JOSE MANOEL MARTINS LEITES
ENG. MECANICO, ESCOLA POLITECNICA DA USP, 1984

TRANSFERÊNCIA DE CALOR POR CONDUÇÃO
EM MEIO QUASI-ISOTRÓPICO HETEROGÊNEO:
DETERMINAÇÃO DA CONDUTIVIDADE TÉRMICA EFETIVA

DISSERTAÇÃO APRESENTADA À
ESCOLA POLITECNICA DA USP PARA A OBTENÇÃO
DO TITULO DE MESTRE EM ENGENHARIA

ORIENTADOR: PROF. DR. MARCOS DE MATTOS PIMENTA

SAO PAULO, 1992
AO MEU AVÔ (IN MEMORIAM)
E AOS MEUS PAIS
PELO EXEMPLO DE VIDA
AGRADECIMENTOS

Ao amigo e orientador Professor Marcos de Mattos Pimenta pela orientação e estímulo à conclusão deste trabalho.

À METAL LEVE S.A. pela permissão de apresentar este trabalho, bem como pela colaboração durante as etapas do mesmo.

À Beth e ao José Sérgio pelo apoio, estímulo e, principalmente, pela amizade ao longo deste período.

Ao amigo EURYALE ZERBINI pelas sugestões e discussões ao longo deste trabalho.

À Sra. Sandra Regina pela valiosa ajuda na digitação e formatação deste trabalho.

Desejo estender os agradecimentos a todos os colegas de trabalho que com sua compreensão e incentivo facilitaram a transposição de alguns obstáculos. Em especial ao colega CARLOS ALBERTO MARTINS LIMA (COELHO), pelo apoio fundamental na parte numérica com o ambiente ULTRIX, e ao colega OSWALDO URBANI FILHO pelo apoio na área de elementos finitos.
RESUMO

A tendência de desenvolvimento de motores diesel com reduzido consumo específico de combustível reforça a utilização de material cerâmico composto com ligas metálicas (CERMET) para a produção de componentes para motores de combustão interna, visando reduzidas perdas térmicas para o ambiente.

Este trabalho propõe dois modelos para a determinação da condutividade térmica efetiva desta classe de materiais, baseado na possibilidade de representação das características macroscópicas de uma estrutura quasi-isotrópica a partir da análise de uma célula elementar. Esta célula elementar é definida com informações da curva de distribuição da dimensão das partículas do material disperso, da curva de distribuição da dimensão dos vazios e da verificação de amostras ao microscópio eletrônico para observação da morfologia da estrutura.

Os modelos propostos são de duas formas:

1. MODELO DETERMINÍSTICO: baseado na igual probabilidade de condução de calor em qualquer direção. Adequado para materiais com pequena diferença entre a condutividade térmica do material da matriz e do material disperso (< 10 vezes).

2. MODELO PROBABILÍSTICO: baseado em uma distribuição de probabilidade para a condução de calor em uma dada direção. Adequado para materiais com elevada diferença entre a condutividade térmica do material da matriz e do material disperso (> 10 vezes), onde possa haver a ocorrência de caminhos preferenciais. É adequado também para a análise de materiais compostos em que os constituintes sejam anisotrópicos.

III
Os resultados obtidos com os modelos propostos são comparados a modelos clássicos de literatura dentro da faixa de validade destes com bons resultados.

Os modelos propostos são utilizados para prever a condutividade térmica de um CERMET/AL, sendo os resultados comparados a medição experimental.
ABSTRACT

The tendency towards the development of diesel engines with low break specific fuel consumption stresses the use of ceramic materials composed with metal alloys (CERMET). These new materials are being developed for the production of internal combustion engine components, aiming to decrease the heat losses and therefore increase the thermal efficiency.

This work presents two theoretical-empirical models to determine the effective thermal conductivity of this class of materials. These models are based on the possibility of representing the macroscopic characteristics of a quasi-isotropic structure from the analysis of an elementary cell. This elementary cell is defined with information from:

- disperse material size distribution;
- void size distribution;
- material morphology analysis.

The models are of two forms:

- DETERMINISTIC MODEL: based on equal conduction heat transfer probability in any direction. It is adequate for composite materials with small difference between the thermal conductivity of the matrix and the disperse material (<10 times), or vice-versa.

- PROBABILISTIC MODEL: based on a conduction heat transfer probability distribution for a given direction. This model also comprises the materials with high difference between the thermal conductivity of the matrix and the disperse material (> 10 times), or vice-versa. It is also
adequately for the analysis of composite materials, whose components are anisotropic.

The results obtained with the proposed models are compared to classical models of the literature, within their limits of validity. The comparison shows very good correlation.

The proposed models are also used to predict the thermal conductivity of a CERMET/AL, typical of the automotive industry, with very good correlation. The results are compared to experimental measurement.
Índice de Figuras

Figura I.1 - Esquema Simplificado de um Motor Adiabático...... 2
Figura I.2 - Efeito do Nível de Isolamento Térmico do Motor sobre a Melhoria do Nível de Consumo de Combustível.. 3
Figura I.3 - Efeito do Nível de Isolamento Térmico do Motor sobre a Eficiência Volumétrica do Motor... 4
Figura I.4 - Efeito do Nível de Isolamento Térmico do Motor sobre a Temperatura dos Gases de Escape... 4
Figura I.5 - Efeitos da Temperatura das Camisas no Desempenho de Motores Termicamente Isolados... 6
Figura I.6 - Deposição de "Coating" de Material Isolante na Superfície do Pistão......................... 7
Figura I.7 - Inserto Cerâmico Maciço Montado por Interferência... 8
Figura I.8 - Pistão Produzido por Tecnologia de Insertos Cerâmicos Porosos Infiltrados.................. 9
Figura II.1 - Esquema mostrando arranjo utilizado por HASSELMAN e JOHNSON para análise de partículas cilíndricas.. 16
Figura II.2 - Valores do parâmetro a determinados a partir de medições em corpos de prova em vácuo... 21
Figura II.3 - Condições de Contato da Tabela II.3... 25
Figura II.4 - Alteração no fluxo de Calor entre duas Esferas, devido a não uniformidade da temperatura na superfície das partículas.............. 26
Figura II .5 - Fluxo de Calor Adimensional Hc (β) através da Superfície de Contato com raio ρ.
Diferença Adimensional entre o fluxo de calor através da matriz e o fluxo de calor total quando as partículas se tangenciam. 27

Figura III.1 - Volume Elementar para desenvolvimento da equação geral de condução de calor. 28

Figura IV.1 - Material Composto Granular. 37

Figura IV.2 - Esquema Mostrando uma Estrutura Composta por dois Constituintes em Série. 41

Figura IV.3 - Esquema Mostrando uma Estrutura Composta por dois Constituintes em Paralelo. 42

Figura V.1 - Volume Elementar Representativo do Material 46

Figura V.2 - Definição dos Volumes Terciários 47

Figura V.3 - Duas Colunas de Volumes Terciários Justapostos, indicando os Fluxos de Calor Unidimensionais Característicos 49

Figura V.4 - Estrutura resultante para o volume secundário em análise. 50

Figura V.5 - Dois planos de volumes terciários justapostos 53

Figura V.6 - Estrutura resultante para o volume secundário em análise. 54

Figura V.7 - Molécula de Percurso - Possíveis Caminhos a partir de uma origem (ponto 1). 58

Figura V.8 - Molécula de Percurso Simplificada (os pontos indicados referem-se ao baricentro). 59

Figura V.9 - Representação Gráfica do Modelo Probabilístico Proposto. 62

Figura V.10 - Representação dos Intervalos de Escolha 64

Figura V.11 - Representação da Escolha do Caminho para a Molécula de Percurso. 65

VIII
Figura V.12 - Representação Bidimensional de uma Trajetória da Molécula de Percurso................................. 65
Figura V.13 - Representação Bidimensional de uma Sequência de Trajetórias da Molécula de Percurso.............. 66
Figura VI .1 - Representação gráfica do modelo probabilístico proposto em função de θ.............................. 88
Figura VII.1 - Pré-forma de alumina.................................... 107
Figura VII.2 - Pré-forma de alumina................................. 108
Figura VII.3 - Curva de distribuição do tamanho das partículas... 109
Figura VII.4 - Dimensão média dos vazios da estrutura cerâmica 110
Figura VII.5 - Resposta transiente de temperatura na face oposta a incidência do laser......................... 117
<table>
<thead>
<tr>
<th>Tabela</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>Resultados obtidos com o modelo de JEFFREY</td>
<td>19</td>
</tr>
<tr>
<td>II.2</td>
<td>Resultado do modelo de BATCHELOR e O'BRIEN</td>
<td>24</td>
</tr>
<tr>
<td>III.3</td>
<td>Valores do fluxo de calor adimensional (Q0)</td>
<td>24</td>
</tr>
<tr>
<td>VI.1</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 0.02</td>
<td>73</td>
</tr>
<tr>
<td>VI.2</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 0.10</td>
<td>74</td>
</tr>
<tr>
<td>VI.3</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 0.50</td>
<td>75</td>
</tr>
<tr>
<td>VI.4</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 2.00</td>
<td>76</td>
</tr>
<tr>
<td>VI.5</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 5.00</td>
<td>77</td>
</tr>
<tr>
<td>VI.6</td>
<td>Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para Kd/Km = 50.00</td>
<td>78</td>
</tr>
<tr>
<td>VI.7</td>
<td>Variação porcentual máxima entre os valores obtidos com o modelo de JEFFREY (Ki) e o valor médio do modelo determinístico proposto (Kef), em função de Kd/Km, para frações volumétricas máximas de 15%</td>
<td>79</td>
</tr>
<tr>
<td>VI.8</td>
<td>Intervalo de Confiança em Torno do Valor da Condutividade Térmica Média do Modelo Proposto (Kef)</td>
<td>80</td>
</tr>
</tbody>
</table>
Tabela VI.9 - Comparação entre o modelo determinístico proposto e o modelo de BATCHELOR e O'BRIEN, para $\theta = 52.40\%$.

Tabela VI.10 - Comparação entre o modelo determinístico proposto e o modelo de BATCHELOR e O'BRIEN, para $\theta = 68.00\%$.

Tabela VI.11 - Representação do Modelo Probabilístico em função de θ.

Tabela VI.12 - Número de Trajetórias Consideradas.

Tabela VI.13 - Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHELOR e O'BRIEN para $\theta = 52.40\%$.

Tabela VI.14 - Número de Trajetórias Volume Secundário = 5

Tabela VI.15 - Número de Trajetórias Célula Elementar = 5

Tabela VI.16 - Número de Trajetórias Célula Elementar = 10

Tabela VI.17 - Número de Trajetórias Célula Elementar = 15

Tabela VI.18 - Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHELOR e O'BRIEN para $\theta = 52.40\%$.

Tabela VI.19 - Número de Trajetórias Volume Secundário = 5

Tabela VI.20 - Número de Trajetórias Célula Elementar = 20

Tabela VI.21 - Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHELOR e O'BRIEN para $\theta = 52.40\%$.

Tabela VI.22 - Número de Trajetórias Volume Secundário = 10

Tabela VI.23 - Número de Trajetórias Célula Elementar = 5

XI
<table>
<thead>
<tr>
<th>Tabela VI.18-</th>
<th>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 10</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 10</td>
</tr>
<tr>
<td>Tabela VI.19-</td>
<td>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 10</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 15</td>
</tr>
<tr>
<td>Tabela VI.20-</td>
<td>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 10</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 20</td>
</tr>
<tr>
<td>Tabela VI.21-</td>
<td>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 15</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 5</td>
</tr>
<tr>
<td>Tabela VI.22-</td>
<td>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 15</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 10</td>
</tr>
<tr>
<td>Tabela VI.23-</td>
<td>Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\theta = 52.40%$</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Volume Secundário = 15</td>
</tr>
<tr>
<td></td>
<td>Número de Trajetórias Célula Elementar = 15</td>
</tr>
</tbody>
</table>

XII
Tabela VI.24- Análise de Sensibilidade dos Parâmetros do modelo probabilístico. Comparação com o modelo de BATCHelor e O'BRIEN para $\phi = 52.40\%$
- Número de Trajetórias Volume Secundário = 15
- Número de Trajetórias Célula Elementar = 20

Tabela VI.25 - Comparação entre o modelo probabilístico proposto e o modelo de BATCHelor e O'BRIEN.

Tabela VII.1 - Conduzividade térmica dos constituintes do CERMET/AL.

Tabela VII.2 - Comparação entre o valor medido para a conduzividade térmica efetiva e os valores obtidos com os modelos propostos.

Tabela VIII.1 - Comparação entre modelo por elementos finitos e o modelo de BATCHelor e O'BRIEN.
NOMENCLATURA

Td - distribuição de temperatura para o material disperso;
Tm - distribuição de temperatura para o material da matriz;
(VT) - gradiente de temperatura
Kd - condutividade térmica do material disperso
Km - condutividade térmica do material da matriz
Θ - fração em volume do material disperso
Kef - condutividade térmica efetiva escalar do material composto
hc - condutância na superfície do material disperso
<q> - fluxo de calor médio integral nos materiais constituintes
S - intensidade do dipolo do distúrbio térmico produzido por uma esfera
n - número de esferas por unidade de volume
+S - média de S para todas as esferas da suspensão
P(Ω/0) - densidade de probabilidade para as esferas em um arranjo Ω, quando a esfera de referência ocupa seu lugar.
P(Ω) - densidade de probabilidade para as esferas em um arranjo Ω, quando a esfera de referência não ocupa seu lugar.
β - parâmetro do modelo de JEFFREY
ξ - parâmetro do modelo de JEFFREY
α - parâmetro experimental do modelo de HADLEY
fo - parâmetro experimental do modelo de HADLEY
h - distância entre as esferas no modelo de BATCHELOR e O'BRIEN
a - raio das esferas no modelo de BATCHELOR e O'BRIEN

XIV
\(\rho \) – raio da região de contato entre duas esferas
\(\kappa \) – fluxo de calor adimensional no modelo de BATCHelor e O'BRIEN

\[\lambda = \left(\left(\frac{K_d}{K_m} \right)^2 \cdot \frac{h}{a} \right) \]

\[\beta = \left(\frac{K_d}{K_m} \cdot \frac{\rho}{a} \right) \]

\(q \) – energia que cruza uma dada área por unidade de tempo
\(q \) – geração de energia por unidade de volume e por unidade de tempo
\(Q \) – aeração de calor
\(U \) – energia interna
\(E_c \) – energia cinética
\(E_p \) – energia potencial
\(\rho \) – densidade do material
\(c \) – calor específico do material

\(\mathbf{K} \) – tensor de condutividade térmica
\(\langle T_i \rangle \) – média volumétrica da temperatura no constituinte i
\(V \) – volume total de análise na formulação de médias volumétricas
\(V_i \) – volume do constituinte i contido no volume V

\(\langle T_i \rangle^i \) – média intrínseca da temperatura do constituinte i
\(\langle T \rangle \) – média global da temperatura

\(A_{10} \) – área superficial do constituinte i

\(\mathbf{n}_i \) – versor normal à superfície

XV
\(\text{Kef} \) - tensor de condutividade térmica efetiva do material composto

\(\text{Kef}_i \) - condutividade térmica equivalente de cada coluna secundária (i)

\(K_j \) - condutividade térmica característica de cada volume terciário j

\(b_j \) - comprimento na direção z de cada volume terciário j

\(b_i \) - comprimento na direção z do volume secundário i

\(\text{Kef}_k \) - condutividade térmica efetiva do volume secundário k

\(A_{col} \) - área transversal ao fluxo de calor, na coluna homogênea

\(A_t \) - área transversal ao fluxo de calor, no volume secundário

\(\text{Kef}_i^t \) - condutividade térmica de cada coluna elementar (i)

\(b_i^t \) - comprimento do volume secundário na direção Z

\(B \) - comprimento do volume elementar na direção Z

\(\text{Kef}_S \) - condutividade térmica efetiva da célula elementar

\(A_{vl} \) - área transversal ao fluxo de calor na célula elementar

\(\text{Kef}_k \) - condutividade térmica efetiva do plano em análise (k) (volume secundário)

\(A_{ter} \) - área transversal ao fluxo de calor no volume terciário

\(\text{Kef}_i \) - condutividade térmica efetiva do volume secundário (i) (primeiro paralelo)
K_{ef}^k - condutividade térmica efetiva do plano em análise (K) (célula elementar)

K_{ef}^P - condutividade térmica efetiva da célula elementar (limite superior)

e - parâmetro de ajuste característico do modelo exponencial de probabilidade

K_{eq_i} - condutividade térmica efetiva da trajetória i

L - comprimento total da trajetória

K_{ef_i} - condutividade térmica efetiva do volume secundário dado um ponto de origem i

n - número de trajetórias consideradas para a determinação do valor médio

K_{eq_s} - condutividade térmica efetiva do volume secundário homogeneizado

m - número de pontos de origem analisados.
INDICE GERAL

I. INTRODUÇÃO	pag. 01
II. REVISÃO BIBLIOGRÁFICA	pag. 12
III. EQUAÇÃO GERAL DE CONDUÇÃO DE CALOR	pag. 28
III.1 Material Composto Anisotrópico Homogêneo	pag. 32
III.2 Material Composto Ortotrópico Homogêneo	pag. 33
III.3 Material Quasi-Isotrópico Heterogêneo	pag. 34
IV. FORMULAÇÃO DO PROBLEMA TÉRMICO EM TERMOS DE MEDIAS VOLUMÉTRICAS	pag. 36
IV.1 Sistemas Formados por Dois Constituintes	pag. 40
V. MODELOS FÍSICOS PROPOSTOS	pag. 45
V.1 Modelo Determinístico	pag. 46
V.2 Modelo Probabilístico	pag. 56
VI. UTILIZAÇÃO DOS MODELOS PROPOSTOS	pag. 69
VI.1 Modelo Determinístico	pag. 69
VI.1.1 Avaliação do Modelo Determinístico	
Quando φ é Baixo	pag. 70
VI.1.2 Avaliação do Modelo Determinístico	
Quando φ e Kd/Km são Elevados	pag. 81
VI.2 Modelo Probabilístico	pag. 85
VII. APLICAÇÃO DOS MODELOS PROPOSTOS A CERMET/AL	pag. 106
VII.1 Caracterização da Pré-forma de Alumina	pag. 107
VII.2Determinação dos Volumes Elementares	pag. 112
VII.3 Determinação da Condutividade Térmica Efetiva	pag. 113
VII.3.1 Modelo Determinístico	pag. 113
VII.3.2 Modelo Probabilístico	pag. 114
VII.4 Comparação com Outros Resultados	pag. 115
VIII. CONCLUSÃO	pag. 120
IX. BIBLIOGRAFIA	pag. 123
IXX	
I. Introdução

A tendência mundial de desenvolvimento de motores com consumo específico de combustível cada vez menor, associada às legislações de emissões cada vez mais restritas direciona os trabalhos de centros de pesquisa e desenvolvimento rumo a novas tecnologias de motores de combustão internas.

Larsen e Vyas [1], em levantamento junto a diversos centros de pesquisa e desenvolvimento de várias áreas, e em diversos países, verificaram que a utilização de materiais cerâmicos associados a motores denominados "adiabáticos" mostra-se como uma tecnologia viável para alcançar os objetivos anteriormente citados.

Do ponto de vista termodinâmico, o processo adiabático é definido como um processo sem interação de calor com o meio externo. No entanto, o motor dito "adiabático" não expressa a definição termodinâmica, mas indica um motor com reduzido ou sem sistema de refrigeração e com suas perdas de energia para o ambiente minimizadas. O motor adiabático tem por objetivo isolar a câmara de combustão e a passagem de gases quentes no motor para permitir o funcionamento a altas temperaturas com reduzidas taxas de perda de energia para o ambiente.

Os componentes a serem isolados incluem basicamente os pistões, válvulas, cabeçote, cilindros e o coletor de escape. Desta forma, a potência adicional, e, portanto, a maior eficiência do motor adiabático, é possível devido ao aproveitamento da energia térmica, normalmente perdida para a água de refrigeração e com os gases de escape, através do uso de turbinas.

Um esquema simplificado de um motor adiabático é mostrado na Figura I.1 [2]. Seguindo-se o fluxograma no motor, tem-se o ar de admissão entrando através do turbocompressor, onde é comprimido, e entrando, após, na câmara de combustão isolada no pistão. Ocorrendo a combustão, a energia mecânica é transmitida
através do pistão, biela e virabrequim. Os gases de escape a alta temperatura e pressão são, então, expandidos através da turbina do turbocompressor, reaproveitando parte da energia contida nos gases para a movimentação do compressor do turbocompressor. Um corpo extra reaproveita outra parcela de energia dos gases para acionamento do "turbo compound", o qual fornece potência extra diretamente ao eixo do virabrequim.

Figura I.1: Esquema Simplificado de um Motor Adiabático

Simulações numéricas realizadas na CUMMINS ENGINE CO. INC. [3], com motores termicamente isolados são apresentados
nas Figuras I.2 a I.4. A melhoria no consumo de combustível, eficiência volumétrica e temperatura dos gases de escape são mostradas versus o grau de isolamento térmico.

A forma utilizada naquele estudo para análise da influência do isolamento térmico consistiu em primeiro remover a água de refrigeração do bloco e cabeçote, e, então, gradativamente ir aumentando a espessura do material isolante no topo do pistão e na superfície do cabeçote. O isolamento das camisas do motor foi incrementado sempre como metade da espessura do isolamento do pistão e do cabeçote. A máxima espessura de isolamento utilizada foi 7.6mm de ZIRCONIA PARCIALMENTE ESTABILIZADA (PSZ), para os pistões e cabeçote, enquanto para as camisas foi utilizado 3.8mm de PSZ. Este caso-limite apresentou redução de aproximadamente 55% no nível de transferência de calor para o meio ambiente.

![Diagrama de consumo específico de combustível versus porcentual de redução de rejeição de calor]

Figura I.2: Efeito do nível de isolamento térmico sobre a melhoria do nível de consumo de combustível.
Figura I.3: Efeito do nível de isolamento térmico sobre a eficiência volumétrica do motor.

Figura I.4: Efeito do nível de isolamento térmico do motor sobre a temperatura dos gases de escape.
Os resultados da simulação indicam que para o caso com maior isolamento térmico houve melhoria no nível de consumo de combustível da ordem de 4% com a versão turbo composta, e de aproximadamente 2% com a versão turbo pós-arreferida. Como esperado, associada à esta melhoria no nível de consumo de combustível, houve uma queda na eficiência volumétrica, bem como um aumento na temperatura dos gases de escape.

Assim, verifica-se que o maior impedimento na melhoria do desempenho do motor termicamente isolado é a queda na eficiência volumétrica, devido ao aumento da temperatura média das paredes internas ao motor. Desenvolvimentos recentes [3] indicam que a temperatura média das camisas tem significativa influência no nível de eficiência volumétrica dos motores, e que seria tecnicamente mais interessante mantê-las resfriadas no sentido de aumentar a eficiência volumétrica.

No mesmo estudo [3], anteriormente citado, a CUMMINS ENGINE CO. INC. analisa aquela possibilidade. O isolamento do cabeçote e pistões é mantido com 7.6mm de PSZ. O isolamento das camisas é retirado, sendo que a temperatura destas é continuamente reduzida, através do aumento da refrigeração, até atingir a condição de motores normais de produção. A Figura I.5 apresenta os resultados.

Os resultados mostrados na Figura I.5 indicam uma melhoria da ordem de 3% na eficiência volumétrica, acompanhada por pequena redução na temperatura dos gases de escape e uma melhoria adicional de 1% no nível de consumo de combustível, quando o nível de isolamento térmico das camisas é diminuído.

Desta forma no ambiente de combustão seriam isolados apenas o cabeçote e o pistão. Dentre estes, o pistão é um dos que apresenta grau de dificuldade, por operar em condições extremas de solicitação térmica e mecânica, em regime permanente e transitório, e com restrições severas de peso do componente.
Figura I.5: Efeitos da temperatura das camisas no desempenho de motores termicamente isolados.

Os trabalhos para obtenção de pistões com reduzida taxa de rejeição de calor são orientados basicamente por duas linhas de desenvolvimento:

. deposição de "coating" de material isolante na superfície do pistão;

. fixação de insertos de material isolante na superfície do pistão.
A primeira linha de desenvolvimento apresenta dificuldades quanto à espessura máxima de deposição e à resistência estrutural do "coating" depositado, o qual em condições severas de operação, pode apresentar trincas e desprendimento. Esse mecanismo ocorre basicamente devido a diferença no coeficiente de expansão linear entre o "coating" e o material base do pistão (liga de alumínio). A Figura I.6 ilustra este tipo de concepção.

Figura I.6: Deposição de "coating" de material isolante na superfície do pistão.
A segunda linha de desenvolvimento pode ainda ser analisada de duas formas:

- insertos cerâmicos maciços;
- insertos cerâmicos porosos infiltrados.

Os insertos cerâmicos maciços são desenvolvidos para fixação ao corpo base do pistão de alumínio através de pontos de ligação e montagem por interferência. A Figura I.7 ilustra um exemplo de montagem de insertos cerâmicos maciços.

Figura I.7: Inserto cerâmico maciço montado por interferência.
Para a segunda linha de desenvolvimento, os insertos cerâmicos são produzidos por tecnologia de compactação, permanecendo com uma fração de vazios interconectados no seu interior. Posteriormente, para a produção do pistão, alumínio sob pressão é infiltrado no inserto fazendo a ligação mecânica. Esta linha de pesquisa apresenta resultados mais consistentes, em termos de resistência estrutural aliada a isolamento térmico do que os anteriormente analisados. Figura I.8 mostra configuração de pistão desenvolvido por tecnologia de insertos cerâmicos porosos infiltrados.

Figura I.8: Pistão produzido por tecnologia de insertos cerâmicos porosos infiltrados

O comportamento destes materiais sujeitos às condições de operação do motor, requerem para sua análise mecânica e térmica o conhecimento de propriedades, como por exemplo, a condutividade térmica efetiva. Esta é a condutividade térmica característica do material composto quando assumido com
características homogêneas.

A determinação, a priori, da condutividade térmica efetiva do material composto resultante deste processo ou a especificação, a priori, da estrutura morfológica do material composto para a obtenção de uma dada condutividade térmica efetiva são complexas. Contudo, o material composto resultante da infiltração de alumínio nas porosidades interconectadas das pré-formas de alumina apresenta características razoavelmente bem definidas. A relação entre a condutividade térmica do alumínio (material da matriz)(Km) e a condutividade térmica da alumina (material disperso)(Kd) é da ordem de 4 vezes, enquanto a fração volumétrica da alumina é em geral superior a 50%. Desta forma, o material composto utilizado para a produção de pistões com reduzido nível de rejeição térmica pode ser caracterizado como de reduzida relação de Km/Kd e elevada fração volumétrica de material disperso. Deve-se ressaltar, que os materiais podem ser assumidos como isotrópicos.

Com o objetivo de pesquisar modelos que permitam avaliar a condutividade térmica efetiva, dessa classe de materiais compostos, uma pesquisa bibliográfica foi realizada e encontra-se no Capítulo II. A pesquisa abrange desde modelos empírico-teóricos até modelos puramente teóricos.

A análise do problema sob o ponto de vista de uma abordagem local ou de uma abordagem em termos de médias volumétricas é apresentada nos Capítulos III e IV, respectivamente. No entanto, devido a escala do problema, a abordagem em termos de médias volumétricas será apresentada como a melhor técnica para a análise do problema.

Este trabalho analisa o comportamento térmico em regime permanente desta classe de materiais, propondo modelos que, a partir do conhecimento da distribuição da dimensão dos vazios, da distribuição da dimensão das partículas que compõem o esqueleto
do material, e da caracterização de um volume elementar representativo das características do material, permitem avaliar a condutividade térmica do material composto como uma composição de condutividade térmica dos componentes.

Os modelos apresentados tentam reproduzir um ensaio de determinação da condutividade térmica efetiva. Os modelos propostos são de duas formas:

- **Modelo Determinístico**: baseado na igual probabilidade de condução de calor em qualquer direção. Adequado para materiais com pequena diferença entre a condutividade térmica do material da matriz e do material disperso (\(< 10\) vezes), ou vice-versa.

- **Modelo Probabilístico**: baseado em uma distribuição de probabilidade para a condução de calor em uma dada direção. Este modelo inclui materiais com elevada diferença entre condutividade térmica do material da matriz e do material disperso (\(> 10\) vezes), onde pode haver a ocorrência de caminhos preferenciais. É adequado também para a análise de materiais compostos em que os constituintes sejam anisotrópicos.

Estes modelos propostos são comparados a modelos de bibliografia com o objetivo de avaliar suas faixas de validade, bem como os erros esperados para cada faixa. Os resultados são apresentados no Capítulo VI.

A aplicação dos modelos propostos ao CERNET/AL objeto deste trabalho, bem como a caracterização deste material, encontra-se no Capítulo VII. A comparação dos resultados obtidos com os modelos propostos é feita contra valor experimental, obtido através da técnica de LASER-FLASH METHOD.
II. Revisão Bibliográfica

Materiais granulados, ligados ou não ligados, compreendem uma classe importante de matérias-primas na moderna engenharia de alta tecnologia, assim como em sistemas geofísicos. Estes constituintes são encontrados em explosivos, reatores químicos, cerâmicas e em solos e rochas, para citar algumas das áreas motivadoras de trabalhos.

Os materiais compostos variam em complexidade: de sistemas binários relativamente simples compostos por partículas esféricas regulares até aglomerados compostos por partículas irregulares unidas por material ligante.

Os primeiros trabalhos visando à análise de materiais compostos isotrópicos foram desenvolvidos por Maxwell [04]. Maxwell considerou um material granular esférico com condutividade térmica (K_d) disperso em uma matriz com condutividade térmica (K_m). Neste trabalho, Maxwell não faz referência a restrições de relações de K_d e K_m. A fração em volume do material disperso (ϕ) é assumida suficientemente pequena ($<15\%$) de tal forma que as interações entre as esferas pudessem ser desprezadas, o que equivale a dizer que as esferas estão de tal forma afastadas que a influência da presença de uma esfera na distribuição de temperatura da matriz não afeta a distribuição de temperatura de outras esferas, e vice-versa. É possível, assim, considerar-se cada esfera como contida em uma matriz infinita sem outras esferas. Desta forma, é possível obter a distribuição de temperatura para a esfera (T_d) e para o material da matriz (T_m):

$$T_d = r.A \cdot \cos(\theta)$$ \hspace{1cm} (II.1)

$$T_m = (\pi D \cdot r \cdot \cos(\theta)) + (B/r^2) \cdot \cos(\theta)$$ \hspace{1cm} (II.2)
onde: \(\nabla T \) é o gradiente de temperatura fora do material disperso;
A e B são valores constantes a serem determinados;
r é relativo a coordenada esférica;
\(\theta \) é o ângulo entre o vetor posição \(r \) e o gradiente de temperatura.

As equações (II.1) e (II.2) estão sujeitas às seguintes condições de contorno, em \(r = a \), sendo "a" o raio da partícula:

\[
K_d \left[\frac{T_d}{r} \right] = K_m \left[\frac{T_m}{r} \right] \quad (II.3a)
\]

\[T_d = T_m \quad (II.3b) \]

Determinando-se o valor de A e B a partir de (II.3a) e (II.3b), pode-se escrever:

\[
T_d = (\nabla T) \cdot r \cdot \cos(\theta) \cdot \left(\frac{3K_m}{K_d + 2K_m} \right) \quad (II.4)
\]

\[
T_m = (\nabla T) \cdot r \cdot \cos(\theta) + \frac{a^2 \cdot \nabla T \cdot \cos(\theta)}{r^2} \cdot \left(\frac{K_m - K_d}{K_d + 2K_m} \right) \quad (II.5)
\]

Considerando-se que a estrutura composta em análise pudesse ser representada como um material homogêneo equivalente que produzisse os mesmos efeitos térmicos médios (distribuição de temperatura e fluxo de calor), é possível, então, definir-se uma condutividade térmica efetiva como sendo a condutividade térmica característica deste material hipotético. A condutividade térmica efetiva (\(\kappa_{ef} \)) do material composto pode ser então obtida considerando-se o efeito acumulativo na
distribuição de temperatura da matriz, quando da presença de "n" esferas de raio "a" em uma esfera grande de raio "b". O resultado é apresentado abaixo:

\[
K_{ef} = Km. \frac{2 \left(\frac{K_d}{K_m} - 1 \right) \phi + \frac{K_d}{K_m} + 2}{\left(\frac{1 - K_d}{K_m} \right) \phi + \frac{K_d}{K_m} + 2}
\] \hspace{1cm} (II.8)

onde: \(\phi \) é a fração em volume do material disperso;
\(K_{ef} \) é a condutividade térmica escalar do material composto.

A partir dos trabalhos de MAXWELL, pesquisas foram desenvolvidas, objetivando à introdução da resistência de contato na expressão da condutividade térmica efetiva, bem como a extensão do conceito para outras geometrias além da esférica, como, por exemplo, a cilíndrica, muito encontrada em materiais compostos cerâmicos.

HASSELMAN e JOHNSON [05] introduziram o conceito da resistência de contato, utilizando-se da mesma abordagem conceitual utilizada por MAXWELL. Neste trabalho não discutem, contudo, a natureza da resistência de contato, a qual pode advir da presença de compostos intermetálicos com características térmicas diferenciadas na interface ou da presença de áreas com presença de ar na interface, devido ao não preenchimento total das estruturas porosas da matriz, para citar apenas algumas delas. A resistência térmica de contato é expressa em termos de uma condutância (hc) na superfície do material disperso, sendo então (II.3b) reescrita como:

14
\[T_d - T_m = - \left(\frac{K_d}{h_c} \right) \left(\frac{\partial T_d}{\partial r} \right) \]

Com esta nova condição de contorno as expressões (II.4) e (II.5) podem ser reescritas:

\[T_d = (\nabla r \cdot \mathbf{r}) \cos(\theta) \cdot \left(\frac{1 + \left(\frac{K_m}{a \cdot h_c} + \frac{K_m - 1}{K_d} \right)}{1 + 2 \cdot \frac{K_m}{K_d} \left(\frac{K_d}{a \cdot h_c} + 1 \right)} \right) \]

\[T_m = (\nabla r \cdot \mathbf{r}) \cos(\theta) + \frac{K_m + K_m - 1}{a \cdot h_c} \cdot \left(\frac{K_d}{a \cdot h_c} + 1 \right) \]

A condutividade térmica efetiva do material composto é obtida de maneira análoga à proposta por Maxwell, resultando em:

\[K_{ef} = K_m + \frac{2 \left(\frac{K_d - K_d}{K_m} - 1 \right) \phi + K_d + 2 \frac{K_d + K_d}{K_m} + 2}{\left(\frac{1 - K_d + K_d}{K_m} \right) \phi + K_d + 2 \frac{K_m + K_d}{K_m} + 2} \]

Deve ser notado que para \(h_c \to \infty \), o que significa que a resistência térmica de contato é desprezível, o resultado obtido por Hasselman e Johnson tende para a condutividade térmica obtida por Maxwell.

Hasselman e Johnson apresentam também resultado para cilindros dispostos perpendicularly ao fluxo de calor e com baixa fração volumétrica de material disperso, conforme mostrado na Figura II.1. Considerando-se uma possível
resistência de contato, expressa em termos de uma condutância (hc), a condutividade térmica efetiva é dada por:

\[
K_{ef} = \frac{K_m \left(\frac{K_d - 1}{a \cdot hc} \right) \phi + \left(\frac{1 + K_d + K_d}{a \cdot hc} \right) \phi}{1 + \frac{K_d - K_d}{a \cdot hc}} \left(\frac{1 + \frac{K_d}{a \cdot hc} + \frac{K_d}{K_m}}{1 + \frac{K_d}{a \cdot hc} + \frac{K_d}{K_m}} \right)
\]

(II.11)

A expressão (II.11) quando hc→0 tende para a solução de RAYLEIGH [06], que havia desenvolvido trabalho análogo ao de MAXWELL para material disperso cilíndrico sem resistência de contato.

Figura II.1: Esquema mostrando arranjo utilizado por HASSELMAN e JOHNSON para análise de partículas cilíndricas.

Uma técnica distinta das já mencionadas para a análise de materiais compostos é a média volumétrica introduzida por SLATTERY [07] e WHITAKER [08] para a homogeneização das equações que regem o fenômeno em estudo.

A técnica consiste em considerar uma mistura
multicomponente, contendo \("n" \) componentes, e construir um volume onde as médias serão realizadas de tal forma que este volume seja de grandes dimensões, quando comparado com a escala de cada componente, mas pequeno o suficiente de tal forma que todas as variáveis de campo (no caso a temperatura) tenham pequena variação no volume. A forma do volume onde as médias serão realizadas é assumida como arbitrária e sem influência no resultado, em qualquer operação das médias. Com este procedimento, é possível obter-se um conjunto de equações que representem o fenômeno em termos de médias não sendo, contudo, um sistema fechado, sendo necessária a determinação de equações de fechamento para a formulação completa do modelo. O desenvolvimento desta técnica é apresentada no Capítulo IV.

Utilizando esta técnica, JEFFREY [9] analisa a condução de calor através de uma suspensão de partículas esféricas, assumida como estacionária, randômica e estatisticamente homogênea, dispersas em uma matriz de condutividade térmica constante.

A fração em volume das partículas dispersas \(\phi \) é considerada pequena no estudo de JEFFREY, que trata de estender a análise efetuada por MAXWELL em 1873, para permitir considerar as interações entre as esferas. O resultado é expresso até ordem \(\phi^2 \), utilizando a média das interações entre as esferas para a obtenção das propriedades médias da suspensão. Neste trabalho, JEFFREY não faz referência a restrições de relações de \(\frac{Kd}{Km} \).

Como será mostrado no capítulo IV, o fluxo de calor médio \(\langle \dot{q} \rangle \), que representaria um fluxo de calor médio integral nos dois materiais, é dado por:

\[
\langle \dot{q} \rangle = -Km \langle \nabla T \rangle - (Kd - Km) \langle \nabla Td \rangle
\]

(II.12)

E, então, definido o conceito de intensidade do
dipolo do distúrbio térmico produzido por uma esfera (S):

\[\dot{S} = (K_d - K_m) \int \nabla T \, dV \]

(II.13)

sendo a integração feita no volume de uma esfera.

Pode-se, então, reescrever a equação (II.12):

\[\langle \dot{q} \rangle = -K_m \langle \nabla T \rangle - n \cdot \overrightarrow{\bar{S}} \]

(II.14)

onde:

- \(n \) é o número de esferas por unidade de volume;
- \(\overrightarrow{\bar{S}} \) é a média de \(\overrightarrow{S} \) para todas as esferas da suspensão.

Duas funções de probabilidade são, então, associadas com cada arranjo geométrico (G) de esferas:

- \(P(G/O) \) é a densidade de probabilidade para as esferas no arranjo geométrico G, quando a esfera de referência ocupa seu lugar;
- \(P(G) \) é a densidade de probabilidade para as esferas no arranjo geométrico G, quando a esfera de referência não ocupa seu lugar.

Sendo:

\[\int P(G/O) \, dG = \int P(G) \, dG = 1 \]

Desta forma a equação (II.14) é reescrita:

\[\langle \dot{q} \rangle = -K_m \langle \nabla T \rangle - n \cdot \sum G P(G/O) \, dG \]

(II.15)

Com o desenvolvimento das interações entre as esferas e da análise da função densidade de probabilidade para arranjos onde as esferas estejam separadas (ordenadas ou
randônicas), obtem-se uma expressão da condutividade térmica efetiva em função da fração de vazio.

\[K_{ef} = K_m \left[1 + 3.\beta_1 \phi + \phi^2 \xi \right] \] (II.16)

onde: \[\beta = \frac{K_d - K_m}{K_d + 2 \cdot K_m} \]

\[\xi = \text{resultado de uma série em } \beta \]

A Tabela II.1, apresenta os resultados de JEFFREY.

Tabela II.1: Resultados obtidos com o modelo de JEFFREY.

<table>
<thead>
<tr>
<th>Kd/Km</th>
<th>(\beta)</th>
<th>(\xi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-0.500</td>
<td>0.588</td>
</tr>
<tr>
<td>0.02</td>
<td>-0.485</td>
<td>0.558</td>
</tr>
<tr>
<td>0.10</td>
<td>-0.429</td>
<td>0.450</td>
</tr>
<tr>
<td>0.50</td>
<td>-0.200</td>
<td>0.110</td>
</tr>
<tr>
<td>1.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.00</td>
<td>0.250</td>
<td>0.208</td>
</tr>
<tr>
<td>5.00</td>
<td>0.571</td>
<td>1.230</td>
</tr>
<tr>
<td>50.00</td>
<td>0.942</td>
<td>3.900</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1.000</td>
<td>4.510</td>
</tr>
</tbody>
</table>

HADLEY [10], utilizando-se também da técnica de médias volumétricas, propôs um modelo empirico-analítico para a determinação da condutividade térmica efetiva de materiais compostos. HADLEY detem-se em análise mais pormenorizada de materiais compostos obtidos a partir do processo de metalurgia do pó.

O modelo proposto por HADLEY para um sistema com dois componentes é apresentado a seguir:
\[K_{ef} = K_d (1 - \alpha). \left[\frac{\phi f_o + \left(\frac{K_m}{K_d} \right) (1 - \phi f_o)}{1 - \phi (1 - f_o) + \left(\frac{K_m}{K_d} \right) \phi (1 - f_o)} \right] + \\
+ \alpha \left[\frac{2 \left(\frac{K_m}{K_d} \right) \phi^2 (1 - \phi) + (1 + 2 \phi) \left(\frac{K_m}{K_d} \right)}{(2 + \phi) \left(\frac{K_m}{K_d} \right) + 1 - \phi} \right] \] (II.17)

onde: \(\alpha \) e \(f_o \) são parâmetros a serem determinados.

O parâmetro experimental \(f_o \), segundo HADLEY, é esperado que seja aproximadamente constante para sólidos contínuos, enquanto o parâmetro experimental \(\alpha \) é fortemente dependente do grau de consolidação da estrutura, o que representaria na realidade o grau de contato da partículas.

Para sistemas granulares, o parâmetro \(\alpha \) é pequeno sendo, portanto, o primeiro termo da equação (II.17) dominante para valores moderados de \(K_m/K_d \). Para materiais consolidados, ou seja, que apresentam ligação entre as partículas, o parâmetro \(\alpha \) é significativo, da ordem de \(10^{-1} \). Desta forma o segundo termo da equação (II.17) pode ser dominante para grandes faixas de \(K_m/K_d \).

Para a determinação experimental do parâmetro \(\alpha \), HADLEY propõe que seja feita a medição da condutividade térmica somente do esqueleto, sem estar impregnado e preferencialmente no vácuo, ou em um meio de baixa condutividade térmica, quando comparada com a da matriz. Assim, será possível avaliar o grau de consolidação do material. A Figura II.2 apresenta a curva levantada por HADLEY que expressa o parâmetro \(\alpha \) em função de \((1 - \phi) \) denominado na figura por \(\delta \).

É proposto que para a determinação experimental do parâmetro \(f_o \) seja utilizado a menor relação possível de \(K_m/K_d \),
diminuindo assim a influência do segundo termo da equação (II.17). Nas medições feitas no trabalho de HADLEY foi verificado que f_o se encontra dentro de uma faixa conforme mostrado abaixo:

$$0.8 \leq f_o \leq 0.9$$

(II.18)

Figura II.2: Valores do parâmetro a determinados a partir de medições em corpos de prova em vácuo.

A utilização dos valores obtidos por HADLEY para materiais diferentes daqueles por ele estudados podem levar a erros consideráveis, conforme colocado no próprio trabalho.

BATCHelor e O'BRIEN [11] analisaram a condução de calor em materiais compostos constituídos por material disperso com elevada condutividade térmica distribuído em uma matriz. Consideram que a fração volumétrica do material disperso é elevada, de tal forma que as partículas estão em, ou quase,
contato.

A técnica de médias volumétricas, bem como, o conceito de intensidade do dipolo, é utilizada no trabalho de Batchelor e O'Brien. Pode-se desta forma reescrever a equação (II.12):

\[\langle \hat{q} \rangle = -K_m \langle \nabla T \rangle - (K_d - K_m) \langle \nabla T_d \rangle \tag{II.12} \]

O conceito de intensidade de dipolo é então apresentado de duas formas análogas:

\[\mathbf{Z} = \left(\frac{K_d}{K_m} - 1 \right) K_m \int \nabla T \, dV = \left(1 - \frac{K_m}{K_d} \right) \int_{\mathcal{A}_d} \mathbf{Z} \cdot \hat{n} \, dA \tag{II.19} \]

onde: \(\mathcal{A}_d \) é a área superficial do material disperso; \(\hat{n} \) é o versor normal a \(\mathcal{A}_d \); \(\mathbf{Z} \) é o vetor posição de um ponto em \(\mathcal{A}_d \).

Como o trabalho analisa os casos onde \(K_d/K_m \gg 1 \), o termo \(K_m/K_d \) na equação (II.19) pode ser desprezado. Contudo, existem outras consequências do fato de \(K_d/K_m \gg 1 \):

1. como \(K_d \) é muito elevado o gradiente térmico nas partículas é pequeno;

2. o fluxo de calor, através da superfície de uma partícula, é de maior importância na proximidade dos pontos de contato com outras partículas.

Desta forma, a quantidade \(\mathbf{Z} \cdot \hat{n} \) assume valores significativos em alguns pontos separados na superfície de uma partícula.

Com estas hipóteses, Batchelor e O'Brien determinam o fluxo de calor entre duas esferas adjacentes para três condições distintas:

22
. quando as esferas não se tocam;
. quando as esferas se tangenciam;
. quando há uma área de contato entre as esferas.

Os resultados obtidos com essas condições para alguns arranjos de esferas encontram-se na Tabela II.2. Os valores da condutividade térmica efetiva é expressa em termos da condutividade térmica da matriz e um fluxo de calor adimensional \([f]\), as relações para este parâmetro \(f\) encontram-se na Tabela II.3, e são expressos em termos dos seguintes parâmetros:

. \(h\) é a distância entre as esferas;

. \(a\) é o raio das esferas;

. \(\lambda = \left(\left(\frac{K_d}{K_m} \right)^2 \cdot \frac{h}{a} \right)\);

. \(P(\lambda)\) é a função que avalia a alteração no fluxo de calor entre duas esferas devido à não uniformidade da temperatura na superfície das esferas;

. \(\beta = \left(\frac{K_d}{K_m} \cdot \frac{\rho}{a} \right)\);

\(Hc(\beta)\) é o fluxo de calor adimensional através da superfície de contato com raio \(\beta\);

\(\Delta H_m(\beta)\) é a diferença adimensional entre o fluxo de calor através da matriz e o fluxo de calor total quando as partículas se tangenciam.
Tabela II.2: Resultado do modelo de BATCHELOR e O'BRIEN.

<table>
<thead>
<tr>
<th>Tipos de arranjo de esferas</th>
<th>Número de pontos de contato</th>
<th>$Kef \quad Km. I$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cúbico simples</td>
<td>06</td>
<td>1.57</td>
</tr>
<tr>
<td>cúbico de corpo centrado</td>
<td>08</td>
<td>2.72</td>
</tr>
<tr>
<td>cúbico de face centrada</td>
<td>12</td>
<td>4.45</td>
</tr>
</tbody>
</table>

Tabela II.3: Valores do fluxo de calor adimensional (Θ).
As condições de contato são mostradas na Figura II.3.

<table>
<thead>
<tr>
<th>Condição de contato</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequena distância entre as esferas</td>
<td>$\ln(a/h) - P(\lambda)$</td>
</tr>
<tr>
<td>Contato pontual</td>
<td>$\ln(Kd/Km)^2$</td>
</tr>
<tr>
<td>Contato formando superfície de raio ρ</td>
<td>$He(\beta) + \Delta Hm(\beta) + \ln(Kd/Km)^2$</td>
</tr>
</tbody>
</table>
Figura II.3: Condições de contato da Tabela II.3

Os valores de $P(\lambda)$ podem ser obtidos a partir da Figura II.4 enquanto os valores de $Hc(\beta)$ e $\Delta Hm(\beta)$ podem ser obtidos a partir da Figura II.5. Os valores de $P(\lambda)$ e $Hc(\beta)$ e $\Delta Hm(\beta)$ são expressos em função dos seguintes parâmetros:

$$\lambda = \frac{a^2}{h \cdot a}$$ onde $a = \frac{Kd}{Km}$

$$\beta = \frac{\alpha \cdot \rho}{a}$$
Figura II.4: Alteração no fluxo de calor entre duas esferas, devido à não uniformidade da temperatura na superfície das partículas.
Figura II.5: Fluxo de calor adimensional \(Hc(\beta) \) através da superfície de contato com raio \(\rho \).

Diferença adimensional entre o fluxo de calor através da matriz e o fluxo de calor total quando as partículas se tangenciam.

Deve ser observado que a análise deste modelo indica que os resultados obtidos para a condutividade térmica efetiva com valores de \(Kd/Km \) menores que 25, em alguns casos, (vide Capítulo VI) apresentam resultados não fisicamente coerentes. Outros trabalhos indicam que os valores obtidos com este modelo são confiáveis para \(Kd/Km \) maior que 100, não sendo, portanto recomendado para relações menores que 100.
III. Equação Geral de Condução de Calor

A análise de materiais compostos, devido às suas variadas formas estruturais tais como materiais anisotrópicos, anisotrópicos homogêneos, ortotrópicos homogêneos, etc., requer, a priori, a utilização da equação de condução de calor em sua forma mais geral, ou seja, considerando-se propriedades anisotrópicas e heterogêneas. Desta forma, torna-se importante o desenvolvimento da equação geral, a partir de conceitos básicos, permitindo a interpretação de cada termo componente da equação.

Seja o volume elementar mostrado na Figura III.1.

![Figura III.1: Volume elementar para desenvolvimento da equação geral de condução de calor.](image-url)
Aplicando-se a primeira lei da termodinâmica ao volume elementar da Figura III.1:

$$\frac{\partial Q}{\partial t} = \frac{\partial W}{\partial t} + \frac{\partial U}{\partial t} + \frac{\partial E_c}{\partial t} + \frac{\partial E_p}{\partial t}$$ \hspace{1cm} (III.1)

sendo: \(\frac{\partial W}{\partial t} = 0\); \(\frac{\partial E_c}{\partial t} = 0\); \(\frac{\partial E_p}{\partial t} = 0\) \hspace{1cm} (III.2)

Obtem-se:

$$\frac{\partial Q}{\partial t} = \frac{\partial U}{\partial t}$$ \hspace{1cm} (III.3)

Analisando-se \(\frac{\partial Q}{\partial t}\) pode-se escrever:

$$\frac{\partial Q}{\partial t} = (q_x - q_{x+dx}) + (q_y - q_{y+dy}) + (q_z - q_{z+dz}) + \hspace{1cm} (III.4)$$

+ q.dx.dy.dz

onde: q é a energia que cruza cada face por unidade de tempo;
q é a geração de energia por unidade de volume e por unidade de tempo.

Desenvolvendo-se \(q_{x+dx}\) a partir da expansão em série de TAYLOR:

$$q_{x+dx} = q_x + \frac{1}{1!} \frac{\partial q_x}{\partial x} dx + \frac{1}{2!} \frac{\partial^2 q_x}{\partial x^2} (dx)^2 + \ldots$$ \hspace{1cm} (III.5)

Considerando-se expansão em primeira ordem e desenvolvendo-se analogamente \(q_{y+dy}\) e \(q_{z+dz}\), obtem-se:
\[q_{x+dx} = q_x + \frac{\partial q_x}{\partial x} \, dx \] (III.6)

\[q_{y+dy} = q_y + \frac{\partial q_y}{\partial y} \, dy \] (III.7)

\[q_{z+dz} = q_z + \frac{\partial q_z}{\partial z} \, dz \] (III.8)

Analisando-se, também, \(\frac{dU}{dt} \) pode-se escrever:

\[\frac{dU}{dt} = \rho \cdot c \cdot (dx \cdot dy \cdot dz) \cdot \frac{\partial T}{\partial t} \] (III.9)

onde: \(\rho \) é a densidade do material;
\(c \) é o calor específico do material;

Substituindo-se (III.6), (III.7), (III.8) e (III.9) em (III.3) obtem-se:

\[- \frac{\partial q_x}{\partial x} \, dx - \frac{\partial q_y}{\partial y} \, dy - \frac{\partial q_z}{\partial z} \, dz + q \cdot dx \cdot dy \cdot dz = \rho \cdot c \cdot (dx \cdot dy \cdot dz) \cdot \frac{\partial T}{\partial t} \] (III.10)

Neste ponto é importante expressar-se o fluxo de calor \((\dot{q}^\prime) \), em cada face do volume elementar, utilizando-se a equação constitutiva de FOURIER para materiais anisotrópicos:

\[\dot{q}^\prime = - (\mathbf{K} \cdot \nabla T) \] (III.11)
onde: \(\mathbf{K} \) é o tensor de condutividade térmica expresso como:

\[
\mathbf{K} = \begin{bmatrix}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{bmatrix}
\]

expressando-se \(q_x, q_y, q_z \) a partir da equação (III.11):

\[
q_x = - \left[K_{11} \frac{\partial T}{\partial x} + K_{12} \frac{\partial T}{\partial y} + K_{13} \frac{\partial T}{\partial z} \right] \cdot dy \cdot dz
\]

\[
q_y = - \left[K_{21} \frac{\partial T}{\partial x} + K_{22} \frac{\partial T}{\partial y} + K_{23} \frac{\partial T}{\partial z} \right] \cdot dz \cdot dx
\]

\[
q_z = - \left[K_{31} \frac{\partial T}{\partial x} + K_{32} \frac{\partial T}{\partial y} + K_{33} \frac{\partial T}{\partial z} \right] \cdot dz \cdot dy
\]

Substituindo-se (III.12), (III.13) e (III.14) em (III.10) obtem-se:

\[
\left[\frac{\partial}{\partial x} \left[K_{11} \frac{\partial T}{\partial x} + K_{12} \frac{\partial T}{\partial y} + K_{13} \frac{\partial T}{\partial z} \right] \right] \cdot dx \cdot dy \cdot dz + \\
+ \left[\frac{\partial}{\partial y} \left[K_{21} \frac{\partial T}{\partial x} + K_{22} \frac{\partial T}{\partial y} + K_{23} \frac{\partial T}{\partial z} \right] \right] \cdot dx \cdot dy \cdot dz + \\
+ \left[\frac{\partial}{\partial z} \left[K_{31} \frac{\partial T}{\partial x} + K_{32} \frac{\partial T}{\partial y} + K_{33} \frac{\partial T}{\partial z} \right] \right] \cdot dx \cdot dy \cdot dz + \\
+ q \cdot dx \cdot dy \cdot dz = \rho \cdot c \cdot (dx \cdot dy \cdot dz) \cdot \frac{\partial T}{\partial t}
\]

Obtem-se finalmente a equação geral de condução de calor em regime transitório, para material anisotrópico e não homogêneo:
\[
\frac{\partial}{\partial x} \left(K_{11} \frac{\partial T}{\partial x} + K_{12} \frac{\partial T}{\partial y} + K_{13} \frac{\partial T}{\partial z} \right) + \\
+ \frac{\partial}{\partial y} \left(K_{21} \frac{\partial T}{\partial x} + K_{22} \frac{\partial T}{\partial y} + K_{23} \frac{\partial T}{\partial z} \right) + \\
+ \frac{\partial}{\partial z} \left(K_{31} \frac{\partial T}{\partial x} + K_{32} \frac{\partial T}{\partial y} + K_{33} \frac{\partial T}{\partial z} \right) + q = \rho \cdot c \cdot \frac{\partial T}{\partial t} \quad (III.16)
\]

É importante, após a dedução da equação geral de condução de calor, analisar casos simplificados válidos para certas classes de materiais compostos.

III.1 Material Composto Anisotrópico Homogêneo

A utilização de um material como sendo anisotrópico homogêneo implica na consideração da condutividade térmica como sendo um tensor de segunda ordem, porém constante no espaço.

Com esta hipótese, a equação (III.16) assume uma forma mais simplificada conforme mostrado abaixo:

\[
\rho \cdot c \cdot \frac{\partial T}{\partial t} = K_{11} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + (K_{19} + K_{29} + K_{39}) \left(\frac{\partial T}{\partial x} \frac{\partial T}{\partial y} \frac{\partial T}{\partial z} \right) + q \quad (III.17)
\]

A equação (III.17) é válida para a análise, por exemplo, de cristais que apresentam condutividade anisotrópica, e também para estruturas constituídas por reforços de fibras com distribuição tridimensional e constante, de tal forma que possam ser consideradas como quasi-homogêneas.
III.2 Material Composto Ortotrópico Homogéneo

Com a hipótese de propriedade ortotrópica o tensor de condutividade térmica assume características particulares, uma vez que uma das direções passa a ter características isotrópicas.

Desta forma, o tensor de condutividade apresentado na equação (III.11a), pode ser simplificado para:

\[
\begin{bmatrix}
K_{11} & K_{12} & 0 \\
K_{21} & K_{22} & 0 \\
0 & 0 & K_{33}
\end{bmatrix}
\]

(III.18)

Substituindo-se o tensor de condutividade térmica para um dado material ortotrópico homogéneo (equação III.18) na equação (III.17), obtem-se:

\[
\rho.c.\frac{\partial T}{\partial t} = K_{11}\frac{\partial^2 T}{\partial x^2} + K_{22}\frac{\partial^2 T}{\partial y^2} + K_{33}\frac{\partial^2 T}{\partial z^2} + (K_{12} + K_{21})\frac{\partial^2 T}{\partial x \partial y} + q
\]

(III.19)

Ligas metálicas que, seja por processo de solidificação ou por processos de conformação mecânica, apresentam orientação preferencial para o alinhamento dos reticulados cristalinos, de tal forma que a condutividade térmica deva ser expressa por um tensor conforme equação (III.18), devem ter o processo de transmissão de calor analisado pela equação (III.19).

Materiais compostos por camadas justapostas de fibras podem ser analisados através da expressão (III.19).
III.3 Material Quasi Isotrópico Heterogêneo

Dentre os materiais que podem ser abordados com este enfoque estão os materiais compostos por uma estrutura porosa preenchida com um material infiltrado. Por exemplo, uma estrutura cerâmica porosa infiltrada por um metal. O conceito de quasi isotropia está relacionado com o fato de as estruturas porosas se repetirem periodicamente de tal forma que macroscopicamente as propriedades possam ser consideradas isotrópicas.

A expressão geral para a condução de calor em tais materiais é mostrada abaixo.

\[\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial T}{\partial z} \right) + q \quad (III.20) \]

As equações diferenciais de derivadas parciais (III.16), (III.17), (III.19) e (III.20) apresentam restrições possibilidades de soluções analíticas, e em sua maioria, com condições de contorno bastante particulares. Desta forma, a utilização de métodos numéricos como ferramenta para solução destas equações ganhou grande impulso com a introdução de materiais compostos a nível industrial.

O objetivo deste trabalho, conforme já discutido na introdução deste, é a análise da transferência de calor em estruturas porosas preenchidas com outro material, considerando a estrutura resultante como quasi isotrópica e heterogênea. A análise estará restrita a processos em regime permanente e sem geração interna de energia. Obtem-se assim a equação de trabalho:

\[\frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial T}{\partial z} \right) = 0 \quad (III.21) \]
A equação (III.21) é completa para a análise de materiais quasi-isotrópicos heterogêneos, contudo, mesmo com a utilização de técnicas computacionais, tais como volumes finitos ou elementos finitos, a solução do problema térmico é, em muitos casos, impossível devido às reduzidas dimensões das partículas. Para dimensões de partículas da ordem de microns, o grau de refinamento da malha computacional seria de tal nível que inviabilizaria a análise numérica, do ponto de vista tempo de processamento e capacidade de memória do computador. Isso sem considerar-se o problema prático de definir-se a geometria e a posição da partícula na matriz.

Desta forma, é proposto como método de análise uma abordagem em termos de médias volumétricas, conforme exposto no Capítulo a seguir, que, a princípio, eliminaria estas dificuldades, por permitir tratar o material composto como um material homogêneo com propriedades bem definidas.

Para a análise do fenômeno da transferência de calor em regime transitório, as propriedades termodinâmicas calor específico e densidade devem ser avaliadas para o material composto, formando assim um novo campo de estudo que, por si só, justifica a elaboração de um outro trabalho específico para o assunto, o que não é o escopo deste.
IV. Formulação do Problema Térmico em Termos de Médias Volumétricas

A formulação do problema térmico de transferência de calor por condução utilizando a técnica de médias volumétricas será considerada para a análise de um material heterogêneo, o qual é o objetivo deste trabalho. O conceito da técnica de médias volumétricas foi apresentado no Capítulo II - REVISÃO BIBLIOGRÁFICA, quando da discussão de trabalhos desenvolvidos nesta área, sendo apresentado neste Capítulo o desenvolvimento matemático da técnica e sua terminologia.

Seja a média da temperatura no constituinte \(i \), do material composto por \(n \) constituintes, com relação ao volume total onde a média está sendo efetuada, dada por:

\[
\langle T_i \rangle = \frac{1}{V} \int_{V_i} T dV \tag{IV.1}
\]

onde: \(V_i \) é o volume do constituinte \(i \) contido no volume \(V \) onde a média está sendo efetuada. (\(V = \sum_i V_i \))

A média intrínseca ao constituinte é dada por:

\[
\langle T_i \rangle = \frac{1}{V_i} \int_{V_i} T dV \tag{IV.2}
\]

A Figura IV.1 apresenta um material composto por dois constituintes \(\gamma \) e \(\alpha \), sendo também mostrado nesta figura o volume \(V \), onde a média está sendo efetuada, e os volumes \(V_\gamma \) e
Figura IV.1: Material composto granular

Assim, pode-se obter a média global da temperatura, integrando-se sobre todas as fases:

\[\langle T \rangle = \frac{1}{V} \int_V T dV \quad \text{(IV.3)} \]

A partir das equações (IV.1) e (IV.3) pode-se escrever:

\[\langle T \rangle = \sum_{i=1}^{n} \langle T_i \rangle \quad \text{(IV.4)} \]

APLICANDO-SE O OPERADOR GRADIENTE A CADA MEMBRO DA EQUAÇÃO (IV.4) E UTILIZANDO-SE O TEOREMA DA MÉDIA ESPACIAL APRESENTADO POR SLATERREY [07] PARA TRANSFORMAR MÉDIAS DE GRADIENTES EM GRADIENTES DE MÉDIAS, OBTÉM-SE:
\[\nabla \langle T \rangle = \sum_{i=1}^{n} \langle \nabla T_i \rangle - \sum_{i=1}^{n} \frac{1}{V_i} \int_{A_{i_0}} T \hat{n}_i \, dA \] \hspace{1cm} (IV.5)

onde: \(A_{i_0} \) é a área superficial do constituinte \(i \), com exceção da parte coincidente com a superfície do volume onde a média volumétrica está sendo considerada; \(\hat{n}_i \) é o versor normal à superfície, com sentido externo positivo.

Como cada elemento de área superficial entre cada fase ocorre em duas integrais com versores de direções contrárias e, considerando-se que a resistência de contato entre as fases é desprezível, verifica-se que todas as integrais da equação (IV.5) se cancelam.

Pode-se, assim, reescrever a equação (IV.5) como:

\[\nabla \langle T \rangle = \sum_{i=1}^{n} \langle \nabla T_i \rangle \] \hspace{1cm} (IV.6)

O fluxo de calor no constituinte \(i \) pode ser determinado através da equação de FOURIER:

\[\dot{q}_i = - \mathbf{K}_i \cdot \nabla T_i \] \hspace{1cm} (IV.7)

onde: \(\mathbf{K}_i \) é o tensor de condutividade térmica do constituinte \(i \), sendo \(\mathbf{K}_i \) constante na fase \(i \).

Tirando-se a média volumétrica da equação (IV.7), e definindo-se um fluxo de calor global médio de maneira análoga à utilizada para a temperatura, obtem-se:

\[\langle \dot{q}'' \rangle = \sum_{i=1}^{n} \langle \dot{q}_i'' \rangle = - \sum_{i=1}^{n} \mathbf{K}_i \cdot \langle \nabla T_i \rangle \] \hspace{1cm} (IV.8)
Definindo-se um tensor de condutividade térmica efetiva \(\bar{\kappa}_{\text{ef}} \) para o material composto através da relação mostrada abaixo:

\[
\langle q'' \rangle = - \bar{\kappa}_{\text{ef}} \cdot \nabla \langle T \rangle
\] \hspace{1cm} (IV.9)

Impondo-se a igualdade entre as equações (IV.8) e (IV.9), resulta:

\[
\bar{\kappa}_{\text{ef}} \cdot \nabla \langle T \rangle = \sum_{i=1}^{n} \kappa_{i} \cdot \langle \nabla T_{i} \rangle
\] \hspace{1cm} (IV.10)

Considerando-se que as médias intrínsecas (equação (IV.2)) de variáveis intensivas, tal como a temperatura, correspondem mais a quantidades mensuráveis do que às médias volumétricas do constituinte, pois é possível, a priori, determinar-se experimentalmente a temperatura em cada constituinte, pode-se reescrever as equações (IV.8) e (IV.10), obtendo-se desta forma as equações de trabalho.

Sabendo-se que:

\[
\langle T \rangle = \sum_{i=1}^{n} \langle T_{i} \rangle = \sum_{i=1}^{n} \left(\frac{1}{V_{i}} \int_{V_{i}} T \, dV \right) = \sum_{i=1}^{n} \phi_{i} \langle T_{i} \rangle
\] \hspace{1cm} (IV.11)

onde: \(\phi_{i} \) é a fração volumétrica do constituinte \(i \).

Logo a equação (IV.8) fica:

\[
\nabla \langle T \rangle = \sum_{i=1}^{n} \nabla \phi_{i} \langle T_{i} \rangle = \sum_{i=1}^{n} \phi_{i} \nabla \langle T_{i} \rangle + \langle T_{i} \rangle \nabla \phi_{i}
\] \hspace{1cm} (IV.12)

Considerando-se a fração volumétrica do constituinte \(i \) \((\phi_{i}) \) constante no espaço, obtem-se:
\[\nabla <T> = \sum_{i=1}^{n} \phi_i \nabla <T_i>^i \] \hspace{1cm} (IV.13)

A equação (IV.10) fica:

\[\tilde{K}_{ef} \cdot \nabla <T> = \sum_{i=1}^{n} \phi_i \tilde{K}_i \cdot <\nabla T_i>^i \] \hspace{1cm} (IV.14)

As equações (IV.13) e (IV.14) são suficientemente genéricas, mas apresentam um problema de fechamento pois para \(n \) constituintes, tem-se duas equações e \(n+1 \) incôgnitas (considerando-se a condutividade térmica como sendo um escalar). Portanto, a especificação de diferentes esquemas de fechamento irá produzir diferentes modelos de materiais compostos, consistentes com as hipóteses utilizadas para o desenvolvimento das equações acima mencionadas.

IV.1 Sistemas Formados por Dois Constituintes

Especializando-se as equações (IV.13) e (IV.14) para o caso de um material composto por dois constituintes, consistindo, por exemplo, de um material cerâmico poroso preenchido com um metal. Sendo \(\phi \) a fração de vazio da matriz, tem-se:

\[\nabla <T> = \phi \nabla <T_d>^d + (1 - \phi) \nabla <T_m>^m \] \hspace{1cm} (IV.15)

\[\frac{K_{ef} \cdot \nabla <T>}{K_d} = \phi \frac{\nabla <T_d>^d}{K_d} + \frac{K_m}{K_d} (1 - \phi) \frac{\nabla <T_m>^m}{K_d} \] \hspace{1cm} (IV.15)
onde: Kef é a condutividade efetiva do material composto;
os sobre e subscriptos d e m referem-se ao material
disperso e à matriz, respectivamente.

Na equação acima, as condutividades térmicas são
assumidas como entidades escalares.

Conforme já analisado anteriormente, é
necessário introduzir-se uma equação adicional com o objetivo de
completar-se o modelo representado pelas equações (IV.15) e
(IV.16).

É instrutivo, neste ponto, considerar-se modelos
simples de fechamento, como por exemplo:

$$\langle \nabla T_d \rangle^d = \frac{K_m \langle \nabla T_m \rangle^m}{K_d}$$ (IV.17)

o que equivale a considerar-se os dois constituintes em série,
em relação à direção do fluxo de calor, conforme Figura IV.2.

Figura IV.2: Esquema mostrando uma estrutura composta por dois
constituintes em série.

Desta forma, com a equação (IV.17) em (IV.15),
obtém-se:
\[\nabla i = \langle \nabla i_m \rangle^m \left(\frac{K_m \phi + (1 - \phi)}{K_d} \right) \] \hspace{1cm} (IV.18)

Com as equações (IV.17) e (IV.18) em (IV.16), obtém-se:

\[K_{ef} = \frac{K_m}{K_d} \frac{\phi}{\phi K_m + 1 - \phi} \] \hspace{1cm} (IV.19)

A equação (IV.19) representa a menor condutividade térmica para uma dada matriz porosa.

Outra relação de fechamento possível é dada por:

\[\langle \nabla i_d \rangle^d = \langle \nabla i_m \rangle^m \] \hspace{1cm} (IV.20)

o que equivale a considerar-se os dois materiais constituintes em paralelo com relação ao fluxo de calor, conforme Figura IV.3.

Figura IV.3: Esquema mostrando uma estrutura composta por dois constituintes em paralelo.

Desenvolvendo-se de maneira análoga à anterior, obtem-se:
\[K_{ef} = \phi + (1 - \phi) \frac{K_m}{K_d} \] \hspace{1cm} (IV.21)

A equação (IV.21) representa a maior condutividade térmica possível para uma dada matriz porosa.

Como as equações (IV.19) e (IV.21) são os valores extremos para a condutividade térmica efetiva, pode-se propor, para um dado material composto por dois constituintes e caracterizado por \(\phi \) e \(K_m \), que os gradientes médios de temperatura dos constituintes podem ser relacionados segundo uma combinação adequada das equações (IV.17) e (IV.20), conforme mostrado a seguir:

\[\langle \nabla T_d \rangle^d = \left[f\left(\frac{K_m}{K_d}, \phi \right) + \frac{K_m}{K_d} \left(1 - f\left(\frac{K_m}{K_d}, \phi \right) \right) \right] \langle \nabla T_m \rangle^m \] \hspace{1cm} (IV.22)

onde: \(f\left(\frac{K_m}{K_d}, \phi \right) \) é uma função peso que varia entre 0 e 1.

Contudo, até hoje não foi possível determinar analiticamente o valor da função \(f \) a partir de dados de \(\phi \) e \(K_m/K_d \).

Esta forma, sugere-se um modelo empírico analítico que utiliza as informações resultantes da equação (IV.22), ou seja, que a condutividade térmica efetiva pode ser escrita como uma combinação de materiais em série e em paralelo justapostos adequadamente. Contudo, não se tenta determinar uma função \(f \) única e dependente somente de \(\phi \) e \(K_m/K_d \), mas sim, um modelo físico determinístico do material composto, onde a condução de calor é assumida como de igual probabilidade para todas as direções.

É proposto também um modelo probabilístico para a determinação da condutividade térmica efetiva; neste modelo as condições de fechamento são dadas pela determinação dos caminhos probabilisticamente mais prováveis para o fluxo de calor, e, a partir destes caminhos, é,
então, determinada a condutividade térmica efetiva do material composto.
V. Modelos Físicos Propostos

Conforme mostrado no Capítulo II, REVISÃO BIBLIOGRÁFICA, não existe um modelo único válido para todas as relações de Kd/Km e/ou para todas as faixas de fração volumétrica do material disperso (Ø). Os modelos são mais especializados para condições limites, como Ø reduzido com qualquer relação de Kd/Km, ou Ø elevado mas com elevadas relações de Kd/Km. Contudo, os materiais CERMET que são utilizados no isolamento de pistões encontram-se a meio caminho dos dois limites, ou seja, elevada fração volumétrica do material disperso e reduzidas relações de Kd/Km.

Desta forma, o modelo a ser desenvolvido deve ser capaz de reproduzir esta condição descrita, e, preferencialmente, ser capaz também de reproduzir os modelos limites.

Os modelos que serão apresentados tentam reproduzir um ensaio de determinação da condutividade térmica; onde o corpo de prova é submetido a um gradiente de temperatura e, a partir do fluxo de calor, é determinada, então, a condutividade térmica. Os modelos determinam, então, a condutividade térmica em uma dada direção. Como os objetivos são materiais isotrópicos, a grandeza escalar condutividade térmica está determinada.

São propostos dois modelos:

- Modelo Determinístico: baseado na igual probabilidade de condução de calor em qualquer direção. Adequado para materiais com pequena diferença entre a condutividade térmica do material da matriz e do material disperso (< 10 vezes), ou vice-versa.

- Modelo Probabilístico: baseado em uma distribuição de probabilidade para a condução de calor em uma dada direção. Este modelo inclui materiais com elevada diferença entre a condutividade térmica do material da matriz e do material...
disperso (> 10 vezes), onde pode haver a ocorrência de caminhos preferenciais. É adequado também para a análise de materiais compostos em que os constituintes sejam anisotrópicos.

V.1. **Modelo Determinístico**

O modelo determinístico apresentado neste capítulo baseia-se na possibilidade da representação das características macroscópicas de uma estrutura quasi-isotrópica, a partir da análise de uma célula elementar. Esta célula elementar é definida com informações da curva de distribuição da dimensão das partículas do material disperso, da curva de distribuição da dimensão dos vazios e da verificação de amostras ao microscópico eletrônico para observação da morfologia da estrutura.

Esta célula assim definida deve apresentar uma fração volumétrica de material disperso igual à do material composto, e, portanto, uma densidade idêntica ao todo. Um exemplo simplificado de uma célula elementar genérica é mostrado na Figura V.1., é importante ressaltar que a célula elementar deve representar as características do material e que pode atingir formas variadas.

Figura V.1: Volume elementar representativo do material.
Uma vez identificada a célula elementar representativa do material, esta é subdividida em volumes menores, aqui denominados volumes secundários, os quais não têm mais as características macroscópicas do corpo, mas que permitem determinar a sequência dos materiais constituíntes sem, contudo, ter-se a identificação precisa destes. É importante que as dimensões dos volumes secundários sejam bem escolhidas para que particularidades da estrutura não sejam perdidas:

\[a \ll A; \quad b \ll B; \quad c \ll C \]

(V.1)

Cada volume secundário gerado é então subdividido novamente em volumes menores, os quais serão denominados volumes terciários. Este processo é mostrado, a seguir, na Figura V.2.

Figura V.2: Definição dos volumes terciários.
Com esta subdivisão a dificuldade de definição do material de cada volume secundário fica amenizada, sendo definido o material na escala do volume terciário assumindo-se que a composição destes reproduz o volume secundário. O baricentro de cada volume terciário é o ponto de identificação do material, sendo, então, atribuído a este a condutividade térmica da matriz ou do material disperso.

A estrutura heterogênea resultante para os volumes secundários é uma sequência de volumes bem definidos com propriedades homogêneas, ou seja, os volumes terciários.

As informações obtidas com a formulação do problema térmico em termos de médias volumétricas, conforme exposto no Capítulo IV, indicam uma metodologia para a condição de fechamento do modelo físico. Conforme a equação (IV.22), pode-se delinear um modelo que seja uma combinação de componentes em série e paralelo, ponderados por uma função \(f \left(\frac{K_m}{K_d}, \phi \right) \):

\[
\langle \nabla T_d \rangle^d = \left[f \left(\frac{K_m}{K_d}, \phi \right) + \frac{K_m}{K_d} \left(1 - f \left(\frac{K_m}{K_d}, \phi \right) \right) \right] \cdot \langle \nabla T_m \rangle^m \quad \text{(V.2)}
\]

Contudo, o objetivo do modelo determinístico proposto não é determinar explicitamente uma função \(f \left(\frac{K_m}{K_d}, \phi \right) \) que satisfaça todas as condições possíveis, mas sim estabelecer um algoritmo que utilize essas informações. Desta forma, será considerado que os volumes terciários que compõem um dado volume secundário e que estejam alinhados com o eixo \(Z \) apresentam um fluxo de calor unidimensional e característico de cada conjunto paralelo à \(Z \), conforme mostrado na Figura V.3.
Figura V.3: Duas colunas de volumes terciários justapostos, indicando os fluxos de calor unidimensionais característicos.

O problema assim colocado pode ser representado pelas equações (IV.17), (IV.18) e (IV.19) aplicadas a cada coluna justaposta, assim, utilizando-se a equação (IV.19) na forma inicial para identificar-se cada volume terciário e também cada coluna, obtem-se:

\[
K_{efi} = \frac{1}{\sum_{j=1}^{m} \left(\frac{b_{ij}}{K_{ij}} \right)}
\]

onde: \(b_i \) é o comprimento na direção Z do volume secundário;
b_j é o comprimento na direção Z de cada volume terciário;

K_j é a condutividade térmica característica de cada volume terciário (j);

K_{ef_i} é a condutividade térmica equivalente de cada coluna secundária (i).

O valor de K_{ef_i}, determinado através da expressão (V.3), é atribuído como a condutividade equivalente da coluna i; assim a estrutura resultante para o volume secundário em análise é composta por colunas homogêneas justapostas, conforme ilustrado na Figura V.4.

Figura V.4: Estrutura resultante para o volume secundário em análise.

Com a estrutura resultante o problema pode ser representado pelas equações (IV.20) e (IV.21), considerando-se
que as superfícies inferior e superior são isotermas, respectivamente com temperatura \(T_0 \) e \(T_1 \). Desta forma, desenvolvendo-se a equação (IV.21) na forma indicial para se identificar cada coluna homogênea e o volume secundário em análise, obtém-se:

\[
K_{ef_k} = \frac{1}{A_t} \cdot \sum_{i=1}^{n} K_{ef_i} A_{col} \quad (V.4)
\]

onde: \(A_t \) é a área transversal ao fluxo de calor, no volume secundário \((A_t = a \cdot c) \);

\(A_{col} \) é a área transversal ao fluxo de calor, na coluna homogênea \((A_{col} = a' \cdot b') \);

\(K_{ef_k} \) é a condutividade térmica efetiva do volume secundário em análise.

Com a definição da condutividade térmica efetiva para todos os volumes secundários que compõem a célula elementar, o procedimento descrito para obtenção das equações (V.3) e (V.4) é repetido coerentemente para análise da célula elementar, obtendo-se:

\[
K_{ef} = \frac{1}{B} \cdot \frac{1}{\sum_{k=1}^{i} \left(\frac{b_i}{K_{ef_k}} \right)} \quad (V.5)
\]

onde: \(B \) é o comprimento do volume elementar na direção \(Z \);

\(b_i \) é o comprimento do volume secundário na direção \(Z \);

\(K_{ef_k} \) é a condutividade térmica característica do volume secundário \((\alpha) \);
Kef é a condutividade térmica equivalente de cada coluna elementar (i).

\[\text{Kef} = \frac{1}{A_{vl}} \cdot \sum_{l=1}^{Q} \text{Kef} \cdot A_t \]

(V.6)

onde: \(A_{vl} \) é a área transversal ao fluxo de calor na célula elementar \((A_{vl} = C.A) \);
\(S \) Kef é a condutividade térmica efetiva da célula elementar.

A condutividade térmica equivalente da célula elementar, obtida através da equação (V.6), é atribuída como sendo a condutividade térmica equivalente de todo o material, segundo a hipótese de que a célula elementar é representativa do todo. Este procedimento é, na verdade, a obtenção da média volumétrica da condutividade térmica, considerando-se uma relação local de fechamento, utilizando-se o conhecimento da estrutura do material. Contudo, as equações apresentadas foram desenvolvidas considerando a utilização das equações de fechamento (V.3) e (V.4), em sequência, o que implica no estabelecimento de uma forma rígida de como deve ser o comportamento térmico da estrutura, o que pode não corresponder à realidade. Em termos de comportamento térmico da estrutura, as equações de fechamento poderiam ser consideradas em ordem inversa, com igual probabilidade de ocorrência.

São utilizadas, então, as equações de fechamento na ordem inversa da anteriormente considerada. Desta forma, será considerado que os volumes terciários, que compõem um dado volume secundário e que tenham a mesma coordenada Z para a posição do baricentro, estão submetidos à mesma diferença de temperatura \((T'_i - T'_o) \), conforme mostrado na Figura V.5.
Figura V.5: Dois planos de volumes terciários justapostos.

O problema assim colocado pode ser representado pelas equações (IV.20) e (IV.21) aplicadas a cada plano justaposto, considerando-se que as superfícies superior e inferior são isotermas. Desta forma, desenvolvendo-se a equação (IV.21) na forma indicial para se identificar cada volume terciário e cada plano em análise, obtem-se:

\[K_{ef}^k = \frac{1}{A_T} \cdot \sum_{j=1}^{m} K_j A_{ter} \]

(V.7)

onde: \(K_{ef}^k \) é a condutividade efetiva do plano em análise;
\(K_j \) é a condutividade térmica característica de cada volume terciário (j);
\(A_T \) é a área transversal ao fluxo de calor, no volume secundário (\(A_T = a.c \)).
\(A_{ter} \) é a área transversal ao fluxo de calor, no volume terciário \((A_{ter} = a'.c')\).

O valor de \(K_{ef_k} \) determinado através da expressão (V.7) é atribuído como a condutividade efetiva do plano \(K \). Assim a estrutura resultante para o volume secundário em análise é composta por planos homogêneos justapostos, conforme ilustrado na Figura V.6.

Figura V.6: Estrutura resultante para o volume secundário em análise.

Com a estrutura resultante o problema pode ser representado pelas equações (IV.17), (IV.18) e (IV.19) aplicadas a cada plano justaposto, assim utilizando-se a equação (IV.19) na forma indicial para se identificar cada plano e também cada volume secundário, obtem-se:
\[K_{ef_i} = \frac{1}{\frac{1}{b_i} \sum_{k=1}^{n} \left(\frac{c_i}{K_{ef_k}} \right)} \]

(V.8)

onde: \(b_i \) é o comprimento na direção \(Z \) do volume secundário;
\(c_i \) é o comprimento na direção \(Z \) de cada volume terciário;
\(K_{ef_i} \) é a condutividade térmica efetiva do volume secundário em análise.

De maneira análoga à anteriormente mostrada, com a definição da condutividade térmica efetiva para todos os volumes secundários que compõem a célula elementar, o procedimento para obtenção das equações (V.7) e (V.8) é repetido coerentemente, obtendo-se:

\[K_{ef^{'k}} = \frac{1}{A_{vl}} \sum_{i=1}^{q} K_{ef_i} A_T \]

(V.9)

onde: \(K_{ef^{'k}} \) é a condutividade térmica no plano em análise.

e também

\[K_{ef^P} = \frac{1}{\frac{1}{B} \sum_{k=1}^{p} \left(\frac{b_k}{K_{ef^P_k}} \right)} \]

(V.10)

onde: \(K_{ef^P} \) é a condutividade té rmica da célula elementar.

A partir da determinação da condutividade térmica efetiva da célula elementar com as equações (V.8) e (V.10),
correspondente a dois modelos do comportamento térmico da estrutura, a condutividade térmica efetiva final do volume elementar é definida conforme abaixo:

\[
K_{ef} = \frac{K_{ef}^P + K_{ef}^S}{2}
\]

(V.11)

É importante observar que os valores de condutividade térmica efetiva \(K_{ef}^P\) e \(K_{ef}^S\), definem valores superior e inferior, respectivamente, para o intervalo onde deve se encontrar a condutividade térmica efetiva real do material. Desta forma, pode-se dizer que a condutividade térmica efetiva real estará, com certeza, dentro de um intervalo definido pelo valor médio \(K_{ef}\) mais ou menos um intervalo de confiança \(\left[\frac{K_{ef}^P - K_{ef}^S}{2}\right]\).

Os valores das condutividades térmicas assim determinados são comparados com dados contidos na bibliografia pesquisada e encontram-se descritos no Capítulo VI.

A aplicação do modelo determinístico proposto neste trabalho ao material objeto desta análise encontra-se no Capítulo VII, onde as considerações sobre como o material pode ser descrito também são analisadas.

V.2 Modelo Probabilístico

O desenvolvimento do modelo determinístico, apresentado no item V.1, está baseado na igual probabilidade de condução de calor em qualquer direção, podendo, portanto, a princípio, ser utilizado para materiais isotrópicos e com diferença não significativa de condutividade térmica entre eles, evitando assim a formação de direções preferenciais para a
condução de calor.

A tentativa de desenvolvimento de um modelo probabilístico visa possibilitar a incorporação de características não isotrópicas dos materiais dentro do processo de determinação da condutividade térmica efetiva. Desta forma, seria possível associar tensores de condutividade térmica aos volumes terciários ao invés de associar condutividades escalares, e o processo de transferência de calor entre volumes terciários contíguos se daria através da seleção do caminho probabilisticamente mais provável.

Esta metodologia, em se mostrando eficiente, poderia, então ser utilizada para materiais anisotrópicos e problemas com resistência de contato, em formas mais abrangentes.

Todo o modelo será desenvolvido considerando-se materiais isotrópicos. No entanto, a extensão do conceito, posteriormente, para materiais anisotrópicos é direta.

Para a aplicação do procedimento probabilístico proposto para a determinação da condutividade térmica efetiva, será considerado o mesmo princípio da possibilidade de representação das características macroscópicas de uma estrutura quasi-isotrópica a partir da análise de uma célula elementar.

Uma vez identificada a célula elementar representativa do material, esta é, similarmente ao procedimento proposto para o modelo determinístico, subdividida em volumes menores, os volumes secundários, os quais não têm mais as características macroscópicas do corpo, mas que permitem determinar a sequência dos materiais constituintes, sem contudo, ter-se identificação precisa destes. É novamente importante que as dimensões dos volumes secundários sejam bem escolhidas para que as particularidades da estrutura não sejam perdidas:

\[a \ll A ; \ b \ll B ; \ c \ll C \]

Cada volume secundário gerado é, então, subdividido novamente em volumes menores, os volumes terciários. Este
procedimento é análogo ao procedimento utilizado para o modelo determinístico.

Para a homogeneização dos volumes secundários será considerada a determinação dos caminhos médios probabilisticamente mais prováveis para a transferência de calor a partir de um dado ponto na base até a face oposta do volume secundário em análise. Este procedimento é repetido para todos os pontos da base, tendo-se, assim, os caminhos médios representativos deste volume secundário em estudo. A partir dos caminhos médios e da sequência de materiais, é possível determinar-se a CONDUTIVIDADE TÉRMICA EFETIVA.

Para a aplicação do procedimento probabilístico proposto para a determinação do caminho preferencial para o fluxo de calor, será considerada a definição e construção de uma molécula de percurso. Esta molécula de percurso é definida como um volume terciário de origem mais os possíveis caminhos para o fluxo de calor.

Uma molécula de percurso típica para um dado volume terciário localizado no interior de um volume secundário é mostrada na Figura V.7.

Figura V.7: Molécula de Percurso - Possíveis Caminhos a partir de uma origem (ponto 1).
A nomenclatura utilizada para os pontos é mostrada a seguir:

1 - volume terciário de origem
2 - volume terciário superior
3 - volume terciário esquerdo
4 - volume terciário direito
5 - volume terciário frontal
6 - volume terciário posterior
7 - volume terciário inferior

Considerando-se que o gradiente externo de temperatura é na direção Z, o que implica num fluxo de calor na direção de Z crescente, obtem-se que o caminho para o volume terciário inferior é impossível por violar a segunda lei da termodinâmica, permitindo a transferência de calor de um ponto com temperatura inferior para outro com temperatura superior.

Uma representação simplificada da molécula de percurso, já desconsiderando-se a possibilidade do volume terciário inferior, é mostrada na Figura V.8.

Figura V.8: Molécula de Percurso Simplificada (os pontos indicados referem-se ao baricentro).
Dada a molécula de percurso, conforme ilustrada, a escolha do caminho preferencial deve estar associada a:

- escolha de um caminho com a menor resistência térmica dentre os possíveis caminhos;
- escolha de um caminho possível dentro do domínio do volume secundário em análise;
- escolha de um caminho que não viole a segunda lei da termodinâmica.

A cada caminho estará associado um conjunto contendo informações sobre as 3 possibilidades anteriormente listadas, de tal forma que seja possível, então, criar um critério de escolha para o caminho a ser considerado.

A metodologia para cálculo dos três critérios para avaliar a probabilidade do caminho a ser seguido, bem como do critério de escolha, é mostrada a seguir.

Os pontos indicados no esquema simplificado, mostrado na Figura V.8, referem-se ao baricentro de cada volume terciário em análise, sendo, portanto, identificada a condutividade térmica a eles associada. Assim ao ponto 2, que representa o caminho 2, está associada uma condutividade térmica K_2, ao ponto 3 uma condutividade térmica K_3, e assim por diante.

Considerando-se o fato de que mesmo ao caminho com maior resistência térmica está associada uma probabilidade de transferência de calor através dele, é interessante utilizar algum modelo probabilístico para a representação da escolha dos caminhos.

Em função de suas características, mostradas a seguir, foi escolhido o modelo exponencial de distribuição de probabilidades para a avaliação de um determinado caminho, dada a condutividade térmica a ele associada.
A probabilidade acumulada em um modelo exponencial é dada por:

\[P[\text{VAR}] = 1.0 - e^{-\left(\text{VAR}/\theta\right)} \]

(V.12)

onde:
- \(P[\text{VAR}] \) é a probabilidade associada àquela variável;
- \(\text{VAR} \) é a variável em análise, no caso condutividade térmica do caminho.
- \(\theta \) é um parâmetro de ajuste característico do modelo exponencial escolhido.

É importante verificar que este modelo exponencial de probabilidade acumulada reproduz casos-limite básicos de transferência de calor. Ou seja:

a. quando a condutividade térmica de um dos caminhos tende a zero (paredes adiabáticas) a probabilidade de transferência de calor através deste caminho tende a zero.
b. quando a condutividade térmica de um dos caminhos tende a \(\omega \) (paredes supercondutores), a probabilidade de transferência de calor através deste caminho tende a 1.

Contudo, ao invés de utilizar o valor da condutividade térmica diretamente para obtenção da probabilidade associada ao caminho, é mais consistente utilizar um valor relativo aos diversos caminhos. Isso, pois é possível ter-se todos os caminhos com elevada resistência térmica, ou o contrário, sendo importante, nestes casos, a variação relativa entre os vários caminhos.

Assim determina-se o caminho com a maior condutividade térmica (\text{CONDMAX})

\[\text{CONDMAX} = \max(K2, K3, K4, K5, K6) \]

(V.13)
Pode-se, então, definir a relação \(\text{REL} (i) \) :

\[
\text{REL}(i) = \frac{K_i}{\text{CONDMAX}} \quad \text{onde} \quad 2 \leq i \leq 6 \quad (V.14)
\]

Assim, em lugar de se ter a variável do modelo probabilístico variando entre 0 e \(\infty \), tem-se uma variável entre 0 e 1.

Pode-se reescrever a equação \((V.12) \) utilizando-se \(\text{REL} (i) \) :

\[
P[\text{REL} (i)] = 1.0 - e^{-\frac{\text{REL}(i)}{\theta}} \quad (V.15)
\]

A representação gráfica do modelo probabilístico escolhido é mostrada, para vários valores de \(\theta \), na Figura V.9.

Figura V.9: Representação Gráfica do Modelo Probabilístico Proposto.
Desta forma, é, então, associado a cada caminho uma probabilidade do fluxo de calor preferencialmente passar por ele. Contudo, com a movimentação da molécula de percurso é possível que, em determinada posição, um dos caminhos possíveis esteja fora do volume secundário em estudo. Assim, este caminho deve ser identificado para evitar sua escolha, pois, pelo modelo assumido de homogeneização por volumes secundários, este estaria fora do domínio de estudo. Assim, cada caminho é identificado através de uma variável:

\[\text{XFator (i)} = 1.0 - \text{caminho possível (para } 2 \leq i \leq 6) \]
\[\text{XFator (i)} = 0.0 - \text{caminho não possível (para } 2 \leq i \leq 6) \] (V.16)

Outra possibilidade é que, dentro do processo de escolha da sequência de volumes terciários, o método fique oscilando entre dois volumes terciários ou fique avançando e retrocedendo dentro de um dado plano do volume secundário. Para evitar esta possibilidade numérica que violaria a segunda lei da termodinâmica, o método deve ser capaz de arquivar os volumes terciários pelos quais já passou e verificar, a cada novo avanço, se este caminho é termodinamicamente possível ou não.

A mesma variável XFATOR (i) anteriormente descrita é utilizada para caracterizar um caminho como termodinamicamente possível (XFATOR (i) = 1.0) ou como termodinamicamente não possível (XFATOR (i) = 0.0).

Assim, cada caminho dentro da molécula de percurso é representado pela composição de duas variáveis: uma que estabelece a probabilidade do fluxo de calor ser naquela direção e outra que estabelece a possibilidade termodinâmica de ocorrer transferência de calor entre dois pontos adjacentes. Pode ser expresso matematicamente como:

\[P [\text{REL (i)}] * \text{XFATOR (i)} \] (V.17)
Para a escolha do caminho a ser deslocada a molécula de percurso, são criados intervalos de escolha, os quais representam a normalização de todos os caminhos em uma escala de 0 a 1. A dimensão de cada intervalo de escolha é dada por:

\[
\text{DIM}(i) = \frac{P[\text{REL}(i)] \times \text{XFATOR}(i)}{\sum_{i=2}^{6} (P[\text{REL}(i)] \times \text{XFATOR}(i))} \quad (\text{V.18})
\]

Os intervalos são arranjados sequencialmente do caminho 2 ao 6. Figura V.11 mostra uma representação dos intervalos.

![Diagrama de intervalos de escolha do caminho](image)

Figura V.10: Representação dos intervalos de escolha.

A escolha do caminho é feita através da geração de número aleatório entre 0 e 1, o valor obtido seleciona o novo ponto para o qual a molécula de percurso se deslocará. Figura V.11 ilustra o procedimento.
Figura V.11: Representação da escolha do caminho para a molécula de percurso.

Estas sequências de eventos são repetidas até que a molécula de percurso atinja a face oposta do volume secundário, com relação ao seu ponto de partida. A Figura V.12 ilustra uma trajetória completa de uma molécula de percurso. Por simplicidade de representação e de compreensão, a trajetória será no plano e não tridimensional como num caso real.

Figura V.12: Representação Bidimensional de uma Trajetória da Molécula de Percurso.
A esta trajetória da molécula de percurso pode ser associada uma condutividade térmica equivalente, calculada como:

\[
K_{eq} = \frac{L}{\sum_{i=1}^{n-1} \left(\frac{\Delta L_i}{K_i} \right) + \frac{\Delta L_1}{2K_1} + \frac{\Delta L_2}{2K_2}}
\]

(C.V.19)

onde: \(K_{eq}\) - condutividade térmica equivalente da trajetória;

\(L\) - comprimento total da trajetória;

\(\Delta L_i\) - comprimento característico de cada volume terciário percorrido;

\(K_i\) - condutividade térmica associada a cada volume terciário percorrido.

A determinação de um número elevado de trajetórias seguindo o procedimento anterior, implicará na determinação de um número elevado de condutividades térmicas efetivas, a partir de um dado ponto na base, cujo valor médio será probabilisticamente representativo da condutividade térmica efetiva do volume secundário, tendo como origem um dado ponto na base. Figura V.13 ilustra alguns exemplos de trajetórias.

Figura V.13: Representação Bidimensional de uma sequência de Trajetórias da Molécula de Percurso.
A condutividade térmica efetiva para todos os caminhos pode, então, ser determinada como:

\[\text{Keq}^i = \frac{\sum_{j=1}^{n} \text{Keq}_j}{n} \] \hspace{1cm} (V.20)

onde: \(\text{Keq}^i \) - condutividade térmica efetiva do volume secundário dado um ponto de origem \(i \);
\(n \) - número de trajetórias consideradas para a determinação do valor médio.

Calculadas as "\(n \)" trajetórias necessárias para a determinação do valor médio probabilisticamente mais provável para a condutividade térmica efetiva a partir de um dado ponto, a molécula de percurso assume um novo ponto de origem, repetindo o processo anteriormente descrito.

Após analisar todos os possíveis pontos de origem, tem-se todas as trajetórias bem como as condutividades térmicas efetivas probabilisticamente mais prováveis. Considerando-se que a condutividade térmica efetiva do volume secundário pode ser determinada como a média dos valores médios:

\[\text{Keq}_s = \frac{\sum_{i=1}^{m} \text{Keq}_i}{m} \] \hspace{1cm} (V.21)

onde: \(\text{Keq}_s \) - condutividade térmica efetiva do volume secundário homogeneizado;
\(m \) - número de pontos de origem analisados.

A condutividade térmica efetiva \(\text{Keq}_s \) é atribuída ao volume secundário em estudo como representativa do processo de homogeneização de suas características heterogêneas.

Os procedimentos anteriormente descritos são repetidos para todos os volumes secundários que compõem a célula
elementar. Desta forma, haverá a homogeneização destes que passarão a poder ser representados por condutividades térmicas efetivas.

Os mesmos procedimentos descritos para a homogeneização dos volumes secundários é utilizado para a homogeneização da célula elementar, sendo assim obtida a condutividade térmica efetiva correspondente ao material composto global.
VI. Utilização dos Modelos Propostos

Com o objetivo de analisar o comportamento dos modelos propostos diante das diversas combinações possíveis de condutividade térmica da matriz e do material disperso, bem como dos diversos níveis de proporção entre os dois materiais, uma sequência de testes contra modelos de bibliografia serão efetuados.

A análise do comportamento dos modelos propostos será feita inicialmente para o MODELO DETERMINÍSTICO e posteriormente para o MODELO PROBABILÍSTICO.

VI.1. Modelo Determinístico

Para a comparação de resultados do MODELO DETERMINÍSTICO proposto a resultados de literatura foi desenvolvido um programa de computador utilizando a metodologia e as equações apresentadas no CAPÍTULO V.

Em função da hipótese básica que norteia este trabalho, o qual se baseia na possibilidade de representação da estrutura global do material a partir de uma célula elementar. O programa desenvolvido permite a construção numérica desta célula elementar.

Para a representação do material composto o programa permite que seja definida a forma geométrica da célula elementar, mantendo uma estrutura prismática, bem como a distribuição e a forma do material disperso, desde que seja possível definir matematicamente o contorno das partículas.
VI.1.1. Avaliação do Modelo Determinístico Quando Ω é Baixo

A solução clássica de MAXWELL para baixas concentrações do material disperso, o que resulta na hipótese de não interação entre as partículas dispersas, é utilizada como ponto de referência para o limite inferior quando a concentração (φ) tende a zero. A análise da possível influência da distribuição do material disperso na matriz, no resultado do modelo proposto, é realizada considerando-se alguns arranjos cúbicos modificados para apresentarem a mesma concentração total. É de importância verificar que o modelo de MAXWELL não se preocupa com a morfologia da estrutura, uma vez que a interação entre as partículas é desprezada.

Para a avaliação do modelo determinístico proposto para reduzidos valores de fração volumétrica do material disperso, foram consideradas duas situações para a distribuição do material, sendo sempre considerados arranjos cúbicos para as análises. Na primeira condição, o material disperso é considerado como esferas colocadas no vértice de um cubo, onde o material da matriz é representado pelo espaço entre as esferas. Na segunda condição, o material disperso é representado por uma esfera colocada no centro do cubo, o que representaria um deslocamento do volume elementar dentro do que seria o material composto em análise. Com estas configurações é avaliada a influência da geometria da distribuição na determinação da condutividade térmica efetiva da estrutura.

Para a análise do modelo proposto para níveis de concentração do material disperso acima de valores considerados como válidos para o modelo de MAXWELL, mas ainda dentro de valores baixos, será utilizado o modelo de JEFFREY, que considera a possível interação entre as partículas de um determinado arranjo.
A variação da fração volumétrica do material disperso é dada pela variação do diâmetro das esferas do arranjo, sendo considerada uma fração volumétrica máxima de tal forma que a distância entre as esferas seja da ordem do raio destas.

Os valores obtidos com o modelo determinístico proposto são comparados aos modelos clássicos regidos pelas seguintes equações:

- MAXWELL

\[
K_{ef} = K_m \frac{2 \left(\frac{K_d}{K_m} - 1 \right) \phi + \frac{K_d}{K_m} + 2}{\left(\left(1 - \frac{K_d}{K_m} \right) \phi + \frac{K_d}{K_m} + 2 \right)}
\]

(II.6)

- JEFFREY

\[
K_{ef} = K_m \left\{ 1 + 3.\beta.\phi + \phi^2.\xi \right\}
\]

(II.16)

e as equações clássicas de fechamento apresentadas no Capítulo IV - FORMULAÇÃO DO PROBLEMA TÉRMICO EM TERMOS DE MÉDIAS VOLUMÉTRICAS

- SERIE

\[
K_{ef} = \frac{K_m}{K_d} \frac{K_m}{K_d} \left(\phi \frac{K_m}{K_d} + 1 - \phi \right)
\]

(IV.19)

- PARALELO

\[
K_{ef} = \frac{\phi + (1 - \phi) \cdot K_m}{K_d}
\]

(IV.21)
Para simplicidade de comparação, os resultados são apresentados normalizados através da condutividade térmica efetiva determinada pela condição de fechamento com os materiais em paralelo (equação IV.21). Como a equação (IV.21) representa a maior condutividade térmica possível para uma dada condição de \(\phi \) e \(K_m/K_d \), os valores ficam normalizados em uma escala de 0 a 1, onde o limite inferior é dado pela relação entre o valor do modelo em série e o paralelo.

As Tabelas de VI.1 a VI.6 sumarizam os resultados para várias relações de \(K_d/K_m \). Para o modelo determinístico proposto são apresentadas a condutividade térmica efetiva calculada primeiro com o fechamento em série (\(\text{Kef}^S \)), o que define um limite inferior para a condutividade térmica real, e a condutividade térmica efetiva calculada primeiro com o fechamento em paralelo (\(\text{Kef}^P \)), o que define um limite superior para a condutividade térmica real. É apresentado também o valor médio do intervalo (\(\text{Kef} \)).

Os resultados são apresentados considerando-se as seguintes relações:

\[
\text{Relação 1} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO SERIE}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

\[
\text{Relação 2} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef}^P)}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

\[
\text{Relação 3} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef}^S)}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

\[
\text{Relação 4} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef)}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]
Relação 5 = CONDUTIVIDADE TÉRMICA MODELO DE JEFFREY
CONDUTIVIDADE TÉRMICA MODELO PARALELO

Relação 6 = CONDUTIVIDADE TÉRMICA MODELO DE MAXWELL
CONDUTIVIDADE TÉRMICA MODELO PARALELO

Tabela VI.1: Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para $\frac{K_d}{K_m} = 0.02$

<table>
<thead>
<tr>
<th>PHI</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
<th>RELAÇÃO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,5777</td>
<td>0,9989</td>
<td>0,9714</td>
<td>0,9852</td>
<td>0,9953</td>
<td>0,9953</td>
</tr>
<tr>
<td>2</td>
<td>0,5152</td>
<td>0,9953</td>
<td>0,9626</td>
<td>0,9789</td>
<td>0,9905</td>
<td>0,9906</td>
</tr>
<tr>
<td>3</td>
<td>0,4172</td>
<td>0,9948</td>
<td>0,9470</td>
<td>0,9709</td>
<td>0,9858</td>
<td>0,9859</td>
</tr>
<tr>
<td>4</td>
<td>0,3516</td>
<td>0,9940</td>
<td>0,9244</td>
<td>0,9592</td>
<td>0,9812</td>
<td>0,9814</td>
</tr>
<tr>
<td>5</td>
<td>0,3048</td>
<td>0,9904</td>
<td>0,9161</td>
<td>0,9533</td>
<td>0,9765</td>
<td>0,9768</td>
</tr>
<tr>
<td>6</td>
<td>0,2697</td>
<td>0,9859</td>
<td>0,9098</td>
<td>0,9478</td>
<td>0,9719</td>
<td>0,9723</td>
</tr>
<tr>
<td>7</td>
<td>0,2423</td>
<td>0,9851</td>
<td>0,9011</td>
<td>0,9431</td>
<td>0,9672</td>
<td>0,9679</td>
</tr>
<tr>
<td>8</td>
<td>0,2206</td>
<td>0,9839</td>
<td>0,8949</td>
<td>0,9394</td>
<td>0,9626</td>
<td>0,9634</td>
</tr>
<tr>
<td>9</td>
<td>0,2027</td>
<td>0,9815</td>
<td>0,8867</td>
<td>0,9341</td>
<td>0,9581</td>
<td>0,9591</td>
</tr>
<tr>
<td>10</td>
<td>0,1879</td>
<td>0,9779</td>
<td>0,8793</td>
<td>0,9286</td>
<td>0,9535</td>
<td>0,9548</td>
</tr>
<tr>
<td>11</td>
<td>0,1754</td>
<td>0,9746</td>
<td>0,8686</td>
<td>0,9206</td>
<td>0,9490</td>
<td>0,9505</td>
</tr>
<tr>
<td>12</td>
<td>0,1647</td>
<td>0,9727</td>
<td>0,8529</td>
<td>0,9128</td>
<td>0,9445</td>
<td>0,9462</td>
</tr>
<tr>
<td>13</td>
<td>0,1535</td>
<td>0,9705</td>
<td>0,8446</td>
<td>0,9076</td>
<td>0,9400</td>
<td>0,9420</td>
</tr>
<tr>
<td>14</td>
<td>0,1474</td>
<td>0,9666</td>
<td>0,8387</td>
<td>0,9028</td>
<td>0,9355</td>
<td>0,9379</td>
</tr>
<tr>
<td>15</td>
<td>0,1404</td>
<td>0,9625</td>
<td>0,8312</td>
<td>0,8968</td>
<td>0,9312</td>
<td>0,9338</td>
</tr>
</tbody>
</table>

73
<table>
<thead>
<tr>
<th>PHI</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
<th>RELAÇÃO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,9257</td>
<td>0,9992</td>
<td>0,9813</td>
<td>0,9903</td>
<td>0,9961</td>
<td>0,9962</td>
</tr>
<tr>
<td>2</td>
<td>0,8630</td>
<td>0,9980</td>
<td>0,9736</td>
<td>0,9851</td>
<td>0,9923</td>
<td>0,9924</td>
</tr>
<tr>
<td>3</td>
<td>0,8092</td>
<td>0,9980</td>
<td>0,9819</td>
<td>0,9789</td>
<td>0,9885</td>
<td>0,9886</td>
</tr>
<tr>
<td>4</td>
<td>0,7628</td>
<td>0,9953</td>
<td>0,9472</td>
<td>0,9713</td>
<td>0,9847</td>
<td>0,9849</td>
</tr>
<tr>
<td>5</td>
<td>0,7222</td>
<td>0,9928</td>
<td>0,9402</td>
<td>0,9665</td>
<td>0,9809</td>
<td>0,9812</td>
</tr>
<tr>
<td>6</td>
<td>0,6865</td>
<td>0,9900</td>
<td>0,9340</td>
<td>0,9620</td>
<td>0,9772</td>
<td>0,9776</td>
</tr>
<tr>
<td>7</td>
<td>0,6547</td>
<td>0,9887</td>
<td>0,9276</td>
<td>0,9582</td>
<td>0,9734</td>
<td>0,9740</td>
</tr>
<tr>
<td>8</td>
<td>0,6265</td>
<td>0,9874</td>
<td>0,9223</td>
<td>0,9548</td>
<td>0,9697</td>
<td>0,9704</td>
</tr>
<tr>
<td>9</td>
<td>0,6012</td>
<td>0,9854</td>
<td>0,9163</td>
<td>0,9509</td>
<td>0,9861</td>
<td>0,9869</td>
</tr>
<tr>
<td>10</td>
<td>0,5784</td>
<td>0,9829</td>
<td>0,9102</td>
<td>0,9465</td>
<td>0,9624</td>
<td>0,9634</td>
</tr>
<tr>
<td>11</td>
<td>0,5577</td>
<td>0,9807</td>
<td>0,9014</td>
<td>0,9411</td>
<td>0,9588</td>
<td>0,9600</td>
</tr>
<tr>
<td>12</td>
<td>0,5390</td>
<td>0,9791</td>
<td>0,9920</td>
<td>0,9356</td>
<td>0,9522</td>
<td>0,9566</td>
</tr>
<tr>
<td>13</td>
<td>0,5219</td>
<td>0,9771</td>
<td>0,9857</td>
<td>0,9314</td>
<td>0,9516</td>
<td>0,9532</td>
</tr>
<tr>
<td>14</td>
<td>0,5063</td>
<td>0,9743</td>
<td>0,9802</td>
<td>0,9272</td>
<td>0,9481</td>
<td>0,9499</td>
</tr>
<tr>
<td>15</td>
<td>0,4919</td>
<td>0,9714</td>
<td>0,9747</td>
<td>0,9231</td>
<td>0,9445</td>
<td>0,9456</td>
</tr>
<tr>
<td>PHI</td>
<td>RELAÇÃO 1</td>
<td>RELAÇÃO 2</td>
<td>RELAÇÃO 3</td>
<td>RELAÇÃO 4</td>
<td>RELAÇÃO 5</td>
<td>RELAÇÃO 6</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>0,9950</td>
<td>0,9998</td>
<td>0,9972</td>
<td>0,9985</td>
<td>0,9990</td>
<td>0,9990</td>
</tr>
<tr>
<td>2</td>
<td>0,9903</td>
<td>0,9993</td>
<td>0,9954</td>
<td>0,9974</td>
<td>0,9980</td>
<td>0,9980</td>
</tr>
<tr>
<td>3</td>
<td>0,9857</td>
<td>0,9990</td>
<td>0,9931</td>
<td>0,9960</td>
<td>0,9971</td>
<td>0,9971</td>
</tr>
<tr>
<td>4</td>
<td>0,9811</td>
<td>0,9989</td>
<td>0,9908</td>
<td>0,9949</td>
<td>0,9961</td>
<td>0,9961</td>
</tr>
<tr>
<td>5</td>
<td>0,9768</td>
<td>0,9983</td>
<td>0,9891</td>
<td>0,9937</td>
<td>0,9952</td>
<td>0,9952</td>
</tr>
<tr>
<td>6</td>
<td>0,9726</td>
<td>0,9977</td>
<td>0,9874</td>
<td>0,9926</td>
<td>0,9942</td>
<td>0,9943</td>
</tr>
<tr>
<td>7</td>
<td>0,9685</td>
<td>0,9973</td>
<td>0,9860</td>
<td>0,9917</td>
<td>0,9933</td>
<td>0,9933</td>
</tr>
<tr>
<td>8</td>
<td>0,9645</td>
<td>0,9969</td>
<td>0,9847</td>
<td>0,9908</td>
<td>0,9924</td>
<td>0,9925</td>
</tr>
<tr>
<td>9</td>
<td>0,9606</td>
<td>0,9963</td>
<td>0,9834</td>
<td>0,9898</td>
<td>0,9915</td>
<td>0,9916</td>
</tr>
<tr>
<td>10</td>
<td>0,9569</td>
<td>0,9958</td>
<td>0,9820</td>
<td>0,9889</td>
<td>0,9906</td>
<td>0,9907</td>
</tr>
<tr>
<td>11</td>
<td>0,9533</td>
<td>0,9953</td>
<td>0,9804</td>
<td>0,9879</td>
<td>0,9898</td>
<td>0,9899</td>
</tr>
<tr>
<td>12</td>
<td>0,9498</td>
<td>0,9949</td>
<td>0,9787</td>
<td>0,9868</td>
<td>0,9889</td>
<td>0,9890</td>
</tr>
<tr>
<td>13</td>
<td>0,9465</td>
<td>0,9943</td>
<td>0,9773</td>
<td>0,9859</td>
<td>0,9881</td>
<td>0,9882</td>
</tr>
<tr>
<td>14</td>
<td>0,9432</td>
<td>0,9938</td>
<td>0,9760</td>
<td>0,9849</td>
<td>0,9873</td>
<td>0,9874</td>
</tr>
<tr>
<td>15</td>
<td>0,9401</td>
<td>0,9932</td>
<td>0,9749</td>
<td>0,9841</td>
<td>0,9865</td>
<td>0,9866</td>
</tr>
</tbody>
</table>
Tabela VI.4: Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para $K_d = 2.00$. K_m

<table>
<thead>
<tr>
<th>PHI</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
<th>RELAÇÃO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9950</td>
<td>0.9994</td>
<td>0.9958</td>
<td>0.9976</td>
<td>0.9975</td>
<td>0.9975</td>
</tr>
<tr>
<td>2</td>
<td>0.9904</td>
<td>0.9980</td>
<td>0.9927</td>
<td>0.9955</td>
<td>0.9952</td>
<td>0.9952</td>
</tr>
<tr>
<td>3</td>
<td>0.9856</td>
<td>0.9973</td>
<td>0.9891</td>
<td>0.9932</td>
<td>0.9929</td>
<td>0.9929</td>
</tr>
<tr>
<td>4</td>
<td>0.9812</td>
<td>0.9953</td>
<td>0.9854</td>
<td>0.9910</td>
<td>0.9907</td>
<td>0.9907</td>
</tr>
<tr>
<td>5</td>
<td>0.9768</td>
<td>0.9952</td>
<td>0.9827</td>
<td>0.9890</td>
<td>0.9886</td>
<td>0.9886</td>
</tr>
<tr>
<td>6</td>
<td>0.9726</td>
<td>0.9942</td>
<td>0.9800</td>
<td>0.9872</td>
<td>0.9866</td>
<td>0.9866</td>
</tr>
<tr>
<td>7</td>
<td>0.9684</td>
<td>0.9927</td>
<td>0.9772</td>
<td>0.9850</td>
<td>0.9845</td>
<td>0.9845</td>
</tr>
<tr>
<td>8</td>
<td>0.9644</td>
<td>0.9917</td>
<td>0.9746</td>
<td>0.9831</td>
<td>0.9827</td>
<td>0.9826</td>
</tr>
<tr>
<td>9</td>
<td>0.9607</td>
<td>0.9901</td>
<td>0.9723</td>
<td>0.9813</td>
<td>0.9809</td>
<td>0.9808</td>
</tr>
<tr>
<td>10</td>
<td>0.9569</td>
<td>0.9889</td>
<td>0.9700</td>
<td>0.9795</td>
<td>0.9792</td>
<td>0.9790</td>
</tr>
<tr>
<td>11</td>
<td>0.9533</td>
<td>0.9879</td>
<td>0.9676</td>
<td>0.9778</td>
<td>0.9773</td>
<td>0.9773</td>
</tr>
<tr>
<td>12</td>
<td>0.9498</td>
<td>0.9871</td>
<td>0.9654</td>
<td>0.9763</td>
<td>0.9759</td>
<td>0.9757</td>
</tr>
<tr>
<td>13</td>
<td>0.9465</td>
<td>0.9864</td>
<td>0.9634</td>
<td>0.9749</td>
<td>0.9743</td>
<td>0.9741</td>
</tr>
<tr>
<td>14</td>
<td>0.9432</td>
<td>0.9854</td>
<td>0.9616</td>
<td>0.9735</td>
<td>0.9729</td>
<td>0.9726</td>
</tr>
<tr>
<td>15</td>
<td>0.9400</td>
<td>0.9843</td>
<td>0.9598</td>
<td>0.9722</td>
<td>0.9715</td>
<td>0.9712</td>
</tr>
</tbody>
</table>
Tabela VI.5: Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para $K_d = 5.00.$

<table>
<thead>
<tr>
<th>PHI</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
<th>RELAÇÃO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9592</td>
<td>0.9928</td>
<td>0.9721</td>
<td>0.9825</td>
<td>0.9781</td>
<td>0.9781</td>
</tr>
<tr>
<td>2</td>
<td>0.9412</td>
<td>0.9801</td>
<td>0.9486</td>
<td>0.9644</td>
<td>0.9581</td>
<td>0.9580</td>
</tr>
<tr>
<td>3</td>
<td>0.9147</td>
<td>0.9701</td>
<td>0.9250</td>
<td>0.9475</td>
<td>0.9397</td>
<td>0.9396</td>
</tr>
<tr>
<td>4</td>
<td>0.8905</td>
<td>0.9634</td>
<td>0.9034</td>
<td>0.9334</td>
<td>0.9228</td>
<td>0.9226</td>
</tr>
<tr>
<td>5</td>
<td>0.8679</td>
<td>0.9529</td>
<td>0.8854</td>
<td>0.9192</td>
<td>0.9073</td>
<td>0.9069</td>
</tr>
<tr>
<td>6</td>
<td>0.8472</td>
<td>0.9431</td>
<td>0.8685</td>
<td>0.9058</td>
<td>0.8929</td>
<td>0.8923</td>
</tr>
<tr>
<td>7</td>
<td>0.8277</td>
<td>0.9316</td>
<td>0.8527</td>
<td>0.8922</td>
<td>0.8796</td>
<td>0.8789</td>
</tr>
<tr>
<td>8</td>
<td>0.8095</td>
<td>0.9205</td>
<td>0.8383</td>
<td>0.8794</td>
<td>0.8674</td>
<td>0.8664</td>
</tr>
<tr>
<td>9</td>
<td>0.7923</td>
<td>0.9103</td>
<td>0.8246</td>
<td>0.8675</td>
<td>0.8560</td>
<td>0.8549</td>
</tr>
<tr>
<td>10</td>
<td>0.7764</td>
<td>0.9021</td>
<td>0.8125</td>
<td>0.8573</td>
<td>0.8454</td>
<td>0.8442</td>
</tr>
<tr>
<td>11</td>
<td>0.7615</td>
<td>0.8969</td>
<td>0.8007</td>
<td>0.8488</td>
<td>0.8356</td>
<td>0.8342</td>
</tr>
<tr>
<td>12</td>
<td>0.7473</td>
<td>0.8922</td>
<td>0.7895</td>
<td>0.8409</td>
<td>0.8265</td>
<td>0.8249</td>
</tr>
<tr>
<td>13</td>
<td>0.7342</td>
<td>0.8862</td>
<td>0.7799</td>
<td>0.8331</td>
<td>0.8181</td>
<td>0.8163</td>
</tr>
<tr>
<td>14</td>
<td>0.7218</td>
<td>0.8808</td>
<td>0.7715</td>
<td>0.8261</td>
<td>0.8102</td>
<td>0.8082</td>
</tr>
<tr>
<td>15</td>
<td>0.7103</td>
<td>0.8744</td>
<td>0.7631</td>
<td>0.8188</td>
<td>0.8029</td>
<td>0.8008</td>
</tr>
</tbody>
</table>
Tabela VI.8: Comparação entre o modelo determinístico proposto e os modelos de JEFFREY e MAXWELL, para $\frac{K_d}{K_m} = 50.00$.

<table>
<thead>
<tr>
<th>PHI</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
<th>RELAÇÃO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6779</td>
<td>0.7752</td>
<td>0.6812</td>
<td>0.7282</td>
<td>0.6904</td>
<td>0.6903</td>
</tr>
<tr>
<td>2</td>
<td>0.5152</td>
<td>0.6136</td>
<td>0.5227</td>
<td>0.5682</td>
<td>0.5344</td>
<td>0.5342</td>
</tr>
<tr>
<td>3</td>
<td>0.4170</td>
<td>0.5202</td>
<td>0.4271</td>
<td>0.4737</td>
<td>0.4406</td>
<td>0.4402</td>
</tr>
<tr>
<td>4</td>
<td>0.3514</td>
<td>0.4882</td>
<td>0.3615</td>
<td>0.4248</td>
<td>0.3781</td>
<td>0.3775</td>
</tr>
<tr>
<td>5</td>
<td>0.3043</td>
<td>0.4348</td>
<td>0.3188</td>
<td>0.3768</td>
<td>0.3336</td>
<td>0.3329</td>
</tr>
<tr>
<td>6</td>
<td>0.2690</td>
<td>0.3921</td>
<td>0.2843</td>
<td>0.3382</td>
<td>0.3004</td>
<td>0.2994</td>
</tr>
<tr>
<td>7</td>
<td>0.2427</td>
<td>0.3555</td>
<td>0.2585</td>
<td>0.3070</td>
<td>0.2747</td>
<td>0.2736</td>
</tr>
<tr>
<td>8</td>
<td>0.2205</td>
<td>0.3283</td>
<td>0.2368</td>
<td>0.2825</td>
<td>0.2543</td>
<td>0.2530</td>
</tr>
<tr>
<td>9</td>
<td>0.2024</td>
<td>0.3068</td>
<td>0.2190</td>
<td>0.2629</td>
<td>0.2377</td>
<td>0.2362</td>
</tr>
<tr>
<td>10</td>
<td>0.1881</td>
<td>0.2941</td>
<td>0.2059</td>
<td>0.2500</td>
<td>0.2240</td>
<td>0.2224</td>
</tr>
<tr>
<td>11</td>
<td>0.1753</td>
<td>0.3020</td>
<td>0.1933</td>
<td>0.2477</td>
<td>0.2125</td>
<td>0.2108</td>
</tr>
<tr>
<td>12</td>
<td>0.1650</td>
<td>0.2958</td>
<td>0.1839</td>
<td>0.2398</td>
<td>0.2028</td>
<td>0.2009</td>
</tr>
<tr>
<td>13</td>
<td>0.1554</td>
<td>0.2843</td>
<td>0.1764</td>
<td>0.2303</td>
<td>0.1945</td>
<td>0.1925</td>
</tr>
<tr>
<td>14</td>
<td>0.1476</td>
<td>0.2748</td>
<td>0.1698</td>
<td>0.2223</td>
<td>0.1873</td>
<td>0.1852</td>
</tr>
<tr>
<td>15</td>
<td>0.1401</td>
<td>0.2541</td>
<td>0.1629</td>
<td>0.2135</td>
<td>0.1810</td>
<td>0.1789</td>
</tr>
</tbody>
</table>
Os valores obtidos com o modelo determinístico proposto para a análise do material composto, considerando as duas possibilidades de volume elementar, apresentaram resultados iguais e por isso foram colocados em uma só coluna.

A partir das tabelas anteriormente mostradas verifica-se que os resultados obtidos com o modelo determinístico proposto apresentam muito boa correlação com os modelos de JEFFREY e MAXWELL, apresentando os erros porcentuais máximos para cada relação de Kd/Km, conforme mostrado na Tabela VI.7. Os erros porcentuais máximos foram calculados com o valor médio do intervalo.

Tabela VI.7: Variação porcentual máxima entre os valores obtidos com o modelo de JEFFREY (Kj) e o valor médio do modelo determinístico proposto (Kef), em função de Kd/Km, para frações volumétricas máximas de 15%.

<table>
<thead>
<tr>
<th>Kd/Km</th>
<th>(\frac{Kj - Kp}{Kj}) max</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>-1.98</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>-17.79</td>
<td></td>
</tr>
</tbody>
</table>
O intervalo de confiança do modelo determinístico proposto, definido pelos limites inferior (Kef^L) e superior (Kef^P) em torno do valor médio (Kef), dentro do qual encontra-se a condutividade térmica efetiva real do material composto apresentou limites bastante estreitos, conforme mostrado na Tabela VI.8. Este fato indica que o valor médio do intervalo pode ser considerado como o valor da condutividade térmica equivalente do material com pequena margem de erro.

Tabela VI.8: Intervalo de Confiança em Torno do Valor da Condutividade Térmica Média do Modelo Proposto (Kef).

<table>
<thead>
<tr>
<th>$\frac{Kd}{Km}$</th>
<th>$[Kef \pm \Delta %]_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>7.32</td>
</tr>
<tr>
<td>0.10</td>
<td>5.24</td>
</tr>
<tr>
<td>0.50</td>
<td>0.93</td>
</tr>
<tr>
<td>2.00</td>
<td>1.26</td>
</tr>
<tr>
<td>5.00</td>
<td>6.80</td>
</tr>
<tr>
<td>50.00</td>
<td>23.70</td>
</tr>
</tbody>
</table>

Com os indicadores anteriores mostrados, verifica-se que o modelo determinístico proposto pode ser utilizado para uma vasta gama de relações de Kd/Km, com baixas frações volumétricas do material disperso, com excelentes resultados.
VI.1.2 Avaliação do Modelo Determinístico Proposto Quando θ e Kd/Km são Elevados

Para a avaliação do modelo determinístico proposto quando θ e Kd/Km são elevados foram consideradas duas situações para distribuição do material, a partir de condições analisadas por BATCHelor e O'BRIEN em seu trabalho. O material esférico disperso será considerado nos seguintes arranjos:

- cúbico simples com contato pontual entre as esferas;
- cúbico de corpo centrado com contato pontual entre as esferas.

Para o primeiro caso, os resultados obtidos com o modelo determinístico proposto serão comparados com as relações do modelo de BATCHelor e O'BRIEN, mostradas abaixo:

$$\frac{K_{ef}}{K_m. \theta} = 1.57$$ \hspace{1cm} (VI.1)

$$\theta = \ln \left(\frac{Kd}{Km} \right)^2$$ \hspace{1cm} (VI.2)

Para o segundo caso os resultados obtidos serão comparados com equações:

$$\frac{K_{ef}}{K_m. \theta} = 2.72$$ \hspace{1cm} (VI.3)

$$\theta = \ln \left(\frac{Kd}{Km} \right)^2$$ \hspace{1cm} (VI.4)

Os resultados serão comparados também com as equações de fechamento expressas pelas equações (IV.19) e (IV.21). De maneira análoga à anterior, os resultados serão apresentados normalizados através da condutividade térmica efetiva determinada considerando-se o material em paralelo.
As tabelas VI.9 e VI.10 sumarizam os resultados para várias relações de K_d/K_m. Considerando-se que os materiais normais de engenharia, mesmo os modernos CERMETS, não apresentam relações de K_d/K_m superiores a 70, os testes serão conduzidos até este limite, o que representaria o limite superior do modelo determinístico proposto. É importante ressaltar que o modelo de BATCHelor e O'BRIEN foi desenvolvido para altas relações de K_d/K_m, e portanto $K_d/K_m = 70$ estará próximo do limite inferior de validade do modelo. Desta forma, os resultados servirão como indicadores de tendência de resultados dos dois modelos quando avaliados próximo de seus extremos.

Os resultados são apresentados considerando-se as seguintes relações:

Relação 1 = \[
\frac{\text{CONDUTIVIDADE TÉRMICA MODELO SERIE}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

Relação 2 = \[
\frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef^P)}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

Relação 3 = \[
\frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef^S)}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

Relação 4 = \[
\frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROPOSTO (Kef)}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

Relação 5 = \[
\frac{\text{CONDUTIVIDADE TÉRMICA MODELO DE BATCHelor e O'BRIEN}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]
Tabela IV.9: Comparação entre o modelo determinístico proposto e o modelo de BATCHelor e O'BRIEN, para $\theta = 52.40\%$

<table>
<thead>
<tr>
<th>K_{dis}/K_{mat}</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
<th>RELAÇÃO 4</th>
<th>RELAÇÃO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.7506</td>
<td>0.9218</td>
<td>0.8855</td>
<td>0.8936</td>
<td>1.6844</td>
</tr>
<tr>
<td>4</td>
<td>0.6401</td>
<td>0.8874</td>
<td>0.7918</td>
<td>0.8346</td>
<td>1.6924</td>
</tr>
<tr>
<td>5</td>
<td>0.5557</td>
<td>0.8368</td>
<td>0.7302</td>
<td>0.7835</td>
<td>1.6323</td>
</tr>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.7034</td>
<td>0.5363</td>
<td>0.6199</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.6239</td>
<td>0.4331</td>
<td>0.5285</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.5710</td>
<td>0.3679</td>
<td>0.4694</td>
<td>0.8586</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.5326</td>
<td>0.3227</td>
<td>0.4276</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.5029</td>
<td>0.2893</td>
<td>0.3961</td>
<td>0.6594</td>
</tr>
<tr>
<td>35</td>
<td>0.1082</td>
<td>0.4797</td>
<td>0.2636</td>
<td>0.3716</td>
<td>0.5933</td>
</tr>
<tr>
<td>40</td>
<td>0.0934</td>
<td>0.4507</td>
<td>0.2431</td>
<td>0.3519</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.4315</td>
<td>0.2126</td>
<td>0.3220</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.4098</td>
<td>0.1908</td>
<td>0.3003</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.3932</td>
<td>0.1745</td>
<td>0.2839</td>
<td>0.3590</td>
</tr>
<tr>
<td>Kdis/Kmat</td>
<td>RELAÇÃO 1</td>
<td>RELAÇÃO 2</td>
<td>RELAÇÃO 3</td>
<td>RELAÇÃO 4</td>
<td>RELAÇÃO 5</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>0.7754</td>
<td>0.9873</td>
<td>0.8453</td>
<td>0.9153</td>
<td>2.5324</td>
</tr>
<tr>
<td>4</td>
<td>0.6711</td>
<td>0.9803</td>
<td>0.7697</td>
<td>0.8750</td>
<td>2.4807</td>
</tr>
<tr>
<td>5</td>
<td>0.5901</td>
<td>0.9758</td>
<td>0.7070</td>
<td>0.8414</td>
<td>2.3536</td>
</tr>
<tr>
<td>10</td>
<td>0.3817</td>
<td>0.9642</td>
<td>0.5162</td>
<td>0.7402</td>
<td>1.7593</td>
</tr>
<tr>
<td>15</td>
<td>0.2600</td>
<td>0.9587</td>
<td>0.4197</td>
<td>0.6892</td>
<td>1.4004</td>
</tr>
<tr>
<td>20</td>
<td>0.2028</td>
<td>0.9551</td>
<td>0.3614</td>
<td>0.6580</td>
<td>1.1707</td>
</tr>
<tr>
<td>25</td>
<td>0.1863</td>
<td>0.9529</td>
<td>0.3219</td>
<td>0.6374</td>
<td>1.0110</td>
</tr>
<tr>
<td>30</td>
<td>0.1409</td>
<td>0.9513</td>
<td>0.2932</td>
<td>0.6223</td>
<td>0.8930</td>
</tr>
<tr>
<td>35</td>
<td>0.1221</td>
<td>0.9500</td>
<td>0.2716</td>
<td>0.6107</td>
<td>0.8019</td>
</tr>
<tr>
<td>40</td>
<td>0.1077</td>
<td>0.9491</td>
<td>0.2545</td>
<td>0.6017</td>
<td>0.7292</td>
</tr>
<tr>
<td>50</td>
<td>0.0874</td>
<td>0.9477</td>
<td>0.2293</td>
<td>0.5886</td>
<td>0.6201</td>
</tr>
<tr>
<td>60</td>
<td>0.0734</td>
<td>0.9458</td>
<td>0.2117</td>
<td>0.5792</td>
<td>0.5417</td>
</tr>
<tr>
<td>70</td>
<td>0.0633</td>
<td>0.9458</td>
<td>0.1987</td>
<td>0.5723</td>
<td>0.4823</td>
</tr>
</tbody>
</table>

A partir dos valores mostrados na Tabela VI.9, verifica-se que o modelo de BATCHELOR e O'BRIEN apresenta resultados não coerentes fisicamente para valores de Kd/Km até 15.0, enquanto o modelo proposto apresenta resultados compatíveis.

A partir da relação de Kd/Km, na qual o modelo de BATCHELOR e O'BRIEN começa a apresentar valores coerentes, a variação porcentual entre a condutividade térmica efetiva calculada por este modelo e pelo modelo determinístico proposto...
(valor médio Kef) decai de 45.4% (Kd/Km = 20.0) para 20.0% (Kd/Km = 70.0), indicando que para faixas de Kd/Km onde o modelo de BATCHELOR e O’BRIEN é mais apropriado, os resultados apresentam boa correlação.

Da mesma forma que os resultados apresentados na Tabela VI.9, os que são apresentados na Tabela VI.10 indicam que o modelo de BATCHELOR e O’BRIEN fornece valores não coerentes fisicamente, neste caso para relações de Kd/Km menores que 25.0, enquanto o modelo determinístico proposto apresenta resultados compatíveis. Para valores de Kd/Km maiores do que o valor limite acima citado, a variação percentual entre a condutividade térmica efetiva determinada pelos dois modelos está entre 30.3% (Kd/Km = 30.0) e -18.7% (Kd/Km = 70.0) indicando boa correlação para uma grande gama de relações de Kd/Km.

VI.2. **Modelo Probabilístico**

Para a comparação de resultados da aplicação do MODELO PROBABILÍSTICO proposto a resultados de literatura foi desenvolvido um programa de computador utilizando a metodologia e as equações apresentadas no item V.2.

Analogamente a comparação realizada para o modelo determinístico, o MODELO PROBABILÍSTICO será avaliado quando a concentração do material disperso, bem como a relação Kd/Km é elevada. Esta é a condição escolhida por mais se adequar a análise de materiais com possibilidade de existência de caminhos preferenciais.

Contudo, como o MODELO PROBABILÍSTICO apresenta parâmetros a serem definidos, é importante que seja feita uma análise de sensibilidade destes parâmetros, os quais são:

- parâmetro característico do modelo exponencial
- número de trajetórias consideradas para a determinação do valor médio no volume secundário
- número de trajetórias consideradas para a determinação do valor médio na célula elementar.

Conforme mostrado no item V.2, o modelo exponencial de probabilidade é influenciado pelo parâmetro característico θ, conforme a equação:

$$P(\text{REL}(i)) = 1.0 - e^{-(\text{REL}(i)/\theta)} \quad (VI.5)$$

De acordo com a Figura V.10, verifica-se que quanto maior o valor de θ, para um mesmo valor de REL, menor é o valor obtido com o modelo exponencial de probabilidade. Este fato indica que, no modelo probabilístico proposto para a determinação da condutividade térmica efetiva, quanto maior o valor de θ menor a probabilidade de um caminho com elevada resistência térmica de ser escolhido. Verifica-se também que, para valores de REL menores que 0.01, o que implica em diferença máxima entre a resistência térmica dos caminhos de 100 vezes, o modelo exponencial tende para valores próximos independente de θ. Desta forma, os testes serão feitos para diferenças entre a condutividade térmica da matriz e do material disperso de no máximo 100 vezes.

Para a análise de sensibilidade do modelo proposto ao parâmetro θ, quatro condições de testes foram escolhidas. O parâmetro θ assumirá quatro valores distintos, determinados de tal forma que o modelo exponencial apresente probabilidade igual a 1 (dentro de 5 algarismos significativos após a vírgula) para relações de condutividade térmica entre os caminhos a serem escolhidos de $1/5$, $1/4$, $1/3$ e $1/2$. Estes valores que θ assume são, respectivamente, 0.010000, 0.019740, 0.0259689 e 0.033098.

A Tabela VI.11 e a Figura VI.1 ilustram estas condições.
Tabela VI.11: Representação do Modelo Probabilístico Proposto em Função de e.

<table>
<thead>
<tr>
<th>REL</th>
<th>TETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0010</td>
<td>0,010000</td>
</tr>
<tr>
<td>0,0020</td>
<td>0,095163</td>
</tr>
<tr>
<td>0,0025</td>
<td>0,181269</td>
</tr>
<tr>
<td>0,0033</td>
<td>0,221199</td>
</tr>
<tr>
<td>0,0040</td>
<td>0,283469</td>
</tr>
<tr>
<td>0,0050</td>
<td>0,329680</td>
</tr>
<tr>
<td>0,0067</td>
<td>0,393469</td>
</tr>
<tr>
<td>0,0100</td>
<td>0,486583</td>
</tr>
<tr>
<td>0,0105</td>
<td>0,632121</td>
</tr>
<tr>
<td>0,0111</td>
<td>0,650982</td>
</tr>
<tr>
<td>0,0118</td>
<td>0,670807</td>
</tr>
<tr>
<td>0,0125</td>
<td>0,691635</td>
</tr>
<tr>
<td>0,0133</td>
<td>0,713495</td>
</tr>
<tr>
<td>0,0143</td>
<td>0,736403</td>
</tr>
<tr>
<td>0,0154</td>
<td>0,760349</td>
</tr>
<tr>
<td>0,0167</td>
<td>0,785289</td>
</tr>
<tr>
<td>0,0182</td>
<td>0,811124</td>
</tr>
<tr>
<td>0,0200</td>
<td>0,837679</td>
</tr>
<tr>
<td>0,0222</td>
<td>0,864665</td>
</tr>
<tr>
<td>0,0250</td>
<td>0,891632</td>
</tr>
<tr>
<td>0,0286</td>
<td>0,917915</td>
</tr>
<tr>
<td>0,0333</td>
<td>0,943267</td>
</tr>
<tr>
<td>0,0400</td>
<td>0,981684</td>
</tr>
<tr>
<td>0,0500</td>
<td>0,993262</td>
</tr>
<tr>
<td>0,0667</td>
<td>0,998727</td>
</tr>
<tr>
<td>0,1000</td>
<td>0,999955</td>
</tr>
<tr>
<td>0,2000</td>
<td>1,000000</td>
</tr>
<tr>
<td>0,2500</td>
<td>1,000000</td>
</tr>
<tr>
<td>0,3333</td>
<td>1,000000</td>
</tr>
<tr>
<td>0,5000</td>
<td>1,000000</td>
</tr>
</tbody>
</table>
Figura VI.1: Representação Gráfica do Modelo Probabilístico Proposto em Função de θ.

Com estes quatro casos, poderá ser avaliada a influência da variação de θ, e, portanto, na maior ou menor probabilidade de escolha de um caminho, no cálculo da condutividade térmica efetiva.

Conforme também mostrado no item V.2, a determinação da condutividade térmica efetiva associada a um dado ponto de origem "i", tem sua significância ligada ao número de trajetórias consideradas para a determinação do valor médio característico de cada ponto da base do volume secundário, e, posteriormente, da base da célula elementar. Desta forma, a escolha adequada do número de trajetórias a serem consideradas pode influenciar o resultado obtido, bem como, sua estabilidade.

Assim, para a verificação da influência do número
de trajetórias consideradas para a determinação do valor médio característico de cada ponto na base no cálculo da condutividade térmica efetiva representativa do material. 12 condições foram analisadas. A Tabela VI.12 mostra as combinações testadas.

Tabela VI.12: Número de Trajetórias Consideradas

<table>
<thead>
<tr>
<th>NÚMERO DE TRAJETÓRIAS</th>
<th>VOLUME SECUNDÁRIO</th>
<th>CÉLULA ELEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Para a análise de sensibilidade destes parâmetros será considerada uma estrutura de célula elementar cúbica simples, com contato pontual entre as esferas. Esta configuração representa uma fração volumétrica de material disperso de 52.40%, e é um dos casos estudados por BATCHELOR e O'BRIEN no desenvolvimento de seu modelo, o qual é utilizado como referência para comparação dos resultados.

O modelo de BATCHELOR e O'BRIEN será utilizado como
referência para escolha dos parâmetros de ajuste do modelo probabilístico proposto. Estes parâmetros selecionados serão considerados diretamente para os outros processos de avaliação do modelo probabilístico proposto, com relação a modelos de bibliografia.

Os resultados são apresentados considerando-se as seguintes relações:

RELAÇÃO 1

\[
\frac{\text{COND. TERM. MODELO SERIE}}{\text{COND. TERM. MODELO PARALELO}}
\]

RELAÇÃO 2

\[
\frac{\text{COND. TERM. MODELO PROBABILISTICO} \quad (e = 0.010000)}{\text{COND. TERM. MODELO PARALELO}}
\]

RELAÇÃO 3

\[
\frac{\text{COND. TERM. MODELO PROBABILISTICO} \quad (e = 0.019740)}{\text{COND. TERM. MODELO PARALELO}}
\]

RELAÇÃO 4

\[
\frac{\text{COND. TERM. MODELO PROBABILISTICO} \quad (e = 0.026889)}{\text{COND. TERM. MODELO PARALELO}}
\]

RELAÇÃO 5

\[
\frac{\text{COND. TERM. MODELO PROBABILISTICO} \quad (e = 0.033998)}{\text{COND. TERM. MODELO PARALELO}}
\]

RELAÇÃO 6

\[
\frac{\text{COND. TERM. MODELO DE BACHELOR E O'BRIEN}}{\text{COND. TERM. MODELO PARALELO}}
\]

As Tabelas de VI.13 a VI.24 apresentam os resultados obtidos.
Tabela VI.13: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHelor e O'BRIEN para $\theta = 52.40\%$.

- Número de Trajetórias Volume Secundário = 5
- Número de Trajetórias Célula Elementar = 5

<table>
<thead>
<tr>
<th>K_{disp}</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5512</td>
<td>0.5512</td>
<td>0.5514</td>
<td>0.5519</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2348</td>
<td>0.4622</td>
<td>0.4627</td>
<td>0.4636</td>
<td>0.4648</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4072</td>
<td>0.4088</td>
<td>0.4099</td>
<td>0.4116</td>
<td>0.8596</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3695</td>
<td>0.3708</td>
<td>0.3753</td>
<td>0.3843</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3421</td>
<td>0.3446</td>
<td>0.3540</td>
<td>0.3554</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3035</td>
<td>0.3090</td>
<td>0.3188</td>
<td>0.3392</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2786</td>
<td>0.2884</td>
<td>0.3091</td>
<td>0.3245</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2604</td>
<td>0.2802</td>
<td>0.2993</td>
<td>0.3178</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2480</td>
<td>0.2724</td>
<td>0.2902</td>
<td>0.3048</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2365</td>
<td>0.2651</td>
<td>0.2941</td>
<td>0.3152</td>
<td>0.3248</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2286</td>
<td>0.2549</td>
<td>0.2828</td>
<td>0.3133</td>
<td>0.2986</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2214</td>
<td>0.2589</td>
<td>0.2793</td>
<td>0.3256</td>
<td>0.2735</td>
</tr>
</tbody>
</table>
Tabela V.14: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O'BRIEN para $\theta = 52.40\%$

- Número de Trajetórias Volume Secundário = 5
- Número de Trajetórias Célula Elemental = 10

<table>
<thead>
<tr>
<th>K_{disp}</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5512</td>
<td>0.5512</td>
<td>0.5514</td>
<td>0.5519</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4622</td>
<td>0.4627</td>
<td>0.4636</td>
<td>0.4648</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4072</td>
<td>0.4086</td>
<td>0.4099</td>
<td>0.4116</td>
<td>0.6596</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3695</td>
<td>0.3708</td>
<td>0.3753</td>
<td>0.3843</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3421</td>
<td>0.3446</td>
<td>0.3540</td>
<td>0.3554</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3035</td>
<td>0.3090</td>
<td>0.3188</td>
<td>0.3392</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2786</td>
<td>0.2884</td>
<td>0.3091</td>
<td>0.3245</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2604</td>
<td>0.2802</td>
<td>0.2993</td>
<td>0.3178</td>
<td>0.4029</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2480</td>
<td>0.2724</td>
<td>0.2902</td>
<td>0.3048</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2365</td>
<td>0.2651</td>
<td>0.2941</td>
<td>0.3132</td>
<td>0.3246</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2206</td>
<td>0.2549</td>
<td>0.2828</td>
<td>0.3133</td>
<td>0.2986</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2214</td>
<td>0.2589</td>
<td>0.2793</td>
<td>0.3266</td>
<td>0.2735</td>
</tr>
</tbody>
</table>
Tabela VI.15: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O'BRIEN para $\theta = 52.40\%$

Número de Trajetórias Volume Secundário = 5
Número de Trajetórias Célula Elementar = 15

<table>
<thead>
<tr>
<th>Kdisp</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5512</td>
<td>0.5512</td>
<td>0.5514</td>
<td>0.5519</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4622</td>
<td>0.4627</td>
<td>0.4636</td>
<td>0.4648</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4072</td>
<td>0.4086</td>
<td>0.4099</td>
<td>0.4116</td>
<td>0.8586</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3695</td>
<td>0.3708</td>
<td>0.3753</td>
<td>0.3843</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3421</td>
<td>0.3446</td>
<td>0.3540</td>
<td>0.3554</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3035</td>
<td>0.3090</td>
<td>0.3188</td>
<td>0.3392</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2786</td>
<td>0.2884</td>
<td>0.3091</td>
<td>0.3245</td>
<td>0.4805</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2604</td>
<td>0.2802</td>
<td>0.2993</td>
<td>0.3179</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2480</td>
<td>0.2724</td>
<td>0.2902</td>
<td>0.3048</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2365</td>
<td>0.2651</td>
<td>0.2941</td>
<td>0.3152</td>
<td>0.3246</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2286</td>
<td>0.2549</td>
<td>0.2828</td>
<td>0.3133</td>
<td>0.2955</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2214</td>
<td>0.2589</td>
<td>0.2793</td>
<td>0.3266</td>
<td>0.2735</td>
</tr>
</tbody>
</table>

93
Tabela VI.16: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHelor e O'BRIEN para $\Theta = 52.40\%$

- Número de Trajetórias Volume Secundário = 5
- Número de Trajetórias Célula Elementar = 20

<table>
<thead>
<tr>
<th>Kdisp Kmatriz</th>
<th>RELAÇÃO01</th>
<th>RELAÇÃO02</th>
<th>RELAÇÃO03</th>
<th>RELAÇÃO04</th>
<th>RELAÇÃO05</th>
<th>RELAÇÃO06</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5512</td>
<td>0.5512</td>
<td>0.5514</td>
<td>0.5519</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4522</td>
<td>0.4527</td>
<td>0.4635</td>
<td>0.4648</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4072</td>
<td>0.4085</td>
<td>0.4099</td>
<td>0.4115</td>
<td>0.8586</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3695</td>
<td>0.3708</td>
<td>0.3753</td>
<td>0.3843</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3421</td>
<td>0.3446</td>
<td>0.3540</td>
<td>0.3554</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3035</td>
<td>0.3090</td>
<td>0.3188</td>
<td>0.3392</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2786</td>
<td>0.2884</td>
<td>0.3091</td>
<td>0.3245</td>
<td>0.4606</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2604</td>
<td>0.2802</td>
<td>0.2993</td>
<td>0.3178</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2480</td>
<td>0.2724</td>
<td>0.2902</td>
<td>0.3048</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2365</td>
<td>0.2651</td>
<td>0.2941</td>
<td>0.3152</td>
<td>0.3246</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2286</td>
<td>0.2549</td>
<td>0.2828</td>
<td>0.3133</td>
<td>0.2966</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2214</td>
<td>0.2589</td>
<td>0.2793</td>
<td>0.3266</td>
<td>0.2735</td>
</tr>
</tbody>
</table>

94
Tabela VI.17: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O'BRIEN para Ø 52.40%.
Número de Trajetórias Volume Secundário = 10
Número de Trajetórias Célula Elementar = 5

<table>
<thead>
<tr>
<th>Kdisp</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,3316</td>
<td>0,5518</td>
<td>0,5517</td>
<td>0,5519</td>
<td>0,5521</td>
<td>1,2649</td>
</tr>
<tr>
<td>15</td>
<td>0,2346</td>
<td>0,4630</td>
<td>0,4643</td>
<td>0,4655</td>
<td>1,0201</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,1817</td>
<td>0,4081</td>
<td>0,4094</td>
<td>0,4121</td>
<td>0,8586</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0,1481</td>
<td>0,3705</td>
<td>0,3763</td>
<td>0,3856</td>
<td>0,7445</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,1250</td>
<td>0,3430</td>
<td>0,3446</td>
<td>0,3552</td>
<td>0,6594</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,0954</td>
<td>0,3044</td>
<td>0,3100</td>
<td>0,3199</td>
<td>0,3403</td>
<td>0,5404</td>
</tr>
<tr>
<td>50</td>
<td>0,0770</td>
<td>0,2795</td>
<td>0,2893</td>
<td>0,3073</td>
<td>0,3230</td>
<td>0,4605</td>
</tr>
<tr>
<td>60</td>
<td>0,0647</td>
<td>0,2614</td>
<td>0,2810</td>
<td>0,2993</td>
<td>0,3183</td>
<td>0,4028</td>
</tr>
<tr>
<td>70</td>
<td>0,0557</td>
<td>0,2490</td>
<td>0,2728</td>
<td>0,2974</td>
<td>0,3047</td>
<td>0,3590</td>
</tr>
<tr>
<td>80</td>
<td>0,0488</td>
<td>0,2370</td>
<td>0,2594</td>
<td>0,2953</td>
<td>0,3164</td>
<td>0,3246</td>
</tr>
<tr>
<td>90</td>
<td>0,0436</td>
<td>0,2293</td>
<td>0,2557</td>
<td>0,2860</td>
<td>0,3183</td>
<td>0,2966</td>
</tr>
<tr>
<td>100</td>
<td>0,0393</td>
<td>0,2220</td>
<td>0,2598</td>
<td>0,2806</td>
<td>0,3283</td>
<td>0,2735</td>
</tr>
</tbody>
</table>

95
Tabela VI.18: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O'BRIEN para Ø 52,40%.

Número de Trajetórias Volume Secundário = 10
Número de Trajetórias Célula Elementar = 10

<table>
<thead>
<tr>
<th>Kdisp</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÕES</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5518</td>
<td>0.5517</td>
<td>0.5519</td>
<td>0.5521</td>
<td>1.2649</td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4630</td>
<td>0.4634</td>
<td>0.4643</td>
<td>0.4655</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4081</td>
<td>0.4094</td>
<td>0.4121</td>
<td>0.4186</td>
<td>0.8596</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3705</td>
<td>0.3763</td>
<td>0.3856</td>
<td>0.7445</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3430</td>
<td>0.3445</td>
<td>0.3552</td>
<td>0.3598</td>
<td>0.8594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3044</td>
<td>0.3100</td>
<td>0.3199</td>
<td>0.3403</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2795</td>
<td>0.2893</td>
<td>0.3073</td>
<td>0.3230</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2614</td>
<td>0.2810</td>
<td>0.2993</td>
<td>0.3183</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2490</td>
<td>0.2728</td>
<td>0.2974</td>
<td>0.3047</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2370</td>
<td>0.2694</td>
<td>0.2953</td>
<td>0.3164</td>
<td>0.3245</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2293</td>
<td>0.2557</td>
<td>0.2860</td>
<td>0.3183</td>
<td>0.2986</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2220</td>
<td>0.2598</td>
<td>0.2806</td>
<td>0.3283</td>
<td>0.2735</td>
</tr>
</tbody>
</table>
Tabela VI.19: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O'BRIEN para Ø 52.40%.

Número de Trajetórias Volume Secundário = 10

Número de Trajetórias Célula Elementar = 15

<table>
<thead>
<tr>
<th>Kdisp Kmatriz</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,3316</td>
<td>0,5521</td>
<td>0,5521</td>
<td>0,5521</td>
<td>0,5521</td>
<td>1,2649</td>
</tr>
<tr>
<td>15</td>
<td>0,2346</td>
<td>0,4631</td>
<td>0,4631</td>
<td>0,4643</td>
<td>0,4655</td>
<td>1,0201</td>
</tr>
<tr>
<td>20</td>
<td>0,1817</td>
<td>0,4080</td>
<td>0,4080</td>
<td>0,4094</td>
<td>0,4121</td>
<td>0,8586</td>
</tr>
<tr>
<td>25</td>
<td>0,1481</td>
<td>0,3705</td>
<td>0,3716</td>
<td>0,3764</td>
<td>0,3856</td>
<td>0,7445</td>
</tr>
<tr>
<td>30</td>
<td>0,1250</td>
<td>0,3430</td>
<td>0,3445</td>
<td>0,3550</td>
<td>0,3588</td>
<td>0,6594</td>
</tr>
<tr>
<td>40</td>
<td>0,0954</td>
<td>0,3044</td>
<td>0,3100</td>
<td>0,3198</td>
<td>0,3403</td>
<td>0,5404</td>
</tr>
<tr>
<td>50</td>
<td>0,0770</td>
<td>0,2795</td>
<td>0,2892</td>
<td>0,3074</td>
<td>0,3230</td>
<td>0,4605</td>
</tr>
<tr>
<td>60</td>
<td>0,0647</td>
<td>0,2613</td>
<td>0,2811</td>
<td>0,2994</td>
<td>0,3183</td>
<td>0,4028</td>
</tr>
<tr>
<td>70</td>
<td>0,0557</td>
<td>0,2491</td>
<td>0,2728</td>
<td>0,2974</td>
<td>0,3047</td>
<td>0,3590</td>
</tr>
<tr>
<td>80</td>
<td>0,0488</td>
<td>0,2369</td>
<td>0,2695</td>
<td>0,2953</td>
<td>0,3164</td>
<td>0,3248</td>
</tr>
<tr>
<td>90</td>
<td>0,0436</td>
<td>0,2293</td>
<td>0,2557</td>
<td>0,2860</td>
<td>0,3163</td>
<td>0,2966</td>
</tr>
<tr>
<td>100</td>
<td>0,0393</td>
<td>0,2219</td>
<td>0,2598</td>
<td>0,2806</td>
<td>0,3283</td>
<td>0,2735</td>
</tr>
</tbody>
</table>
Tabela VI.20: Análise de Sensibilidade dos Parametros do
Modelo Probabilístico. Comparação com o Modelo
de BATCHELOR e O'BRIEN para θ 52.40%.
Número de Trajetórias Volume Secundário = 10
Número de Trajetórias Célula Elementar = 20

<table>
<thead>
<tr>
<th>Kdisp/Kmatriz</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5518</td>
<td>0.5521</td>
<td>0.5521</td>
<td>1.2549</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4530</td>
<td>0.4531</td>
<td>0.4543</td>
<td>0.4655</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4081</td>
<td>0.4080</td>
<td>0.4094</td>
<td>0.4121</td>
<td>0.8586</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3705</td>
<td>0.3716</td>
<td>0.3784</td>
<td>0.3856</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3430</td>
<td>0.3445</td>
<td>0.3550</td>
<td>0.3588</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3044</td>
<td>0.3100</td>
<td>0.3198</td>
<td>0.3403</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2795</td>
<td>0.2892</td>
<td>0.3074</td>
<td>0.3230</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2614</td>
<td>0.2811</td>
<td>0.2994</td>
<td>0.3183</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2490</td>
<td>0.2728</td>
<td>0.2974</td>
<td>0.3047</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2370</td>
<td>0.2595</td>
<td>0.2953</td>
<td>0.3164</td>
<td>0.3248</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2293</td>
<td>0.2557</td>
<td>0.2860</td>
<td>0.3183</td>
<td>0.2966</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2220</td>
<td>0.2598</td>
<td>0.2806</td>
<td>0.3283</td>
<td>0.2735</td>
</tr>
</tbody>
</table>

98
Tabela VI.21: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHelor e O'BRIEN para Ø 52.40%.

Número de Trajetórias' Volume Secundário = 15
Número de Trajetórias Célula Elementar = 5

<table>
<thead>
<tr>
<th>Kdisp Kmatriz</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5522</td>
<td>0.5524</td>
<td>0.5528</td>
<td>1.2649</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4535</td>
<td>0.4548</td>
<td>0.4659</td>
<td>1.0201</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4087</td>
<td>0.4099</td>
<td>0.4125</td>
<td>0.8586</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3711</td>
<td>0.3721</td>
<td>0.3768</td>
<td>0.3861</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3435</td>
<td>0.3451</td>
<td>0.3558</td>
<td>0.3603</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3049</td>
<td>0.3106</td>
<td>0.3206</td>
<td>0.3410</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2799</td>
<td>0.2899</td>
<td>0.3082</td>
<td>0.3212</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2619</td>
<td>0.2815</td>
<td>0.3006</td>
<td>0.3161</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2495</td>
<td>0.2733</td>
<td>0.2982</td>
<td>0.3045</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0489</td>
<td>0.2384</td>
<td>0.2702</td>
<td>0.2956</td>
<td>0.3175</td>
<td>0.3246</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2297</td>
<td>0.2584</td>
<td>0.2895</td>
<td>0.3212</td>
<td>0.2866</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2225</td>
<td>0.2605</td>
<td>0.2834</td>
<td>0.3213</td>
<td>0.2735</td>
</tr>
</tbody>
</table>
Tabela VI.22: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHELOR e O’BRIEN para Ø 52.40%.

Número de Trajetórias Volume Secundário = 15
Número de Trajetórias Célula Elementar = 10

<table>
<thead>
<tr>
<th>Kdisp</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,3316</td>
<td>0,5521</td>
<td>0,5522</td>
<td>0,5524</td>
<td>0,5528</td>
<td>1,2649</td>
</tr>
<tr>
<td>15</td>
<td>0,2346</td>
<td>0,4637</td>
<td>0,4639</td>
<td>0,4648</td>
<td>0,4659</td>
<td>1,0201</td>
</tr>
<tr>
<td>20</td>
<td>0,1817</td>
<td>0,4085</td>
<td>0,4086</td>
<td>0,4099</td>
<td>0,4125</td>
<td>0,8586</td>
</tr>
<tr>
<td>25</td>
<td>0,1481</td>
<td>0,3713</td>
<td>0,3721</td>
<td>0,3768</td>
<td>0,3861</td>
<td>0,7445</td>
</tr>
<tr>
<td>30</td>
<td>0,1250</td>
<td>0,3436</td>
<td>0,3451</td>
<td>0,3558</td>
<td>0,3603</td>
<td>0,6594</td>
</tr>
<tr>
<td>40</td>
<td>0,0954</td>
<td>0,3049</td>
<td>0,3106</td>
<td>0,3206</td>
<td>0,3410</td>
<td>0,5404</td>
</tr>
<tr>
<td>50</td>
<td>0,0770</td>
<td>0,2799</td>
<td>0,2899</td>
<td>0,3082</td>
<td>0,3212</td>
<td>0,4605</td>
</tr>
<tr>
<td>60</td>
<td>0,0647</td>
<td>0,2618</td>
<td>0,2815</td>
<td>0,3006</td>
<td>0,3161</td>
<td>0,4028</td>
</tr>
<tr>
<td>70</td>
<td>0,0557</td>
<td>0,2495</td>
<td>0,2733</td>
<td>0,2982</td>
<td>0,3045</td>
<td>0,3590</td>
</tr>
<tr>
<td>80</td>
<td>0,0488</td>
<td>0,2385</td>
<td>0,2702</td>
<td>0,2956</td>
<td>0,3175</td>
<td>0,3246</td>
</tr>
<tr>
<td>90</td>
<td>0,0436</td>
<td>0,2298</td>
<td>0,2564</td>
<td>0,2895</td>
<td>0,3212</td>
<td>0,2966</td>
</tr>
<tr>
<td>100</td>
<td>0,0393</td>
<td>0,2225</td>
<td>0,2605</td>
<td>0,2834</td>
<td>0,3213</td>
<td>0,2735</td>
</tr>
</tbody>
</table>
Tabela VI.23: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BACHELOR e O'BRIEN para Θ 52.40%.

Número de Trajetórias Volume Secundário = 15
Número de Trajetórias Célula Elementar = 15

<table>
<thead>
<tr>
<th>Kdisp Kmatriz</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5522</td>
<td>0.5524</td>
<td>0.5528</td>
<td>1.2649</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4535</td>
<td>0.4639</td>
<td>0.4648</td>
<td>0.4659</td>
<td>1.0201</td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4087</td>
<td>0.4098</td>
<td>0.4099</td>
<td>0.4125</td>
<td>0.8586</td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3711</td>
<td>0.3721</td>
<td>0.3768</td>
<td>0.3961</td>
<td>0.7445</td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3435</td>
<td>0.3451</td>
<td>0.3558</td>
<td>0.3603</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3049</td>
<td>0.3106</td>
<td>0.3206</td>
<td>0.3410</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2799</td>
<td>0.2899</td>
<td>0.3082</td>
<td>0.3212</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2619</td>
<td>0.2815</td>
<td>0.3006</td>
<td>0.3161</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2495</td>
<td>0.2733</td>
<td>0.2982</td>
<td>0.3045</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2384</td>
<td>0.2702</td>
<td>0.2956</td>
<td>0.3175</td>
<td>0.3246</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2297</td>
<td>0.2564</td>
<td>0.2895</td>
<td>0.3212</td>
<td>0.2966</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2225</td>
<td>0.2605</td>
<td>0.2834</td>
<td>0.3213</td>
<td>0.2735</td>
</tr>
</tbody>
</table>
Tabela VI.24: Análise de Sensibilidade dos Parâmetros do Modelo Probabilístico. Comparação com o Modelo de BATCHelor e O'BRIEN para Ω 52.40%.

- Número de Trajetórias Volume Secundário = 15
- Número de Trajetórias Célula Elementar = 20

<table>
<thead>
<tr>
<th>Kdisp</th>
<th>RELAÇÃO1</th>
<th>RELAÇÃO2</th>
<th>RELAÇÃO3</th>
<th>RELAÇÃO4</th>
<th>RELAÇÃO5</th>
<th>RELAÇÃO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3316</td>
<td>0.5522</td>
<td>0.5524</td>
<td>0.5528</td>
<td>1.2649</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2346</td>
<td>0.4636</td>
<td>0.4648</td>
<td>0.4659</td>
<td>1.0201</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1817</td>
<td>0.4087</td>
<td>0.4099</td>
<td>0.4125</td>
<td>0.8586</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.1481</td>
<td>0.3711</td>
<td>0.3768</td>
<td>0.3861</td>
<td>0.7445</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1250</td>
<td>0.3435</td>
<td>0.3451</td>
<td>0.3558</td>
<td>0.3603</td>
<td>0.6594</td>
</tr>
<tr>
<td>40</td>
<td>0.0954</td>
<td>0.3049</td>
<td>0.3106</td>
<td>0.3206</td>
<td>0.3410</td>
<td>0.5404</td>
</tr>
<tr>
<td>50</td>
<td>0.0770</td>
<td>0.2799</td>
<td>0.2899</td>
<td>0.3082</td>
<td>0.3212</td>
<td>0.4605</td>
</tr>
<tr>
<td>60</td>
<td>0.0647</td>
<td>0.2619</td>
<td>0.2815</td>
<td>0.3086</td>
<td>0.3161</td>
<td>0.4028</td>
</tr>
<tr>
<td>70</td>
<td>0.0557</td>
<td>0.2495</td>
<td>0.2733</td>
<td>0.2982</td>
<td>0.3045</td>
<td>0.3590</td>
</tr>
<tr>
<td>80</td>
<td>0.0488</td>
<td>0.2384</td>
<td>0.2702</td>
<td>0.2956</td>
<td>0.3175</td>
<td>0.3248</td>
</tr>
<tr>
<td>90</td>
<td>0.0436</td>
<td>0.2297</td>
<td>0.2584</td>
<td>0.2895</td>
<td>0.3212</td>
<td>0.2966</td>
</tr>
<tr>
<td>100</td>
<td>0.0393</td>
<td>0.2225</td>
<td>0.2605</td>
<td>0.2834</td>
<td>0.3213</td>
<td>0.2735</td>
</tr>
</tbody>
</table>

102
A partir dos resultados anteriormente mostrados verifica-se que o parâmetro ε, dentro dos limites testados, apresenta pequena influência na determinação da condutividade térmica efetiva para relações de K_d/K_m até 50.0. Para essa relação de condutividades térmicas e número de trajetórias no volume secundário igual a 15 e número de trajectórias na célula elementar igual a 5, a variação porcentual entre o valor da condutividade térmica para $\varepsilon = 0.033998$ (RELAÇÃO 5) e $\varepsilon = 0.010000$ (RELAÇÃO 1) é de 13%.

Para relações de K_d/K_m acima de 50.0 a influência de ε é mais sensível, conforme anteriormente comentado a partir da análise do modelo exponencial. Para a relação máxima analisada ($K_d/K_m = 100.0$), e nas mesmas condições anteriores, a variação porcentual entre o valor da condutividade térmica para $\varepsilon = 0.033998$ e $\varepsilon = 0.010000$ é de 31%. Desta forma verifica-se ser importante selecionar o valor de ε que melhor represente o fenômeno físico em estudo.

O modelo de BATCHELOR e O'BRIEN é utilizado como referência para a seleção do valor do parâmetro ε que melhor represente o fenômeno físico. Observa-se que quando $\varepsilon = 0.026869$ (RELAÇÃO 4) o modelo probabilístico proposto apresenta boa correlação com o modelo de BATCHELOR e O'BRIEN. Nestas condições, a partir da relação de K_d/K_m, na qual o modelo de BATCHELOR e O'BRIEN começa a apresentar valores coerentes, a variação porcentual entre a condutividade térmica efetiva calculada por este modelo e pelo modelo probabilístico proposto, com $\varepsilon = 0.026869$, decaia de 52.3% ($K_d/K_m = 20.0$) para - 3.62% ($K_d/K_m = 100.0$), indicando que para as faixas onde o modelo de BATCHELOR e O'BRIEN é mais apropriado, os resultados apresentam boa correlação.

O número de trajetórias a serem analisadas no volume secundário apresenta influência de segunda ordem. Enquanto, dentro da faixa de análise, o número de trajetórias na célula elementar não indicou influência.
Desta forma para continuar a avaliação do modelo probabilístico proposto serão considerados os seguintes parâmetros:

- \(e = 0.026809 \)
- número de trajetórias volume secundário = 15
- número de trajetórias célula elementar = 5

Para a segunda avaliação do modelo probabilístico proposto é considerada uma estrutura de célula elementar cúbica de corpo centrado. Esta configuração representa uma fração volumétrica de material disperso de 68.00\%, e é um dos casos estudados por Batchelor e O'Brien.

Os resultados são apresentados considerando-se as seguintes relações:

\[
\text{RELAÇÃO 1} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO SERIE}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

\[
\text{RELAÇÃO 2} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO PROBABILÍSTICO PROPOSTO}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

\[
\text{RELAÇÃO 3} = \frac{\text{CONDUTIVIDADE TÉRMICA MODELO Batchelor e O'Brien}}{\text{CONDUTIVIDADE TÉRMICA MODELO PARALELO}}
\]

Tabela VI.25 apresenta os resultados.
<table>
<thead>
<tr>
<th>Kdis/Kmat</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3617</td>
<td>0.6277</td>
<td>1.7593</td>
</tr>
<tr>
<td>15</td>
<td>0.2600</td>
<td>0.5511</td>
<td>1.4004</td>
</tr>
<tr>
<td>20</td>
<td>0.2029</td>
<td>0.5122</td>
<td>1.1707</td>
</tr>
<tr>
<td>25</td>
<td>0.1663</td>
<td>0.4728</td>
<td>1.0110</td>
</tr>
<tr>
<td>30</td>
<td>0.1409</td>
<td>0.4448</td>
<td>0.8930</td>
</tr>
<tr>
<td>40</td>
<td>0.1077</td>
<td>0.4229</td>
<td>0.7292</td>
</tr>
<tr>
<td>50</td>
<td>0.0874</td>
<td>0.4056</td>
<td>0.6201</td>
</tr>
<tr>
<td>60</td>
<td>0.0734</td>
<td>0.3934</td>
<td>0.5417</td>
</tr>
<tr>
<td>70</td>
<td>0.0633</td>
<td>0.3756</td>
<td>0.4823</td>
</tr>
<tr>
<td>80</td>
<td>0.0556</td>
<td>0.3716</td>
<td>0.4356</td>
</tr>
<tr>
<td>90</td>
<td>0.0496</td>
<td>0.3631</td>
<td>0.3979</td>
</tr>
<tr>
<td>100</td>
<td>0.0448</td>
<td>0.3708</td>
<td>0.3667</td>
</tr>
</tbody>
</table>

Com os valores apresentados na Tabela VI.25, verifica-se que a partir da relação de Kd/Km, na qual o modelo de BATCHELOR e O'BRIEN começa a apresentar valores coerentes, a variação porcentual entre a condutividade térmica efetiva calculada por este modelo e pelo modelo probabilístico proposto decai de 50.2% (Kd/Km = 30.0) para - 1.1% (Kd/Km = 100.0). Indicando, novamente, que para as faixas onde o modelo de BATCHELOR e O'BRIEN é mais apropriado os resultados apresentam excelente correlação.

105
VII. Aplicação dos Modelos Propostos a CERMET/AL

O objetivo deste Capítulo é a aplicação do modelo proposto neste trabalho a materiais compostos pela infiltração de um metal em uma estrutura cerâmica porosa (Cermet). Estes materiais, segundo LARSEN e VYAS [01], apresentam grandes perspetivas atuais e futuras na produção de partes para motores de combustão. Em particular o Cermet, formado pela infiltração de alumínio em uma estrutura cerâmica porosa, apresenta grande importância por ser considerado como a solução tecnológica para a produção de pistões com elevado grau de isolamento térmico, fundamentais para a produção dos motores denominados como LOW HEAT REJECTION ENGINES, os quais visam uma redução significativa no consumo de combustível e a eliminação ou a redução do sistema de resfriamento [12, 13, 14, 15].

O Cermet/AL em análise é produzido pela infiltração do alumínio líquido nas porosidades interconectadas de uma pré-forma de alumina (Al₂O₃) e posterior solidificação do metal sob pressão, eliminando o aparecimento de porosidades de solidificação.

O processo de fundição acima descrito é denominado SQUEEZE CASTING ou Forjamento Líquido (LIQUID FORGING) e consiste na aplicação de elevada pressão mecânica, com auxílio de prensa hidráulica diretamente sobre o metal líquido no interior do molde e conformá-lo no próprio molde.

Para a utilização do modelo proposto a este material composto é necessário caracterizar-se adequadamente a estrutura da pré-forma.

106
VII.1 Caracterização da Pré Forma de Alumina

A pré forma de alumina é obtida através da sinterização de partículas previamente compactadas. As Figuras VII.1 e VII.2 apresentam a estrutura da pré forma quando analisada ao microscópio eletrônico.

Figura VII.1: Pré forma de alumina (A escala cinza = 10μm)
Figura VII.2: Pré forma de alumina (A escala cinza = 100µm)
Figura VII.3: Curva de distribución do tamaño das partículas
<table>
<thead>
<tr>
<th>%</th>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>+306</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+235</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+184</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+144</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+113</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+68.1</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+69.0</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+54.0</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+42.3</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+33.1</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+25.9</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+20.3</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+15.9</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+12.4</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+9.72</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+7.61</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+5.96</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+4.66</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+3.65</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+2.06</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+2.74</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+1.75</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+1.37</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+1.07</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.839</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.557</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.514</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.482</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.315</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.247</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.193</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.151</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.118</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0926</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0725</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0567</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0444</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0347</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0272</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0213</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0167</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0130</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.0102</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.00799</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.00498</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.00383</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>+0.00309</td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Figura VII.4: Dimensão média dos vazios da estrutura cerâmica.
A observação da Figura VII.1 indica que as partículas que compõem a estrutura cerâmica devem ter, aproximadamente, 3.5 µm contudo, a curva da distribuição da dimensão das partículas, conforme mostrado na Figura VII.3, permite determinar com precisão qual a incidência das dimensões. Consta-se que a maior parte das partículas estão na faixa de 1 µm a 5 µm, estando a faixa de corte de 30% a 70% em torno da dimensão de 3.5 µm.

É possível verificar-se também que as partículas apresentam área de contato significativa na região de contato.

A partir da Figura VII.2 é possível identificar-se que a estrutura vista na Figura VII.1 está inserida em outra estrutura aproximadamente esférica com dimensão média de 120 µm de diâmetro. Estas estruturas apresentam contato pontual entre elas.

Desta forma, para se representar a macroestrutura, é importante considerar-se as duas escalas inferiores, ou seja, a estrutura vista na Figura VII.1 deve ser modelada com as informações disponíveis e os resultados devem ser usados para modelar a estrutura vista na Figura VII.2, a qual por fim deve representar o material como um todo.

É importante observar que estes modelos devem preservar a fração volumétrica de alumina que é de 58%, para o material em análise.

<table>
<thead>
<tr>
<th>CONSTITUINTE</th>
<th>CONDUTIVIDADE TÉRMICA (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumínio (ML 124 R)</td>
<td>138.0</td>
</tr>
<tr>
<td>Alumina (COORS AD 995)</td>
<td>35.6</td>
</tr>
</tbody>
</table>

Tabela VII.1: Condutividade térmica dos constituintes do Cermet/AL.

VII.2 Determinação dos Volumes Elementares

O problema será tratado em duas escalas, determinando-se um volume elementar para cada escala.

Para a escala representada pela Figura VII.1 será considerado que as partículas que compõem esta estrutura se ordenam segundo um arranjo cúbico de face centrada e apresentam, não um contato pontual, mas sim uma área finita de contato. Desta forma, o arranjo considerado é mais denso do que o arranjo usual. O espaço entre as esferas é então preenchido com alumínio.

A dimensão considerada para as partículas de alumina é de 3.5 μm de diâmetro, conforme discutido no item anterior, enquanto a aresta do cubo é adotada como sendo de 4.9μm. Este valor é determinado a partir da Figura VII.4 que mostra o diâmetro médio dos vazios da estrutura cerâmica. Verifica-se que esta figura comprova as avaliações da existência de duas escalas para o problema, neste caso há duas faixas para a dimensão dos vazios; a menor está compreendida entre 0.51 e 7.61 μm e a maior está compreendida entre 54.0 e 88.1 μm. Com estes valores considerados obtem-se os seguintes resultados:

112
fração volumétrica de alumina : 78.3% ;
fração volumétrica de alumínio : 21.7% ;
dimensão média dos vazios : 1.83 μm .

Para a escala representada pela Figura VII.2 será considerado que as partículas que compõem esta estrutura também se ordenam segundo um arranjo cúbico de face centrada, apresentando contudo, contato pontual. O espaço entre as esferas é então preenchido com alumínio.

A dimensão considerada para as partículas modeladas com o resultado da análise anterior é de 120 μm (diâmetro), e a aresta adotada para o cubo é de 169.7 μm. De maneira análoga a utilizada para a escala menor, a dimensão da aresta do cubo é determinada a partir da Figura VII.4, de tal forma a obter-se a dimensão média dos vazios adequada com a escala maior da estrutura. Com estes valores considerados obtem-se os seguintes resultados :

fração volumétrica do material disperso : 74.0% ;
fração volumétrica do alumínio : 26.0% ;
dimensão média dos vazios : 67.2 μm .

Deve-se ressaltar que a escolha dos arranjos foi baseada na observação das estruturas e deveria representar as características macroscópicas do material composto.

VII.3 Determinação da Condutividade Térmica Efetiva

VII.3.1 Modelo Determinístico

Com o primeiro volume elementar definido no item anterior e com as propriedades definidas na Tabela VII.1.
aplicou-se o modelo determinístico proposto para a escala menor da estrutura, obtendo-se a condutividade térmica efetiva:

$$K_{ef} = 50.8 \text{ W/mK} \quad (VII.1)$$

Utilizando-se esta condutividade térmica efetiva como sendo o representativa das esferas do segundo volume elementar definido no item anterior, o qual refere-se a escala maior da estrutura, e considerando-se a condutividade térmica do alumínio conforme mostrado na Tabela VII.1, obteve-se:

$$K_{ef,T} = 67.7 \text{ W/mK} \quad (VII.2)$$

Este valor é considerado como sendo a condutividade térmica efetiva do material composto em análise.

VII.3.2 Modelo Probabilístico

De maneira análoga a desenvolvida para o modelo determinístico, o modelo probabilístico também considerará as duas escalas do problema.

Aplicou-se o modelo probabilístico para a escala menor da estrutura, obtendo-se a condutividade térmica efetiva:

$$K_{ef} = 45.6 \text{ W/mK} \quad (VII.3)$$

Utilizando-se esta condutividade térmica efetiva como sendo representativa das esferas do segundo volume elementar definido no iten anterior, o qual refere-se a escala maior da
estrutura, e considerando-se a condutividade térmica do alumínio conforme mostrado na Tabela VII.1, obteve-se:

$$K_{ef} = 57.6 \quad \text{W/mK}$$ (VII.4)

Este valor é considerado como sendo a condutividade térmica efetiva do material composto em análise.

VII.4 Comparação com outros Resultados

Os resultados obtidos com os volumes elementares definidos no item VII.2 serão comparados a resultados obtidos com volumes elementares definidos diferentemente, simulando uma condição aonde não se dispusesse de maiores informações a respeito da morfologia da estrutura, nem da dimensão das partículas, somente da fração de alumina e alumínio.

Em primeiro lugar considerou-se um arranjo cúbico de corpo centrado, aonde as partículas não se tocavam, de tal forma a obter-se as frações volumétricas desejadas. A dimensão adotada para as partículas foi de 4.1 μm (diâmetro) enquanto para a aresta do cubo foi de 5 μm.

O resultado obtido encontra-se na Tabela VII.2.

Considerou-se a seguir um arranjo cúbico simples aonde as esferas se encontram mais compactadas, apresentando assim área de contato finita entre elas, essa condição foi determinada para se obter as frações volumétricas desejadas. A dimensão adotada para as partículas foi de 5.2 μm (diâmetro), enquanto para a aresta do cubo foi de 5 μm.

O resultado obtido encontra-se na tabela VII.2.

Assim como feito no Capítulo VI, aqui também os valores encontrados serão comparados à condutividade térmica efetiva determinada considerando-se o material em série e em paralelo, por serem o limite inferior e superior.
respectivamente. Os resultados obtidos encontram-se na Tabela VII.2.

Finalmente, os resultados são comparados à medição experimental em um corpo de prova produzido com o material em análise. A técnica utilizada para determinação da condutividade térmica efetiva foi a de LASER - FLASH METHOD.

De forma geral o LASER - FLASH METHOD consiste em submeter uma face de um pequeno e fino corpo de prova a um pulso uniforme de laser, ou a outra fonte instantânea de calor. A energia absorvida na superfície irradiada se difundirá através da espessura do corpo de prova. A resposta transiente de temperatura, na face oposta, determinada de uma forma adequada permite o cálculo da difusividade térmica do material. A relação entre a difusividade \(\alpha \) e a condutividade \(K \) térmica do material é mostrada abaixo:

\[
K = \alpha \rho \ c_p \quad \text{(VII.5)}
\]

onde:
- \(K \) é a condutividade térmica do material
- \(\alpha \) é a difusividade térmica do material
- \(\rho \) é a densidade do material
- \(c_p \) é o calor específico do material

Uma curva típica da resposta transiente de temperatura na face oposta a incidência do feixe de laser é mostrada na Figura VII.5.
Figura VII.5: Resposta Transiente de Temperatura na Face oposta à Incidência do Laser.

Para uma condição de fluxo de calor unidirecional, sem perdas de calor para o meio, e um pulso uniforme de energia, a difusidade térmica pode ser calculada como segue:

\[\alpha = 1.37L^2/\pi^2 \, t_{1/2} \] \hspace{1cm} \text{(VII.6)}

onde:
- \(\alpha \) é a difusidade do material
- \(L \) é a espessura do material
- \(t_{1/2} \) é o tempo para atingir-se metade da variação de temperatura na face de medição.

Desta forma foi obtido o resultado experimental do CERMET em análise. O valor encontra-se na Tabela VII.2.
<table>
<thead>
<tr>
<th>MODELO DETERMINISTICO</th>
<th>CONDIÇÃO DE DETERMINAÇÃO</th>
<th>CONDUTIVIDADE TÉRMICA EFETIVA (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELO PROBABILISTICO</td>
<td>Modelo proposto considerando análise da estrutura</td>
<td>67.7 (5.12%)</td>
</tr>
<tr>
<td></td>
<td>Modelo proposto com arranjo cúbico de corpo centrado</td>
<td>68.3 (6.06%)</td>
</tr>
<tr>
<td></td>
<td>Modelo proposto com arranjo cúbico simples</td>
<td>69.0 (7.14%)</td>
</tr>
<tr>
<td>MODELO PROBABILISTICO</td>
<td>Modelo proposto considerando análise da estrutura</td>
<td>57.6 (-10.56%)</td>
</tr>
<tr>
<td></td>
<td>Modelo proposto com arranjo cúbico de corpo centrado</td>
<td>57.6 (-10.56%)</td>
</tr>
<tr>
<td></td>
<td>Modelo proposto com arranjo cúbico simples</td>
<td>64.1 (-0.47%)</td>
</tr>
<tr>
<td></td>
<td>Modelo em série</td>
<td>51.7 (-19.72%)</td>
</tr>
<tr>
<td></td>
<td>Modelo em paralelo</td>
<td>78.6 (22.05%)</td>
</tr>
<tr>
<td></td>
<td>Medicação Experimental</td>
<td>64.4</td>
</tr>
</tbody>
</table>

Tabela VII.2: Comparação entre o valor medido para a condutividade térmica efetiva e os valores obtidos com os modelos propostos. Os valores entre parênteses referem-se a variação porcentual entre o valor medido e o valor absoluto com um dado modelo.
Os resultados próximos obtidos com as três condições dos modelos propostos deve-se ao fato da relação K_m/K_d ser pequena (~3.9), o que faz com que a solução seja pouco influenciada pela distribuição da matriz. Os resultados obtidos com ambos os modelos apresentaram boa correlação com o valor experimental, justificando sua utilização para o desenvolvimento de materiais, bem como do componente.
VIII. CONCLUSÃO

A revisão bibliográfica mostrada no Capítulo II, indicou a não existência de um único modelo (teórico ou empírico) válido para todas as relações de Kd/Km e/ou para todas as faixas de fração volumétrica do material disperso. Em especial, para a faixa na qual se enquadra o material CERMET/AL em análise ($Kd/Km=3.9$ e $\phi=58.0\%$) não foi possível encontrar nenhum modelo na literatura.

Os modelos propostos neste trabalho apresentaram boa correlação com os modelos clássicos de literatura. O modelo determinístico mostrou-se mais adequado para materiais compostos, nos quais a diferença entre a condutividade térmica dos constituintes não fosse significativa, não havendo, portanto, a ocorrência de caminhos preferenciais. Isto, pois, a condição de igualdade de probabilidade de transferência em qualquer direção faz com que não seja possível detectar caminhos preferenciais.

O modelo probabilístico abrangeu também materiais compostos, nos quais a diferença entre a condutividade térmica dos constituintes fosse significativa, podendo haver, portanto, a ocorrência de caminhos preferenciais. Os resultados comparativos com modelo de literatura foram muito bons. Este modelo permite também o tratamento de materiais compostos, nos quais os constituintes apresentem características anisotrópicas com relação a condução de calor. Nesta área recomenda-se que trabalho de comparação com resultados experimentais, ou de bibliografia, seja realizado.

A aplicação dos modelos propostos ao CERMET/AL objeto deste trabalho mostrou boa correlação com valor experimental de condutividade térmica deste material. Desta forma, permitem que trabalhos de otimização das características operacionais dos pistões com alto grau de adiabaticidade sejam realizadas a nível numérico.

Os dois modelos propostos preenchem uma lacuna
detectada na revisão bibliográfica realizada, bem como mantém a faixa de validade em que outros modelos foram desenvolvidos.

Uma terceira técnica que foi analisada é a utilização de programa comercial de elementos finitos para a avaliação da condutividade térmica efetiva de materiais compostos. A metodologia foi similar à utilizada para os dois outros modelos e visava simular um ensaio de medição de condutividade térmica. Baseia-se também na possibilidade de representação do material composto através de uma célula elementar.

Para avaliar esta possibilidade foi analisada uma estrutura cúbica simples, a qual representa uma fração de material disperso da ordem de 52.4%. Esta estrutura é um dos casos analisados por Batchelor e O'Brien. O resultado, como anteriormente, encontra-se normalizado pela condutividade térmica em paralelo. A relação 1 refere-se ao modelo de elementos finitos, enquanto, a relação 2 refere-se ao modelo de Batchelor e O'Brien e a relação 3 refere-se ao modelo probabilístico proposto. A tabela VIII.1 apresenta os resultados.

Tabela VIII.1: Comparação entre modelo por elementos finitos e o modelo de Batchelor e O'Brien e o modelo probabilístico proposto.

<table>
<thead>
<tr>
<th>Kdis/Kmat</th>
<th>RELAÇÃO 1</th>
<th>RELAÇÃO 2</th>
<th>RELAÇÃO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.5443</td>
<td>1.2649</td>
<td>0.5524</td>
</tr>
<tr>
<td>20</td>
<td>0.3805</td>
<td>0.8596</td>
<td>0.4099</td>
</tr>
<tr>
<td>30</td>
<td>0.3062</td>
<td>0.6594</td>
<td>0.3558</td>
</tr>
<tr>
<td>40</td>
<td>0.2637</td>
<td>0.5404</td>
<td>0.3206</td>
</tr>
<tr>
<td>50</td>
<td>0.2362</td>
<td>0.4605</td>
<td>0.3082</td>
</tr>
<tr>
<td>60</td>
<td>0.2169</td>
<td>0.4028</td>
<td>0.3006</td>
</tr>
<tr>
<td>70</td>
<td>0.2026</td>
<td>0.3590</td>
<td>0.2982</td>
</tr>
<tr>
<td>80</td>
<td>0.1917</td>
<td>0.3246</td>
<td>0.2956</td>
</tr>
<tr>
<td>90</td>
<td>0.1830</td>
<td>0.2986</td>
<td>0.2895</td>
</tr>
<tr>
<td>100</td>
<td>0.1760</td>
<td>0.2735</td>
<td>0.2835</td>
</tr>
</tbody>
</table>

121
Verifica-se, a partir dos resultados anteriores que o modelo utilizando elementos finitos não foi capaz de detectar a existência de caminhos preferenciais. Para valores baixos de Kdis/Kmat os resultados foram próximos ao modelo probabilístico proposto. Contudo, com o aumento na relação de condutividades o modelo de elementos finitos não acompanhou o comportamento do modelo proposto que tendeu para os resultados de Batchelor e O'Brien considerado como referência para esta comparação. Estes resultados foram obtidos considerando-se uma malha de elementos finitos com 8000 elementos tridimensionais. O aumento do número de elementos para verificar a tendência de resultados não foi possível por razão de memória de computador. Recomenda-se aprofundar o trabalho nesta linha.
IX. Referências Bibliográficas

[06] Lord Rayleigh, "On the Influence of Obstacles Arranged in Rectangular Order Upon the Properties of a Medium", Phil. Mag., 34:481.

