MÉTODO MATRICIAL PARA GERAÇÃO DE PERFIS DE DENTES EM ENGRENAGENS FLEXÍVEIS DE HARMONIC DRIVES

Dissertação apresentada à
Escola Politécnica da USP
para obtenção do Título de
Mestre em Engenharia Mecânica

São Paulo - 1993
SYLLA BENEDITO ABIBE ARANHA
Engenheiro Naval - EPUSP - 1979

MÉTODO MATRICIAL PARA GERAÇÃO DE PERFIS DE DENTES EM ENGRENAGENS FLEXÍVEIS DE HARMONIC DRIVES

Dissertação apresentada à
Escola Politécnica da USP
para obtenção do Título de
Mestre em Engenharia Mecânica

Orientador: Prof. Dr. Carlos Chiencing Tu
Dept. de Engenharia Mecânica - EPUSP

São Paulo - 1993
Em memória de minha querida mãe, Maria de Lourdes Abibe Aranha
Agradecimentos

Desejo aqui expressar meu sinceros agradecimentos ao Prof. Carlos C. Tu, meu orientador, pelas sugestões valiosas no desenvolvimento desta dissertação.

Em particular, agradeço à minha esposa Arlete, pelo amor e paciência com que compartilhou as horas difíceis de meu trabalho.

Finalmente, um agradecimento especial ao meu filho, Anis, fonte de estímulo e alegria durante o tempo em que me privei de sua companhia.
Resumo

O trabalho apresenta um método matricial para geração dos perfis de dentes de engrenagens flexíveis que compõem os mecanismos denominados harmonic drives.

O tratamento matricial possibilita a obtenção das formas dos dentes por meio da transformação de coordenadas do perfil reto de uma cremalheira de referência. São delimitados os contornos dos dentes, para se evitar problemas de interferência. Define-se também as equações da raiz, do fundo e do topo dos dentes. Esta abordagem permite ainda a consideração de perfis com correção, a fim de se otimizar as condições cinemáticas de engrenamento entre dentes.

Os resultados são mostrados graficamente, o que permite a análise das principais características geométricas dos dentes e sua influência na resistência mecânica das engrenagens flexíveis.
Abstract

A matrix method for generating the tooth profiles of the flexible splines of harmonic drives is described.

The tooth shape is obtained by the coordinate transformation of a straight sided rack profile using matrices. Equations for the tooth root, fillet and top land are also derived.

Profile corrections of the tooth are made in order to avoid interference and to optimize the kinematic conditions of teeth engagement.

Graphic outputs were generated so that an analysis of the influence of the main geometric characteristics on the strength of the flexible spline can be made.
Sumário

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicatória</td>
<td>ii</td>
</tr>
<tr>
<td>Agradecimentos</td>
<td>iii</td>
</tr>
<tr>
<td>Resumo</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Nomenclatura</td>
<td>vi</td>
</tr>
<tr>
<td>Lista de Tabelas</td>
<td>vii</td>
</tr>
<tr>
<td>Lista de Figuras</td>
<td>viii</td>
</tr>
<tr>
<td>1. Introdução</td>
<td>1</td>
</tr>
<tr>
<td>2. Características técnicas dos harmonic drives</td>
<td>3</td>
</tr>
<tr>
<td>3. Revisão Bibliográfica</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Princípios de projeto do mecanismo</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Relações de transmissão</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Análise Cinemática do Engrenamento</td>
<td>16</td>
</tr>
<tr>
<td>3.3.1 Relação de velocidades angulares</td>
<td>27</td>
</tr>
<tr>
<td>3.3.2 Modelagem do engrenamento</td>
<td>28</td>
</tr>
<tr>
<td>3.3.3 Geração dos perfis dos dentes</td>
<td>32</td>
</tr>
<tr>
<td>3.4 Esforços de engrenamento</td>
<td>40</td>
</tr>
<tr>
<td>3.5 Erro cinemático</td>
<td>41</td>
</tr>
<tr>
<td>4. Método para geração dos dentes</td>
<td>43</td>
</tr>
<tr>
<td>4.1 Sistemas de coordenadas</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Transformação de movimentos</td>
<td>48</td>
</tr>
<tr>
<td>4.3 Determinação do perfil dos dentes</td>
<td>52</td>
</tr>
<tr>
<td>4.3.1 Geração do flanco</td>
<td>56</td>
</tr>
<tr>
<td>4.3.2 Geração da raiz</td>
<td>60</td>
</tr>
<tr>
<td>4.3.3 Geração do base</td>
<td>61</td>
</tr>
<tr>
<td>4.3.4 Geração do topo</td>
<td>63</td>
</tr>
<tr>
<td>5. Aplicação do método e análise de resultados</td>
<td>64</td>
</tr>
<tr>
<td>5.1 Aproximações e simplificações</td>
<td>65</td>
</tr>
<tr>
<td>5.2 Implementação das equações</td>
<td>66</td>
</tr>
<tr>
<td>5.3 Problemas de interferência</td>
<td>67</td>
</tr>
<tr>
<td>5.4 Formato do perfil</td>
<td>68</td>
</tr>
<tr>
<td>6. Conclusões e recomendações</td>
<td>69</td>
</tr>
<tr>
<td>7. Referências Bibliográficas</td>
<td>71</td>
</tr>
</tbody>
</table>

Apêndice-A - Conceitos de geometria diferencial e teoria do engrenamento
Apêndice-B - Equações desenvolvidas e resultados
NOMENCLATURA

Obs: Esta nomenclatura se refere apenas aos símbolos empregados no desenvolvimento do método em estudo, apresentado a partir do item 4.

α = ângulo de inclinação ou de pressão do perfil reto da engrenagem de referência, medido em graus (Figuras 36, 38 e Tabela 1)

β = ângulo de rotação de ponto da circunferência primitiva da engrenagem rígida, medida em radianos (ver expressão 49)

δ = deflexão do eixo maior da curva harmônica, medida em mm (vide expressão 4b)

ϕ = ângulo polar da curva harmônica, medida em radianos (vide Figura 36)

θ = ângulo do raio de concordância do dente da cremalheira, medido em radianos (vide Figura A.4)

ρ = raio de concordância do dente da cremalheira, medida em mm (vide Figura A.4 e Tabela 1)

τ = vetor unitário tangente a curva plana (expressão A.15)

Σ = denominação das curvas de geração (Σ_r) e gerado (Σ_s) pelo método de rotação, do sistema s_r, ligado ao dente flexível, em relação ao sistema fixo s_r, medido em radianos (ver Figura 36)
\(\zeta \) variável auxiliar para solução do sistema de equações lineares do subitem A.5 do Apêndice A.

a idem a \(\alpha \), utilizado no Apêndice B

c idem a \(\delta \), utilizado no Apêndice B

d\(_0 \) diâmetro inicial da engrenagem flexível (antes de se deformar), medido em mm (vide expressão 4b)

d idem a \(d_0 \), utilizado em A.4 e B.

\(f_i \) idem a \(\phi \), utilizado em B.

\(f_e \) folga contra contato no fundo do dente, medida em mm (vide Figura 38)

ded altura adendo da engrenagem de geração, medida em mm (ver Figura 38).
Utilizada em B.

\(f_r \) folga radial mínima contra interferência secundária, medida em mm (vide expressão 4.6)

g(\(\theta, \phi \)) equação do engrenamento plano para o flanco do dente (conforme expressão A.24)

\(g(\phi, u) \) idem à anterior (expressão 40).

\(g_e(\phi, \theta) \) equação do engrenamento plano para a raiz do dente (conforme expressão A.54)
idem a ded (ver Figura 38 e Tabela 1.)

h_s
altura do adendo da engrenagem flexível, medida em mm (expressão 46)

h_w
altura do adendo da engrenagem circular rígida, medida em mm (expressão 47)

i
relação de transmissão (redução) dos *harmonic drives* (ver Tabela 1)

m
módulo da engrenagem de corte, medido em mm (conforme Tabela 1)

\(\bar{n}_i \)
vetor unitário normal (versor) ao perfil da cremalheira de referência em relação a \(s_i \) (vide Figura A.3 e expressão A.30)

\(\bar{n}'_i \)
versor normal ao arco de concordância da raiz do dente da cremalheira em relação a \(s_i \) (ver Figura A.4 e expressão A.53)

\((n_{x1},n_{y1})\)
componentes de \(\bar{n}_i \) nas direções \(x1 \) e \(x2 \) (expressão A.42)

\((n'_{x1},n'_{y1})\)
componentes de \(\bar{n}'_i \) nas direções \(x1 \) e \(y1 \) (expressão A.55)

p
passo entre dentes da engrenagem flexível, ao longo da curva harmônica, medida em mm (expressão 38)

\(r(\theta,\phi) \)
vetor - posição do lugar geométrico de curva no plano, em função dos parâmetros \(\theta \) e \(\phi \) (expressão A.20)

r
magnitude do raio vetor da curva harmônica (Figura 36 e expressão A.4b)
\(\vec{r}_i(u) \) \hspace{1cm} \text{vetor - posição dos pontos do perfil da cremalheira em relação a } s_i \text{ (vide Figura A-3)}

\(\{r_i\} \) \hspace{1cm} \text{vetor - posição dos pontos de contato entre dentes das engrenagens flexível e rigida, em relação a } s_r \text{ (vide expressão 44)}

\(\{r_j\} \) \hspace{1cm} \text{idem ao anterior para o sistema } s_i \text{ (expressão 39)}

\(\{r_j\} \) \hspace{1cm} \text{idem ao anterior, para o sistema } s_i \text{ (expressão 45)}

\(\{r_i^*\} \) \hspace{1cm} \text{aproximação de } \{r_i\} \text{ de acordo com subitem 5.1 (expressão 62)}

\(\{r_j^*\} \) \hspace{1cm} \text{idem para } \{r_j\} \text{ (subitem 5.1, expressão 64).}

\(s(\phi) \) \hspace{1cm} \text{comprimento da curva harmônica para um dado ângulo polar } \phi \text{, medida em mm (expressão 17)}

\(s^* \) \hspace{1cm} \text{aproximação de } s(\phi) \text{ de acordo com a expressão 62 do subitem 5.1, medido em mm.}

\(\vec{T} \) \hspace{1cm} \text{vetor tangente a uma curva plana (expressão A.14)}

\(u \) \hspace{1cm} \text{parâmetro de geração do perfil da cremalheira (vide Figura 1.3)}

\(u_i \) \hspace{1cm} \text{valor limite de } u \text{ para se evitar interferência primária (expressão A.49 e B.1.3)}

\(x \) \hspace{1cm} \text{coeficiente de deslocamento da ferramenta de geração (ver Figura A.3 e Tabela1)}
\(x_e \) abscissa do centro da curvatura da curva harmônica (evoluta), medida em mm (expressão 25)

\(X_1(\phi) \) abscissa do centro instantâneo de rotação (I) em relação a \(s \), medida em mm (expressão 37)

\(x_1(u) \) componente do vetor-posição do perfil da cremalheira na direção \(\vec{i} \), medida em mm (expressão 41)

\(x_{e1}(\theta) \) componente do vetor-posição do perfil da raiz do dente gerador na direção \(\vec{j} \), medida em mm (expressão 52)

\(Y_1(\phi) \) ordenada de I em relação a \(s \), medida em mm (expressão 37)

\(y_1(u) \) idem a \(x_1(u) \), na direção \(\vec{k} \), (expressão A.41)

\(y_{e1}(\theta) \) idem a \(x_{e1}(\theta) \), na direção \(\vec{k} \) (expressão A.52)

\(\overline{y}_f(\pi / 2) \) ordenada da trajetória do dente flexível em relação à engrenagem rígida no ponto de cruzamento entre dentes \((\phi = \pi / 2) \), conforme expressão 46, medida em mm

\(Z_f \) número de dentes da engrenagem flexível (ver expressão 49)

\(Z_r \) número de dentes da engrenagem rígida (ver expressão 49)
<table>
<thead>
<tr>
<th>TABELA</th>
<th>Descricao</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABELA-1</td>
<td>Faixa de variação dos parâmetros característicos do mecanismo</td>
<td>64</td>
</tr>
<tr>
<td>Figura</td>
<td>Denominação</td>
<td>Página</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Componentes básicos do mecanismo</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Princípio da "integração"</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Montagem e esquema de funcionamento do mecanismo</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Sistemas alternativos de geradores de deformação</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Componentes do redutor de 2 estágios</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Princípio de "arcuation"</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Superposição de onda senoidal a uma circunferência</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Conversão da circunferência em anel dentado</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Relações angulares entre dentes</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Configurações de transmissão</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>Superfície flexível com um dente na geratriz</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Engrenamento entre dentes da engrenagem rígida e flexível</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Esquema simplificado do mecanismo de dois discos</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Interferência na raiz do dente do anel flexível</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>Interferência na raiz de dente da engrenagem rígida</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>Interferência entre dentes não acoplados</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>Sistemas de coordenadas para análise cinemática</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>Parâmetros geométricos da análise experimental</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>Sistemas de coordenadas fixos aos dentes do anel flexível</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>Configuração básica do modelo do mecanismo</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>Condição mecânica da lei de engrenamento</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>Geometria do engrenamento</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>Perfil gerado pelo método estudado</td>
<td>33</td>
</tr>
<tr>
<td>24</td>
<td>Representação da trajetória de engrenamento</td>
<td>34</td>
</tr>
<tr>
<td>Figura</td>
<td>Denominação</td>
<td>Página</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>25</td>
<td>Perfil do dente com ação aproximadamente conjugada</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>Resistência à fadiga de engrenagem flexível</td>
<td>36</td>
</tr>
<tr>
<td>27</td>
<td>Curvas de flexibilidade torcional</td>
<td>36</td>
</tr>
<tr>
<td>28</td>
<td>Trajetória de dentes retos com $\lambda=1$</td>
<td>37</td>
</tr>
<tr>
<td>29</td>
<td>Trajetória de dentes retos com $\lambda < 1$</td>
<td>38</td>
</tr>
<tr>
<td>30</td>
<td>Trajetória de dentes retos com $\lambda > 1$</td>
<td>38</td>
</tr>
<tr>
<td>31</td>
<td>Trajetória de dentes de evolvente com $\lambda < 1$</td>
<td>39</td>
</tr>
<tr>
<td>32</td>
<td>Erro posicional máximo do Harmonic Drive™</td>
<td>41</td>
</tr>
<tr>
<td>33</td>
<td>Geração de engrenagem não - circular com cremalheira</td>
<td>44</td>
</tr>
<tr>
<td>34</td>
<td>Geração de engrenagem não - circular com fresa de forma</td>
<td>44</td>
</tr>
<tr>
<td>35</td>
<td>Geração de engrenagem circular com cremalheira</td>
<td>45</td>
</tr>
<tr>
<td>36</td>
<td>Sistemas de referência para geração dos dentes do anel flexível</td>
<td>47</td>
</tr>
<tr>
<td>37</td>
<td>Divisão das regiões do perfil do dente</td>
<td>53</td>
</tr>
<tr>
<td>38</td>
<td>Dimensões do dente retos da cremalheira de referência</td>
<td>54</td>
</tr>
<tr>
<td>39</td>
<td>Correção do adendo da engrenagem flexível</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>Trajetória do dente da engrenagem flexível</td>
<td>59</td>
</tr>
<tr>
<td>41</td>
<td>Condições para geração da base do perfil</td>
<td>62</td>
</tr>
<tr>
<td>A1</td>
<td>Transformação de coordenadas entre sistema móvel e fixo</td>
<td>2A</td>
</tr>
<tr>
<td>A2</td>
<td>Envelope de curvas no plano</td>
<td>5A</td>
</tr>
<tr>
<td>A3</td>
<td>Condições para se evitar interferência primária</td>
<td>7A</td>
</tr>
<tr>
<td>A4</td>
<td>Condições para geração da raiz do perfil</td>
<td>12A</td>
</tr>
<tr>
<td>B1</td>
<td>Perfil gerado para análise do problema de interferência</td>
<td>11B</td>
</tr>
<tr>
<td>B2</td>
<td>Idem</td>
<td>11B</td>
</tr>
<tr>
<td>B3</td>
<td>Idem</td>
<td>12B</td>
</tr>
<tr>
<td>B4</td>
<td>Perfil gerado para análise da influência do raio de concordância</td>
<td>13B</td>
</tr>
<tr>
<td>B5</td>
<td>Idem</td>
<td>13B</td>
</tr>
<tr>
<td>B6</td>
<td>Idem</td>
<td>14B</td>
</tr>
<tr>
<td>B7</td>
<td>Perfil gerado para análise de correção dos dentes</td>
<td>15B</td>
</tr>
<tr>
<td>Figura</td>
<td>Denominação</td>
<td>Página</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>B8</td>
<td>Idem</td>
<td>15B</td>
</tr>
<tr>
<td>B9</td>
<td>Idem</td>
<td>16B</td>
</tr>
<tr>
<td>B10</td>
<td>Idem</td>
<td>16B</td>
</tr>
<tr>
<td>B11</td>
<td>Idem</td>
<td>17B</td>
</tr>
<tr>
<td>B12</td>
<td>Idem</td>
<td>17B</td>
</tr>
<tr>
<td>B13</td>
<td>Idem</td>
<td>18B</td>
</tr>
<tr>
<td>B14</td>
<td>Idem</td>
<td>18B</td>
</tr>
<tr>
<td>B15</td>
<td>Idem</td>
<td>19B</td>
</tr>
<tr>
<td>B16</td>
<td>Perfil gerado para análise do aumento do ângulo de pressão</td>
<td>20B</td>
</tr>
<tr>
<td>B17</td>
<td>Idem</td>
<td>20B</td>
</tr>
</tbody>
</table>
1. INTRODUÇÃO

Esta dissertação apresenta um método matricial a ser implementado em computador, para geração de um perfil geométrico em dentes de engrenagens flexíveis que compõem os mecanismos de transmissão mecânica denominados harmonic drives.

A expressão em língua inglesa será empregada neste trabalho, pois o seu significado já está consagrado pelo uso intenso em todo o mundo. Ademais, não há uma tradução concisa em português que exprima as características do mecanismo: elemento de transmissão de potência que utiliza uma engrenagem flexível em seu interior, a qual assume a forma geométrica descrita por uma função harmônica durante a sua operação.

Neste trabalho são descritas inicialmente as principais características técnicas dos harmonic drives, utilizados como elementos de transmissão mecânica entre eixos rotativos (item 2).

Em seguida apresenta-se uma revisão bibliográfica, abordando os aspectos mais importantes para o projeto do mecanismo, as relações cinemáticas de seus componentes, as hipóteses simplificadoras aplicadas à modelagem de dentes nas engrenagens, e processos de cálculos analíticos de esforços entre seus elementos (item 3).

No item 4 mostra-se o processo a ser desenvolvido na determinação da geometria das engrenagens dos harmonic drives. Com base nos conceitos expostos no Apêndice-A, aplica-se um método matricial que define as expressões matemáticas para a forma dos dentes, por meio da transformação de coordenadas do perfil reto dos dentes de uma cremalheira de referência. Esta abordagem permite estudar também os problemas de interferência entre as engrenagens do mecanismo, obtendo-se as condições de contorno para as expressões matemáticas definidoras da geometria dos dentes.
A finalidade principal deste procedimento é poder gerar automaticamente um arquivo de dados que define a geometria dos elementos componentes dos harmonic drives, de forma a possibilitar uma análise de tensões e deformações nos dentes de suas engrenagens, através da aplicação do método de elementos finitos.

Dessa forma, é possível executar o projeto do mecanismo utilizando-se o computador como ferramenta de integração entre os seus parâmetros geométricos e a resistência mecânica das engrenagens internas ao mesmo.

No item 5 o método é aplicado para a geração de formas de dentes, através da variação de alguns parâmetros, dentro da faixa usual de projetos de harmonic drives. Os resultados obtidos são mostrados através de gráficos (Apêndice-B) para exemplificação e análise da validade do método.

Para finalizar, são apresentadas as principais conclusões decorrentes da análise efetuada, levando-se em conta os principais aspectos do projeto do perfil geométrico dos dentes de engrenagens flexíveis nos harmonic drives. São sugeridas algumas recomendações para continuidade da pesquisa sobre o assunto, ressaltando-se a necessidade de estudos de métodos de dimensionamento mais precisos, e posterior desenvolvimento de processos de fabricação para as engrenagens do mecanismo.
2. CARACTERÍSTICAS TÉCNICAS DOS HARMONIC DRIVES

Os princípios básicos de funcionamento dos harmonic drives, foram apresentados pela primeira vez em 1957, pelo doutor C.W. Musser, consultor da United Shoe Machinery Corporation (EUA). Fundamentalmente eles utilizam a deformação controlada de uma engrenagem flexível (flexible spline), acoplada concentricamente a uma engrenagem circular rígida (circular spline), por meio de um came rotativo de perfil aproximadamente elíptico, chamado gerador de ondas de deformação (wave generator).

Como resultado da montagem descrita acima e esquematizada na Figura 1, é possível efetuar a transmissão de movimentos rotativos entre eixos concêntricos, com elevadas taxas de redução. Normalmente são atingidas relações de transmissão de 60:1 até 320:1, considerando-se um único estágio de redução [2]. Mediante a composição de mecanismos em série podem ser atingidas reduções muito superiores (de 2.500:1 até 200.000:1).

Figura 1—Componentes básicos do mecanismo [4].

A capacidade de torque nos harmonic drives pode chegar a 6.000 Nm, com eficiência mecânica que varia entre 75 e 92%, dependendo da velocidade de rotação aplicada ao eixo de entrada do redutor [3].
Essa faixa de eficiência mecânica do componente possibilita também o seu uso como amplificador de rotação, acionando-se o eixo de saída por meio de torques elevados.

Quando comparados a mecanismos de transmissão convencionais, de mesma taxa de redução e capacidade de torque, apresentam peso e tamanho bem inferiores.

Além disso, os **harmonic drives** são componentes de transmissão que não apresentam as folgas de engrenamento entre os dentes (*backlash*), normalmente presentes em certo grau nos redutores de engrenagens convencionais, para assegurar a própria interação dos dentes sem interferências mecânicas. Tais folgas acarretam erros de posicionamento e problemas de vibração em sistemas de controle com realimentação.

Devido a essas características especiais, os **harmonic drives** são utilizados em equipamentos de posicionamento e servo-mecanismos na indústria aeroespacial, robótica, de máquinas-ferramentas e de aparelhos médicos.

Atualmente esses componentes são fabricados nos E.U.A., Alemanha e Japão, sob a marca registrada da **Harmonic Drive Inc.** A C.E.I. (antiga URSS) também possui tecnologia para fabricação de mecanismos similares.

A par das vantagens anteriormente citadas, os **harmonic drives** apresentam uma deficiência importante em comparação com mecanismos de transmissão por engrenagens rígidas: uma certa flexibilidade à torção, que também interfere negativamente em sistemas de controle de posição, reduzindo a precisão e repetibilidade dos mesmos.
Por sua vez, as falhas comumente observadas em serviço são causadas por fadiga nos dentes das engrenagens flexíveis, altamente solicitadas por esforços de flexão alternada, conjugados aos efeitos de concentração de tensões. Sabe-se, no entanto, que tais problemas podem ser minimizados através de um aumento na quantidade e na área de contato dos dentes das engrenagens constituintes do mecanismo. O número de dentes na engrenagem flexível varia comumente entre 140 e 600 [3].

A título de informação, mencionam-se aqui os aços mais utilizados na fabricação da engrenagem flexível: 0,30C-Cr-Mn-Si ; 0,38C-2Cr-Mo-Al ; 0,40C-Cr-2Ni-Mo. Estes materiais apresentam um bom comportamento diante de concentradores de tensões, sendo obtidos de tubos conformados por rolamento helicoidal, processo específico de domínio particular dos fabricantes. A dureza Brinell dos dentes varia entre 280 e 320. No caso da engrenagem rígida, são usados aços tais como: 0,45C ; 0,40C-Cr ; 0,30C-Cr-Mn-Si. A dureza Brinell é cerca de 20 a 30 unidades inferior aos dentes da engrenagem flexível [3].
3. REVISÃO BIBLIOGRÁFICA

Neste item são analisados vários estudos referentes ao projeto de harmonic drives. Adotou-se para isso uma sequência de exposição que permite a descrição dos princípios físicos de funcionamento dos mecanismos, suas relações cinemáticas de engrenamento, métodos para determinação da geometria dos dentes e processos de cálculo de esforços entre seus elementos construtivos.

Observou-se na literatura técnica estudada um esforço crescente de aprimoramento das formas dos dentes das engrenagens, com as finalidades seguintes:

a. redução do erro cinemático do mecanismo, quando sujeito a torque de operação;
b. elevação da rigidez torcional da engrenagem flexível, melhorando a precisão e repetibilidade;
c. aumento da vida útil da engrenagem flexível.

3.1 PRINCÍPIOS DE PROJETO DO MECANISMO

Particularmente, o princípio da "integração" (integration) fundamenta a utilização da deformação controlada de uma engrenagem flexível para se efetuar a conversão de velocidade nos harmonic drives do tipo rotativo.
Observe-se, pois, que a seção transversal da extremidade de um tubo de superfície cilíndrica pode ser transformada, por exemplo, em uma curva de forma elíptica, exclusivamente através da deflexão elástica da mesma. Ao se imaginar um movimento de rotação para os eixos principais dessa elipse, mantendo-se ao mesmo tempo a forma circular da outra seção extrema do tubo, verifica-se que os pontos da periferia da superfície deformada se deslocam com velocidades angulares diferentes (vide Figura 2). Alguns pontos se movimentam com velocidade angular positiva em relação ao sentido de rotação da elipse; outros possuem velocidades angulares negativas. As extremidades do eixo maior da elipse imaginária se movem com a máxima velocidade angular positiva, ao passo que os pontos extremos do eixo menor se deslocam à máxima velocidade angular negativa. Entretanto, a integração das velocidades angulares de todos os pontos periféricos de qualquer seção transversal do anel defletido resulta sempre num valor constante. Se a seção circular da outra extremidade do tubo permanecer em repouso, tal integral resultará em valor nulo.

Figura 2-Princípio da "integração" [5].
No caso dos *harmonic drives* rotativos, um elemento chamado gerador de ondas é introduzido em uma das extremidades de um tubo flexível de parede fina, modificando ligeiramente a forma circular de um anel dentado que circunda a superfície externa do tubo (*flexible spline*), tornando-a aproximadamente elíptica. A velocidade angular de um eixo acoplado ao gerador de ondas pode sofrer redução, através da transmissão de seu movimento rotacional à parede do tubo flexível, por meio do acoplamento entre o anel dentado e uma engrenagem externa, de forma circular, rígida, dotada de dentes internos (*rigid circular spline*). Este acoplamento é resultante do esforço radial aplicado pelo gerador de deformação ao contorno do anel dentado, nas proximidades do eixo maior da elipse (região esta denominada lóbulo).

![Diagrama](image)

1-Eixo de entrada ; 2-Gerador de onda ; 3-Rolamentos ;
4-Engrenagem rígida ; 5-Tubo com anel dentado flexível

Figura 3-Montagem e esquema de funcionamento do mecanismo[3].
O movimento de rotação da engrenagem flexível é obtido por meio da componente tangencial do movimento imposto aos dentes livres (não acoplados), nas regiões intermediárias aos lóbulos. O sentido de rotação da superfície do anel flexível nessas regiões é contrário ao movimento angular do gerador de deformação (conforme Figura 3).

Os dentes das duas engrenagens são cortados em princípio com o mesmo passo circular, porém o número de dentes na engrenagem flexível é menor do que na rígida. A diferença entre o número de dentes das duas engrenagens é sempre um múltiplo do número de lóbulos do gerador de deformação.

Para uma revolução do gerador, a engrenagem flexível irá girar, como se mostrará adiante, de um ângulo proporcional à diferença entre o número de dentes das duas engrenagens (vide Figura 3). Desta forma, um eixo de saída fixado à outra extremidade do tubo flexível, que se mantém indeformável, estará sujeito a uma velocidade angular muitas vezes inferior à velocidade do eixo de entrada, ligado ao gerador de ondas.

A partir da configuração básica da Figura 3, foram introduzidos outros elementos mecânicos, a fim de se conseguir o rolamento com atrito mínimo entre o gerador de ondas e a engrenagem flexível. A Figura 4 apresenta alguns sistemas alternativos para geradores de 2 ou 3 lóbulos. Observou-se também que há sistemas em que a engrenagem flexível pode atuar externamente à engrenagem rígida.
Figura 4—Sistemas alternativos de geradores de deformação[6].

Os redutores harmônicos podem ser acoplados em pares consecutivos, formando conjuntos com mais de um estágio de redução. A Figura 5 exemplifica este mecanismo.

Figura 5—Componentes do redutor de dois estágios[6].
3.2. RELAÇÕES DE TRANSMISSÃO [6]

Um outro princípio da Elastodinâmica aplicado ao estudo dos *harmonic drives* é o de "arcuation", segundo o qual a mudança de curvatura de um arco produz uma alteração em seu comprimento cordal (vide Figura 6).

![Diagrama de arcuation](image)

Obs.: A diferença entre s₁ e s₂ é função da variação de raios.

Figura 6- Princípio de "arcuation" [5].

Ao se considerar uma circunferência dividida em uma série de arcos, é válida a aplicação do princípio a cada um deles, continuamente unidos ao longo do perímetro da mesma. Desta forma, a variação da curvatura dos arcos, individualmente, provocará uma mudança na distância entre suas extremidades, resultando numa alteração das posições relativas entre os pontos da circunferência original.
A Figura 7 apresenta o efeito de se superpor uma função senoidal de 2 períodos completos aos raios de curvatura de 4 arcos de mesma medida, ao longo de uma circunferência inicial. O resultado será uma forma aproximadamente elíptica chamada curva harmônica.

\[r_3 = r + \frac{d}{2} \sin 2\theta \]

(a) Circunferência (b) Forma resultante da onda (c) Onda avançada-180°

Figura 7-Superposição de onda senoidal a uma circunferência [5].

Fixando-se em zero a variação angular dos arcos em torno de dois pontos diametralmente opostos sobre o eixo vertical da circunferência original (Figura 7a), a função senoidal definirá nós de cruzamento dos novos arcos com os anteriores em retas de 45° em relação ao eixo vertical (ou horizontal), conforme se observa na Figura 7b.
As deflexões dos novos arcos, obedecendo ao princípio citado, causam o deslocamento dos pontos da circunferência das posições a para \(a_1\). Também o comprimento cordal \(s\) se reduzirá para \(s_1\), produzindo-se a forma harmônica com eixo maior na direção vertical. Analogamente, se a onda senoidal tivesse uma inversão de fase, seria produzida a forma \(c\) da Figura 7c, com eixo maior na horizontal. Neste caso a curvatura do arco em torno do eixo vertical diminuiria, deslocando os pontos da posição a para \(a_2\). O comprimento cordal \(s\) aumentaria para \(s_2\).

Dessa análise resultam dois fatos importantes: os pontos localizados na interseção do eixo vertical com a circunferência original permanecem na mesma posição angular durante a mudança para a forma harmônica; os pontos intermediários entre os eixos vertical e horizontal se movem através de ângulos iguais, em direção opostas relativamente a cada eixo, confirmando-se a simetria própria da forma harmônica.

A substituição da circunferência por um anel dentado possibilita uma avaliação quantitativa da taxa de variação \(R_\alpha\) da velocidade angular de um eixo que fosse acoplado ao movimento rotacional dos eixos da curva harmônica, relativamente à velocidade angular de um ponto da periferia do anel deformado, caso ele estivesse unido por meio de uma superfície cilíndrica à outra extremidade de forma circular rígida.

A Figura 8 mostra um anel dentado com número igual de dentes em cada quadrante da curva harmônica, o que se sucede igualmente em relação à engrenagem original. Este fato decorre do raciocínio descrito anteriormente: os dentes posicionados sob a linha de centro nos eixos vertical e horizontal da engrenagem circular permanecem na mesma posição angular após a sua deformação.
Figura 8–Conversão do círculo em anel dentado.

Assumindo-se que os eixos da curva harmônica sejam girados da linha de centro de um dente para outro adjacente, verifica-se um deslocamento linear igual ao passo (p) entre dentes da engrenagem harmônica. Sendo θ_1 o ângulo central corresponde ao arco descrito pelo eixo maior durante o deslocamento, observa-se que o ângulo θ_2 descrito pelo eixo menor deve ser diferente, pois os raios correspondentes aos eixos ortogonais são diferentes. Assim, tem-se:

$$p = \theta_1 r_1 = \theta_2 r_2$$

(1);

sendo:

r_1 - raio da forma harmônica sobre o eixo maior.

r_2 - raio da curva harmônica no eixo menor.
Entretanto, nota-se que o deslocamento angular dos dois eixos em relação a um referencial fixo deve ser o mesmo \((\theta_1)\). Para isto, deve ocorrer uma variação \((\theta_2)\) na posição angular do centro do dente localizado sobre o eixo menor na curva harmônica. De fato, como se mostra na Figura 9, existe um movimento angular de pequena amplitude \((\theta_3)\) deste dente em sentido contrário à rotação inicial dos eixos.

![Diagrama](image)

\[
\begin{align*}
\theta_2 &= \theta_1 \frac{r_1}{r_2} \\
\theta_3 &= \theta_2 - \theta_1 = \theta_1 \frac{r_1}{r_2} - \theta_1 \\
\theta_3 &= \theta_1 \left(\frac{r_1}{r_2} - 1 \right) \\
\quad &= 1 - \frac{r_1}{r_2} = 1 - \frac{r_f}{r_d} = \frac{1}{R_D} \\
\end{align*}
\]

Figura 9—Relações angulares entre dentes.

Acoplando-se à engrenagem flexível uma engrenagem externa; de raio igual a \(r_1\), a relação de transmissão resultante entre elas é:

\[
R_d = r_d / (r_d - r_f)
\]

onde: \(r_f = r_1\) (raio na posição do ponto fixo no eixo maior da curva);

\(r_d = r_2\) (raio na posição do ponto movido em torno do eixo menor).

A relação calculada é válida para transmissão de torque com a engrenagem circular rígida estacionária, rotação de entrada no gerador de ondas e de saída no tubo flexível.
Outras configurações de transmissão podem ser obtidas com o *harmonic drive*, cujas taxas de variação de velocidade são deduzidas a partir dessa relação inicial. A Figura 10 exemplifica as hipóteses alternativas para uso do mecanismo.

<table>
<thead>
<tr>
<th>1-Redutor</th>
<th>4-Multiplicador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversa da razão calculada</td>
<td>Razão calculada mais 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Multiplicador</td>
<td>5-Redutor/Diferencial</td>
</tr>
<tr>
<td>Razão calculada</td>
<td>(Razão + 1)/Razão</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Redutor</td>
<td>6-Multiplic./Difer.</td>
</tr>
<tr>
<td>Razão calculada</td>
<td>(Razão)/(Razão + 1)</td>
</tr>
<tr>
<td>mais 1</td>
<td></td>
</tr>
</tbody>
</table>

Figura 10–Configurações de transmissão[4].

3.3 ANÁLISE CINEMÁTICA DO ENGRENAMENTO

Os métodos analíticos existentes na bibliografia estabelecem modelos físicos para a engrenagem flexível, de modo a viabilizar o estudo do engrenamento com base na cinemática dos corpos rígidos.

Estuda-se comumente o movimento rotativo entre a superfície média do tubo flexível da Figura 3 e a engrenagem circular externa. Como foi visto, estas engrenagens, estão ligadas respectivamente a um eixo de rotação e à base fixa do componente. O gerador de ondas de deformação gira em torno de um outro eixo de rotação, cujo movimento está associado às duas engrenagens por meio das relações de transmissão do mecanismo.
Na análise efetuada por PETER, J. [7] são estabelecidas as equações para o movimento no plano do anel flexível dentado. Considera-se que as geratrizes da superfície cilíndrica do tubo flexível se mantêm praticamente retas após a deflexão imposta em uma das suas extremidades pelo gerador de deformação (conforme Figura 11). Além disso, a forma da engrenagem flexível é aproximada, admitindo-se que, no engajamento de cada um de seus dentes com a engrenagem circular rígida, o movimento dos mesmos é solidário a uma engrenagem circular imaginária, com diâmetro primitivo igual ao diâmetro da engrenagem flexível antes de se deformar (vide Figura 12). O centro geométrico desta engrenagem imaginária (O₂) se encontra deslocado do centro dos eixos do redutor (O=O₃). Além disso, verifica-se que o centro instantâneo de rotação da engrenagem fictícia (O₂) encontra-se em uma linha reta que une o centro da engrenagem rígida (O₃) e o ponto primitivo (P') de engrenamento. A sua localização ao longo desta reta fica definida pelo ponto de interseção da mesma com a evoluta (e) da curva harmônica deformada (r). As formas dos dentes nesta abordagem são evolventes de círculo em ambas as engrenagens, sendo apropriadas para geradores de ondas formados por dois discos circulares (Figura 13), que deformam a engrenagem flexível através de arcos de grande curvatura, de maneira tal que a mesma pode ser considerada como um círculo osculador à engrenagem rígida ao longo de um ângulo central de rotação entre 35 e 60° [7].

![Figura 11-Superfície flexível com um dente na geratriz[7].](image-url)
O'₂ - Centro instantâneo de rotação do anel flexível.
e - Curva evoluta do anel flexível.
P' - Ponto "primitivo" do engrenamento.

Figura 12-Engrenamento entre dentes da engrenagem rígida e flexível[7].

Figura 13-Esquema simplificado do mecanismo de dois discos[7].
As condições geométricas de interferência entre os dentes das engrenagens flexível e rígida são também estudadas por PETER [8], através de um procedimento análogo aos casos de interferência entre engrenagens rígidas com dentes internos e externos (engrenamento hipocícloidal). Assim, os tipos de interferência que podem ocorrer são em número de três. Para cada um deles foram estabelecidas as condições para a delimitação dos perfis dos dentes, a fim de se evitar o fenômeno. Deste modo, tem-se:

1. Interferência na raiz do dente da engrenagem flexível (vide Figura 14).

![Diagrama de interferência na raiz do dente da engrenagem flexível](image)

Obs.: Não há interferência se \(r_{f3} > \overline{0_3^{H_2}} \).

Figura 14–Interferência na raiz do anel flexível[8].
2. Interferência na raiz do dente da engrenagem rígida (Figura 15).

Obs.: Não há interferência se $O_2H_3 > r_{f_2}$.

Figura 15-Interferência na raiz do dente da engrenagem rígida[8].
3. Interferência secundária entre adendos de dentes livre (Figura 16).

Figura 16-Interferência entre
dentes não acoplados [8].

Obs.: Não há interferência se \(\varphi_{F3} > \varphi_M \)

Os trabalhos de Kondo, K. & Takada, J. [9],[10], apresentam um processo
técnico para a geração dos dentes da engrenagem flexível, conjugados a perfis de dentes rígidos
em forma de evolvente de círculo. O gerador de deformação é aproximado por uma curva
harmônica (\(\Gamma \)) com um número genérico de lóbulos (conforme Figura 17), cuja equação
paramétrica é a seguinte:

\[
r = f(\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos (K \pi \theta) + b_k \sin (K \pi \theta)]
\]

onde: \(r \) é a magnitude do raio polar OM;
\(\theta \) é o ângulo polar da curva, medido em relação a Y.
\(f(\theta) \) é uma função de período \(2\pi/n \), generalizada pela série de Fourier.
Figura 17 - Sistemas de coordenadas para análise cinemática[9].

Para esta análise, supõem-se que o anel flexível possui uma largura igual à da engrenagem rígida a ela acoplada. A sua espessura no intervalo entre dentes é bastante inferior à espessura dos mesmos. Deste modo, a deformação existente durante a flexão do anel estriado é resultante apenas da deflexão do material do vão entre os dentes. Portanto, embora exista um movimento relativo entre dois dentes consecutivos da engrenagem defletida, os dentes individualmente podem ser considerados como rígidos.

Com base em tais considerações, supõe-se que os segmentos do anel entre os dentes unem os mesmos como articulações de uma corrente. A curva que passa através dos centros das articulações comporta-se como uma linha neutra para a flexão, mantendo constante o comprimento anterior a sua deformação.
A existência dessa linha neutra foi confirmada através de medições experimentais [14], localizando-se aproximadamente na linha média do anel equivalente, cuja espessura (te) é:

$$ t_e = t_o \sqrt{k_j} $$

sendo:

$$ t_o $$ a espessura do anel no vão entre dentes;

$$ K_j = (1 - (\bar{I} / p) + (\bar{I} / 4p)A^2 + (3\bar{I} / 8p)A^{-1} + (3H / 4p) \arctg (\bar{I} / 2H)^{-1} $$

$$ H = t_o (t_o + 2 \rho) $$

$$ A = 1 + (\bar{I} / 2H)^2 $$

Os parâmetros geométricos \(\bar{I}, p \) e \(\rho \) são provenientes da Figura [18].

Figura 18 - Parâmetros geométricos da análise experimental.

Em seguida são estabelecidas as condições básicas para o modelo físico da engrenagem flexível:
1. Para cada dente (i) será admitido um sistema de coordenadas ortogonais \((M_i, u_i, v_i)\). O eixo das abcissas \((u_i)\) é tangente no ponto \(M_i\) à linha neutra do anel dentado. O eixo das ordenadas \((v_i)\) é normal à mesma curva, passando pelo centro geométrico do dente em questão (vide Figura 19).

![Figura 19 - Sistemas de coordenadas fixos aos dentes do anel flexível][9].

2. Admite-se que não há alteração na forma dos dentes da engrenagem flexível durante o seu movimento. Logo, é válido supor que o sistema de coordenadas \((M_i, u_i, v_i)\) está fixo em relação aos perfis dos dentes desta engrenagem, os quais se comportam como corpos rígidos unidos por articulações.

3. O passo entre dentes consecutivos \((M_i, M_{i+1})\), medido sobre a linha neutra do anel é constante, mesmo após a sua deformação por flexão, pois o desvio radial máximo imposto pelo gerador de ondas é normalmente pequeno.
Este estudo apresenta ainda uma série de hipóteses simplificadoras que serão adotadas nesta dissertação, particularizadas ao caso de geradores de onda de 2 lóbulos. São eles:

a. A engrenagem rígida tem uma superfície de base na forma cilíndrica e possui \(Z_r \) dentes internos a essa superfície.

b. Antes de se deformar, o tubo flexível também tem forma cilíndrica, e seu anel dentado contém \(Z_r \) dentes externos.

c. Será considerado aqui somente o estudo de redutores com geradores de onda internos (Figura 20). Portanto, o número de dentes da engrenagem flexível (\(Z_r \)) é sempre menor do que o número de dentes da engrenagem rígida (\(Z_r \)).

![Figura 20 - Configuração básica do modelo do mecanismo[9].](image)

d. O gerador de ondas de deformação define uma superfície contínua para a engrenagem flexível, promovendo o seu engajamento com os dentes da engrenagem rígida em 2 lóbulos.

e. Não existem forças de atrito significativas entre a superfície do gerador de ondas e o anel flexível.

f. A linha neutra do anel flexível, depois de deformado é denominada curva de referência flexível. Com base na condição 3, estabelecida anteriormente, o passo entre os dentes da
engrenagem flexível \((P_r) \), ao longo dessa curva, pode ser calculado do mesmo modo que o passo circular do anel dentado antes de se deformar \((P_{of}) \). Assim:

\[
P_r = P_{of} = i \frac{d_{of}}{Z_r}
\]

sendo: \(d_{of} \) - o diâmetro da engrenagem flexível antes de ser deformada.

g. A circunferência sobre a qual se mede o passo de operação entre a engrenagem rigida e a flexível será denominada circunferência de referência do engrenamento. Para que haja um acoplamento perfeito entre as duas engrenagens na região dos lóbulos de contato, o passo ao longo da circunferência de referência \((P_r) \) deve ser igual ao passo da curva de referência flexível \((P_f) \). Então:

\[
P_r = P_f = P_{of} = m\pi
\]

onde: \(m \) é o módulo normalizado para as engreangens do redutor.

Logo, o diâmetro da circunferência de referência \((d_{br}) \) será obtido pela seguinte expressão:

\[
d_{of} = \left(\frac{Z_r}{Z_f} \right) \cdot d_{of}
\]

h. Nesta análise preliminar não existe nenhum momento de carregamento aplicado a um dos eixos de saída do redutor, o qual venha resistir ao torque aplicado a um dos eixos de entrada. Portanto, não se leva em conta o efeito do torque atuante sobre a deformação do anel dentado.
3.3.1 RELAÇÃO DE VELOCIDADES ANGULARES

A relação entre as velocidades angulares das engrenagens rígida e flexível é estabelecida supondo-se inicialmente o gerador de ondas fixo.

Neste caso, quando a engrenagem rígida gira a uma velocidade angular constante Ω descrevendo um ângulo ϕ no intervalo de tempo t o arco percorrido pelos dentes ao longo de sua circunferência de referência é calculado por:

$$s = \phi \cdot \left(\frac{d_{or}}{2}\right)$$ \hspace{1cm} (12);

Nota-se ainda que a velocidade tangencial da engrenagem flexível, ao longo de sua curva de referência, coincide com a velocidade tangencial da engrenagem rígida. Consequentemente, o comprimento do arco percorrido pelos dentes da engrenagem flexível, durante o mesmo intervalo de tempo t, coincide com o deslocamento S. Assim sendo:

$$s = \phi\left(\frac{d_{or}}{2}\right) = \phi\left(\frac{Z_r}{Z_f}\right) \cdot \left(\frac{d_{or}}{2}\right)$$ \hspace{1cm} (13);

Portanto, a velocidade tangencial média dos dentes da engrenagem flexível pode ser obtida do seguinte modo:

$$V_f = \frac{s}{t} = \left(\frac{\phi}{t}\right) \cdot \left(\frac{Z_r}{Z_f}\right) \cdot \left(\frac{d_{or}}{2}\right) = \Omega \left(\frac{Z_r}{Z_f}\right)\left(\frac{d_{or}}{2}\right)$$ \hspace{1cm} (14);

Verifica-se, pois, que ela resulta constante.

Por outro lado, a componente que deriva o movimento angular do eixo da engrenagem flexível não é constante ao longo da curva de referência flexível. Já a sua integral ao longo do contorno é constante no tempo, como se depreende do princípio da "integração", citado em 3.1. Assim também se comportará a velocidade angular média em cada seção.
A mesma propriedade também se aplica para a seção circular rígida da seção que circunda o eixo de rotação do tubo flexível. Neste caso a velocidade tangencial média coincide com a própria componente rotacional. Deste modo, a velocidade angular do eixo de saída (Ω') pode ser obtida por:

$$\Omega' = \frac{V_f}{(d_{of}/2)} = \frac{\Omega(Z_f/Z_r)}{2}$$ \hspace{1cm} (15)

O diâmetro máximo da curva de referência flexível d_{of} que pode ser dado por $(d + \delta)$ e o diâmetro do círculo de referência (d_r) são relacionados por meio de um coeficiente λ:

$$d + \delta = \lambda d_{or}$$ \hspace{1cm} (16)

O parâmetro λ corresponde ao coeficiente de deformação definido por Ishikawa [11]. Quando $\lambda = 1$ a circunferência de referência tangencia a curva de referência no ponto de máximo diâmetro. É o que ocorre no engrenamento dito normal de engrenagens convencionais. Se $\lambda \neq 1$, a condição corresponde ao engrenamento modificado (com afastamento ou aproximação).

3.3.2 MODELAGEM DO ENGRENAMENTO

O movimento relativo de engrenamento da engrenagem flexível em relação à rígida é analisado tomando-se esta última como referência fixa, quando o gerador de ondas é animado por uma velocidade angular constante.

De acordo com a condição básica no 2, o movimento relativo entre os dentes das engrenagens rígida e flexível pode ser estudado, de forma aproximada, como o movimento de contato direto entre dois dentes rígidos.

Dessa forma, é válida a condição mecânica da lei de engrenamento para os perfis C_1 e C_2 dos dentes que estão em contato.
Admite-se, então, que os perfis C_1 e C_2 possuem movimentos solidários a duas curvas P_1 e P_2, as quais executam movimento relativo de rolamento puro. A curva adotada como referência chama-se base e a outra é a rolante.

Conforme se mostra na Figura 21, a normal comum (n) ao ponto de contato entre os dois perfis (C) deve interceptar o ponto de contato (P) entre a base e a rolante. Este ponto, que é o ponto instantâneo de rotação entre as duas superfícies rolantes, será denominado "ponto primitivo" de engrenamento, embora não permaneça fixo em relação ao centro das duas engrenagens. A curva descrita por esse ponto durante o movimento de contato entre os dentes será denominada "lugar geométrico dos pontos primitivos".

Figura 21 - Condição mecânica da lei do engrenamento[9].
No trabalho são deduzidas as equações dessa curva, inicialmente em relação a um sistema de referência fixo (base), e depois em relação a um sistema que se move com os dentes da engrenagem flexível (rolante).

Na Figura 17, o sistema ortogonal \((O, x y)\), fixo à engrenagem rígida, tem como origem o centro dos eixos de rotação do redutor em estudo \((0)\). O eixo coordenado y localiza-se no centro do vão entre os dentes internos dessa engrenagem.

Um outro sistema ortogonal de coordenadas \((M, u v)\) é definido, estando ligado a um dos dentes da engrenagem flexível.

Um terceiro sistema de coordenadas \((O, XY)\), ligado ao gerador de ondas, possui o eixo \(Y\) passando pelo pico de um dos lóbulos da curva de referência flexível \((\Gamma)\).

No instante em que os eixos \(Y\) e \(y\) são coincidentes, assume-se que a origem do sistema \((M, uv)\) está posicionada sobre o pico do lóbulo da curva (posição \(Mo\)). O eixo \(v\) deste sistema repousa sobre o eixo \(y\) do sistema de referência \((O, x y)\).

Quando o gerador de ondas gira de um ângulo \(\varnothing\) em relação a \(y\), o pico do lóbulo da curva de referência se move da \(Mo\) até \(Q\), enquanto o centro do dente da engrenagem flexível se desloca de \(Mo\) para \(M\). Durante esse intervalo de tempo, o centro do dente da engrenagem flexível \((M)\) movimenta-se em relação ao gerador de ondas, percorrendo o arco \(QM\), cujo comprimento foi representado por \(s\) na equação \((13)\).
Este arco pode ser calculado também em função do ângulo polar (θ) da curva de referência flexível. Assim, tem-se:

\[
 s = \int_{0}^{\theta_{1}} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} \cdot d\theta
\]

(17);

Portanto, igualando-se as expressões (13) e (17), será encontrada uma relação entre o ângulo de rotação do gerador de ondas (α) e o ângulo polar da curva de referência (θ):

\[
 s = \left(\frac{Z_r}{Z_f} \right) \cdot \left(\frac{d_{df}}{2} \right) \cdot |\phi| = \int_{0}^{\theta_{1}} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} \cdot d\theta
\]

(18);

A solução desta equação integral pode ser obtida numericamente.
3.3.3 GERAÇÃO DOS PERFIS DOS DENTES

O método para geração dos dentes da engrenagem flexível baseia-se nas proporções do perfil dos dentes da engrenagem rígida, as quais são definidas teoricamente a partir da geometria dos dentes da sua cremalheira de referência. Admite-se para esta a possibilidade de produzir dentes com correção de perfil (positiva ou negativa).

Na Figura 22 está representado o perfil de um dente da engrenagem rígida \((C_r) \), que possui a forma da evolvente do círculo de base. O perfil conjugado do dente da engrenagem flexível \((C_f) \) será determinado a partir da localização dos pontos de contato entre os dois perfis \((C) \), na medida em que se varia o ângulo de rotação do gerador de ondas.

![Diagrama de Geração de Perfis dos Dentes](image)

Figura 22 - Geometria do engrenamento[9].
Se o perfil \(C_r \) é um arco de evolvente, a normal comum aos dois perfis \(n \) no ponto \(C \) passa através do ponto primitivo \(P \) e tangencia o círculo de base no ponto \(E \).

As coordenadas do ponto \(C \) são obtidas em relação a um sistema de coordenadas \((O, xy)\), fixo em relação à engrenagem rígida, com o eixo \(y \) passando através do centro entre dois dentes.

O perfil \(C_r \) será obtido pela transformação das coordenadas \((x_c, y_c)\) para o sistema \((M, uv)\), fixo à engrenagem flexível.

Na Figura 23, apresenta-se um perfil calculado pelo método aqui descrito.

![Figura 23 - Perfil gerado pelo método estudado][9]
A título de comparação, mostrou-se também (em linha pontilhada) o perfil C, de uma engrenagem rígida interna. Na Figura 24, foi representado o movimento relativo de um dente dessa engrenagem flexível em relação à rígida. A linha pontilhada \(L_m \) é o lugar geométrico da origem do sistema ligado ao dente móvel.

![Diagrama de engrenagem](image)

Figura 24 - Representação da trajetória de engrenamento[9].

Através dessa figura fica evidente a necessidade de se evitar o problema de interferência geométrica entre os perfis dos dentes dos redutores harmônicos.

Os autores não mencionam testes de durabilidade com o perfil gerado. O estudo de interferência entre os perfis dos dentes das engrenagens rígida e flexível é recomendado por eles.

![Diagrama de perfiles de dentes](image)

Figura 25—Perfil de dente com ação aproximadamente conjugada[12].

A forma proposta permite um contato permanente entre os dentes da engrenagem durante o acoplamento entre as mesmas.

Os dentes foram definidos adotando-se uma importante simplificação em relação ao procedimento já exposto: considerou-se que o número elevado de dentes nas engrenagens rígida e flexível permite aproximá-las a uma engrenagem de raio praticamente infinito (cremalheira). Como resultado, a engrenagem flexível se desloca praticamente sem nenhuma inclinação ao longo de sua trajetória relativa à engrenagem circular.

A limitação dos resultados obtidos reside no seguinte: a cremalheira de corte tem que ter uma forma especial, exigindo um processo altamente preciso para sua fabricação. Por outro lado, as ferramentas de dentes retos são muito mais fáceis de serem construídas a níveis elevados de precisão.
Os autores apresentam ainda resultados de testes utilizando harmonic drives dotados de engrenagem fabricadas com os perfis propostos. Quando comparados com os perfis retos convencionais, verificou-se um acréscimo de cerca de 100% na resistência à fadiga dos novos perfis, como se observa no gráfico abaixo (Figura 26). Também o mesmo aumento foi registrado na rigidez torcional do mecanismo na faixa de baixo torque, mantendo-se um acréscimo de 50% na rigidez para operação com torque superiores (conforme Figura 27).

Figura 26—Resistência à fadiga da engrenagem flexível[12].

Figura 27—Curvas de flexibilidade torcional[12].
Outro estudo, mais recente, de STOLARSKI [13], refere-se aos harmonic drives como mecanismos dotados de uma engrenagem epicicloidal de anel deformável. Neste trabalho são desenvolvidos perfis de dentes retos com alterações do passo de acoplamento entre as engrenagens rígida e flexível, através da variação do parâmetro \(\lambda \). Sendo:

\[
\lambda = \frac{P_r}{P_{of}}
\]

onde:
\(P_r \) - passo de acoplamento da engrenagem flexível em relação à rígida
\(P_{of} = P_t \) - passo de geração da engrenagem flexível.

O coeficiente \(\lambda \) aqui apresentado tem a mesmo significado do coeficiente de Ishikawa, citado no subitem 3.3.1, representando as condições de engrenamento normal ou modificado.

O caso mais comum é aquele em que \(\lambda = 1 \) (engrenamento normal). A trajetória dos dentes do anel flexível aproxima-se da linha radial no centro do dente, permitindo um engrenamento com folgas em ambos os lados do mesmo, sem ocorrência de desgaste ou interferência (Figura 28).

Figura 28—Trajetória de dentes retos com \(\lambda = 1 \) [13].
Do ponto de vista das tensões, entretanto aparece uma desvantagem: cada dente entra em contato no eixo maior anel flexível, estando sujeito a um esforço de flexão máximo.

Sendo $\lambda < 1$ a trajetória assume o aspecto da Figura 29, com o contato estabelecido em torno do ponto P. Não existe o problema de ocorrência de tensões de contato na região de flexão máxima. A trajetória também contribui com uma razão de contato (grau de recobrimento) maior, distribuindo melhor as forças transmitidas.

Figura 29—Trajetória de dentes retos com $\lambda < 1$ [13].

A situação na qual $\lambda > 1$ é a mais desfavorável, de todas, acarretando maior concentração de tensões nos dentes, juntamente com problemas de deslizamento e desgaste (ver Figura 30).

Figura 30—Trajetória de dentes retos com $\lambda > 1$ [13].
São determinados também por este autor dentes com perfil de evolvente, definidos através de cremalheira de referência, com correção positiva, de modo a se obter um aumento de espessura dos mesmos (vide Figura 31).

Figura 31-Trajetória de dentes de evolvente com \(\lambda < 1 \) [13].

A vantagem do perfil de evolvente é a uma facilidade maior de corte, o que não ocorre com os dentes retos. Além disso, na medida em que o número de dentes seja grande, o perfil de evolvente se aproxima do perfil reto.

Em contraposição, quando os dentes são retos existe a necessidade de se manter uma diferença pequena (\(\eta \)), porém definida, entre os ângulos de precisão medidos nos círculos primitivos de ambas as engrenagens. A razão disso está na diferença de curvatura entre a engrenagem circular rígida e a curva harmônica do anel flexível, o que se traduz em uma diferença entre os ângulos do raio vetor de um ponto P, localizado sobre a curva harmônica e o seu eixo de curvatura (normal à reta tangente no ponto P). A Figura 29 exemplifica este fato, possibilitando a avaliação desse ângulo:

\[
\eta = - \left(\frac{1}{r} \right) \left(\frac{dr}{d\theta} \right)
\]

sendo: \(r \) - magnitude do raio-vetor em P.
3.4 ESFORÇOS DE ENGRENAMENTO

Os trabalhos que abordam o dimensionamento mecânico dos harmonic drives estabelecem modelos teóricos para a análise de seus diversos componentes, quando solicitados por um torque externo aplicado ao eixo de entrada, o qual é equilibrado por um momento resistente no eixo da saída. Não foi localizado nenhum estudo para análise do mecanismo sob esforços dinâmicos atuantes.

Os modelos de cálculo propostos são bastante complexos, envolvendo a teoria da elasticidade e métodos de energia, além de uma série de resultados de caráter empírico. Para que esses modelos sejam definitivamente validados, torna-se necessária a execução de uma grande quantidade de ensaios experimentais, conduzidos com mecanismos especialmente construídos para tal fim. Por este motivo, os trabalhos neste campo são bastante custosos.

Nesta dissertação não serão considerados os métodos citados, uma vez que se conta atualmente com o método dos elementos finitos para a solução do problema de dimensionamento dos componentes dos harmonic drives. Como se sabe este é um método numérico de grande precisão, permitindo a análise abriparaia de geometrias complicadas.
3.5 ERRO CINEMÁTICO

Os *harmonic drives* são elementos de transmissão que podem ser utilizados em equipamentos de posicionamento com exigências especiais de precisão. Por causa disto, o problema do erro cinemático do mecanismo é abordado com grande ênfase pelos pesquisadores.

O erro cinemático é definido como a diferença entre a posição angular teórica e a real assumida pelo dispositivo, ou melhor, entre o ângulo teoricamente esperado e o ângulo medido experimentalmente para o eixo de saída, a partir da aplicação de um deslocamento angular conhecido ao eixo de entrada.

Além disso, a amplitude do erro está associada à velocidade de rotação do eixo de entrada, a problemas de vibração torcional dos componentes do mecanismo e folgas entre eles. Para se ter uma ideia da precisão oferecida por estes mecanismos, a Figura 32 apresenta um registro da amplitude do erro posicional em um *harmonic drive*, estimado em um arco máximo de 4 vezes o inverso do diâmetro primitivo da engrenagem circular, valor este expresso em minutos.
FREQUÊNCIA = 2 X ROTAÇÃO

Figura 32-Erro posicional máximo de um HARMONIC DRIVE™ [4].

As referências [18] a [23] tratam do cálculo do erro cinemático estático com bastante profundidade, levando em conta fatores geométricos e físicos dos componentes, além de erros de fabricação e folgas de montagem.

Salienta-se aqui a grande complexidade do problema do cálculo do erro cinemático dinâmico, o qual na realidade só pode ser determinado com maior exatidão de forma experimental.

O fenômeno do erro cinemático pode ser também abordado, da forma aproximada, por uma análise de elementos finitos bastante detalhada, considerando-se uma modelagem adequada dos principais elementos que compõem o mecanismo, incluindo também os seus mancais.

Este assunto não será estudado nesta dissertação.
4. MÉTODO PARA GERAÇÃO DOS DENTES

Recentemente GAGO, J.S.N. [24] apresentou uma dissertação de mestrado que descreve o desenvolvimento de um programa de computador para geração das coordenadas dos pontos geométricos dos perfis de dentes em engrenagens cilíndricas retas.

Procurando atender à necessidade de projeto de elementos de máquinas por processos computacionais mais eficientes e rápidos, será proposto um método semelhante para desenvolvimento da geometria dos dentes dos *harmonic drives*.

Os métodos matriciais para geração de dentes em engrenagens rígidas e mecanismos de contato direto (*cama*) foram desenvolvidos por F. L. Litvin, e divulgados em seu livro "Theory of Gearing" [25]. Posteriormente, Hefeng et alii [26] empregou um destes métodos para a modelagem de engrenagens de dentes retos, a partir da geometria de uma cremalheira de referência correspondente. Este trabalho é bastante completo, apresentando as equações que descrevem a raiz, o perfil de evolvente de círculo e o topo dos dentes. Considera também efeitos de correção nos perfis gerados, bem como condições de interferência entre os dentes.

Nesta dissertação será efetuada uma generalização do método exposto por Litvin para o caso de engrenamento plano ou bidimensional. Na geração de curvas planas em representação matricial, o caso mais geral abordado por ele em seu livro é o de corte dos dentes de uma engrenagem rígida não-circular de centro fixo. Há duas maneiras para se gerar os dentes desta engrenagem:
A primeira, através de uma cremalheira de corte cuja reta média é a linha primitiva de engrenamento, rolando sem deslizar sobre o lugar geométrico dos centros instantâneos de rotação do movimento da engrenagem (base). É o caso em que a ferramenta de corte pode se deslocar em relação ao centro de rotação da engrenagem (vide Figura 33).

Figura 33-Geração de engrenagem não-circular com cremalheira[25].

Curva primitiva

De outro modo, a ferramenta de corte, que não é uma cremalheira, mas uma fresa de forma, se mantém num plano fixo em relação ao centro de rotação da engrenagem (Figura 34). A linha primitiva da ferramenta permanece tangente à curva descrita pelos centros instantâneos de rotação de seu movimento relativo à engrenagem (rolante).

Figura 34-Geração de engrenagem não-circular com fresa de forma[25].
Os dois casos anteriores se reduzem ao mesmo quando se trata da geração de dentes externos numa engrenagem cilíndrica. A ferramenta de corte é a própria cremalheira de referência, rolando sobre o círculo primitivo de engrenagem gerada ou vice-versa. A distância entre a reta média da cremalheira e o centro de rotação da engrenagem é constante. A forma do dente resultante é uma curva obtida como o envelope formado pelos segmentos de reta que definem o perfil da cremalheira (conforme Figura 35).

![Figura 35-Geração de engrenagem circular com cremalheira][25].

O problema a ser resolvido aqui é a determinação da forma do dente da engrenagem flexível, gerada pelo deslocamento de uma ferramenta de referência, cuja linha média permanece em contato com a curva harmônica em seu eixo maior. Seguindo-se a este, o problema da geração dos dentes conjugados da engrenagem circular, pela mesma ferramenta de referência, decorre como um caso particular de solução conhecida [28].

Observe-se que a trajetória percorrida pelos dentes da engrenagem flexível, em relação à cremalheira de referência, não é a mesma dos dentes de uma engrenagem rígida de forma harmônica, executando movimento de rotação pura em torno do seu centro. Na realidade os dentes da engrenagem flexível descrevem um movimento plano vinculado à curva harmônica, cujo centro instantâneo de rotação não é o centro da mesma, mas o centro do círculo osculador (ou centro de curvatura) da trajetória harmônica em cada instante.
Portanto, não é possível aplicar neste problema diretamente o modelo proposto por Litvin para as engrenagens não-circulares.

Descreve-se a seguir os passos mais importantes no desenvolvimento do método generalizado para o movimento plano dos dentes das engrenagens flexíveis dos harmonic drives.
4.1 SISTEMAS DE COORDENADAS

Para a modelagem do movimento da engrenagem flexível em relação a uma cremalheira de referência, utilizada na geração de seus dentes, serão adotados quatro sistemas de coordenadas, como se verifica na Figura 36.

Figura 36—Sistemas de referência para geração dos dentes do anel flexível.

Um sistema de referência fixo \((O_x, x_1y_1) \) com origem no centro de rotação do gerador de ondas de forma harmônica; outro sistema vinculado à reta média da cremalheira de corte \((O_1, x_1y_1) \); um sistema \((O_2, x_2y_2) \) com origem no centro geométrico do dente a ser gerado, sendo o eixo \(y_2 \) coincidente com a direção do raio polar da curva harmônica; um quarto sistema \((O_3, x_3y_3) \) com a mesma origem do anterior, porém com o eixo \(y_3 \) posicionado na direção normal à curva harmônica (passando pelo centro de curvatura dessa curva).

O ângulo \(\eta \) formado entre os eixos \(y_2 \) e \(y_3 \) é calculado pela expressão abaixo:

\[
\eta = -\frac{1}{r} \frac{dr}{d\phi} \quad (20a)
\]

Sendo: \(r \) - raio polar da curva harmônica

\(\phi \) - ângulo polar.

4.2 TRANSFORMAÇÃO DE MOVIMENTOS
O movimento plano de pontos ligados aos dois sistemas de coordenadas \((O_1, x_1, y_1)\) e \((O_3, x_3, y_3)\) pode ser transformado no movimento relativo de rolamento puro entre duas curvas que constituem o lugar geométrico dos centros instantâneos de rotação de cada sistema.

No caso em que \((O_1, x_1, y_1)\) e \((O_3, x_3, y_3)\) estão unidos respectivamente à cremalheira de referência e a um ponto do anel flexível, é possível obter a curva dos centros instantâneos de rotação do movimento de um dente que percorre a trajetória harmônica (base) e a curva correspondente para a cremalheira de referência (rolante).

Um ponto \(P\) da cremalheira de referência, coincidente com \(M_0\), pertencente ao eixo maior da curva harmônica, no instante em que \(S_3\) tem sua origem no eixo \(y_\tau\) (do sistema fixo \(s_\tau\)), tem seu deslocamento dado por [9]:

\[
S(\phi) = \int_0^{\phi} \sqrt{f(\phi)^2 + f'(\phi)^2} \, d\phi = \int_0^{\phi} h(\phi) \, d\phi
\]

(17a)
Onde: \(f(\phi) = r = \frac{d_o}{2} + \frac{\delta}{2}\cos(2\phi) \)

\[h(\phi) = \sqrt{[f(\phi)]^2 + [f'(\phi)]^2} \]

Sendo ainda:
- \(d_o \) - diâmetro primitivo inicial da engrenagem flexível (antes de se deformar)
- \(\delta \) - deflexão do eixo maior da curva harmônica em relação ao diâmetro de circunferência original.

Como foi visto, no subitem 3.3.2, a integral acima (17a) possui apenas solução numérica.

Sabendo-se que \(\delta \) assume valores numéricos muito inferiores a \(d_o \), a integral pode ser simplificada para [13]:

\[s(\phi) = \int_0^{\phi} f(\phi) \, d\phi \]

A solução da integral acima pode ser obtida analiticamente:

\[s(\phi) = \frac{d_o}{2} \phi + \frac{\delta}{2} \sin(2\phi) \]

A localização do centro instantâneo de rotação (I) do movimento relativo entre \(S_1 \) e \(S_3 \) é dada, em relação a \(S_f \) pelo vetor-posição:

\[\{r\} = \begin{bmatrix} x_e \\ y_e \\ \frac{ds}{d\psi} \\ 1 \end{bmatrix} \]
Sendo:

\((x, y)\) - coordenadas do centro de curvatura de curva harmônica (evoluta), estas coordenadas podem ser obtidas por:

\[
\begin{align*}
xe &= y - y_\phi (x_\phi^2 + y_\phi^2) / (x_\phi y_\phi - x_\phi y_\phi) \\
ye &= y + x_\phi (x_\phi^2 + y_\phi^2) / (x_\phi y_\phi - x_\phi y_\phi)
\end{align*}
\]
(25)

onde: \(X_\phi, Y_\phi, X_\phi \phi, Y_\phi \phi\) são derivadas parciais das componentes \(x\) e \(y\) do raio polar da curva harmônica em relação ao parâmetro \(\phi\).

Ainda:

\[\psi = \phi + \eta\]
(26)

Logo:

\[
\frac{d\psi}{ds} = \frac{d\phi}{d\psi} \frac{h(\phi)}{1 + \frac{d\eta}{d\phi}}
\]
(27)

Considerando-se a forma aproximada para a expressão *(17a)*, vem:

\[
\frac{ds}{d\psi} = \frac{f(\phi)}{1 + \frac{d\eta}{d\phi}}
\]
(29)

Por conseguinte, a curva de base e a rolante são deduzidas pelas relações de transformação das coordenadas do sistema fixo \(S_f\) para os sistemas móveis \(S_3\) e \(S_1\) (Figura 36), respectivamente (conforme Apêndice A, subitem A1).

Assim:

\[\{r_3\} = [M_{3f}][r_f]\]
(30)

\[\{r_f\} = [M_{fr}][r_f]\]
(31)

Sendo:

\[M_{3f} = [M_{fr}]^{-1}\]
(32)

\[M_{fr} = [M_{rf}]^{-1}\]
(33)
Aplicando-se estas relações aos sistemas \(s_1 \) e \(s_2 \) vem:

\[
[M_{r3}] = \begin{bmatrix}
\cos \psi & \text{sen} \psi & f(\phi) \text{sen} \eta \\
-\text{sen} \psi & \cos \psi & f(\phi) \cos \eta \\
0 & 0 & 1
\end{bmatrix} \tag{34};
\]

\[
[M_{r1}] = \begin{bmatrix}
1 & 0 & s(\phi) \\
0 & 1 & \frac{(d_o + \delta)}{2} \\
0 & 0 & 1
\end{bmatrix} \tag{35};
\]

Resultando:

\[
[M_{s3}] = \begin{bmatrix}
\cos \psi & -\text{sen} \psi & f(\phi) \text{sen} \eta \\
\text{sen} \psi & \cos \psi & -f(\phi) \cos \eta \\
0 & 0 & 1
\end{bmatrix} \tag{32a};
\]

\[
[M_{s1}] = \begin{bmatrix}
1 & 0 & -s(\phi) \\
0 & 1 & -\frac{(d_o + \delta)}{2} \\
0 & 0 & 1
\end{bmatrix} \tag{33a};
\]

Portanto, substituindo-se o valor de \(\psi \), conforme (26), nas expressões (30) e (31), vem:

\[
[r_3] = \begin{bmatrix}
\cos (\phi + \eta) & -\text{sen} (\phi + \eta) & f(\phi) \text{sen} \eta \\
\text{sen} (\phi + \eta) & \cos (\phi + \eta) & -f(\phi) \cos \eta \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x_e \\
y_e \\
1
\end{bmatrix} + \begin{bmatrix}
\frac{ds}{d\psi}
\end{bmatrix} \tag{30a};
\]

\[
\{r_1\} = \begin{bmatrix}
1 & 0 & -s(\phi) \\
0 & 1 & -\frac{(d_o + \delta)}{2} \\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x_e \\
y_e \\
1
\end{bmatrix} + \begin{bmatrix}
\frac{ds}{d\psi}
\end{bmatrix} \tag{31},
\]
Obtem-se, finalmente, para representação da base:

\[
\{ r_i \} = \begin{pmatrix}
 x_e \cos(\phi + \eta) - (y_e + \frac{ds}{dv}) \sin(\phi + \eta) + f(\phi) \sin \eta \\
 x_e \sin(\phi + \eta) + (y_e + \frac{ds}{dv}) \cos(\phi + \eta) - f(\phi) \cos \eta \\
 1
\end{pmatrix}
\]

(30b)

Para a rolante, tem-se

\[
\{ r_i \} = \begin{pmatrix}
 x_e - s(\phi) \\
 y_e + \frac{ds}{dv} - \frac{(d_0 + \delta)}{2} \\
 1
\end{pmatrix}
\]

(31b)

4.3 DETERMINAÇÃO DO PERFIL DOS DENTES

No caso de uma engrenagem flexível, a ação conjugada, conforme se define no Apêndice A (subitem A.3), pode ser representada pela função \(s(\phi) \), que relaciona a posição da origem do sistema \(s \), com o ângulo de rotação do sistema \(s \) (vide Figura 36).

O problema de se encontrar a forma do dente do anel flexível é solucionada por meio da condição mecânica do engrenamento plano. Deste modo, o perfil da engrenagem flexível, conjugada ao perfil da ferramenta de geração \(\Sigma_1 \), desenvolve-se a partir da equação de engrenamento. Esta equação estabelece que o vetor normal (unitário) aos pontos do perfil \(\Sigma_1 \) passe em cada ponto de contato dos dentes, através do centro instantâneo de rotação (I) do movimento relativo entre as duas engrenagens.
As componentes do vetor normal unitário \(\mathbf{n}_1 \) \((\mu)\) são obtidas com base na expressão A 3º do Apêndice A. Esta pode ser reescrita como:

\[
\mathbf{n}_1(\mu) = \frac{\partial y_1}{\partial \mu} \mathbf{i}_1 - \frac{\partial x_1}{\partial \mu} \mathbf{j}_1
\]

onde: \((x_1, y_1)\) são as coordenadas do perfil \(\Sigma_1\) em relação a \(s_1\).

As coordenadas do centro instantâneo de rotação \(I\), em relação a \(s_1\), correspondem às duas primeiras componentes do vetor \(\{r_1\}\) (vide expressão 31b), o qual representa o lugar geométrico dos pontos da curva rolante da engrenagem flexível. Logo, as coordenadas de \(I\) são:

\[
\begin{cases}
X_1(\phi) = x_e - s(\phi) \\
Y_1(\phi) = y_e + \frac{ds}{d\psi} \left(\frac{d_o + \delta}{2}\right)
\end{cases}
\]

A equação do engrenamento será desenvolvida para 3 regiões do perfil do dente: o flanco (evolvente), a raiz e o fundo. O topo será obtido por meio da interrupção do perfil de evolvente para um certo valor da altura de adendo (vide Figura 37).

Figura 37–Divisão das regiões do perfil do dente.
A metade direita de cada dente da engrenagem flexível será gerada a partir da posição inicial do ponto I, quando localizado exatamente sobre o eixo da curva harmônica. Neste ponto o ângulo polar φ tem valor nulo.

O ângulo de geração total da metade do perfil corresponde ao valor do parâmetro φ que fornece para o comprimento da curva harmônica, s(φ), o intervalo de meio passo entre dentes da engrenagem flexível (p/2). Este ângulo (φ_{p/2}) pode ser calculado como solução numérica da equação:

$$s(\phi) = \frac{p}{2}$$ \hspace{1cm} (38);

A outra metade do dente pode ser gerada por simetria.

A geometria da ferramenta de corte será estabelecida a partir da cremalheira padronizada pela norma ISO (International Standard Organization) para engrenagens normais de dentes retos (vide Figura 38).

Figura 38-Dimensões do dente reto da cremalheira de referência.
Em relação às dimensões padronizadas da cremalheira de referência, podem ser introduzidas variações no raio de concordância da base com a evolvente (p), além de uma correção de afastamento (x) entre a ferramenta e a superfície do anel cilíndrico onde a engrenagem será gerada. (Figura 39).

Variação do raio de concordância: 0 a p_{max}
Correção do perfil: x_{m}

Figura 39–Correção do adendo da engrenagem flexível.

Tais alterações permitem uma otimização da forma do dente gerado, com respeito a sua durabilidade contra a fadiga. Neste sentido podem ser aumentados o raio de curvatura da raiz e a própria espessura do dente.

Em seguida são desenvolvidas as equações para a geração de cada uma das regiões de um dente da engrenagem flexível.
4.3.1 GERAÇÃO DO FLANCO

A região do flanco do dente corresponde a um perfil de evolvente de uma curva que é uma evoluta, de características análogas à circunferência de base nas engrenagens rígidas, mas de forma diferente. As considerações teóricas para a determinação da equação desta evoluta são amostradas no trabalho de Litvin, F.L. mas não serão aqui analisadas, uma vez que é possível determinar-se o flanco do dente sem a obtenção da sua evoluta.

O procedimento para a determinação do flanco baseia-se, como já citado, na condição mecânica do engrenamento. (ver sub-item A.3 do Apêndice A).

A curva de interesse é Σ₃, que mantém uma ação conjugada com a reta do perfil da cremalheira (Σ₁).

Os passos para a determinação de Σ₃ são os seguintes:

a) A reta Σ₁ é representada por uma equação vetorial:

\[
\{r_i\} = \begin{bmatrix} u \sin \alpha \\ -u \cos \alpha \\ 1 \end{bmatrix}, \quad -u₁ < u < u₂
\]

sendo:
- \(u \) - parâmetro da reta Σ₁
- \(\alpha \) - ângulo de inclinação da reta Σ₁ ou ângulo de pressão da ferramenta de geração.

b) Aplica-se a equação do engrenamento (A-24) que fornece a seguinte expressão para os pontos de contato da reta Σ₁ com curva Σ₃:

\[
\frac{X₁(\phi) - x₁(u)}{n_{x₁}} - \frac{Y₁(\phi) - y₁(u)}{n_{y₁}} = g(\phi, u) = 0
\]

onde:
- \((X₁(\phi), Y₁(\phi))\) idem a (37)
- \((x₁, y₁)\) - coordenadas de Σ₁;
- \((n_{x₁}, n_{y₁})\) - componentes do vetor \(\vec{n}_i\) (normal a Σ₁)
Neste caso, tem-se:

\[
\begin{align*}
\begin{cases}
x_1(u) = u \sen \alpha \\
y_1(u) = -u \cos \alpha
\end{cases} \\
\begin{cases}
x_n(u) = -\cos \alpha \\
y_n(u) = \sen \alpha
\end{cases}
\]
(41);
(42);

Substituindo-se estas expressões em (40), vem:

\[
\frac{-[xe - s(\phi) - u \sen \alpha]}{\cos \alpha} + \frac{ye + \frac{ds}{d\psi} - d_0 + \delta}{2} + u \cos \alpha = g(\phi, u) = 0
\]
(43);

Esta equação relaciona a posição dos pontos de contato em \(\Sigma_1 \), representados pelo parâmetro \(u \), com o ângulo polar da curva harmônica (\(\phi \)).

c) A linha de ação percorrida pelos pontos de contato é determinada por:

\[
\{ r_1 \} = [M_{r_1}] [r_1], \quad g(\phi, u) = 0
\]
(44);

d) A forma procurada (\(\Sigma_3 \)) será:

\[
\{ r_3 \} = [M_{r_3}] [r_1] = [M_{r_3}] [M_{r_1}] [r_1], \quad g(\phi, u) = 0
\]
(45);

O flanco (\(\Sigma_3 \)) será gerado a partir da variação do ângulo polar (\(\phi \)), inicialmente nulo. A parte superior (adendo) será obtida para valores positivos de \(\phi \) e a parte inferior (dedendo) para valores negativos. As posições delimitadoras desta região do dente serão provenientes de dois limites para o parâmetro \(\phi \):

1. **O limite inferior** depende da verificação da possibilidade de interferência entre a curva evolvente e uma evoluta (interferência primária), como ocorre com as engrenagens rígidas de dentes externos.
Esta hipótese se testada para o harmonic drive conforme subitem A-4 do Apêndice-A, e não se confirma, pois o elevado número de dentes (entre 120 e 640) acarreta módulos de valores bastante pequenos (entre 0,4 e 1 mm), implicando em profundidades pequenas para os dentes.

2. **O limite superior** é função da altura máxima permitida para o adendo da engrenagem gerada, a fim de que não ocorra interferência secundária entre as extremidades dos dentes das engrenagens rígida e flexível.

Uma avaliação do problema da interferência secundária pode ser efetuada, caso sejam conhecidas as trajetórias dos dentes das duas engrenagens do mecanismo, em relação a um sistema de referência fixo \((S_f) \).

É o que se analisa no trabalho de Peter [8], onde se apresenta uma condição para o ângulo de rotação \((\phi_{e}) \) da extremidade interna do dente rígido (vide Figura 16). Este ângulo deve ser maior que o ângulo de rotação do dente flexível \((\phi_{e}) \), na posição em que a trajetória da sua extremidade cruzar a circunferência do adendo da engrenagem rígida.

Outra forma mais simples de solucionar o problema foi sugerida por Stolarski, T. A. [13], que analisou a trajetória de um ente do anel flexível em relação ao dente da engrenagem rígida, suposta como referência fixa (vide Figura 28 a 31). Assim, o valor máximo para a altura do adendo da engrenagem flexível deve ser determinado no ponto onde uma trajetória atinge a ordenada mínima, correspondente a um ângulo de rotação de 90° para o gerador de ondas (conforme Figura 28). Neste ponto deve existir uma folga radial \((f_r) \) mínima entre os dentes para se evitar a interferência.

Desse modo o valor do adendo da engrenagem flexível \((h_{af}) \) será limitado pela condição a seguir:

\[
h_{af} \leq y_f(\pi/2) - h_{e} + f_r
\]

sendo \(y_f[\pi/2] \) – ordenada da trajetória do dente flexível em relação à circunferência primitiva da engrenagem rígida, no ponto de cruzamento entre os dentes \((\phi=\pi/2) \)

- \(h_{ar} \) - adendo da engrenagem rígida
- \(f_r \) - folga radial mínima entre os dentes
O adendo da engrenagem rígida é definido de modo imediato em função do adendo da ferramenta de geração:

\[h_{ar} = h_a - f_c \] \hspace{1cm} (47),

onde: \(h_a \) - altura do adendo da engrenagem de geração (ver Figura 38)

\(f_c \) - folga contra contato

A fórmulação para a trajetória do dente do anel flexível em relação à circunferência primitiva da engrenagem rígida é apresentada a seguir:

\[
\begin{align*}
\bar{x}_f(\phi) &= r \sin (\phi - \beta) \\
\bar{y}_f(\phi) &= \frac{d_o + \delta}{2} - r \cos (\phi - \beta)
\end{align*}
\] \hspace{1cm} (48);

Sendo \(\beta \) o ângulo de rotação do ponto da circunferência primitiva da engrenagem rígida que na posição inicial coincide com o ponto instantâneo I, localizado sobre o eixo maior da curva harmônica (conforme Figura 40).

\[
\beta = \frac{z_f}{z_r} \left[\phi + \frac{\delta}{2d_o} \sin(2\phi) \right]
\] \hspace{1cm} (49);

A altura final do topo da engrenagem flexível \(h_{max} \) será o mínimo entre o adendo produzido pela ferramenta de geração \(h_a \) e o limite estabelecido pela relação (46).

Figura 40-Trajetória do dente do anel flexível[13].
O limite superior do ângulo de geração \((\phi_1)\) do flanco é obtido pela solução numérica da equação abaixo:

\[
y_{sl}(\phi) = h_{\text{max}}
\]

onde: \(y_{sl}(\phi)\) é a ordenada do perfil da envolvente.

4.3.2 GERAÇÃO DA RAIZ

A forma da raiz do dente será produzida pela geometria da extremidade do dedendo da engrenagem de corte. Com base no desenvolvimento do Apêndice-A (subitem A.5) são obtidas as equações definidoras da raiz do dente, considerando-se um perfil circular para a extremidade do dente gerador.

Neste caso a equação do engrenamento assume a forma:

\[
\frac{X_1(\phi) - x_{c1}(\theta)}{n'_{x1}} - \frac{Y_1(\phi) - y_{c1}(\theta)}{n'_{y1}} = g_c(\phi, \theta) = 0
\]

onde: \((X_1(\phi), Y_1(\phi))\) idem a 37

\[
\begin{align*}
x_{c1}(\theta) &= x_c - \rho \sin \theta \\
x_{c1}(\theta) &= y_c - \rho \cos \theta
\end{align*}
\]

\[
\begin{align*}
n'_{x1} &= -\cos \theta \\
n'_{y1} &= -\sin \theta
\end{align*}
\]

Substituindo-se estas expressões em (51), segue:

\[
-\frac{[x_c - s(\phi) - x_c + \rho \sin \theta]}{\cos \theta} + \frac{[y_c + \frac{ds}{d\psi} - \frac{d_0 + \delta}{2} - y_c + \rho \cos \theta]}{\sin \theta} = g_c(\phi, \theta) = 0
\]
A equação da raiz do dente fica:

\[
\{ r_{31} \} = [M_{31}] \{ r_{31} \}, \quad g_c(\phi, \theta) = 0 \tag{55};
\]

sendo:

\[
\{ r_{11} \} = \begin{bmatrix}
x_c - \rho \sin \theta \\
y_c - \rho \cos \theta \\
1
\end{bmatrix} \tag{56};
\]

A linha de ação neste trecho é obtida por

\[
\{ r_{\alpha} \} = [M_{r1}] \{ r_{31} \}, \quad g(\phi, \theta) = 0; \tag{57};
\]

A amplitude de variação do ângulo polar (\(\phi\)) é resultado da substituição dos valores extremos do parâmetro \(\theta\) na equação do engrenamento (53). As soluções \(\theta\,\text{r}\) (limite superior da raiz) e \(\theta_b\) (limite inferior) são obtidas pelos valores respectivos: \(\theta_b = 0\) e \(\theta_r = \pi/2 - \alpha\).

Saliente-se que estes ângulos também fornecem o limite inferior do perfil de envolvente (\(\phi_r\)) e o limite da curva de base (ou fundo) do dente (\(\phi_b\)).

4.3.3 GERAÇÃO DA BASE

Na superfície da base (ou fundo) da ferramenta de corte o vetor normal assume a direção do eixo vertical da sistema \(S_1\) (vide Figura 41). Consequentemente as suas componentes serão:

\[
\begin{cases}
n_{x1} = -1 \\
n_{y1} = 0
\end{cases} \tag{58};
\]
Nesta região do perfil não é possível aplicar a equação do engrenamento.

Entretanto, a forma geométrica da curva gerada no sistema S_3 pela base da ferramenta é de fácil determinação. Assemelha-se à forma da curva harmônica, situando-se interiormente a ela, a uma distância constante da mesma (h_a). As suas coordenadas no sistema S_1 ficam:

$$\begin{align*}
 x_{bi} &= -s(\phi) \\
 y_{bi} &= -h_a
\end{align*}$$

(59);

Figura 41-Condições para geração da base do perfil.
O ângulo de geração do perfil de fundo deve variar entre o valor \(\phi_b \), estabelecido anteriormente, e o valor de \(\phi \) correspondente ao eixo de simetria do vão entre dois dentes (\(\phi_1 \)). Este valor é obtido como solução numérica da equação abaixo:

\[
s(\phi) = \frac{-P}{4} + m \times \tan \alpha
\]
(60);

onde:
- \(m \) - módulo da ferramenta de geração
- \(x \) - correção de afastamento da ferramenta
- \(\alpha \) - ângulo de pressão

É importante salientar que o deslocamento positivo (afastamento) da ferramenta de corte provoca uma redução na largura do vão entre dentes.

4.3.4 GERAÇÃO DO TOPO

A curva gerada no topo da engrenagem flexível é um segmento de reta, obtido pela interrupção do perfil do flanco (evolvente) na altura máxima especificada para o adendo do dente.

A dimensão do segmento do topo é determinado pela variação do parâmetro de geração da curva harmônica (\(\phi \)) entre o ângulo do topo (\(\phi_1 \)) e o ângulo central do eixo de simetria do dente (\(\phi_c \)). Este último é a solução da equação:

\[
s(\phi) = \frac{-P}{4} - m \times \tan \alpha
\]
(61);

Observa-se que o deslocamento positivo da ferramenta de corte produzirá um aumento no intervalo de geração e, consequentemente, uma elevação na espessura do dente.
5. APLICAÇÃO DO MÉTODO E ANÁLISE DE RESULTADOS

As equações desenvolvidas no item anterior foram aplicadas à geração de dentes em engrenagem flexíveis de **harmonic drives** com características geométricas convencionais.

Os parâmetros associados a essas características e suas faixas de valores usuais constam da Tabela 1 (abaixo):

<table>
<thead>
<tr>
<th>Variável</th>
<th>Denominação</th>
<th>Unidade</th>
<th>Valores Usuais</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Relação de Transmissão</td>
<td>-</td>
<td>60 ≤ i ≤ 320</td>
</tr>
<tr>
<td>m</td>
<td>Módulo da ferramenta de geração</td>
<td>mm</td>
<td>0,3-0,4-0,5-0,6-0,8-1,0</td>
</tr>
<tr>
<td>α</td>
<td>Ângulo de pressão da ferramenta</td>
<td>grau</td>
<td>20°, 30°</td>
</tr>
<tr>
<td>x</td>
<td>Correção da posição da ferramenta</td>
<td>-</td>
<td>0 ≤ x ≤ 1</td>
</tr>
</tbody>
</table>
| \(h_a \) | Altura do adendo da ferramenta | mm | Valor padronizado:* \(h_a = (1,25) \cdot m \) \[
| | | | \(\text{Valor máximo:} \) \[h_a = \frac{\pi}{4} \cdot m \cdot \tan \alpha \] \[
| | | | \((h_a)_{max} = \frac{\pi}{4} m \cdot \tan \alpha \) |
| \(\rho \) | Raio de concordância do adendo da ferramenta | mm | Valor padronizado:* \(\rho = (0,3) m \) \[
| | | | \(\text{Valor máximo:} \) \[\rho_{max} = \frac{\rho}{\sqrt{\frac{\rho}{\tan \alpha} + \cos \alpha}} \] |

Tabela 1 - Faixa de variação dos parâmetros características.* - Observação: Valores não padronizados também podem ser atribuídos a essas variáveis, limitados pelos máximos estabelecidos.
5.1 Aproximações e simplificações

Nesta aplicação do método é proposta a expressão simplificada que se segue para o comprimento da curva harmônica:

\[
 s = \frac{(s(\phi) + \phi \frac{d_0}{2})}{2}
\]

onde: \(s(\phi) \) é dado pela expressão (17a).

Esta fórmula fornece valores mais precisos para a avaliação do comprimento da curva harmônica para valores até a metade do passo entre dentes, que corresponde à faixa máxima de variação do ângulo \(\phi \) de geração do dente.

O erro máximo absoluto resultante da utilização desta solução analítica aproximada é inferior a um milésimo de micron em relação à solução numérica, para toda a faixa de parâmetros da Tabela 1.

Outra aproximação importante refere-se à posição do centro instantâneo de rotação, dada pelo vetor \(\{ r_i \} \) da fórmula (24). A sua componente horizontal \((x_i) \) pode ser considerada nula ao longo do comprimento de geração dos dentes (metade do seu passo), com erro máximo inferior a um décimo de micron. A componente vertical \((y_i + \frac{ds}{d\psi}) \) se mantém igual ao diâmetro maior da curva harmônica \(\frac{(d_0 + \delta)}{2} \) com erro inferior a um milésimo de micron.

Como se sabe tais erros podem ser considerados desprezíveis, pois correspondem a ordens de grandeza de rugosidade superficial aritmética inferiores às obtidas em processos de usinagem por abrasão (retificação de alta precisão, espelhamento, lapidação, polimento, super-acabamento).
Com base em tais aproximações podem ser simplificadas algumas relações matemáticas já definidas. No subitem 4.2 os vetores do rolante (31b) e da base (30b) assumem a forma:

\[
\begin{align*}
\{r_1^*\} &= \begin{cases}
-s^* \\
0 \\
1
\end{cases} \\
\{r_3^*\} &= \begin{cases}
-(ye + \frac{ds}{d\psi}) \sin(\phi + \eta) + f(\phi) \sin \eta \\
(ye + \frac{ds}{d\psi}) \cos(\phi + \eta) - f(\phi) \cos \eta \\
1
\end{cases}
\end{align*}
\]

(63); (64);

Deste modo, as coordenadas do centro instantâneo de rotação (I), em relação ao sistema S₁, passam a ser:

\[
\begin{align*}
\{X_1(\phi) = -s^* \\
Y_1(\phi) = 0
\end{align*}
\]

(65);

As simplificações resultantes possibilitam a implementação mais eficiente das expressões em computador, pois reduzem sobremaneira o número de termos algébricos envolvidos.

5.2 IMPLEMENTAÇÃO DAS EQUAÇÕES

Os perfis dos dentes das engrenagens flexíveis dos *harmonic drives* devem ser otimizados quanto a sua forma, a fim de atingirem uma durabilidade mais elevada durante a operação do mecanismo.
O método aqui empregado possibilita uma análise completa do perfil do dente, a partir da alteração dos parâmetros geométricos da ferramenta de referência.

No Apêndice B (subitem B.1) apresenta-se os resultados da aplicação das equações dos dentes, subdivididas em termos das regiões geométricas do perfil. As expressões foram implementadas e processadas através do programa Mathematica*, incorporando os valores para os parâmetros mostrados na Tabela 1. Foram introduzidas nas fórmulas matemáticas as aproximações e simplificações definidas no item anterior.

5.3 PROBLEMAS DE INTERFERÊNCIA

É interessante lembrar que a ocorrência da chamada interferência secundária pode provocar uma redução significativa na altura do dente da engrenagem flexível. Tal fato acarreta uma diminuição na área de contato entre dentes provocando aumento na pressão entre os mesmos (esforço de esmagamento).

Para se resolver esta dificuldade há a necessidade de se efetuar uma correção de afastamento (positiva) no dente da engrenagem rígida, reduzindo-se um pouco a altura do dente desta.

Isto possibilitará a elevação na altura do dente da engrenagem flexível, reconduzindo o adendo a valores próximos do produzido pela ferramenta de corte.

Quando o dente da engrenagem flexível apresenta uma correção, com a finalidade de lhe aumentar a espessura, o valor do afastamento na engrenagem rígida deve ser um pouco maior, para que o efeito acima seja atingido.

Essas considerações podem ser constatadas através da análise das Figuras B-1 a B-3 onde se apresentam as comparações entre perfis gerados sem correção e com correção positiva.

Observa-se ainda que o problema de interferência limita em maior grau a altura de dentes de engrenagens com elevado número de dentes e, portanto, menor módulo.

* Mathematica v.2.0 for Windows, Wolfram Research, Inc, 1988-91
O procedimento mais correto para se lidar com o fenômeno no projeto é fixar a altura do dente da engrenagem flexível em um valor adequado a sua resistência mecânica. Posteriormente deve-se ajustar a correção do dente rígido, com o objetivo de se diminuir ou até eliminar o corte no adendo do dente flexível.

5.4 FORMA DO PERFIL

Através da Figuras B-4 a B-6 analisa-se a influência do raio de concordância (ρ) do dente da ferramenta sobre a forma da raiz do dente gerado.

Como se observou nos estudos do item 3, um aumento na raio de curvatura da raiz do dente traz consequências benéficas para a sua durabilidade contra a fadiga.

Por outro lado, a modificação dos dentes pela correção positiva (afastamento) produz um espessamento dos flancos, com uma consequente redução no vão entre os mesmos. Isto acarreta um aumento na rigidez do perfil, nas proximidades da região de transição para o anel flexível.

Os dois efeitos acima, quando conjugados entre si, produzem geometrias bastante apropriadas para os dentes, melhorando a distribuição das tensões na base do dente flexível. As Figuras B-7 a B-12 exemplificam estas afirmações.

Outro caso importante é o de harmonic drives com alta taxa de redução (acima de 280). Neste caso o número elevado de dentes agrava o problema de interferência secundária, exigindo uma correção maior do dente da engrenagem rígida, para se evitar o contato entre dentes. Isto pode reduzir em excesso a área de contato, se for mantida a mesma altura para o dente flexível. A solução adequada é o uso de correções em ambas as engrenagens, o que possibilita a elevação da espessura do dente flexível, e também um aumento na área de contato, por meio da redução da folga do fundo do mesmo. (vide Figura B-13 a B-15).

Finalmente, a alteração do ângulo de pressão (α) de 20° (valor padronizado) para 30° também se mostra como um recurso útil na otimização da forma do dente. As Figuras B-16 a
B-17 ilustram as mudanças vantajosas na geometria do perfil, ao se usar um ângulo de pressão mais elevado. Note-se, porém, que a escolha de ângulo diferente do padronizado acarreta maiores dificuldades para a confecção das ferramentas de corte.

6. CONCLUSÕES E RECOMENDAÇÕES

Os resultados que foram analisados no item anterior comprovam a validade do método proposto para o dimensionamento dos dentes das engrenagens flexíveis de harmonic drives.

Através da alteração dos parâmetros geométricos da cremalheira de referência, é possível ajustar as formas dos dentes gerados, em função da relação de transmissão empregada, com bastante precisão, visando ao seu dimensionamento posterior, através da resistência mecânica adequada.

Desse modo, tornou-se possível gerar perfis com geometrias muito semelhantes àquelas desenvolvidas atualmente por fabricantes de harmonic drives, sem a necessidade de se projetar ferramentas de corte com formas complicadas.

Nesta linha de trabalho, recomenda-se o estudo de um dispositivo para se efetuar a usinagem da engrenagem flexível por meio de uma cremalheira de corte. Para isto, sugere-se que o corte do perfil do dente seja feito no ponto exato em que ele se engrena com a engrenagem rígida, submetendo o anel flexível à deformação da curva harmônica e atuando-se sobre o mesmo no seu eixo maior. Posteriormente, deve ser definido o perfil do dente da engrenagem rígida, para o qual já existe um método exato de geração através de uma cremalheira de referência [28].

Investigações a respeito da modificação da posição relativa das curvas primitivas de operação das engrenagem rígida e flexível também são de grande relevância. Este artifício propicia um acréscimo no número de dentes acoplados simultaneamente na região próxima do eixo maior da curva harmônica.
Finalmente, ressalta-se que a geração do dente pelo método matricial fornece um conjunto de valores numéricos para as coordenadas do perfil. Este conjunto de dados pode constituir um arquivo para processamento de uma análise de resistência mecânica por um método numérico (elementos finitos).

A continuidade da pesquisa nessa linha permite uma integração entre a análise geométrica do mecanismo e o seu dimensionamento estrutural, o que se constitui em importante ferramenta para o projeto mecânico avançado.
7. REFERÊNCIAS BIBLIOGRÁFICAS

4. HARMONIC DRIVE INC., "Harmonic drive: power transmission products for precise motion control and high accuracy positioning", 1988, USA (*Catálogo Técnico*).

APÊNDICE-A
CONCEITOS DE GEOMETRIA DIFERENCIAL E TEORIA DO ENGRENAMENTO

A.1 Transformação de coordenadas

De acordo com Litvin [25], um ponto M, vinculado a um corpo rígido que se move no espaço (ver Figura A.1), definido por um sistema de coordenadas \(s_m \), pode ser representado em um sistema de referência fixo \(s_n \) pelas suas coordenadas, determinadas pela equação matricial abaixo:

\[
\begin{bmatrix}
\begin{bmatrix} x_n \\ y_n \\ z_n
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix} x_m \\ y_m \\ z_m
\end{bmatrix} +
\begin{bmatrix} a_{14} \\ a_{24} \\ a_{34}
\end{bmatrix}
\end{bmatrix}
\]

(A-1)

Um elemento genérico \(a_{kl} \) (\(k = 1,2,3 \) e \(l = 1,2,3 \)) é o cosseno diretor de um vetor unitário (versor), \(k \), do sistema fixo em relação a um vetor \(l \) do sistema móvel. Os elementos \(a_{14} \), \(a_{24} \) e \(a_{34} \) representam as coordenadas da origem do sistema móvel \(O_m \) em relação ao sistema fixo \(S_n \).
Figura A1—Transformação de coordenadas entre sistema móvel e fixo[25].

Entretanto a transformação expressa por (A-1) requer duas operações matriciais: multiplicação e adição. Para se obter a mesma transformação utilizando-se apenas a multiplicação de matrizes, devem ser introduzidas as coordenadas homogêneas na representação do ponto M. As coordenadas homogêneas de um ponto no espaço tridimensional são compostas por 4 números \((x', y', z', t')\), não nulos simultaneamente, e dos quais apenas 3 são independentes. Assimindo-se \(t' \neq 0\), as relações entre as coordenadas normais e homogêneas são:

\[
x = (x'/t'), \ y = (y'/t'), \ z = (z'/t')
\]

(A-2)

Com \(t' = 1\), um ponto pode ser especificado por coordenadas homogêneas do tipo \((x, y, z, 1)\).

A equação matricial (A-1) pode ser substituída por:

\[
\begin{bmatrix}
 x_n \\
 y_n \\
 z_n \\
 t_n = 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_m \\
 y_m \\
 z_m \\
 t_m = 1
\end{bmatrix}
\]

(A-3)
onde:

\[
\begin{align*}
\begin{bmatrix}
 x_n \\
 y_n \\
 z_n \\
 t_n = 1
\end{bmatrix} &= \{r_n\} \\
\begin{bmatrix}
 x_m \\
 y_m \\
 z_m = 1
\end{bmatrix} &= \{r_m\}
\end{align*}
\]

(A-4); \quad (A-5);

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 0 & 0 & 0 & 1
\end{bmatrix} = [M_{mm}]
\]

(A-6)

$[M_{mm}]$ é a matriz de transformação de coordenadas do vetor posição (r_m), do ponto M, no sistema móvel, para o vetor (r_n), no sistema fixo.

A matriz de transformação inversa $[M_{nm}]$ existe se:

\[
\det [M_{nm}] \neq 0
\]

(A-7)

A expressão de seus elementos é:

\[
[M_{mm}] =
\begin{bmatrix}
 a_{11} & a_{21} & a_{31} & b_{14} \\
 a_{12} & a_{22} & a_{32} & b_{24} \\
 a_{13} & a_{23} & a_{33} & b_{34} \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

(A-8);

onde:

\[
\begin{align*}
 b_{14} &= -(a_{11}a_{14} + a_{21}a_{24} + a_{31}a_{34}) \\
 b_{24} &= -(a_{12}a_{14} + a_{22}a_{24} + a_{32}a_{34}) \\
 b_{34} &= -(a_{13}a_{14} + a_{23}a_{24} + a_{33}a_{34})
\end{align*}
\]

(A-9)

E os termos a_{kl} $(k=1,2,3)$ e $l=1,2,3$ são elementos de $[M_{nm}]$.

Para se desenvolver as transformações de coordenadas sucessivas do sistema S_1 para S_2, de S_2 para S_3, ..., até S_p, tem-se:

\[
\{r_p\} = [M_{p(p-1)}] \cdots [M_{21}] \{r_1\}
\]

(A-10)
A.2 Curvas Planas

Uma curva plana em forma paramétrica é definida como uma transformação de um intervalo aberto \(a < \theta < b \) para o espaço bidimensional \((0, xy)\). Esta transformação é representada por:

\[
\bar{r}(\theta) \in \mathbb{C}, \quad \theta \in \mathcal{G} \quad (a < \theta < b)
\] \hspace{1cm} (A.11)

Assim: \(\bar{r}(\theta) = x(\theta) \bar{i} + y(\theta) \bar{j} \);

onde \(\bar{i} \) e \(\bar{j} \) são versores dos eixos coordenados \(x \) e \(y \).

Uma curva plana é dita regular se:

\[
\bar{r}(\theta) \in \mathbb{C}^1, \quad \bar{r}_0 \neq 0, \quad \theta \in \mathcal{G};
\] \hspace{1cm} (A.12)

onde: \(\bar{r}_0 = (d\bar{r} / d\theta) = x_0 \bar{i} + y_0 \bar{j} \)

Portanto, para \(\bar{r}_0 \neq 0 \), tem-se:

\[
|x_0| + |y_0| \neq 0
\] \hspace{1cm} (A.13)

Pontos da curva \(\bar{r}(\theta) \) para os quais a condição anterior é satisfeita são chamados regulares. Pontos em que \(\bar{r}_0 \) não existe ou \(\bar{r}_0 = 0 \) são denominados singulares. O vetor tangente a uma curva paramétrica no ponto \(M \) é expresso pela igualdade:

\[
\bar{T} = \bar{r}_0 = x_0 \bar{i} + y_0 \bar{j} = T_x \bar{i} + T_y \bar{j}
\] \hspace{1cm} (A.14)

O vetor tangente unitário (\(\bar{\tau} \)) é:

\[
\bar{\tau} = (\bar{T} / |\bar{T}|) = (T_x \bar{i} + T_y \bar{j}) / \sqrt{(T_x)^2 + (T_y)^2}
\] \hspace{1cm} (A.15)

O vetor normal a uma curva plana é ortogonal ao vetor tangente. Assim:

\[
\bar{N} = \bar{T} \times \bar{k} \quad \text{ou} \quad \bar{N} = \bar{k} \times \bar{T}
\] \hspace{1cm} (A.16)

onde: o símbolo "\(\times \)" representa o produto vetorial;

\(\bar{k} \) é o versor do eixo \(z \) (ortogonal ao plano).

Em pontos singulares nos quais \(\bar{r}_0 = 0 \) e \(r_{0\theta} \neq 0 \) existe a chamada semi-reta tangente.

Aplicando-se a operação ao vetor tangente, resulta:

\[
\bar{N} = T_y \bar{i} - T_x \bar{j}
\] \hspace{1cm} (A.17)

O vetor normal unitário é:

\[
\bar{n} = (\bar{N} / |\bar{N}|) = (T_y \bar{i} - T_x \bar{j}) / \sqrt{(T_x)^2 + (T_y)^2}
\] \hspace{1cm} (A.18)
A.3 Geração de formas conjugadas

Entre duas engrenagens rígidas, 1 e 2, que transformam movimentos rotacionais entre eixos paralelos, a ação conjugada é expressa através da seguinte função:

\[\phi_2(\phi_1) \in C^1 \quad a < \phi_1 < b \tag{A.19} \]

onde: \(\phi_1 \) e \(\phi_2 \) são os ângulos de rotação das duas engrenagens.

No caso da engrenagem flexível, a ação conjugada desta em relação à cremalheira de referência pode ser generalizada por uma função que relaciona o deslocamento do sistema \(S_1 \) ao ângulo de rotação do sistema \(S_3 \) (sobre a curva harmônica) em relação ao sistema fixo \(S_f \):

A função é \(s(\theta) \), uma vez que o ângulo de rotação \((\phi) \) também depende do mesmo parâmetro \(\theta \).

Um lugar geométrico de curvas planas é representado num sistema coordenado \(S(x,y) \) como:

\[\overline{r}(\theta,\phi) \in C^1, \overline{r}_0 \neq 0, \theta \in G, a < \phi < b \tag{A.20}; \]

sendo:

\[\overline{r}(\theta,\phi) = x(\theta,\phi)\hat{i} + y(\theta,\phi)\hat{j} \tag{A.21} \]

O parâmetro \(\phi \) determina a localização da curva \(\overline{r}(\theta) \) no plano do sistema \(S(x,y) \).

Um trecho de envelope do lugar de curvas acima é uma curva regular que é tangente a pelo menos uma delas, para qualquer valor de \(\phi \) (vide Figura A.2).

Figura A2—Envelope de curvas no plano [25].
\[R(\phi) \in C', R_\phi \neq 0, \phi \in (a,b) \] (A.22)

A correspondência entre os parâmetros \(\theta \) e \(\phi \) é dada por:
\[g(\theta,\phi) = 0, g_\theta \neq 0 \] (A.23)

O envelope completo é determinado pela união dos trechos obtidos na vizinhança de cada ponto \((\theta_0, \phi_0)\) do plano.

Litvin demonstra que a condição necessária à existência de um envelope na vizinhança do ponto \((\theta_0, \phi_0)\) é que ele satisfaça à equação:
\[g(\theta,\phi) = [\tilde{k} \times \tilde{r}_\theta \cdot \tilde{r}_\phi] = \tilde{N} \cdot \tilde{r}_\phi = 0 \] (A.24);
onde o símbolo "\(\times \)" representa o produto vetorial e o símbolo "." é o produto escalar.

Esta expressão é denominada equação do engrenamento, e pode ser interpretada cinematicamente. Ela exige que, nos pontos de tangência das curvas do lugar geométrico com o seu envelope, o vetor normal \(\tilde{N} \) à curva do lugar geométrico \((c) \) seja ortogonal a \(\tilde{r}_\phi \). Este é um vetor que representa a velocidade linear \((\tilde{v}_\infty) \) de um ponto \(M \) da curva do lugar geométrico em relação ao mesmo ponto do envelope \((e) \). Assim a equação pode ser reescrita como:
\[\tilde{N} \cdot \tilde{v}_\infty = f(\theta,\phi) = 0 \] (A.25);
ou
\[\tilde{N} \cdot \tilde{v}_\infty = F(\theta,\phi) = 0 \] (A.26);
onde:
\[\tilde{v}_\infty = -\tilde{v}_\infty \]

A condição suficiente para a existência do envelope de curvas exige, além da relação (A.24), que o vetor tangente à forma geradora do envelope seja diferente de zero:
\[\tilde{T} = \tilde{r}_\phi f_\theta - \tilde{r}_\theta f_\phi \neq 0 \] (A.27);

Isto significa que as formas em contato dividem um ponto comum no espaço, e este ponto não é uma intersecção das duas curvas, mas realmente um ponto de contato, pois neste ponto as curvas se tangenciam.

As considerações feitas permitem solucionar o problema de se encontrar a forma do dente do anel flexível \((\Sigma_3) \), que mantém uma ação conjugada com a reta da cremalheira de referência \((\Sigma_1) \).
A. 4 Condição de interferência primária

A geração da engrenagem flexível, de modo semelhante ao caso das engrenagens rígidas de dentes retos, é baseada na simulação do engrenamento de corte através de uma cremalheira de referência.

Considerando-se o movimento relativo da engrenagem de corte, caracterizada por um perfil \(\Sigma_1 \), e a forma gerada \(\Sigma_3 \), existem posições relativas entre ambas que conduzem ao corte do perfil do dente abaixo da sua curva evoluta, ou de modo análogo às engrenagens rígidas, abaixo da circunferência de base (undercut). É o fenômeno aqui denominado interferência primária.

Matematicamente, esse problema corresponde ao aparecimento de pontos singulares no perfil da forma gerada. Em tais pontos o vetor tangente a \(\Sigma_3 \) é nulo.

Litvin [25] propõe um método para verificação deste tipo de interferência, sem utilizar-se das equações do perfil gerado, as quais são normalmente bastante complexas em termos algébricos. A fim de se evitar o aparecimento de pontos singulares em \(\Sigma_3 \) basta efetuar uma redução no intervalo de variação (E) do parâmetro que define a curva \(\Sigma_1 \). Ou seja:

\[
\vec{r}_i(u) = C^i \quad u \in E
\]

Sabe-se que a ferramenta de corte aqui adotada na geração do dente da engrenagem flexível é uma cremalheira, com dentes de ângulo de inclinação (ou pressão) \(\alpha \). Assim, tem-se a sua representação em relação ao sistema \(S_1 \) (Figura A.3):

\[
\vec{r}_i(u) = u \cos \alpha \hat{i} - u \cos \alpha \hat{j}
\]

O vetor normal unitário a essa reta é:

\[
\hat{n}_i = - \cos \alpha \hat{i} - \sin \alpha \hat{j}
\]

A velocidade linear da ferramenta de corte, na direção do eixo \(x_1 \) é:

\[
\vec{v}_i^{(i)} = \frac{ds}{d\phi} \frac{d\phi}{dt} \hat{i}
\]
A velocidade linear do ponto de contato do dente da engrenagem lexível, deslocando-se ao longo da curva harmônica, é:

\[\vec{v}_i^{(3)} = (\vec{\omega}_3 \times \vec{r}_i) + (\vec{O}_1 \vec{O}_e \times \vec{\omega}_3) \] \hspace{1cm} (A.32)

Aqui, \(\vec{\omega}_3 \) é o vetor velocidade anular do dente flexível e \(\vec{O}_1 \vec{O}_e \) é o vetor posição de um ponto qualquer da linha de ação do vetor \(\vec{\omega}_3 \), como por exemplo o centro de curvatura da curva harmônica, ou melhor, sua evoluta (\(\vec{O}_e \)).

Portanto, vem:

\[\vec{\omega}_3 = -\frac{d\psi}{dt} \vec{k} = -\frac{d\psi}{d\phi} \frac{d\phi}{dt} \vec{k} \] \hspace{1cm} (A.33)

Ainda:

\[\vec{O}_1 \vec{O}_e = \begin{bmatrix} x_e - s(\phi) \\ y_e - \frac{(d_o + \delta)}{2} \end{bmatrix} \] \hspace{1cm} (A.34)

Por substituição de \((A.29)\), \((A.33)\) e \((A.34)\) em \((A.32)\), vem:

\[
\vec{v}_i^{(3)} = \begin{bmatrix} \vec{r}_i \\ \vec{j}_i \\ \vec{k}_i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -\frac{d\psi}{d\phi} \frac{d\phi}{dt} \end{bmatrix} + \begin{bmatrix} x_e - s(\theta) \\ y_e - \frac{d_o + \delta}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -\frac{d\psi}{d\phi} \frac{d\phi}{dt} \end{bmatrix} =
\]

\[
\begin{bmatrix} u \sin \alpha \\ -u \cos \alpha \\ 0 \end{bmatrix} \begin{bmatrix} \vec{r}_i \\ \vec{j}_i \\ \vec{k}_i \end{bmatrix} = -\frac{d\psi}{d\phi} \frac{d\phi}{dt} \begin{bmatrix} y_e - \frac{(d_o + \delta)}{2} + u \cos \alpha \end{bmatrix} \vec{r}_i - [x_e - s(\phi) - u \sin \alpha] \vec{j}_i \] \hspace{1cm} (A.35)
A velocidade linear do ponto de contato relativa a \(S_3 \) é:

\[
\vec{v}_{i}^{(13)} = \vec{v}_{i}^{(1)} - \vec{v}_{i}^{3} = \\
\frac{d\psi}{d\psi} \frac{d\phi}{dt} \left[\left[y_{c} + \frac{ds}{d\psi} - \frac{do + \delta}{2} + u \cos \alpha \right] \vec{i}_{i} + \left[x_{c} - s(\phi) - u \sin \alpha \right] \vec{j}_{i} \right]
\]

(A.36)

Como foi visto em (A.25/26) a equação da engrenamento pode ser obtida cinematicamente como:

\[
\bar{n}_{i}.\vec{v}_{i}^{(13)} = 0
\]

(A.37)

A substituição de (A.30) e (A.36) em (A.37) fornece como resultado a própria equação do engrenamento, aplicado ao perfil da cremalheira:

\[
\frac{\left[x_{c} - s(\phi) - u \sin \alpha \right]}{\cos \alpha} + \frac{\left[x_{c} + \frac{ds}{d\psi} - \frac{do + \delta}{2} + u \cos \alpha \right]}{\sin \alpha} = g(\phi, u) = 0
\]

(A.38)

A velocidade linear do ponto de contato sobre a curva gerada (\(\Sigma_3 \)) é obtida por:

\[
\vec{v}_{i}^{(3)} = \vec{v}_{i}^{(1)} - \vec{v}_{i}^{(13)}
\]

(A.39)

Esta velocidade apresenta a mesma direção do vetor tangente (\(\ddot{T} \)) à curva \(\Sigma_3 \). Logo, a condição para que haja pontos singulares neste perfil corresponde cinematicamente a:

\[
\vec{v}_{i}^{(3)} = \vec{0}
\]

(A.40)

Exprimindo-se a equação vetorial acima em termos das componentes do vetor \(\vec{v}_{i}^{(3)} \), no sistema \(S_1 \), vem:

\[
\begin{cases}
\frac{dx_{i}}{dt} = -v_{x_{i}}^{(13)} \\
\frac{dy_{i}}{dt} = -v_{y_{i}}^{(13)}
\end{cases}
\]

(A.41)

Portanto outro lado, a diferenciação da equação do engrenamento acarretará a seguinte condição:

\[
\frac{\partial g}{\partial u} \frac{du}{dt} = -\frac{\partial g}{\partial \phi} \frac{d\phi}{dt}
\]

(A.42)
Considerando-se o sistema linear de equações formado por (A-41) e (A-42), a única incógnita a ser determinada é \(\zeta = \frac{du}{dt} \).

A representação do sistema é:

\[
\begin{align*}
 a_{11} \cdot \zeta &= b_1 \\
 a_{12} \cdot \zeta &= b_2 \\
 a_{13} \cdot \zeta &= b_3
\end{align*}
\]

sendo:

\[
\begin{align*}
 a_{11} = \frac{dx_1}{du}, \quad a_{12} = \frac{dy_1}{du}, \quad a_{13} = \frac{\partial f}{\partial u}, \\
 b_1 = -v_{x_1}^{(13)}, \quad b_2 = v_{y_1}^{(13)}, \quad b_3 = -\frac{\partial g}{\partial \phi} \frac{d\phi}{dt}
\end{align*}
\]

(A.44)

Os coeficientes \(a_{11} \) e \(a_{12} \) não são nulos simultaneamente:

\[
|a_{11}| + |a_{12}| \neq 0
\]

(A.45)

Para que a solução da última seja única, a característica da matriz deve ser igual a 1.

Para isto, demonstra-se que dois determinantes de 2a ordem devem ser nulos:

\[
\begin{align*}
 \begin{vmatrix}
 a_{11} & b_1 \\
 a_{13} & b_3
 \end{vmatrix} = \frac{dx_1}{du} \begin{vmatrix}
 -v_{x_1}^{(13)} \\
 \frac{\partial g}{\partial \phi} \frac{d\phi}{dt}
 \end{vmatrix} = 0
\end{align*}
\]

(A.46)

\[
\begin{align*}
 \begin{vmatrix}
 a_{12} & b_2 \\
 a_{13} & b_3
 \end{vmatrix} = \frac{dy_1}{du} \begin{vmatrix}
 -v_{y_1}^{(13)} \\
 \frac{\partial g}{\partial \phi} \frac{d\phi}{dt}
 \end{vmatrix} = 0
\end{align*}
\]

(A.47)

O parâmetro \(u \) será limitado pelos valores obtidos como solução de uma das equações acima.

No caso do dente dos \textit{harmonic drives}, vem
\[
\begin{vmatrix}
 a_{11} & b_1 \\
 a_{13} & b_3
\end{vmatrix}
= \left| \begin{array}{c}
 \sin \alpha - \frac{d\psi}{dt} \frac{d\phi}{dt} (y_e + \frac{ds}{d\psi} - \frac{d_o + \delta}{2} + u \cos \alpha) \\
 1
\end{array} \right| = 0 \tag{A.48}
\]

Logo:

\[
-\frac{d\phi}{dt} \left[\frac{\partial g}{\partial \phi} \sin \alpha - \frac{d\psi}{d\phi} \left(y_e + \frac{ds}{d\psi} - \frac{d_o + \delta}{2} + u \cos \alpha \right) \right] = 0 \tag{A.48a}
\]

A condição para que não ocorra interferência resulta em:

\[
u < u_1 \tag{A.49}
\]

onde \((u_1)\) é representado pela expressão B.1.3

Considerando-se um coeficiente de deslocamento \((x)\) para a linha média da engrenagem geradora (Figura A.4) tem-se:

\[
u = \frac{ha - x m}{\cos \alpha} \tag{A.50}
\]

sendo: ha - altura do adendo da cremalheira.

Logo, a condição limite equivalente será:

\[
x \geq \frac{ha - u_1}{m} \tag{A.51}
\]

A inequação acima deve ser satisfeita para o valor máximo do ângulo do perfil \((\phi)\).
Figura A4–Condições para geração da raiz do perfil.

A.5 Geometria da extremidade

A extremidade do dente da engrenagem de corte pode ser definida por um arco de circunferência, cuja raiz \(\rho \) estabelece a concordância entre as retas de flanco e fundo (ver Figura A4).

Dessa forma, são estabelecidas as equações para extremidade do dente \(\Sigma'_1 \).

\[
\begin{align*}
 x_{\text{el}}(\theta) &= x_c - \delta \sin \theta \\
 y_{\text{el}}(\theta) &= y_c - \delta \cos \theta \\
\end{align*}
\]

(A.52)

O vetor normal unitário \((\vec{n}_i) \) à curva \(\Sigma_1 \) é: \(\vec{n}_i = -\sin \theta \vec{i} - \cos \theta \vec{j} \) \((A.53) \)

Em cada ponto de contato da curva anterior com a raiz do perfil gerado, a equação do engraxamento \((A-24) \) deve ser obedecida. Assim:

\[
\frac{X_1(\phi) - x_{\text{el}}(\theta)}{n_{kl}^t} - \frac{Y_1(\phi) - y_{\text{el}}(\theta)}{n'y_1} = g_e(\phi, \theta) = 0
\]

(A.54)
Sendo:

\((X_1(\phi), Y_1(\phi))\) coordenadas do centro instantâneo de rotação \((I)\) em relação ao sistema \(S_1\);

\((x_{c1}(\phi), y_{c1}(\phi))\) -conforme (A.52)

\[
\begin{align*}
\dot{u}_{xi} &= -\sin \theta \\
\dot{n}_{yi} &= -\cos \theta
\end{align*}
\] (A.56)
APÊNDICE-B

EQUAÇÕES DESENVOLVIDAS E RESULTADOS

B1 Equações desenvolvidas

B.1.1 Equações da curva harmônica

Segundo as aproximações de 5.1, tem-se:

\[s^* = s_{哌im} \]

\[s_{哌im} = \frac{(2d^*fi + c^*\sin(2^*fi))}{4} \]

\[\eta = n_{哌im} \]

\[n_{哌im} = \frac{(2c^*\sin(2^*fi))}{(d + c^*\cos(2^*fi))} \]

\[x_e = x_{哌im} \quad ; \quad y_e = y_{哌im} \]

\[x_{哌im} = \frac{(2c^*(11c^2 - 4c*d + 2d^2 + 12c^2*\cos(2^*fi) + 3c^2*\cos(4^*fi))^*\sin(fi)^3)}{(-13c^2 - 2d^2 - 12c*d*\cos(2^*fi) + 3c^2*\cos(2^*fi))} \]

\[y_{哌im} = \frac{(2c^*\cos(fi)^3((-11c^2 - 4c*d - 2d^2 + 12c^2*\cos(2^*fi)) - 3c^2*\cos(4^*fi))}{(-13c^2 - 2d^2 - 12c*d*\cos(2^*fi) + 3c^2*\cos(4^*fi))} \]
B.1.2 Equação do engrenamento

g(θ, u) = gap = 0

gap = u*\cos[a]^2 + \sin[a]*(u*\sin[a] + (d*\phi + (c*\sin[2*\phi])/2)/2).

Solução: uca

uca = -(\sin[a]*(2*d*\phi + c*\sin[2*\phi]))/4
B.1.3 Limite do parâmetro de geração do flanco

Limite para $u: \text{ulim}$

\[
\text{ulim} = \left(-2\cdot(d + c\cdot\cos[2\cdot\text{fi}])\cdot\sec[a] - 2\cdot\sin[a]\cdot\cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2) - c\cdot\sin[\text{fi}]\cdot\sin[2\cdot\text{fi}] - (d/2 + 2\cdot c\cdot d\cdot \cos[2\cdot\text{fi}] + c\cdot \cos[2\cdot\text{fi}]\cdot d - 2\cdot \sin[2\cdot\text{fi}])^2\right)^{-1/2} \\
\left((-\cos[\text{fi}]\cdot\cos[2\cdot\text{fi}] - \cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)) + 2\cdot c\cdot \sin[\text{fi}]\cdot \sin[2\cdot\text{fi}] - (d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)^2\right) \\
\left((-\cos[\text{fi}]\cdot\cos[2\cdot\text{fi}] - \cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)) - 2\cdot c\cdot \sin[\text{fi}]\cdot \sin[2\cdot\text{fi}]) - (d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)\right) \\
\left((-\cos[\text{fi}]\cdot\cos[2\cdot\text{fi}] - \cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)) + 2\cdot c\cdot \sin[\text{fi}]\cdot \sin[2\cdot\text{fi}]) - (d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)\right) \\
\left((-\cos[\text{fi}]\cdot\cos[2\cdot\text{fi}] - \cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)) + 2\cdot c\cdot \sin[\text{fi}]\cdot \sin[2\cdot\text{fi}]) - (d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)\right) \\
\left((-\cos[\text{fi}]\cdot\cos[2\cdot\text{fi}] - \cos[\text{fi}]\cdot(d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)) + 2\cdot c\cdot \sin[\text{fi}]\cdot \sin[2\cdot\text{fi}]) - (d/2 + (c\cdot\cos[2\cdot\text{fi}])/2)\right)
\]
Continuação

\[7 \times \cos[f] \times \sin[2f] \times (\cos[f] \times (d/2 + (\cos[2f])/2)) - \\
\cos[f] \times \sin[2f] - \\
(-((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
\cos[f] \times \sin[2f] \times (-6 \times \cos[f] \times \cos[2f] - \cos[f] \times (d/2 + \\
\cos[f] \times \sin[2f]) \times (-6 \times \cos[f] \times \cos[2f] - \cos[f] \times (d/2 + \\
(\cos[2f])/2)) + \\
7 \times \cos[f] \times \sin[2f])) / \\
(-(-2 \times \cos[2f] \times \sin[f] - (d/2 + \\
(\cos[2f])/2) \times \sin[f]) - \\
2 \times \cos[f] \times \sin[2f]) \times ((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
\cos[f] \times \sin[2f]) \times (\cos[f] \times (d/2 + \\
(\cos[2f])/2)) + \\
2 \times \sin[f] \times \sin[2f]) \times (-((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
cos[2f] \times \sin[2f] - \\
((d + \cos[2f])/2) \times 2 - \\
(-12 \times \cos[f] \times \sin[2f] - \\
4 \times \cos[2f] \times \sin[2f]) \times (d/2 + 2 \times \cos[f] \times \sin[2f] + c \times \cos[2f] - 2 + \\
4 \times \cos[f] \times \sin[2f] \times (1/2)) / \\
(2 \times (d/2 + 6 \times \cos[f] \times \sin[2f] + 5 \times \cos[2f] - 2 + \\
4 \times \cos[f] \times \sin[2f]) \times 2 - \\
((d + \cos[2f]) \times 2 - \\
(4 \times \cos[f] \times \sin[2f]) / \\
12 \times \cos[f] \times \sin[2f]) / \\
(4 \times (d/2 + 2 \times \cos[f] \times \sin[2f] + \cos[f] - 2 \times \cos[f] - 2 \times \sin[f]) \times (1/2)) / \\
(2 \times (d/2 + 2 \times \cos[f] \times \sin[2f] + \cos[f] - 2 \times \cos[f] - 2 \times \sin[f]) \times (1/2)) / \\
(2 \times (d/2 + 6 \times \cos[f] \times \sin[2f] + 5 \times \cos[f] - 2 + \\
4 \times \cos[f] \times \sin[2f]) \times 2 - \\
((-2 \times \cos[f] \times \sin[f] - (d/2 + \\
(\cos[f])/2) \times \sin[f]) - \\
\cos[f] \times \sin[2f]) \times (\cos[f] \times (d/2 + \\
(\cos[f])/2)) / \\
(2 \times \cos[f] \times \sin[2f]) \times (-((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
cos[f] \times \sin[2f] - \\
((d + \cos[2f])/2) \times 2 - \\
(-12 \times \cos[f] \times \sin[2f] - \\
4 \times \cos[f] \times \sin[2f]) \times (d/2 + 2 \times \cos[f] \times \sin[2f] + c \times \cos[2f] - 2 + \\
4 \times \cos[f] \times \sin[2f] \times (1/2)) / \\
(2 \times (d/2 + 6 \times \cos[f] \times \sin[2f] + 5 \times \cos[f] - 2 + \\
4 \times \cos[f] \times \sin[2f]) \times 2 - \\
((-2 \times \cos[f] \times \sin[f] - (d/2 + \\
(\cos[f])/2) \times \sin[f]) - \\
\cos[f] \times \sin[2f]) \times (\cos[f] \times (d/2 + \\
(\cos[f])/2)) / \\
(2 \times \cos[f] \times \sin[2f]) \times (-((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
cos[f] \times \sin[2f] - \\
((d + \cos[2f])/2) \times 2 - \\
(-12 \times \cos[f] \times \sin[2f] - \\
4 \times \cos[f] \times \sin[2f]) \times (d/2 + 2 \times \cos[f] \times \sin[2f] + c \times \cos[2f] - 2 + \\
4 \times \cos[f] \times \sin[2f] \times (1/2)) / \\
(2 \times (d/2 + 6 \times \cos[f] \times \sin[2f] + 5 \times \cos[f] - 2 + \\
4 \times \cos[f] \times \sin[2f]) \times 2 - \\
((-2 \times \cos[f] \times \sin[f] - (d/2 + \\
(\cos[f])/2) \times \sin[f]) - \\
\cos[f] \times \sin[2f]) \times (\cos[f] \times (d/2 + \\
(\cos[f])/2)) / \\
(2 \times \cos[f] \times \sin[2f]) \times (-((d/2 + (\cos[2f])/2) \times \sin[f]) - \\
cos[f] \times \sin[2f] - \\
((d + \cos[2f])/2) \times 2 - \\
(-12 \times \cos[f] \times \sin[2f] - \\
Continuação

\[
\begin{align*}
& (c \cdot \cos(2\cdot f_i))/2 + \\
& 2c \cdot \sin(f_i) \cdot \sin(2\cdot f_i)) + \\
& ((\cos(f_i) \cdot (d/2 + (c \cdot \cos(2\cdot f_i))/2) - \\
& c \cdot \sin(f_i) \cdot \sin(2\cdot f_i)\right) \right) + \\
& 2\cdot (-2c \cdot \cos(2\cdot f_i) \cdot \sin(f_i) - \\
& c \cdot \sin(f_i) \cdot \sin(2\cdot f_i)) / \\
& 2\cdot (d/2 + (c \cdot \cos(2\cdot f_i))/2) \cdot \sin(f_i) - \\
& 2c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) / \\
& (-2c \cdot \cos(2\cdot f_i) \cdot \sin(f_i) - (d/2 + \\
& c \cdot \cos(2\cdot f_i))/2) \cdot \sin(f_i) - \\
& 2c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) / \\
& (-2c \cdot \cos(f_i) \cdot \sin(2\cdot f_i) - \cos(f_i)*(d/2 + \\
& c \cdot \cos(2\cdot f_i))/2) + \\
& 2c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) / \\
& (((d/2 + (c \cdot \cos(2\cdot f_i))/2) \cdot \sin(f_i) - \\
& c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) \cdot 2 + \\
& (\cos(f_i) \cdot (d/2 + (c \cdot \cos(2\cdot f_i))/2) - \\
& c \cdot \sin(f_i) \cdot \sin(2\cdot f_i)) \cdot 2) + \\
& ((6c \cdot \cos(2\cdot f_i) \cdot \sin(f_i) + (d/2 + \\
& c \cdot \cos(2\cdot f_i))/2) \cdot \sin(f_i) + \\
& 7c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) / \\
& (\cos(f_i) \cdot (d/2 + (c \cdot \cos(2\cdot f_i))/2) - \\
& c \cdot \sin(f_i) \cdot \sin(2\cdot f_i)) / \\
& (-2c \cdot \cos(f_i) \cdot \sin(2\cdot f_i)) / \\
& (9c^2 - 2 \cdot d^2 + 12c \cdot d \cdot \cos(2\cdot f_i) + c^2 \cdot \cos(4\cdot f_i))
\end{align*}
\]
B.1.4 Coordenadas do flanco

Coordenadas: \((x_{3ev}, y_{3ev})\)

\[
x_{3ev} = \cos[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]*
((d\cdot \phi_i)/2 + (c\cdot \sin[2\cdot \phi_i])/4) -
(C\cdot \cos[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])])\cdot \sin[a]\cdot 2*
(2\cdot d\cdot \phi_i + c\cdot \sin[2\cdot \phi_i])/4 +
(d/2 + (c\cdot \cos[2\cdot \phi_i])/2)\cdot \sin[(2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]
-(c/2 + d/2)\cdot \sin[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]
-(\cos[a]\cdot \sin[a]\cdot (2\cdot d\cdot \phi_i + c\cdot \sin[2\cdot \phi_i]))\cdot
\sin[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])])/4
\]

\[
y_{3ev} = -(d/2 + (c\cdot \cos[2\cdot \phi_i])/2)\cdot \cos[(2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]
+(c/2 + d/2)\cdot \cos[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]
+(\cos[a]\cdot \cos[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])])\cdot \sin[a]\cdot
(2\cdot d\cdot \phi_i + c\cdot \sin[2\cdot \phi_i])/4 +
((d\cdot \phi_i)/2 + (c\cdot \sin[2\cdot \phi_i])/4)\cdot \sin[\phi_i +
(2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])]
-(\sin[a]\cdot 2\cdot (2\cdot d\cdot \phi_i + c\cdot \sin[2\cdot \phi_i]))\cdot
\sin[\phi_i + (2\cdot c\cdot \sin[2\cdot \phi_i])/(d + c\cdot \cos[2\cdot \phi_i])])/4
\]
B 1.5 Coordenadas da raiz

Coordenadas: \((x_{3con}, y_{3con})\)

\[
x_{3con} = \cos(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))*
((d/2 + (c \sin(\phi_i))/4 +
(d/2 + (c \cos(\phi_i))/2)*\sin((2c \sin(\phi_i))/(d +
c \cos(\phi_i))) -
(c/2 + d/2)*\sin(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i))) -\)
(-d + rcon - rcon*\cos(\arctan((rcon*\cos(a) + (2d \phi_i +
c \sin(\phi_i)))/4 +
ac*\tan(a))/(-d + rcon)))*
\sin(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))+
\cos(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))*
(rcon*\cos(a) - rcon*\sin(\arctan((rcon*\cos(a) + (2d \phi_i +
c \sin(\phi_i)))/4 +
ac*\tan(a))/(-d + rcon)) + ac*\tan(a))
\]

\[
y_{3con} = -((d/2 + (c \cos(\phi_i))/2)*\cos((2c \sin(\phi_i))/(d +
c \cos(\phi_i)))) +
(c/2 + d/2)*\cos(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))+
(-d + rcon - rcon*\cos(\arctan((rcon*\cos(a) + (2d \phi_i +
c \sin(\phi_i)))/4 +
ac*\tan(a))/(-d + rcon)))*
\cos(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))+
((d/2 + (c \sin(\phi_i))/2)*\sin(\phi_i +
(2c \sin(\phi_i))/(d + c \cos(\phi_i)))+
\sin(\phi_i + (2c \sin(\phi_i))/(d + c \cos(\phi_i)))*
(rcon*\cos(a) - rcon*\sin(\arctan((rcon*\cos(a) + (2d \phi_i +
c \sin(\phi_i)))/4 +
ac*\tan(a))/(-d + rcon)) + ac*\tan(a))
\]}
B.1.6 Coordenadas da base

Coordenadas: \((x_{3b}, y_{3b})\)

\[
x_{3b} = \cos[\phi + (2c\sin[2\phi])/d + c\cos[2\phi])] + \frac{(d\phi)/2 + (c\sin[2\phi])/4}{(\cos[\phi + (2c\sin[2\phi])/d + c\cos[2\phi])] + (2d\phi + c\sin[2\phi])/4} + \frac{(d/2 + (c\cos[2\phi])/2)*\sin[2c\sin[2\phi]]/d + c\cos[2\phi]]}{(c/2 + d/2)*\sin[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]]} + \frac{d\phi\sin[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]]}{(d + c\cos[2\phi])/4}
\]

\[
y_{3b} = -(d/2 + (c\cos[2\phi])/2)*\cos[(2c\sin[2\phi])/d + c\cos[2\phi]] + (c/2 + d/2)*\cos[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]] - \frac{d\phi\cos[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]]}{(d + c\cos[2\phi])/4} + \frac{(d\phi/2 + (c\sin[2\phi])/4)*\sin[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]]}{(2c\sin[2\phi])/(d + c\cos[2\phi])} - \frac{(2d\phi + c\sin[2\phi])\sin[\phi + (2c\sin[2\phi])/d + c\cos[2\phi]]}{(d + c\cos[2\phi])/4}
\]
B.1.7 Coordenadas do topo

Coordenadas: \((x_{3\text{top}}, y_{3\text{top}})\)

\[
x_{3\text{top}} = -\left(\frac{d}{2} + h_{\text{max}}\right) \cdot \left(2d \cdot \sin[2 \cdot \phi_1] + c \cdot \sin[2 \cdot \phi_1]\right) / (2d) - h_{\text{max}} \cdot \tan[a]
\]

\[
y_{3\text{top}} = h_{\text{max}}
\]
B.1.8 Coordenadas da trajetória do dente flexível

Coordenadas: \((x_{\text{int}}, y_{\text{int}})\)

\[
x_{\text{int}} = \frac{d}{2} + \left(c \cdot \cos(2\cdot\phi)\right)/2 \cdot \sin(\phi) - \left(z_f \cdot (\phi + \left(c \cdot \sin(2\cdot\phi)\right)/(2\cdot d))\right)/z_r
\]

\[
y_{\text{int}} = \frac{c + d}{2} - \left(d/2 + \left(c \cdot \cos(2\cdot\phi)\right)/2\right) \cdot \cos(\phi) - \left(z_f \cdot (\phi + \left(c \cdot \sin(2\cdot\phi)\right)/(2\cdot d))\right)/z_r
\]

Ângulo de geração: \(\theta = \text{tet}\)

\[
\text{tet} = \left(z_f \cdot (\phi + \left(c \cdot \sin(2\cdot\phi)\right)/(2\cdot d))\right)/z_r
\]
B2 Gráficos dos perfis gerados

Parâmetros:

\[i = 60 \text{, } m = 0.5 \text{ mm} \text{, } \alpha = 20^\circ \text{, } h_a = 0.625 \text{ mm} \text{,} \]
\[\gamma = 0 \text{, } x_f = 0 \text{, } x_r = 0 \]

![Graph 1](image1)

Figura B1-Perfil gerado para análise do problema de interferência.

\[i = 60 \text{, } m = 1 \text{ mm} \text{, } \alpha = 20^\circ \text{, } h_a = 1.25 \text{ mm} \]
\[\gamma = 0 \text{, } x_f = 0 \text{, } x_r = 0 \]

![Graph 2](image2)

Figura B2-Idem
\[i = 60 \, \text{mm}, \, m = 1 \, \text{mm}, \, \alpha = 20^\circ, \, h_a = 1.25 \, \text{mm}, \]
\[f = 0, \, x_r = 0, \, x_r = 0.2 \]

Figura B3- Idem
$i = 160 , \ m = 0.5 \ mm , \ \alpha = 20^\circ , \ h_a = 0.625 \ mm ,$

$q = 0 , \ x_f = 0 , \ x_r = 0.3$

Figura B4-Perfil gerado para análise da influência do raio de concordância.

$i = 160 , \ m = 0.5 \ mm , \ \alpha = 20^\circ , \ h_a = 0.625 \ mm ,$

$q = 0.15 , \ x_f = 0 , \ x_r = 0.3$

Figura B5-Idem
\[i = 160 \text{, } m = 0.5 \text{ mm} \text{, } \alpha = 20^\circ \text{, } h = 0.625 \text{ mm} \text{,} \]
\[\varepsilon = 0.24 \text{, } x_1 = 0 \text{ , } x_1 = 0.3 \]

Figura B6–Idem
\(i = 60 \), \(m = 0.8 \text{ mm} \), \(\alpha = 20^\circ \), \(h_a = 1.0 \text{ mm} \),

\(\phi = 0.24 \), \(x_f = 0 \), \(x_r = 0.2 \)

Figura B7-Perfil gerado para análise de correção dos dentes.

\(i = 60 \), \(m = 0.8 \text{ mm} \), \(\alpha = 20^\circ \), \(h_a = 1.0 \text{ mm} \),

\(\phi = 0.38 \), \(x_f = 0 \), \(x_r = 0.2 \)

Figura B8-Idem
\[i = 60, \ m = 0.8 \ \text{mm}, \ \alpha = 20^\circ, \ h_a = 1.0 \ \text{mm}, \]
\[= 0.38, \ x_f = 0.1, \ x_r = 0.2 \]

Figura B9- Idem

\[i = 240, \ m = 0.6 \ \text{mm}, \ \alpha = 20^\circ, \ h_a = 0.75 \ \text{mm}, \]
\[= 0.18, \ x_f = 0, \ x_r = 0.25 \]

Figura B10-Idem
i = 240, m = 0.6 mm, $\alpha = 20^\circ$, $h_a = 0.75$ mm,

$\zeta = 0.28$, $x_f = 0$, $x_r = 0.25$

Figura B11-Idem

\[\text{mm} \]

\[\begin{array}{cccccccc}
-2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 \\
\hline
-0.6 & -0.4 & -0.2 & 0 & 0.2 & 0.4 & 0.6 & \\
\end{array} \]

C. harmonica

\[\text{mm} \]

\[\text{Figura B12-Idem} \]

\[\text{i = 240, m = 0.6 mm, } \alpha = 20^\circ, \text{ h}_a = 0.75 \text{ mm,} \]

$\zeta = 0.28$, $x_f = 0.15$, $x_r = 0.25$

\[\text{mm} \]

\[\begin{array}{cccccccc}
-2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 \\
\hline
-0.6 & -0.4 & -0.2 & 0 & 0.2 & 0.4 & 0.6 & \\
\end{array} \]

C. harmonica

\[\text{mm} \]
i = 320 , m = 0.3 mm , α = 20° , hₐ = 0.375 mm ,
γ = 0.09 , x₁ = 0.2 , x₉ = 0.4

Figura B13-Idem

i = 320 , m = 0.3 mm , α = 20° , hₐ = 0.375 mm ,
γ = 0.09 , x₁ = 0.2 , x₉ = 0.4

Figura B14-Idem
i = 320, \(m = 0.3 \text{ mm} \), \(\alpha = 20^\circ \), \(h_a = 0.375 \text{ mm} \),

\(\beta = 0.14 \), \(x_r = 0.3 \), \(x_r = 0.4 \)

\[\begin{array}{c}
\text{mm} \\
0.2 \\
0.1 \\
0 \\
-0.1 \\
-0.2 \\
-0.3 \\
\end{array} \quad \begin{array}{c}
-0.76 \\
-0.6 \\
-0.26 \\
0 \\
0.26 \\
0.6 \\
\end{array} \]

Figura B15-Idem
\[i = 80, \ m = 0.8 \text{ mm}, \ \alpha = 30^\circ, \ h_a = 1.0 \text{ mm}, \]

\[\gamma = 0.09, \ x_f = 0, \ x_r = 0.2 \]

Figura B16—Perfil gerado para análise do aumento do ângulo de pressão.

\[i = 80, \ m = 0.8 \text{ mm}, \ \alpha = 30^\circ, \ h_a = 1.0 \text{ mm}, \]

\[\gamma = 0.09, \ x_f = 0.1, \ x_r = 0.2 \]

Figura B17—Idem