-linear:

\[\dot{z} = f(z, u) \] \hspace{1cm} (2.60)

onde \(f(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}^n \) é analítica nas vizinhanças da origem, com \(f(0, 0) = 0 \). A localização do zero é um assunto de conveniência. Supõe-se que o sistema linearizado em \((0, 0)\) é controlável, com \(\frac{\partial f}{\partial z}(0, 0) \) inversível.

Para desenvolver a noção de linearização estendida, é fundamental considerar pontos constantes de operação correspondentes a entradas constantes diferentes de zero. Para \(u(t) = \epsilon \), a família de pontos de operação \([z(\epsilon), \epsilon]\), está definida por:

\[f[z(\epsilon), \epsilon] = 0 \] \hspace{1cm} (2.61)

Pelo teorema da função implícita, (2.61) tem uma única solução para \(z(\cdot) \) como uma função analítica de \(\epsilon \) numa vizinhança de \(\epsilon = 0 \).

39
Considerar-se uma lei de controle por realimentação de estados da forma:

\[u = v - k(x) \] \hspace{1cm} (2.62)

onde \(u \) é uma entrada externa e \(k(\cdot) : \mathbb{R}^n \to \mathbb{R} \) é o ganho não-linear com \(k(0) = 0 \).

Assim, o sistema em malha fechada é descrito por:

\[\dot{z} = f[z, v - k(z)] \] \hspace{1cm} (2.63)

e também tem um ponto de operação em zero.

Devemos considerar a família de pontos de operação em malha fechada, correspondentes a entradas constantes diferentes de zero, \(v(t) = \beta \).

Supondo que a linearização em zero do sistema em malha fechada é inversível, a família de pontos constantes de operação em malha fechada é unicamente determinada pelas equações simultâneas:

\[f[z(\epsilon), \epsilon] = 0 \]
\[\epsilon = \beta - k[z(\epsilon)] \] \hspace{1cm} (2.64)

Linearizando (2.60) em torno dos pontos de operação:

\[\delta \dot{z} = \left[\frac{\partial f}{\partial x} \right] \delta x + \left[\frac{\partial f}{\partial u} \right] \delta u \]

Mas:

\[\delta u = \delta v - \left[\frac{\partial k}{\partial x} \right] \delta x \]

Sendo

\[A(x, \epsilon) = \left[\frac{\partial f}{\partial x} \right] \]
\[b = \left[\frac{\partial f}{\partial u} \right] \]

o sistema linearizado em malha fechada será:

\[\delta \dot{z} = [A(x, \epsilon) - b(x, \epsilon)g(\epsilon)] \delta x + b(x, \epsilon) \delta v \] \hspace{1cm} (2.65)
onde

\[\delta z = x(t) - x(\epsilon) \]
\[\delta v = v(t) - \beta \]
\[g(\epsilon) = \left. \frac{\partial k^i}{\partial z} \right|_{x,\epsilon} \]

(2.66)

O problema fundamental da abordagem por linearização estendida para o projeto de um controlador por realimentação de estados, consiste em obter a família de ganhos \(g(\epsilon) \), tal que para cada valor de \(\epsilon \) o sistema tenha as características lineares especificadas no projeto.

Embora possam ser utilizados vários critérios para realizar o projeto, consideraremos o caso da alocação de pólos. Assim, nosso objetivo será fazer com que os autovalores de (2.56) tenham os valores desejados para todo \(\epsilon \), ao menos numa vizinhança de \(\epsilon = 0 \). Este objetivo corresponde a especificar o comportamento dinâmico básico do sistema em malha fechada, numa vizinhança de qualquer ponto de operação da família.

 Então, o problema se limita à determinação de um vetor analítico, \(1 \times n \), \(g(\epsilon) \), tal que:

\[\det[A(x,\epsilon) - b(x,\epsilon)g(\epsilon) - \lambda I] = \alpha(\lambda) \]

(2.67)

onde \(\alpha(\lambda) \) é o polinômio característico desejado.

A expressão (2.67) pode ser resolvida para \(g(\epsilon) \) utilizando-se, por exemplo, a fórmula de Bass-Gura [21]:

\[g(\epsilon) = (\alpha - d)(CW)^{-1} \]

(2.68)

onde:

\[\alpha(\lambda) = \lambda^n + \alpha_1 \lambda^{n-1} + \cdots + \alpha_n \]
\[d(\lambda) = \det[A - \lambda I] = \lambda^n + d_1(\epsilon)\lambda^{n-1} + \cdots + d_n(\epsilon) \]
\[\alpha = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n] \]
\[d = [d_1(\epsilon) \quad d_2(\epsilon) \quad \cdots \quad d_n(\epsilon)] \]
As matrizes C (matriz de controlabilidade) e W são:

\[
C = \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix}
\]

\[
W = \begin{bmatrix}
1 & a_1 & \cdots & a_{n-1} \\
0 & 1 & \cdots & a_{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

Existem outras fórmulas que também podem ser utilizadas na determinação de $g(\varepsilon)$ [35].

Para encontrar o ganho não-linear $k(x)$ que satisfaça:

\[
\frac{\partial k}{\partial x}(x(\varepsilon)) = g(\varepsilon)
\]

pode considerar-se que a primeira componente de $x(\varepsilon)$ é inversível. Então, verifica-se que:

\[
k(x) = \int_0^{x^{-1}_i(x_1)} g(\varepsilon) \frac{dx}{d\varepsilon}(\varepsilon) + \sum_{j=2}^{n} \sum_{j=2}^{n} g_j(x_j^{-1}(x_1)) [x_j - x_j(x_j^{-1}(x_1))]
\]

onde o subíndice j indica a j-ésima componente. Esta solução não é única.

Quando $k(x)$ não pode ser avaliado exatamente de (2.70), os coeficientes da sua expansão em série de potências em torno de $x = 0$, podem ser calculados como segue. De (2.70), a expansão tem a forma:

\[
k(x) = \sum_{i=1}^{n} \sum_{j=0}^{\infty} k_{ij} x_i x_j^i
\]

Escrevendo (2.69) em forma de série:

\[
\frac{\partial k}{\partial x_i} = \sum_{j=0}^{\infty} g_{ij} e^j
\]

$i = 1, \ldots, n$

Derivando (2.71) obtém-se:

\[
\sum_{j=0}^{\infty} (j + 1) k_{ij} x_j^i + \sum_{i=2}^{n} \sum_{j=1}^{\infty} j k_{ij} x_i x_j^{i-1} = \sum_{j=0}^{\infty} g_{ij} e^j
\]

(2.72)
\[
\sum_{j=0}^{\infty} k_{ij} x_1^i = \sum_{j=0}^{\infty} a_{ij} \varepsilon^i \quad i = 2, \ldots, n \tag{2.73}
\]

onde \(x_1 \) é dado por uma série de potencias em \(\varepsilon \), com \(\varepsilon^0 = 0 \) e \(\varepsilon^1 \neq 0 \). De (2.72) e (2.73) determinam-se sucessivamente os coeficientes \(k_{ij} \). Estes correspondem aos da expansão em série de potencias de (2.70).

EXEMPLO 2.6

Considere-se um sistema dinâmico (pêndulo invertido, controlado por um motor DC), modelado pelas seguintes equações (Zak [68]):

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
x_2 \\
\text{sen} \ x_1 + x_3 \\
x_1 + x_3
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u
\]

O sistema tem uma família de pontos constantes de operação, definida por:

\[
u = \varepsilon \quad x_{1e} = \text{sen}^{-1} \varepsilon \quad x_{2e} = 0 \quad x_{3e} = -\varepsilon
\]

Linearizando em torno de \((x_e, \varepsilon)\) obtém-se:

\[
\begin{bmatrix}
\delta \dot{x}_1 \\
\delta \dot{x}_2 \\
\delta \dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
\cos (\text{sen}^{-1} \varepsilon) & 0 & 1 \\
0 & 1 & 1
\end{bmatrix} \begin{bmatrix}
\delta x_1 \\
\delta x_2 \\
\delta x_3
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \delta u
\]

A matriz de controlabilidade do sistema linearizado é:

\[
C =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{bmatrix}
\]

com \(\det C = -1 \). Então, o sistema linearizado é controlável em \((0,0)\).

O polinômio característico do sistema linearizado é:

\[
d(s) = s^3 - \delta^2 - [1 + \cos (\text{sen}^{-1} \varepsilon)]s + \cos (\text{sen}^{-1} \varepsilon)
\]

Seja

\[
\alpha(s) = s^3 + \alpha_2 s^2 + \alpha_2 s + \alpha_3
\]

43
o polinômio característico desejado para o sistema controlado.

Neste caso:

\[
W = \begin{bmatrix}
1 & -1 & -[1 + \cos(\text{sen}^{-1} \epsilon)] \\
0 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix}
\]

De (2.58):

\[g(\epsilon) = \begin{bmatrix} \alpha_3 + 1 & \alpha_2 + \cos(\text{sen}^{-1} \epsilon) & \alpha_3 - \cos(\text{sen}^{-1} \epsilon) \end{bmatrix} \begin{bmatrix} \cos(\text{sen}^{-1} \epsilon) & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \end{bmatrix}\]

Então:

\[g(\epsilon) = \begin{bmatrix} \alpha_3 + \alpha_1 \cos(\text{sen}^{-1} \epsilon) & \alpha_2 + \cos(\text{sen}^{-1} \epsilon) & \alpha_1 + 1 \end{bmatrix}\]

Neste caso:

\[x(\epsilon) = \begin{bmatrix} \text{sen}^{-1} \epsilon \\
0 \\
-\epsilon \end{bmatrix}, \quad \frac{dx}{d\epsilon} = \begin{bmatrix} (1 - \epsilon^2)^{-1/2} \\
0 \\
-1 \end{bmatrix}\]

De (2.70):

\[k(x) = \int_0^{x_1^{-1}(\epsilon_1)} g(\epsilon) \frac{dx}{d\epsilon} + g_2(x_1^{-1}(x_1))[x_2 - z_2(x_1^{-1}(x_1)) + g_3(x_1^{-1}(x_1))[z_3 - z_3(x_1^{-1}(x_1))]\]

onde:

\[\int_0^{x_1^{-1}(\epsilon_1)} g(\epsilon) \frac{dx}{d\epsilon} = \int_0^{\text{sen} z_1} (\alpha_3(1 - \epsilon^2)^{-1/2} - 1) d\epsilon = \alpha_3 x_1 - \text{sen} x_1\]

Então:

\[k(x) = \alpha_3 x_1 - \text{sen} x_1 + (\alpha_2 + \cos x_1) z_2 + (\alpha_1 + 1)(z_3 + \text{sen} x_1)\]

ou:

\[k(x) = \alpha_3 x_1 + \alpha_2 z_2 + \alpha_3 z_3 + \alpha_1 \text{sen} x_1 + z_3 + z_2 \cos x_1\]

Assim, aplicando a lei de controle \(u = v - k(x)\), o sistema em malha fechada, quando linearizado num ponto de operação, terá uma dinâmica definida pelo polinômio característico \(\alpha(s)\).
2.4.2 Controle a partir de uma Função de Transferência Parametrizada

Seja o sistema não-linear

\[
\dot{x} = f(x, u) \\
y = h(x)
\]

(2.74)

Para uma entrada constante \(u = \epsilon \), existe uma família contínua parametrizada de pontos de operação \([x(\epsilon), \epsilon] \), definida por:

\[
f[x(\epsilon), \epsilon] = 0
\]

(2.75)

Linearizando por série de Taylor em torno de um ponto de operação, obtém-se o sistema:

\[
\delta \dot{x} = A(x, \epsilon) \delta x + b(x, \epsilon) \delta u \\
\delta y = c(x(\epsilon))\delta x
\]

(2.76)

A correspondente representação em função de transferência é dada por:

\[
G_s = c^T(sI - A)^{-1}b
\]

(2.77)

onde:

\[
G_s = \frac{N_s}{D_s} = \frac{c_{n-1}(\epsilon)s^{n-1} + \cdots + c_0(\epsilon)}{s^n + a_{n-1}(\epsilon)s^{n-1} + \cdots + a_0(\epsilon)}
\]

(2.78)

é a função de transferência da planta, parametrizada para valores constantes de \(u = \epsilon \). Os coeficientes \(c_i \) e \(a_i \) são funções contínuas de \(\epsilon \), com \(a_0 \neq 0 \).

Nosso problema consiste em projetar, baseados na informação contida em (2.78), um controlador linear parametrizado, tal que para cada valor do parâmetro \(\epsilon \), isto é, em cada ponto de operação, a linearização em malha fechada tenha as características de desempenho desejadas.

Em se tratando de um projeto linear, é possível escolher alguma entre as diversas estruturas disponíveis para o controlador. Isto é, dependendo das características da planta e dos objetivos do projeto, pode-se escolher, por
exemplo, um controlador tipo PI, PID, de avanço-atraso, etc., todos eles parametrizados em ε.

A seguir apresenta-se, de maneira algorítmica, um procedimento proposto por Rugh [49] para o projeto de um controlador PID não-linear.

Seja uma planta não-linear, a qual vai ser controlada com um controlador em cascata como mostra a figura (2.11). O objetivo é projetar um controlador não-linear tal que em cada ponto de operação, a linearização deste controlador produza o controlador PID apropriado para a planta linearizada.

1. Seja \(G_\epsilon(s) \) a função de transferência da planta, definida por (2.78).

2. O controlador PID parametrizado tem a forma:

\[
C_\epsilon = k_1(\epsilon) + \frac{k_2(\epsilon)}{s} + k_3(\epsilon)s
\]

onde os \(k \) são contínuos em \(\epsilon \) e \(k_2(\epsilon) \neq 0 \). O termo integral no controlador elimina o erro em qualquer ponto de operação.

3. Os ganhos do controlador parametrizado sobre a faixa de pontos de operação de interesse, podem determinar-se, por exemplo, utilizando o método de Ziegler-Nichols.
• Determina-se a frequência de corte, \(w_0(\varepsilon) \):

\[
\arg G_s[jw_0(\varepsilon)] = -\pi
\]

• Determina-se o ganho último, \(k_0(\varepsilon) \):

\[
k_0(\varepsilon) = \frac{1}{|G_s[jw_0(\varepsilon)]|}
\]

• Então, os ganhos para o controlador parametrizado serão:

\[
\begin{align*}
k_1(\varepsilon) & = 0.6k_0(\varepsilon) \\
k_2(\varepsilon) & = \frac{0.8}{\pi} k_0(\varepsilon)w_0(\varepsilon) \\
k_3(\varepsilon) & = \frac{0.6\pi k_0(\varepsilon)}{4w_0(\varepsilon)}
\end{align*}
\]

Em muitos casos não é possível achar expressões exatas para \(w_0(\varepsilon) \) e \(k_0(\varepsilon) \). Nestas situações, podem-se obter expressões aproximadas mediante ajuste de curvas ou por outros meios.

4. Determina-se um controlador não-linear cuja linearização em cada ponto de operação corresponda à função de transferência \(G_s(\varepsilon) \). Há muitos controladores não-lineares que satisfazem este objetivo. Uma escolha simples é:

\[
\begin{align*}
i(t) & = k_2[z(t)]e(t) \\
u(t) & = z(t) + k_1[z(t)]
\end{align*}
\]

OBSERVAÇÕES

• Dado que numa ampla diversidade de situações práticas não é necessário ter um controle que funcione em todo o espaço de estados, esta abordagem apresenta algumas vantagens sobre as outras técnicas de linearização. Algumas destas vantagens são:

 - Para a aplicação da ideia básica requerem-se poucas suposições sobre o sistema não-linear.
- O método faz uso direto da intuição e da riqueza de informação disponíveis para os sistemas lineares.
- Não é necessário fazer transformações de coordenadas, de maneira que as variáveis físicas nas quais o sistema é representado podem manter-se durante o processo de projeto.
- O método de projeto pode implementar-se mediante programas de computação simbólica.

- Algumas desvantagens desta técnica são:
 - No projeto não se consideram as perturbações externas nem as incertezas no modelo.
 - Em alguns casos resulta muito difícil obter expressões exatas da família parametrizada de linearizações. Outras vezes quando obtidas (com ajuda de programas de computação simbólica) resultam sendo expressões complexas de difícil implementação.
- O problema de robustez é uma grande questão aberta que ainda está sendo pesquisada. Por enquanto, a simulação é a ferramenta mais utilizada.

2.5 Pseudo-Linearização

A pseudo-linearização de um sistema não-linear consiste em determinar uma lei de realimentação de estados, \(v = S(z, u) \), e uma transformação inversível de variáveis de estado, \(z = T(x) \), tal que o sistema em malha fechada descrito em termos das novas variáveis \((z, v) \) tenha uma dinâmica linear que independe do ponto de operação. Esta noção foi introduzida por Reboulet e Champetier [48] e pode ser considerada como uma extensão da linearização global.

Na pseudo-linearização a transformação está definida nas vizinhanças do conjunto de pontos de operação do sistema e não necessariamente em todo o espaço de estados. Depois de realizada a pseudo-linearização, o controle é projetado aplicando técnicas lineares ao sistema transformado. Um interessante exemplo de aplicação desta técnica a um sistema multivariável.
encontra-se no trabalho de Mouyon, Reboulet e Champetier [44]. Aqui somente consideramos o caso de sistemas de uma entrada e uma saída.

Seja um sistema de controle não-linear, definido por:

$$\dot{x} = f(x) + g(x)u$$ \hspace{1cm} (2.79)

onde $x \in \mathbb{R}^n$, f e g são campos vetoriais suaves, e u é uma função escalar de controle $u : \mathbb{R}^n \rightarrow \mathbb{R}$.

O conjunto $C_{x,u}$ dos pontos de operação do sistema é definido pelas n equações não-lineares:

$$C_{x,u} = \{(x_0, u_0) : f(x_0, u_0) = 0\}$$

Na vizinhança de um ponto de operação o comportamento do sistema pode ser considerado como linear e é descrito por:

$$\delta\dot{z} = F(x_0, u_0)\delta x + G(x_0, u_0)\delta u$$ \hspace{1cm} (2.80)

onde $F = \frac{\partial f}{\partial x}$, $G = \frac{\partial g}{\partial u}$, avaliados em (x_0, u_0).

Uma condição necessária para que o sistema (2.79) seja pseudo-linearizável é que o par (F, G) seja controlável para qualquer $(x_0, u_0) \in C_{x,u}$.

Em geral, o sistema (2.80) depende do ponto de operação. O objetivo da pseudo-linearização é encontrar as transformações não-lineares:

$$x_i = T_i(x) \quad i = 1, \ldots, n$$

$$u = T_{n+1}$$ \hspace{1cm} (2.81)

com $\text{det} (T_{i'}) \neq 0$ e $\frac{\partial T_{n+1}}{\partial u} \neq 0$, tais que no espaço de estados x, o modelo linear tangente não dependa do ponto de operação e possa ser escrito na forma canônica controlável:

$$\delta\dot{z}_1 = z_2$$

$$\vdots$$

$$\delta\dot{z}_n = \delta u$$ \hspace{1cm} (2.82)
OBSERVAÇÃO

- Em algumas situações, as transformações não produzem diretamente a forma canónica (2.82). Nestes casos é necessário desprezar termos de segunda ordem para obter a forma (2.82). Reboulet e Champetier [48] verificaram mediante simulações que estes termos somente modificam o comportamento do sistema durante transitórios breves, mas não afetam a estabilidade em malha fechada.

A linearização no espaço x pode obter-se facilmente. De (2.79) e (2.81):

$$\dot{z}_i = \frac{\partial T_i}{\partial x}[f(x) + g(x)] \quad i = 1, \ldots, n$$

Então, na vizinhança de um ponto (x_0, u_0) de $C_{n,n}$:

$$\delta\dot{z}_i = \alpha_i F(x_0, u_0) \delta x + \alpha_i G(x_0, u_0) \delta u \quad i = 1, \ldots, n \quad (2.83)$$

onde as α_i são 1-formas sobre C_{x}:

$$\alpha_i \equiv dT_i|_{C_x} \quad i = 1, \ldots, n$$

Mostra-se [48] que para obter o modelo linear tangente (2.82), as seguintes equações devem ser localmente satisfeitas em $C_{n,n}$

$$\alpha_i F^{i-1} G = 0 \quad i = 1, \ldots, n - 1 \quad (2.84)$$

$$\alpha_i = \alpha_i F^{i-1} \quad i = 2, \ldots, n \quad (2.85)$$

$$\alpha_{n+1} = \alpha_n [F, G] \quad (2.86)$$

O problema consiste em encontrar as 1-formas $\alpha_1, \ldots, \alpha_{n+1}$, satisfazendo (2.84), (2.85) e (2.86) em $C_{n,n}$, para que existam as transformações $T_i(x)$, $i = 1, 2, \ldots, n$ e $T_{n+1}(x, u)$ tais que

$$\alpha_i \equiv dT_i|_{C_x}$$

$$\alpha_{n+1} \equiv dT_{n+1}|_{C_{x,n}}$$

O procedimento seguido por Reboulet e Champetier [48] para obter as transformações é o seguinte:

projecção de $C_{x,n}$ sobre o espaço de estados x
Figura 2.12: Estrutura do sistema pseudo-linearizado

1. Escolha um covetor arbitrário α_1 na direção determinada por (2.84).

2. Calcule $\alpha_2, \ldots, \alpha_n$ de (2.85) e (2.86).

3. Integre as $\alpha_i (i = 1, \ldots, n)$ sobre C e α_{n+1} sobre $C_{n,n}$ para obter as transformações T_1, \ldots, T_{n+1}.

A estrutura do sistema pseudo-linearizado (Wang e Rugh [52]), é apresentada na figura (2.12).

EXEMPLO 2.7

Considere-se o seguinte modelo correspondente a um conversor DC-DC (Sira-Ramírez [52]).

$$
\begin{align*}
\dot{x}_1 &= b - w_0 x_1 + w_0 x_2 u \\
\dot{x}_2 &= w_0 x_1 - w_1 x_2 - w_0 x_1 u
\end{align*}
$$

com $0 < u_0 < 1$, onde b, w_0 e w_1 são parâmetros do sistema. Um ponto de equilíbrio (x_0, u_0) é dado por:

$$
x_{10} = \frac{w_1 b}{w_0 (1 - u_0)^2}
$$

51
\[z_{2o} = \frac{b}{w_0(1 - u_0)} \]

Eliminando \(u_0 \) destas últimas equações, os conjuntos que definem os pontos de operação do sistema são:

\[
C_{s,s} = \{ (x_0, u_0) \in \mathbb{R}^2 : z_{10} = \frac{w_1 b}{b} z_{20}^2, \frac{w_1 b}{w_0} < z_{10} < \infty, \frac{b}{w_0} < z_{20} < \infty \\
0 < u_0 < 1 \} \]

\[
C_s = \{ x_0 \in \mathbb{R}^2 : \exists u_0 \in (0, 1) \in \mathbb{R} : z_{10} = \frac{w_1}{b} z_{20}^2, \frac{w_1 b}{w_0} < z_{10} < \infty \\
\frac{b}{w_0} < z_{20} < \infty \} \]

Na vizinhança de um ponto de operação \((x_0, u_0)\) o comportamento dinâmico do sistema pode ser considerado linear na forma (2.80), com

\[
F(x_0, u_0) = \begin{bmatrix} 0 \\ (1 - u_0)w_0 \\ -w_1 \end{bmatrix}, \quad G(x_0, u_0) = \begin{bmatrix} w_0 z_{20} \\ -w_1 z_{10} \end{bmatrix}
\]

O par \([F(x_0, u_0), G(x_0, u_0)]\) é controlável em todo \(\mathbb{R}^2 \), exceto em \(z_2 = 0 \) e \(z_1 = -b/2w_1 \). Nenhum destes conjuntos de incontrolabilidade intersecta \(C_s \).

Para obter o modelo linear tangente independente do ponto de operação, devem-se determinar as \(\alpha_1 \) 1-formas, \(i = 1, 2 \). De (2.84):

\[\alpha_1 G(x_0) = 0 \]

Sejam \((\alpha_{11}, \alpha_{12}) \) as componentes de \(\alpha_1 \). Então:

\[
\begin{bmatrix} \alpha_{11} \\ \alpha_{12} \end{bmatrix} \begin{bmatrix} w_0 z_{20} \\ -w_1 z_{10} \end{bmatrix} = 0
\]

52
ou, \(\alpha_{11} w_0 z_2 - \alpha_{12} w_0 z_1 = 0 \). Com \(\alpha_{11} = z_{10} \) e \(\alpha_{12} = z_{20} \), obtem-se:

\[
\alpha_1 = z_{10} \, dx_1 + z_{20} \, dx_2
\]

Integrando sobre \(C_x \) determina-se a primeira componente da transformação:

\[
x_1 = T_1(x) = \frac{1}{2} (x_1^2 + x_2^2)
\]

De (2.85):

\[
\alpha_2 = \alpha_1 F(x_0, u_0)
\]

ou:

\[
\alpha_2 = [z_{10} \quad x_{20}] \begin{bmatrix} 0 & -(1 - u_0) w_0 \\ (1 - u_0) w_0 & -w_1 \end{bmatrix} \begin{bmatrix} dx_1 \\ dx_2 \end{bmatrix}
\]

Isto é:

\[
\alpha_2 = [z_{20}(1 - u_0) w_0 - z_{10}(1 - u_0) w_0 - x_{20} w_1] \begin{bmatrix} dz_1 \\ dz_2 \end{bmatrix}
\]

Das equações correspondentes ao ponto de equilíbrio, obtém-se:

\[
\begin{align*}
z_{20}(1 - u_0) w_0 &= b \\
-x_{10}(1 - u_0) w_0 &= -w_1 z_{20}
\end{align*}
\]

Então:

\[
\alpha_2 = b \, dx_1 - 2 w_1 z_{20} \, dx_2
\]

Integrando ao longo de \(C_x \), obtém-se:

\[
z_2 = T_2(x) = b z_1 - w_1 z_2^2
\]

Finalmente, de (2.86):

\[
\alpha_3 = \alpha_2 [F(x_0, u_0), G(x_0, u_0)]
= -2(1 - u_0) w_0 w_1 z_{20} \, dx_1 + [-b(1 - u_0) w_0 + 2 w_1^2 z_{20}] \, dx_2
+ [b w_0 z_{20} + 2 w_0 w_1 z_{10} z_{20}] \, dv
\]

53
Depois de algumas manipulações envolvendo as expressões correspondentes ao ponto de equilíbrio, obtém-se:

\[v = z_3 = T_3(x, u) = (b^2 - bw_0 x_2 - 2bw_0 w_1 z_1 z_2 + 2w_1^2 z_{20}) + (bw_0 x_2 + 2bw_0 w_1 z_1 z_2) u \]

O modelo linear equivalente é então:

\[
\begin{align*}
\dot{z}_1 &= z_2 \\
\dot{z}_2 &= z_3 = v
\end{align*}
\]

A transformação inversa \(x = T^{-1}(z) \) não existe globalmente em \(R^2 \), o qual indica o caráter local da transformação. Embora, na região de interesse \(C_r \), a transformação inversa é:

\[
\begin{align*}
z_1 &= \frac{b}{2w_1} \left[1 + \left(\frac{b^2}{2w_1} \right)^2 (2z_1 + \frac{z_2}{w_1}) \right]^{1/2} \\
z_2 &= \left\{ \frac{b^2}{2w_1^2} \left[\left(\frac{b}{2w_1} \right)^2 (2z_1 + \frac{z_2}{w_1})^{1/2} - 1 \right] - \frac{z_2}{w_1} \right\}^{1/2}
\end{align*}
\]

O projeto do controlador no espaço de estados \(z \), para estabilizar o sistema transformado num dado ponto de equilíbrio \((z_1^*, z_2^*) \) pode realizar-se utilizando técnicas lineares.

OBSERVAÇÕES

- A única condição necessária para que o sistema seja pseudo-linearizável é que o sistema linearizado seja controlável nas vizinhanças dos pontos de operação considerados. Assim, a pseudo-linearização pode ser uma alternativa nos casos em que as condições para a existência de uma transformação global (controlabilidade e involutividade) não sejam satisfeitas.

- Para sistemas de ordem \(n > 2 \), a integração das 1-formas pode ser muito complexa, sendo necessário utilizar programas de computação simbólica.

- As perturbações externas, as incertezas nos parâmetros e no modelo não são consideradas no projeto. Da mesma maneira que nas outras técnicas mencionadas, a robustez é testada mediante simulações.
Capítulo 3

Controle de um Fermentador Contínuo

O controle automático de processos de fermentação é um assunto de grande interesse para muitas indústrias, já que ele permite reduzir os custos de operação e aumentar a produtividade, mantendo ao mesmo tempo a qualidade, a uniformidade e a reproducibilidade do produto.

Porém, os processos de fermentação apresentam características que dificultam seu controle:

- São difíceis de modelar;
- São bastante não-lineares e variáveis no tempo;
- São lentos;
- Devem ser controlados sobre faixas amplas de pontos de operação.

Um panorama geral dos esquemas de controle e dos problemas mais comuns encontrados no controle de processos industriais de fermentação é apresentado por Montague et al. [43] e por Munack et alii [45].

Takamatsu et alii [59] aplicam técnicas lineares no controle de um processo de fermentação em batelada. Uma revisão interessante das técnicas adaptativas utilizadas no controle de processos não-lineares é apresentada por Haber et alii [28]; algumas aplicações destas técnicas são reportadas por Staniłakis
e Levisaukas [55], Williams [66], e Dochain e Bastin [18]. Suares-Cortez et alii [58] projetam um controlador de estrutura variável para regular a concentração de substrato num processo de fermentação contínua.

Neste capítulo apresenta-se o projeto de um sistema de controle para um processo de fermentação alcoólica contínua, utilizando técnicas de controle não-linear. Inicialmente é projetado um controlador utilizando \textit{linearização estendida}. Posteriormente considera-se o sistema com duas entradas e duas saídas e projeta-se o controle utilizando \textit{linearização entrada-saída} e \textit{"sliding mode control"}. Em todos os casos, os controladores são avaliados mediante simulação.

3.1 Modelo matemático do Processo

A figura (3.1) mostra um esquema de um reator de tanque agitado, contendo um microorganismo (\textit{células}) com uma concentração x, alimentado por um fluxo contínuo de um elemento nutriente (\textit{substrato}) com uma concentração s. Como resultado do contato dos microorganismos e o nutriente, forma-se o produto (\textit{álcool}) com uma concentração p.

O modelo matemático utilizado foi desenvolvido por Bonomi et alii [9] e corresponde a um processo de fermentação contínua de hidrolisado de mandioca, onde o microorganismo é o \textit{Saccharomyces cerevisiae} isolado de levadura preservada comercial.

Uma característica importante do modelo é que ele considera o efeito inibidor do substrato (\textit{hidrolisado de mandioca}) sobre as velocidades de crescimento e produção de etanol da levadura.

As equações do processo são obtidas a partir de balanços materiais nas células, no substrato e no produto.

\textbf{CÉLULAS}

\[
\frac{dx}{dt} = \frac{F}{V} x_0 - \frac{F}{V} x + \mu x - \alpha x
\]
Figura 3.1: Reator Contínuo Agitado

SUBSTRATO

\[
\frac{dx}{dt} = \frac{F}{V} s_0 - \frac{F}{V} s + \frac{\mu}{s_0} s - \frac{x}{s_0} \alpha z
\]

PRODUTO

\[
\frac{dp}{dt} = \gamma z - Dp
\]

Nestas equações:

- \(F \): vazão de alimentação (l/h).
- \(V \): volume do tanque (l).
- \(x, s, p \): concentrações de células, substrato e produto (g/l).
- \(s_0 = 0 \): fluxo de alimentação estéril.
- \(\alpha \approx 0 \): despreza-se a morte de células.
- \(s_0 \): concentração de substrato no fluxo de alimentação (g/l).
- \(\mu \): velocidade específica de crescimento de células.
- \(\gamma \): velocidade de formação de produto.
- \(V_{a/o}, \ V_{p/o} \): parâmetros de rendimento.

57
As velocidades específicas de crescimento de células e de formação de produto são definidas por:

\[\begin{align*}
\mathbf{s} &< \mathbf{s}_l: \\
\mu &= \frac{\mu_m s}{k_s + s} e^{-k_{sp}s} \\
\gamma &= \frac{\gamma_m s}{k'_s + s} e^{-k'_{sp}s} \\
\mathbf{s} &> \mathbf{s}_l: \\
\mu &= \frac{\mu_m s}{k_s + s + \frac{k_{sp}}{w}} e^{-k_{sp}s} \\
\gamma &= \frac{\gamma_m s}{k'_s + s + \frac{k'_{sp}}{w'}} e^{-k'_{sp}s}
\end{align*} \]

onde \(s_l \) é a concentração do substrato limitante e \(\mu_m, \gamma_m, k_s, k'_s, k_{sp}, k'_{sp}, w, w' \) são constantes.

Fazendo \(D = \frac{q}{V} \) (vazão específica do tanque), as equações resultantes são:

\[\begin{align*}
\dot{x} &= -Dx + \mu x \\
\dot{x} &= D(s_0 - x) - (\frac{\mu}{y_{a/s}} x + \frac{\gamma}{y_{a/p}} x) \\
\dot{p} &= \gamma x - Dp
\end{align*} \] \((3.1) \)

Os valores dos parâmetros utilizados foram:

- \(\mu_m = 0.42 \, h^{-1} \) ; \(\gamma_m = 1.6 \, h^{-1} \).
- \(k_p = 0.037 \, l/g \) ; \(k'_p = 0.024 \, l/g \)
- \(y_{p/s} = 0.0511 \) ; \(y_{a/s} = 0.5 \)
- \(k_s = k'_s = 3.0 \, g/l \)
- \(w = w' = 600 \, g/l \)
- \(s_l = 50 \, g/l \)

58
3.2 Análise em Estado Estacionário

Fazendo \(x_1 \equiv x, x_2 \equiv s, x_3 \equiv p \) nas equações (3.1), o estado estacionário é definido pela solução das seguintes equações algébricas:

\[
\begin{align*}
\mu z_1 - D z_1 &= 0 \\
(s_0 - x_2)D - \left(\frac{\mu}{y_{s/s}} + \frac{\gamma}{y_{p/s}} \right) x_1 &= 0 \\
\gamma z_3 - D z_3 &= 0
\end{align*}
\] (3.2)

Uma solução trivial, correspondente a uma situação de lavagem no reator é, \(x_1 = 0, x_2 = s_0, x_3 = 0 \). Esta solução não tem importância no problema de controle. Interessam as soluções tais que \(x_1 > 0, 0 < x_2 < s_0, x_3 > 0 \).

Das equações (3.2) verifica-se que não existe multiplicidade de estados estacionários. Isto é, para valores fixos de \(D \) e \(s_0 \) existe somente uma solução para esse sistema de equações.

Das equações (3.1) também obtém-se:

\[
\frac{\dot{z}_1}{y_{s/s}} + \frac{\dot{z}_3}{y_{p/s}} + \dot{z}_2 = D(s_0 - x_2 - \frac{z_1}{y_{s/s}} - \frac{z_3}{y_{p/s}})
\]

A conservação da massa impõe que \(\dot{z}_1/y_{s/s} + \dot{z}_2/y_{p/s} + \dot{z}_2 = 0 \). Então:

\[
z_2 = s_0 - \frac{z_1}{y_{s/s}} - \frac{z_3}{y_{p/s}}
\]

Esta equação determina o plano sobre o qual se situam os estados estacionários correspondentes a diferentes valores de \(D \) e \(s_0 \) (figura(3.2)).

Assim, o modelo pode reduzir-se a um sistema de duas equações diferenciais:

\[
\begin{align*}
\dot{z}_1 &= \mu z_1 - D z_1 \quad (3.3) \\
\dot{z}_3 &= \gamma z_3 - D z_3 \quad (3.4)
\end{align*}
\]

onde \(\mu \equiv \mu(x_1, x_2), \gamma \equiv \gamma(x_1, x_3) \).
Linearizando as equações (3.4) em torno de um ponto nominal \((x_{1s}, x_{2s}, D)\) obtem-se:

\[
A = \begin{bmatrix}
\mu x_{1s} & x_{1s} \mu_3 \\
\gamma + \gamma_1 x_{1s} & x_{1s} \gamma_2 - D
\end{bmatrix}
\]

onde \(\mu_1 = \frac{\partial \mu}{\partial x}, \gamma_i = \frac{\partial \gamma_i}{\partial x}\).

O polinômio característico correspondente é:

\[
p(s) = s^2 - tr A + \det A = 0
\] \hspace{1cm} (3.5)

Neste caso,

\[
tr A = -D[1 + \frac{k_s (x_0 - x_2)}{x_2 (k_s + x_2)} + k_p x_3]
\]

\[
\det A = D^2 \left\{ -\frac{k_s}{x_2 (k_s + x_2)} + \frac{x_1 x_5 (k' - k_p) + (x_0 - x_5)}{y_{u/e}} \right\} + k_p x_3
\]

É fácil verificar que \(tr A < 0\) e \(\det A > 0\). Então, um estado estacionário correspondente a valores fixos de \(D\) e \(x_0\) é assintoticamente estável. A figura (3.3) mostra as trajetórias do modelo reduzido, para ums valores fixos de \(D\) e \(x_0\). A evolução no tempo das concentrações no fermentador sem controle, considerando diferentes valores de \(D\) e \(x_0\), é apresentada na figura (3.4).

3.3 Objetivos de Controle

Nas aplicações industriais, as condições de operação dos processos de fermentação alcoólica são definidas tendo em conta critérios econômicos. A definição de um regime de operação deve considerar os seguintes aspectos:

- Uma alta concentração de etanol, para reduzir os custos de distillação.
- Uma alta produtividade\(^1\).

\(^1\)Nas processos de fermentação contínua, a produtividade é definida como \(P_r = Dp\).
Figura 3.2: Plano de Estados Estacionários

Figura 3.3: Trajetórias no plano de fase do modelo reduzido, com \(D = 0.06 \text{ h}^{-1} \), \(s_0 = 150 \text{ g/l} \).
Figura 3.4: Concentrações no fermentador sem controle: (a) $s_0 = 150 \text{ g/l}, u = 0.04 \text{ h}^{-1}$; (b) $s_0 = 80 \text{ g/l}, u = 0.07 \text{ h}^{-1}$; (c) $s_0 = 150 \text{ g/l}, u = 0.1 \text{ h}^{-1}$; (d) $s_0 = 150 \text{ g/l}, u = 0.07 \text{ h}^{-1}$

<table>
<thead>
<tr>
<th>s_0 g/l</th>
<th>D h$^{-1}$</th>
<th>z_1 g/l</th>
<th>z_2 g/l</th>
<th>z_3 g/l</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.136</td>
<td>4.79</td>
<td>15.13</td>
<td>25</td>
<td>57.85</td>
</tr>
<tr>
<td>90</td>
<td>0.111</td>
<td>5.38</td>
<td>13.36</td>
<td>30</td>
<td>62.40</td>
</tr>
<tr>
<td>100</td>
<td>0.090</td>
<td>5.88</td>
<td>11.91</td>
<td>35</td>
<td>65.80</td>
</tr>
<tr>
<td>110</td>
<td>0.074</td>
<td>6.30</td>
<td>10.74</td>
<td>40</td>
<td>63.80</td>
</tr>
<tr>
<td>120</td>
<td>0.060</td>
<td>6.64</td>
<td>9.81</td>
<td>45</td>
<td>71.52</td>
</tr>
<tr>
<td>130</td>
<td>0.049</td>
<td>6.92</td>
<td>9.12</td>
<td>50</td>
<td>74.08</td>
</tr>
<tr>
<td>140</td>
<td>0.040</td>
<td>7.13</td>
<td>8.62</td>
<td>55</td>
<td>76.63</td>
</tr>
<tr>
<td>150</td>
<td>0.046</td>
<td>7.13</td>
<td>18.62</td>
<td>55</td>
<td>78.56</td>
</tr>
</tbody>
</table>

Tabela 3.1: Condições de Operação do Fermentador

- Uma baixa concentração de substrato, para diminuir os custos de separação.

Uma maneira de satisfazer tais requerimentos consiste em operar o sistema em condições que maximizem uma função estática de custo. Dourado e Calvet [19] propõem o seguinte problema de otimização:

$$\max J : J = \alpha p + \beta Dp - \gamma s^2$$

$$\text{com } f(z, D) = 0$$

onde α, β, γ são coeficientes de peso, positivos ou nulos, e s^2 é um termo penalizador da função. Os valores dos coeficientes devem ser determinados para cada processo, respondendo a critérios econômicos.

Para definir as condições de operação do fermentador, adotamos a seguinte função estática de custo:

$$J = p + 10DP - 0.005s^2$$ \hspace{1cm} (3.6)

Embora, neste caso, os coeficientes da função de custo não foram determinados a partir de uma situação real, os valores escolhidos servem para dar indicações qualitativas. Na tabela 3.1 apresentam-se os valores da função de custo em diferentes condições de operação.
3.4 Controle do Sistema com Uma Entrada e Uma Saída

Escolhendo a razão específica do tanque, \(D \), como a variável de controle e fazendo \(u = D \), \(z_1 = z \), \(z_2 = s \), \(z_3 = p \) nas equações (3.1), temos:

\[
\begin{align*}
\dot{z}_1 & = \mu z_1 - x_1 z_1u \\
\dot{z}_2 & = -\left(\frac{\mu}{V_s/s} + \frac{\gamma}{V_p/s}\right)z_1 + (s_0 - z_2)u \\
\dot{z}_3 & = \gamma z_1 - z_3 u
\end{align*}
\]

(3.7)

O problema consiste em projetar um controlador não-linear para regular a concentração do produto, \(z_3 \), na faixa de pontos de operação definida na tabela (3.1) para diferentes valores da concentração do substrato na entrada do fermentador. Supõe-se que todas as variáveis são mensuráveis.

3.4.1 Projeto do Controlador por Linearização Estendida

Dada a complexidade das equações algébricas não-lineares correspondentes ao estado estacionário (eq.(3.2)), resulta impossível obter expressões para \(z_{1e}, z_{2e}, z_{3e} \) que sejam funções de um único parâmetro. Por essa razão, não é possível determinar analiticamente uma lei de controle utilizando a abordagem formal da linearização estendida com realimentação de estados.

Neste caso, consideramos uma abordagem não formal da linearização estendida, partindo de uma função de transferência parametrizada.

Considerando o modelo reduzido do sistema (eq.(3.4)), e fazendo:

\[
G = c^T(sI - A)^{-1}b
\]

obtem-se, depois de manipulações algébricas:

\[
G = \frac{-z_3(s + u)}{p(s)}
\]

(3.8)
onde \(p(s) \) é o polinômio característico do sistema dado pela equação (2.6), isto é:

\[
p(s) = s^2 + d_1 s + d_2
\]

com

\[
d_1 = u[1 + \frac{k_s(s_0 - z_2)}{z_2(k_s + z_2)} + k_p' z_3]
\]

\[
d_2 = u^2\left\{\frac{k_s}{z_2(k_s + z_2)} + \frac{z_1 z_3}{y_{s/s}} (k_p' - k_p) + (s_0 - z_2)\right\} + k_p' z_3
\]

Consideradas as diferentes condições de operação, verifica-se que:

- \(d_1 \in [0.13, 0.32] \)
- \(d_2 \in [0.005, 0.03] \)

Procurando o cancelamento de um zero e um pôlo, propõe-se um controlador em cascata com a seguinte estrutura:

\[
C = k(\cdot) \frac{s + b}{s + p(\cdot)} \tag{3.9}
\]

Sendo \(k(\cdot) = -\frac{k_s}{s_0} \) e \(p(\cdot) = u \), o polinômio característico do sistema em malha fechada é:

\[
s^2 + (d_1 + k_c)s + (d_2 + k_c b) = 0 \tag{3.10}
\]

onde \(k_c \) e \(b \) são parâmetros do controlador.

Considerando valores nominais de \(d_1 = 0.1517 \), \(d_2 = 0.007 \), correspondentes a uma condição de operação com \(s_0 = 190 \) g/l, \(z_3 = 55 \) g/l, com \(k_c = 3 \) e \(b = 1.5 \) os pôlos do sistema em malha fechada são \(s = -1.57 \pm 1.43j \).

Uma realização do controlador não-linear em variáveis de estado é:

\[
i = \varphi(z_3)[2z - b - \varphi(z_3)] - s^2
\]

\[
u = z - \varphi(z_3) \tag{3.11}
\]

onde \(\varphi(z_3) = k_c(z_3r - z_3)/z_3 \), sendo \(z_3r \) o valor do sinal de referência.
A robustez do controlador projetado pode ser avaliada aplicando o teorema de Kharitonov [6]. Este teorema apresenta as condições necessárias para que uma família de polinômios cujos coeficientes variem em intervalos dados, seja estritamente Hurwitz\(^2\). Estas condições limitam o problema ao teste da propriedade de estritamente Hurwitz num conjunto de quatro polinômios, chamados de polinômios de Kharitonov. Anderson et alii [4] mostram que estes quatro polinômios podem reduzir-se a um, dois e três no caso de polinômios de ordem três, quatro e cinco respectivamente.

No caso de uma família de polinômios de ordem 2,

\[p(s) = s^2 + \alpha_1 s + \alpha_2 \]

com \(\alpha_i \in [\alpha_{i_{\min}}, \alpha_{i_{\max}}] \), é suficiente que \(\alpha_{1_{\min}}, \alpha_{2_{\min}} > 0 \).

Do polinômio (3.11), verifica-se que esta condição se satisfaz para qualquer valor positivo de \(k_c \) e \(b \).

No caso de uma família de polinômios de ordem 3,

\[s^3 + \alpha_1 s^2 + \alpha_2 s + \alpha_3 \]

com \(\alpha_i \in [\alpha_{i_{\min}}, \alpha_{i_{\max}}] \), mostra-se [4] que os polinômios da família são estritamente Hurwitz se:

\[\alpha_{1_{\min}} \alpha_{2_{\min}} - \alpha_{3_{\max}} > 0 \]

Supondo que não ocorre o cancelamento exato do zero e o polo, o polinômio característico do sistema em malha fechada será:

\[p(s) = s^3 + (d_1 + p + K)s^2 + [d_2 + pd_1 + K(u + b)]s + (pd_2 + K ub) \]

onde \(K = -x_3 k(\cdot) \).

Neste caso, da tabela 3.1, e supondo variações de \(\pm 50\% \) para \(k_c \) e \(b \) em torno dos valores nominais, temos:

- \(u \in [0.046, 0.136] \)
- \(p \in [0.01, 0.3] \)

\(^2\)Todas as raízes com parte real negativa.

66
$k_1 \in [1.4, 4.5] \quad b \in [0.75, 2.25]$

Com estes dados, obtém-se:

$\alpha_{1\min} = 1.515; \quad \alpha_{2\min} = 1.324; \quad \alpha_{3\max} = 1.473$

Então, $\alpha_{1\min}\alpha_{2\min} = 2.0 > 1.473$ o qual significa que com os intervalos considerados, a família de polinômios é estritamente Hurwitz.

Simulações

As simulações foram realizadas aplicando o controlador definido pelas equações (3.12) ao modelo original dado nas equações (3.8), considerando valores fixos da concentração de substrato no fluxo de alimentação do fermentador3.

Nas figuras (3.5), (3.6) e (3.7) apresentam-se as respostas do sistema a entradas tipo rampa4. Em cada caso, as figuras (a) correspondem ao mínimo tempo em que é possível alcançar o valor das entradas de referência. As figuras (b) mostram os efeitos de "forçar" o sistema a alcançar os valores máximos de referência em tempos curtos. Observe-se que nestes casos a concentração de substrato cai para zero.

Na figura (3.8) apresentam-se os sinais de controle e os erros de resposta correspondentes aos dados das figuras (3.5), (3.6), (3.7). A robustez do controlador foi avaliada introduzindo variações de $\pm 15\%$ nos valores dos parâmetros do processo e de $\pm 30\%$ nos parâmetros do controlador. Estas variações não afetaram consideravelmente o comportamento do sistema.

Embora o critério utilizado para a determinação das "melhores" condições de operação seja a maximização de uma função estática de custo5 J, a figura (3.9), correspondente aos valores de J para os casos anteriores, mostra que entre as três condições de operação apresentadas, uma única "aceitável" é a correspondente ao maior valor de referência, $z_0 = 60 \, g/l$ (figura 3.7), porém o tempo de resposta é de 17 h.

3Nas simulações apresentadas utilizou-se $a_0 = 150 \, g/l$

4A dinâmica lenta do processo obriga a utilizar este tipo de entrada, quando se opera com uma única variável de controle

5Equação (3.7)
Figura 3.5: Concentrações no fermentador, operando com $z_{sr} = 50$ g/l (a) Tempo de resposta: 6 h (b) Tempo de resposta: 5 h.

Figura 3.6: Concentrações no fermentador, operando com $z_{sr} = 55$ g/l (a) Tempo de resposta: 9 h (b) Tempo de resposta: 10 h.
Figura 3.7: Concentrações no fermentador, operando com $x_{3r} = 60 \text{ g/l}$.

(a) Tempo de resposta: 16 h

(b) Tempo de resposta: 17 h.

Figura 3.8: Sinais de controle e erros de resposta em diferentes condições de operação.

(a) $x_{3r} = 50 \text{ g/l}$

(b) $x_{3r} = 55 \text{ g/l}$

(c) $x_{3r} = 60 \text{ g/l}$.
Figura 3.9: Função de custo J para diferentes condições de operação. (a) $z_{3r} = 50 \, g/l$ (b) $z_{3r} = 55 \, g/l$ (c) $z_{3r} = 60 \, g/l$.

É evidente que para responder ao critério de funcionamento estabelecido, e para diminuir o tempo de resposta, é necessário manipular também a concentração de substrato no fluxo de entrada no fermentador. Isto será feito na seguinte seção.

3.5 Controle Multivariável

Para controlar a concentração de substrato no fermentador é necessário manipular a concentração de substrato na entrada (z_0). Fazendo $u_1 = D$ e $u_2 = Dz_0$ nas equações (3.1) resulta:

$$\dot{z}_1 = \mu z_1 - z_1 u_1$$
$$\dot{z}_2 = -\left(\frac{\mu}{y_{s/e}} + \frac{\gamma}{y_{p/e}}\right) z_1 - z_2 u_1 + u_2$$
$$\dot{z}_3 = \gamma z_1 - z_3 u_1$$

Agora, o objetivo de controle é regular as concentrações de produto e substrato em diferentes condições de operação.
3.5.1 Projeto do Controlador Utilizando Linearização Entrada-Saída

Escrevendo o sistema na forma \(\dot{z} = f(z) + g_1(z)u_1 + g_2(z)u_2, y_1 = h_1(z), y_2 = h_2(z) \), temos:

\[
f(z) = \begin{bmatrix} \mu z_1 \\ -(\frac{\mu}{y_s/s} + \frac{\gamma}{v_p/s})z_1 \\ \gamma z_1 \end{bmatrix} \\
g(z) = \begin{bmatrix} 0 & -z_1 \\ -z_2 & 1 \\ -z_3 & 0 \end{bmatrix} \\
y_1 = h_1(z) = z_2 \\
y_2 = h_2(z) = z_3
\]

Índices de Linearizabilidade

Da definição de índice de linearizabilidade:

\[
L_{\phi_1} h_1 = -z_2; \quad L_{\phi_2} h_1 = 1; \quad L_{\phi_1} h_2 = -z_3; \quad L_{\phi_2} h_2 = 0
\]

Então, os índices de linearizabilidade são \(r_1 = 1, r_2 = 1 \).

Da equação (2.33), a matriz de desacoplagamento \(A \) é:

\[
A = \begin{bmatrix} -z_2 & 1 \\ -z_3 & 0 \end{bmatrix}
\]

Como \(\det A = z_3 \neq 0 \), a matriz \(A \) é não singular. Neste caso, as derivadas de Lie das saídas são:

\[
L_f h_1 = -z_1(\frac{\mu}{v_o/s} + \frac{\gamma}{v_p/s}) \\
L_f h_2 = \gamma z_1
\]

Da equação (2.35):

\[
\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{\mu}{v_o/s} + \frac{\gamma}{v_p/s}z_1 + \frac{\gamma}{v_o/s} \end{bmatrix} + \begin{bmatrix} 0 & -1/z_3 \\ 1 & -z_2/z_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}
\]

(3.12)
Esta lei de controle produz o sistema desacoplado:

\[
\begin{align*}
\dot{y}_1 &= v_1 \\
\dot{y}_2 &= v_2
\end{align*}
\]

onde \(v_1\) e \(v_2\) são as saídas do controlador externo.

Controlador PI

Considere-se os controladores tipo PI, definidos por:

\[
\begin{align*}
v_1 &= k_1e_1 + k_2 \int_0^t e_1 \, dt \\
v_2 &= k_3e_2 + k_4 \int_0^t e_2 \, dt
\end{align*}
\]

Então,

\[
\begin{align*}
\dot{y}_1 &= k_1(y_{1d} - y_1) + k_2 \int_0^t (y_{1d} - y_1) \, dt \\
\dot{y}_2 &= k_3(y_{2d} - y_2) + k_4 \int_0^t (y_{2d} - y_2) \, dt
\end{align*}
\]

Os polinômios característicos correspondentes são:

\[
\begin{align*}
s^2 + k_1s + k_2 &= 0 \\
s^2 + k_3s + k_4 &= 0
\end{align*}
\]

Assim, os polos de cada sub sistema serão:

\[
\begin{align*}
\lambda_{11}, \lambda_{12} &= \frac{-k_1 \pm \sqrt{k_1^2 - 4k_2}}{2} \\
\lambda_{21}, \lambda_{22} &= \frac{-k_3 \pm \sqrt{k_3^2 - 4k_4}}{2}
\end{align*}
\]
Figura 3.10: Concentrações reguladas. (a) \(k_1 = k_3 = 1; \ k_2 = k_4 = 0.5 \). (b) \(k_1 = k_2 = k_3 = k_4 = 2 \).

Simulações

As constantes do controlador externo são determinadas de maneira que os polos do sistema linear equivalente fiquem no lugar desejado. Na figura (3.10) apresentam-se as respostas do sistema para diferentes valores das constantes do controlador PI. A figura (3.11) mostra as concentrações reguladas, os sinais de controle e os erros de resposta para valores das constantes correspondentes aos polos colocados em \(\lambda_{11} = \lambda_{12} = \lambda_{21} = \lambda_{22} = -1 \). Para estes mesmos dados, a figura (3.12) apresenta as respostas do sistema e os sinais de controle quando os valores de referência são mudados durante a operação.

O sistema foi testado considerando diferentes condições de operação e variações nos parâmetros de \(\pm 25\% \) apresentando boas características quanto à robustez da estabilidade e do desempenho. O fato das variáveis controladas estarem perfeitamente desacopladas (figura 3.12) permite uma operação flexível do fermentador.

As características mais relevantes do controlador projetado são:

- Pelo fato das variáveis estarem desacopladas, a seleção das constantes

73
Figura 3.11: Concentrações reguladas, sinais de controle e erros de resposta. \(k_3 = k_2 = 2; \ k_2 = k_4 = 1. \)
do controlador externo (PI) é feita de maneira independente para obter o tipo de transitório desejado.

- O desacoplamento das variáveis controladas não se pode garantir nos casos de variações grandes nos parâmetros do processo ou imprecisões no modelo. Nesse sentido, a robustez da estabilidade e do desempenho depende em grande parte do controlador externo.

- Devido à ação integral de controle, os erros de resposta em estado estacionário são nulos.

- Os sinais de controle são suaves.

- As restrições físicas impostas às variáveis do processo são respeitadas no sistema controlado.

Controlador de Estrutura Variável
Segue-se o procedimento apresentado na seção 2.3.3.

Superfícies de chaveamento
No caso de \(r_1 = 1 \) e \(r_2 = 1 \), de (2.55):

\[
S_1 = e_1 + \beta_1 \int_0^t e_1 \, dt \\
S_2 = e_2 + \beta_2 \int_0^t e_2 \, dt
\]

Considerando entradas de referência constantes, tem-se \(\dot{y}_{1d} = \dot{y}_{2d} = 0 \). De (2.59):

\[
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} =
\begin{bmatrix}
0 & -1/x_3 \\
1 & -x_2/x_3
\end{bmatrix}
\begin{bmatrix}
(z_{4}^{+} + \frac{1}{x_{5}})z_1 + \beta_1 e_1 + \eta_1 sgn(S_1) \\
-\gamma z_1 + \beta_2 e_2 + \eta_2 sgn(S_2)
\end{bmatrix}
\]

ou:

\[
u_1 = -\frac{1}{x_3}[-\gamma z_1 + \beta_2 e_2 + \eta_2 sgn(S_2)]
\]

\[
u_2 = (\frac{\mu}{x_{5}} + \frac{\gamma}{x_{5}})z_1 + \beta_1 e_1 + \eta_1 sgn(S_1) + z_2 u_1
\]

(3.13)
Figura 3.12: Concentrações reguladas e sinais de controle introduzindo variações nos sinais de referência. $k_1 = k_3 = 2$; $k_2 = k_4 = 1$.

76
Simulações

Aplicando as leis de controle definidas pelas equações (3.13) ao modelo do fermentador, realizaram-se simulações para avaliar o desempenho do controlador projetado. Foram considerados os aspectos detalhados a seguir.

Inicialmente foi utilizada a função $sgn(S_i)$ nas leis de controle. Para valores de $\eta_1 = \eta_2 = 2$, a figura (3.13) mostra os sinais de controle e os erros de resposta correspondentes a uma condição de operação com $x_{2r} = 9.12g/l$, $x_{3r} = 50g/l$. A figura (3.14) mostra as concentrações reguladas e a aproximação das trajetórias às superfícies de chaveamento. As figuras (3.15) e (3.16) apresentam as mesmas variáveis para $\eta_1 = 5$, $\eta_2 = 2$. Observa-se⁶ que:

- A amplitude e a frequência do "chattering" aumentam quando η_i aumenta.

- Diminuir o tempo de resposta implica em aumentar o "chattering". Para $\eta_1 = \eta_2 = 2$, os tempos que as trajetórias tardam em alcançar as superfícies $S_1 = S_2 = 0$ são aproximadamente 23 h e 12 h respectivamente. Da equação (2.40), os tempos de resposta teóricos são 21 h e 12.5 h respectivamente. Para $\eta_1 = 5$, $\eta_2 = 2$ os tempos são de 10 h e 12 h.

Procurando "suavizar" a lei de controle com o fim de eliminar o "chattering", substitui-se a função $sgn(S)$ por $sat(S/\phi)$. Na figura (3.17) apresentam-se os sinais de controle e os erros de resposta para $\eta_1 = \eta_2 = 2$, com $\phi_1 = 0.15$, $\phi_2 = 0.1$. Na figura (3.18) apresentam-se as mesmas variáveis para $\eta_1 = 5$, $\eta_2 = 2$. Nestes casos o "chattering" foi diminuído de maneira considerável, mas ainda existe um erro em estado estacionário.

Na figura (3.19) apresentam-se os sinais de controle, as concentrações reguladas e as superfícies de chaveamento para $\eta_1 = 5$, $\eta_2 = 3$, $\phi_1 = 0.5$, $\phi_2 = 0.5$. Os mesmos dados são mostrados na figura (3.20) para $\eta_1 = 8$, $\eta_2 = 5$, $\phi_1 = 0.8$, $\phi_2 = 0.8$. Observa-se que:

- Em ambos os casos foram eliminados tanto o "chattering" quanto os erros de resposta.

⁶Neste caso utilizou-se $b_1 = b_2 = 2$
Figura 3.13: Sinais de controle e erros de resposta. \(\eta_1 = \eta_2 = 2 \).

Figura 3.14: Concentrações reguladas e superfícies de chaveamento. \(\eta_1 = \eta_2 = 2 \).
Figura 3.15: Sinais de controle e erros de resposta. \(\eta_1 = 5 \), \(\eta_2 = 2 \).

Figura 3.16: Concentrações reguladas e superfícies de chaveamento. \(\eta_1 = 5 \), \(\eta_2 = 2 \).
Figura 3.17: Sinais de controle e erros de resposta.
\(\eta_1 = \eta_2 = 2, \ \phi_1 = 0.15, \ \phi_2 = 0.1. \)

Figura 3.18: Sinais de controle e erros de resposta.
\(\eta_1 = 5, \ \eta_2 = 2, \ \phi_1 = 0.15, \ \phi_2 = 0.1. \)
O tempo de resposta foi diminuído.

A figura (3.21) mostra a influência do parâmetro b, no transitório. observa-se que:

- Um aumento no valor de b, implica numa diminuição dos sobressinais máximos (picos).

O controlador também foi testado operando o sistema com diferentes valores de referência. A figura (3.22) mostra as concentrações reguladas quando são introduzidas variações nos valores de referência. Observa-se que uma variação no valor de referência da concentração de álcool não afeta a concentração de substrato e vice-versa. Esto mostra que o sistema está perfeitamente desacoplado.

A “suavização” das leis de controle utilizando a função $cont (S_i)$ (eq.(2.49)) também foi analisada. Na figura (3.23) mostra-se a influência do parâmetro δ_i na eliminação do “chattering”.

As respostas do sistema variando as entradas de referência são apresentadas na figura (3.24). Estas reafirmam o dito anteriormente com relação às características de desacoplo das variáveis controladas.

Analisou-se a robustez do controlador ante as variações nos valores dos parâmetros do processo. Na tabela 3.2 apresentam-se os valores nominais e os intervalos de variação testados nas simulações utilizando tanto a função $s\text{at}(S/\phi)$ quanto a função $cont (S)$. Em ambos os casos, os valores dos parâmetros de robustez foram $\eta_1 = 8, \eta_2 = 5$. Os outros parâmetros foram $\phi_1 = \phi_2 = \delta_1 = \delta_2 = 0.8$. As variações introduzidas não produziram modificações significativas nas características de estabilidade e desempenho do sistema.

Em resumo, uma comparação dos resultados obtidos com os diferentes valores dos parâmetros do controlador mostra que com $\eta_1 = 8, \eta_2 = 5 e \phi_1 = \phi_2 = 0.8$ (ou $\delta_1 = \delta_2 = 0.8$ o funcionamento do sistema pode considerar-se satisfatório já que apresenta, entre outras, as seguintes características:

- O controlador é robusto ante as variações introduzidas nos valores dos parâmetros do processo.
Figura 3.19: Sinais de controle, erros de resposta, concentrações reguladas e superfícies de chaveamento para η₁ = 5, η₂ = 3, φ₁ = 0.5, φ₂ = 0.5.
Figura 3.20: Sinais de controle, erros de resposta, concentrações reguladas e superfícies de chaveamento para $\eta_1 = 8$, $\eta_2 = 5$, $\phi_1 = 0.8$, $\phi_2 = 0.8$.

83
Figura 3.21: Influência do parâmetro b_i no transitório. (a) $b_1 = b_2 = 1$; (b) $b_1 = 5, b_2 = 3$.

84
Figura 3.22: Regulação das concentrações introduzindo variações nos valores de referência.
Figura 3.23: Eliminação do "chattering" utilizando a função $cont(S_i)$. Sinais de controle e erros de resposta. $\eta_1 = 8$, $\eta_2 = 5$, $b_1 = b_2 = 2$.

86
Figura 3.24: Entradas de referência e respostas do sistema.
\(\eta_1 = 8, \eta_2 = 5, b_1 = 5, b_2 = 3, \delta_1 = \delta_2 = 0.8. \)
<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor nominal</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_m</td>
<td>0.420</td>
<td>0.01-1.00</td>
</tr>
<tr>
<td>γ_m</td>
<td>1.60</td>
<td>0.6-5.00</td>
</tr>
<tr>
<td>k_p</td>
<td>0.037</td>
<td>0.02-0.30</td>
</tr>
<tr>
<td>k'_p</td>
<td>0.024</td>
<td>0.01-0.04</td>
</tr>
<tr>
<td>$y_{p/s}$</td>
<td>0.511</td>
<td>0.20-3.00</td>
</tr>
<tr>
<td>$y_{s/s}$</td>
<td>0.500</td>
<td>0.10-3.00</td>
</tr>
</tbody>
</table>

Tabela 3.2: Variações dos parâmetros para a análise de robustez

- Os erros de resposta em estado estacionário são nulos.
- O sistema suporta variações bruscas nos valores das entradas de referência.
- Cada variável pode ser controlada de maneira independente.
- Os tempos de resposta são curtos.
- As restrições físicas das variáveis são respeitadas.

É importante salientar que os resultados obtidos mediante simulações não permitem fazer afirmações definitivas. Algumas resultados, por exemplo, podem ter sido afetados pelos procedimentos numéricos utilizados. É possível que a alternativa considerada neste trabalho não seja a mais apropriada para ser implementada num processo real. Um projeto com tal finalidade requer, além de um conhecimento profundo do processo, um trabalho experimental que permita uma avaliação realista das diversas alternativas.

As simulações foram realizadas com SIMNON
Capítulo 4

Conclusões e Sugestões para Trabalhos Futuros

Neste trabalho foram apresentados os fundamentos das técnicas de linearização utilizadas no controle de sistemas não-lineares. Tais técnicas foram desenvolvidas durante as últimas duas décadas, sendo a geometria diferencial² sua principal ferramenta matemática.

Ilustrando com exemplos simples a aplicação destas técnicas, procurou-se expor com um enfoque de texto introdutório, uma matéria que geralmente tem sido tratada com uma linguagem matemática relativamente complexa. Embora algumas simplificações possam provocar suspeitas aos matemáticos, a leitura deste trabalho pode facilitar o acesso a artigos² de estudo obrigatório para quem pretenda aprofundar nesta matéria.

As principais vantagens e desvantagens das técnicas de linearização estudadas foram mencionadas no percurso do trabalho. Observa-se que entre as técnicas citadas, a linearização por realimentação de estados e transformação de coordenadas (global) é a que mais impõe condições ao sistema (controlabilidade e involutividade). Em sistemas de ordem maior que três tais condições são muito difíceis de verificar. Além disso, resolver as equações diferenciais parciais que determinam as transformações pode ser uma tarefa árdua e em certas ocasiões até inútil, já que a complexidade das soluções obtidas

¹Ver Apêndice
²Recomendam-se especialmente as referências [8,12,13,30,32,37,48,69]
pode fazer com que se perca o sentido físico do problema. Um exemplo claro de como é possível aplicar esta técnica sem se afastar do problema real de controle encontra-se no recente trabalho de Alveare et alii [1].

Embora as condições necessárias para que um sistema seja pseudo-linearizável não sejam tão difíceis de verificar quanto as anteriores, as integração das 1-formas também não é uma tarefa simples. Porém, em muitos casos, as soluções obtidas com esta técnica são satisfatórias e mais simples que as obtidas aplicando outras técnicas de linearização. Um exemplo interessante encontra-se no problema estudado por Mouyon et alii [44]. Nesse caso³ pode-se verificar que a matriz de desacoplamento do sistema é singular, o que não permite a aplicação direta de técnica de linearização entrada-saída⁴.

A linearização entrada-saída é talvez a técnica menos exigente do ponto de vista das manipulações matemáticas. Apesar de existirem na literatura vários exemplos de aplicação, a maior parte deles são validados pelos resultados de simulações. Não há, na bibliografia consultada, nenhum trabalho que apresente um exemplo detalhado da implementação, num sistema real, de um algoritmo de controle obtido através desta técnica.

A linearização estendida, embora possa ser relacionada com a pseudo-linearização [65,68], não faz uso direto da geometria diferencial, e por ser uma formalização do "gain scheduling", tem uma maior afinidade com as técnicas clássicas de controle linear. Além disso, o método de projeto utilizando esta técnica pode ser implementado mediante programas de computação simbólica.

O problema principal de todas as técnicas mencionadas é o problema da robustez, tanto da estabilidade quanto do desempenho. Observa-se que nenhum dos métodos de projeto considera explicitamente as incertezas nos parâmetros e no modelo, nem as perturbações externas. Isto indica uma direção interessante para futuras pesquisas. A utilização, por exemplo, de controladores de estrutura variável, ou de controladores adaptativos junto com algumas das técnicas de linearização, são possíveis alternativas que estão sendo estudadas [20,49,50]. Em geral, métodos utilizando funções de Liapunov devem ser

³Controle multivariável de um motor elétrico
⁴Esta técnica poderia ser aplicada redefinindo as saídas do sistema; tal procedimento está fora do escopo deste trabalho
explorados.

Outro problema que merece atenção especial é o das possibilidades de implementação das leis de controle obtidas. Para isso é necessário passar da simulação à experimentação com sistemas reais.

No Capítulo 3 foi considerado o problema do controle de um processo de fermentação alcoólica. Após de uma descrição do modelo e de uma análise breve do comportamento do sistema em estado estacionário, foi projetado um controlador para regular a concentração do produto (álcool). Seguindo uma abordagem não formal da linearização estendida, obteve-se uma lei de controle não-linear, e avaliou-se o desempenho do sistema através de simulações. Uma aplicação ad hoc do teorema de Kharitonov permitiu fazer algumas conjecturas quanto à robustez do controlador, sendo estas verificadas pelas simulações.

A exigência de operar o sistema segundo condições definidas por uma função de custo previamente adotada mostrou a necessidade de controlar também a concentração do substrato no fluxo de alimentação do reator. Com tal objetivo foram projetados um controlador PI e um controlador de estrutura variável a partir do sistema desacoplado e linearizado do ponto de vista entrada-saída. Através de simulações avaliou-se a influência dos diferentes parâmetros dos controladores no desempenho do sistema, obtendo-se finalmente, um controlador robusto e flexível do ponto de vista das possibilidades de operação.

Como foi dito no final do Capítulo 3, uma avaliação rigorosa dos controladores projetados exige, além de um profundo conhecimento do processo, um trabalho experimental que é, em última análise, o que determina a validade do projeto.

Finalmente, mencionam-se alguns tópicos que podem ser tratados em trabalhos posteriores:

1. Uma revisão do projeto de controladores utilizando função descritiva.
2. Exemplos de linearização global de sistemas "reais".
3. O projeto de controladores de estrutura variável a partir de sistemas pseudo-linearizados e globalmente linearizados.
4. A determinação analítica do parâmetro de robustez \(\eta \) dos controladores de estrutura variável, para sistemas com incertezas estruturadas.

5. A linearização entrada-saída de sistemas cuja matriz de desacoplamento é singular.

6. A extensão para sistemas multivariáveis das técnicas de linearização estendida e pseudo-linearização.

7. O projeto de controladores adaptativos a partir de sistemas linearizados com alguma das técnicas mencionadas.

8. O desacoplamento de perturbações em sistemas não-lineares.

9. O projeto de observadores utilizando as técnicas de linearização mencionadas.

Muitos destes temas têm sido amplamente tratados na literatura e algumas ainda são objeto de pesquisas.

Quanto ao controle do processo de fermentação considerado no Capítulo 3, os trabalhos posteriores devem considerar os seguintes aspectos:

- Uma descrição mais detalhada do modelo do processo que inclua considerações sobre o caráter das incertezas.

- Uma formulação realista dos objetivos de controle.

Tendo em conta os aspectos anteriores, propõe-se também o projeto de um controlador multivariável a partir do sistema globalmente linearizado. Para garantir a robustez do controlador, é interessante estudar a possibilidade de aplicar técnicas adaptativas, ou um controlador de estrutura variável cujo parâmetro de robustez seja determinado a partir do conhecimento do caráter das incertezas.

Vale a pena insistir na necessidade de realizar trabalhos experimentais que permitam uma avaliação criteriosa dos esquemas de controle propostos.
Bibliografia

Apêndice A

Conceitos de Geometria Diferencial

Considere-se um sistema de controle não-linear da forma

\[\dot{z} = f(z) + g(z)u \]
\[y = h(z) \] \hspace{1cm} (A.1)

onde o estado \(z \in \mathbb{R}^n \), o controle \(u \in \mathbb{R} \). \(f \) e \(g \) são campos vetoriais suaves definidos numa vizinhança aberta da origem em \(\mathbb{R}^n \). \(h \) é um campo escalar suave sobre \(\mathbb{R}^n \). Aqui suave significa de classe \(C^k \), isto é, \(k \)-vezes diferenciável.

Sendo \(h(x) \) uma função escalar analítica, o \textit{gradiente} de \(h \) é o vetor:

\[dh = \left[\frac{\partial h}{\partial z_1}, \frac{\partial h}{\partial z_2}, \ldots, \frac{\partial h}{\partial z_n} \right] = \frac{\partial h}{\partial z} \]

A \textit{derivada de Lie} de uma função escalar \(h \) com respeito a um campo vetorial
suave \(f \), é a derivada direcional definida como:

\[
L_f h = \langle dh, f \rangle = \sum_{i=1}^{n} \frac{\partial h}{\partial x_i} f_i(x)
\] \hspace{1cm} (A.2)

A derivada de Lie também é um campo escalar suave sobre \(\mathbb{R}^n \). As derivadas de Lie de ordem superior, para qualquer inteiro positivo \(k \), definem-se induzitivamente como:

\[
L_f^k h = L_f (L_f^{k-1} h) = \langle dL_f^{k-1} h, f \rangle
\] \hspace{1cm} (A.3)

com \(L_f^0 h = h \).

As derivadas de Lie constituem uma notação eficiente para as derivadas de tempo de funções escalares ao longo de soluções de equações diferenciais. Por exemplo, para o sistema

\[
\begin{align*}
\dot{z} &= f(x, u) \\
y &= h(x)
\end{align*}
\]

as derivadas da saída são:

\[
\frac{dy}{dt} = \left(\frac{\partial h}{\partial x} \right) \dot{z} = \frac{\partial h}{\partial x} f(z, u) = L_f h
\]

\[
\frac{d^2 y}{dt^2} = \frac{\partial}{\partial x} (L_f h) f(x, u) = L_f (L_f h) = L_f^2 h
\]

\[
\vdots
\]

\[
\frac{d^r y}{dt^r} = L_f^r h
\]

Define-se o **colchete de Lie** de \(f \) e \(g \) como

\[
[f, g] = \frac{\partial g}{\partial z} f - \frac{\partial f}{\partial z} g
\] \hspace{1cm} (A.4)

onde \(\frac{\partial}{\partial z} \) e \(\frac{\partial}{\partial x} \) são matrizes jacobianas \(n \times n \). O colchete de Lie também é um campo vetorial suave sobre \(\mathbb{R}^n \) e representa a derivada de Lie de um campo.
vetorial com respeito a outro. Em teoria de controle o colchete de Lie pode ser interpretado como uma nova direção ao longo da qual pode “mover-se” a trajetória de estado com uma lei do controle apropriada.

Os colchetes sucessivos de Lie(direções adicionais) são definidos como:

\[
(ad_f^0, g) = 0 \\
(ad_f^1, g) = [f, g] \\
(ad_f^2, g) = [f, [f, g]] \\
\vdots \\
(ad_f^k, g) = [f, (ad_f^{k-1}, g)]
\] (A.5)

Um conjunto de campos vetoriais \(\{f_1, f_2, \ldots, f_m\} \) sobre \(\mathbb{R}^n \) é dito involutivo se existem funções escalares \(\alpha_{pqk}(x) \) tais que:

\[
[f_p, f_q] = \sum_{k=1}^{m} \alpha_{pqk}(x) f_k(x) \quad p \geq 1, q \leq m.
\] (A.6)

A involutividade de um conjunto de campos vetoriais está relacionada com a integrabilidade destes campos. O teorema de Frobenius [10] estabelece que um conjunto de campos vetoriais \(\{f_i\} \), definidos sobre uma variedade \(M \), é completament integrável se e somente se é involutivo. Este teorema estabelece as condições necessárias e suficientes para a existência da solução de um sistema de equações diferenciais parciais lineares.

Considere-se, por exemplo, o seguinte sistema de equações:

\[
L_f h = \frac{\partial h}{\partial x_1} f_1 + \frac{\partial h}{\partial x_2} f_2 + \frac{\partial h}{\partial x_3} f_3 = 0 \\
L_g h = \frac{\partial h}{\partial x_1} g_1 + \frac{\partial h}{\partial x_2} g_2 + \frac{\partial h}{\partial x_3} g_3 = 0
\]

onde \(f \) e \(g \) são campos vetoriais definidos por:

\[
f(x) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad g(x) = \begin{bmatrix} 1 \\ 0 \\ z_2 \end{bmatrix}
\]

101
Para que exista uma solução \(h(z) \) não trivial, é necessário que os campos vetoriais sejam involutivos. O colchete de Lie será:

\[
[f, g] = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

A condição de involutividade exige que existam funções escalares \(\alpha_1(z) \) e \(\alpha_2(z) \) tais que:

\[
\alpha_1(z) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \alpha_2(z) \begin{bmatrix} 1 \\ 0 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

o qual evidentemente não ocorre. Assim, o sistema considerado não tem solução. Neste caso, isto pode verificar-se facilmente considerando diretamente o sistema:

\[
\frac{\partial h}{\partial x_2} = 0
\]

\[
\frac{\partial h}{\partial x_1} + z_2 \frac{\partial h}{\partial x_3} = 0
\]

A primeira equação impõe que \(h \) não seja função de \(x_2 \), e a segunda impõe que \(x_2 \) seja. É claro então que não existe nenhuma solução diferente da solução trivial \(h = 0 \).

Em termos de derivadas e colchetes de Lie, definem-se as matrizes de controlabilidade C e de observabilidade O para o sistema (A.1) como:

\[
C = [g, [f, g], \ldots, (ad_f^{m-1}, g)] \quad \text{(A.7)}
\]

\[
O = \begin{bmatrix}
\frac{\partial h}{\partial x_2} \\
L_f(\frac{\partial h}{\partial x_2}) \\
\vdots \\
L_f^{m-1}(\frac{\partial h}{\partial x_2})
\end{bmatrix} \quad \text{(A.8)}
\]

Estas matrizes são versões "fracas" e locais das conhecidas matrizes de controlabilidade e observabilidade dos sistemas lineares. Em sistemas não lineares, a condição de não singularidade não garante resultados globais.\(^1\)

\(^1\)veja-se Vidyasagar [64], Hermann e Krener [27], Misawa [42]

102
O seguinte exemplo mostra a aplicação na teoria de controle de alguns dos conceitos apresentados.

Seja o sistema dinâmico definido por:

\[
\begin{align*}
\dot{z}_1 &= z_2 + z_3u \\
\dot{z}_2 &= -z_1 \\
\dot{z}_3 &= -z_1u
\end{align*}
\]

Neste caso,

\[
\begin{align*}
f(z) &= \begin{bmatrix} z_2 \\ -z_1 \\ 0 \end{bmatrix} \\
g(z) &= \begin{bmatrix} z_3 \\ 0 \\ -z_1 \end{bmatrix}
\end{align*}
\]

Os colchetes de Lie necessários para construir a matriz de controlabilidade, são:

\[
\begin{align*}
[f, g] &= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_2 \\ -z_1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_3 \\ 0 \\ -z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ z_3 \\ -z_2 \end{bmatrix} \\
(ad^2f, g) &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} z_2 \\ -z_1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_3 \\ 0 \\ -z_1 \end{bmatrix} = \begin{bmatrix} -z_3 \\ 0 \\ -z_2 \end{bmatrix}
\end{align*}
\]

Então, a matriz de controlabilidade é:

\[
C = \begin{bmatrix} z_3 & 0 & -z_2 \\ 0 & z_3 & 0 \\ -z_1 & -z_2 & z_1 \end{bmatrix}
\]

Verifica-se que \(\det C = 0\), logo o sistema não é controlável.

Os campos vetoriais \(f\) e \(g\) são involutivos se existem funções \(\alpha_1(z)\) e \(\alpha_2(z)\) tais que:

\[
\alpha_1(z) \begin{bmatrix} -z_2 \\ -z_1 \\ 0 \end{bmatrix} + \alpha_2(z) \begin{bmatrix} z_3 \\ 0 \\ -z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ z_3 \\ -z_2 \end{bmatrix}
\]

É fácil verificar que \(\alpha_1(z) = -z_2/z_1\) e \(\alpha_2(z) = z_3/z_1\) satisfazem esta condição.
A integrabilidade dos campos vetoriais e a não controlabilidade do sistema são evidentes se se consideram diretamente as equações do sistema. Neste caso:

$$z_1 \ddot{z}_1 + z_2 \ddot{z}_2 + z_3 \ddot{z}_3 = 0$$

e então,

$$z_1^2 + z_2^2 + z_3^2 = cte$$

Isto significa que o estado do sistema está numa esfera centrada na origem, e não é afetado pelo controle.

Exemplos menos triviais encontram-se na seção 2.2 desta dissertação e na bibliografia citada.