ESTUDO DA DINÂMICA DE UM MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

Dissertação apresentada à Escola Politécnica da USP para obtenção do título de Mestre em Engenharia.

São Paulo
1993
ESTUDO DA DINÂMICA DE UM MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

Dissertação apresentada à Escola Politécnica da USP para obtenção do título de Mestre em Engenharia.

Área de Concentração: Engenharia Mecânica

Orientador: Prof. Dr. Eduardo Lobo Lustosa Cabral

São Paulo
1993
Aos meus pais, por tudo que consegui nesta passagem...
À Hilda com amor.
AGRADECIMENTOS

Ao amigo e orientador Prof. Dr. Eduardo Lobo Lustosa Cabral, pelo intenso apoio, orientação e entusiasmo dado durante todo o trabalho e que tornou viável a realização do mesmo.

Ao Prof. Dr. Carlos Chienching Tu, pelo apoio, incentivo e atenção dada ao longo deste trabalho.

Ao Prof. Dr. Antônio Carlos de Oliveira Barroso, pelas sugestões e análise valiosa do trabalho.

Aos amigos da mecatrônica, Nilson e Mário pelas dicas na elaboração dos circuitos eletrônicos e todas as outras sugestões.

Aos amigos da oficina mecânica, Cícero, Li e Paulo, pela ajuda na elaboração dos equipamentos da bancada experimental.

Aos amigos do laboratório da Engenharia Naval pela ajuda na elaboração de equipamentos da bancada experimental e pela cessão das instalações do laboratório para realização de ensaios.

À Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, pelo apoio concedido a este trabalho.

A todos os amigos do Departamento de Engenharia Mecânica que direta ou indiretamente contribuíram com este trabalho.
Conteúdo

1 INTRODUÇÃO
 1.1 JUSTIFICATIVA E OBJETIVOS .. 1
 1.2 TÓPICOS DE CADA CAPÍTULO ... 4
 1.3 REVISÃO BIBLIOGRÁFICA ... 5

2 SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ 6
 2.1 INTRODUÇÃO .. 6
 2.2 SISTEMA MECÂNICO DO MPAR ... 9
 2.3 SISTEMA DE AQUISIÇÃO DE DADOS 10

3 MODELAGEM FÍSICA DO SISTEMA MPAR 19
 3.1 INTRODUÇÃO .. 19
 3.2 HIPÓTESES .. 19
 3.3 FORMULAÇÃO DO MODELO FÍSICO 23
 3.3.1 Balanço de Momento .. 23
 3.3.2 Balanço de Massa nas Câmaras do Motor 26
 3.3.3 Cálculo das Vazões ... 30

4 CÁLCULO DOS PARÂMETROS DO MPAR 33
 4.1 INTRODUÇÃO .. 33
 4.2 METODOLOGIA DE CÁLCULO ... 33
 4.2.1 Determinação do coeficiente K_s 44
 4.2.2 Determinação do coeficiente de K_2 45
 4.2.3 Determinação do coeficiente C_v para cálculo de f .. 46
 4.2.4 Determinação do volume útil do motor (V_0) 47
 4.2.5 Determinação das constantes n e C 47
Lista de Figuras

2.1 Esquema simplificado da bancada experimental. 7
2.2 Fotos vista geral e lateral da bancada experimental. 8
2.3 Circuito do contador de pulsos do “encoder”. 13
2.4 Circuito de potência para atuação das válvulas solenóides. 14
2.5 Circuito da célula de carga para conversão da deformação em sinal de tensão. 15

3.1 Motor pneumático de duas câmaras. .. 21
3.2 Diagrama do motor pneumático de duas câmaras com representação das medidas geométricas. .. 21
3.3 Esquema da bancada experimental utilizado na etapa de modelagem. ... 22
3.4 Gráfico do torque de atrito em função da velocidade angular. 24

4.1 Ensaio de degrau de vazão - posição angular do eixo do redutor. 38
4.2 Ensaio de degrau de vazão - velocidade angular do eixo do redutor. 38
4.3 Ensaio de degrau de vazão - pressão na entrada do motor. 39
4.4 Ensaio de degrau de vazão - pressão na saída do motor. 39
4.5 Ensaio de degrau de vazão - pressão a montante das válvulas solenóides. 40
4.6 Ensaio de degrau de vazão - torque no eixo de saída do redutor. 40
4.7 Ensaio de degrau de vazão com eixo de saída do reduotor travado - posição angular do eixo do redutor. .. 41
4.8 Ensaio de degrau de vazão com eixo de saída do reduotor travado - velocidade angular do eixo do redutor. .. 41
4.9 Ensaio de degrau de vazão com eixo de saída do reduotor travado - pressão na entrada do motor. ... 42
4.10 Ensaio de degrau de vazão com eixo de saída do reduotor travado - pressão na saída do motor. .. 42
4.11 Ensaio de degrau de vazão com eixo de saída do reduotor travado - pressão a montante das válvulas solenóides. 43
4.12 Ensaio de degrau de vazão com eixo de saída do redutor travado - torque no eixo de saída do redutor. ... 43
4.13 Gráfico de \(K_2 \) versus \(\omega_1 \) para ensaios em regime permanente 44
4.14 Gráfico de \(K_2 \) versus \(\omega_2 \) para vários ensaios .. 45
4.15 Gráfico de \(C_v \) versus \(f(P_2/P_1, P_1) \) para vários ensaios 46
5.1 Comportamento do sistema em função da variação do parâmetro \(n \) e \(C \) 60
5.2 Comportamento do sistema em função da variação do parâmetro \(V_1 \) 61
5.3 Comportamento do sistema em função da variação do parâmetro \(V_2 \) 62
5.4 Comportamento do sistema em função da variação dos parâmetros \(V_1 \) e \(V_2 \) 63
5.5 Comportamento do sistema em função da variação do parâmetro \(I \) 64
5.6 Comportamento do sistema em função da variação do coeficiente \(a_1 \) de \(K_2 \) 65
5.7 Comportamento do sistema em função da variação do parâmetro \(K_2 \) 66
5.8 Comportamento do sistema em função da variação do parâmetro \(C_v \) 67
5.9 Comportamento do sistema em função da variação do parâmetro \(V_0 \) 68
5.10 Comportamento do sistema em função da variação do parâmetro \(b \) 69
5.11 Comportamento do sistema em função da variação do parâmetro \(c \) 70
5.12 Comportamento do modelo para partida no sentido horário, inversão e parada do motor. ... 71
5.13 Comportamento do modelo para partida no sentido anti-horário, inversão e parada do motor. ... 72
5.14 Comportamento do modelo para baixa pressão \(P_2 \) - sentido horário. 73
5.15 Comportamento do modelo para alta pressão \(P_2 \) - sentido horário. 74
5.16 Comportamento do modelo para baixa pressão \(P_2 \) - sentido anti-horário. 75
5.17 Comportamento do modelo para alta pressão \(P_2 \) - sentido anti-horário. 76
A.1 Gráficos do motor GAST para vários valores de operação 83
A.2 Esquema com vista explodida do motor GAST ... 84
A.3 Detalhe do "encoder" com princípio de operação .. 86
A.4 Detalhe de bocal de vazão ISA .. 88
Lista de Tabelas

4.1 Características principais dos ensaios realizados na bancada experimental 36
4.2 Valores dos parâmetros do modelo ... 50
4.3 Medidas geométricas do motor GAST ... 51
Nomenclatura e Definições

Os símbolos utilizados para representar as variáveis ou parâmetros do modelo físico são aqui definidos e quando necessário associam-se valores aos mesmos (valores numéricos) ou relações algébricas. Para maior compreensão das nomenclaturas de alguns termos é interessante observar as figuras 3.1, 3.2 e 3.3 do capítulo 3 deste documento.

L comprimento ativo da palheta na direção axial
τ raio do rotor medido do centro
x raio de trabalho da palheta medido do centro do motor
B raio do corpo do motor
ϕ posição angular do motor
e excentricidade ($e = B - r$)
S área de trabalho da palheta ativa
I inércia do conjunto motor-reductor
Ω_{in} velocidade angular do motor ou do eixo de entrada do redutor de velocidade
Ω_{out} velocidade angular do eixo de saída do redutor de velocidade
τ_c torque de carga no motor
τ_{out} torque de carga no eixo de saída do redutor de velocidade
τ_a torque de atrito
τ_{mot} torque motor gerado pela diferença de pressão entre a câmara 1 e a câmara 2
M_1 massa de ar na câmara 1 (em Kg)
M_2 massa de ar na câmara 2 (em Kg)
ω_1 vazão mássica de ar na entrada da câmara 1 (em Kg/s)
ω_2 vazão mássica de ar na entrada da câmara 2 (em Kg/s)
ω_{12} vazão mássica de ar transferida de uma câmara para outra devido à rotação do motor (em Kg/s)
f vazão mássica de ar que escapa de uma câmara para outra (em Kg/s)
$b \, c \, \epsilon$ constantes de atrito do conjunto motor-reductor
P_1 pressão da câmara 1 do motor ou no ponto 1 da bancada experimental (em Pa)
P_2 pressão da câmara 2 do motor ou no ponto 2 da bancada experimental (em Pa)
P_a pressão ambiente (em Pa)
P_e pressão na entrada da válvula solenoíde de 2 vias da bancada experimental (em Pa)
V_1 volume compreendido entre a tomada de pressão da câmera 1 (ponto 1) e a interface entre as duas câmaras (ponto O)

V_2 volume compreendido entre a tomada de pressão da câmera 2 (ponto 2) e a interface entre as duas câmaras (ponto O)

V_0 volume total útil do motor

v_1 volume específico do ar na câmara 1

R constante do ar ($R = 29,28kgf\cdot m/Kg^o \cdot m\cdot K$)

n constante de processo politrópico

C constante equivalente ao produto Pv^n de um processo politrópico

N redução do redutor de velocidade ($N = 100$)

η rendimento do redutor de velocidade

ρ_1 densidade do ar na câmara 1 ou do ponto 1 da bancada experimental

ρ_2 densidade do ar na câmara 2 ou do ponto 2 da bancada experimental

ρ_s densidade do ar a montante da válvula solenóide de 2 vias

T_1 temperatura da câmara 1 do motor ou no ponto 1 da bancada experimental

T_2 temperatura da câmara 2 do motor ou no ponto 2 da bancada experimental

T_* temperatura na entrada da bancada ou a montante das válvulas solenóides da bancada experimental ($T_* = T_{amb} = 25^\circ C$)

v_1 volume específico do ar na câmara 1

K_s coeficiente de perda de pressão na passagem do ar através das válvulas solenóides (antes da entrada do motor)

K_2 coeficiente de perda de pressão na passagem do ar pelo escape da válvula solenóide de 4 vias (depois da saída do motor)

C_V constante de perda de pressão pela passagem do ar em um orifício

P_u pressão a montante de um orifício

T_u temperatura a montante de um orifício

P_d pressão na "vena contracta" de um orifício

W_i vazão de ar através de um orifício

$f(P_u, T_u, P_d)$ função das variáveis P_u, T_u, e da razão $\frac{P_d}{P_u}$

c_1 e c_2 constantes

k constante de processo isoentrópico ($k = 14$)

V_{ext1} volume entre a tomada de pressão (ponto 1 da bancada) e a entrada da câmera 1

V_{ext2} volume entre a tomada de pressão (ponto 2 da bancada) e a entrada da câmera 2

ta intervalo de amostragem ou intervalo de tempo entre dados experimentais consecutivos coletados na bancada experimental
Resumo

Este trabalho consiste no estudo do comportamento dinâmico de um sistema de acionamento formado por um motor pneumático de alta velocidade acoplado a um redutor de velocidade de alta relação de redução, denominado sistema Motor Pneumático de Alta Rigidez (MPAR). Este acionador pode ser uma alternativa aos acionadores elétricos e hidráulicos utilizados em braços robóticos e mesas de máquinas de controle numérico.

O sistema MPAR é implementado fisicamente em uma bancada experimental. Esta bancada fornece dados experimentais em diversas condições de operação, tanto em regime permanente como em transitórios. Estes dados são utilizados na determinação de parâmetros de um modelo físico do MPAR. O modelo físico é constituído por três equações diferenciais não lineares de primeira ordem que representam os balanços de massa nas duas câmaras do motor e balanço de momento no eixo do motor. A partir da comparação da resposta do modelo do MPAR com a resposta obtida na bancada experimental, conclui-se que o modelo descreve bem o comportamento do sistema MPAR da bancada.
Abstract

This work consists in the study of the dynamic behaviour of an actuator system composed by a high speed air motor coupled with a high reduction ratio reducer called here high shift air motor (MPAR). This kind of actuator may be an alternative to the electric and hydraulic actuators for applications in robotics arms and tables of NC machines.

The MPAR system is implemented in an experimental apparatus. The experimental system was operated in different conditions including the steady state and transients. The experimental data are used to calculate the parameters of a physical model. The model is composed by three nonlinear first order differential equation that represent the mass balance in two air motor chamber and the momentum balance in the air motor shaft. By the comparasion between the results of the model and the experimental results it can be concluded that the model describes the MPAR system behaviour very well.
Capítulo 1

INTRODUÇÃO

1.1 JUSTIFICATIVA E OBJETIVOS

Atualmente, mesas de máquinas de controle numérico, robôs e outros manipuladores utilizam atuadores elétricos ou hidráulicos no seu sistema de acionamento.

Os atuadores elétricos, como os motores elétricos e solenóides, são utilizados quando os esforços exigidos no posicionamento são pequenos. Na verdade, estes atuadores apresentam baixa relação esforço-peso e baixa rigidez em função da propriedade de saturação do material ferromagnético, isto é, existe uma limitação de conversão da energia elétrica em mecânica. Para se ter uma idéia, o esforço magnético por unidade de área do ferro atinge o equivalente a 20 atms [Tu90]. Este valor é uma ordem de grandeza menor que o de um atuador hidráulico. Este fato é normalmente corrigido associando-se um redutor de velocidade ao motor elétrico.

Outro fato inconveniente dos motores elétricos é o aquecimento que ocorre quando estes atuadores são travados ou quando ocorre inversão brusca no sentido de rotação. As perdas nos motores elétricos são dissipadas na forma de calor, dentro do próprio atuador. Assim, o tamanho do motor tem que ser suficientemente grande para que a temperatura interna não deteriore a isolação dos fios.

Os atuadores hidráulicos, como os cilindros e motores hidráulicos, são utilizados quando os esforços exigidos são grandes. Estes atuadores possuem uma alta relação esforço-peso e alta rigidez. Entretanto, por utilizarem óleo a alta pressão, estes atuadores estão sujeitos a vazamentos sendo, por isto, perigosos. Como possuem bombas de óleo, são barulhentos e além disto, são caros em função da grande precisão exigida nos seus componentes mecânicos.

Desta forma, estes dois tipos de atuadores apresentam algumas características indesejáveis para a sua utilização em sistemas de acionamento. Daí surge a idéia de um outro atuador, que não possui as desvantagens dos atuadores elétricos e hidráulicos, mas sim, só suas vantagens. Este outro atuador é o motor pneumático.

O motor pneumático é menos eficiente que um motor elétrico, porém, ao contrário deste, as perdas não são dissipadas na forma de calor no próprio motor. O motor pneumático pode ser travado ou invertido quantas vezes forem necessárias, sendo o ar liberado para a atmosfera.
Ao contrário dos atuadores hidráulicos, o ar é limpo e o nível de ruído é baixo, desde que silenciadores adequados sejam utilizados. Além disso, o motor pneumático é bem mais compacto que um motor elétrico, sendo seu tamanho equivalente a 1/5 do tamanho de um motor elétrico. Entretanto, o motor pneumático é pouco rígido porque o ar é altamente compressível a baixa pressão. Porém, esta limitação pode ser contornada com o uso de um redutor de velocidade, que ocasiona um aumento da rigidez do conjunto [Tu90].

A associação de um motor pneumático de alta velocidade com um redutor de alta relação de redução é aqui denominada como sistema Motor Pneumático de Alta Rigidez (MPAR). O sistema MPAR pode ser utilizado no acionamento de manipuladores, os quais são mecanismos de alta precisão. Em outras palavras, manipuladores exigem atuadores de grande exatidão a fim de executar um posicionamento preciso. Para que o sistema MPAR possa executar tal tarefa é necessário que ele possua um sistema de controle preciso. Isto pode ser alcançado desde que o comportamento dinâmico do sistema MPAR seja conhecido.

Uma dificuldade que existe no controle de posicionamento de manipuladores são os fatores não lineares, tais como as folgas do sistema de redução e o efeito do atrito das partes do motor e do redutor. A influência destes fatores precisa ser conhecida e determinada. Além disto, o MPAR pode apresentar uma baixa frequência natural em função da alta compressibilidade do ar. É importante determinar esta frequência, pois o projeto do sistema de controle depende dela, sendo inclusive desejável que esteja bem acima do campo de frequências dos sistemas de controle de manipuladores. Estes fatos demonstram a necessidade de se conhecer o comportamento dinâmico do MPAR, para então projetar um sistema de controle adequado. Outro fato que torna fundamental o estudo da dinâmica do MPAR é a pouca literatura existente sobre a dinâmica de motores pneumáticos.

Diante do exposto, o objetivo principal deste trabalho é estudar o comportamento dinâmico do sistema MPAR. Para tanto, o trabalho possui uma parte experimental e outra teórica, que são respectivamente as seguintes:

- Construção do sistema físico MPAR ou simplesmente implementação do sistema MPAR em uma bancada experimental;
- Desenvolvimento de um modelo matemático do sistema MPAR implementado na bancada experimental.

Com a bancada experimental pode-se verificar o comportamento dinâmico do sistema MPAR e obter dados úteis para o modelo matemático. O modelo matemático do sistema MPAR pode ser utilizado no estudo de técnicas de controle digitais, que futuramente serão aplicadas no sistema MPAR. Além disto, este modelo proposto é um primeiro passo para compreensão do sistema MPAR, sob o ponto de vista teórico, pois se estabelecem relações matemáticas entre as variáveis mais importantes do sistema MPAR. É importante ressaltar que o modelo matemático desenvolvido está intimamente ligado à bancada experimental, ou seja, representa os equipamentos instalados como válvulas, redutor e motor. Contudo, a generalização do modelo para outros tipos de componentes não é muito difícil.

O modelo matemático desenvolvido possui parâmetros desconhecidos que são determinados em um processo de cálculo dos seus valores. A técnica de cálculo de parâmetros utilizada
neste trabalho, é baseada no método dos mínimos quadrados [Ljung85] (ou de forma mais direta, pelo valor médio dos parâmetros). No processo de cálculo utilizam-se os dados experimentais e as equações do modelo matemático, com o objetivo de minimizar o erro entre o valor das variáveis calculadas pelo modelo e o valor experimental destas, nos diversos transientes executados.

Com o objetivo de verificar se o modelo proposto é adequado para representar o sistema MPAR implementado na bancada experimental, os resultados da simulação do modelo são comparados com os resultados experimentais para transientes onde se aplica um degrau de vazão de ar no motor. Além disto, procura-se realizar uma análise do comportamento do modelo variando-se alguns de seus parâmetros e observando sua resposta nestes mesmos transientes.

Em resumo, o trabalho de mestrado proposto tem a seguinte abrangência:

- Montagem da bancada experimental e realização de ensaios para aquisição de dados experimentais;
- Elaboração de um modelo matemático a partir de leis físicas que regem o comportamento do sistema pneumático em questão;
- Cálculo dos parâmetros do modelo matemático;
- Simulação e análise dos resultados das simulações.

Assim, a partir deste estudo pode-se compreender como é a dinâmica do sistema MPAR e verificar a possibilidade de se controlar a velocidade ou posição angular do eixo de saída do redutor. Este fato é importante para que o sistema MPAR possa ser aplicado no acionamento de manipuladores. Além disto, este estudo fornecerá subsídios para realização de um projeto otimizado de um sistema MPAR, onde o motor pneumático e o redutor de velocidade constituam um único elemento de tamanho igual a de um redutor.
1.2 TÓPICOS DE CADA CAPÍTULO

Os capítulos deste documento são elaborados com a seguinte estrutura:

No CAPÍTULO 1 (INTRODUÇÃO) são apresentados os objetivos para a realização do estudo da dinâmica de um motor pneumático de alta rigidez e a abrangência deste trabalho. Nesta etapa é realizada uma revisão da literatura sobre a dinâmica de motores pneumáticos.

No CAPÍTULO 2 (SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ) faz-se uma descrição do sistema MPAR que foi montado em uma bancada experimental para analisar a dinâmica do sistema. Descrevem-se os equipamentos da bancada experimental, bem como do seu sistema de aquisição de dados.

No CAPÍTULO 3 (MODELAGEM FÍSICA DO SISTEMA MPAR) apresenta-se o desenvolvimento teórico do modelo proposto para o MPAR. Este modelo é baseado em leis físicas, consistindo basicamente nos balanços de massa nas duas câmaras do motor pneumático e no balanço de momento no eixo do motor. Além disto, são feitas hipóteses para que o modelo possa ser simulado e analisado.

No CAPÍTULO 4 (CÁLCULO DOS PARÂMETROS DO MPAR) descreve-se o processo de cálculo dos parâmetros do modelo do MPAR. Detalha-se o procedimento para o cálculo de cada parâmetro do modelo do sistema MPAR, apresentando-se, ao final, os valores obtidos com esta metodologia.

No CAPÍTULO 5 (RESULTADOS) realiza-se uma descrição sucinta das características do programa para simulação do modelo. Em seguida, faz-se uma análise paramétrica do modelo, isto é, procura-se analisar o comportamento do modelo através da variação dos seus parâmetros. Finalmente, realiza-se uma análise da qualidade do modelo obtido através da comparação dos resultados de simulações com os ensaios realizados na bancada experimental.

No CAPÍTULO 6 (CONCLUSÕES) são analisados os resultados obtidos no trabalho, tanto os práticos como os teóricos, verificando se os objetivos foram alcançados. Finalmente, trabalhos futuros são propostos e descritos de forma resumida.
1.3 REVISÃO BIBLIOGRÁFICA

A literatura sobre a dinâmica de pistões pneumáticos é vasta, contudo existem poucos estudos sobre a dinâmica de motores pneumáticos. Em [Pu91], J. Pu et al. ressaltam esta falta de literatura sobre a dinâmica de motores pneumáticos, enumerando os principais trabalhos realizados no projeto de servo atuadores pneumáticos. Apenas dois trabalhos, o de Backe [Backe86] e de Dunlop [Dunlop89], são específicos da área de motores pneumáticos, mas não realizam estudos sobre a dinâmica do motor pneumático.

O estudo da dinâmica de sistemas pneumáticos aplicados em acionamentos surgiu na década de 40. Um trabalho importante nesta área foi realizado por Shearer [Shearer54]. Neste trabalho é proposto um modelo para um pistão pneumático com duas câmaras e determinadas as equações físicas que regem o comportamento deste sistema. Além deste trabalho, outros foram realizados na área de acionadores pneumáticos lineares. A referência [Blackburn60] apresenta os principais trabalhos das décadas de 40 a 60, na área pneumática.

Os estudos na área de acionamento pneumático continuaram, mas sempre voltados para a dinâmica de pistões. Recentemente, com o advento dos sistemas digitais e de sistemas automatizados, os estudos de dinâmica de motores pneumáticos são iniciados com vista à aplicação em acionamento de máquinas e robôs. Em [Pu91], J. Pu et al. realizam um estudo sobre motores pneumáticos objetivando a aplicação de controle digital, através do uso de microprocessadores. Este trabalho apresenta um modelo dinâmico simplificado de um motor pneumático, que foi desenvolvido baseando-se no equacionamento para pistões pneumáticos realizado por Shearer. Este modelo é restrito, pois é aplicável somente na situação de movimento em torno de uma posição fixa de operação, sendo também linearizado.

O modelo proposto nesta dissertação inclui as não linearidades de um motor pneumático e pode ser considerado como inédito, dentro da literatura pesquisada.

A referência [Blackburn60] fornece um elemento importante utilizado na formulação do modelo do MPAR, que é o cálculo da vazão de ar através de um orifício. Outras informações teóricas como os componentes do esforço de atrito foram retirados desta referência. A referência [Idel’cik69] fornece a equação que relaciona perda de pressão com vazão do ar através de uma válvula. Estas equações são utilizadas no cálculo das vazões do modelo do sistema MPAR.
Capítulo 2

SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

2.1 INTRODUÇÃO

Neste capítulo, apresenta-se o sistema físico que foi elaborado para determinar o comportamento dinâmico do Motor Pneumático de Alta Rigidez (MPAR). Para tanto, este sistema foi implementado em uma bancada experimental que pode ser dividida em duas partes:

- Sistema mecânico MPAR;
- Sistema de aquisição de dados.

A figura 2.1 fornece um esquema simplificado da bancada experimental que representa o arranjo final utilizado nos ensaios. Na figura 2.2 podem-se observar os elementos da bancada experimental através de fotos de vista geral e lateral. Algumas modificações foram feitas em relação aos equipamentos que estão indicados na figura: o rotametro que serve para medida de vazão foi substituído por um tubo cilíndrico, com um bocal de vazão, conectado na saída para o ambiente da válvula de 4 vias.

Na seção final deste capítulo, os sinais monitorados na bancada experimental são analisados com o intuito de verificar se estão adequados para serem utilizados no cálculo de parâmetros do modelo do MPAR. A seguir descreve-se cada uma das partes da bancada experimental.
CAPÍTULO 2 SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

Legenda:
(1) Filtro
(2) Estação lubrificadora
(3) Válvula reguladora de pressão
(4) Válvula gaveta manual
(5) Válvula solenoide de duas vias
(6) Válvula solenoide de quatro vias
(7) Freio Dinamométrico
(8) “Encoder”
(9) Conjunto motor pneumático-reductor de velocidade
(10) Circuito de potência das válvulas solenóides
(11) Circuito contador do “encoder”
(12) Tubo cilíndrico com bocal de vazão na saída
(13) Tubo em “U” com coluna de água
(14) Amplificador da célula de carga

* - indica que o sinal está conectado a placa de interface conversora analógica-digital, que está posicionada em um “slot” do microcomputador.

Figura 2.1: Esquema simplificado da bancada experimental.
Legenda:
(1) Microcomputador
(2) Filtro
(3) Estação lubrificadora
(4) Silenciador
(5) Rotâmetro
(6) Válvula gaveta manual
(7) Válvula solenoide de duas vias
(8) Válvula solenoide de quatro vias
(9) Válvula reguladora de pressão
(10) Medidor de pressão 1 junto ao motor
(11) Medidor de pressão 2 junto ao motor
(12) Motor pneumático de palhetas
(13) Redutor Cicloidal
(14) "Encoder" (medidor de posição angular)
(15) Freio Dinamométrico
(16) Medidor de pressão na entrada da bancada

Figura 2.2: Fotos vista geral e lateral da bancada experimental.
2.2 SISTEMA MECÂNICO DO MPAR

O sistema mecânico MPAR é constituído por:

- Um motor pneumático de palhetas reversível da GAST [Gast92];
- Um redutor de velocidade tipo cicloidal da Lenze [Lenze92];
- Um filtro, uma estação lubrificadora e uma válvula reguladora de pressão, na entrada da bancada, que são acessórios da GAST [Gast92];
- Duas válvulas solenóides tipo “on-off” da FESTO [Festo91]: uma de 2 vias e outra de 4 vias (para inversão de fluxo);
- Tubulações e conexões para acoplamento dos componentes;
- Uma válvula manual.

Funcionamento do sistema MPAR:

O ar proveniente de uma linha de pressão a 7 bar passa pelo filtro, pelo lubrificador, pela válvula reguladora de pressão, pela válvula manual e pelas válvulas solenóides de 2 e 4 vias, atingindo uma das entradas do motor pneumático (de acordo com o sentido de fluxo dado pela válvula de 4 vias). O ar penetra pelo orifício de entrada do motor atingindo as palhetas, que por sua vez estão associadas a um rotor que passa a se movimentar. Um eixo é acoplado ao rotor, transmitindo torque e rotação ao redutor. O redutor, que possui uma relação de redução de 1:100, diminui a rotação do motor e aumenta o torque, mantendo a potência do sistema (potência é igual ao produto da rotação e do torque). Com o uso do redutor de velocidade, consegue-se um aumento da rigidez do motor pneumático igual ao quadrado da relação de redução [Tu90]. O ar retorna à válvula de 4 vias, passando então, por um tubo cilíndrico e sendo finalmente liberado para o ambiente através de um bocal de medição de vazão. Para que o motor pneumático inicie seu movimento é necessário abrir a válvula solenóide de 2 vias. A válvula de 4 vias serve para inverter o sentido de entrada de vazão do motor, e consequentemente, o sentido de rotação do motor.

Outras características dos equipamentos mecânicos da bancada experimental estão detalhadas no apêndice A deste documento.
2.3 SISTEMA DE AQUISIÇÃO DE DADOS

A função do sistema de aquisição de dados é medir o valor das variáveis de interesse para a análise dinâmica do sistema MPAR e efetuar manobras no sistema MPAR (partida, parada e inversões de rotação). Desta forma, o sistema de aquisição é constituído por:

- Uma placa conversora analógica-digital da Lynx [Lynx91];
- Um microcomputador do tipo AT;
- Sensores;
- Um circuito de potência para atuação das válvulas solenóides;
- Uma fonte de tensão.

A placa conversora é o elemento de interface entre o microcomputador, os sinais dos sensores e os sinais de atuação das válvulas solenóides. Esta placa conversora é basicamente constituída por:

- Duas entradas e duas saídas digitais de 8 “bits”;
- Dezesseis entradas analógicas simples ou oito diferenciais multiplexadas;
- Duas saídas analógicas.

Os sinais analógicos são transformados em sinais digitais através de um conversor analógico-digital (A/D) de 12 “bits” de resolução. Este conversor A/D recebe os sinais analógicos dos sensores e os transforma em sinais digitais de 12 “bits” a cada intervalo de amostragem para a leitura pelo microcomputador. Sinais digitais são transformados em sinais analógicos por meio do conversor digital-analógico (D/A), também de 12 “bits”.

Os sensores utilizados na bancada experimental são os seguintes:

- Três transmissores de pressão com sensores de pressão do tipo “strain gages” da ELDI [Eldi91]: um a montante das válvulas solenóides e os outros dois montados próximos ao motor pneumático (na entrada e saída, conforme o sentido de fluxo). Estes transmissores têm como sinal de saída uma tensão que varia entre 0 e 5 V (para uma variação de 0 a 10 bar de pressão). O sinal de saída é enviado para as entradas analógicas da placa conversora A/D (canais 0, 1 e 2).

Os medidores de pressão são calibrados previamente pelo fabricante, que recomenda uma verificação quando do seu uso inicial. Deste modo, foram realizados ensaios com pressão atmosférica e com um valor maior de pressão (7 bar), indicando que os três medidores fornecem valores corretos e bem próximos entre si. A dinâmica dos sensores é mais rápida que a do sistema e, portanto, não influí na resposta do sinal de pressão. Para se ter uma ideia, o tempo de resposta de um “strain-gage” é da ordem de microsegundos [Meas88], enquanto que o tempo de resposta do sistema é de 50 milissegundos. Assim, estes medidores são adequados para o estudo dinâmico do sistema MPAR;

- Um “encoder” da DIADUR [Diadur91] que serve para medir a posição angular do eixo de saída do redutor e, através desta, calcular a sua velocidade angular. O “encoder” possui duas saídas compostas por pulsos de 5 volts que permitem determinar a velocidade angular.
CAPÍTULO 2 SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

nos dois sentidos de rotação do motor-redutor, através da defasagem existente entre estes sinais. Os pulsos de saída do encoder são introduzidos em um circuito contador que os contagem e identifica o sentido de rotação pela defasagem dos mesmos. Cada volta do eixo de saída do redutor equivale a 18.000 contagens. A contagem de pulsos realizada pelo circuito contador é enviada às entradas digitais (entradas de 8 “bits” ED0 e ED1) da placa conversora, que a cada intervalo de amostragem são lidas pelo microcomputador. A inicialização do circuito contador é realizada por um sinal de “clear” enviado pela placa conversora (saída digital SD1, “bit” D7), sendo gerado pelo microcomputador. A figura 2.3 apresenta um esquema do circuito contador.

O circuito contador pode ser dividido em dois blocos: o bloco de contagem e o bloco de lógica que seleciona os sinais fase A ou fase B, que são os sinais de saída do encoder. Assim, se o sinal da fase A está adiantado e encontra-se no nível alto (5 volts), o bloco de lógica introduz um pulso no ponto 5 do contador U21. Quando a fase B for para o nível alto, haverá um segundo pulso no ponto 5, que incrementará mais um “bit” na saída digital D0 a D15. O bloco de contagem é constituído por quatro contadores “up and down” ligados em cascata, os quais contam, nas suas saídas, (QA, QB, QC e QD) os pulsos introduzidos nos seus sinais de “clock” (ponto 5 para “up” e ponto 6 para “down”).

O sinal da velocidade angular, gerado pelo “encoder” em conjunto com o circuito contador, não precisa ser calibrado, uma vez que fornece 18000 pulsos por volta do eixo do redutor. O “encoder” não interfere na dinâmica do sinal de velocidade angular.

- Um bocal de medição de vazão, que se encontra montado na saída de um tubo cilíndrico. O princípio de medida de vazão é dado pela diferença de pressão causada pelo bocal, isto é, a diferença entre a pressão interna do tubo (em uma tomada de pressão próxima ao bocal) e a pressão ambiente. Esta diferença de pressão é medida, através de leitura visual, por uma coluna d’água (ou mercúrio) em formato de tubo em “U”. Ressalta-se que são utilizados dois bocais de diâmetros diferentes para cobrir toda a faixa de variação da vazão do motor.

- Um circuito de potência, cuja entrada é um sinal de controle para acionar ou desligar as válvulas solenóides, vindo da placa conversora e a saída é o sinal de potência de atuação das válvulas. O circuito de potência está representado na figura 2.4. Ele é composto por dois módulos, um para cada válvula solenóide. O módulo recebe o sinal de atuação (sinal de controle) da válvula de uma saída digital da placa conversora (saída digital SD0 com “bit” D0 para a válvula de 2 vias e saída digital SD1 com “bit” D0 para a válvula de 4 vias) que ativa umisolador ótico (TIL 113). Quando este isolador é ativado, introduz um sinal na base do transistor 2N2222 que passa a conduzir e desta forma a bobina da válvula solenóide é energizada e a válvula muda de estado;

- Um freio dinamométrico para medida de torque, que se encontra no eixo de saída do redutor. O freio dinamométrico é constituído por uma barra acoplada ao eixo do redutor. Um dos extremos da barra é acoplado ao motor e o outro extremo é apoiado sobre uma célula de carga. O contato da barra com o eixo é feito por uma lona que serve para frear o eixo. O torque de freinagem é transmitido à barra, que então exerce uma força sobre a célula de carga. Esta célula de carga é formada por um disco de alumínio com um ponto central, onde a barra é apoiada. Radialmente a este centro se instalam quatro “strain-gages”. A força que incide no centro do disco causa sua deformação, a qual é detectada pelos “strain-gages”. Os “strain-gages”, que estão dispostos segundo uma ponte de wheatstone [Horowitz80], convertem
a deformação em um sinal proporcional de tensão devido ao desequilíbrio desta ponte. Em seguida, este sinal é enviado a um amplificador e posteriormente para uma entrada analógica da placa conversora (canal 3).

O freio dinamométrico é calibrado em uma prensa com medida de força. Com isto, é estabelecida uma relação entre a força aplicada e a tensão de saída da célula de carga. O sinal de saída do freio dinamométrico apresenta um nível de ruído significativo, o que prejudica a medida de força quando se tem valores de torques baixos. Além disto, o freio não é capaz de registrar a variação dinâmica da força, conforme verificado durante transitórios. Assim, o freio só será utilizado para a situação de regime e com altos valores de torque.

Funcionamento do sistema de aquisição de dados:

Os sinais analógicos provenientes dos sensores de pressão, do amplificador do freio dinamométrico e o sinal digital do contador de pulsos do “encoder” são enviados à placa conversora. Desta mesma placa partem os sinais digitais para atuação das válvulas solenóides, que são enviados para o circuito de potência das válvulas. Os sinais analógicos são amostrados pela placa conversora de acordo com um intervalo de amostragem fixado em um programa apropriado. Este programa, além de ajustar o intervalo de amostragem, serve para:

- Programação da placa conversora para realizar a leitura de sinais analógicos e digitais do sistema MPAR a cada intervalo de amostragem;
- Atuação nas válvulas solenóides;
- Leitura e armazenamento dos sinais dos sensores em arquivo. Os dados analógicos e digitais são lidos por interrupção (forma de amostragem) estabelecida pelo programa. O programa de aquisição de dados se encontra no apêndice B.
Figura 2.3: Circuito do contador de pulsos do "encoder".
Figura 2.4: Circuito de potência para atuação das válvulas solenóides.
Figura 2.5: Circuito da célula de carga para conversão da deformação em sinal de tensão.
CAPÍTULO 2. SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

As medidas armazenadas em arquivo não estão em valores de engenharia e, desta forma, as variáveis precisam ser calculadas a partir das relações fornecidas a seguir.

a) Cálculo das pressões

As pressões P_1, P_2 e P_3 são calculadas a partir do valor obtido no arquivo (dados das colunas 2, 3 e 4, respectivamente) realizando-se os cálculos:

$$P_i = \left(\frac{5 \text{valor}_i \text{_arquivo}}{32768} + 5 \right)10000 + 93325 \quad (2.1)$$

onde P_i representa qualquer uma das pressões. A unidade das pressões é o pascal (Pa), e como o valor de arquivo é proporcional a pressão em bar, ele deve ser multiplicado por 10000 e somado à pressão atmosférica (93325 em Pa), obtendo assim, o valor da pressão absoluta. Os termos numéricos que estão nos parênteses são termos advindos em função da conversão analógica-digital e seus valores são fornecidos pelo fabricante da placa conversora [Lynx91].

b) Cálculo da posição e da velocidade angular do eixo de saída do redutor

O cálculo da posição angular do eixo de saída do redutor é dado por:

$$\theta = \frac{360(256 \text{valor}_1 \text{_arquivo} + \text{valor}_2 \text{_arquivo})}{18000} \quad (2.2)$$

onde θ representa a posição angular em graus. Os valores que compõem o cálculo da posição angular estão divididos em duas leituras do arquivo (dados das colunas 6 e 7 do arquivo), isto é, a leitura digital do sinal do circuito contador é feita em duas variáveis do programa, uma correspondente aos 8 “bits” mais significativos e outra aos 8 “bits” menos significativos. Isto justifica a soma feita nos parênteses da equação. Os outros termos numéricos são obtidos a partir da relação entre o número de contagens para uma volta do motor e o número de graus de uma volta (360º corresponde a 18000 contagens do circuito contador).

O cálculo da velocidade angular é realizado através de duas medidas de posição angular dentro do intervalo de amostragem ta:

$$\Omega = \frac{\theta_t - \theta_{t-1}}{360ta} \quad (2.3)$$

onde Ω representa a velocidade angular do eixo de saída do redutor em rps (voltas por segundo), ta é o intervalo de amostragem em segundos, θ_t é a posição angular do eixo do redutor no instante t e θ_{t-1} é a posição angular, em graus, no instante de amostragem anterior.

c) Cálculo do torque do eixo de saída do redutor

O torque do eixo de saída do redutor (τ_{out}) é dado pelo produto da força exercida na célula de carga e o comprimento do braço (0.3m). A força medida pela célula de carga (F) é proporcional a tensão de saída do amplificador, sendo este o sinal que é convertido pela placa conversora analógica-digital. A relação força/tensão do amplificador é obtida em ensaio de carga, ou seja, introduziram-se vários pesos na célula e arquivaram-se as leituras do sinal da célula de carga. A relação final foi aproximada por uma equação de reta, dada por:
CAPÍTULO 2. SISTEMA FÍSICO MOTOR PNEUMÁTICO DE ALTA RIGIDEZ

\[F = 9.8(-0.00523(\text{valor}_\text{arquivo})) \] \hspace{1cm} (2.4)

onde o termo \(F \) corresponde à força em \(N \) (newtons) exercida na célula de carga e o termo \(\text{valor}_\text{arquivo} \) (dados da coluna 5 do arquivo) representa o valor da conversão analógica-digital da tensão da célula de carga (o sinal menos é decorrente do valor negativo desta leitura).

Logo o torque \(\tau_{out} \) (em \(Nm \)) é dado por:

\[\tau_{out} = 0.3F \] \hspace{1cm} (2.5)

A seguir representa-se parte de um arquivo com dados de um ensaio realizado na bancada experimental.

<table>
<thead>
<tr>
<th>ARQUIVO COM DADOS DE UM ENSAIO DA BANCADA EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>colunas:</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>(0)</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
</tr>
<tr>
<td>(6)</td>
</tr>
<tr>
<td>(7)</td>
</tr>
<tr>
<td>(8)</td>
</tr>
<tr>
<td>(9)</td>
</tr>
<tr>
<td>(10)</td>
</tr>
<tr>
<td>(11)</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>(13)</td>
</tr>
<tr>
<td>(14)</td>
</tr>
<tr>
<td>(15)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Além destas variáveis também se calculou a vazão de saída do bocal, mas com a medida visual, isto é, sem utilizar a interface de aquisição.

d) Cálculo da vazão do bocal de saída da bancada

Como foi citado, a vazão de saída da bancada é medida através de dois bocais (cada um operando em uma faixa de vazão). A perda de pressão nos bocais é medida através de um tubo em "U" com régua graduada em cm. A fórmula utilizada no cálculo da vazão, \(W \), a partir da medida da altura manométrica é dada por:

\[W = C_w A_2 \left[\frac{2k}{k-1} \frac{P_1}{\rho_1} \left(\frac{E_2}{P_1} \right)^\frac{k}{2} \left(1 - \left(\frac{E_2}{P_1} \right)^\frac{k-1}{k} \right) \right] \left(\frac{A_2}{A_1} \right)^\frac{k-1}{2} \left(1 - \left(\frac{P_1}{E_2} \right)^\frac{k-1}{2} \right) \] \hspace{1cm} (2.6)
onde C_w é o coeficiente de velocidade ($C_w = 0.98$), k é a constante de processo isoentrópico ($k = 1.4$). Observando a figura A.4 do bocal apresentado no apêndice A.7, A_1 e A_2 são as áreas nos pontos 1 e 2, p_1 e p_2 são as pressões nos pontos 1 e 2 e ρ_1 é a densidade no ponto 1 do bocal. O ponto 1 representa um ponto interno do cilindro que envolve o bocal (tomada de pressão próxima ao bocal) e o ponto 2 é a região externa do bocal, sob pressão atmosférica.

Diâmetros dos pontos 1 e 2:

. bocal pequeno: $D_1 = 4.5\, \text{mm}$ e $D_2 = 5\, \text{\textquotedbl}$.

. bocal grande: $D_1 = 0.5\, \text{\textquotedbl}$ e $D_2 = 7.5\, \text{\textquotedbl}$.

Outras características dos equipamentos do sistema de aquisição da bancada experimental estão detalhadas no apêndice A deste documento.
Capítulo 3

MODELAGEM FÍSICA DO SISTEMA MPAR

3.1 INTRODUÇÃO

O modelo desenvolvido para o MPAR é baseado em leis físicas. Este modelo consiste no balanço da massa de ar nas câmaras do motor e no balanço de momento no eixo do motor. Algumas hipóteses e simplificações são realizadas no modelo matemático, a fim de torná-lo simples, porém representativo. Observa-se que o modelo leva em consideração tanto o comportamento dinâmico do sistema como o comportamento em regime permanente.

A figura 3.1 representa o motor pneumático de duas câmaras e suas partes. A figura 3.2 fornece um esquema simplificado da estrutura do motor e a figura 3.3 fornece um esquema simplificado da bancada experimental.

3.2 HIPÓTESES

As hipóteses adotadas na formulação do modelo do sistema MPAR são as seguintes:

. Assume-se a existência de somente duas câmaras ou dois volumes de controle no motor pneumático: a câmara 1 e a câmara 2. Estas câmaras são definidas de forma que existam dois níveis de pressão no motor, a de entrada e a de saída, sendo que a diferença entre estas pressões ocasiona o torque para movimentação do eixo do motor. Observa-se que as duas câmaras podem ser tanto de saída como de entrada, dependendo do sentido de rotação do motor. A figura 3.1 fornece o esquema do motor pneumático com as duas câmaras.

. Assume-se que a pressão na câmara 1 é representada pela pressão na entrada da câmara (ponto 1 da figura 3.3), que pode ser a pressão na entrada ou na saída do motor pneumático, conforme o sentido de rotação do motor. Do mesmo modo, a pressão na câmara 2 é representada pela pressão na entrada da câmara (ponto 2 da figura 3.3), que, novamente, pode ser a pressão na saída ou na entrada do motor pneumático, conforme o sentido de rotação do motor. Na situação representada pela figura 3.3, a pressão P_1 é a pressão de entrada e a pressão P_2 é a
pression de saída do motor pneumático, e o motor roda no sentido horário.

Assume-se que a temperatura na entrada da válvula solenóide \((T_s)\) de 2 vias (ponto \(s\) da figura 3.3) seja constante e igual à temperatura ambiente.

Assume-se que a temperatura na entrada do motor seja igual a \(T_s\). Além disto, consider-se que a temperatura na saída do motor seja constante. Estas simplificações devem ser realizadas pois não é possível levantar o comportamento dinâmico das temperaturas nos pontos citados e elas são utilizadas no cálculo das vazões.

O volume \(V_1\) é aproximadamente o volume compreendido entre a tomada de pressão na entrada da câmara 1 e o ponto \(O\) indicado na figura 3.3, ou seja, ele é dado pela soma:

\[
V_1 = \frac{V_0}{2} + V_{ext1},
\]

onde \(V_0\) é o volume útil total do motor \(V_{ext1}\) é o volume compreendido entre a tomada de pressão no ponto 1 da bancada e a entrada da câmara 1. O volume \(V_2\) é calculado da mesma forma, ou seja:

\[
V_2 = \frac{V_0}{2} + V_{ext2},
\]

onde \(V_{ext2}\) é o volume compreendido entre a tomada de pressão no ponto 2 da bancada e a entrada da câmara 2 e \(V_0/2\) é o volume da câmara 2. Portanto, admite-se que os volumes internos das câmaras 1 e 2 são iguais.

O processo que ocorre com o ar na passagem pelas válvulas solenóides, tanto na entrada como na saída do motor, é considerado como um processo isentálpico. Admite-se que a perda de pressão nas válvulas solenóides possa ser utilizada no cálculo das vazões de entrada e saída do motor. Embora existam duas válvulas solenóides por onde o ar passa antes de entrar no motor, o processo é modelado como uma perda de pressão em uma única válvula [Idel’cik69].

O processo de vazamento de ar da câmara de pressão alta para a câmara de pressão baixa é considerado como um processo isoentrópico. Admite-se que todo o ar que vaza da câmara de pressão alta vai para a câmara de pressão baixa e, que o vazamento de ar do motor para o ambiente é desprezível.

Novas hipóteses são feitas durante a formulação do modelo físico. Sempre que ocorrerem elas são destacadas e justificadas.
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR

Figura 3.1: Motor pneumático de duas câmaras.

Figura 3.2: Diagrama do motor pneumático de duas câmaras com representação das medidas geométricas.
Figura 3.3: Esquema da bancada experimental utilizado na etapa de modelagem.
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR

3.3 FORMULAÇÃO DO MODELO FÍSICO

O modelo físico formulado para o sistema MPAR consiste no balanço de momento no eixo do motor, nos balanços de massa das câmaras do motor e nas relações do redutor. Com estas equações, é possível identificar os principais fatores que afetam a dinâmica de um motor pneumático, ou seja, a compressibilidade do ar, que está associada às equações do balanço de massa nas câmaras, e a dinâmica de velocidade, que está associada ao balanço de momento no eixo. Com isso, é possível calcular as frequências naturais devido ao efeito de compressibilidade e às inércias.

3.3.1 Balanço de Momento

Um balanço de momento no eixo do motor pneumático resulta na seguinte equação:

\[
I \frac{d\Omega_{in}}{dt} = \tau_{mot} - \tau_c - \tau_a,
\]

onde \(I \) é a inércia do conjunto motor-redutor, \(\Omega_{in} \) é a velocidade angular do motor pneumático, \(\tau_c \) é o torque de carga no motor, \(\tau_{mot} \) é o torque motor e \(\tau_a \) é o torque de atrito.

O torque de atrito é modelado considerando a existência de atrito estático e de atrito dinâmico, que são gerados pelo contato do eixo nos mancais, pelo contato das palhetas no corpo do motor e pelo contato de outras partes mecânicas do redutor cicloide e do motor pneumático. Assim, o atrito será modelado com os seguintes componentes:

- Uma componente de torque proporcional à velocidade do motor, e
- Uma componente hiperbólica que tem um valor igual ao atrito estático quando a velocidade angular é nula e decresce rapidamente com o aumento da velocidade angular.

Assim, o torque de atrito sobre o eixo do motor, \(\tau_a \), é dado pela seguinte equação:

\[
\tau_a = b\Omega_{in} + \frac{c}{\Omega_{in} + 0.1},
\]

onde \(b \) e \(c \) são constantes a serem identificadas. A figura 3.4 apresenta o comportamento do torque de atrito em função da velocidade angular do motor, dado de acordo com a equação 3.2. Nesta figura podem-se observar duas componentes de atrito: o atrito estático, que representa a força necessária para iniciar o movimento do motor e o atrito dinâmico, que é a soma dos termos da equação quando \(\Omega_{in} \) tem um valor diferente de zero.
Figura 3.4: Gráfico do torque de atrito em função da velocidade angular.

O torque motor \(\tau_{mot} \) é gerado pelo produto da força do ar aplicada sobre a palheta e o braço. Esta força é originada pela diferença de pressão entre as câmaras 1 e 2 e é aplicada sobre a área da palheta de interface entre as duas câmaras. Para cálculo do valor do torque motor admite-se que:

- Apenas a palheta de interface entre a câmara 1 e a câmara 2 será responsável pelo torque produzido no motor, pois somente ela se encontra sob a ação da diferença de pressão.

- A ação da diferença de pressão \((P_1 - P_2) \) só ocorre quando o ângulo \(\theta \) (ângulo entre a palheta de interface e o eixo \(QZ \) da figura 3.2) está entre \(10^\circ \) e \(55^\circ \). Através da figura 3.1 observa-se que o ângulo entre duas palhetas consecutivas é de \(45^\circ \) e que quando uma palheta está na posição de \(10^\circ \), existe uma palheta na posição de \(55^\circ \), que é exatamente a posição da abertura da saída de ar da câmara 2. Logo, quando a palheta na posição de \(55^\circ \) se deslocar no sentido indicado na figura, o ar contido entre as duas palhetas é liberado para a saída do motor e a palheta que está na posição de \(10^\circ \) fica sujeita à diferença de pressão.

- O torque motor ao longo de uma volta do motor é contínuo, já que sempre existe uma palheta na região de variação do ângulo \(\theta \) de \(10^\circ \) a \(55^\circ \), que é justamente a palheta de interface.

A figura 3.2 apresenta a situação na qual a palheta se encontra nesta faixa, que é uma posição da palheta onde existe a diferença de pressão entre as duas câmaras. Observando as dimensões descritas na figura 3.2, pode-se dizer que o torque motor varia segundo a equação:

\[
\tau_{mot} = (P_1 - P_2)L(x - r)\left(\frac{x + r}{2}\right),
\]

onde \(P_1 \) e \(P_2 \) são, respectivamente, as pressões nas câmaras 1 e 2, \(r \) é o raio do rotor, \(L \) é o comprimento ativo da palheta, \(x \) é a distância entre o centro do rotor e a carcaça medida ao longo da palheta, \((x + r)/2 \) é o braço de aplicação da força e \(L(x - r) \) é a área de aplicação da diferença de pressão.
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR

O valor de \(x \) é dado por [Pu91]:

\[
x = \sqrt{B^2 - e^2 \sin^2 \theta} + e \cos \theta,
\]

onde \(B \) é o raio do corpo do motor, \(e \) é a excentricidade e \(\theta \) é o ângulo entre a palheta e o eixo \(QZ \). Através das equações 3.3 e 3.4 pode-se concluir que o torque motor varia com \(\theta \), pois \(x \) varia com este ângulo e o torque depende de \(x \).

Assume-se que o torque motor varia apenas com a diferença de pressão \((P_1 - P_2) \), ou seja, \(\tau_{mot} \) não depende de \(\theta \). Para tanto, utiliza-se o valor médio de \(\tau_{mot} \), dado por:

\[
\overline{\tau_{mot}} = \frac{1}{55^\circ - 10^\circ} \int_{10^\circ}^{55^\circ} (P_1 - P_2) L (x - r) \left(\frac{x + r}{2} \right).
\]

Susbstituindo a expressão de \(x \) (eq. 3.4) e realizando a integral obtém-se:

\[
\tau_{mot} = (P_1 - P_2) 1.8 e BL.
\]

Observa-se que possivelmente para outro motor pneumático, a constante 1.8 deve variar. Com as medidas geométricas de \(e, B \) e \(L \) do motor pneumático utilizado na bancada experimental, tem-se que o valor médio do torque motor vale:

\[
\tau_{mot} = (P_1 - P_2) 2.3 \times 10^{-5}.
\]

À medida que se mede experimentalmente a posição angular e o torque no eixo de saída do redutor de velocidade torna-se necessário incluir as relações do redutor de velocidade. O redutor trabalha com uma relação do tipo transformador [Rosenberg83] segundo relações de razão entre rotação de entrada e de saída e torque de entrada e de saída. Assim, as relações entre a entrada e a saída do redutor são as seguintes:

\[
\Omega_{in} = \Omega_{out} N,
\]

\[
\tau_c = \tau_{out} \frac{1}{N},
\]

onde \(\Omega_{out} \) é a velocidade angular do eixo de saída do redutor, \(N \) é o valor da redução do redutor e \(\tau_{out} \) é o torque no eixo de saída do redutor de velocidade.

Com estas relações do redutor e os valores de torque definidos, a equação 3.1 fica igual a:

\[
IN \frac{d\Omega_{out}}{dt} = (P_1 - P_2) 1.8 e BL - \tau_{out} \frac{1}{N} - bN \Omega_{out} - \frac{e}{N \Omega_{out} + 0.1}.
\]
3.3.2 Balanço de Massa nas Câmaras do Motor

A fim de estabelecer a relação da dinâmica existente nas câmaras 1 e 2 do motor, utiliza-se um balanço de massa sobre o volume das câmaras, resultando em:

Câmara 1:
\[
\frac{dM_1}{dt} = \omega_1 - f - \omega_{12},
\]
\((3.11) \)

Câmara 2:
\[
\frac{dM_2}{dt} = -\omega_2 + f + \omega_{12},
\]
\((3.12) \)

onde \(M_1 \) e \(M_2 \) são as massas de ar nas câmaras, \(\omega_1 \) é a vazão de ar na entrada da câmara 1 (\(\omega_1 \) é positivo se a vazão estiver entrando na câmara e negativo se estiver saindo), \(\omega_2 \) é a vazão na entrada da câmara 2 (\(\omega_2 \) é considerada positiva se estiver saindo da câmara 2 e negativa se estiver entrando), \(f \) é a vazão de ar que escapa de uma câmara para outra e \(\omega_{12} \) é a massa de ar deslocada de uma câmara para outra devido à rotação do motor.

Já que as duas equações das câmaras são análogas, pode-se trabalhar apenas com uma delas, assim, somente a equação 3.11 é desenvolvida. No cálculo da equação final, assume-se que a câmara 1 é a câmara de entrada do ar no motor e a câmara 2 é a câmara de saída, conforme o esquema da figura 3.3.

Como \(M_1 = \rho_1 V_1 \), a derivada de \(M_1 \) em relação ao tempo pode ser escrita como:

\[
\frac{dM_1}{dt} = V_1 \frac{d\rho_1}{dt} + \rho_1 \frac{dV_1}{dt},
\]
\((3.13) \)

onde \(\rho_1 \) é a densidade do ar na câmara 1 e \(V_1 \) é o volume da câmara 1. Assim, a equação 3.11 fica igual a:

\[
V_1 \frac{d\rho_1}{dt} + \rho_1 \frac{dV_1}{dt} = \omega_1 - f + \omega_{12}.
\]
\((3.14) \)

A equação 3.14 pode ser especializada para duas condições de operação do motor pneumático. A primeira condição é aquela em que o motor está em movimento com velocidade angular \(\Omega_{in} \), e a segunda condição é aquela em que o motor está com pequenos movimentos em torno de um ponto fixo.

1) Motor com velocidade angular \(\Omega_{in} \)

Esta condição do modelo ocorre quando o motor é acelerado de zero a uma velocidade angular qualquer, podendo variar ou permanecer constante.

Nesta situação, admite-se que os volumes das duas câmaras são constantes. Logo:

\[
\frac{dV_1}{dt} = 0 \quad e \quad \frac{dV_2}{dt} = 0,
\]
onde V_2 é o volume da câmara 2.

Esta hipótese é necessária, pois a massa de ar deslocada pelo motor se encontra confinada entre duas palhetas, não pertencendo assim a nenhuma das duas câmaras. Para uma volta do motor, a massa de ar deslocada, M_{12} corresponde a:

$$M_{12} = \rho_1 V_0,$$

onde V_0 é o volume útil do motor ou o volume deslocado por uma volta do eixo do motor. Assim, se o motor estiver girando com velocidade angular $\Omega_n \text{ (rad/s)}$, a vazão de ar deslocada da câmara de entrada para a de saída será:

$$\omega_{12} = \rho_1 V_0 \Omega_n.$$

Utilizando as condições definidas para os volumes das câmaras e a expressão anterior, a equação 3.14 fica igual a:

$$V_1 \frac{d\rho_1}{dt} = \omega_1 - f - \rho_1 V_0 \Omega_n.$$

(3.15)

Assumindo-se que o processo de expansão do ar nas câmaras do motor é um processo politrópico com constante n (onde $1 < n < 1.4$) [Wylen], a densidade do ar na câmara 1 é dada por:

$$\rho_1 = CP_1^\frac{1}{n},$$

(3.16)

onde C e n são constantes do processo politrópico. Estes parâmetros são adotados tanto para câmara 1 como para a câmara 2. Os valores de C e n utilizados no modelo serão calculados no capítulo 4.

A derivada da densidade da câmara 1 pode ser calculada através da equação 3.16, sendo igual a:

$$\frac{d\rho_1}{dt} = C \frac{1}{n} P_1^{\frac{1}{n} - 1} \frac{dP_1}{dt}.$$

(3.17)

Para o cálculo da densidade ρ_1 do segundo termo da equação 3.15 utiliza-se a equação universal dos gases perfeitos ($\rho_1 = \frac{P_1}{RT_1}$). Finalmente, a equação do balanço de massa da câmara 1, com a relação de velocidades do redutor incluída, é dada por:

$$C \frac{1}{n} P_1^{\frac{1}{n} - 1} V_1 \frac{dP_1}{dt} = \omega_1 - f - \frac{P_1}{RT_1} NV_0 \Omega_{out}.$$

(3.18)

Ressalta-se que a temperatura T_1 foi admitida como constante e igual à temperatura T_2.
Analogamente, para a câmara 2 tem-se:

\[C \frac{1}{n} P_2^{k-1} V_2 \frac{dP_2}{dt} = -\omega_2 + f + \frac{P_1}{RT_1} N V_0 \Omega_{out}, \] (3.19)

onde \(P_2 \) é a pressão do ar na câmara 2.

2) Motor com pequenos movimentos de oscilação em torno de um ponto fixo

Esta condição é definida para o motor com pequenos movimentos em torno de um ponto de operação fixo. Nesta situação, admite-se que não existe deslocamento de ar de uma câmara para outra devido à rotação do motor. O que ocorre é somente uma variação dos volumes das câmaras. Logo:

\[\omega_{12} = 0 \quad , \quad \frac{dV_1}{dt} \neq 0 \quad e \quad \frac{dV_2}{dt} \neq 0. \]

Admite-se que as câmaras são simétricas e estão separadas apenas por uma palheta, então, pode-se supor que uma variação positiva de \(V_1 \) é igual a uma variação negativa de \(V_2 \), assim:

\[\frac{dV_1}{dt} = -\frac{dV_2}{dt}. \]

Nesta condição de operação do motor, o valor dos volumes das câmaras descritos nas hipóteses da seção 3.1 são alterados e dados por:

\[V_1 = V_{ext1} + \frac{V_0}{2} + \Delta V, \]

\[V_2 = V_{ext2} + \frac{V_0}{2} - \Delta V. \]

O valor de \(\Delta V \) é calculado através da seguinte expressão:

\[\Delta V = \frac{L(x^2 - r^2)}{2} \theta. \] (3.20)

Esta variação de volume é a diferença entre o volume do setor esférico de raio \(x \), considerando \(x \) constante \((x = B + e) \), e o volume do setor esférico do rotor (raio \(r \)). A hipótese de \(x \) constante é válida, pois esta condição de operação é caracterizada por pequenos movimentos do eixo do motor, ou seja, a variação de \(x \) é desprezível. Substituindo \(x \) e \(r \) \((r = B - e) \) na equação 3.20, obtém-se:
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR.

\[\Delta V = 2eBL\theta. \]
\[(3.21) \]

onde \(2eBL\theta \) representa a alteração dos volumes devido a pequenos movimentos do motor. Os volumes das câmaras serão iguais a:

\[V_1 = V_{ext1} + \frac{V_0}{2} + 2eBL\theta, \]

\[V_2 = V_{ext2} + \frac{V_0}{2} - 2eBL\theta, \]

Como os volumes \(V_{ext1} \) e \(V_0/2 \) são constantes, as derivadas de \(V_1 \) e \(V_2 \) são dadas por:

\[\frac{dV_1}{dt} = 2eBL\frac{d\theta}{dt} \quad \text{e} \quad \frac{dV_2}{dt} = -2eBL\frac{d\theta}{dt}, \]

onde \(\frac{d\theta}{dt} = \Omega_{in}. \)

Substituindo estas expressões na equação 3.14, o balanço de massa na câmara 1 fica igual a:

\[V_1 \frac{d\rho_1}{dt} + \rho_1 2eBL\Omega_{in} = \omega_1 - f. \]
\[(3.22) \]

Substituindo a derivada da densidade do ar na câmara 1 definida pela equação 3.17 e \(\rho_1 \) dado pela equação universal dos gases perfeitos, a equação 3.22 fica igual a:

\[C \frac{1}{n} P_1^{1-1} V_1 \frac{dP_1}{dt} = \omega_1 - f - \frac{P_1}{RT_1} N 2eBL\Omega_{out}. \]
\[(3.23) \]

Esta equação inclui a relação de velocidade do redutor definida na equação 3.8.

No caso do balanço de massa da câmara 2, o processo de equacionamento é o mesmo, exceto para a variação do volume \(V_2 \), que como se viu, deve ser negativa. Assim, a equação do balanço de massa da câmara 2 é dada por:

\[V_2 \frac{d\rho_2}{dt} - \rho_2 2eBL\Omega_{in} = -\omega_2 + f, \]
\[(3.24) \]

Substituindo a derivada da densidade \(\rho_2 \) pela expressão análoga à expressão 3.17 e \(\rho_2 \) pela equação universal dos gases perfeitos, a equação 3.22 resulta em:

\[C \frac{1}{n} P_2^{1-1} V_2 \frac{dP_2}{dt} = -\omega_2 + f + \frac{P_2}{RT_2} N 2eBL\Omega_{out}. \]
\[(3.25) \]

Note que a diferença entre os pares de equações 3.23 e 3.25 desta condição e os pares 3.18 e 3.19 da condição 1 ocorre somente nos termos associados a \(\Omega_{out} \), ou seja, o volume aqui é
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR

dado por $2eBL$ e na primeira condição por V_0. Além disto, a densidade na equação de balanço de massa da câmara 2 associada à Ω_{out} é a da câmara 2 enquanto na primeira condição é a densidade da câmara 1.

O modelo completo do MPAR engloba as duas condições de operação descritas. Para a análise feita a seguir, utiliza-se apenas a primeira condição de operação do motor, pois só esta situação foi analisada nos transientes da bancada experimental. Observa-se que provavelmente a segunda condição de operação pode ser descrita pela primeira condição de operação, porém a verificação deste fato e a análise da segunda condição de operação não é possível de se realizar de forma experimental, pois com os equipamentos da bancada experimental (válvulas “on-off”) não é possível operar o motor nesta segunda condição de operação. Esta condição exige válvulas pneumáticas proporcionais, que não existem no mercado.

3.3.3 Cálculo das Vazões

Como as vazões ω_1, ω_2 e f não são variáveis de estado do modelo e como não foram medidas na bancada experimental é necessário descrevê-las em função das variáveis de estado ou entradas do modelo, ou seja, as pressões P_2, P_1 e P_3.

O cálculo do valor das vazões ω_1 e ω_2 é realizado de modo indireto [Idel’чик69], ou seja, utiliza-se a perda de pressão nas válvulas solenóides da bancada experimental. Assim, assumindo-se que a câmara 1 é a câmara de entrada do ar, ω_1 é calculado através da seguinte relação:

$$P_2 - P_1 = K_s \frac{\omega_1^2}{\rho_s},$$ \hspace{1cm} (3.26)

onde P_2 é a pressão do ar na entrada da válvula solenóide de 2 vias (ponto s), K_s é o coeficiente de perda de pressão na passagem do ar através das válvulas solenóides de 2 vias e de 4 vias e ρ_s é a densidade do ar a montante da válvula solenóide de 2 vias (ponto s).

Assumindo-se que a câmara 2 é a câmara de saída do ar, a vazão ω_2 é dada por:

$$P_2 - P_a = K_2 \frac{\omega_2^2}{\rho_a},$$ \hspace{1cm} (3.27)

onde P_a é a pressão ambiente, K_2 é o coeficiente de perda de pressão na passagem do ar pelo escape da válvula solenóide de 4 vias (depois da saída do motor) e ρ_a é a densidade do ar ambiente que é calculada pela equação universal dos gases perfeitos.

Os valores de ω_1 e ω_2 são calculados através das equações 3.26 e 3.27. Para a situação inversa, ou seja, com a vazão saindo pela câmara 1 e entrando pela câmara 2, o valor de ω_1 é dado pela equação 3.27, mas utilizando a pressão P_1 no lugar da pressão P_2 e o valor de ω_2 é dado pela equação 3.26, mas com a pressão P_2 no lugar P_1. Além disto, os sinais das vazões devem ser negativos. Para que os sinais sejam negativos incluam-se os termos L e A, os quais modelam as válvulas de 2 e 4 vias, nas equações 3.26 e 3.27, obtendo-se as seguintes equações para as vazões:
\[\omega_1 = L A \sqrt{\frac{P_s - P_1}{K_s} \frac{P_s}{RT_s}} \]
(3.28)

\[\omega_2 = L \sqrt{\frac{P_s - P_d}{K_2} \frac{P_s}{RT_s}} \]
(3.29)

O termo \(L \) representa a abertura da válvula de 4 vias, assumindo normalmente dois valores: -1 ou 1. Quando ocorre inversão da válvula, \(L \) varia continuamente entre estes dois valores. Por exemplo, \(L \) varia de -1 a 1 para uma inversão de rotação do motor do sentido anti-horário para o sentido horário. O termo \(A \) representa a abertura da válvula de 2 vias, assumindo dois valores: 1 para a válvula aberta e 0 para a válvula fechada. Na transição, partida e parada do motor, \(A \) varia continuamente entre estes dois valores. As duas válvulas possuem tempos de abertura e fechamento da ordem de 15 milissegundos, daí a necessidade de incluir variações contínuas nas transições de funcionamento do motor.

Observa-se que tanto \(K_s \) como \(K_2 \) não são necessariamente constantes e serão determinados no processo de identificação. As equações destes coeficientes são deduzidas admitindo-se que não ocorre escoamento crítico.

A vazão \(f \) representa o escape de ar, através das palhetas, da câmara de alta pressão para a câmara de baixa pressão. Assume-se que o escape de ar possa ser modelado como um processo de passagem do ar através de um orifício. Este processo está equacionado na referência [Blackburn60] sendo dado pela seguinte relação:

\[W_i = C_v f(P_u, T_u, P_d, P_u) \]

onde \(C_v \) é a constante de perda de pressão pela passagem do ar em um orifício, \(P_u \) é a pressão a montante do orifício, \(T_u \) é a temperatura a montante do orifício, \(P_d \) é a pressão a jusante do orifício, \(W_i \) é a vazão mássica pelo orifício e \(f(.) \) é uma função das variáveis \(P_u \) e \(T_u \) e da razão \(\frac{P_d}{P_u} \).

Em algumas situações, de acordo com os valores da relação \(\frac{P_d}{P_u} \), pode ocorrer blocagem, ou seja, o ar atinge velocidade sónica no orifício. Nesta situação, a pressão na saída do orifício não influencia o escoamento. Dessa forma, a função \(f(.) \) deve considerar duas situações: escoamento sónico se \(\frac{P_d}{P_u} \leq 0.528 \) e escoamento subsónico se \(\frac{P_d}{P_u} > 0.528 \). O valor da função \(f(.) \) é dado por:

\[
f(P_u, T_u, P_d, P_u) = \begin{cases} \frac{P_d}{P_u} & \text{se } \frac{P_d}{P_u} \leq 0.528 \\ \frac{\alpha P_u}{\alpha P_u} (\frac{P_d}{P_u})^{\frac{1}{k-1}} \sqrt{1 - (\frac{P_d}{P_u})^{\frac{k}{k-1}}} & \text{se } \frac{P_d}{P_u} > 0.528 \end{cases}
\]
(3.30)

A pressão \(P_d \) é a pressão na "vena contracta", que no caso do motor pneumático não é possível ser definida com precisão. Entretanto, assume-se que a pressão na câmara de saída \(P_d \) para o sentido horário) é uma boa representação para a pressão \(P_d \). Além disto, assume-se que
CAPÍTULO 3. MODELAGEM FÍSICA DO SISTEMA MPAR

T_e é a temperatura na câmara de entrada, ou seja, constante e igual a T_i. Assim, a equação dada no caso de $P_1 > P_2$ terá T_e dada por T_s que pode ser incorporada ao valor da constante Cv. A equação para f, é dada por:

$$f = Cv f(P_1, \frac{P_2}{P_1})$$ \hspace{1cm} (3.31)

onde:

$$f(P_1, \frac{P_2}{P_1}) = \begin{cases}
P_1 & \text{se } \frac{P_2}{P_1} \leq 0.528 \\
\frac{\Delta P}{c_2} \left(\frac{P_2}{P_1} \right)^{\frac{k}{k-1}} \sqrt{1 - \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}}} & \text{se } \frac{P_2}{P_1} > 0.528
\end{cases} \hspace{1cm} (3.32)$$

Nesta equação, k é a constante definida para um processo isoentrópico, sendo seu valor igual a 1.4. Os valores c_1 e c_2 são constantes dadas por:

$$c_1 = \sqrt{\frac{2k}{R(k-1)}} \hspace{1cm} c_2 = \sqrt{\frac{k}{R\left(\frac{k+1}{2}\right)^{\frac{k+1}{k-1}}}}$$

Esta equação, como já foi citado, é a utilizada para a situação na qual $P_1 > P_2$. Caso $P_2 > P_1$ altera-se apenas o valor das pressões na equação 3.32, isto é, a função $f(.)$ dependerá de P_2 e de $\frac{P_2}{P_1}$. Assume-se que $f(.) > 0$ para o escape da câmara 1 para a câmara 2 e $f(.) < 0$ para o escape da câmara 2 para a câmara 1.

A constante Cv é determinada no processo de identificação de parâmetros.
Capítulo 4

CÁLCULO DOS PARÂMETROS DO MPAR

4.1 INTRODUÇÃO

Neste capítulo são determinados os parâmetros do modelo físico para que este represente o comportamento do sistema MPAR montado na bancada experimental. Os parâmetros são calculados a partir das variáveis que foram medidas nos ensaios realizados na bancada experimental. As variáveis medidas são as seguintes: pressão na entrada da válvula solenoíde de 2 vias \(P_2 \), pressão na câmara 1 \(P_1 \), pressão na câmara 2 \(P_3 \), velocidade angular no eixo de saída do redutor \(\Omega_{\text{out}} \) e torque do eixo de saída do redutor \(\tau_{\text{out}} \).

4.2 METODOLOGIA DE CÁLCULO

Em resumo, as equações finais do modelo do MPAR desenvolvidas no capítulo 3 são dadas por 3 equações diferenciais e 3 equações algébricas. Trata-se, assim, de um modelo de 3ª ordem, não linear, com as seguintes variáveis:

- Estados: \(P_1, P_2 \) e \(\Omega_{\text{out}} \);
- Entradas: \(P_1 \), a posição da válvula de 4 vias \(L \) e a posição da válvula de 2 vias \(A \);
- Saídas: \(P_1, P_3 \) e \(\Omega_{\text{out}} \);
- Perturações: \(\tau_{\text{out}} \).

As equações dinâmicas com os parâmetros e as variáveis citadas são as seguintes:

Balanço de massa na câmara 1:

\[
C_1 \frac{1}{n} P_1^{k-1} V_1 \frac{dP_1}{dt} = \omega_1 + f - \frac{P_1}{RT_1} NV_0 \Omega_{\text{out}},
\] (4.1)
CAPÍTULO 4. CÁLCULO DOS PARÂMETROS DO MPAR

Balanco de massa na câmara 2:

\[C \frac{1}{n} \frac{P_2^{1-1} V_2}{dt} \frac{dP_2}{dt} = -\omega_2 + f + \frac{P_1}{RT} NV_0 \Omega_{out}, \] \hspace{1cm} (4.2)

Balanco de momento no eixo do motor, refletido no eixo de saída do redutor de velocidade:

\[\frac{d\Omega_{out}}{dt} = (P_1 - P_2) 1.8eBL - \frac{\tau_{out}}{N} - bN\Omega_{out} - \frac{c}{N\Omega_{out} + 0.1}, \] \hspace{1cm} (4.3)

As relações algébricas são utilizadas no cálculo de \(\omega_1, \omega_2 \) e \(f \) sendo dadas por:

\[\omega_1 = AL \sqrt{\frac{P_s - P_1}{K_s} \frac{P_s}{RT_s}}, \] \hspace{1cm} (4.4)

\[\omega_2 = L \sqrt{\frac{P_2 - P_s}{P_2} \frac{P_2}{RT_a}}, \] \hspace{1cm} (4.5)

\[f = \begin{cases}
C_v P_1 & \text{se } \frac{P_1}{P_a} \leq 0.528 \\
C_v a \left(\frac{P_1}{P_a} \right)^{\frac{1}{2}} \sqrt{1 - (\frac{P_1}{P_a})^{1.5}} & \text{se } \frac{P_1}{P_a} > 0.528
\end{cases} \] \hspace{1cm} (4.6)

Estas equações são deduzidas, assumindo-se que a câmara 1 é a câmara de entrada de ar no motor e que a câmara 2 é a câmara de saída do ar.

Os parâmetros a serem determinados são: \(K_s \) na eq. 4.4, \(K_2 \) na eq. 4.5, \(C_v \) na eq. 4.6, \(V_1, \ V_2, \ n, \ C \) e \(V_0 \) nas equações 4.1 e 4.2, e \(I, \ b \) e \(c \) na equação 4.3.

A metodologia de cálculo dos parâmetros leva em consideração os seguintes aspectos:

- Os parâmetros a serem calculados estão relacionados com as variáveis de estado, variáveis de entrada e variáveis de perturbação através das equações do modelo.
- As variáveis de estado, entradas e perturbações são medidas em ensaios do MPAR da bancada experimental, nas mais diversas condições de operação.
- Com os valores experimentais das variáveis e com as relações do modelo, calculam-se os diversos parâmetros aplicando um processo de “minimização de erros”. Este processo é necessário, uma vez que para o cálculo de um parâmetro são realizadas inúmeras medidas em diversas condições de operação. A “minimização de erros” é feita pelos seguintes processos:
 - Média de valores calculados, quando o parâmetro assume um valor constante;
 - Método dos mínimos quadrados, cuja conceituação está descrita no apêndice C, também para parâmetros constantes;
 - Aproximação por uma função, quando o parâmetro não é constante.
As equações do modelo são especializadas de acordo com o tipo de condição de operação realizada nos ensaios da bancada experimental, isto é, operação em regime permanente, motor com carga ou sem carga, etc. Estas condições designam os tipos de ensaios realizados na bancada. De forma genérica, estes ensaios são iniciados com o acionamento da válvula solenóide de 2 vias, que provoca uma variação da vazão de ar de zero a valores dados pela regulagem da válvula manual. Esta variação da vazão é vista pelo sistema MPAR como um degrau de vazão que provoca o movimento do motor. Uma vez atingido o regime permanente do sistema, pode-se provocar inversões de vazão ou até a parada do sistema.

Os valores das variáveis experimentais como a vazão do bocal (ω_{bocal}), das pressões P_s, P_1, P_2, da posição angular (θ), da velocidade angular (Ω_{out}) e do torque do eixo de saída do redutor (τ_{out}) são medidos e tratados, conforme descrito no capítulo 2. Com exceção da vazão ω_{bocal} (leitura visual), estas medidas ocorrem a cada intervalo de amostragem (τ_a) e descrevem como as variáveis se comportam ao longo da dinâmica e do regime permanente do sistema MPAR.

Acréscima-se que para a determinação dos parâmetros do modelo utilizam-se apenas os ensaios realizados com o motor girando no sentido horário, que se adotou como sendo o sentido definido nas equações do modelo apresentadas no início deste capítulo. Assume-se que as características da válvula de 4 vias não se alteram com a sua posição, ou seja, K_s e K_2 do sentido anti-horário são os mesmos valores obtidos para o sentido horário.

Os tipos de ensaios realizados na bancada experimental são:

- **Ensaios tipo “A”**: nestes ensaios observa-se apenas o regime permanente, iniciando a aquisição dos dados depois que o sistema atinge esta condição de operação. O motor está em vazio, isto é, o eixo de saída do redutor está livre. Por vezes, substituiu-se o motor por uma perda de carga dada por uma válvula manual. Isto é realizado pois o principal objetivo destes ensaios é determinar a relação entre a vazão de ar do motor em regime permanente e a perda de pressão imposta pelas válvulas solenóides, ou seja, a determinação de K_s e de K_2. O uso da válvula manual permite uma análise mais adequada, pois enquanto no motor existe um pequeno vazamento para o ambiente, o mesmo não ocorre com o uso da válvula manual.

- **Ensaios tipo “B”**: nestes ensaios observam-se tanto o regime permanente como a dinâmica de partida do sistema, trabalhando-se apenas com o motor pneumático. Nestes ensaios o motor pode estar com ou sem carga.

- **Ensaios tipo “C”**: nestes ensaios observam-se a dinâmica e o regime permanente do sistema, quando o motor pneumático é travado, isto é, trava-se o eixo de saída do redutor.

- **Ensaios tipo “D”**: nestes ensaios observam-se a dinâmica e o regime do sistema, em todas as manobras possíveis de operação do motor, que são a partida, a inversão de sentido de rotação do motor e a parada do motor.

- **Ensaios tipo “E”**: nestes ensaios observa-se apenas o início da movimentação do motor, estando o motor sem carga. Este ensaio é aplicado somente à determinação da constante de atrito estático c.

A seguir apresenta-se uma tabela com as principais características dos diversos ensaios realizados na bancada experimental.
Tabela 4.1: Características principais dos ensaios realizados na bancada experimental

<table>
<thead>
<tr>
<th>CARACT.</th>
<th>Tipo de ens.</th>
<th>Sent. de Rot.</th>
<th>Tipo Bocal</th>
<th>Interv amost.</th>
<th>Tempo total do ens.</th>
<th>Equip. do ens.</th>
<th>Temp. amb. T.<sub>a</sub></th>
<th>Temp. do ar bocal</th>
<th>Carga</th>
<th>ΔP no bocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSAIO</td>
<td></td>
</tr>
<tr>
<td>12302.01 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>12,8 a</td>
</tr>
<tr>
<td>12302.10</td>
<td>A</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>3,5 a</td>
</tr>
<tr>
<td>12302.11 a</td>
<td>A</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>4,2 a</td>
</tr>
<tr>
<td>12302.22 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>51</td>
</tr>
<tr>
<td>12302.35 a</td>
<td>A</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>4,8 a</td>
</tr>
<tr>
<td>12302.45 a</td>
<td>A</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>SC</td>
<td>51</td>
</tr>
<tr>
<td>12302.46 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>CC</td>
<td>2,5 a</td>
</tr>
<tr>
<td>12302.71 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>CC</td>
<td>2,5 a</td>
</tr>
<tr>
<td>12302.72 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>24,5</td>
<td>21</td>
<td>CC</td>
<td>2,5 a</td>
</tr>
<tr>
<td>12402.01 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>SC</td>
<td>0,5 a</td>
</tr>
<tr>
<td>12402.18 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>SC</td>
<td>3 a</td>
</tr>
<tr>
<td>12402.20</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>5</td>
<td>4</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>SC</td>
<td>62,5</td>
</tr>
<tr>
<td>12402.31 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>5</td>
<td>4</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>SC</td>
<td>3,5 a</td>
</tr>
<tr>
<td>12402.39 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>1,7 a</td>
</tr>
<tr>
<td>12402.40 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>1,2 a</td>
</tr>
<tr>
<td>12402.49 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>45</td>
</tr>
<tr>
<td>12402.50 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>9,4 a</td>
</tr>
<tr>
<td>12402.57 a</td>
<td>C</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>9,4 a</td>
</tr>
<tr>
<td>12402.74 a</td>
<td>C</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>25</td>
<td>20</td>
<td>CMX</td>
<td>38</td>
</tr>
<tr>
<td>10803.01 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>1,6 a</td>
</tr>
<tr>
<td>10803.10</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>3,9 a</td>
</tr>
<tr>
<td>10803.11 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>9,5 a</td>
</tr>
<tr>
<td>10803.18 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>37,8</td>
</tr>
<tr>
<td>10803.27 a</td>
<td>C</td>
<td>a</td>
<td>PH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>CMX</td>
<td>56,4</td>
</tr>
<tr>
<td>10803.36 a</td>
<td>C</td>
<td>a</td>
<td>PH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>CMX</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.47</td>
<td>C</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>CMX</td>
<td>45</td>
</tr>
<tr>
<td>10803.58 a</td>
<td>C</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>CMX</td>
<td>9,4 a</td>
</tr>
<tr>
<td>10803.59 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>45</td>
</tr>
<tr>
<td>10803.62 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>7,8 a</td>
</tr>
<tr>
<td>10803.63 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>9,5 a</td>
</tr>
<tr>
<td>10803.64 a</td>
<td>B</td>
<td>a</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>45</td>
</tr>
<tr>
<td>10803.71 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>9,5 a</td>
</tr>
<tr>
<td>10803.74 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>4,8 a</td>
</tr>
<tr>
<td>10803.75 a</td>
<td>B</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.81 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.82 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.92 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.99 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.101 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.114 a</td>
<td>A</td>
<td>h</td>
<td>GH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>10803.04 a</td>
<td>A</td>
<td>h</td>
<td>PH2</td>
<td>20</td>
<td>10</td>
<td>M</td>
<td>29</td>
<td>24</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>010.4</td>
<td>D</td>
<td>h</td>
<td>NE</td>
<td>5</td>
<td>4</td>
<td>M</td>
<td>NE</td>
<td>NE</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>010.5</td>
<td>D</td>
<td>a</td>
<td>NE</td>
<td>5</td>
<td>4</td>
<td>M</td>
<td>NE</td>
<td>NE</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>0310.01 a</td>
<td>E</td>
<td>h</td>
<td>NE</td>
<td>5</td>
<td>2</td>
<td>M</td>
<td>NE</td>
<td>NE</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
<tr>
<td>0310.04 a</td>
<td>E</td>
<td>h</td>
<td>NE</td>
<td>5</td>
<td>2</td>
<td>M</td>
<td>NE</td>
<td>NE</td>
<td>SC</td>
<td>5,8 a</td>
</tr>
</tbody>
</table>

CAPÍTULO 4. CÁLCULO DOS PARÂMETROS DO MPAR
CAPÍTULO 4. CÁLCULO DOS PARÂMETROS DO MPAR

LEGENDA da tabela 4.1:

• Sentido de rotação do motor:
 – \(a \) - anti-horário;
 – \(h \) - horário.

• Tipo de ensaio:
 – \(A \) - regime permanente, motor ou válvula, eixo do redutor livre;
 – \(B \) - regime permanente e dinâmica de partida, motor com ou sem carga;
 – \(C \) - eixo do redutor travado, dinâmica de partida e regime permanente;
 – \(D \) - dinâmica de partida, inversão de velocidade e parada do motor, eixo do redutor livre;
 – \(E \) - início do movimento do motor, eixo do redutor livre.

• Equipamento utilizado no ensaio:
 – \(M \) - motor;
 – \(V \) - válvula manual.

• Condição de carga do motor:
 – \(SC \): motor sem carga;
 – \(CC \): motor com carga qualquer diferente da máxima;
 – \(CMX \): motor com carga máxima (travado).

• Tipo de bocal utilizado:
 – \(PH2 \): bocal pequeno com tubo em “U” com água
 – \(GH2 \): bocal grande com tubo em “U” com água
 – \(GHG \): bocal grande com tubo em “U” com mercúrio

• NE: medida não executada

OBSERVAÇÕES:

• Tempo total é o produto do número de pontos do ensaio pelo intervalo de amostragem \(t_a \).

• As temperaturas são dadas em graus Celsius.

• A unidade de tempo para \(t_a \) é milissegundos e a do tempo total é segundos.

• A diferença de pressão (\(\Delta P \)) no bocal é dada em cm, segundo a diferença de altura manométrica das colunas de água (leitura visual).

• Quando a válvula é utilizada, o sentido de rotação é ainda relacionado, pois apesar de não existir o motor, este seria o sentido determinado pela válvula de 4 vias.

As figuras dadas a seguir, 4.1, 4.2, 4.3, 4.4, 4.5 e 4.6, ilustram as variáveis medidas na bancada para um ensaio que inclui a dinâmica e o regime permanente do sistema MPAR (ensaio tipo “B”). As figuras 4.7, 4.8, 4.9, 4.10, 4.11 e 4.12 representam as variáveis medidas na bancada para um ensaio onde o eixo de saída do redutor foi travado (ensaio tipo “C”).
Figura 4.1: Ensaio de degrau de vazão - posição angular do eixo do redutor.

Figura 4.2: Ensaio de degrau de vazão - velocidade angular do eixo do redutor.
Figura 4.3: Ensaios de degrau de vazão - pressão na entrada do motor.

Figura 4.4: Ensaios de degrau de vazão - pressão na saída do motor.
Figura 4.5: Ensaio de degrau de vazão - pressão a montante das válvulas solenóides.

Figura 4.6: Ensaio de degrau de vazão - torque no eixo de saída do redutor.
Figura 4.7: Ensaio de degrau de vazão com eixo de saída do redutor travado - posição angular do eixo do redutor.

Figura 4.8: Ensaio de degrau de vazão com eixo de saída do redutor travado - velocidade angular do eixo do redutor.
Figura 4.9: Ensaio de degrau de vazão com eixo de saída do redutor travado - pressão na entrada do motor.

Figura 4.10: Ensaio de degrau de vazão com eixo de saída do redutor travado - pressão na saída do motor.
Figura 4.11: Ensaio de degrau de vazão com eixo de saída do redutor travado - pressão a montante das válvulas solenóides.

Figura 4.12: Ensaio de degrau de vazão com eixo de saída do redutor travado - torque no eixo de saída do redutor.
4.2.1 Determinação do coeficiente K_s

O valor de K_s é obtido através dos dados dos ensaios de regime permanentemente (ensaio tipo “A"), com o motor pneumático e com a válvula manual. Nestes ensaios, a vazão mássica medida pelo bocal será igual à vazão no ponto 1 e no ponto 2 da bancada experimental ($\omega_1 = \omega_2 = \omega_{bocal}$. Na verdade, o valor da vazão medida com o bocal medeia reflete um valor médio, pois como a pressão na entrada da bancada apresenta uma pequena variação (vide figura 4.5) a vazão também varia na mesma proporção. Como a leitura é visual, assumiu-se um valor médio para esta vazão e admite-se que este valor se mantém constante durante todo o regime permanente.

Com os valores experimentais de P_s e P_1 para cada instante de amostragem e os valores médios de ω_1 e T_s pode-se calcular K_s em cada um destes instantes através da equação 4.4, ou seja:

$$K_s = \frac{P_s - P_1}{\omega_1^2} \frac{P_s}{RT_s}.$$ \hspace{1cm} (4.7)

O valor de K_s em cada ensaio é a média dos valores obtidos em cada instante de amostragem. Uma vez que os valores médios de K_s não são constantes, procurou-se relacioná-los com outra variável, no caso, a vazão ω_1.

A figura 4.13 apresenta um gráfico de K_s em função de ω_1. Os pares (K_s, ω_1) do gráfico representam valores médios obtidos em diferentes ensaios. O aspecto gráfico de K_s é o esperado, ou seja, observa-se claramente a existência de dois regimes de escoamento: o laminar e o turbulento [Idel'cik69]. Finalmente, K_s é aproximado através de uma função de ω_1, não linear, dada por:

$$K_s = (a_1 + a_2 \exp(\omega_1 + \frac{a_3}{a_4 + a_5\omega_1})) \times 10^{10}$$ \hspace{1cm} (4.8)

onde a_1, a_2, a_3, a_4, a_5 são constantes e estão apresentadas na tabela 4.2. O cálculo destas constantes foi realizado através de um programa de aproximação de funções.

Figura 4.13: Gráfico de K_s versus ω_1 para ensaios em regime permanente
CAPÍTULO 4. CÁLCULO DOS PARÂMETROS DO MPAR

Com K_s dado pela equação 4.8, com a equação 4.4 e tendo-se os valores de P_s, T_s e P_1 pode-se calcular a vazão da câmara de entrada do motor (ω_1 para o sentido horário), através de algum método numérico de solução de equações algébricas não-lineares.

4.2.2 Determinação do coeficiente de K_2

Como no cálculo de K_s, o coeficiente de perda de pressão K_2 é determinado a partir dos dados dos ensaios de regime permanente (tipo "A"), tanto com o motor como com a válvula manual. Com os valores experimentais de P_2 para cada instante de amostragem, e os valores médios de P_s, T_s e ω_2, pode-se calcular o valor de K_2 em cada instante de amostragem através da equação 4.5, reescrita na forma abaixo:

$$K_2 = \frac{P_2 - P_s}{\omega_2^2 RT_2}$$

(4.9)

A figura 4.14 apresenta um gráfico de K_2 em função de ω_2. Os pares (K_2, ω_2) do gráfico representam valores médios obtidos em cada ensaio. A partir do comportamento gráfico de K_2 conclui-se que:

- existe escoamento turbulento e escoamento de transição, entre laminar e turbulento, mas não ocorre escoamento laminar como no caso de K_s;
- não se observa escoamento laminar devido à alta velocidade do ar pois, à pressão ambiente, a densidade do ar é baixa;
- a região de escoamento turbulento é caracterizada por K_2 constante, ou seja, não depende de ω_2.

![Gráfico de K_2 em função de ω_2](image)

Figura 4.14: Gráfico de K_2 versus ω_2 para vários ensaios
Assim, como poucos pontos parecem estar na região de transição entre os escoamentos laminar e turbulento, adotou-se para K_2 um valor constante. Dessa forma, assume-se que no escape sempre ocorre escoamento turbulento do ar. O valor de K_2 adotado é o valor médio dos valores representados no gráfico e está indicado na tabela 4.2. Finalmente, com o valor de K_2 adotado e P_2 pode-se, a partir da equação 4.5, calcular a vazão ω_2.

4.2.3 Determinação do coeficiente C_v para cálculo de f

O valor de C_v é determinado a partir dos dados dos ensaios com o eixo do redutor travado (ensaios do tipo “C”) e utilizando-se as equações 4.1 (ou 4.2) e 4.6 do modelo. Quando o eixo do redutor é travado, o motor fica parado ($\Omega_{out} = 0$) e o valor da vazão medido através do bocal corresponde somente à vazão que escapa pelas palhetas do motor (vazão f). Este fato pode ser verificado através das equações 4.1 e 4.2, que nesta situação ficam igual a:

$$
\omega_1 - f = 0 \quad e \quad -\omega_2 + f = 0. \tag{4.10}
$$

Assim, com os valores experimentais médios de P_1, P_2 e de f de cada ensaio, pode-se calcular o valor de C_v através da equação 4.6, obedecendo-se às condições impostas nesta equação. A figura 4.15 apresenta o gráfico que relaciona C_v e a função $f(P_2/P_1, P_1)$ (sentido horário). Os pares (C_v, $f(.)$) do gráfico representam valores médios de cada ensaio.

![Figura 4.15: Gráfico de C_v versus $f(P_2/P_1, P_1)$ para vários ensaios](image)

Como na modelagem assumiu-se que C_v é constante, adota-se a média dos valores. O valor médio de C_v resultante está indicado na tabela 4.2. Com os valores de C_v, P_1 e P_2 e com a equação 4.6 pode-se determinar a vazão f.
4.2.4 Determinação do volume útil do motor \((V_0)\)

O valor de \(V_0\) é determinado a partir dos valores experimentais dos ensaios de regime permanente, ensaios tipo "A" (com o motor) e da região de regime permanente dos ensaios do tipo "B". Na condição de regime permanente a equação\(^1\) 4.1 fica igual a:

\[
\omega_1 - f - \frac{P_i}{RT_1} N V_0 \Omega_{\text{out}} = 0
\]
\(4.11\)

Os valores \(\omega_1\) e \(f\) são obtidos através das equações 4.4 e 4.6, respectivamente, com os coeficientes \(K_s\) e \(C_v\) previamente determinados. As demais variáveis da equação 4.11 são dadas pelos valores experimentais \((P_i, T_1 e \Omega_{\text{out}})\) e por constantes conhecidas \((R, N)\).

A cada instante de amostragem \(i\), a equação 4.11 pode ser escrita da seguinte forma:

\[A_i V_0 = B_i\]

onde: \(A_i = \frac{P_i}{RT_1} N \Omega_{\text{out}i}\) e \(B_i = \omega_{1i} - f_i\).

Para cada ensaio, determina-se um valor de \(V_0\) utilizando-se o método dos mínimos quadrados, aplicado ao sistema formado pelas diversas equações geradas a partir de cada instante de amostragem, ou seja:

\[\Delta V_0 = B\]

onde \(\Delta\) e \(B\) são vetores contendo os valores de \(A_i\) e \(B_i\) em cada instante de amostragem.

A solução é dada por:

\[V_0 = (\Delta^T \Delta)^{-1} \Delta^T B\]

O valor final de \(V_0\) está indicado na tabela 4.2 e representa a média dos valores de \(V_0\) calculados a partir dos diversos ensaios analisados. O método dos mínimos quadrados está descrito no apêndice C.

4.2.5 Determinação das constantes \(n\) e \(C\)

Estes parâmetros são utilizados nas equações 4.1 e 4.2. O processo de cálculo está baseado nos seguintes fatos:

- Os valores de \(n\) e \(C\) estão relacionados através da equação:

\[C P_s^\Delta = \rho.\]
\(4.12\)

\(^1\)Note que no regime permanente a equação 4.2 é igual a equação 4.1 pois \(\omega_1 = \omega_2\)
CAPÍTULO 4. CÁLCULO DOS PARÂMETROS DO MPAR

- Quando o processo isentrópico tem n igual a 1.4, a constante C vale 3.147×10^{-4}. Estes valores, nas condições normais de pressão e de temperatura, definem a densidade do ar. Assim, para outro valor de n, o valor de C fica determinado somente utilizando a expressão definida.

- O valor de n a ser obtido deve estar na faixa de 1 a 1.4.

- Admite-se que as duas câmaras possuam os mesmos valores de n e C.

- A escolha é realizada através de testes, ou seja, diversos valores de n foram adotados (1 < n < 1.4) e correspondentes valores de C em consequência das equações da tabela 4.12. Para cada par de n e C determinam-se os volumes V₁ e V₂, partindo-se então para a simulação. Os valores de n e C que apresentaram a resposta do modelo mais próxima da resposta dos transientes da bancada experimental são os valores escolhidos. Estes valores estão representados na tabela 4.2.

Os resultados da simulação com diversos valores de n e C estão apresentados no capítulo 5, no item análise paramétrica.

4.2.6 Determinação dos volumes V₁ e V₂

Os parâmetros V₁ e V₂ são determinados a partir dos valores experimentais dos ensaios do tipo "B", para a dinâmica de partida com o motor sem carga. Com estes dados, pode-se calcular V₁ e V₂ utilizando, respectivamente, as equações 4.1 e 4.2. Aproximando os termos \(\frac{dP}{dt} \) e \(\frac{dP_a}{dt} \) destas equações por uma diferença para trás, obtém-se as seguintes expressões:

\[
V_1\left(\frac{P_1(t) - P_1(t-t_a)}{t_a}\right) C\frac{1}{n} P_1(t)^{\frac{1}{n} - 1} = \omega_1(t) - f(t) = \frac{P_1(t)}{RT_1} NV_0 \Omega_{out}(t),
\]

\[
V_2\left(\frac{P_2(t) - P_2(t-t_a)}{t_a}\right) C\frac{1}{n} P_2(t)^{\frac{1}{n} - 1} = -\omega_2(t) + f(t) = \frac{P_2(t)}{RT_1} NV_0 \Omega_{out}(t),
\]

onde t representa um instante qualquer de amostragem e t - ta o instante de amostragem imediatamente anterior a t. Exceto V₁ e V₂, os demais termos destas expressões são constantes (R, T₁, N, n, C, V₀), ou valores experimentais (P₁, P₂, Ω_{out}), ou valores calculados a partir de coeficientes previamente determinados (ω₁, ω₂ e f).

De forma análoga ao que foi feito no cálculo de V₀, V₁ e V₂ são determinados através do método dos mínimos quadrados. Por exemplo, o valor de V₁ de cada instante i da dinâmica de partida gera uma equação dada por:

\[A_i V_1 = B_i\]

onde:

\[A_i = \left(\frac{P_1(i) - P_1(i-t_a)}{t_a}\right) C\frac{1}{n} P_1(i)^{\frac{1}{n} - 1}\]

\[B_i = \omega_1(i) - f(i) - \frac{P_1(i)}{RT_1} NV_0 \Omega_{out}(i)\]
Assim, com os diversos pontos dos ensaios se obtém um sistema dado por:

\[\Delta V_1 = B, \]

cuja solução é dada por:

\[V_1 = (\Delta^T \Delta)^{-1} \Delta^T B \]

O valor final de \(V_1 \) e \(V_2 \) estão indicados na tabela 4.2 e representam a média dos valores de \(V_1 \) e de \(V_2 \) obtidos a partir dos diversos ensaios analisados.

4.2.7 Determinação das constantes de atrito \(b \) e \(c \)

O valor da constante do torque de atrito dinâmico \((b) \), é calculada a partir dos valores experimentais dos ensaios tipos “A” e “B”, com o motor sem carga e na situação de regime permanente. Neste cálculo, admite-se que o atrito estático é nulo pois o motor está em altas velocidades. Assim, na condição de regime permanente e em altas velocidades, a equação 4.3 fica igual a:

\[(P_1 - P_2) 1.8eBL - bN\Omega_{out} = 0. \] \hspace{1cm} (4.15)

Logo, a constante \(b \) pode ser determinada por:

\[b = \frac{(P_1 - P_2) 1.8eBL}{N\Omega_{out}}. \] \hspace{1cm} (4.16)

Portanto, com os valores experimentais de \(P_1, P_2 \) e \(\Omega_{out} \) em cada instante de amostragem determina-se um valor de \(b \). O valor final de \(b \) é dado pela média dos diversos valores obtidos para cada ensaio.

O valor de \(c \) é determinado com os valores experimentais dos ensaios do tipo “E”. Nestes ensaios toma-se apenas os pontos nos quais o motor está na iminência da partida, de tal forma que existe apenas o atrito estático e a velocidade angular é nula. Admite-se que o torque motor é freado pelo torque de atrito estático, o que pode ser representado pela seguinte relação:

\[\frac{c}{0.1} = (P_1 - P_2) 1.8eBL. \] \hspace{1cm} (4.17)

Cada ensaio gera um valor de \(c \), sendo que o valor final adotado é dado pela média destes valores. Os valores finais de \(b \) e \(c \) estão apresentados na tabela 4.2.
4.2.8 Determinação da Inércia, I

O valor da inércia do conjunto motor-reduutor, I, é determinado a partir dos ensaios tipo “B”, ou seja, com o motor sem carga e durante a dinâmica de partida. Aproximando a derivada $\frac{d\Omega_{out}}{dt}$ da equação 4.3 por uma diferença para trás, obtém-se a seguinte expressão:

$$IN\frac{\Omega_{out}(t) - \Omega_{out}(t - ta)}{ta} = (P_1(t) - P_2(t))1.8eBL - bΝ\Omega_{out}(t) - \frac{c}{Ν\Omega_{out}(t) + 0.1}. \quad (4.18)$$

Nesta expressão, P_1, P_2 e Ω_{out} são valores experimentais, N, b e c são constantes já conhecidas. Utilizando o mesmo método usado no cálculo dos volumes V_0, V_1 e V_2, o valor de I de cada ensaio é determinado pelo método dos mínimos quadrados aplicado à equação 4.18. O valor de I utilizado no modelo é a média dos valores de cada ensaio e está apresentado na Tabela 4.2.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parâmetros do coeficiente K_s</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
</tr>
<tr>
<td></td>
<td>a_3</td>
</tr>
<tr>
<td></td>
<td>a_4</td>
</tr>
<tr>
<td></td>
<td>a_5</td>
</tr>
<tr>
<td>Coeficiente da vazão de saída K_2</td>
<td></td>
</tr>
<tr>
<td>Volume da cam. 1</td>
<td>V_1</td>
</tr>
<tr>
<td>Volume da cam. 2</td>
<td>V_2</td>
</tr>
<tr>
<td>Volume útil do motor</td>
<td>V_0</td>
</tr>
<tr>
<td>Coeficiente da vazão de escape (f)</td>
<td>C_v</td>
</tr>
<tr>
<td>Parâmetros de atrito</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
<tr>
<td>Inércia do sistema I</td>
<td></td>
</tr>
<tr>
<td>Constante de processo politrópico n</td>
<td></td>
</tr>
<tr>
<td>Constante</td>
<td>C</td>
</tr>
</tbody>
</table>

Tabela 4.2: Valores dos parâmetros do modelo
<table>
<thead>
<tr>
<th>Medida Geométrica</th>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa do motor</td>
<td>(m_m)</td>
<td>10.9 Kg</td>
</tr>
<tr>
<td>Comprimento da palheta</td>
<td>(L)</td>
<td>6.34 cm</td>
</tr>
<tr>
<td>Massa do rotor</td>
<td>(m_r)</td>
<td>1.9 Kg</td>
</tr>
<tr>
<td>Raio do rotor</td>
<td>(r)</td>
<td>3.6 cm</td>
</tr>
<tr>
<td>Comprimento do rotor</td>
<td>(c)</td>
<td>6.4 cm</td>
</tr>
<tr>
<td>Raio do corpo do motor</td>
<td>(B)</td>
<td>4.1 cm</td>
</tr>
<tr>
<td>Excentricidade</td>
<td>(e)</td>
<td>0.5 cm</td>
</tr>
<tr>
<td>Massa do eixo do motor</td>
<td>(m_e)</td>
<td>0.4 Kg</td>
</tr>
<tr>
<td>Raio do eixo do motor</td>
<td>(r_e)</td>
<td>0.9 cm</td>
</tr>
<tr>
<td>Comprimento do eixo do motor</td>
<td>(c_e)</td>
<td>19.2 cm</td>
</tr>
<tr>
<td>Entrada e saída do motor</td>
<td>diâmetro ((d))</td>
<td>1.84 cm</td>
</tr>
<tr>
<td></td>
<td>comprimento ((l))</td>
<td>4.0 cm</td>
</tr>
<tr>
<td>Volume útil do motor</td>
<td>(V_0)</td>
<td>0.4x10^{-4} m³</td>
</tr>
<tr>
<td>Volume da câmara 1</td>
<td>(V_1)</td>
<td>0.31x10^{-4} m³</td>
</tr>
<tr>
<td>Volume da câmara 2</td>
<td>(V_2)</td>
<td>0.31x10^{-4} m³</td>
</tr>
<tr>
<td>Inércia do motor-reduktor</td>
<td>(I)</td>
<td>1.3x10^{-3} kgm²</td>
</tr>
</tbody>
</table>

Tabela 4.3: Medidas geométricas do motor GAST

É importante observar que os valores obtidos para os volumes e a inércia devem ter a mesma ordem de grandeza dos valores obtidos através das medidas geométricas do motor-reduktor. Assim, com os valores geométricos e as fórmulas dadas a seguir, é possível estimar \(V_0 \), \(V_1 \), \(V_2 \) e \(I \), os quais estão apresentados na tabela 4.3 em conjunto com as medidas geométricas do motor-reduktor.

Fórmulas para cálculo das grandezas do motor da GAST

Fórmula para cálculo de \(V_0 \): \(V_0 = \frac{\pi}{2} L (B^2 - r^2) \)

Fórmula para cálculo de \(V_1 \): \(V_1 = \frac{V_0}{2} + V_{ext} \)

Observações:

- \(V_{ext} = \frac{\pi r^2}{4} \)
- O volume \(V_{ext} \) inclui o volume da tubulação entre a válvula de 4 vias e o motor e o volume da abertura de entrada do motor. Todas estas partes são aproximadas como o volume de um cilindro de diâmetro igual ao da tubulação.
- \(V_1 = V_2 \).

Fórmula para cálculo de \(I \): \(I = I_{mot} + I_{red} \)

Observações:
• A inércia do conjunto motor-redutor (vista no eixo de saída do motor) inclui a inércia do motor, que é calculada, e a inércia do redutor (vista na saída do motor), que é dada pelo fabricante \(I_{red} = 1.2 \times 10^{-6} \text{Kg}m^2 \).

• A inércia do motor que é calculada segundo uma aproximação da inércia de um cilindro circular, considerando o eixo e o rotor do motor:

\[
I_{mot} = \frac{1}{2} m_r r^2 + \frac{1}{2} m_c r_c^2 = 0.0012 \quad \text{Kg}m^2
\]

Como se verifica, comparando-se os volumes e a inércia estimados a partir dos valores geométricos e os valores obtidos no cálculo dos parâmetros do modelo, nota-se que seus valores tem a mesma ordem de grandeza, entretanto, diferem um pouco em função de erros de modelagem e erros nas medidas geométricas e experimentais.
Capítulo 5
RESULTADOS

5.1 INTRODUÇÃO

Nos capítulos anteriores foram descritos os passos para obtenção do modelo físico do MPAR. Neste capítulo comparam-se os resultados do modelo com os dados de transientes experimentais. Realiza-se também uma análise do comportamento do modelo em função da variação de alguns de seus parâmetros. Descreve-se, a seguir, as principais características do programa de simulação.

5.2 PROGRAMA PARA SIMULAÇÃO DO MPAR

O programa que implementa o modelo do MPAR, ou seja, implementa as equações 4.1, 4.2, 4.3, 4.4, 4.5 e 4.6 possui as seguintes características:

- Simula a partida, a inversão de sentido e a parada do MPAR;

- As entradas do modelo do MPAR são as seguintes:
 - A abertura da válvula de 2 vias, representada pelo parâmetro A da equação 4.4;
 - A abertura da válvula de 4 vias, que define o sentido de rotação do motor e é representada pelo parâmetro L das equações 4.4 e 4.5;
 - A pressão P, na entrada da bancada;

- De acordo com o valor de L, impõe-se quem é a câmara 1 e a câmara 2, fornecendo os valores e sinais das vazões e pressões do modelo;

- Na partida do motor, só é permitida a variação da rotação do motor se o torque motor for maior que o torque de atrito estático. Já na parada do motor, o torque motor é pequeno ou desprezível e o torque de atrito dinâmico é responsável pela frenagem do motor. Condições adequadas são utilizadas no programa para satisfazer estes fatos;
CAPÍTULO 5. RESULTADOS

- As equações diferenciais são simuladas através do método de Euler [Humes82]. Este método é tão eficiente quanto o método de Runge-Kutta, desde que se utilize um passo de integração pequeno. A escolha do passo de integração utilizado \((\delta t = 5 \times 10^{-4})\) nas simulações leva em consideração este fato, pois testou-se passos menores que este e a resposta não se alterou;

- Para calcular a vazão de entrada no motor \((\omega_1 \text{ ou } \omega_2, \text{ dependendo do valor de } L)\) utiliza-se o método convencional de Newton-Rapson para solução de equações algébricas não-lineares [Humes82].

O modelo do MPAR foi feito na linguagem PASCAL e sua listagem completa está apresentada no anexo D. Alguns parâmetros na listagem do programa estão com outros nomes, como o parâmetro \(n\) (na listagem é \(nk\)), o parâmetro \(N\) (na listagem é \(Nn\)), os parâmetros do cálculo de \(K_s\) (na listagem é \(aa, bb, cc, dd\) e \(ee\)) e \(V_0\) é dado na listagem por \(VOL\).

5.3 ANÁLISE PARAMÉTRICA

Com o modelo implementado no programa procura-se analisar o comportamento do sistema que é representado pela resposta das variáveis de estado, que são: a pressão na câmara de entrada do motor \((P_1)\), a pressão na câmara de saída do motor \((P_2)\) e a velocidade angular do eixo de saída do redutor \((\Omega_{out})\). Inclui-se a entrada do sistema dada pela pressão no ponto \(s\) \((P_s)\). No transiente utilizado para este estudo, o motor gira no sentido horário, fazendo com que a câmara de entrada do motor seja a câmara 1 e a câmara de saída do motor seja a câmara 2. Analisa-se a condição de partida e de regime permanente do motor.

Um primeiro aspecto a se analisar é o que ocorre com o modelo quando se variam seus parâmetros. Observa-se que existem parâmetros que estão relacionados principalmente com a resposta dinâmica do modelo (parâmetros \(C\) e \(n\), \(V_1\), \(V_2\) e \(I\) do modelo) e parâmetros que influenciam mais a resposta em regime permanente \((V_0, Cv, K_s, K_2, b\) e \(c)\).

a) Análise do comportamento do modelo com a variação dos parâmetros da resposta dinâmica

A partir das figuras 5.1, 5.2, 5.3, 5.4 e 5.5, observa-se que variações nos parâmetros, relacionados com a parte dinâmica das equações do modelo do MPAR, modificam basicamente:

- O tempo de resposta do sistema, que é o tempo que o sistema leva para atingir o regime permanente;
- O comportamento inicial das variáveis de estado, apresentando, em alguns casos, um sobressinal em determinadas variáveis.

A seguir analisa-se como o comportamento de cada parâmetro influencia a resposta do modelo.

Parâmetros \(n\) e \(C\)
CAPÍTULO 5. RESULTADOS

Como mencionado no capítulo 4, apenas a constante do processo politrópico, \(n \), deve ser analisada, uma vez que a constante \(C \) fica determinada através da expressão:

\[
P_T^\frac{1}{n} = \rho
\]

O valor de \(n \), que deve estar no intervalo entre 1 e 1.4, modifica apenas a resposta dinâmica, como se verifica na figura 5.1. Esta figura apresenta as curvas de resposta do sistema para transições de degrau de vazão com valores de \(n \) entre 1 e 1.4. Analisando-se os gráficos observa-se que:

- Quando o valor de \(n \) é igual a 1.4, a resposta do modelo apresenta um sobressinal elevado e um tempo de resposta mais rápido que o da resposta experimental;

- Se \(n \) for ligeiramente maior que 1 (\(n = 1.15 \)), a resposta simulada não apresenta sobressinal mas sim, um tempo de resposta bem maior que a resposta experimental.

- O valor de regime permanente do modelo é praticamente o mesmo nas três situações simuladas no modelo.

A escolha de \(n = 1.3 \), mencionada no capítulo 4, foi obtida simulando-se com o modelo vários transientes sendo que a melhor resposta foi obtida com esta escolha. Note que a resposta do sistema com este valor de \(n \) é a que fornece o mesmo tempo de resposta das pressões de entrada e saída das câmaras do motor e a melhor resposta do modelo para a velocidade angular do eixo de saída do redutor.

Parâmetros \(V_1 \) e \(V_2 \)

O valor de \(V_1 \) e \(V_2 \) foram determinados com \(n = 1.3 \), conforme mencionado no capítulo 4. Nas figuras 5.2, 5.3 e 5.4 estão representadas, respectivamente, as respostas do modelo para a variação somente de \(V_1 \), variação somente de \(V_2 \) e a variação de \(V_1 \) e \(V_2 \) em transições de degrau de vazão do sistema. Comparando a resposta experimental e a resposta do modelo ajustada no capítulo 4 com as respostas para as variações de \(V_1 \) e \(V_2 \) observa-se que:

- As variações somente de \(V_1 \) afetam mais a resposta de \(P_1 \) que as demais variáveis e as alterações do valor de \(V_2 \) afetam mais a resposta de \(P_2 \), que as demais variáveis.

- Um aumento de \(V_1 \) implica em um tempo de resposta maior das variáveis de estado, enquanto que a sua redução implica em um tempo de resposta ligeiramente menor das variáveis e acarreta um sobressinal na resposta da pressão da câmara de entrada do motor (\(P_1 \)).

- Um aumento de \(V_2 \) implica em um ligeiro aumento do tempo de resposta das variáveis de estado (bem menos que para a variação somente de \(V_1 \)). A redução de \(V_2 \) implica em um tempo de resposta ligeiramente menor apenas na resposta de \(P_2 \) e acarreta um pequeno sobressinal na resposta da pressão da câmara de saída do motor (\(P_2 \)).
CAPÍTULO 5. RESULTADOS

- As variações de V_1 e de V_2 alteram o valor de regime permanente das variáveis de estado, principalmente da velocidade angular do eixo de saída do redutor.

- Um aumento de V_1 e V_2 no mesmo sentido e ao mesmo tempo provoca uma elevação do tempo de resposta das variáveis de estado. Uma redução de V_1 e V_2 ocasiona uma redução no tempo de resposta das variáveis de estado e aumenta o sobressinal das pressões de entrada e saída do motor. Nas duas situações, ocorre uma ligeira alteração do regime permanente das variáveis de estado.

Parâmetro I

O valor da inércia do motor, o parâmetro I, influencia a resposta dinâmica da velocidade angular e as respostas das pressões. A figura 5.5 apresenta curvas de resposta do sistema para um transiente de degrau de vazão com alguns valores de I diferentes do determinado no capítulo 4. Observando-se as curvas observa-se que:

- Um aumento de I ocasiona um aumento do tempo de resposta da velocidade angular e da pressão na câmara de saída do motor. Este aumento ocasiona também uma elevação do sobressinal da pressão na câmara de entrada do motor (P_1) e uma ligeira elevação do sobressinal da pressão de saída do motor.

- Uma redução de I implica em uma ligeira redução do tempo de resposta da velocidade angular, eliminando o sobressinal existente nas respostas das pressões e acarretando um ligeiro aumento do tempo de resposta das pressões.

b) Análise do comportamento do modelo com a variação dos parâmetros associados com o regime permanente

As figuras 5.6, 5.7, 5.8, 5.9, 5.10 e 5.11 representam o comportamento do modelo do MPAR frente a variação dos parâmetros associados com o regime permanente, após um transiente de degrau de vazão (partida e regime permanente), para o motor girando no sentido horário.

A partir das figuras observa-se que variações nestes parâmetros alteram basicamente o valor do regime permanente das variáveis de estado, modificando pouco o tempo de resposta destas variáveis. Em alguns casos, a variação dos parâmetros de regime provoca uma redução do sobressinal da resposta das variáveis. A seguir analisa-se como uma variação em cada um dos parâmetros modifica a resposta do sistema.

Parâmetro K_s

O valor deste parâmetro, que é o coeficiente do cálculo da vazão de entrada do motor, é determinado a partir da relação:

$$K_s = (a_1 + a_2 \exp(\omega_1 + \frac{a_3}{a_4 + a_5 \omega_1})) \times 10^{10}$$ (5.1)

Para estudar variações do parâmetro K_s, assume-se que ele seja igual ao termo a_1, ou seja, K_s é constante ao longo de toda variação da vazão de entrada do motor.
Através da figura 5.6, observa-se que:

- Um aumento de K_2 provoca uma redução do valor de regime das variáveis de estado.
- Uma redução de K_2 implica em um aumento do valor de regime das variáveis de estado.

Parâmetro K_2

Através da figura 5.7, observa-se que:

- Um aumento de K_2 provoca um aumento dos valores de regime das pressões do motor e uma redução do valor de regime da velocidade angular.
- Uma redução de K_2 ocasiona uma redução do valor de regime das pressões do motor e um aumento do valor de regime da velocidade angular.

Parâmetro C_v

Através da figura 5.8, observa-se que:

- Um aumento de C_v ocasiona uma redução dos valores de regime das variáveis de estado.
- Uma redução de C_v provoca um aumento do valor de regime das variáveis de estado, sendo este aumento, pouco acentuado nas pressões do motor.

Parâmetro V_0

Através da figura 5.9, observa-se que:

- Um aumento de V_0 ocasiona uma redução no valor de regime das variáveis de estado.
- Uma redução de V_0 provoca um aumento no valor de regime das variáveis de estado. Para a pressão de saída do motor, o valor de V_0 escolhido no capítulo 4 fornece uma resposta com o maior valor de regime, o que não era esperado, pois ele é um valor intermediário entre os demais valores.

Parâmetro b

Através da figura 5.10, observa-se que:

- Um aumento de b implica em uma elevação dos valores de regime das pressões do motor e em uma redução do valor de regime da velocidade angular.
- A redução de b provoca um aumento do valor de regime da velocidade angular e uma redução dos valores de regime das pressões do motor.
- As variações de b alteram mais as respostas da velocidade angular e da pressão de entrada do motor que a resposta da pressão de saída do motor.
Parâmetro c

Através da figura 5.11, observa-se que:

- Um aumento de c implica em um aumento do valor inicial das pressões (sobressinal elevado) e um ligeiro aumento do valor de regime da velocidade angular.

- Uma redução de c praticamente não modifica a resposta do sistema, concluindo-se que o valor de c escolhido influencia pouco a resposta do sistema para o transiente simulado.

Finalmente, a variação dos parâmetros do modelo do MPAR permitiu verificar que o modelo está respondendo de forma adequada, uma vez que fisicamente se sabe como cada parâmetro modifica o comportamento do sistema. Assim, por exemplo, quando aumenta-se o parâmetro b a velocidade angular reduz pois, um aumento de b provoca um aumento do atrito que, por sua vez, ocasiona uma redução da velocidade angular. Quando ocorre uma redução da velocidade e admitindo que a pressão de entrada da bancada não varie muito, a pressão na câmera de entrada do motor aumenta e a pressão na saída reduz. Este foi justamente o comportamento observado na simulação do modelo.

5.4 ANÁLISE DOS RESULTADOS DO MODELO

Neste item, procura-se analisar a qualidade do modelo do MPAR comparando o seu comportamento com o do sistema implementado na bancada experimental. Com o modelo descrito no capítulo 3 e os parâmetros determinados no capítulo 4, analisa-se a resposta das variáveis de estado nos mais diversos transitórios de degrau de vazão, observando as condições de partida e de regime e, em algumas simulações, inversão e parada do motor. Nas figuras 5.12, 5.13, 5.14, 5.15, 5.16 e 5.17 apresenta-se a resposta das variáveis de estado para transitórios de degrau de vazão com diferentes pressões na entrada da bancada (pressão P_s). As figuras 5.12 e 5.13 ilustram transitórios, incluindo as condições de operação de inversão e parada do motor. As figuras 5.14 e 5.15 representam a resposta do sistema para transitórios de baixa potência (P_s entre 1 e 3 bar) e de alta potência (P_s entre 5 e 10 bar), respectivamente, para o motor girando no sentido horário. As figuras 5.16 e 5.17 representam também a resposta do sistema para transitórios de baixa e alta potência, mas para o motor girando no sentido anti-horário.

Observando as curvas pode-se concluir que:

- A dinâmica das pressões do modelo, em alguns casos, apresentam um sobressinal ligeiramente maior que a resposta das pressões da bancada experimental. No entanto, o tempo de resposta das pressões simuladas está bem próximo do resultado experimental.

- Quando o regime permanente é atingindo existe um erro que varia de 5 a 20% entre o valor experimental e o valor simulado. Nota-se que o erro de regime na medida da velocidade angular é menor que o erro das pressões. Observa-se também que o erro de regime é diferente para cada sentido de rotação. Este erro ocorre pois admitiu-se uma curva média
para a determinação do coeficiente da vazão de entrada do motor \(K_e\) e uma valor médio para o coeficiente da vazão de saída do motor \(K_s\). Inclusive, o cálculo foi determinado apenas no sentido horário de rotação do motor, e a válvula de 4 vias não apresenta a mesma perda de pressão nos dois sentidos de operação do motor.

- Para transientes de baixa pressão de alimentação (a pressão \(p_s\) entre 2 e 3 bar) observa-se que a resposta do modelo não coincide com a resposta experimental. Os resultados experimentais apresentam oscilações que o modelo não consegue observar. Este fato pode ser atribuído a alguma não linearidade que não foi modelada, como o atrito do tipo "stiction", que gera uma oscilação da velocidade igual a observada na figura 5.14 e a uma variação no coeficiente de processo politrópico, \(n\), não considerada (\(n\) foi admitido constante).

Finalmente, os resultados do modelo são semelhantes aos resultados experimentais nas diversas condições simuladas. Portanto, o modelo descreve bem o comportamento do sistema MPAR da bancada, sendo, assim, um modelo razonável.
Legenda:

- _____ : Ensaio experimental
- ______ : Resposta do modelo com o parâmetro escolhido (n=1.3)
- _______ : Resposta do modelo com o parâmetro maior que o escolhido (n=1.4)
- ________ : Resposta do modelo com o parâmetro menor que o escolhido (n=1.15)

Figura 5.1: Comportamento do sistema em função da variação do parâmetro n e C.
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido (V1=2.5e-05)
- : Resposta do modelo com o parâmetro maior que o escolhido (V1=10.0e-05)
- : Resposta do modelo com o parâmetro menor que o escolhido (V1=0.5e-05)

Figura 5.2: Comportamento do sistema em função da variação do parâmetro V_1.
CAPÍTULO 5. RESULTADOS

Legenda:
- Ensaio experimental
- Resposta do modelo com o parâmetro escolhido \((V_2=0.5e-05)\)
- Resposta do modelo com o parâmetro maior que o escolhido \((V_2=10.0e-05)\)
- Resposta do modelo com o parâmetro menor que o escolhido \((V_2=0.5e-05)\)

Figura 5.3: Comportamento do sistema em função da variação do parâmetro \(V_2\).
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido \((V_1=V_2=2.5 e-05)\)
- : Resposta do modelo com o parâmetro maior que o escolhido \((V_1=V_2=10.0 e-05)\)
- : Resposta do modelo com o parâmetro menor que o escolhido \((V_1=V_2=0.5 e-05)\)

Figura 5.4: Comportamento do sistema em função da variação dos parâmetros \(V_1\) e \(V_2\).
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido \((I=0.006)\)
- : Resposta do modelo com o parâmetro maior que o escolhido \((I=0.05)\)
- : Resposta do modelo com o parâmetro menor que o escolhido \((I=0.0001)\)

Figura 5.5: Comportamento do sistema em função da variação do parâmetro \(I\).
Legenda:

-––- : Ensaio experimental

--- : Resposta do modelo com o parâmetro escolhido \(a_1=1.5199 \)

----- : Resposta do modelo com o parâmetro maior que o escolhido \(a_1=10.0 \)

---------- : Resposta do modelo com o parâmetro menor que o escolhido \(a_1=0.5 \)

Figura 5.6: Comportamento do sistema em função da variação do coeficiente \(a_1 \) de \(K_s \).
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido (K2=1.7e+09)
- : Resposta do modelo com o parâmetro maior que o escolhido (K2=5.0e+09)
- : Resposta do modelo com o parâmetro menor que o escolhido (K2=0.5e+09)

Figura 5.7: Comportamento do sistema em função da variação do parâmetro K_2.
Legenda:

- Ensaio experimental
- Resposta do modelo com o parâmetro escolhido \((C_v=8.6e-09) \)
- Resposta do modelo com o parâmetro maior que o escolhido \((C_v=40.0e-09) \)
- Resposta do modelo com o parâmetro menor que o escolhido \((C_v=0.9e-09) \)

Figura 5.8: Comportamento do sistema em função da variação do parâmetro \(C_v \).
Legenda:

- Ensaio experimental
- Resposta do modelo com o parâmetro escolhido (V0=1e-04)
- Resposta do modelo com o parâmetro maior que o escolhido (V0=10e-04)
- Resposta do modelo com o parâmetro menor que o escolhido (V0=0.1e-04)

Figura 5.9: Comportamento do sistema em função da variação do parâmetro V0.
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido (b=0.125)
- : Resposta do modelo com o parâmetro maior que o escolhido (b=0.8)
- : Resposta do modelo com o parâmetro menor que o escolhido (b=0.02)

Figura 5.10: Comportamento do sistema em função da variação do parâmetro b.
Legenda:

- : Ensaio experimental
- : Resposta do modelo com o parâmetro escolhido \(c=0.12 \)
- : Resposta do modelo com o parâmetro maior que o escolhido \(c=0.8 \)
- : Resposta do modelo com o parâmetro menor que o escolhido \(c=0.001 \)

Figura 5.11: Comportamento do sistema em função da variação do parâmetro \(c \).
Figura 5.12: Comportamento do modelo para partida no sentido horário, inversão e parada do motor.
Figura 5.13: Comportamento do modelo para partida no sentido anti-horário, inversão e parada do motor.
Figura 5.14: Comportamento do modelo para baixa pressão P_s - sentido horário.
Figura 5.15: Comportamento do modelo para alta pressão P_a - sentido horário.
Figura 5.16: Comportamento do modelo para baixa pressão P_s - sentido anti-horário.
Figura 5.17: Comportamento do modelo para alta pressão P_2 - sentido anti-horário.
Capítulo 6

CONCLUSÕES

6.1 INTRODUÇÃO

Este trabalho apresentou uma proposta de um novo tipo de atuador para robôs e mesas de máquinas de controle numérico. Trata-se do sistema MPAR (Motor Pneumático de Alta Rígidez).

Entretanto, para que o sistema MPAR possa efetivamente ser utilizado como atuador é necessário que ele possua características adequadas para este fim, e ainda, ser superior aos atuadores atualmente utilizados nesta tarefa. Assim, é desejável que o sistema MPAR tenha um baixo custo, possua uma alta relação esforço/peso, e principalmente, que tenha um controle de posicionamento bastante preciso. Esta última característica requer um conhecimento prévio do comportamento dinâmico do sistema MPAR, que foi o principal objetivo deste trabalho.

6.2 CONCLUSÕES

O objetivo principal deste trabalho foi alcançado através de um desenvolvimento experimental do sistema MPAR e da geração de um modelo físico deste sistema. O desenvolvimento experimental constituiu-se da elaboração e montagem de uma bancada experimental, que utiliza um motor pneumático de palhetas de alta velocidade e um redutor cicloidal de alta relação de redução. Nesta bancada foi observado o comportamento dinâmico das principais variáveis do sistema (pressão de entrada e saída do motor, velocidade angular e vazão de ar no motor) em transientes de degrau de vazão. Estas variáveis foram medidas através de sensores e de um sistema de aquisição de dados para posterior utilização no modelo do MPAR. Quanto à bancada experimental conclui-se que:

- A bancada é universal, servindo para realizar os mais diversos experimentos no sistema MPAR, inclusive outros experimentos que necessitam de supervisão de variáveis digitais ou analógicas.
CAPÍTULO 6. CONCLUSÕES

- A bancada foi elaborada com equipamentos disponíveis no mercado, estando preparada para receber modificações para novas implementações do sistema MPAR, inclusive, durante a elaboração do sistema MPAR que foi analisado, a bancada sofreu algumas modificações como a troca de redutores e a troca do medidor de vazão.

- Com exceção das medidas de torque, as demais variáveis apresentaram valores adequados, pois os demais instrumentos além de aferidos apresentaram uma boa repetibilidade de medida. A medida do torque de saída foi prejudicada em função do mau funcionamento do freio dinamométrico. O sinal do freio utilizado apresenta um ruído elevado, quando o sistema opera com baixa e média vazão. Além disto, o sistema concebido para este freio é irregular, no que diz respeito, ao torque de frenagem.

- A disposição dos equipamentos da bancada experimental, suas interconexões elétricas e mecânicas estão descritas ao longo deste trabalho, no capítulo 2 e no anexo A. Assim, ao se fazer uma leitura deste trabalho, qualquer indivíduo estará preparado para operá-la.

O modelo físico do MPAR foi obtido a partir de relações físicas conhecidas como balanço de massa e de momento, além de outras relações para determinação de vazão em orifícios e em válvulas. Assim, obteve-se um modelo composto por três equações diferenciais não lineares. Além disto, os parâmetros das equações do modelo do MPAR foram determinados através de dados experimentais obtidos em transientes de degrau de vazão de ar. Ao final, o modelo foi simulado e a sua resposta foi comparada com a resposta de transientes realizados na bancada experimental. Algumas conclusões foram levantadas ao longo deste processo de modelagem, das quais cita-se:

- O modelo proposto apresenta uma resposta qualitativa boa e quantitativa razoável, com uma dinâmica semelhante ao do sistema MPAR físico, tendo um erro de regime da ordem de 5 a 15% (em faixas de operação com a pressão de entrada na bancada, P_s, variando de 5 a 8 bar). Estes erros podem ser explicados em função das simplificações adotadas ao longo do desenvolvimento das equações do modelo, como por exemplo:
 - O modelo não inclui as variações da temperatura na entrada do motor (temperatura T_1 ou T_2 no modelo, conforme o sentido de rotação);
 - Na elaboração do modelo assumiu-se que n é constante e igual para as duas câmaras, o que é um resultado aproximado;
 - O cálculo da vazão de escape (f) foi realizado através do cálculo da vazão através de um orifício, o que portanto, é uma aproximação que está sujeita a erro;
 - O cálculo das vazões na entrada e saída do motor foi realizado através da perda de pressão nas válvulas “on-off” e tubulações do sistema MPAR, o que também é um resultado aproximado.

- Na introdução (capítulo 1) relatou-se que era desejável que o sistema MPAR possuísse frequências naturais devido ao efeito de compressibilidade do ar maiores que a frequência máxima de sistemas de controle de manipuladores. Porém, analisando a resposta do sistema MPAR experimental, observou-se que as frequências naturais do sistema devido
ao efeito de compressibilidade do ar estão na faixa de 100 a 300 Hz. Estes valores são cerca de 10 vezes maiores que o da frequência máxima de sistemas de controle utilizados no posicionamento de manipuladores, que é da ordem de 1 a 10 Hz. Assim, conclui-se que estas frequências não interferem no sistema de controle.

- O atrito em uma condição de operação com baixa pressão de alimentação, tende a ter um comportamento diferente do que foi modelado, fazendo inclusive com que o motor oscile entre a parada e o movimento. Este fato foi comprovado nos ensaios de baixa pressão de alimentação do sistema MPAR.

- O modelo do MPAR completo possui dois tipos de condições de operação distintas, uma com o motor se movimentando com velocidade \(\omega_m \) e outra para o motor oscilando em torno de um ponto de operação. Esta segunda condição de operação não foi aqui testada pois fisicamente ela não pode ser estudada, e portanto, o estudo teórico não pode ser comprovado.

Diante do exposto, entende-se que o objetivo principal foi plenamente alcançado.

6.3 TRABALHOS FUTUROS

O estudo do comportamento dinâmico do sistema MPAR realizado ao longo deste trabalho gerou um primeiro modelo físico do sistema implementado na bancada experimental. Novas implementações do sistema MPAR podem ser estudadas e novos modelos gerados, a fim de obter um sistema MPAR otimizado. Assim, sugere-se os seguintes trabalhos:

- Projeto de uma válvula pneumática proporcional que execute as funções das duas válvulas "on-off" da bancada experimental e ainda module a vazão de entrada do ar no motor. Com uma válvula proporcional é possível realizar a análise de controle para o sistema MPAR na bancada experimental.

- Novo modelo do MPAR que inclua o modelo da válvula proporcional.

- A partir do novo modelo e da válvula pneumática proporcional estudar a condição de operação na qual o motor oscila em torno de um ponto de operação.

- Desenvolvimento do sistema de controle de posição a partir desta nova configuração do modelo e da bancada experimental. Este estudo inclui estratégias de controle que necessitam de um elemento final de controle com ação proporcional.

Quanto ao uso do sistema MPAR como atuador ressalta-se que o sistema atualmente estudado não é adequado, uma vez que possui uma relação esforço/peso baixa. A fim de obter um sistema MPAR que possa ser utilizado no posicionamento de manipuladores propõe-se os seguintes estudos:

- Testes de novos tipos redutores, podendo para isso ser utilizada a bancada experimental, com poucas modificações.
- Projeto de um sistema MPAR com um motor pneumático e redutor montados em um único bloco, com um menor peso que o do sistema atual, inclusive com uma relação esforço/peso muito maior que a dos atuadores elétricos.

Finalmente, sugere-se a montagem de um manipulador utilizando como atuadores o sistema MPAR atualmente concebido, mas com uma válvula de controle proporcional a fim de testar a utilização de motores pneumáticos em condições reais de operação.
Bibliografia

Apêndice A

CARACTERÍSTICAS DOS EQUIPAMENTOS DA BANCADA

A.1 Motor Pneumático

- Tipo: motor de palhetas.
- Fabricante: Gast.
- Principais características técnicas:
 . Gráficos de Consumo, Torque e Potência do motor

Figura A.1: Gráficos do motor GAST para vários valores de operação
Observação: A figura A.2 fornece um esquema dos elementos do motor: palhetas, rotor, eixo, carcaça, tampas anterior e posterior, rolamentos e outros elementos. A palheta sofre ação da força de uma lâmina e de um pino que a coloca contra a carcaça, retirando-a do rasgo do rotor.

Figura A.2: Esquema com vista explodida do motor GAST

A.2 Redutor de Velocidade

- Tipo: Cicloidal.
- Fabricante: Lenze (Dojen-Lenze).
- Modelo: tamanho 5.
- Principais características técnicas:
 - Relação de redução: 1:100.
 - Torque de saída: 2000 lb-in.
 - Máximo torque de entrada instant.: 124 lb.
 - Inércia de entrada: .0032 lb – in – sec².
A.3 Medidores de Pressão

- Tipo: Tubo bourdon com ponte de “strain-gages”.
- Fabricante: Eldi.
- Modelo: MD 1112.
- Principais características técnicas:

 . Princípio de medida: deformação de barra.
 . Tipo de saída: sinal analógico de 0 a 5 volts.
 . Faixa de pressão: de 0 a 10 bar (relativa).
 . Precisão: 0.5%.
 . Conexão: 1/2” NPT.

A.4 Placa Conversora Analógica Digital

- Tipo: Conversor analógico-digital de 12 “bits” de resolução.
- Modelo: CAD 12/36.
- Fabricante: Lynx Tecnologia Eletrônica Ltda.
- Principais características técnicas:

 . Interface digital: (compatível com TTL-LS e CMOS) com 16 entradas digitais ou 2 entradas de 8 “bits” e 16 saídas digitais ou 2 saídas de 8 “bits”.
 . Entrada analógica: 16 simples ou 8 diferenciais de tensão max. de ± 15 volts.
 . Alimentação: fornecida pelo microcomputador.
 . Observações:
 . Aquisição em “burst” através de um “buffer” de 16 posições.
 . DMA (acesso direto à memória): forma de leitura de dados que independe da UCP do microcomputador.
 . Intervalo de amostragem programável.

A.5 Medidor de Posição Angular (Encoder)

- Tipo: Rotativo.
- Modelo: ROD-428B.
- Fabricante: Diadur.
- Principais características técnicas:
Princípio de medida: óptico.
Tipo de saída: duas saídas digitais de pulsos de 5 volts.
Quantidade de traços: 9000.
Alimentação: 5 volts.
Observação: A figura A.3 fornece um esquema do encoder, com o princípio de funcionamento.

Figura A.3: Detalhe do "encoder" com princípio de operação

A.6 Válvulas Solenóides

- Tipo: válvula com acionamento por solenoíde.
- Fabricante: Festo.
- Modelo 1: MFB 2 1/4 B.
- Características Técnicas:
 - Faixa de pressão de operação: de 2 a 8 bar.
 - Tempo de comutação: acionamento (12 ms) e desacionamento (23 ms).
 - Vazão nominal: 600 l/min.
 - Bobina: MSG de 12 volts cc.
 - Conexão: G 1/4.
 - Observação: válvula de controle de 2 vias, 2 posições e normalmente fechada, com ação de mola para retorno.
- Modelo 2: MFB 4 1/4 B.
- Características Técnicas:
 . Faixa de pressão de operação: de 2 a 8 bar.
 . Tempo de comutação: acionamento (16 ms) e desacionamento (23 ms).
 . Vazão nominal: 600 l/min.
 . Bobina: MSG de 12 volts cc.
 . Observação: válvula de controle de 4 vias, 2 posições e normalmente fechada, com ação de mola para retorno.

A.7 Medidor de Vazão (Bocal)

- Tipo: bocal divergente montado na saída de tubo cilíndrico.
- Principais características técnicas:
 . Medidor de pressão utilizado: tubo em “U” com coluna de água ou mercúrio, um dos extremos na tomada de pressão do tubo e outro em contato com o ambiente.
 . Fórmula para cálculo da vazão:

\[
W = C_w A_2 \sqrt{\frac{2k}{k-1} P_1 P_1 \left(\frac{\rho_2}{\rho_1}\right)^\frac{k}{k-1} \left(1 - \left(\frac{\rho_2}{\rho_1}\right)^\frac{k-1}{k}\right)}
\]

onde \(C_w\) é o coeficiente de velocidade (\(C_w = 0.98\)), \(k\) é a constante de processo isoentrópico, \(A_1\) e \(A_2\) são as áreas nos pontos 1 e 2 do bocal, \(p_1\) e \(p_2\) são as pressões nos pontos 1 e 2 do bocal e \(\rho_1\) é a densidade no ponto 1 do bocal. Os pontos 1 e 2 estão representados na figura A.4.

Diametros dos pontos 1 e 2:
 . bocal pequeno: \(D_1 = 4.5 mm\) e \(D_2 = 5''\).
 . bocal grande: \(D_1 = 0.5''\) e \(D_2 = 7.5''\).
A.8 Célula de carga

- Modelo: disco de alumínio.
- Descrição: Disco com espessura de 5 mm e diâmetro de 81.85 mm com 2 "strain-gages" radiais e 2 tangenciais.

A.9 "Strain-gages" (extensômetros elétricos) da célula de carga

- Fabricante: KYOWA.
- Modelo: KFC-5-C1-11.
- Principais características técnicas:
 . Resistência: 120Ω.
 . Comprimento da resistência: 5 mm.
 . Fator de Resistência: 2.11 (± 1%).
 . Mudança do fator de calibração com a temperatura: 0.0015%.
 . Coeficiente de dilatação térmico aferido: 10.8 PPM/°C.
A conexão dos diversos componentes é feita através de uma borneira de 10 terminais e por conexão direta entre os diversos componentes. A borneira faz as seguintes conexões:

- **Terminal 1**: canal 0 (entrada analógica) da placa conversora com o medidor de pressão da entrada do motor (para sentido horário de rotação do motor).
- **Terminal 2**: canal 1 (entrada analógica) da placa conversora com o medidor de pressão de saída do motor (para sentido horário de rotação do motor).
- **Terminal 3**: terra analógico da placa conversora e os três terras do sinal do medidor de pressão.
- **Terminal 4**: canal 2 da placa A/D (entrada analógica) com o medidor de pressão da entrada da bancada do motor.
- **Terminal 5**: terra analógico com o terra comun da fonte (comum às tensões de +5 e +12 volts).
- **Terminal 6**: canal 3 da placa conversora (entrada analógica) e o sinal de saída do amplificador do freio dinamométrico.
- **Terminal 7**: terra da placa conversora (da saída digital) com o terra do sinal de entrada do circuito de potência.
- **Terminal 8**: tensão da fonte de +12 volts com circuito de potência das válvulas solenóides.
- **Terminal 9**: terra comun da fonte (+5 e +12 volts) com terra do circuito de potência, terra do circuito contador.
- **Terminal 10**: tensão de +5 volts e circuito do contador do “encoder”.

Os terminais da borneira são numerados da esquerda para direita e a borneira está fixada na bancada experimental, lateralmente e acima do circuito de potência das válvulas solenóides. A borneira, o circuito de potência, o circuito contador de pulsos do “encoder” e a fonte de tensão de +12 volts e +5 volts estão posicionados em um apoio abaixo do microcomputador. A conexão entre a placa conversora analógica-digital (que está dentro do microcomputador) e a borneira e os circuitos é feita por cabos tipo “flat cable”.

Utiliza-se também as seguintes conexões diretas (sem passar pela borneira):

- Conexão do encoder ao circuito contador: Os pontos 10 e 11 (terra), 2 e 12 (tensão +5 volts), 5 (fase A) e 8 (fase B) estão ligados ao circuito contador.
- Conexão da rede de tensão de 110 volts aos componentes elétricos: existe duas tomadas na própria bancada nas quais se conectam os três medidores de pressão, o microcomputador, a fonte de tensão e o amplificador do freio dinamométrico.
APÊNDICE A. CARACTERÍSTICAS DOS EQUIPAMENTOS DA BANCADA

- Conexão do circuito de potência às válvulas solenóides: três fios, um com o sinal de +12 volts e dois com o fechamento do respectivo circuito de alimentação da válvula.

- Conexão da placa conversora ao circuito de potência: dois sinais das saídas digitais SD0 e SD1 e o terra digital da placa conversora.

- Conexão da placa conversora ao circuito contador: sinal de “clear” vindo da saída digital SD1 (“bit” D7) e duas entradas digitais de 8 “bits” cada.
Apêndice B

PROGRAMA DE AQUISIÇÃO DE DADOS DA BANCADA

PROGRAMA DE AQUISIÇÃO DE DADOS DA BANCADA EXPERIMENTAL

Este programa coleta os dados de saída dos sensores da bancada experimental e envia o sinal de atuação das válvulas.

Program Ex_Int;
Uses Dos,
Crt;

Declaracao de Constantes

Const
 EndBase = $380; { Endereco base da placa CAD12/36 }
 IntUsada = 2; { Interrupcao utilizada }

Const
 SecLimite = 0; { End. secundario da CAD12/36 - Reg. de Limite }
 SecPontoTel = 1; { End. secund. da CAD12/36 - Ponto Memoria}
 SecComAD = 2; { End. secund. da CAD12/36 - Comando Conv. A/D }
 SecEN = 3; { End. secundario da CAD12/36 - Reg. de Modo}
 SecMemoria = 4; { End. secund. da CAD12/36 - Escrita Memoria}
 SecAutoCal = 6; { End. secund. da CAD12/36 - Auto Calibracao}
 Intick = $20; { Registrador de reconhecimento de interrupcao}
 IntMask = $21; { Registrador da mascara de interrupcoes}

Declaracao de Variaveis

Var
 CadCtrl0 : word; { Reg. Contador 0 da CAD12/36 }
 CadCtrl1 : word; { Reg. Contador 1 da CAD12/36 }
 CadCtrl2 : word; { Reg. Contador 2 da CAD12/36 }
 CadMode : word; { Reg. de Modo do Timer }
 CadStatus : word; { Reg. Estado da CAD12/36 }
 ByteA : word; { Reg. Byte A do conversor A/D }
 ByteB : word; { Reg. Byte B do conversor A/D }
 CadEnd : word; { Registrador de Endereco }

91
APÊNDICE B. PROGRAMA DE AQUISIÇÃO DE DADOS DA BANCADA

```pascal
CadDado : word;  { Reg. dado de escr. memória }
CadEndo : word;  { Reg. R/S digital 0 }
CadEnd1 : word;  { Reg. R/S digital 1 }

Col1, Lim: integer;
VetLeit : array[0..4] of integer;  { vetor com leituras}
VL : array[0..5000,0..6] of integer;
Ch : char;
Flg : boolean;
pres1 : array[0..300] of integer;
pres2 : array[0..300] of integer;
pres3 : array[0..300] of integer;
torque : array[0..300] of integer;

{ ============================================================== }
{ Rotina IniciaEnderecoHardware = }
{ ============================================================== }

Procedure IniciaEnderecoHardware;
begin
  CadCtrl0 := EndBase;
  CadCtrl1 := EndBase + 1;
  CadCtrl2 := EndBase + 2;
  CadModo := EndBase + 3;
  CadStatus := EndBase + 3;
  ByteA := EndBase + 4;
  ByteB := EndBase + 5;
  CadEnd := EndBase + 6;
  CadDado := EndBase + 7;
  CadEnd1 := EndBase + 8;
end;

{ ============================================================== }
{ Rotina EscreveRegSecundario = }
{ ============================================================== }

Procedure EscreveRegSecundario (EndReg, Dado: byte);
begin
  Port [CadEnd] := EndReg;
  Port [CadDado] := Dado;
end;

{ ============================================================== }
{ Rotina EscreveNovoCanais = }
{ ============================================================== }

Procedure EscreveNovoCanais (Posicao, Dado: byte);
begin
  EscreveRegSecundario (SecPonteiro, Posicao);
{ Endereço da Memória de Canais }
  EscreveRegSecundario (SecMemoria, Dado);
{ Canal e Ganho correspondente }
end;

{ ============================================================== }
{ Rotina AutoCalibracao = }
{ ============================================================== }

Procedure AutoCalibracao;
```
begin
 EscreveRegSecundario (SecAutoCal, 0);
 Delay (400);
end;

{ ==
{ = Retina LimpaFIFU = }
{ ==

Procedure LimpaFIFU;
 Var i, Dado: integer;
begin
 for i := 1 to 16 do
 begin
 Dado := Port [ByteH];
 Dado := Port [ByteL];
 end;
end;

{ ==
{ = Retina ProgramaTimer = }
{ ==

Procedure ProgramaTimer (Contador, Modo: byte; Valor: word);
 Var EndCtr: word;
begin
 EndCtr := EndBase + Contador;
 Port [CmdModo] := Contador + 64 + 48 + Modo + 2;
 Port [EndCtr] := Lo (Valor);
 Port [EndCtr] := Hi (Valor);
end;

{ ==
{ = Retina InibeINT = }
{ ==

Procedure InibeINT;
 Var Mask: byte;
begin
 Mask := Port [IntMask];
 Port [IntMask] := Mask or ($01 shl IntUsada);
end;

{ ==
{ = Retina HabilitaINT = }
{ ==

Procedure HabilitaINT;
 Var Mask: byte;
begin
 Mask := Port [IntMask];
 Port [IntMask] := Mask and not ($01 shl IntUsada);
 Port [IntACK] := $60 + IntUsada; { limpa reg. de interrupcoes }
end;

{ ==
{ = Retina InibeGateComINT = }
{ ==

Procedure InibeGateComINT;
begin
 EscreveRegSecundario (SecKn, 80c);
{ inicializa timer }
{ usa timer 0 }
{ interrupcao ao final do burst }
{ modo burst ligado }
{ modo DMA desligado }
end;

{ == }
{ = Rotina Habilita Gate ComINT = }
{ == }

Procedure HabilitaGateComINT;
begin
 EscreveRegSecundario (SecRM, $4c);
 { habilita timer }
 { usa timer 0 }
 { interrupcao ao final do burst }
 { modo burst ligado }
 { modo DMA desligado }
end;

{ == }
{ = Rotina ProgramaMemoriaCanais = }
{ == }

Procedure ProgramaMemoriaCanais;
Const
 G1 = 7*16; { constantes para programar o ganho }
 G2 = 6*16;
 G5 = 5*16;
 G100 = 3*16;
 Bipolar = $80; { faixa bipolar }
 Unipolar = $60; { faixa unipolar }

begin
 EscreveRegSecundario (SecLimite, $3); { Carrega 3 no Reg. Limite }
 EscreveMemCanais (0,Unipolar + G2 + 0); { memoria 0 com canal 0, bipolar e ganho 100 }
 EscreveMemCanais (1,Unipolar + G2 + 1); { memoria 1 com canal 1, unipolar e ganho 2 }
 EscreveMemCanais (2,Unipolar + G2 + 2); { memoria 2 com canal 2, unipolar e ganho 2 }
 EscreveMemCanais (3,Bipolar + G100 + 3); { memoria 3 com canal 3, unipolar e ganho 2 }
end;

{ == }
{ = Rotina TrataInt = }
{ == }

Procedure TrataInt; interrupt;
var
 I,J: integer;

begin
 Fig:= trns;
 InitInt(17);
 I:= Port [CadStatus]; { limpa FF de pedido de interrupcao }
 for J:= 0 to 3 do begin
 VetLeit[J]:= (Port [ByteB] shl 8) Port [ByteA];
 { Byte A deve ser lido primeiro }
 end;
 I:= Port [CadStatus];
if byte(Ch)<127
 then Inc(byte(Ch))
else Ch:= 'A';
Port [Int8x2] := $60 + Int8x2;
{ limpando o Registrador de interrupcoes}
end;
end;

{ == }
{ = Rotina de Leitura = }
{ == }

Procedure Lecture;
 var
 j,k: integer;
begin
 X:=0;
 repeat
 if Flg
 then begin
 Flg:= false;
 VL[8,4]:=Port[Cadebd0];
 VL[8,5]:=Port[Cadebd1];
 { write(VL[8,5],':'); }
 VL[8,0]:=Verleit[0];
 VL[8,1]:=Verleit[1];
 VL[8,2]:=Verleit[2];
 VL[8,3]:=Verleit[3];
 write(VL[8,3],',.');
 K:=K+1;
 if K=5
 then begin
 Port[Cadebd1]:=1;
 Port[Cadebd0]:=1;
 { if K=300
 then begin
 Port[Cadead1]:=0;
 Port[Cadead0]:=0;
 end; }
 { if K=600
 then begin
 Port[Cadead1]:=0;
 Port[Cadead0]:=1;
 end; }
 end;
 end;
 until X=400;
 end;

{ == }
{ = Rotina TelaApresentacao = }
{ == }

Procedure TelaApresentacao;
 Var Ch: char;
begin
 Window (1, 1, 80, 26);
 TextBackground (Black);
APÊNDICE B. PROGRAMA DE AQUISIÇÃO DE DADOS DA BANCADA

GrbScr;
Writeln;
Writeln ('PROGRAMA DE AQUISICAO DE DADOS DO MOTOR PNEUMATICO');
Writeln ('Aquisicao de sinais por interrupcao');
Writeln;
Writeln ('Software de reproducao proibida');
Writeln ('1992');
Writeln ('Sao Paulo - SP - Brasil - Escola Politecnica');
GotoXY(2,22);
Write ('Digite uma tecla qualquer para continuar');
repeat
until KeyPressed;
Ch := ReadKey;
GrbScr;
end;

{ === }
{ = Programa GravaArq = }
{ === }
Procedure GravaArq;
var
ARQ1 :text;
K :integer;
begin
assign(ARQ1,'T1310_30.m');
rewrite(ARQ1);
for K:=0 to 400 do
writeln(ARQ1, K:2, ',','VL[K,0]:6,','VL[K,1]:6,','VL[K,2]:6,','
VL[K,3]:6,','VL[K,4]:6,','VL[K,5]:6);
close(ARQ1);
end;

{ === }
{ = Programa Principal = }
{ === }

var
I,J : integer;
begin
Telapresentacao;
IniciaEnderecoHardware;
(Determina os enderecos de I/O da placa CAD12/36)
EScreveSegSecundario (SecRM, 0);
(Zera Registrador de Nivel da placa CAD12/36)
IniBEINT;
(Inibe a interrupcao usada pela placa)
ProgramaRecente (0, 2,40000);
(Programa Recent que esta em modo 2 e a 50 Hz = 2e6/4x4)
AutoCalibacao;
(Comando de Auto-Calibacao do Conversor A/D)
ProgramaMemoriaCanais;
(Programa a memoria de canais)
EScreveSegSecundario (SecL中期, 3);
(Carrega numero de canais menos 1 no Reg. Limites)
delay(100);
EScreveSegSecundario (SecPonteiro, 0);
(Zera Ponteiro da memoria de canais)
delay(100);
LimpaFIFO;
(Limpa a memoria FIFO da CAD12/36)
delay(100);
Port[CadEnd0]:= 0;
Port[CadEnd1]:= 800;
Port[CadEnd2]:= 0;
SetIntVec(IntUsoa=8, @TrataInt);
(Inicia vetor de interrupcao)
RebilitaInt;
I:= Port[CadStatus];
(limpa FF de pedido de interrupcao)
Ch := 'A'; { Ch vai ser incrementado por TrataInt}
Flag := false; { flag para indicar ocorrência de interrupção }
HabilitarInt := { a partir deste ponto, as interrupções serão ativadas}
Lecture; { faz a leitura junto com as interrupções }
InibirInt; { inibe a interrupção }
Port(CadESBD0) := 0;
Port(CadESBD1) := 0;
{Port(CadESBD0) := 1;)
Gravarq;
end.
Apêndice C

MÉTODO DOS MÍNIMOS QUADRADOS

Este método é aplicado no cálculo de um parâmetro desconhecido de um modelo que é composto por uma variável de saída (\hat{y}) que depende de funções de uma variável x, as quais multiplicam estes parâmetros. O método fornece o valor do parâmetro que minimiza a soma dos quadrados das diferenças entre os valores observados da variável de saída (y) em experimentos e os valores desta variável computados no modelo (\hat{y}), multiplicados por coeficientes que permitem dar diferentes pesos para as diferentes observações [Ljung85].

Os valores computados são obtidos por um modelo linear dado pela seguinte estrutura:

$$\hat{y} = \theta_1 \varphi_1(x) + \theta_2 \varphi_2(x) + \cdots + \theta_n \varphi_n(x), \quad (C.1)$$

onde \hat{y} é o valor da variável computada no modelo; θ_1, θ_2, \cdots, θ_n são os parâmetros desconhecidos do modelo e φ_1, φ_2, \cdots, φ_n são funções de x. Os pares $\{(x_i, y_i), i = 1, 2, \cdots, N\}$ são observações obtidas no experimento.

O problema, então, é determinar os parâmetros que tornam \hat{y} próximo dos valores y_i, ou seja, minimiza-se o seguinte funcional quadrático, $J(\theta)$:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \alpha_i [y - \hat{y}]^2 \quad (C.2)$$

onde α_i são os coeficientes que permitem dar diferentes pesos para as diferentes observações e N é o número de observações realizadas.

O funcional pode ser modificado através da substituição do valor de \hat{y} e assumindo-se que os coeficientes α_i valem um. Utilizando notação vetorial dos termos do funcional, vem:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} [y - \Phi \theta]^2 \quad (C.3)$$

onde:
• \(\Phi = [\varphi(x_1) \varphi(x_2) \cdots \varphi(x_N)] \) é a matriz das funções de \(x \) calculadas para as \(N \) observações;

• \(\varphi(x_i) = [\varphi_1 \varphi_2 \cdots \varphi_n] \) é o vetor das \(n \) funções de \(x \) que multiplicam os parâmetros desconhecidos;

• \(\theta = [\theta_1 \theta_2 \cdots \theta_n]^T \) é o vetor dos parâmetros desconhecidos;

• \(y = [y_1 y_2 \cdots y_N]^T \) é o vetor das observações obtidas nos \(N \) experimentos.

O vetor dos parâmetros desconhecidos \(\hat{\theta} \) que minimiza o funcional é dado por:

\[
\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T y
\] (C.4)

onde \(\Phi^T \) representa a matriz transposta de \(\Phi \) e o termo \((\Phi^T \Phi)^{-1} \) representa a inversa da matriz quadrada que é dada pelo produto de \(\Phi \) com sua transposta [Ljung85].
Apêndice D

PROGRAMA DE SIMULAÇÃO DO MODELO DO MPAR

Este programa simula as condições descritas no capítulo 5. Uma descrição através de um “pseudo-code” é feita a seguir.

PROGRAMA DO MODELO FÍSICO DO MPAR

- Declaração das constantes do modelo (inclui os parâmetros)
- Declaração das variáveis do modelo (inteiros, reais e de arquivos)
- Leitura do tempo de amostragem (ta), do início (N) e fim do transiente (M)
- Leitura do intervalo de simulação (deltat)
- Leitura do arquivo com os dados de um transiente da bancada experimental
- Cálculo das pressões (p_1, p_2 e p_3), da posição angular ($pos1$) e da velocidade angular ($OMEGA_e$) com os dados experimentais
- Gravação das variáveis calculadas em arquivo (para comparação com os dados simulados)
- Leitura do valor inicial de L (define o sentido de rotação do modelo)
- Leitura do momento de inversão da rotação do motor e do momento de fechamento da válvula de 2 vias
- Definição dos valores iniciais de p_1, p_2, $OMEGA$, das vazões, do tempo de simulação e de outros ponteiros e parâmetros do modelo.
- Cálculo do número de pontos (aas) a serem simulados (para o intervalo de simulação dado)
- Para v de 1 até aas faça:
 - Geração do valor de p_e para cada ponto a ser simulado

100
- Gravação a cada instante de amostragem dos valores p_1, p_2 e Ω_{out} obtidos na simulação do modelo
- Transitório de partida do motor pneumático
- Transitório de inversão do sentido de rotação
- Transitório de parada do motor pneumático
- Cálculo das vazões ω_1, ω_2
- Cálculo de f
- Determinação dos parâmetros das equações do balanço de massa de acordo com o sentido de rotação imposto (pelo valor de L)
- Cálculo das variações dp_1 ($deltap1$), dp_2 ($deltap2$) e $d\Omega_{out}$ ($deltaOM$) através das equações diferenciais do modelo com o método de Euler:
 * Cálculo do valor de $deltap1$
 * Cálculo do valor de $deltap2$
 * Cálculo do torque de atrito ($Tuastr$) e do torque motor ($deltaM$)
 * Cálculo do valor de $deltaOM$
- Atualização das variáveis de estado (p_1, p_2 e Ω_{out}) e do tempo de simulação (tt)
LISTAGEM DO PROGRAMA DO MODELO DO MPAR

Program Marki;
Uses Dos,
Crt;

{ DECLARAÇÃO DE CONSTANTEs}
Type
Q = "Sac1;

Sac1 = array[1..800] of real;

Const
pa=33326.4;
aw=1.5159;
bw=0.1457;
cw=2.3326;
dbw=0.2953;
aw=339.24;
cw=0.98;
F=287.06;
T=296.15;
TTe=294.15;
VOL=1.0e-4;
Fm=100;
A1=2.5e-06;
B=2.5e-06;
VV=2.3e-05;
I=6.0e-05;
B=0.126;
C=0.12;
k2=1.7e+9;
cvi=6.6e-9;

{DECLARAÇÃO DE VARIÁVEIS}
Var
ps,pmax,p2n,ONEDIA,p1,p2,OMEGA,tt : real;
posi,p1,p2,pss,OMEGAe: Q;
f,W1,W2 : real;
val: array[1..800,1..7] of real;
G: array[1..800] of real;
m: array[1..80] of real;
dp,sp1p2,Tausfr: real;
v,aaaa:Langiat;
pn,mal,ta,W,i,j,n,z1,s : integer;
&mn,MM,cof tamb,deltat,ta,vi,vL,ak,coei:real;
t1,t2,x1,x2,c1,c2,mm,sol:real;
f1,f2,f3,f4,lld:double;
pn,pm2,cmi,cn2:real;
deltap1,deltap2,deltan1:real;
Ch:char;
ARQ1, ARQ2, ARQ3 :text;

{Entrada dos valores de amostragem, inicio e fim do transiente
 e intervalo de simulação}
Write('Entre com o tempo de amostragem = ');
Readln(ta);
Write('Entre com o inicio do transiente = ');
Readln(ta);
WriteIn('Entre com o final do transiente = ');
ReadIn(M);
WriteIn('Entre com o intervalo de simulação = ');
ReadIn(deltat);

{Programa de leitura de arquivo com dados experimentais}
assign(ARQ1,'testi.m');
reset(ARQ1);
for i=1 to N do
begin
readln(ARQ1,va1[i,1],va1[i,2],va1[i,3],va1[i,4],va1[i,5],va1[i,6],va1[i,7]);
end;
close(ARQ1);

{Calculo dos dados da bancada}
new(pie);new(p2e);new(pse);new(pos1);new(OMEGAe);
W:=W+1;
for i:=N to 1 do
begin
pie*[i,W]:=((va1[i,3]+5)/32768)+5*100000+93325.4;
p2e*[i,W]:=((va1[i,2]+5)/32768)+5*100000+93325.4;
pse*[i,W]:=((va1[i,4]+5)/32768)+5*100000+93325.4;
pos*[i,W]:=((va1[i,6]+266+va1[i,7])*360)/18000;
end;
OMEGAe*[1]:=0;
for i:=2 to W do
begin
OMEGAe*[i]:=(pos*[i]-pos*[i-1])/(ta=360);
end;

{GRAVACAO DOS DADOS DA BANCADA}
assign(arq2,'ba.out');
rewrite(arq2);
ti[1]:=0;
for i=1 to W do
begin
write(arq2,ti[1],pie*[1],p2e*[1],pse*[1],pos*[1],',',OMEGAe*[1]);
ti[i+1]:=ti[i]ta;
end;
close(arq2);
dispose(pie);dispose(p2e);dispose(pse);dispose(OMEGAe);dispose(pos1);

{Leituras e definicao dos valores iniciais de variaveis, constantes e parametros}
WriteIn('Entre com o sentido de rotacao inicial com L = ');
ReadIn(L);
if L>0 then sa:=-1
else sa:=1;

j:=1;
t:=0;
w1:=0;
f:=0;
p1:=pa;
p2:=pa;
OMEGA1:=0;
Tanar:=0;
x1:=1;
t:=1;
nk:=1.3;
AUX:=exp(log(1.116)−(log(93325.4)/nk)); {Variavel C associada a n}
WriteIn('Forneca o momento da inversao = ');}
readln(v1);
writeln('Ferseca o momento de fechamento da valv = ');
readln(v2);

ass:=(N-1)round(ta/deltat);

{GRAVACAO DOS DADOS INICIAIS DE SIMULACAO}
assign(arg3,'dsm.out');
rewrite(arg3);
writeln(arg3,p1,' ',p2,' ',OMEGA,' ',Tauatx);

{**}
{******** SIMULACAO ********}
{**}
for v:=1 to ass do
begin
{COLOCANDO A PRESSAO PS NA SIMULACAO COMO FUNCAO DE PSE}
if xi<round(ta/deltat) then begin
 ps:=pse'[k];
 xi:=xi+1;
end
else begin
 writeln(arg3,p1,' ',p2,' ',OMEGA,' ',Tauatx);
 {Gravacao dos dados da bancada}
 t:=t+1;
 ps:=pse'[k];
 xi:=xi;
end;

{TRANSITORIO DE PARTIDA}
if tt<v1 then begin
 A:=tt70;
 if abs(A)>1 then A:=1;
end;

{TRANSITORIO DE INVERSAO}
if (tt>=v1) and (tt<v2) then begin
 L:=M50*(tt-v1)*ass;
 if abs(L) > 1 then L:=ass;
end;

{TRANSITORIO DE PARADA}
if tt>v2 then begin
 A:=1-(tt-v2)*70;
 if A<0 then A:=0;
end;

{**}
{= CALCULO DAS VAZÕES W1,W2 e f =}
{**}
if L>0
 then begin
 if pl<p1 then begin
 cost:=(ps-p1)*p1/(R*Ta);
 end
 else begin
 cost:=0;
 end;

{== METODO DE NEWTON-RAPSON para calculo de W1 ==}
if cost<0
 then
 begin
 m[i+1]:=0.001;
 i:=i;
 end;
while 1 < 40 do
begin
i:=i+1;
f1:=as+bb*exp(m1[i-1]+cc/(dd+ee*ml[i-1]))*1e+10;
f11:=(f1+ml[i-1])*ml[i-1]-coel;
l1:=1e+9*(cc+ee*ml[i-1]+ml[i-1]);
f12:=1e+10*(ml[i-1]-ml[i-1]+ll+bb
+exp(ml[i-1]+cc/(dd+ee*ml[i-1])))*f1+2*ml[i-1];
ml[i]:=ml[i-1]-f11/f12;
if abs(ml[i]-ml[i-1]) < 1e-5 then begin
 sol:=ml[i];
i:=40;
end;
end;
end
else begin
 sol:=-0;
end;
W1:=L*a*sol;

{== CALCULO DE W2 ==}
if p2>pa then begin
 W2:=-L*sqrt((p2-pa)*pa/(R*T*e2));
end
else begin
 W2:=-L*sqrt((pa-p2)*pa/(R*T*e2));
end;
end
else begin
{== METODO DE NEWTON RAPSON PARA W2 ==}
if p2>pa then begin
 cost:=(p2-pa)*p2/(R*T*e2);
end
else begin
 cost:=-0;
end;
if cost <> 0 then begin
 ml[i]:=0.001;
i:=i;
while i<40 do begin
i:=i+1;
f1:=as+bb*exp(ml[i-1]+cc/(dd+ee*ml[i-1]))*1e+10;
f11:=(f1+ml[i-1])*ml[i-1]-coel;
l1:=1e+9*(cc+ee*ml[i-1]+ml[i-1]);
f12:=1e+10*(ml[i-1]-ml[i-1]+ll+bb
+exp(ml[i-1]+cc/(dd+ee*ml[i-1])))*f1+2*ml[i-1];
ml[i]:=ml[i-1]-f11/f12;
if abs(ml[i]-ml[i-1]) < 1e-5 then begin
 sol:=ml[i];
i:=40;
end;
end;
end
else begin
 sol:=-0;
end;
W2:=L*a*sol;

{== CALCULO DE W1 ==}
if p1>p2 then begin

W1:=4.*sqrt((p1-pm)*pa/(k*Ti*e^k2));
end
else begin
W1:=4.*sqrt((pa-p1)*pa/(k*Ti*e^k2));
end;
end;

(== CALCULO DE f ==)
if p2<pi then begin
p1:=p2;
p2:=p1;
s:=1;
end
else begin
p1:=pi;
p2:=p2;
s:=-1;
end;
dp:=p1/p2;
if dp>0.538 then begin
cn1:=sqrt(2.8/(k=0.4));
cn2:=sqrt(1.4/(k=2.985286));
fp1p2:=s*(cn1/cn2)*p2*exp((1/1.4)*ln(dp))*
sqrt(abs(1-exp((0.4/1.4)*ln(dp))));
else begin
fp1p2:=sp=p2;
end;
f:=cn1*fp1p2;

(==)
(ESCOLHA DO SENTIDO DE ROTACAO)
(==)

if L>0 then begin
T1:=Ts;
T2:=TTs;
c1:=1;
c2:=(T2+p1)/(p2*Ti);
a1:=(nk+delta*t)/(f1+aux*exp(ln(p1)+(-f1/nk)))
a2:=(nk+delta*t)/(k+aux*exp(ln(p2)+(-1+1/nk)));
end
else begin
T1:=TTs;
T2:=Ts;
c1:=(T1+p2)/(p1*T1);
a1:=(nk+delta*t)/(f1+aux*exp(ln(p2)+(-1+1/nk)))
a2:=(nk+delta*t)/(k+aux*exp(ln(p1)+(-1+1/nk)));
end;

(==)
(== CALCULO DAS DERIVADAS DO MODELO COM EULER ==)
(==)
deltap1:=a1*(W1-f*(c1*pi*VOL*Wn=OMEGA/(k*Ti)));
deltap2:=a2*(f-W2*(c1*p2*VOL*Wn=OMEGA/(k*Ti)));

(==)
if (OMEGA > -1.0e-10) and (OMEGA < 1.0e-10) then begin
taustr:=0;
end
else
begin
Tanatr:={(-va*(abs(Hn+OMEGA)+0.1))+(Be*En+OMEGA);
end;

if A=0 then Tanatr:=B*En+OMEGA;
deltaH:=(pi-p2)*WV;
deltaWN:=(deltat/(2*En))*(deltaH-Tanatr);

if (OMEGA > -1.0e-10) and (OMEGA < 1.0e-10) then
begin
if abs(Tanatr)>abs(deltaH) then deltaWN:=0;
end;

if (abs(Tanatr)>abs(deltaH)) and (A>0) then deltaWN:=0;
p1n:=p1;
p2n:=p2;
OMEGAan:=OMEGA;
j:=j+1;
tt:=(j-1)*deltat;
p1:=p1n+deltap1;
p2:=p2n+deltap2;
OMEGA:=OMEGAan+deltaWN;
end;
close(srq3);
end.