• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.3.2005.tde-15022006-161038
Documento
Autor
Nombre completo
Jimmy Ernesto San Miguel Medina
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2005
Director
Tribunal
Adamowski, Julio Cezar (Presidente)
Higuti, Ricardo Tokio
Silva, Emilio Carlos Nelli
Título en portugués
Modelagem de ensaios não destrutivos por ultra-som utilizando o método dos elementos finitos.
Palabras clave en portugués
ENDUS
MEF
transdutor de ultra-som
Resumen en portugués
Os modelos existentes de propagação de ondas de ultra-som em meios líquidos e sólidos consideram a geração e recepção das ondas produzidas por transdutores simulados segundo o modelo do pistão plano ou com excitações cuja amplitude varia radialmente no pistão. Esses modelos são simplificados e não explicam completamente o comportamento real de transdutores de ultra-som interagindo com líquidos e sólidos. As verificações experimentais de propagação da onda de ultra-som em meios líquidos mostram que a onda de borda é diferente da onda plana. Observa-se também a existência de outras ondas não previstas nos modelos anteriores. Essas ondas são conhecidas como ondas head. A utilização do método dos elementos finitos (MEF) para a modelagem de propagação de ondas de ultra-som, incluindo o transdutor piezelétrico, permite a obtenção de resultados realísticos, conseguindo assim descrever com maior precisão o comportamento do transdutor e das ondas de ultra-som se propagando em diferentes meios e interagindo com defeitos que se comportam como refletores. Apesar disso, os resultados desses modelos dependem das características precisas dos materiais que compõem o transdutor. O transdutor de ultra-som é composto por uma cerâmica piezelétrica, por camadas de casamento e de retaguarda que geralmente são compósitos de epóxi com alumina e epóxi com tungstênio respectivamente, e pelo encapsulamento. Neste trabalho é analisada a resposta transiente de um transdutor circular de 2 MHz, com diâmetro de 12,7 mm, banda larga. O modelo do transdutor foi implementado com o método de elementos finitos. A análise transiente pelo MEF é implementada com o software ANSYS. Na primeira parte do trabalho o transdutor é analisado no modo de transmissão em água. Os resultados do modelo com MEF foram comparados com os resultados do modelo do pistão plano e com verificações experimentais obtidas em tanque de imersão com um hidrofone tipo agulha. Na segunda parte é realizada a análise do transdutor operando em modo pulso-eco radiando em peças de teste com e sem defeito, utilizando acoplamento direto e acoplamento por buffer de água. Os resultados do MEF apresentam boa concordância com os resultados obtidos experimentalmente.
Título en inglés
Modeling of ultrasonic non destructive evaluation using FEM.
Palabras clave en inglés
FEM
ultrasonic NDE
ultrasonic transducer
Resumen en inglés
Simple models for ultrasonic wave propagation in liquid and solid media consider the wave generation and reception by transducers that behave as plane pistons. These models are simplified and they do not explain completely the behavior of an ultrasonic transducer when interacting with other media. Experimental verifications of ultrasonic wave propagation in liquid show that the pressure amplitude of the edge wave is different from the plane wave. Also it is observed the existence of other types of waves not foreseen in these previous models. These waves are known as head waves. More realistic models for ultrasonic wave propagation are obtained using the finite element method (FEM). These models include the piezoelectric transducer, thus, describing with higher precision the behavior of the transducer and the ultrasonic waves propagating in different mediums and interacting with defects. The precision of the models depends on the accurate determination of the mechanical and electrical properties of the involved materials. The ultrasonic transducer is composed by a piezoelectric ceramic, a matching layer and a backing layer that are generally made by epoxy/alumina and epoxy/tungsten composites respectively. In this work it is analyzed the transient response of a circular transducer of 12.7 mm diameter and 2 MHz center frequency. The transducer model was implemented with the finite element method. The FEM transient analysis was executed in the ANSYS software. In the first part of the work the transducer is analyzed in transmission mode in water and the MEF results are compared with the plane piston model and with experimental verifications using a hydrophone. In the second part it is carried at the transducer analysis operating in pulse-echo mode radiating into test pieces with and without defects, using direct and water buffer coupling. The MEF results show good agreement with the results obtained experimentally in the laboratory.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
significa que el fichero sólamente puede ser acceder dentro da la Universidad de São Paulo.
Fecha de Publicación
2006-02-17
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.