IDENTIFICAÇÃO DOS REGIMES, EM ESCOAMENTO BIFÁSICO
GÁS-LÍQUIDO, ATRAVÉS DO USO DE TRANSDUTORES DE
IMPEDÂNCIA

Dissertação apresentada à Escola Politécnica
da Universidade de São Paulo para obtenção
do título de Mestre em Engenharia.

São Paulo

1994
HÉLIO VALENTINI JÚNIOR

IDENTIFICAÇÃO DOS REGIMES, EM ESCOAMENTO BIFÁSICO GÁS-LÍQUIDO, ATRAVÉS DO USO DE TRANSDUTORES DE IMPEDÂNCIA

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia.

Área de concentração:
Engenharia Mecânica

Orientador:
Luiz Valcov Loureiro

São Paulo
1994
AGRADECIMENTOS

Ao meu orientador, Prof. Dr. Luiz Valcov Loureiro, o qual viabilizou este trabalho.

A todos os colegas da COPESP que me ajudaram.

A meus pais, pelo incentivo contínuo.
SUMÁRIO

Lista de figuras
Lista de tabelas
Lista de símbolos
Resumo
"Abstract"

1 INTRODUÇÃO 1
1.1 Fração de vazio 1
1.2 Regimes de escoamento 2
1.3 Objetivos do trabalho 4
1.4 Medidores de fração de vazio 5
1.4.1 Atenuação de um feixe de raios gama 5
1.4.2 Espalhamento de nêutrons 7
1.4.3 Medidor de vazão eletromagnético 8
1.4.4 Transdutores de impedância 11
1.5 Métodos de calibração 12
1.5.1 Válvulas de fechamento rápido 13
1.5.2 Método dilatométrico 15
1.5.3 Método gravimétrico 15
1.6 Métodos para determinação do regime de escoamento 16
1.6.1 Métodos dependentes de visualização 16
1.6.2 Análise do sinal de um detector de nêutrons 17
1.6.3 Análise da flutuação da pressão 18
1.6.4 Análise da flutuação da fração de vazio 18
2 ARRANJO EXPERIMENTAL

2.1 Transdutores de impedância
2.2 Circuito experimental
2.2.1 Seção de testes
2.2.2 Transmissores de pressão
2.2.3 Compressor
2.2.4 Bomba
2.2.5 Rotâmetros
2.2.6 Termômetros
2.2.7 Manômetro
2.3 Sistema de aquisição de dados (SAD)
2.4 Gravador
2.5 Analisador de Fourier

3 CALIBRAÇÃO DOS TRANSDUTORES DE IMPEDÂNCIA

3.1 O método gravimétrico
3.1.1 Derivação do método
3.1.2 Avaliação da influência da perda de pressão por atrito durante a calibração dos transdutores de impedância
3.1.3 Avaliação da influência da perda de pressão por aceleração durante a calibração dos transdutores de impedância
3.2 Metodologia empregada no levantamento dos dados experimentais
3.3 Resultados da calibração
3.4 Comparação com curvas de calibração de outros autores
3.5 Análise de incertezas
3.5.1 Fração de vazio
3.5.2 Razão entre as respostas dos transdutores
4 CORRELAÇÃO ENTRE A SAÍDA FLUTUANTE DE UM TRANSDUTOR DE IMPEDÂNCIA E OS REGIMES DE ESCOAMENTO

4.1 Conceitos fundamentais 97
4.1.1 Processo aleatório 97
4.1.2 Processo aleatório estacionário 97
4.1.3 Processo aleatório ergódico 98
4.1.4 Registros amostrais estacionários 100
4.1.5 Valor médio 101
4.1.6 Valor quadrado médio 102
4.1.7 Função densidade de probabilidade 102
4.2 Metodologia empregada no levantamento dos dados experimentais 104
4.3 Teste de estacionariedade 105
4.4 Tratamento dos sinais gravados 107
4.5 Resultados obtidos 110

5 CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS 136

REFERÊNCIAS BIBLIOGRÁFICAS 138
LISTA DE FIGURAS

Figura 1 - Principais regimes em escoamento bifásico gás-líquido, vertical, ascendente e co-corrente 3

Figura 2 - Montagem experimental utilizada na determinação de fração de vazão através da medida da atenuação de um feixe de raios gama 5

Figura 3 - Montagem experimental utilizada na determinação de fração de vazão através da medida do espalhamento de um feixe de nêutrons 7

Figura 4 - Esquema simplificado de um medidor de vazão eletromagnético 9

Figura 5 - Transdutor com seis eletrodos 13

Figura 6 - Excitação do transdutor com seis eletrodos 14

Figura 7 - Montagem experimental utilizada na determinação de fração de vazão com válvulas de fechamento rápido 14

Figura 8 - Gráficos da função densidade auto-espectral típicos de cada categoria de escoamento horizontal 19

Figura 9 - Gráficos da função densidade de probabilidade típicos de cada regime 21

Figura 10 - Corte transversal de um conjunto de eletrodos 23

Figura 11 - Corte longitudinal de um conjunto de eletrodos 24

Figura 12 - Diagrama de blocos dos circuitos eletrônicos 26

Figura 13 - Diagrama elétrico dos circuitos eletrônicos 27

Figura 14 - Diagrama elétrico da fonte de tensão 32

Figura 15 - Ligações entre os módulos de um transdutor de impedância 36

Figura 16 - Fluxograma do circuito experimental 37
Figura 17 - Esquema da seção de testes
Figura 18 - Tomada de pressão em corte
Figura 19 - Corte longitudinal de uma caixa de separação
Figura 20 - Esquema da ligação dos transmissores às tomadas de pressão
Figura 21 - Volume de controle adotado
Figura 22 - Esquema da ligação de um transmissor de pressão diferencial às tomadas de pressão
Figura 23 - Retas ao longo das quais foi feita esta avaliação
Figura 24 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 2
Figura 25 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 1
Figura 26 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 3
Figura 27 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 2
Figura 28 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 1
Figura 29 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 3
Figura 30 - Pontos experimentais levantados para calibração do transdutor inferior
Figura 31 - Pontos experimentais levantados para calibração do transdutor superior
Figura 32 - Pontos experimentais utilizados no cálculo da curva de calibração do transdutor inferior
Figura 33 - Pontos experimentais utilizados no cálculo da curva de calibração do transdutor superior
Figura 34 - Pontos experimentais e reta ajustada - transdutor inferior
Figura 35 - Pontos experimentais e reta ajustada - transdutor superior
Figura 36 - Fração de vazio superior x fração de vazio inferior
Figura 37 - Curvas de calibração sendo comparadas
Figura 38 - Incerteza relativa associada à fração de vazio inferior
Figura 39 - Incerteza relativa associada à fração de vazio superior
Figura 40 - Desvio padrão relativo associado à razão entre as respostas dos transdutores inferior e de referência
Figura 41 - Desvio padrão relativo associado à razão entre as respostas dos transdutores superior e de referência
Figura 42 - Exemplo de função amostral
Figura 43 - Funções amostrais de um processo aleatório
Figura 44 - Saída flutuante do transdutor inferior - configuração do escoamento: bolhas
Figura 45 - Saída flutuante do transdutor inferior - configuração do escoamento: transição para pistonado
Figura 46 - Saída flutuante do transdutor inferior - configuração do escoamento: pistonado
Figura 47 - Saída flutuante do transdutor inferior - configuração do escoamento: transição para agitante
Figura 48 - Saída flutuante do transdutor inferior - configuração do escoamento: agitante
Figura 49 - Saída flutuante do transdutor inferior - configuração do escoamento: transição para anular
Figura 50 - Saída flutuante do transdutor inferior - configuração do escoamento: anular
Figura 51 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: bolhas - $\alpha = 5\%$

Figura 52 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para pistonado - $\alpha = 5\%$

Figura 53 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para pistonado - $\alpha = 8\%$

Figura 54 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para pistonado - $\alpha = 15\%$

Figura 55 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: pistonado - $\alpha = 24\%$

Figura 56 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: pistonado - $\alpha = 27\%$

Figura 57 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: pistonado - $\alpha = 45\%$

Figura 58 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: pistonado - $\alpha = 65\%$

Figura 59 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para agitante - $\alpha = 72\%$

Figura 60 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para agitante - $\alpha = 77\%$

Figura 61 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: agitante - $\alpha = 80\%$
Figura 62 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: agitante

Figura 63 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: transição para anular

Figura 64 - Função densidade de probabilidade da saída flutuante do transdutor inferior - configuração do escoamento: anular
LISTA DE TABELAS

Tabela 1 - Lista das peças que compõem um circuito eletrônico 28
Tabela 2 - Lista das peças que compõem a fonte de alimentação 33
Tabela 3 - Escalas dos termômetros do circuito experimental 44
Tabela 4 - Características dos transdutores de impedância sendo comparados e de seus processos de calibração 85
Tabela 5 - Configuração de escoamento associada a cada gráfico da saída flutuante do transdutor inferior 111
Tabela 6 - Configuração de escoamento associada a cada gráfico da função densidade de probabilidade da saída flutuante do transdutor inferior 120
LISTA DE SÍMBOLOS

A - área de passagem do conduto
A_s - área ocupada por gás
A_l - área ocupada por líquido
B - densidade de fluxo magnético
C_{rm} - fator de atrito para o escoamento monofásico gasoso
C_{rl} - fator de atrito para o escoamento monofásico líquido
d - diâmetro interno do conduto
e - intensidade da força eletromotriz
F_s - força de atrito exercida pela parede do conduto sobre o gás
F_l - força de atrito exercida pela parede do conduto sobre o líquido
G - fluxo de massa total
g - aceleração da gravidade
I - intensidade do feixe de raios gama; corrente elétrica que atravessa o transmissor
I_0 - intensidade inicial do feixe de raios gama
j_s - velocidade superficial do gás
j_l - velocidade superficial do líquido
K - constante de calibração do medidor de vazão eletromagnético
L - distância percorrida pelo feixe de raios gama através de meio bifásico
L_{sg} - distância total percorrida pelo feixe de raios gama através de gás
l_E - comprimento de entrada
M_s - massa de gás entre as cotas de duas tomadas de pressão adjacentes
M_l - massa de líquido entre as cotas de duas tomadas de pressão adjacentes
m_s - massa de gás
m_l - massa de líquido
p - pressão estática
p(x) - função densidade de probabilidade
Q_t - vazão volumétrica de líquido
R - resistência do resistor colocado em série com o transmissor
R_{s1} - fração espacial instantânea do gás (numa linha)
R_{s2} - fração espacial instantânea do gás (numa superfície)
R_{l1} - fração espacial instantânea do líquido (numa superfície)
R_{xx} - função autocorrelação
r - coeficiente de correlação linear; razão entre as respostas dos transdutores
S - razão de deslizamento
u_g - velocidade do gás
u_l - velocidade do líquido
V - volume entre as cotas de duas tomadas de pressão adjacentes; tensão entre os terminais do resistor colocado em série com o transmissor
V_g - volume de gás entre as cotas de duas tomadas de pressão adjacentes
V_l - volume de líquido entre as cotas de duas tomadas de pressão adjacentes
\bar{V} - saída média do transdutor de impedância
\bar{V}_m - saída média do transdutor de impedância quando há, apenas, líquido entre os seus eletrodos
v_m - velocidade média do fluido
W - vazão em massa total
W_g - vazão em massa de gás
W_l - vazão em massa de líquido
x - título
x_k - k-ésima função amostral ou registro amostral
Z - para um par de tomadas de pressão, é a cota da tomada de pressão que ocupa a posição inferior
z - distância percorrida pelo feixe de raios gama através do meio; coordenada geométrica cuja direção coincide com a vertical
Alfabeto grego

α - fração de vazio

α_{inf.} - fração de vazio estimada entre as cotas das tomadas de pressão inferior e intermediária

α_{sup.} - fração de vazio estimada entre as cotas das tomadas de pressão intermediária e superior

δ - distância, através do fluido, entre os eletrodos do medidor de vazão eletromagnético; incerteza

θ - ângulo entre o detector de nêutrons e a direção perpendicular ao feixe de nêutrons

μ - coeficiente de absorção linear do meio

μ_s - viscosidade dinâmica do gás

μ_l - viscosidade dinâmica do líquido

μ_x - valor médio

ρ_s - densidade do gás

ρ_s^* - densidade média do gás

ρ_l - densidade do líquido

σ - tensão superficial; desvio padrão

τ - deslocamento temporral

φ_{ge} - multiplicador bifásico

φ_{lo} - multiplicador bifásico

ψ_x^2 - valor quadrado médio

(dp)_a - perda de pressão devida à aceleração

(dp)_F - perda de pressão devida ao atrito

(dp)_Z - perda de pressão devida à ação da gravidade
(dp/dz)_F - gradiente de pressão devido ao atrito, num escoamento bifásico gás-líquido
(dp/dz)_{g0} - gradiente de pressão devido ao atrito, num escoamento monofásico gasoso com vazão em massa idêntica a do escoamento bifásico ao qual está associado (dp/dz)_F
(dp/dz)_{l0} - gradiente de pressão devido ao atrito, num escoamento monofásico líquido com vazão em massa idêntica a do escoamento bifásico ao qual está associado (dp/dz)_F
Δp - perda de pressão entre as cotas de duas tomadas de pressão adjacentes
Δptransmissor - pressão acusada por um transmissor de pressão diferencial
-(Δp)_F - perda de pressão por atrito entre as cotas de duas tomadas de pressão adjacentes
-(Δp)_Z - perda de pressão devida à ação da gravidade entre as cotas de duas tomadas de pressão adjacentes
Δz - diferença entre as cotas de duas tomadas de pressão adjacentes

Números adimensionais

Fr - número de Froude
Re_{g0} - número de Reynolds para o escoamento monofásico gasoso
Re_{l0} - número de Reynolds para o escoamento monofásico líquido
We - número de Weber

Superescritos

^ - indica que se trata de uma estimativa
- - indica que se trata de uma média temporal
RESUMO

Este trabalho consistiu no emprego de transdutores de impedância na medida de fração de vazio e na identificação dos regimes de escoamento, ambos parâmetros de fundamental importância em escoamento bifásico gás-líquido.

Foram construídos três transdutores de impedância, os quais foram montados numa seção de testes vertical. A seção de testes era transparente, para permitir a visualização do escoamento. Escoamento bifásico era produzido injetando-se ar e água na seção de testes.

Os transdutores de impedância foram calibrados para uma faixa de fração de vazio de 0 a 80 %, aproximadamente. Nesta faixa, os transdutores se mostraram instrumentos bastante lineares.

A calibração dos transdutores foi feita pelo método gravimétrico. A adequação deste método foi avaliada teoricamente.

Foram estabelecidos critérios para identificação dos regimes de escoamento, os quais estão baseados na função densidade de probabilidade da parte flutuante do sinal de um transdutor de impedância.
ABSTRACT

This work consisted of the employment of impedance transducers on the measurement of void fraction and on the identification of flow regimes. These parameters are of fundamental importance in two-phase gas-liquid flow.

Three impedance transducers were built, which were mounted in a vertical test section. The test section was transparent in order to enable flow visualization. Two-phase flow was produced injecting air and water in the test section.

The impedance transducers were calibrated for a void fraction range from 0 to 80 %, approximately. In this range the transducers showed a linear response.

The transducers' calibration was made through the gravimetric method. The suitability of the method was evaluated theoretically.

Some criteria for the identification of the flow regimes were established. These are based on the probability density function of the fluctuating part of an impedance transducer's signal.
1 - INTRODUÇÃO

1.1 - FRAÇÃO DE VAZIO

Em escoamento bifásico gás-líquido, uma variável de fundamental importância é a fração de vazão (α). Há duas definições, de uso generalizado, para esta grandeza:

a) $\alpha = \frac{A_s}{A}$, \hspace{1cm} (1)

onde A_s é a parte de A ocupada pelo gás, A é uma área, geralmente a área de passagem de um conduto, e $\bar{\cdot}$ indica uma média temporal.

b) $\alpha = \frac{V_s}{V}$, \hspace{1cm} (2)

onde V_s é a parte de V ocupada pelo gás e V é um volume.

Se a fração de vazão for uma razão entre áreas [equação (1)], o conhecimento de seu valor permite calcular, a partir das vazões volumétricas, as velocidades médias das fases, as quais são necessárias, por exemplo, na determinação da perda de pressão por aceleração. Se, por outro lado, a fração de vazão for uma razão entre volumes [equação (2)], o conhecimento de seu valor permite calcular, a partir das densidades das fases, a densidade média da mistura bifásica, a qual é necessária, por exemplo, na determinação da perda de pressão por ação da gravidade.

Muitas vezes, é preciso inferir, do contexto, a definição que está sendo empregada.
1.2 - REGIMES DE ESCOAMENTO

Uma característica marcante dos escoamentos bifásicos gás-líquido é a existência de interfaces deformáveis entre as fases. É esta uma das características que torna o estudo do escoamento bifásico bem mais complexo do que o estudo do escoamento monofásico. Felizmente, pelo fato de haver formas predominantes para as interfaces, é possível definir "regimes de escoamento" de acordo com estas formas. Para escoamentos verticais, ascendentes e co-correntes, os principais regimes de escoamento, segundo HEWITT (1978), são os seguintes (vide figura 1):

a) Bolhas (bubbly)

Bolhas de gás escoam através do meio contínuo formado pelo líquido.

b) Pistonado (slug)

Num escoamento em bolhas, à medida que a concentração destas aumenta, cresce, também, a ocorrência de coalescências. Quando, em razão destas coalescências, o gás passa a escoar na forma de grandes bolhas, semelhantes a torpedos, as quais ocupam quase toda a área de passagem do conduto, diz-se que o escoamento é pistonado.

c) Agitante (churn)

O escoamento agitante é altamente instável e de natureza oscilatória, ocorrendo, por exemplo, fluxo e refluxo do líquido próximo à parede do conduto.

Conforme TAITEL et al. (1980), o regime agitante só é observado próximo à entrada do escoamento bifásico no conduto. Após um certo comprimento de desenvolvimento, o qual depende do diâmetro interno do conduto, o escoamento deve se tornar pistonado.
Figura 1 - Principais regimes em escoamento bifásico gás-líquido, vertical, ascendente e co-corrente [Hewitt (1978)]
d) Anular (*annular*)

Neste regime, o líquido escoa, basicamente, junto à parede do conduto, constituindo um filme, enquanto o gás flui pelo centro. Usualmente, uma parte da fase líquida escoa junto com o núcleo gasoso, na forma de gotas.

e) Anular com gotas agrupadas (*wispy-annular*)

A transição de escoamento anular para escoamento anular com gotas agrupadas é análoga à transição de escoamento em bolhas para escoamento pistonado.

Conforme a vazão volumétrica de líquido aumenta, a concentração de gotas, no núcleo gasoso de um escoamento anular, cresce, e ocorrem mais coalescências. A transição de escoamento anular para escoamento anular com gotas agrupadas terá ocorrido quando, graças a estas coalescências, aparecerem filamentos de líquido no núcleo gasoso.

Este regime é característico de escoamentos com grande fluxo de massa total (razão entre a vazão em massa total e a área de passagem do conduto).

Há duas boas razões para justificar o interesse por regimes de escoamento:

a) o conhecimento do regime, por si só, já permite conclusões qualitativas sobre um escoamento;
b) muitos dos modelos desenvolvidos em escoamento bifásico referem-se a um determinado tipo de regime.

1.3 - OBJETIVOS DO TRABALHO

Dois objetivos foram traçados para este trabalho:

a) construção e calibração de um medidor de fração de vazio;
b) desenvolvimento de método para determinação do regime de escoamento, baseado na análise do sinal do medidor construído.
1.4 - MEDIDORES DE FRAÇÃO DE VAZIO

1.4.1 - ATENUAÇÃO DE UM FEIXE DE RAIOS GAMA

A montagem experimental utilizada na determinação da fração de vazio através da medida da atenuação de um feixe de raios gama é mostrada, esquematicamente, na figura 2.

Figura 2 - Montagem experimental utilizada na determinação de fração de vazio através da medida da atenuação de um feixe de raios gama

A atenuação de um feixe de raios gama ao atravessar um meio homogêneo é descrita pela seguinte equação:
I = I_0 e^{-\mu z} , \quad (3)

onde
I_0 é a intensidade inicial do feixe,
\(\mu \) é o coeficiente de absorção linear do meio,
z é a distância percorrida pelo feixe através do meio e
I é a intensidade do feixe após percorrer esta distância.

A determinação da fração de vazio através deste método só é possível se houver uma diferença significativa entre os coeficientes de absorção linear do gás e do líquido.

A partir da intensidade do feixe que atinge o detector, é possível calcular o valor de \(R_{s1} \) (fração espacial instantânea), cuja definição é a seguinte:

\[
R_{s1} = \frac{L_s}{L} , \quad (4)
\]

onde
L_s é a distância total percorrida pelo feixe através de gás e
L é a distância percorrida pelo feixe através de meio bifásico.

Para se calcular a fração de vazio [conforme definida pela equação (1)], é preciso deslocar a fonte de raios gama em relação à seção de testes (ou vice-versa), de maneira que o feixe percorra diferentes caminhos através do meio bifásico, todos num mesmo plano perpendicular ao escoamento (no caso de uma seção de testes tubular, por exemplo, o feixe tem de percorrer diversas cordas). Os valores de \(R_{s1} \) para cada caminho devem, então, ser integrados para que se obtenha a fração de vazio.

Este método tem vários problemas a ele associados, como, por exemplo:

a) a natural dificuldade em trabalhar com materiais radioativos;
b) a intrínseca flutuação na emissão de raios gama por parte da fonte;
c) o efeito da variação do escoamento com o tempo na medida (em escoamento bifásico, variação de grandezas com o tempo ocorre mesmo em regime permanente, particularmente no regime pistonado)

DA SILVA (1985) observa que o método é mais adequado para medida de frações de vazio acima de 10%, pois, abaixo deste valor, os erros estatísticos são elevados.

1.4.2 - ESPALHAMENTO DE NÊUTRONS

A montagem experimental associada a este método de medida de fração de vazio é mostrada, simplificadamente, na figura 3.

Figura 3 - Montagem experimental utilizada na determinação de fração de vazio através da medida do espalhamento de um feixe de nêutrons

Este método presta-se muito bem à medida de fração de vazio [conforme definida pela equação (1)] em escoamento bifásico água-vapor (ou água-ar), pois os nêutrons interagem muito mais fortemente com água líquida do que com vapor (ar) ou com paredes metálicas.

Pode ser demonstrado, teórica e experimentalmente, que a contagem indicada pelo detector de nêutrons decresce com o aumento da fração de vazio.
Em favor deste método, pode-se dizer que ele apresenta boa resolução em todo a faixa de fração de vazio, enquanto que, geralmente, não é possível conseguir boa resolução com a atenuação de raios gama ou X para frações de vazio altas, especialmente quando a seção de testes tem parede metálica. Estes dois últimos métodos também não dão boa precisão com altas pressões e tubos de grande diâmetro, o que não ocorre com o espalhamento de nêutrons.

Em seu experimento, FREITAS et al. (1980) testaram o espalhamento e a atenuação de nêutrons como métodos de medida de fração de vazio, tendo descoberto que o primeiro é muito menos sensível à distribuição das fases no plano de medida. Nêutrons frios (energia < 0,005 eV), térmicos (energia ≈ 0,025 eV) e epitérmicos (0,5 < energia < 1000 eV) foram usados nos testes realizados, sendo os melhores resultados obtidos com nêutrons térmicos. Os autores apuraram, também, que o melhor valor, dentre os testados, para o ângulo θ é -30º.

Uma desvantagem deste método é que a temperatura da água afeta a taxa de contagem de nêutrons (um aumento na temperatura da água faz diminuir o espalhamento de nêutrons). Outro problema é o aparato necessário à blindagem dos nêutrons.

1.4.3 - MEDIDOR DE VAZÃO ELETROMAGNÉTICO

Quando um fluido condutor escoa através de um campo magnético, surge uma força eletromotriz, a qual percorre o fluido numa direção que é normal tanto ao campo magnético quanto à direção de escoamento do fluido. A intensidade da força eletromotriz induzida pelo movimento do fluido é proporcional à velocidade média do fluido (entende-se por velocidade média a razão entre a vazão volumétrica e a área de passagem do conduto). É nisto em que se baseiam os medidores de vazão eletromagnéticos.
Um esquema bastante simplificado de um medidor de vazão eletromagnético é apresentado na figura 4.

Figura 4 - Esquema simplificado de um medidor de vazão eletromagnético [The American Society of Mechanical Engineers (1971)]

A intensidade da força eletromotriz está relacionada à velocidade média do fluido através da seguinte equação:

\[e = KB\delta v_m \]

onde

\(e \) é a intensidade da força eletromotriz,
K é a constante de calibração,
B é a densidade de fluxo magnético,
δ é a distância, através do fluido, entre os eletrodos e
v_m é a velocidade média do fluido.

Os acima citados eletrodos são parte integrante de um medidor de vazão
eletromagnético. Colocados em contato direto com o fluido, são componentes do
circuito de medição da força eletromotriz.

Quando utilizado com escoamento bifásico, o medidor de vazão
eletromagnético mede a velocidade média da fase contínua [BERNIER (1982)].
Ou seja, supondo que a fase contínua seja o líquido,

$$v_m = \frac{Q_1}{A_1} = \frac{Q_i}{A(1-\alpha)} , \quad (6)$$

onde

Q_i é a vazão volumétrica do líquido e
A_1 é a parte de A ocupada pelo líquido.

Da equação (6), pode-se deduzir que

$$\alpha = 1 - \frac{Q_i}{v_mA} , \quad (7)$$

ou seja, conhecendo-se a resposta de um medidor de vazão eletromagnético e a
vazão volumétrica do líquido, é possível calcular a fração de vazio.

Infelizmente, testes realizados por BERNIER mostraram que a fração de
vazio influencia a resposta de um medidor de vazão eletromagnético, o que não
está previsto pela equação (5). A influência da fração de vazio parece crescer
com o aumento desta.

Medidores de vazão eletromagnéticos só podem ser utilizados para medir
fração de vazio quando a fase contínua tiver uma razoável condutividade elétrica.
Se a fase contínua for constituída por um derivado de petróleo ou um gás, será,
provavelmente, necessário escolher outro método.
1.4.4 - TRANSDUTORES DE IMPEDÂNCIA

Existe uma relação entre a fração de vazio num volume preenchido por meio bifásico e a impedância elétrica deste volume. Geralmente, quanto maior a fração de vazio, maior a impedância elétrica. Transdutores de impedância são instrumentos que aproveitam este fato para medir fração de vazio.

Os transdutores de impedância operam, em geral, como descrito, simplificadamente, a seguir. Eletrodos, em diferentes potenciais elétricos, são colocados em contato direto com o meio bifásico. A intensidade da corrente elétrica que se estabelece entre estes eletrodos é função da impedância do meio bifásico. Medindo, direta ou indiretamente, esta intensidade, pode-se avaliar a impedância do meio bifásico e, consequentemente, a fração de vazio.

Obviamente, transdutores de impedância só podem ser utilizados quando a fase contínua for condutora.

A fração de vazio medida por um transdutor de impedância é aquela presente no volume atravessado pela corrente elétrica. Encaixa-se, portanto, na definição dada pela equação (2).

Dependendo do transdutor de impedância e do meio bifásico, a impedância deste último pode se restringir à sua condutância, à sua capacitância ou a estas duas propriedades.

São várias as formas possíveis para os eletrodos. Caso se deseje medir a fração de vazio num trecho de um conduto circular, pode-se utilizar eletrodos com a forma de um arco de cilindro oco, cilindro este com diâmetro interno igual ao do conduto. Embutidos na parede do conduto, eletrodos deste tipo não causam perturbação ao escoamento, o que é bastante interessante.

Além de poder medir fração de vazio de maneira não intrusiva, os transdutores de impedância possuem duas outras características atraentes: sua resposta é, praticamente, instantânea e seu custo de fabricação é baixo.
Uma desvantagem comumente associada a transdutores de impedância é a dependência da medida com a distribuição espacial das fases. Tentando resolver este problema, MERILLO et al. (1977) desenvolveram um transdutor com seis eletrodos, conforme mostrado na figura 5. Os três circuitos indicados (A, B e C) recebem, do oscilador, portadoras de mesma amplitude e frequência, mas defasadas 120° uma das outras. O resultado disto é que se cria um campo elétrico giratório no volume de medida, como apresentado na figura 6. DELHAYE et al. (1987), entretanto, testaram, com escoamento vertical e ascendente, transdutores como este e transdutores com apenas dois eletrodos e campo elétrico fixo e obtiveram resultados muito semelhantes com os dois tipos. Como os transdutores com dois eletrodos são de fabricação mais simples, os autores concluíram que eles eram os mais indicados para medidas em escoamentos verticais e ascendentes.

Por tudo que foi exposto no item 1.4, decidiu-se, neste trabalho, utilizar transdutores de impedância com dois eletrodos (muito semelhantes aos empregados por DELHAYE et al.) para medir fração de vazio.

1.5 - MÉTODOS DE CALIBRAÇÃO

Para que um transdutor de impedância possa ser utilizado para medir fração de vazio, ele precisa ser calibrado. A calibração exige que se meça a fração de vazio através de algum método (ou instrumento) adicional, o qual não pode, ele próprio, necessitar de calibração. A seguir, discorrer-se-á, brevemente, sobre alguns métodos de medida de fração de vazio que atendem a este requisito.

Todos os métodos que serão descritos permitem que se meça fração de vazio como definida pela equação (2).
Figura 5 - Transdutor com seis eletrodos [Merilo et al. (1977)]

1.5.1 - VÁLVULAS DE FECHAMENTO RÁPIDO

O arranjo necessário à medição de fração de vazio com válvulas de fechamento rápido é mostrado, esquematicamente, na figura 7.
Figura 6 - Excitação do transdutor com seis eletrodos [Merilo et al. (1977)]

O método é simples: fecham-se as duas válvulas, simultaneamente, e mede-se o volume de líquido retido entre elas. A fração de vazio pode, então, ser calculada através da seguinte expressão:

\[\alpha = 1 - \frac{\text{volume de líquido retido entre as duas válvulas}}{\text{volume total entre as duas válvulas}} \] (8)

Figura 7 - Montagem experimental utilizada na determinação de fração de vazio com válvulas de fechamento rápido
Este método pode ser empregado com escoamentos adiabáticos (um ou dois componentes), com seções de testes aquecidas e em transientes.

No planejamento de um experimento que vá envolver medida de fração de vazio com válvulas de fechamento rápido, é preciso levar em consideração o transitório provocado pelo fechamento das válvulas.

1.5.2 - MÉTODO DILATOMÉTRICO

Este método baseia-se no seguinte: num circuito fechado, a geração de vapor deve, necessariamente, ser acompanhada pela expulsão, do sistema, de uma parte da fase líquida; medindo o volume de líquido expulso, pode-se determinar a fração de vazio na região do circuito em que há escoamento bifásico.

Maiores detalhes sobre este método podem ser encontrados em CIMORELLI & EVANGELISTI (1967).

1.5.3 - MÉTODO GRAVIMÉTRICO

O método gravimétrico permite que a fração de vazio no volume compreendido entre duas cotas de uma tubulação vertical seja conhecida através da medida da perda de pressão estática entre estas cotas.

Este método, que já foi utilizado, com sucesso, por outros autores [DELHAYE et al. (1987), TOURNAIRE (1987), MOREIRA (1989)] foi o escolhido, neste trabalho, para emprego na calibração dos transdutores de impedância.

A derivação detalhada do método será vista mais adiante.
1.6 - MÉTODOS PARA DETERMINAÇÃO DO REGIME DE ESCOAMENTO

Tal como ocorre com a medida de fração de vazio, há vários métodos para determinação do regime de escoamento. Não se pretende, aqui, descrever todos, mas, apenas, apresentar, em linhas gerais, alguns dos métodos desenvolvidos em outros trabalhos.

1.6.1 - MÉTODOS DEPENDENTES DE VISUALIZAÇÃO

Vários métodos podem ser incluídos nesta categoria, como, por exemplo:

a) a observação direta;
b) a fotografia clássica;
c) a fotografia ultra-rápida;
d) a cinematografia clássica;
e) a cinematografia ultra-rápida;
f) a radiografia.

Os métodos acima (com exceção da radiografia) só podem, obviamente, ser aplicados com condutos transparentes ou que possuam janelas de inspeção. No caso de escoamentos aquecidos, é possível fabricar condutos transparentes com paredes aquecidas electricamente [ver GOUSE & DICKSON (1966)].

Se a velocidade do escoamento for baixa, pode-se utilizar a observação direta, a fotografia clássica ou a cinematografia clássica para determinar o regime; se a velocidade for alta, a fotografia ou a cinematografia ultra-rápidas podem ser empregadas.

Muitas vezes, nem a fotografia ou cinematografia ultra-rápidas permitem determinar o regime de escoamento, já que os raios de luz percorrem trajetórias complexas no meio bifásico, em virtude das inúmeras refrações que sofrem. Por
não enfrentar este tipo de problema, a radiografia surge como opção quando os métodos dependentes de luz falham.

Uma série desvantagem dos métodos dependentes de visualização é sua natureza extremamente subjetiva.

1.6.2 - ANÁLISE DO SINAL DE UM DETECTOR DE NÊUTRONS

No núcleo de reatores BWR (Boiling Water Reactor), ocorre escoamento bifásico. Sendo a moderação dos nêutrons feita pela água, é claro que a fração de vazio afeta o fluxo de nêutrons térmicos. Como sempre há detectores de nêutrons no núcleo de um reator, KING et al. (1989) tiveram a idéia de correlacionar o sinal de um detector ao regime de escoamento. Para tanto, construíram uma seção de testes com 6,5 m de comprimento, feita de alumínio, e colocaram-na no núcleo de um reator experimental. Nesta seção, produziram escoamento bifásico vertical e ascendente, injetando ar e água.

Os autores usaram, também, uma outra seção de testes, com as mesmas dimensões da primeira, mas feita de plástico transparente. Esta segunda seção de testes foi colocada fora do núcleo. Injetando as mesmas vazões de ar e de água nesta seção de testes e nácula colocada no núcleo, os autores podiam, observando o regime de escoamento na primeira, inferir o regime de escoamento na segunda.

Os regimes de escoamento estudados neste trabalho foram os seguintes: bolhas, bolhas esféricas (segundo os autores, este é um regime próximo da transição bolhas/pistonado), pistonado e agitante.

O detector de nêutrons utilizado foi uma câmara de fissão.

Os autores concluíram que o regime de escoamento pode ser determinado a partir de um único índice, chamado assinatura dinâmica, o qual pode ser entendido como sendo o fator de potência entre a entrada (as forças que
comandam o escoamento bifásico) e a saída (a parte AC do sinal do detector) do sistema.

Segundo os autores, em, aproximadamente, 90% dos 86 ensaios realizados, houve concordância entre o regime de escoamento observado e aquele previsto com base no valor da assinatura dinâmica.

1.6.3 - ANÁLISE DA FLUTUAÇÃO DA PRESSÃO

É sabido que, em escoamento bifásico, mesmo quando em regime permanente, a pressão varia com o tempo. Analisando os sinais de um ou mais transdutores de pressão, pode-se descobrir o regime de escoamento, pois existe dependência entre este e a forma de funções calculadas a partir dos sinais de transdutores de pressão, como, por exemplo, a função densidade de probabilidade, a autocorrelação, a correlação cruzada, a função densidade auto-espectral e a função densidade espectral cruzada.

HUBBARD & DUKLER (1966) analisaram a flutuação da pressão em escoamento horizontal, através da função densidade auto-espectral. Os autores concluíram que a forma desta função permite o agrupamento dos regimes de escoamento horizontais em três categorias:

a) os escoamentos separados;
b) os escoamentos dispersos;
c) os escoamentos intermitentes.

A figura 8 mostra gráficos da função densidade auto-espectral típicos de cada categoria.

1.6.4 - ANÁLISE DA FLUTUAÇÃO DA FRAÇÃO DE VAZIO

Este método é análogo à análise da flutuação da pressão.
Figura 8 - Gráficos da função densidade auto-espectral típicos de cada categoria de escoamento horizontal
JONES & ZUBER (1975) utilizaram este método para estudar escoamento bifásico vertical e ascendente. Em seu trabalho, escoamento bifásico era produzido através da injeção de ar e de água num conduto retangular. A medição da fração de vazio (na verdade, a medição de R_v) foi feita através da técnica de absorção de raios X. Os autores concluíram que a função densidade de probabilidade do sinal de um detector de raios X permite distinguir três regimes de escoamento: bolhas, pistonado e anular (os outros regimes são considerados subconjuntos destes três). A figura 9 mostra gráficos da função densidade de probabilidade típicos de cada regime.

O método que será empregado neste trabalho pertence a esta categoria.
Figura 9 - Gráficos da função densidade de probabilidade típicos de cada regime

RAIO X → DETECTOR → FUNÇÃO DENSIDADE DE PROBABILIDADE

ESCOAMENTO BIFÁSICO

P(α) → BOLHAS

P(α) → PISTONADO

P(α) → ANULAR
2 - ARRANJO EXPERIMENTAL

Para atingir os objetivos citados no item 1.3, foram construídos uma seção de testes, na qual escoamento bifásico vertical, ascendente e co-corrente era produzido injetando-se ar e água, e três transdutores de impedância e realizadas alterações num circuito experimental já existente. O arranjo experimental foi montado na sede da Coordenadoria para Projetos Especiais do Ministério da Marinha (COPESP), que foi a financiadora deste trabalho. Seguem-se, abaixo, descrições detalhadas de cada componente do arranjo experimental.

2.1 - TRANSDUTORES DE IMPEDÂNCIA

Os transdutores desenvolvidos são constituídos por um conjunto de eletrodos, um gerador de funções, um circuito eletrônico para tratamento de sinal e cabos coaxiais.

Um conjunto de eletrodos é mostrado, esquematicamente, nas figuras 10 e 11. Sua geometria é muito semelhante a utilizada por MOREIRA (1989).

O corpo do conjunto de eletrodos é feito de acrílico transparente. Os eletrodos são feitos de aço inoxidável.

Os eletrodos com 20 mm de altura são chamados de principais. Os outros são os eletrodos de guarda. Existe passagem de corrente elétrica entre os eletrodos diametralmente opostos. Esta corrente elétrica é senoidal e sua função é servir de portadora. A amplitude desta portadora é modulada pela impedância elétrica do meio existente entre os eletrodos. Apenas a corrente elétrica que se propaga entre os eletrodos principais é que chega ao circuito eletrônico. Os eletrodos de guarda têm por função, somente, diminuir os efeitos de borda no
campo elétrico entre os eletrodos principais, contribuindo, assim, para sua uniformidade, para a qual concorre, também, o ângulo de 90° dos eletrodos, conforme demonstrado experimentalmente por TOURNAIRE (1986). A uniformidade do campo elétrico é desejável, porque quanto mais uniforme ele for, menor será a sensibilidade do transdutor à distribuição espacial, entre os eletrodos, da fase dielétrica.

Figura 10 - Corte transversal de um conjunto de eletrodos (escala 1:1)

O diâmetro interno dos conjuntos de eletrodos é 33 mm, exatamente igual ao da seção de testes em que eles foram instalados. Isto e o fato de que os eletrodos ficam embutidos no corpo de acrílico fazem com que o escoamento não seja perturbado ao atravessar um conjunto de eletrodos.

O gerador de funções é usado para produzir a portadora, cuja frequência é 20 kHz. Este valor é igual ao adotado por MOREIRA (1989), que, em seu trabalho, deduziu teoricamente e comprovou experimentalmente que, com esta frequência, torna-se desprezível a influência da capacitância do meio bifásico na impedância deste, ficando o meio bifásico puramente resistivo. No curso deste
trabalho, entretanto, foi realizado um teste, que mostrou que a capacitância do meio bifásico não poderia ser desprezada. O teste consistiu no seguinte: com a seção de testes cheia de água, verificou-se se o trajeto de uma onda senoidal de 20 kHz de um eletrodo principal a outro fazia com que ela se defiasse em relação à onda senoidal original. Se a água pudesse ser considerada um meio puramente resistivo, não haveria defasagem. Com o auxílio de um osciloscópio de dois canais, porém, comprovou-se a existência de defasagem. Considerando a impedância do meio bifásico como sendo equivalente a de um circuito RC paralelo, como fez MOREIRA, conclui-se que a presença de ar entre os eletrodos principais só fará aumentar a defasagem.

Figura 11 - Corte longitudinal de um conjunto de eletrodos (escala 1:1)

O circuito eletrônico do transdutor de impedância tem por função tratar a corrente elétrica que se propagou entre os eletrodos principais. Seu projeto baseia-se naquele utilizado por TOURNAIRE (1987). Houve, porém, necessidade de um razoável esforço de desenvolvimento para produzir os
circuitos eletrônicos, já que, na citada referência, há, apenas, um diagrama elétrico do circuito e uma pequena descrição das funções que realiza.

O diagrama de blocos dos circuitos eletrônicos é apresentado na figura 12. Cada um dos blocos é descrito abaixo.

a) Conversor impedância-tensão

Sua função é converter a corrente de entrada em tensão, para que esta tensão possa ser tratada nos estágios seguintes. Possui um filtro passa-alta de 100 Hz, para suprimir pequenas variações na entrada.

b) Retificador de precisão

Transforma o sinal alternado em sinal contínuo. A configuração do circuito permite a retificação de sinais de baixa amplitude.

c) Filtro 1

Trata-se de um filtro passa-baixa de 0,1 Hz. Ele elimina a portadora de 20 kHz e converte a componente modulante numa tensão média, que constitui a saída média do circuito eletrônico.

d) Filtro 2

Trata-se de um filtro passa-baixa de 500 Hz. Ele elimina a portadora de 20 kHz e demodula o sinal, recuperando a componente modulante na forma instantânea.

e) Filtro 3

Trata-se de um filtro passa-alta de 0,01 Hz. Ele desacopla as tensões contínuas.

f) Amplificador

Permite a escolha do ganho da saída flutuante do circuito eletrônico entre 1, 2, 5 e 10.

O diagrama elétrico dos circuitos eletrônicos é apresentado na figura 13. A tabela 1 traz a lista das peças que compõem um circuito eletrônico.
Figura 12 - Diagrama de blocos dos circuitos eletrônicos
Figura 13 - Diagrama elétrico dos circuitos eletrônicos
<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
<th>VALOR/REF.</th>
<th>FABRICANTE</th>
<th>IDENTIFICAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>8</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>58 Kohms - MR25</td>
<td>PHILIPS</td>
<td>81, 92, 93, 94, 95, 96, 97, 81, 82, 83, 84, 85</td>
</tr>
<tr>
<td>02</td>
<td>1</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>4,99 Kohms - MR25</td>
<td>PHILIPS</td>
<td>85</td>
</tr>
<tr>
<td>03</td>
<td>1</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>200 Kohms - MR25</td>
<td>PHILIPS</td>
<td>87</td>
</tr>
<tr>
<td>04</td>
<td>1</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>363 Kohms - MR25</td>
<td>PHILIPS</td>
<td>86</td>
</tr>
<tr>
<td>05</td>
<td>1</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>634 Kohms - MR25</td>
<td>PHILIPS</td>
<td>89</td>
</tr>
<tr>
<td>06</td>
<td>2</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>470 Kohms - MR25</td>
<td>PHILIPS</td>
<td>811, 812</td>
</tr>
<tr>
<td>07</td>
<td>1</td>
<td>1</td>
<td>RESISTOR DE CARBONO / C825 / 0,032 / 0,05W</td>
<td>4,7 Kohms - C825</td>
<td>PHILIPS</td>
<td>815</td>
</tr>
<tr>
<td>08</td>
<td>2</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>20 Kohms - MR25</td>
<td>PHILIPS</td>
<td>817, 818</td>
</tr>
<tr>
<td>09</td>
<td>2</td>
<td>1</td>
<td>RESISTOR DE FILME METÁLICO / MR25 / 0,42 / 1W</td>
<td>180 Kohms - MR25</td>
<td>PHILIPS</td>
<td>819, 820</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>TRIMFET MULTIVOLTAT</td>
<td>279 Kohms - 300V</td>
<td>BOJAS</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>CAPACITOR DE POLIESTER METÁLIZADO</td>
<td>16V 250V - SERIE 300</td>
<td>PHILIPS</td>
<td>61, 62</td>
</tr>
</tbody>
</table>
Tabela 1 - Lista das peças que compõem um circuito eletrônico (continuação)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
<th>VALOR/REF.</th>
<th>FABRICANTE</th>
<th>IDENTIFICAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td></td>
<td>CAPACITOR CERÂMICO DISCO - PFS, 47nF/50V /-20+85°C</td>
<td>PFS/C/619/FA/917/-/AC. 4/47nF/1/960</td>
<td>THOMSON</td>
<td>C2</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td></td>
<td>CAPACITOR DE POLIESTER METALIZADO / MAZ-F145A</td>
<td>4,7 µF - 160V - L00.5</td>
<td>ICOM</td>
<td>C4.218.111</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td>CAPACITOR DE POLIESTER METALIZADO / MAZ-F145A</td>
<td>2,2 µF - 160V - L00.5</td>
<td>ICOM</td>
<td>C5</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td></td>
<td>CAPACITOR DE POLIESTER METALIZADO</td>
<td>22 µF - 250V - SERIE 36B</td>
<td>PHILIPS</td>
<td>C6.68</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td></td>
<td>CAPACITOR DE POLIESTER METALIZADO</td>
<td>1 µF - 250V - SERIE 36B</td>
<td>PHILIPS</td>
<td>C7.67</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td></td>
<td>CAPACITOR CERÂMICO DISCO - PFS</td>
<td>PFS/C/619/FA/917/-/AC. 4/100.000/2/156</td>
<td>THOMSON</td>
<td>C13.015.014.016.018.019.021.022</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>PFS/C/619/FA/917/-/AC. 4/100.000/2/156</td>
<td>THOMSON</td>
<td>C13.015.014.016.018.019.021.022</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td></td>
<td>CAPACITOR DE POLIESTER METALIZADO</td>
<td>220 µF - 250V - SERIE 36B</td>
<td>PHILIPS</td>
<td>C14.017.120</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td></td>
<td>CAPACITOR CERÂMICO DISCO - PFS, 100nF / 50V /-20+85°C</td>
<td>PFS/C/619/FA/917/-/AC. 4/100.000/2/156</td>
<td>THOMSON</td>
<td>C13.016.019.032.035</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td></td>
<td>CAPACITOR ELESTOLITICO REPO/4.4/SERIE 64.440, 16µF</td>
<td>100-25-0.042</td>
<td>ICOM</td>
<td>C15.020</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td></td>
<td>DIODO DE BAIXO SINAL</td>
<td>2N4440</td>
<td>PHILIPS</td>
<td>D1.02</td>
</tr>
</tbody>
</table>
Tabela 1 - Lista das peças que compõem um circuito eletrônico (continuação)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
<th>VALOR/REF.</th>
<th>FABRICANTE</th>
<th>IDENTIFICACAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>8</td>
<td></td>
<td>AMPLIFICADOR OPERACIONAL</td>
<td>LM 316</td>
<td>NATIONAL</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td></td>
<td>AMPLIFICADOR OPERACIONAL</td>
<td>LM 2084-1</td>
<td>NATIONAL</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td></td>
<td>CONECTOR BNC FEMEA PARA PAIXEL</td>
<td>WT-2</td>
<td>WINCHER</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td></td>
<td>CONECTOR RK 3.94mm BASE 90 GRAUS, COM FARIAS DE POLARIZAÇÃO E TRAVAMENTO, 4 VIAS</td>
<td>MF274-4A</td>
<td>MIL-EX</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td></td>
<td>CONECTOR MACHO, 160 GRAUS, FILA SIMPLES, PASSO 2, 54, 3 VIAS</td>
<td>621259-3</td>
<td>AMP</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td></td>
<td>CONECTOS MACHO, 160 GRAUS, FILA SIMPLES, PASSO 2, 54, 2 VIAS</td>
<td>621258-2</td>
<td>AMP</td>
<td>52.53</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td></td>
<td>FONTE CURTO-CIRCULANTE NOVO SÁBIA</td>
<td>835854-3</td>
<td>AMP</td>
<td>21.31.51</td>
</tr>
</tbody>
</table>

Os cabos coaxiais são usados para interligar os três módulos componentes de um transdutor de impedância. A figura 15 mostra como são feitas as ligações.

2.2 - CIRCUITO EXPERIMENTAL

A COPESP possui um circuito para realização de experimentos que envolvam escoamento bifásico ar-água. Este circuito foi utilizado neste trabalho. Ele sofreu várias alterações, entretanto, para que seu uso fosse possível neste experimento. Foram acrescentadas linhas de ar e água, rotômetros, um manômetro e um termômetro.

A figura 16 traz o fluxograma do circuito.

Abaixo, seguem-se descrições detalhadas dos principais elementos do circuito.

2.2.1 - SEÇÃO DE TESTES

A seção de testes foi fabricada, quase que exclusivamente, de acrílico transparente. Possui, aproximadamente, 4 m de altura. Seu diâmetro interno é constante e igual a 33 mm. Um esquema da seção de testes é mostrado na figura 17.

A seção de testes possui três tomadas de pressão. Uma delas localiza-se a 200 mm da extremidade superior desta. As outras duas estão 500 mm e 1000 mm abaixo da primeira. A figura 18 apresenta uma tomada de pressão em corte.
Figura 14 - Diagrama elétrico da fonte de tensão
<table>
<thead>
<tr>
<th>ITEN</th>
<th>CÓDIGO</th>
<th>DESCRIÇÃO</th>
<th>UNIDADE</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>CAL.CUSTO</th>
<th>VALOR</th>
<th>DESCRIÇÃO</th>
<th>UNIDADE</th>
<th>MÍNIMO</th>
<th>MÁXIMO</th>
<th>CAL.CUSTO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>RESERVOIR</td>
<td>94.476-0</td>
<td></td>
<td></td>
<td>94.476-0</td>
<td></td>
<td>94.476-0</td>
<td>400</td>
<td></td>
<td></td>
<td>94.476-0</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>CAPACITOR CERÁMICO DISCO</td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>DOIS EMBUTIDOS RETANGULAR</td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>REGULADOR DE TEMPERATURA</td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 2 - Lista das peças que compõem a fonte de alimentação (continuação)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>Q.</th>
<th>DESCRIÇÃO</th>
<th>VALOR/UN.</th>
<th>FABRICANTE</th>
<th>IDENTIFICAÇÕES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td></td>
<td>CASO DE ALIMENTAÇÃO CZP-1 PROFISSIONAL</td>
<td>1330</td>
<td>STECK</td>
<td>J1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td>CONECTOR PONTO BASE BETA, 4 VIAS</td>
<td>8961-4V</td>
<td>N/A</td>
<td>J2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td>CONECTOR PONTO CAIXA CONECTORA PARA TERMINAL CRIMP, 4 VIAS</td>
<td>8961-4F</td>
<td>N/A</td>
<td>J2</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td></td>
<td>CONECTOR PONTO TERMINAL</td>
<td>8908-3L</td>
<td>N/A</td>
<td>J2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td></td>
<td>CONECTOR RJ 2.54 EST CAIXA CONECTORA COM RAMPA DE TRAVAIND ENTRADA, 4 VIAS</td>
<td>8960-4</td>
<td>N/A</td>
<td>J3</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td></td>
<td>CONECTOR RJ 2.54 TERMINAL</td>
<td>2478 TL</td>
<td>N/A</td>
<td>J3</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td></td>
<td>CONECTOR MODU, MACHO, 160 DÍALOS, 2 VIAS</td>
<td>624252-2</td>
<td>AMP</td>
<td>J4</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td></td>
<td>ALOJAMENTO PARA CONTATO FERREI MODU, FIO-ABERTO, ES. PASSO 2.54, 2 VIAS</td>
<td>894474-4</td>
<td>AMP</td>
<td>J4</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td></td>
<td>CONTATO FERREI MODU</td>
<td>880161-2</td>
<td>AMP</td>
<td>J4</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td></td>
<td>PARTA-FUSIVEL DE MAÍN</td>
<td>REP. 5</td>
<td>JOLO</td>
<td>F1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td></td>
<td>MINI-FUSIVEL</td>
<td>0,5 A</td>
<td>JOLO</td>
<td>F1</td>
</tr>
</tbody>
</table>
Tabela 2 - Lista das peças que compõem a fonte de alimentação (continuação)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>QUANT.</th>
<th>DESCRIÇÃO</th>
<th>VALOR/REF.</th>
<th>FABRICANTE</th>
<th>IDENTIFICAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td>MICRO-CHAVE INVERSOR</td>
<td>LTI</td>
<td>MARJNIUS</td>
<td>CM1</td>
</tr>
</tbody>
</table>

PROJETO: MEDITORE DE FRAÇÃO DE VÁZIO GLOBAL

CONVERSOR DO MEDITORE DE FRAÇÃO DE VÁZIO GLOBAL

LISTA DE MATERIAIS PARA O EJH-2 VERSÃO: 0

AUTOR: FUGNIO
Como se pode notar pela figura, a tomada de pressão é quádrupla, o que tem por objetivo possibilitar a medida de um valor médio da pressão, caso esta varie ao longo da parede. O diâmetro e o comprimento dos furos das tomadas de pressão estão de acordo com a norma ISO concernente.

As tomadas de pressão não se comunicam diretamente com os transmissores de pressão. Para impedir que bolhas de ar cheguem às linhas de tomada de pressão, caixas de separação foram colocadas bem próximas às tomadas de pressão. A figura 19 mostra um corte longitudinal de uma caixa de separação. Ar proveniente da seção de testes, ao chegar a uma caixa de separação, acumula-se na parte de cima desta, mantendo-se, assim, a linha de tomada de pressão preenchida apenas com água.
Figura 16 - Fluxograma do circuito experimental
Figura 17 - Esquema da seção de testes (escala 1:10)
A ligação da seção de testes com o circuito foi feita através de mangueiras flexíveis.

A água era injetada pela extremidade inferior.

O misturador, único elemento da seção de testes que não foi fabricado em acrílico, é, basicamente, um tubo de PVC, com diâmetro interno igual ao da seção de testes, provido de dezoito furos radiais. A cada furo foi conectada uma mangueira de polietileno, com 6,35 mm (¼") de diâmetro externo. Por meio destas mangueiras, era injetado o ar. A vazão através de cada mangueira podia ser controlada por uma válvula agulha.

Três conjuntos de eletrodos foram montados na seção de testes. Um deles está localizado abaixo do misturador, tendo contato, portanto, apenas com água. Ao transdutor do qual ele faz parte deu-se o nome de transdutor de referência. Os outros dois conjuntos de eletrodos foram colocados entre as tomadas de pressão, equidistantes delas. O de baixo faz parte do transdutor inferior e o de cima, do transdutor superior.
Figura 19 - Corte longitudinal de uma caixa de separação (escala 1:1)
2.2.2 - TRANSMISSORES DE PRESSÃO

Três das variáveis medidas durante a calibração dos transdutores de impedâncias são a pressão manométrica na cota da tomada de pressão intermediária, a perda de pressão entre as cotas das tomadas de pressão intermediária e inferior e a perda de pressão entre as cotas das tomadas de pressão superior e intermediária. Para medir estas variáveis, foram usados cinco transmissores de pressão. Um deles é o responsável pela medição da pressão manométrica. Foi calibrado para a faixa entre 0 e 3,5 kgf/cm². Os outros quatro são transmissores de pressão diferencial, dois deles calibrados para a faixa entre 0 e 1244,2 Pa (0 e 5 polegadas de água) e dois, para a faixa entre 0 e 6221 Pa (0 e 25 polegadas de água). Ao par de tomadas de pressão intermediária-inferior foram conectados dois transmissores de pressão, um de cada faixa; o mesmo ocorreu com o par superior-intermediária. O motivo disto é simples: para os transmissores de pressão diferencial utilizados, a incerteza associada a uma medida é de 0,2% do span. Sendo assim, valores pequenos de pressão diferencial eram medidos com os transmissores de faixa menor, visando minimizar as incertezas relativas das medidas.

A figura 20 traz um esquema da ligação dos transmissores às tomadas de pressão.

Um transmissor de pressão do tipo utilizado é calibrado correlacionando-se a corrente elétrica que o está atravessando com a pressão que ele está medindo. Como o sistema de aquisição de dados utilizado neste experimento só consegue medir tensões, um resistor foi colocado em série com cada transmissor, possibilitando que as medidas de corrente fossem substituídas por medidas de tensão nos terminais dos resistores.
Figura 20 - Esquema da ligação dos transmissores às tomadas de pressão
2.2.3 - COMPRESSOR

Tipo: compressor parafuso.
Descarga livre efetiva de ar, à plena carga e à pressão de 7 bar: 810 m³/h.

A maior parte da vazão fornecida pelo compressor era desviada pelo "bypass".

2.2.4 - BOMBA

Tipo: centrífuga radial.
Dados de placa: 30 m³/h - 28 metros de coluna d'água.
Vale a mesma observação que foi feita em relação à vazão do compressor.

2.2.5 - ROTÂMETROS

Linha de ar

Três rotâmetros: 15 a 150 Nm³/h, 1,5 a 15Nm³/h e 0,15 a 1,5 Nm³/h (1 atm e 21°C).

Fabricante dos rotâmetros: OMEL.

É óbvio que, para maior precisão nas medidas, as faixas dos rotâmetros deveriam se sobrepor parcialmente. Infelizmente, os rotâmetros do circuito não atendem a esta recomendação, porque havia recursos limitados para adquiri-los e desejava-se cobrir a maior faixa de vazão possível.

Todos os rotâmetros foram aferidos no Instituto de Pesquisas Tecnológicas (IPT).
Linha de água

Três rotâmetros: 3500 a 35000 l/h, 700 a 7000 l/h e 108 a 1080 l/h
Os dois rotâmetros de maior capacidade foram fabricados pela OMEL; o outro, pela ALLINOX.
Os rotâmetros não foram aferidos. Confiou-se na calibração feita pelos fabricantes.

2.2.6 - TERMÔMETROS

Os três termômetros são do tipo bimetálico.

Tabela 3 - Escalas dos termômetros do circuito experimental

<table>
<thead>
<tr>
<th>TERMÔMETRO</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0 a 100°C</td>
</tr>
<tr>
<td>T2</td>
<td>0 a 100°C</td>
</tr>
<tr>
<td>T3</td>
<td>-10 a 50°C</td>
</tr>
</tbody>
</table>

Os termômetros foram aferidos na própria COPESP.

2.2.7 - MANÔMETRO

O manômetro é do tipo Bourdon. Sua escala vai de 0 a 4 kgf/cm². Sua aferição também foi feita na própria COPESP.
2.3 - SISTEMA DE AQUISIÇÃO DE DADOS (SAD)

O sistema de aquisição de dados utilizado foi construído na própria COPESP. A operação deste equipamento era feita em conjunto com um microcomputador PC AT. Oito dos canais do SAD foram utilizados: três deles ligados às saídas médias dos transdutores de impedância e cinco, aos transmissores de pressão. Só se fez uso deste equipamento durante a fase de calibração dos transdutores.

2.4 - GRAVADOR

Um gravador fabricado pela Hewlett-Packard (3968A Instrumentation Recorder) foi utilizado nos ensaios da fase de busca de métodos para identificação dos regimes de escoamento. Dos seus oito canais, cinco eram aproveitados para gravar as saídas flutuantes dos transdutores superior e inferior e as saídas médias dos três transdutores.

2.5 - ANALISADOR DE FOURIER

Outro equipamento fabricado pela Hewlett-Packard (3562A Dynamic Signal Analyser) foi utilizado na análise dos sinais registrados com o gravador. Este equipamento, que possui dois canais para conexão de sinais, permite o cálculo de várias funções úteis na análise de sinais, tais como: função densidade de probabilidade, autocorrelação, correlação cruzada, função densidade auto-espectral, função densidade espectral cruzada etc.

Uma característica importante do Analisador de Fourier é que as funções acima podem ser estimadas a partir de uma média de n cálculos individuais, cada um deles obtido com base num registro temporal (um trecho de sinal), o que,
obviamente, melhora a estimativa. Outro recurso do equipamento é que ele permite que haja superposição parcial entre os registros temporais, o que viabiliza o cálculo de um maior número de médias com o mesmo comprimento total de sinal.
3 - CALIBRAÇÃO DOS TRANSDUTORES DE IMPEDÂNCIA

A calibração de um transdutor de impedância consiste na obtenção da função \(f \) que aparece na equação abaixo.

\[
\alpha = f\left(\frac{\overline{V}}{\overline{V}_0}\right) , \quad (9)
\]

onde

\(\overline{V} \) é a saída média do transdutor de impedância e

\(\overline{V}_0 \) é a saída média do transdutor de impedância quando há, apenas, líquido entre os seus eletrodos.

A saída média do transdutor pode variar mesmo estando a fração de vazio fixada, já que a primeira depende, também, da condutividade elétrica do líquido, a qual varia com a temperatura e a composição química. Isto é, obviamente, indesejado. O efeito da condutividade elétrica pode ser minimizado, entretanto, empregando-se, como argumento da função \(f \), \(\frac{\overline{V}}{\overline{V}_0} \) em lugar de \(\overline{V} \), como feito neste trabalho.

Como \(\overline{V}_0 \) varia com a condutividade elétrica do líquido, seu valor deveria, idealmente, ser medido logo após cada medida de \(\overline{V} \), o que, neste trabalho, implicaria em interromper a vazão de ar e esperar que todo ar remanescente na seção de testes escoasse para além do conjunto de eletrodos e que a saída média do transdutor se estabilizasse. Para tornar a calibração mais rápida, existe o transdutor de referência, cujo conjunto de eletrodos está em contato apenas com água, o tempo todo. É a saída média do transdutor de referência que dá o valor de \(\overline{V}_0 \) para os transdutores inferior e superior.

Para determinar \(f \), é necessário construir uma tabela que contenha valores de \(\alpha \) e correspondentes valores de \(\frac{\overline{V}}{\overline{V}_0} \). Os valores de \(\overline{V} \) e \(\overline{V}_0 \) foram medidos
de maneira direta. Já a avaliação dos valores de \(\alpha \) foi feita pelo método gravimétrico, de maneira indireta.

3.1 - O MÉTODO GRAVIMÉTRICO

3.1.1 - DERIVAÇÃO DO MÉTODO

Adotar-se-á, como volume de controle, um trecho infinitesimal de um tubo vertical, como mostrado na figura 21.

![Figura 21 - Volume de controle adotado](image)

Assumir-se-á que o tubo tem diâmetro interno constante.

Na condição já citada e para este volume de controle, a Equação da Conservação da Quantidade de Movimento toma, na direção \(z \), a seguinte forma:

\[
pA - \left(p + \frac{dp}{dz} \right) A - dF_g - dF_i - dm_{g}g - dm_{i}g = \\
= \left(W_g + \frac{dW_g}{dz} \right) \left(u_g + \frac{du_g}{dz} \right) + \left(\frac{dW_i}{dz} \right) \left(u_i + \frac{du_i}{dz} \right) - W_g u_g - W_i u_i , \quad (10)
\]

onde
I é usado para identificar a fase líquida e g, a fase gasosa,
p é a pressão estática,
A é a área de passagem do tubo,
d\(F_n \) é a força de atrito exercida pela parede do tubo sobre a fase n,
d\(m_n \) é a massa da fase n contida no volume de controle,
g é a aceleração da gravidade,
W\(_n \) é a vazão em massa da fase n e
u\(_n \) é a velocidade da fase n.

Simplificando a expressão acima, vem que
\[
\frac{dp}{dz} = \frac{1}{A} dF_g + \frac{1}{A} dF_i + \frac{1}{A} \frac{d}{dz} (W_g u_g) dz + \frac{1}{A} \frac{d}{dz} (W_i u_i) dz + \frac{1}{A} dm_g g + \frac{1}{A} dm_i g
\]
\(\text{(11)} \)

A perda de pressão estática pode ser entendida como a soma de três componentes, a saber,

\((dp)_F \), que é a perda de pressão devida ao atrito,

\((dp)_a \), que é a perda de pressão devida à aceleração, e

\((dp)_z \), que é a perda de pressão devida à ação da gravidade.

Na equação (11),
\[
-(dp)_F = \frac{1}{A} dF_g + \frac{1}{A} dF_i \quad \text{(12)}
\]
\[
-(dp)_a = \frac{1}{A} \frac{d}{dz} (W_g u_g) dz + \frac{1}{A} \frac{d}{dz} (W_i u_i) dz \quad \text{(13)}
\]
\[
-(dp)_z = \frac{1}{A} dm_g g + \frac{1}{A} dm_i g \quad \text{(14)}
\]

A calibração dos transdutores de impedância foi realizada na seguinte condição:

a) vazão de líquido nula;
b) escoamento adiabático;
c) inexistência de condensação ou ebulição.
Nesta condição, é possível desprezar, na equação (11), as parcelas da perda de pressão devidas ao atrito e à aceleração. Fazendo isto, obtém-se que

\[- \frac{dp}{dz} = \frac{1}{A} dm_g + \frac{1}{A} dm_l \quad (15)\]

Integrando os dois membros da equação acima, segue que

\[- \Delta p = \frac{1}{A} M_g + \frac{1}{A} M_l , \quad (16)\]

onde

\(\Delta p\) é a perda de pressão entre duas cotas do tubo e

\(M_l\) é a massa da fase n contida entre estas cotas.

A equação (16) pode ser reescrita da seguinte forma:

\[- \Delta p = \frac{1}{A} V_g \rho_s^* g + \frac{1}{A} V_l \rho_l g , \quad (17)\]

onde

\(V_g\) é o volume ocupado pelo gás entre as cotas selecionadas,

\(\rho_s^*\) é a densidade média do gás, ou seja, \(M_g/V_g\),

\(V_l\) é o volume ocupado pelo líquido entre as cotas selecionadas e

\(\rho_l\) é a densidade do líquido (assumido incompressível).

Dividindo e multiplicando o segundo membro da equação (17) por \(\Delta z\), a diferença entre as cotas selecionadas, vem que

\[- \Delta p = \frac{V_g}{V} \rho_s^* g \Delta z + \frac{V_l}{V} \rho_l g \Delta z , \quad (18)\]

onde \(V = A \Delta z\) é o volume entre as cotas selecionadas.

Substituindo as igualdades

\[\frac{V_g}{V} = \alpha \quad (19)\]

\[e \quad \frac{V_l}{V} = 1 - \alpha \quad (20)\]

na equação (18), obtém-se a equação que permite calcular a fração de vazão a partir de uma medida de perda de pressão:
\[\alpha = \frac{\rho_1 \cdot \frac{\Delta p}{g \Delta z}}{\rho_1 - \rho_s} \quad (21) \]

A fórmula acima precisou ser adaptada para que, durante a calibração dos transdutores de impedância, a fração de vazio no volume contido entre as cotas de duas tomadas de pressão pudesse ser avaliada a partir dela. A figura 22 ajuda a entender a adaptação necessária.

Figura 22 - Esquema da ligação de um transmissor de pressão diferencial às tomadas de pressão

Chamando de \(p_1 \) a pressão estática na cota \(z_1 \) e \(p_2 \) a pressão estática na cota \(z_2 \), vem que
\[\Delta p = p_2 - p_1 \quad (22) \]

Por outro lado,
\[\Delta p_{\text{transmissor}} = p_2 + \rho g \Delta z - p_1 \quad (23) \]
onde
\[\Delta p_{\text{transmissor}} \] é a pressão acusada pelo transmissor e
\[\Delta z = z_2 - z_1. \]

Observar que, na equação acima, admite-se que a densidade do líquido
nas linhas de tomada de pressão é igual à densidade do líquido entre as cotas \(z_1 \) e
\(z_2 \) do tubo.

Combinando as equações (22) e (23), segue que
\[\Delta p = \Delta p_{\text{transmissor}} - \rho g \Delta z \quad (24) \]

Substituindo a equação (24) na (21), resulta, finalmente, que
\[\alpha = \frac{\Delta p_{\text{transmissor}}}{(\rho_1 - \rho^* g \Delta z} \quad (25) \]

3.1.2 - AVALIAÇÃO DA INFLUÊNCIA DA PERDA DE PRESSÃO POR
ATRITO DURANTE A CALIBRAÇÃO DOS TRANSDUTORES DE
IMPEDEÂNCIA

Na derivação do método gravimétrico, a perda de pressão por atrito foi
desprezada. Será desenvolvida, a seguir, a justificativa para esta decisão.

Em escoamento bifásico gás-líquido, o cálculo do gradiente de pressão é
feito, frequentemente, com o auxílio de um multiplicador bifásico, da seguinte
maneira:

\[\text{gradiente de pressão bifásico} = \text{gradiente de pressão monofásico} \times \text{multiplicador bifásico correspondente} \]

Na avaliação da componente do gradiente de pressão devida ao atrito,
dois multiplicadores bifásicos são bastante empregados. Seguem-se, abaixo, suas
definições:
\[\phi_{lo}^2 = -\frac{\left(\frac{dp}{dz}\right)_F}{\left(\frac{dp}{dz}\right)_{lo}} \]
(26)

\[\phi_{go}^2 = -\frac{\left(\frac{dp}{dz}\right)_F}{\left(\frac{dp}{dz}\right)_{go}} \]
(27)

Nas fórmulas acima,

\((dp/dz)_F\) é o gradiente de pressão devido ao atrito, num escoamento bifásico gás-líquido,

\((dp/dz)_{lo}\) é o gradiente de pressão devido ao atrito, num escoamento monofásico líquido com vazão em massa idêntica a do escoamento bifásico ao qual está associado \((dp/dz)_F\) e \((dp/dz)_{go}\) é o gradiente de pressão devido ao atrito, num escoamento monofásico gasoso com vazão em massa idêntica a do escoamento bifásico ao qual está associado \((dp/dz)_F\).

- \((dp/dz)_{lo}\) e - \((dp/dz)_{go}\), para um conduto circular, podem ser calculados pelas expressões abaixo, as quais são derivadas da equação de Fanning.

\[-\left(\frac{dp}{dz}\right)_{lo} = \frac{4}{d} \cdot C_{f_{lo}} \cdot \frac{1}{2} \cdot \frac{G^2}{\rho_l} \]
(28)

\[-\left(\frac{dp}{dz}\right)_{go} = \frac{4}{d} \cdot C_{f_{go}} \cdot \frac{1}{2} \cdot \frac{G^2}{\rho_g} \]
(29)

Nas equações acima,

\(\rho_g\) é a densidade do gás,

d é o diâmetro interno do tubo,

\(C_{f_{lo}}\) é o fator de atrito para o escoamento monofásico líquido,
C_{fr} é o fator de atrito para o escoamento monofásico gasoso e

G é o fluxo de massa total $= \frac{\text{vazão em massa total (gás + líquido)}}{\text{área de passagem do tubo}} = \frac{W}{A}$

Para estimar a perda de pressão por atrito durante a calibração dos transdutores de impedância, foi utilizada a expressão dada por FRIEDEL (1979) para ϕ_{io}^2. FRIEDEL utilizou um banco de dados com 25000 pontos experimentais para desenvolver esta expressão. O desvio padrão dos pontos experimentais em relação à sua correlação é de, aproximadamente, 40% para escoamento bifásico com dois componentes. Apesar disto, a correlação de FRIEDEL, entre as de domínio público, é considerada a mais precisa. Sua forma é a seguinte:

$$\phi_{io}^2 = E + \frac{3,24FH}{Fr^{-0.042}We^{0.035}}, \quad (30)$$

sendo

$$E = (1 - x)^2 + x^2 \frac{\rho_g C_{fr}}{\rho_s C_{fr}}$$

$$F = x^{0.78}(1 - x)^{0.224}$$

$$H = \left(\frac{\rho_g}{\rho_l} \right)^{0.91} \left(\frac{\mu_l}{\mu_g} \right)^{0.19} \left(1 - \frac{\mu_l}{\mu_g} \right)^{0.7}$$

$$Fr = \text{número de Froude} = \frac{G^2}{gd\rho_h^2}$$

$$We = \text{número de Weber} = \frac{G^2 d}{\sigma \rho_h}$$

$$\rho_h = \frac{1}{x + \frac{(1 - x)}{\rho_s + \rho_i}}$$

Nas fórmulas acima,

x é o título $= \frac{W_g}{W}$.
\(\mu_g \) é a viscosidade dinâmica do gás,
\(\mu_l \) é a viscosidade dinâmica do líquido e
\(\sigma \) é a tensão superficial

Como a calibração dos transdutores de impedância foi realizada com vazão de líquido nula, seria natural substituir \(x = 1 \) na expressão para \(\phi_{io}^2 \).

Fazendo isto, porém, ocorre que \(\phi_{io}^2 \) fica igual a \(\frac{\rho_1 C_{f_\rho}}{\rho_g C_{f_\rho}} \), e, consequentemente,

\[
\left(\frac{dp}{dz} \right)_F = -\phi_{io}^2 \left(\frac{dp}{dz} \right)_{io} = \frac{\rho_1 C_{f_\rho}}{\rho_g C_{f_\rho}} d C_{f_\rho} \frac{1}{2} \frac{G^2}{\rho_l} = -\left(\frac{dp}{dz} \right)_{go},
\]

ou seja, ao invés de se calcular o gradiente de pressão devido ao atrito na situação desejada (ar escoando através de uma coluna estacionária de água), calcular-se-ia este para um escoamento monofásico gasoso. Assim sendo, a avaliação da influência da perda de pressão por atrito foi feita comparando esta à perda de pressão por ação da gravidade, em função das vazões de líquido e de gás.

Para que a avaliação acima seja feita, é preciso calcular a perda de pressão por atrito num trecho finito de tubo. Este cálculo segue abaixo.

\[
\int_Z^{Z+\Delta z} -\left(\frac{dp}{dz} \right)_F dz = \int_Z^{Z+\Delta z} -\left(\frac{dp}{dz} \right)_{io} \phi_{io}^2 dz,
\]

\[
-(\Delta p)_F = \int_Z^{Z+\Delta z} -\left(\frac{dp}{dz} \right)_{io} \phi_{io}^2 dz,
\]
onde \(-(\Delta p)_F\) é a perda de pressão por atrito entre as cotas \(Z \) e \(Z+\Delta z \) do tubo.

Como a seção de testes em que estão instalados os conjuntos de eletrodos é feita de acrílico, pode-se utilizar a fórmula de Blasius para tubos lisos no cálculo de \(C_{f_\rho} \). Portanto,

\[
C_{f_\rho} = 0,0791(\text{Re}_{io})^{-\frac{1}{4}} = 0,0791 \left(\frac{Gd}{\mu_l} \right)^{-\frac{1}{4}},
\]
onde \(\text{Re}_{io} \) é o número de Reynolds para o escoamento monofásico líquido.
Substituindo a expressão para C_g na equação (28), vem que

$$-(dp_{g}) = \frac{0.1582}{\rho_i} \left(\frac{\mu_i G^7}{d^5} \right)^{\frac{1}{4}} \phi_{\lambda} \Delta z \quad (35)$$

Nesta avaliação, admitir-se-á que o gás (ar) e o líquido (água) estão à mesma temperatura e que esta temperatura não se altera ao longo do escoamento. Consequentemente, μ_i, μ_g, ρ_i e σ, que são, praticamente, independentes da pressão, podem ser consideradas homogêneas entre Z e $Z+\Delta z$. O mesmo vale para ρ_g, apesar desta ser função da pressão, pois a equação a ser obtida para a perda de pressão por atrito foi avaliada para $\Delta z = 0,5 \text{ m}$ (a diferença entre as cotas de duas tomadas de pressão adjacentes, na seção de testes), o que implica, para $\alpha = 0$, numa perda de pressão estática máxima de, aproximadamente, 0,05 bar entre Z e $Z+\Delta z$.

Em razão do exposto acima,

$$-(\Delta p)_F = \frac{0.1582}{\rho_i} \left(\frac{\mu_i G^7}{d^5} \right)^{\frac{1}{4}} \phi_{\lambda} \Delta z \quad (36)$$

A perda de pressão devida à ação da gravidade, entre as mesmas cotas Z e $Z+\Delta z$, é calculada com a seguinte equação:

$$-(\Delta p)_x = [\rho_i(1-\alpha) + \rho_g^* \alpha] g \Delta z \quad (37)$$

Esta equação pode ser obtida da equação (21), bastando, nesta última, substituir Δp por $(\Delta p)_x$. Tal modificação é possível porque, no contexto em que está inserida a equação (21), estes termos são intercambiáveis.

Como ρ_g é considerada homogênea entre Z e $Z+\Delta z$, então $\rho_g^* = \rho_g$.

Introduzindo esta alteração na equação (37), vem que

$$-(\Delta p)_x = [\rho_i(1-\alpha) + \rho_g \alpha] g \Delta z \quad (38)$$

A fração de vazio entre Z e $Z+\Delta z$ foi estimada através da correlação dada por PREMOLI et al. (1970). Nesta correlação,
onde A_g é a parte da área de passagem do tubo ocupada pelo gás. Notar que esta definição de α é diferente daquela dada pela equação (19). Mais adiante, será visto que α como definida pela equação (19) é igual à média de A_g/A entre Z e $Z+\Delta z$.

A correlação para a fração de vazio é a seguinte:

$$\alpha = \frac{1}{1 + S \frac{(1-x) \rho_s}{x \rho_1}}, \quad (40)$$

onde

$$S \text{ é a razão de deslizamento } = 1 + E_1 \left(\frac{y}{1+yE_2} - yE_2 \right)^{\frac{1}{2}},$$

$$y = \frac{\beta}{1-\beta},$$

$$\beta = \frac{\rho_1 x}{\rho_1 x + \rho_s (1-x)};$$

$$E_1 = 1.578 (\text{Re}_{lo})^{-0.19} \left(\frac{\rho_1}{\rho_s} \right)^{0.22},$$

$$E_2 = 0.0273 \text{We} (\text{Re}_{lo})^{-0.51} \left(\frac{\rho_1}{\rho_s} \right)^{-0.08}$$

$$\text{We} = \text{número de Weber} = \frac{G^2 d}{\sigma \rho_1}$$

Observar que a definição de We não é a mesma utilizada na correlação de FRIEDEL.
As expressões desenvolvidas para as perdas de pressão por atrito e por ação da gravidade foram avaliadas ao longo das retas mostradas na figura 23, onde

\[j_n = \frac{\text{vazão volumétrica da fase } n}{\text{área de passagem do tubo}} \] \hspace{1cm} (41)

A reta 2 marca a transição entre os regimes pistonado e agitante. Sua expressão, de acordo com TAITEL et al. (1980), é a seguinte:

\[\frac{l_E}{d} = 40,6 \left[\frac{(j_g + j_l)}{\sqrt{gd}} + 0,22 \right] \] \hspace{1cm} (42)

onde \(l_E \) é o comprimento de entrada.

Nesta avaliação, adotou-se como comprimento de entrada a distância entre as cotas da parte superior do misturador e da base do conjunto de eletrodos inferior.

A decisão de fazer a avaliação da influência da perda de pressão por atrito ao longo da transição pistonado/agitante deve-se ao fato de, no cálculo das curvas de calibração dos transdutores, somente terem sido utilizados os pontos experimentais associados aos regimes bolhas e pistonado e à transição bolhas/pistonado. A motivação para esta atitude será vista adiante.

O ponto \((0,3106;0,744)\), na figura 23, resulta da solução simultânea da equação (42) e da equação abaixo, a qual marca a transição entre os regimes bolhas e pistonado, ainda segundo TAITEL et al.:

\[j_l = 3,0j_g - 1,15\left[\frac{g(\rho_1 - \rho_s)\sigma}{\rho_1^2} \right]^{\frac{1}{4}} \] \hspace{1cm} (43)

O ponto \((0,9459;0,1087)\) foi escolhido de maneira que \(Re_{10}\) não caísse abaixo de 4000.

A menor velocidade superficial de gás utilizada, na avaliação, foi 0,1 m/s.
Figura 23 - Retas ao longo das quais foi feita esta avaliação

\[
\begin{align*}
J_l &= 0.744 \text{ m/s} \\
J_g &= 0.3106 \text{ m/s} \\
J_l &= 0.1087 \text{ m/s} \\
J_g &= 0.9459 \text{ m/s}
\end{align*}
\]
As expressões desenvolvidas para as perdas de pressão por atrito e por ação da gravidade foram avaliadas na seguinte condição: temperatura de 25°C e pressão absoluta de 1,3 bar.

\[C_{r_p} = \frac{1}{4[1.8 \log (Re_{go}) - 1.64]^2}, \quad (44) \]

onde \(Re_{go} \) é o número de Reynolds para o escoamento monofásico gasoso= \(\frac{Gd}{\mu_s} \).

Os resultados desta avaliação são apresentados nas figuras 24, 25 e 26.

A figura 24 mostra que, ao longo da transição pistonado/agitante, a influência da perda de pressão por atrito diminui à medida que decresce a vazão em massa de líquido. Como a calibração foi feita com água estagnada, é de se esperar que o atrito tenha tido uma importância ainda menor do que aquela revelada na figura 24.

Quando, partindo da transição pistonado/agitante, diminui-se a vazão de ar, a razão entre as perdas de pressão por atrito e por ação da gravidade também diminui, como mostram as figuras 25 e 26, ficando ainda menor do que já era.

Concluindo, a análise dos resultados desta avaliação permite afirmar que foi razoável ter desprezado a perda de pressão por atrito, na derivação do método gravimétrico.

3.1.3 - AVALIAÇÃO DA INFLUÊNCIA DA PERDA DE PRESSÃO POR ACELERAÇÃO DURANTE A CALIBRAÇÃO DOS TRANSDUTORES DE IMPEDÂNCIA

Para comprovar a adequação do método gravimétrico à avaliação da fração de vazio durante a calibração dos transdutores de impedância, basta,
Figura 24 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 2
Figura 25 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 1
Figura 26 - Razão entre as perdas de pressão por atrito e por ação da gravidade ao longo da reta 3
agora, demonstrar que a perda de pressão devida à aceleração é, realmente, desprezível.

Mais uma vez, não será possível impor que $W_1 = 0$, pois a correlação de PREMOLI et al. para fração de vazão será empregada nos cálculos que seguem, e, nesta,

$$x \rightarrow 1 \Rightarrow y \rightarrow +\infty \Rightarrow S \text{ não ter sentido físico}$$

O ponto de partida para esta avaliação será a expressão anteriormente obtida para a perda de pressão por aceleração [equação (13)], a saber,

$$-(dp) = \frac{1}{A} \frac{d}{dz} (W_s u_s) dz + \frac{1}{A} \frac{d}{dz} (W_i u_i) dz$$

Durante a calibração, não ocorreu condensação ou ebulação, portanto

$$-(dp)_a = \frac{1}{A} W_s \frac{du_s}{dz} dz + \frac{1}{A} W_i \frac{du_i}{dz} dz \quad (45)$$

Como

$$u_n = \frac{W_n}{\rho_n A_n}, \quad (46)$$

onde A_n é a parte da área de passagem do tubo ocupada pela fase n, pode-se reescrever a equação (45) da seguinte maneira:

$$-(dp)_a = \frac{(W_s)^2}{A} \frac{d}{dz} \left(\frac{1}{\rho_s A_s} \right) dz + \frac{(W_i)^2}{A} \frac{d}{dz} \left(\frac{1}{\rho_i A_i} \right) dz \quad (47)$$

$R_{n_1} = \frac{A_n}{A}$ recebe o nome de fração espacial instantânea da fase n [α, como definida pela equação (1), é igual a R_{s_1}; como não se está considerando a variação das grandezas com o tempo, poder-se-ia empregar α em lugar de R_{s_1}, o que não será feito para evitar confusões, como ficará claro adiante]. Substituindo esta definição na equação (47), vem que

$$-(dp)_a = \left(\frac{W_s}{A} \right)^2 \frac{d}{dz} \left(\frac{1}{\rho_s R_{s_1}} \right) dz + \left(\frac{W_i}{A} \right)^2 \frac{d}{dz} \left(\frac{1}{\rho_i R_{i_2}} \right) dz \quad (48)$$
Será visto, no item 3.3, que, em todos os ensaios que compuseram a calibração dos transdutores de impedância, apurou-se que a fração de vazio estimada entre as cotas das tomadas de pressão inferior e intermediária era muito próxima daquela estimada entre as cotas das tomadas de pressão intermediária e superior. A razão de mencionar isto agora ficará visível a seguir.

Já foi definido [equação (19)] que

\[\alpha = \frac{V_s}{V} \]

Entre duas cotas quaisquer, \(z_1 \) e \(z_3 \), uma definição equivalente para \(\alpha \) é a seguinte:

\[\alpha = \frac{1}{A(z_3 - z_1)} \int_{z_1}^{z_3} A_g dz = \frac{1}{(z_3 - z_1)} \int_{z_1}^{z_3} R_{g_2} dz \] \hspace{1cm} (49)

Pelo Teorema do Valor Médio, portanto,

\[\alpha = R_{g_3}(z_2), \] \hspace{1cm} (50)

com \(z_1 \leq z_2 \leq z_3 \).

A constatação experimental recém-mencionada pode ser matematicamente descrita por

\[\alpha_{sup} \approx \alpha_{inf}, \] \hspace{1cm} (51)

onde

\(\alpha_{sup} \) é a fração de vazio estimada entre as cotas das tomadas de pressão intermediária e superior e

\(\alpha_{inf} \) é a fração de vazio estimada entre as cotas das tomadas de pressão inferior e intermediária,

ou, equivalentemente, por

\[R_{g_3}(z_{sup}) \approx R_{g_3}(z_{inf}), \] \hspace{1cm} (52)

com \(Z + \Delta z \leq z_{sup} \leq Z + 2\Delta z \) e \(Z \leq z_{inf} \leq Z + \Delta z \).

A relação (52) mais a bastante razoável hipótese de que \(R_{g_3} \) varia monotonicamente com \(z \) permitem afirmar que \(R_{g_3} \) é, praticamente, homogênea.
entre \(Z \) e \(Z + 2\Delta z \), durante a calibração dos transdutores de impedância. O efeito desta conclusão, na presente avaliação, será o de permitir que se desprezem \(\frac{dR_s}{dz} \) e \(\frac{dR_l}{dz} \) na equação (48).

Maior uma vez, o líquido será considerado incompressível. Consequentemente, \(\frac{dp_l}{dz} \) também será eliminado da equação (48).

Diante do exposto nos últimos parágrafos, a equação (48) pode, agora, tomar a seguinte forma:

\[
-(dp)_a = \left(\frac{W_g}{A} \right)^2 \frac{1}{R_g} \frac{d}{dz} \left(\frac{1}{\rho_g} \right) \]

Assumindo que o gás é um gás perfeito e que sua temperatura não se altera ao longo do escoamento, pode-se reescrever a equação (53) da seguinte maneira:

\[
-(dp)_a = \left(\frac{W_g}{A} \right)^2 \frac{RT}{R_g} \frac{d}{dz} \left(\frac{1}{p} \right) \]

Simplificando, obtém-se que

\[
(dp)_a = \left(\frac{W_g}{A} \right)^2 \frac{RT \ dp}{R_g \ p^2}, \quad (55)
\]

ou, ainda, que

\[
\frac{(dp)_a}{dp} = \frac{1}{R_g} \frac{1}{RT} \left(\frac{W_g}{\rho_g A} \right)^2 \]

A equação acima permite comparar a perda de pressão por aceleração com a perda de pressão total, o que possibilita analisar a influência da primeira.

A avaliação da equação (56) se deu ao longo das retas mostradas na figura 23, similarmente ao que foi feito no item anterior. Também como no item
anterior, as propriedades termodinâmicas do gás (ar) e do líquido (água) são as correspondentes à temperatura de 25°C e à pressão absoluta de 1,3 bar. \(R_s \) foi calculada com a correlação de PREMOLI et al.

Os resultados desta avaliação estão apresentados nas figuras 27, 28 e 29.

Como se pode ver na figura 27, na transição pistonado/agitante, a razão entre as perdas de pressão por aceleração e total cresce à medida que a vazão em massa de água diminui, em função do aumento da vazão em massa de ar. Tal comportamento não é preocupante, porém, em vista dos baixíssimos valores que a razão entre as perdas de pressão assume.

As figuras 28 e 29 mostram que, partindo da transição pistonado/agitante, a diminuição da vazão em massa de ar é acompanhada pela diminuição da razão entre as perdas de pressão.

Os resultados desta análise deixam claro que desprezar a perda de pressão por aceleração, na derivação do método gravimétrico, é perfeitamente aceitável.

3.2 - METODOLOGIA EMPREGADA NO LEVANTAMENTO DOS DADOS EXPERIMENTAIS

A calibração dos transdutores de impedância envolveu a realização de numerosos ensaios, cada ensaio caracterizado pela vazão de ar a ele associada (como mencionado anteriormente, a calibração foi feita com vazão nula de água). De um ensaio para outro, a vazão de ar ia sendo aumentada progressivamente. Cada ensaio gerou dois pontos experimentais, um para cada transdutor sendo calibrado. Entende-se, aqui, por ponto experimental, o par formado por um valor de \(\alpha \) e o correspondente valor de \(\overline{V}/\overline{V}_{io} \).

Em cada ensaio, eram anotadas
- a configuração do escoamento na região dos conjuntos de eletrodos,
Figura 27 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 2
Figura 28 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 1
Figura 29 - Razão entre as perdas de pressão por aceleração e total ao longo da reta 3
- a temperatura de entrada do ar,
- a temperatura ambiente e
- a pressão atmosférica

O Sistema de Aquisição de Dados (SAD) foi utilizado para, em cada ensaio, fazer a aquisição de 30 valores, à taxa de 1Hz, de cada uma das seguintes variáveis:
- tensão entre os terminais do resistor colocado em série com o transmissor PT-01;
- tensão entre os terminais do resistor colocado em série com o transmissor PDT-01 ou entre os terminais daquele colocado em série com o transmissor PDT-02, dependendo de qual transmissor estivesse sendo utilizado durante o ensaio;
- tensão entre os terminais do resistor colocado em série com o transmissor PDT-03 ou entre os terminais daquele colocado em série com o transmissor PDT-04, dependendo de qual transmissor estivesse sendo utilizado durante o ensaio;
- saídas médias dos três transdutores.

O cálculo da fração de vazio associada a cada ponto experimental foi feito através da equação (25), que é a seguinte:

\[\alpha = \frac{\Delta p_{\text{transmissor}}}{(\rho_t - \rho_g^*) g \Delta z} \]

Segue-se, abaixo, a explicação sobre como cada termo do lado direito da equação acima era obtido.

a) \(\Delta p_{\text{transmissor}} \)

Inicialmente, fazia-se a média das trinta leituras de tensão feitas pelo SAD. Em seguida, esta média era introduzida na curva de calibração do transmissor.

b) \(\rho_t \)

Calculada à temperatura ambiente e à pressão atmosférica.
c) ρ_e

Calculada na temperatura de entrada do ar e na média das pressões absolutas nas cotas das tomadas de pressão entre as quais estava se estimando a fração de vazio. Admitia-se que o ar era gás perfeito.

d) g

Utilizava-se o valor 9,78622 m/s² (fonte deste valor: Instituto Astronômico e Geofísico).

e) Δz

Utilizava-se a distância entre duas tomadas de pressão adjacentes, ou seja, 0,5 m.

A razão $\overline{V}/\overline{V}_c$ correspondente à cada valor de fração de vazio calculado como descrito acima era obtida, simplesmente, dividindo-se a média da saída média do transdutor inferior ou superior (dependendo do par de tomadas de pressão entre as quais tivesse sido estimada a fração de vazio) pela média da saída média do transdutor de referência.

Em seu experimento com transdutores de impedância, MOREIRA (1989) possuía dois conjuntos de eletrodos, muito semelhantes aos empregados neste trabalho, distanciados por 0,49 m. Um único gerador de funções fazia parte dos dois transdutores. Desligando um transdutor, MOREIRA observou que havia um aumento, da ordem de 4%, na resposta do outro. Equivocadamente, ele julgou ter descoberto um efeito de um transdutor sobre o outro. Na verdade, o que ocorre é o seguinte: ao se desligar um transdutor, diminui a carga para o gerador de funções, e, consequentemente, ele consegue fornecer uma corrente maior ao circuito do outro transdutor, produzindo um aumento na resposta deste último. A esta conclusão chegou-se da seguinte maneira. No início deste trabalho, os três transdutores compartilhavam o mesmo gerador de funções. Depois de algum tempo, percebeu-se que a resposta do transdutor de referência variava com a fração de vazio na seção de testes. Após alguns testes, concluiu-se que tal fato
devia-se à variação da impedância entre os eletrodos dos conjuntos de eletrodos dos transdutores inferior e superior (resultante da variação da fração de vazio), a qual ocasionava uma alteração na corrente fornecida pelo gerador de funções ao circuito do transdutor de referência. O problema foi resolvido utilizando um gerador de funções distinto para cada transdutor.

3.3 - RESULTADOS DA CALIBRAÇÃO

A calibração dos transdutores de impedância envolveu o levantamento de 308 pontos experimentais, metade deles para cada transdutor. A faixa de fração de vazio coberta por estes pontos vai de 0 a 0,98, aproximadamente. As figuras 30 e 31 apresentam os pontos levantados.

Como se pode notar, os dois gráficos são semelhantes. Ambos estão divididos em dois trechos bem distintos: um no qual a variação de α com $\nabla V/V_o$ é, praticamente, linear e outro no qual isto não ocorre.

Não foi possível determinar a causa do afastamento da linearidade visto nos dois gráficos. Duas observações importantes podem ser feitas, entretanto:

a) Como, durante a calibração, a vazão de líquido é nula, aumentar a vazão de gás implica em aumentar a perda de pressão por atrito e a fração de vazio. Crescendo a fração de vazio, diminui a perda de pressão por ação da gravidade. Aumenta com a vazão de gás, portanto, por duas razões, a influência da perda de pressão por atrito, com consequente diminuição no desempenho do método gravimétrico. Como visto no item 3.1.2, porém, o desempenho do método gravimétrico, nos regimes bolhas e pistonado, não é abalado pelo atrito. Mas, nos outros regimes, os quais estão associados a altas frações de vazio, a influência do atrito torna-se bastante relevante, chegando a perda de pressão por atrito a superar a perda de pressão por ação da gravidade. Como a perda de pressão por
Figura 30 - Pontos experimentais levantados para calibração do transdutor inferior

 Razão entre as respostas dos transdutores

Fração de Vazão
Figura 31 - Pontos experimentais levantados para calibração do transdutor superior

Razão entre as respostas dos transdutores

Fração de Vazio
atrito leva à subestima da fração de vazio, o afastamento da linearidade observado nas figuras 30 e 31 pode, realmente, dever-se a ela.

b) A mudança na configuração do escoamento pode, também, ser a causa do afastamento da linearidade, já que este é, relativamente, abrupto e coincide com a transição entre os regimes pistonado e agitante.

Decidiu-se utilizar, apenas, os pontos experimentais obtidos nos regimes bolhas e pistonado (transição para agitante exclusive) no cálculo das curvas de calibração dos transdutores. Como pode ser visto nas figuras 32 e 33, estes pontos experimentais mostram uma variação bastante linear de \(\alpha \) com \(\sqrt{V}/\sqrt{V_o} \).

Aos pontos experimentais selecionados (113 para cada transdutor) foram ajustadas retas, através do Método dos Mínimos Quadrados. Seguem, abaixo, os resultados.

Transdutor inferior:

\[
\alpha = 0,98 - 0,99 \left(\frac{\sqrt{V}}{\sqrt{V_o}} \right) \quad (57)
\]

\[r = 0,9994\]

Transdutor superior:

\[
\alpha = 0,98 - 0,98 \left(\frac{\sqrt{V}}{\sqrt{V_o}} \right) \quad (58)
\]

\[r = 0,9990\]

As curvas de calibração dos transdutores são muito parecidas uma com a outra. Como os transdutores são, praticamente, idênticos (há pequenas diferenças nas amplitudes das portadoras e nas dimensões dos conjuntos de eletrodos e tolerâncias nos componentes dos circuitos eletrônicos), isso indica que o processo de calibração foi preciso.

Nas figuras 34 e 35, são mostrados os pontos experimentais utilizados e as retas a eles ajustadas.
Figura 32 - Pontos experimentais utilizados no cálculo da curva de calibração do transdutor inferior
Figura 3.3 - Pontos experimentais utilizados no cálculo da curva de calibração do transdutor superior.
Figura 34 - Pontos experimentais e reta ajustada - transdutor inferior

Eixos: FRAÇÃO DE VAZIO em relação à RAZÃO ENTRE AS RESPOSTAS DOS TRANSDUTORES.
Figura 35 - Pontos experimentais e reta ajustada - transdutor superior
A figura 36 vem dar suporte ao afirmado no item 3.1.3. Nela, a fração de vazio estimada entre as cotas das tomadas de pressão intermediária e superior (fração de vazio superior) é comparada à fração de vazio estimada entre as cotas das tomadas de pressão inferior e intermediária (fração de vazio inferior). A figura traz, também, uma reta a 45º para permitir sua análise. Como se pode notar, as frações de vazio superior e inferior estão, sempre, muito próximas, o que, aliás, era de se esperar, por várias razões:

a) as vazões em massa de gás e de líquido não variam ao longo da seção de testes;

b) há, apenas, um metro entre a tomada de pressão superior e a tomada de pressão inferior;

c) o escoamento é adiabático.

Por fim, como a calibração foi realizada com água estagnada, é de se perguntar se seus resultados são válidos quando houver vazão não nula da fase condutora. Num teste realizado com apenas água preenchendo a seção de testes, verificou-se que as saídas médias dos transdutores não variaram quando a vazão de água varreu a faixa de 0 a 17,5 m³/h (j, ≈5,7 m/s). A resposta à pergunta acima é, portanto, sim.

3.4 - COMPARAÇÃO COM CURVAS DE CALIBRAÇÃO DE OUTROS AUTORES

Como visto no capítulo 2, para os transdutores de impedância construídos, o meio bifásico não se comporta como um meio puramente resistivo. Não se pode afirmar, portanto, que

\[
\frac{\overline{V}}{V_o} = \frac{K}{K_{lo}}, \quad (59)
\]

onde
Figura 36 - Fração de vazão superior x fração de vazão inferior
K é a condutividade elétrica do meio bifásico presente entre os electrodos principais, quando a saída média do transdutor de impedância é \(\overline{V} \) e

\(K_{10} \) é a condutividade elétrica do líquido presente entre os electrodos principais, quando a saída média do transdutor de impedância é \(\overline{V_{10}} \),

como fizeram outros autores. Sendo assim, como as curvas de calibração obtidas não relacionam a fração de vazão a uma razão entre propriedades elétricas, mas sim a uma razão entre respostas de um instrumento específico, não há porque comparar as curvas de calibração obtidas com outras associadas a instrumentos significativamente diferentes dos transdutores de impedância utilizados neste trabalho.

As curvas de calibração empregadas nesta comparação, as quais foram obtidas por DELHAYE et al. (1987), TOURNAIRE (1987) e MOREIRA (1989), estão associadas a transdutores de impedância muito similares aos neste trabalho usados. A semelhança não é casual: todos tem a mesma origem.

Os três autores citados acima compararam suas curvas de calibração com os modelos teóricos de MAXWELL (1881) e BRUGGEMAN (1935). Neste item, não será feito o mesmo, por vários motivos:

a) Ambos os modelos consideram que a fase descontínua está presente na forma de esferas. Bolhas de gás não são, exatamente, esferas. Além disto, na calibração dos transdutores de impedância, a maior fração de vazão associada ao regime bolhas foi de, aproximadamente, 2,5%, ou seja, a imensa maioria dos pontos experimentais utilizados no cálculo das curvas de calibração foi obtida no regime pistonado e na transição bolhas/pistonado.

b) Os modelos permitem que se relace a fração de vazão a uma razão entre condutividades elétricas ou a uma razão entre constantes dielétricas. Como já apontado, \(\overline{V/\overline{V_{10}}} \) não é nem uma coisa nem outra.

c) O modelo de MAXWELL exige, adicionalmente, que as esferas estejam distantes umas das outras.
MOREIRA obteve sua curva de calibração para a faixa de fração de vazio entre 0 e 0,15; DELHAYE et al., para a faixa entre 0 e 0,40; TOURNAIRE, para a faixa entre 0 e 0,46. Com o objetivo de dar mais valor à comparação, decidiu-se obter três novas curvas de calibração para cada transdutor deste trabalho, cada uma delas válida para uma das faixas recém-citadas. Coincidentemente, as seis novas curvas de calibração têm a mesma expressão (as variáveis independente e dependente foram trocadas para acompanhar o procedimento dos outros autores):

\[
\frac{\bar{V}}{V_0} = 1,0 - 1,1\alpha \quad (60)
\]

Entre estas curvas de calibração, o menor valor do coeficiente de correlação linear é 0,9973.

A tabela abaixo apresenta informações a respeito dos transdutores de impedância sendo comparados e de seus processos de calibração.
Tabela 4 - Características dos transdutores de impedância sendo comparados e de seus processos de calibração

<table>
<thead>
<tr>
<th></th>
<th>ESTE TRABALHO</th>
<th>MOREIRA</th>
<th>DELHAYE</th>
<th>TOURNAIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>diâmetro interno da seção de testes (mm)</td>
<td>33</td>
<td>34</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>altura dos eletrodos principais (mm)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>altura dos eletrodos de guarda (mm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ângulo de abertura dos eletrodos</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>espaçamento entre os eletrodos (mm)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>frequência da portadora (kHz)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>velocidade superficial da água (m/s)</td>
<td>0</td>
<td>0</td>
<td>0,180</td>
<td>0,062 ≤ j₁ ≤ 0,15</td>
</tr>
<tr>
<td>pressão na seção de testes</td>
<td></td>
<td>atmosférica</td>
<td></td>
<td>1 bar</td>
</tr>
<tr>
<td>faixa de fração de vazio coberta</td>
<td>0 - 0,15</td>
<td>0 - 0,15</td>
<td>0 - 0,40</td>
<td>0 - 0,46</td>
</tr>
<tr>
<td></td>
<td>0 - 0,40</td>
<td>0,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curva de calibração</td>
<td>1,0 - 1,1α</td>
<td>1,00 - 1,15α</td>
<td>1 - 1,317α</td>
<td>1,0 - 1,4457α + +0,919α²</td>
</tr>
<tr>
<td>obtida (\frac{V}{V_{10}} =)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A figura 37 mostra as quatro curvas de calibração sendo comparadas. Como se pode observar, as curvas de calibração obtidas por este autor e por MOREIRA estão muito próximas. Já a obtida por DELHAYE associa, sistematicamente, um valor de α menor, para o mesmo valor de \(V/V_{10} \). A curva de calibração calculada por TOURNAIRE acompanha, de perto, aquela obtida por DELHAYE, para valores de α de até 0,15, aproximadamente. Daí em diante, as duas se afastam, rapidamente.

Para concluir, calculando o valor de α para o qual \(\bar{V} = 0 \), para as quatro curvas de calibração, obtém-se o seguinte resultado:

ESTE TRABALHO [equações (57) e (58)]: \(\alpha = 0,98 \)

MOREIRA: \(\alpha = 0,870 \)
Figura 37 - Curvas de calibração sendo comparadas

ESTE TRABALHO

--- MOREIRA

--- DELHAYE

--- TOURAIRE

FRACAO DE VAZIO

TRANSDUTORES

RAZAO ENTRE AS RESPOSTAS DOS
DELHAYE: $\alpha = 0,7593$

TOURNAIRE: não há raízes reais

A curva de calibração calculada por TOURNAIRE tem um comportamento inusitado, visto que $\overline{V}/\overline{V_o}$ não se anula para nenhum valor de α. Já entre as outras, as desenvolvidas neste trabalho levam vantagem, visto que, para elas, $\overline{V} = 0$ para um valor de α próximo a 1, o que está de acordo com o fato de que mesmo um pequeno filme de água junto à parede da tubulação já permite a passagem de corrente elétrica de um eletrodo principal para o outro. É preciso ressaltar, entretanto, que os cálculos do parágrafo anterior correspondem a extrapolações das curvas de calibração envolvidas.

3.5 - ANÁLISE DE INCERTEZAS

Para cada ponto experimental levantado, há incertezas associadas à fração de vazio e à razão entre as respostas dos transdutores. Segue-se, abaixo, a análise destas incertezas.

3.5.1 - FRAÇÃO DE VAZIO

Inicialmente, é preciso apontar que, nesta análise, considerar-se-á o método gravimétrico um meio acurado de medir fração de vazio, ou seja, não será considerado o erro sistemático devido ao método de calibração.

A equação utilizada para estimar a fração de vazio é a (25), qual seja,

$$\alpha = \frac{\Delta p_{\text{transmissor}}}{(\rho_1 - \rho_o)gAz}$$

Da equação acima, pode-se deduzir a expressão para calcular a incerteza associada a α ($\delta\alpha$) a partir das incertezas associadas a $\Delta p_{\text{transmissor}}$, ρ_1, ρ_o, g e Az (da $\Delta p_{\text{transmissor}}$, $\delta\rho_1$, $\delta\rho_o$, δg e δAz, respectivamente), a qual é a seguinte:
\[
\delta \alpha = \left[\left(\frac{\partial \Delta p_{transmisor}}{\partial \Delta p_{transmissor}} \frac{\partial \alpha}{\partial p_{transmisor}} \right)^2 + \left(\frac{\partial \rho_l}{\partial \rho_{l}} \right)^2 + \left(\frac{\partial \rho_g}{\partial \rho_{g}} \right)^2 \right]^{1/2} + \left(\delta g \frac{\partial \alpha}{\partial g} + \left(\delta \Delta z \frac{\partial \alpha}{\partial \Delta z} \right)^2 \right]^{1/2}
\]

(61)

A equação acima pode ser reescrita como

\[
\frac{\delta \alpha}{\alpha} = \left[\left(\frac{\Delta p_{transmisor}}{\Delta p_{transmissor}} \right)^2 + \left(\frac{\delta \rho_l}{\rho_l - \rho_g} \right)^2 + \left(\frac{\delta \rho_g}{\rho_l - \rho_g} \right)^2 + \left(\frac{\delta g}{g} \right)^2 + \left(\frac{\delta \Delta z}{\Delta z} \right)^2 \right]^{1/2}
\]

(62)

Com o objetivo de simplificar esta equação, será feita, agora, uma avaliação das ordens de grandeza dos termos do lado direito.

Como \(\rho_l \gg \rho_g^*\), então

\[
\frac{\delta \rho_l}{\rho_l - \rho_g^*} \approx \frac{\delta \rho_l}{\rho_l} \quad (63)
\]

e

\[
\frac{\delta \rho_g^*}{\rho_l - \rho_g^*} \approx \frac{\delta \rho_g^*}{\rho_l} \quad (64)
\]

Admitindo que

\[
\frac{\delta \rho_g^*}{\rho_g^*} = 10 \frac{\delta \rho_l}{\rho_l} \quad (65)
\]

e que

\[
\rho_l = 500 \rho_g^* \quad (66)
\]

conclui-se que

\[
\left(\frac{\delta \rho_g^*}{\rho_l} \right)^2 = 0.0004 \left(\frac{\delta \rho_l}{\rho_l} \right)^2 \quad (67)
\]
ou seja, mesmo que a incerteza relativa associada a \(\rho_1^* \) seja 10 vezes maior do que aquela associada a \(\rho_1 \), ainda assim o terceiro termo do lado direito da equação (62) pode ser desprezado.

Seguem-se, abaixo, estimativas numéricas para os outros termos do lado direito.

\[
\left[\frac{\delta \rho_1}{(\rho_1 - \rho_1^*)} \right]^2 = \left(\frac{1,5}{1000} \right)^2 = 2,25 \times 10^{-6} \quad (68)
\]

\[
\left(\frac{\delta g}{g} \right)^2 = \left(\frac{0,00001}{9,78622} \right)^2 = 1,04 \times 10^{-12} \quad (69)
\]

\[
\left(\frac{\delta \Delta z}{\Delta z} \right)^2 = \left(\frac{1}{500} \right)^2 = 4 \times 10^{-6} \quad (70)
\]

Como se pode notar, são todos muito pequenos. Desprezando-os, a equação (62) toma a forma abaixo.

\[
\frac{\delta \alpha}{\alpha} = \frac{\delta \Delta p_{\text{transmissor}}}{\Delta p_{\text{transmissor}}} \quad (71)
\]

A incerteza associada a \(\Delta p_{\text{transmissor}} \) tem duas origens:

a) incerteza intrínseca ao transmissor, a qual, por sua vez, tem três causas:

1) o transmissor não é perfeitamente linear;

2) o transmissor apresenta histerese;

3) a repetibilidade do transmissor não é perfeita.

b) flutuação da medida

De acordo com o manual dos transmissores de pressão diferencial, a incerteza intrínseca a um transmissor é de 0,2% do span, ou seja, 2,4884 Pa ou 12,442 Pa, dependendo do span do transmissor em questão.

As curvas de calibração dos transmissores são do seguinte tipo:

\[
\Delta p_{\text{transmissor}} = C_1 \times I + C_2 = C_1 \times \frac{V}{R} + C_2, \quad (72)
\]
onde

C₁ e C₂ são constantes,
I é a corrente elétrica que atravessa o transmissor,
R é a resistência do resistor colocado em série com o transmissor e
V é a tensão entre os terminais deste resistor.

Como já explicado no item 3.2, o valor de V que era introduzido, para
cada ponto experimental, na equação (72) resultava da média de 30 medidas. Esta
média tinha, portanto, a ela associado um desvio padrão, da seguinte maneira
calculado:

\[
\sigma_V = \sqrt{\frac{\sum_{i=1}^{30} V_i^2 - 30(\bar{V})^2}{29.30}}, \quad (73)
\]

onde

Vᵢ é a i-ésima medida de tensão e

\[
\bar{V} = \frac{1}{30} \sum_{i=1}^{30} V_i
\]

Este desvio padrão associa a Δₚtransmissor um outro desvio padrão
(\(\sigma_{\Deltaₚtransmissor}\)), cuja expressão pode ser obtida a partir da equação (72):

\[
\sigma_{\Deltaₚtransmissor} = \frac{C_1}{R} \sigma_V \quad (74)
\]

\(\delta\Deltaₚtransmissor\) pode, agora, ser calculada, compondo a incerteza
intrínseca ao transmissor com \(\sigma_{\Deltaₚtransmissor}\), da seguinte maneira:

\[
\delta\Deltaₚtransmissor = \sqrt{(2,4884)^2 + (\sigma_{\Deltaₚtransmissor})^2} \quad (75)
\]

ou

\[
\delta\Deltaₚtransmissor = \sqrt{(12,442)^2 + (\sigma_{\Deltaₚtransmissor})^2}, \quad (76)
\]

dependoendo do transmissor em questão.

\(\delta\alpha\) é obtida a partir de \(\delta\Deltaₚtransmissor\) através da equação (71).
Gráficos da incerteza relativa associada à fração de vazio (\(\delta\alpha/\alpha\)) em função da própria fração de vazio são apresentados nas figuras 38 e 39. Em ambos, pode-se notar que a incerteza relativa assume valores elevados apenas para frações de vazio muito pequenas, o que se deve ao fato de estas corresponderem a pressões diferenciais também muito pequenas. As descontinuidades observadas nos dois gráficos sinalizam a mudança dos transmissores de pressão diferencial empregados nos ensaios.

3.5.2 - RAZÃO ENTRE AS RESPOSTAS DOS TRANSDUTORES

Nos casos de \(\overline{V}\) e \(\overline{V}_{\text{lo}}\), não há sentido em falar de erros sistemáticos, visto que os transdutores estão sendo calibrados. Erros aleatórios existem, entretanto, pois há flutuação nas medidas de \(\overline{V}\) e \(\overline{V}_{\text{lo}}\). Consequentemente, às médias de \(\overline{V}\) e \(\overline{V}_{\text{lo}}\) estão associados desvios padrões, os quais podem ser calculados através de expressões análogas à equação (73). Estes desvios padrões se combinam, para compor o desvio padrão associado à razão entre as respostas dos transdutores, da seguinte maneira:

\[
\frac{\sigma_r}{r} = \sqrt{\left(\frac{\sigma_{\overline{V}}}{\overline{V}}\right)^2 + \left(\frac{\sigma_{\overline{V}_{\text{lo}}}}{\overline{V}_{\text{lo}}}\right)^2}, \quad (77)
\]

onde

\(r = \frac{\overline{V}}{\overline{V}_{\text{lo}}}\) é a razão entre as respostas dos transdutores e

\(\sigma_{\overline{V}}, \sigma_{\overline{V}_{\text{lo}}}\) e \(\sigma_{r}\) são os desvios padrões associados às médias de \(\overline{V}\) e \(\overline{V}_{\text{lo}}\) e à razão entre as respostas dos transdutores, respectivamente.

Gráficos do desvio padrão relativo associado à razão entre as respostas dos transdutores (\(\sigma_r/r\)) em função da própria razão entre as respostas dos transdutores são apresentados nas figuras 40 e 41. Em ambos, pode-se notar uma
Figura 38 - Incerteza relativa associada à fração de vazio inferior
Figura 39 - Incerteza relativa associada à fração de vazão superior
Figura 40 - Desvio padrão relativo associado à razão entre as respostas dos transdutores inferior e de referência
Figura 41 - Desvio padrão relativo associado à razão entre as respostas dos transdutores superior e de referência
tendência de crescimento do desvio padrão relativo até a região em que se dá a transição entre os regimes pistonado e agitante \((r \approx 0,2)\). A partir daí, o desvio padrão relativo diminui, como consequência do decréscimo na flutuação das saídas médias dos transdutores inferior e superior, voltando a aumentar, apenas, para valores da razão entre as respostas dos transdutores próximos a zero.
4 - CORRELAÇÃO ENTRE A SAÍDA FLUTUANTE DE UM TRANSdutoR DE IMPEDÂNCIA E OS REGIMES DE ESCOAMENTO

A saída média de um transdutor de impedância pode, como apresentado no capítulo anterior, ser utilizada na medição de fração de vazio. Neste capítulo, a função densidade de probabilidade da saída flutuante será correlacionada aos regimes de escoamento, dando, desta maneira, uma segunda utilidade a um transdutor de impedância.

Observação: BENDAT (1986) é a referência básica para este capítulo.

4.1 - CONCEITOS FUNDAMENTAIS

4.1.1 - PROCESSO ALEATÓRIO

Um registro, ao longo do tempo, de um sinal produzido por um fenômeno aleatório é chamado de função amostral (ou registro amostral, se o acompanhamento do sinal se der por tempo finito). A figura 42 mostra um exemplo de função amostral.

O conjunto de todas as possíveis funções amostrais que um fenômeno aleatório poderia produzir é chamado de processo aleatório. Um registro amostral pode, portanto, ser considerado uma realização física de um processo aleatório.

4.1.2 - PROCESSO ALEATÓRIO ESTACIONÁRIO

Na figura 43, estão representadas funções amostrais de um processo aleatório.
Figura 43 - Funções amostrais de um processo aleatório
FIGURA 42 - EXEMPLO DE FUNÇÃO AMOSTRAL

\[\mu_x(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} x_k(t) \] \hspace{1cm} (78)

\[e^{R_{xx}(t_1, t_1 + \tau)} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} x_k(t_1)x_k(t_1 + \tau) \] \hspace{1cm} (79)

São chamados de valor médio (primeiro momento) e função autocorrelação (momento conjugado), respectivamente. No caso particular em que \(\mu_x \) e \(R_{xx} \) não variam com \(t_1 \), ou seja, \(\mu_x(t_1) = \mu_x \) e \(R_{xx}(t_1, t_1 + \tau) = R_{xx}(\tau) \), diz-se que o processo aleatório é fracamente estacionário. Uma coleção infinita de momentos e momentos conjugados de ordem superior pode ser calculada a partir dos registros amostrais do processo aleatório. Se todos os momentos e momentos conjugados forem invariáveis com o tempo, diz-se que o processo aleatório é fortemente estacionário. Em muitas aplicações práticas, estacionariedade fraca implica em estacionariedade forte.

4.1.3 - PROCESSO ALEATÓRIO ERGÓDICO

Seja \(x_k(t) \) uma função amostral de um processo aleatório qualquer. O valor médio e a função autocorrelação desta função amostral podem ser calculados pelas seguintes expressões:
\[\mu_X(k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T X_k(t) dt \quad (80) \]

\[R_{XX}(\tau, k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T X_k(t) X_k(t + \tau) dt \quad (81) \]

Se o processo aleatório for estacionário e \(\mu_X(k) \) e \(R_{XX}(\tau, k) \) não dependerem da função amostral escolhida, então se diz que o processo aleatório é fracamente ergódico. Neste caso, o valor médio e a função autocorrelação do processo podem ser calculados através das equações (80) e (81), respectivamente, a partir de uma única função amostral e não de um conjunto infinito delas, como exigido nas equações (78) e (79). Se todas as propriedades estatísticas do processo puderem, igualmente, ser calculadas a partir de uma única função amostral, então se diz que o processo é fortemente ergódico.

Na prática, os processos associados a fenômenos aleatórios são, geralmente, ergôdicos.

4.1.4 - REGISTROS AMOSTRAIS ESTACIONÁRIOS

O conceito de estacionariedade, introduzido no item 4.1.2, será, agora, modificado, para que possa ser aplicado a um único registro amostral.

Seja \(X_k(t) \) um registroamostral, obtido a partir de uma função amostral de um processo aleatório qualquer. O cálculo do valor médio e da função autocorrelação, num intervalo com início em \(t_1 \) e comprimento \(T \) deste registro amostral, é feito utilizando as equações abaixo:

\[\mu_X(t_1, k) = \frac{1}{T} \int_{t_1}^{t_1+T} X_k(t) dt \quad (82) \]

\[R_{XX}(t_1, t_1 + \tau, k) = \frac{1}{T} \int_{t_1}^{t_1+T} X_k(t) X_k(t + \tau) dt \quad (83) \]

No caso geral em que o valor médio e a função autocorrelação acima definidos variam, significativamente, com \(t_1 \), diz-se que o registro amostral é não
estacionário. Caso a variação não seja significativa, diz-se que o registro amostral é estacionário. Por variação significativa, entenda-se aquela que não pode ser considerada uma flutuação estatística normal.

Um registro amostral obtido de um processo aleatório ergódico será estacionário. Além disto, registros amostrais da maioria dos processos aleatórios não estacionários fisicamente interessantes serão não estacionários. Portanto, se a hipótese de ergodicidade é justificável (e é, para a maioria dos fenômenos físicos realmente estacionários), a comprovação de que um registro amostral é estacionário irá, efetivamente, justificar as hipóteses de estacionariedade e ergodicidade para o processo aleatório do qual este registro amostral foi obtido. No item 4.3. será apresentado um teste que permite identificar se um registro amostral é ou não estacionário.

4.1.5 - VALOR MÉDIO

O valor médio de um processo ergódico pode ser calculado a partir de uma de suas funções amostrais [a qual será, aqui, designada por \(x(t) \)] através da seguinte equação:

\[
\mu_x = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) \, dt \quad (84)
\]

Na prática, uma integração num intervalo infinito não é viável. O valor médio de um processo deve, então, ser estimado resolvendo a equação abaixo:

\[
\hat{\mu}_x = \frac{1}{T} \int_0^T x(t) \, dt \,, \quad (85)
\]

onde \(\hat{\mu}_x \) é a estimativa do valor médio.

Se o registro amostral a ser utilizado no cálculo de \(\hat{\mu}_x \) estiver discretizado na forma de \(N \) pontos equiespaçados, então \(\hat{\mu}_x \) deverá ser calculada com a fórmula que se segue:
\[\hat{\mu}_x = \frac{1}{N} \sum_{n=0}^{N-1} x(n\Delta t), \quad (86) \]
onde \(\Delta t \) é o intervalo de tempo entre a aquisição de dois pontos do registro amostral.

4.1.6 - VALOR QUADRADO MÉDIO

O desenvolvimento deste item seria análogo ao do item 4.1.5, motivo pelo qual não será feito. Abaixo, são fornecidas, apenas, as equações correspondentes às equações (84), (85) e (86) do item 4.1.5.

\[\psi_x^2 = \lim_{T \to \infty} \frac{1}{T} \int_0^T x^2(t) dt, \quad (87) \]

\[\hat{\psi}_x^2 = \frac{1}{T} \int_0^T x^2(t) dt \quad (88) \]

\[\hat{\psi}_x^2 = \frac{1}{N} \sum_{n=0}^{N-1} x^2(n\Delta t), \quad (89) \]
onde \(\psi_x^2 \) é o valor quadrado médio do processo ergódico e \(\hat{\psi}_x^2 \) é a estimativa do valor quadrado médio.

4.1.7 - FUNÇÃO DENSIDADE DE PROBABILIDADE

Seja \(x(t) \) uma função amostral de um processo ergódico qualquer. A probabilidade de \(x(t) \) assumir um valor no intervalo fechado entre \(x - \frac{W}{2} \) e \(x + \frac{W}{2} \), sendo \(x \) e \(W \) valores fixos, pode ser calculada pela seguinte equação:

\[\text{Prob} \left[\left(x - \frac{W}{2} \right) \leq x(t) \leq \left(x + \frac{W}{2} \right) \right] = P[x, W] = \lim_{T \to \infty} \frac{T_x}{T}, \quad (90) \]
onde \(T_x \) é o tempo total em que \(x(t) \) esteve na faixa citada, durante o intervalo de tempo \(T \). \(W \) é chamado de largura da janela.
A função densidade de probabilidade do processo é definida da seguinte maneira:

\[p(x) = \lim_{W \to 0} \frac{P[x,W]}{W} \quad (91) \]

É importante listar algumas propriedades da função densidade de probabilidade:

\[p(x) \geq 0 \quad (92) \]

\[\int_{-\infty}^{+\infty} p(x)dx = 1 \quad (93) \]

\[\mu_x = \int_{-\infty}^{+\infty} xp(x)dx \quad (94) \]

\[\text{Prob}[x_1 \leq x(t) \leq x_2] = P[x_1, x_2] = \int_{x_1}^{x_2} p(x)dx \quad (95) \]

Os limites que aparecem nas equações (90) e (91) deixam claro que o cálculo exato da função densidade de probabilidade de um processo ergódico não é exequível. Uma estimativa da função densidade de probabilidade pode ser obtida resolvendo as equações abaixo, as quais são simplificações das equações (90) e (91):

\[\hat{P}[x,W] = \frac{T_x}{T} \quad (96) \]

\[\hat{p}(x) = \frac{\hat{P}[x,W]}{W} = \frac{T_x}{TW} \quad (97) \]

Se o registro amostral a ser utilizado no cálculo de \(\hat{p}(x) \) estiver discretizado na forma de N pontos equiespaçados, então \(\hat{p}(x) \) deverá ser calculada com a fórmula que se segue:

\[\hat{p}(x) = \frac{N_x}{NW} \quad (98) \]

onde \(N_x \) é o número de pontos do registro amostral cujos valores estão entre \(x - \frac{W}{2} \) e \(x + \frac{W}{2} \).
4.2 - METODOLOGIA EMPREGADA NO LEVANTAMENTO DOS DADOS EXPERIMENTAIS

Durante a fase de levantamento de dados, 88 casos foram gravados para posterior análise, cada caso diferenciando-se dos outros por suas vazões de ar e de água.

Os casos dividem-se em quatro grupos, cada um deles associado a uma das seguintes vazões de água: 1,8 l/min, 3,0 l/min, 4,5 l/min e 6,0 l/min. Dentro de cada grupo, existe uma grande variação na vazão de ar, de maneira que os regimes de escoamento bolhas, pistonado, agitante e anular e mais as transições entre eles estão todos representados nos casos que compõem um grupo.

Antes do início da gravação de cada caso, as vazões de ar e água eram ajustadas. Terminada a gravação, as vazões eram checadas, para se determinar se havia ocorrido alguma alteração. As vazões de ar mais baixas não podiam ser medidas, pois estavam fora da escala do menor rotômetro disponível.

Para cada caso, eram gravados os seguintes sinais: saídas médias dos três transdutores e saídas flutuantes dos transdutores inferior e superior. Os sinais eram gravados simultaneamente, durante um intervalo de seis minutos.

Além dos sinais acima citados, eram anotadas, também, as seguintes variáveis:
- vazão volumétrica de água;
- vazão volumétrica de ar;
- temperatura imediatamente a jusante dos rotômetros de ar;
- pressão imediatamente a montante dos rotômetros de ar;
- corrente elétrica através do transmissor de pressão manométrica;
- pressão atmosférica;
- temperatura ambiente;
- configuração do escoamento na região dos conjuntos de eletrodos.
A terceira, a quarta, a quinta, a sexta e a sétima variáveis da lista acima eram anotadas para posterior utilização na correção do valor de vazão de ar medido, necessária por dois motivos:
- os rotâmetros de ar operaram fora da condição para a qual foram calibrados;
- a densidade do ar diminui no trajeto entre o rotâmetro e a tomada de pressão intermediária, e é na cota desta que se desejava conhecer o valor da vazão de ar.

A configuração do escoamento na região dos conjuntos de eletrodos era determinada visualmente. Na faixa que vai do fim do pistonado ao início do agitante e na faixa que vai do fim do agitante ao início do anular, era difícil identificar a configuração do escoamento, e esta dificuldade crescia com o aumento da vazão de líquido.

4.3 - TESTE DE ESTACIONARIEDADE

Os trechos gravados das saídas flutuantes dos transdutores inferior e superior são registros amostrais de processos aleatórios.

A partir de um registro amostral, pode-se calcular a função densidade de probabilidade do processo ao qual este registro amostral pertence. Para que isto seja possível, é preciso que o processo seja ergódico. Conforme exposto no item 4.1.4, se for razoável supor que o processo é ergódico, a demonstração de que o registro amostral é estacionário justificará as hipóteses de estacionariedade e ergodicidade para o processo. A seguir, apresentar-se-á um teste, chamado de "teste dos arranjos invertidos", que permitirá determinar se um registro amostral é ou não estacionário.

Seja \(x_1, x_2, \ldots, x_n \) uma sequência de observações, em ordem cronológica, de uma variável aleatória \(x \). Sempre que \(x_i > x_j \) para \(i < j \), tem-se um arranjo invertido. O número total de arranjos invertidos da sequência será, aqui, denotado por \(A \). As três equações abaixo formalizam o cálculo de \(A \).
\[h_{ij} = \begin{cases} 1, & \text{se } x_i > x_j \\ 0, & \text{caso contrário} \end{cases} \quad (99) \]

\[A_i = \sum_{j=i+1}^{N} h_{ij} \quad (100) \]

\[A = \sum_{i=1}^{N-1} A_i \quad (101) \]

Se \(x_1, x_2, ..., x_N \) constituirem uma sequência de \(N \) observações independentes da mesma variável aleatória, então o número total de arranjos invertidos será uma variável aleatória, com média e variância dadas por

\[\mu_A = \frac{N(N-1)}{4} \quad (102) \]

\[\sigma_A^2 = \frac{2N^3 + 3N^2 - 5N}{72} = \frac{N(2N + 5)(N-1)}{72} , \quad (103) \]

respectivamente.

O teste dos arranjos invertidos pode ser utilizado para determinar se uma sequência de observações possui ou não uma tendência, da seguinte maneira:

a) Admite-se a hipótese de que não há tendência, através da suposição de que a sequência é constituída por observações independentes da mesma variável aleatória.

b) Testa-se, então, esta hipótese, para o nível de significância desejado, verificando se o número total de arranjos invertidos da sequência satisfaz às duas inequações abaixo:

\[A_{N;1-\alpha/2} < A \leq A_{N;\alpha/2} , \quad (104) \]

onde

\(A \) é o número total de arranjos invertidos da sequência,

\(\alpha \) é o nível de significância e

\(N \) é o número de observações.
AN_{1-\alpha/2} e AN_{\alpha/2} podem ser obtidos na tabela A.7 do BENDAT (1986). AN_{\beta} possui a seguinte propriedade:

\[\text{Prob}(A_N > A_{N,\beta}) = \beta. \] (105)

onde AN é o número total de arranjos invertidos, numa sequência de N observações independentes de uma mesma variável aleatória.

c) Se o número total de arranjos invertidos satisfizer as inequações da expressão (104), a hipótese está aceita; caso contrário, está descartada.

Para testar a estacionariedade de um registro amostral, através do teste dos arranjos invertidos, o procedimento empregado era o seguinte:

a) dos 6 minutos de gravação disponíveis, eram analisados 10 intervalos de 25 s cada, não havendo superposição entre eles;

b) o valor quadrado médio (\(\bar{x}^2\)) de cada intervalo era calculado;

c) o número total de arranjos invertidos (A) da sequência formada por \(x_1, x_2, \ldots, x_{10}\) era calculado;

d) se A fosse maior do que 13 (A_{10;0.95}) e menor ou igual a 31 (A_{10;0.05}), o registro amostral era considerado estacionário, a um nível de significância de 10%; caso contrário, o registro era considerado não estacionário, também a um nível de significância de 10%.

4.4 - TRATAMENTO DOS SINAIS GRAVADOS

Inicialmente, cada registro amostral de saída flutuante (2 para cada um dos 88 casos) teve sua função densidade de probabilidade calculada, com número de médias fixado em 30, registros temporais de 80 s e superposição de 90%. Em seguida, os gráficos das funções densidade de probabilidade foram agrupados por transdutor (inferior ou superior) e por configuração de escoamento (bolhas, transição para pistão, etc.). Procurou-se, então, determinar se havia um padrão associado a cada grupo, sendo esta tentativa bem sucedida. Finalmente, foram
escolhidos um ou mais casos para representarem cada grupo. Como, para a mesma configuração de escoamento, o grupo associado ao transdutor inferior e o associado ao transdutor superior apresentavam o mesmo padrão, somente os grupos ligados ao transdutor inferior estão representados no item que se segue.

Entre os casos de um grupo, a escolha do(s) representante(s) foi feita entre os "elegíveis", sendo considerado motivo para inelegibilidade a ocorrência de um dos dois fatos a seguir:

a) Variação na vazão de água durante a gravação dos sinais

Tal fato ocorreu em 37 dos 88 casos (≈ 42%). Uma explicação para tão frequente ocorrência não foi encontrada. É interessante notar que, entre os casos de um mesmo grupo, as funções densidade de probabilidade dos casos em que houve variação na vazão de água apresentam padrão idêntico ao das funções densidade de probabilidade dos outros casos do grupo.

b) Reprovação do registro amostral da saída flutuante no teste de estacionariedade

Se um caso era escolhido para representante, a estacionariedade do registro amostral da saída flutuante do transdutor inferior era testada. Se o registro amostral se revelasse não estacionário, outro caso era escolhido para representante.

No total, 20 registros amostrais tiveram a sua estacionariedade testada. Cinco foram considerados não estacionários, apesar de, entre os casos aos quais eles pertencem, não ter sido notada variação na vazão de ar ou na de água durante a gravação dos sinais. Isto mostra a relevância do teste de estacionariedade.

Após a escolha dos casos representantes, sucederam-se três etapas:

a) Recálculo das funções densidade de probabilidade

Como já mencionado, as saídas flutuantes dos transdutores têm ganho ajustável. Para cada caso, foi selecionado um ganho (o mesmo para os transdutores inferior e superior), de tal sorte que as voltagens máxima e mínima
dos registros amostrais se aproximam (sem ultrapassar) dos limites para os quais os canais do gravador foram ajustados, garantindo, assim, boas razões sinal/ruído nas gravações feitas.

Naturalmente, o ganho empregado influi, diretamente, na função densidade de probabilidade de um registro amostral. Por este motivo, visando evitar que se tirem conclusões erradas a partir de comparações entre gráficos de função densidade de probabilidade, cada registro amostral escolhido para representante, após ser dividido pelo ganho selecionado durante sua gravação, teve sua função densidade de probabilidade novamente calculada. Adicionalmente, para aumentar a precisão nos resultados, o número de médias foi fixado em 100, com registros temporais de 3,2 s e superposição de 0%. Os gráficos obtidos nesta nova série são os que aparecem no item a seguir.

b) Cálculo da fração de vazio

Cada caso escolhido para representante teve sua fração de vazio calculada. Foi utilizada a curva de calibração do transdutor inferior. \(V \) e \(V_w \) foram obtidos dos trechos gravados das saídas médias dos transdutores inferior e de referência, respectivamente. O Analisador de Fourier foi empregado para ler estes trechos (com número de médias igual a 1, registros temporais de 320 s e superposição de 0%) e, em seguida, calcular seu valor médio.

Alguns gráficos do item a seguir não são acompanhados pelo valor da fração de vazio. Isto ocorre sempre que a fração de vazio calculada extrapola a faixa de validade da curva de calibração.

c) Cálculo das velocidades superficiais do ar e da água na cota da tomada de pressão intermediária

Também este cálculo foi realizado para cada um dos casos representantes, se bem que, em alguns deles, a velocidade superficial do ar não tenha sido computada, por não ter sido possível medir a vazão volumétrica.
A cota da tomada de pressão intermediária foi escolhida por estar próxima do conjunto de eletrodos do transdutor inferior e por nela ser conhecida a pressão manométrica [não há como calcular a variação da densidade do ar (e, conseqüentemente, da vazão volumétrica de ar) no trajeto entre o rotâmetro e um ponto qualquer a jusante se a pressão absoluta neste ponto não for conhecida, isto assumindo que a temperatura do ar não varia].

A velocidade superficial da água foi calculada, simplesmente, dividindo a vazão lida no rotâmetro pela área de passagem da seção de testes. Não foi necessário corrigir a vazão lida, porque o rotâmetro operou, sempre, em condições próximas daquela em que foi calibrado e porque a água pode, nos ensaios realizados, ser considerada incompressível.

4.5 - RESULTADOS OBTIDOS

Os gráficos a serem apresentados neste item estão divididos em dois grupos. O primeiro mostra curtos trechos da saída flutuante do transdutor inferior, e o segundo traz a função densidade de probabilidade do mesmo sinal, ambos para as diversas configurações de escoamento.

Do primeiro grupo, fazem parte as figuras de 44 a 50. Cada uma delas está ligada a uma configuração de escoamento, conforme tabela a seguir.
Tabela 5 - Configuração de escoamento associada a cada gráfico da saída flutuante do transdutor inferior

<table>
<thead>
<tr>
<th>FIGURA</th>
<th>CONFIGURAÇÃO DE ESCOAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>bolhas</td>
</tr>
<tr>
<td>45</td>
<td>transição para pistonado</td>
</tr>
<tr>
<td>46</td>
<td>pistonado</td>
</tr>
<tr>
<td>47</td>
<td>transição para agitante</td>
</tr>
<tr>
<td>48</td>
<td>agitante</td>
</tr>
<tr>
<td>49</td>
<td>transição para anular</td>
</tr>
<tr>
<td>50</td>
<td>anular</td>
</tr>
</tbody>
</table>

Antes de comentar as figuras, é preciso deixar claro que os sinais nelas apresentados foram gravados com ganhos diferentes, estando os ganhos especificados nas legendas. Faz-se necessário, também, explicar como o ganho pode assumir os valores 4 e 20, já que os circuitos eletrônicos permitem escolher, apenas, entre 1, 2, 5 e 10. A explicação reside numa diferença de ajuste nos níveis de entrada dos canais do HP3968A utilizados para gravar as saídas flutuantes dos transdutores inferior e superior. Nos casos em que a vazão de líquido era de 1,8 l/min ou 3,0 l/min, os níveis de entrada dos referidos canais foram ajustados em 2,5V; nos outros casos, em 5V. Assim sendo, se o sinal pertencer a um caso em que a vazão de líquido é 1,8 l/min ou 3,0 l/min, o ganho total associado a ele é o dobro daquele ajustado no circuito eletrônico.

Passar-se-á, agora, à análise das figuras. No regime bolhas, conforme mostra a figura 44, o sinal não apresenta padrão nenhum. A figura 45 revela que, na transição para pistonado, aparecem picos positivos no sinal. Estes picos são provocados pela presença, no escoamento, de estruturas gasosas maiores do que simples bolhas. Entretanto, tais estruturas não constituem, ainda, pistões.
Quando, com o aumento da vazão de ar, formam-se pistões, os picos no sinal tornam-se mais largos. Aliás, quanto maiores os pistões, mais largos os picos, consequência direta do aumento do tempo necessário para que os pistões atravessem o conjunto de eletrodos. A figura 46 mostra a aparência do sinal num caso em que o regime era o pistonado. Na transição para agitante, o sinal já é, na maior parte do tempo, positivo. Os valores negativos ocorrem quando da passagem de "pacotes" de líquido através do conjunto de eletrodos. A figura 47 apresenta um trecho do sinal nesta configuração de escoamento. No regime agitante, o sinal começa a ter uma aparência desorganizada, como revela a figura 48. Apesar de ser positivo a maior parte do tempo, o sinal apresenta picos negativos de curta duração, os quais, como anteriormente, estão associados a pacotes de líquido. A figura 49 mostra que, na transição para anular, o sinal tem uma aparência semelhante àquela que ele possui no regime agitante. As diferenças ficam por conta dos picos negativos, que têm, em média, amplitude e duração menores, e da maior flutuação no sinal. Finalmente, a figura 50, que exibe o sinal num caso em que o regime era o anular, vem confirmar a tendência observada nas figuras 48 e 49: a amplitude dos picos diminui ainda mais, e o sinal já não apresenta, praticamente, padrão nenhum.

Após ter sido ilustrada a dependência entre a configuração do escoamento e a saída flutuante do transdutor de impedância, proceder-se-á, agora, à análise dos gráficos de função densidade de probabilidade.

Os gráficos de função densidade de probabilidade obtidos são apresentados nas figuras cujos números vão de 51 a 64. A tabela a seguir relaciona as figuras às configurações de escoamento.
Figura 44 - Saída flutuante do transdutor inferior

Configuração do escoamento: bolhas $\alpha = 5\%$ $j_1 = 0,058$ m/s ganho: 20
Figura 45 - Saída flutuante do transdutor inferior

Configuração do escoamento: transição para pistonado $\alpha = 8\%$ $j_s = 0,12$ m/s ganho: 1
Figura 46 - Saída flutuante do transdutor inferior

Configuração do escoamento: pistonado $\alpha = 27\%$ $j_i = 0,088 \text{ m/s}$ $j_e = 0,42 \text{ m/s}$ ganho: 1

94% overlapped
Figura 47 - Saída flutuante do transdutor inferior

Configuração do escoamento: transição para agitante \(\alpha = 72\% \) \(j = 0,12 \text{ m/s} \) \(j_e = 3,0 \text{ m/s} \) ganho: 2
Figura 48 - Saída flutuante do transdutor inferior
Configuração do escoamento: agitante $\alpha = 80\%$, $i = 0.035 \text{ m/s}$, $j_k = 5.3 \text{ m/s}$ ganho: 2

95% 0 V1P
Figura 49 - Saída flutuante do transdutor inferior

Configuração do escoamento: transição para anular \(j_i = 0,058 \, \text{m/s} \) \(j_e = 20 \, \text{m/s} \) ganho: 4
Figura 50 - Saída flutuante do transdutor inferior

Configuração do escoamento: anular $j_l = 0.058 \, \text{m/s}$ $j_g = 29 \, \text{m/s}$ ganho: 4
Tabela 6 - Configuração de escoamento associada a cada gráfico da função densidade de probabilidade da saída flutuante do transdutor inferior

<table>
<thead>
<tr>
<th>FIGURA(S)</th>
<th>CONFIGURAÇÃO DE ESCOAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>bolhas</td>
</tr>
<tr>
<td>52, 53 e 54</td>
<td>transição para pistonado</td>
</tr>
<tr>
<td>55, 56, 57 e 58</td>
<td>pistonado</td>
</tr>
<tr>
<td>59 e 60</td>
<td>transição para agitante</td>
</tr>
<tr>
<td>61 e 62</td>
<td>agitante</td>
</tr>
<tr>
<td>63</td>
<td>transição para anular</td>
</tr>
<tr>
<td>64</td>
<td>anular</td>
</tr>
</tbody>
</table>

No regime bolhas, a função densidade de probabilidade (FDP) da saída flutuante do transdutor de impedância se concentra numa estreita faixa em torno de zero volts, como revela a figura 51. Esta faixa tende a se alargar com o aumento da vazão de ar, pois aumenta a flutuação no sinal. As figuras 52, 53 e 54 apresentam gráficos de FDP em casos em que o escoamento estava na transição para pistonado (observação: sempre que mais de uma figura foi utilizada para ilustrar o comportamento da FDP numa particular configuração de escoamento, a ordenação das figuras foi feita em ordem crescente de vazão de ar; a vazão de água, nestas situações, é a mesma para todas as figuras). As figuras revelam que, com o aumento da vazão de ar, o pico que existia em torno de zero volts desloca-se para a esquerda, e o gráfico espalha-se em direção a valores positivos, surgindo, já próximo do regime pistonado, um novo pico, à direita do primeiro. A evolução da FDP ao longo do regime pistonado está exemplificada nas figuras 55, 56, 57 e 58. Como se pode notar, o pico que se encontra em valores positivos supera, progressivamente, o pico à sua esquerda. Na transição para agitante, como atestam as figuras 59 e 60, o pico que se encontra em valores negativos vai
desaparecendo, e o que está à sua direita desloca-se em direção a zero volts. Este último fato era previsível, já que o valor médio da saída flutuante do transdutor de impedância é sempre próximo de zero volts. As figuras 61 e 62 mostram que, no regime agitante, o pico em valores negativos diminui até desaparecer, restando, apenas, um único pico em torno de zero volts. A FDP sofre pequena alteração na sua forma entre a transição para o regime anular e o regime anular, conforme revelam as figuras 63 e 64. A única diferença é que, no regime anular, o gráfico da FDP se concentra numa faixa mais estreita em torno de zero volts. Isto é reflexo direto da menor flutuação no sinal nesta configuração de escoamento.
Figura 51 - Função densidade de probabilidade da saída flutuante do transdutor inferior
Configuração do escoamento: bolhas $\alpha = 5\%$ $j_i = 0,058$ m/s
Figura 52 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: transição para pistonado $\alpha = 5\%$ $j_t = 0,12 \text{ m/s}$

100Aavg 0%Ovlp
Figura 53 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: transição para pistonado \(\alpha = 8\% \) \(j_i = 0.12 \text{ m/s} \)
Figura 54 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: transição para pistonado \(\alpha = 15\% \) \(j_h = 0,12 \text{ m/s} \) \(j_g = 0,45 \text{ m/s} \)
Figura 55 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: pistonado \(\alpha = 24\% \) \(j_l = 0,088 \text{ m/s} \) \(j_e = 0,35 \text{ m/s} \)
Figura 56 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: pistonado $\alpha = 27\%$ $j_i = 0,088 \text{ m/s}$ $j_r = 0,42 \text{ m/s}$

100Avg 0%Dv1p
Figura 57 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: pistonado $\alpha = 45\%$ $j_i = 0,088 \text{ m/s}$ $j_e = 0,82 \text{ m/s}$
Figura 58 - Função densidade de probabilidade da saída flutuante do transdutor inferior
Configuração do escoamento: pistonado $\alpha = 65\%$ $j_i = 0,088$ m/s $j_e = 1,7$ m/s

100Avg 0%Dvlp
Figura 59 - Função densidade de probabilidade da saída flutuante do transdutor inferior
Configuração do escoamento: transição para agitante $\alpha = 72\%$ $j_i = 0,12 \text{ m/s}$ $j_e = 3,0 \text{ m/s}$
Figura 60 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: transição para agitante $\alpha = 77\%$ $j_i = 0,12$ m/s $j_e = 4,6$ m/s
Figura 61 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: agitante $\alpha = 80\%$ $j_h = 0,035 \text{ m/s}$ $j_g = 5,3 \text{ m/s}$

100Avg 0%Dvlp
Figura 62 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: agitante \(j_h = 0,035 \text{ m/s} \quad j_g = 13 \text{ m/s} \)

\[100 \text{Avg} \quad 0\%\text{Dvlp} \]
Figura 63 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: transição para anular \(j_i = 0.058 \text{ m/s} \quad j_e = 20 \text{ m/s} \)
Figura 64 - Função densidade de probabilidade da saída flutuante do transdutor inferior

Configuração do escoamento: anular $j_h = 0,058 \text{ m/s}$ $j_g = 29 \text{ m/s}$
5 - CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS

O desenvolvimento de transdutores de impedância foi uma das realizações deste trabalho. Foram construídos três transdutores, tendo um deles um caráter auxiliar. Os outros dois foram calibrados, de maneira que, a partir da razão entre a saída média de um deles (\bar{V}) e a saída média do transdutor auxiliar (\bar{V}_a), aqui chamado de transdutor de referência, é possível determinar a fração de vazão na região em que está localizado o conjunto de eletrodos do transdutor calibrado. Verificou-se uma variação, em termos práticos, linear de $\frac{\bar{V}}{\bar{V}_a}$ com a fração de vazão, para uma faixa desta última bastante significativa: 0 a 0,80, aproximadamente.

Na faixa de fração de vazão que vai de 0 a 0,15, as curvas de calibração obtidas para os transdutores estão muito próximas daquela obtida por MOREIRA (1989), o qual empregou transdutores de impedância muito parecidos com os utilizados neste trabalho e realizou a calibração à pressão atmosférica e com vazão nula de água, também como neste trabalho.

O método empregado na calibração dos transdutores de impedância, chamado de método gravimétrico, recebeu uma derivação formal neste trabalho. Foi avaliada teoricamente, também, a influência das perdas de pressão por atrito e por aceleração durante a calibração, perdas estas desprezadas na derivação do método gravimétrico.

Uma constatação importante foi que, quando vários transdutores de impedância estão sendo utilizados, suas portadoras não podem ser fornecidas por um só gerador de funções, para evitar interferência de um sobre os outros.
Também verificou-se que, ao contrário do previsto por modelo teórico, a fixação da frequência da portadora em 20 kHz não faz com que o meio bifásico se torne essencialmente resistivo, como pôde ser verificado em teste realizado.

Outro assunto explorado, neste trabalho, foi o emprego da função densidade de probabilidade (FDP) da saída flutuante de um transdutor de impedância na determinação do regime de escoamento bifásico. De maneira geral, os resultados obtidos foram muito satisfatórios. Duas ressalvas, entretanto, devem ser feitas:
a) Verificou-se que a FDP assume formas semelhantes nos regimes bolhas e anular. Para se distinguir entre estes regimes, basta, porém, uma informação adicional: o valor da fração de vazio, o qual estará próximo de zero ou de um, dependendo do regime.
b) Quando o escoamento está próximo da transição entre dois regimes ou na transição entre dois regimes, é difícil identificar sua configuração através do gráfico da FDP, já que a forma da FDP se modifica de maneira contínua com a sucessão dos regimes de escoamento.

Como sugestão para um próximo trabalho, seria muito interessante realizar a calibração de um transdutor de impedância de duas maneiras: pelo método gravimétrico e através do uso de válvulas de fechamento rápido. Fazendo isto, poder-se-ia descobrir se o método gravimétrico continua eficiente quando a fração de vazio atinge valores altos e, também, a causa do desvio da linearidade apresentado pelos pontos experimentais obtidos no processo de calibração dos transdutores.

Outro aspecto que poderia ser explorado são as transições entre regimes de escoamento bifásico, continuando o trabalho realizado por BOURÉ & JABARDO (1989), os quais conseguiram identificar a transição bolhas/pistonado através da correlação cruzada entre as saídas flutuantes de dois transdutores de impedância.
REFERÊNCIAS BIBLIOGRÁFICAS

Gouse, S.W.; Dickson, J.A. Heat transfer and fluid flow inside a horizontal tube evaporator, phase 2. ASHRA Trans., 1966.

Idelcik, I.E. Memento des pertes de charge - Coefficients de pertes de charge singulières et de pertes de charge par frottement França, Eyrolles, 1969.

Tese (Doutorado) - Université Scientifique et Médicale et Institut National Polytechnique de Grenoble.