MARCO ANTONIO SOARES DE PAIVA

Engº Mecânico, Escola Politécnica da USP, 1980

MODELAGEM E SIMULAÇÃO MATEMÁTICA
DE EVAPORADORES DE MÚLTIPLHO EFEITO

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo, para obtenção do título de "MESTRE EM ENGENHARIA".

ORIENTADOR: Prof. Dr. José Maria Saiz Jabardo

SÃO PAULO - 1990
A Marcia,

João Guilherme e
meus pais.
AGRADECIMENTOS

Ao professor José Maria Saiz Jabardo, pela orientação dada na elaboração do trabalho, por sua sensibilidade na discussão das questões essenciais e por sua permanente disponibilidade.

Aos companheiros e amigos do Agrupamento de Engenharia Térmica do IPT, especialmente: ao Engº Chern Chon Chin, por seu auxílio nas questões computacionais e importantes observações relativas aos problemas numéricos; ao engº Pedro Ignácio Millan, com quem iniciei os estudos na linha de evaporação, pelas valiosas informações fornecidas no tocante ao processo; ao engº José Manoel Martins Leites, pelos subsídios fornecidos no início do trabalho; aos engºs João Francisco Peral Cespedes e Roberto de Aguiar Peixoto, por seu constante incentivo; ao estagiário José Augusto Lopes, pela colaboração na edição final; ao técnico Ivan Vieira Santos, por sua contribuição na elaboração dos desenhos.

Aos demais companheiros do IPT que colaboraram para a realização deste trabalho.
RESUMO

O trabalho apresenta um modelo matemático que permite a análise de evaporadores de múltiplo efeito (EME) operando em regime permanente. Foram considerados EME constituídos pelos seguintes equipamentos: evaporadores, trocadores de calor vapor-solução, termocompressores, tanques de reevaporação de condensado e solução, e possibilidade de sangrias intermediárias de vapor. Na modelagem matemática foi utilizada formulação "lumped". A partir do modelo matemático desenvolvido, foram elaboradas duas versões de programas computacionais: versão de avaliação matemática, que permite analisar as condições reais de operação de um EME, e versão de simulação matemática, que permite analisar condições virtuais de operação. A versão de simulação matemática incorpora subrotinas que permitem a avaliação do coeficiente global de transferência de calor (U) de evaporadores - tipos filme ascendente e "heat and flash" - e trocadores de calor. O trabalho relata os ensaios experimentais realizados com o intuito de verificar a qualidade das equações sugeridas para a avaliação de U. Finalmente são apresentados os resultados da análise de um projeto real de EME para concentração de licor negro feita com a utilização dos simuladores desenvolvidos.
ABSTRACT

The work presents a mathematical model for multiple-effect evaporator analysis. The considered equipments are: evaporators, vapour-solution heat exchangers, thermocompressors, condensate and solution flash tanks. The program allows, as well, the possibility to simulate intermediate vapour withdrawns. The modelling uses the lumped approach. Based on the mathematical models an IBM-PCm microcomputer software consisting of two versions was developed. The evaluation version permits the analysis of actual problems and the simulation one was developed to analyse virtual problems. The last one can evaluate the overall heat transfer coefficients of rising film and heat and flash evaporators. Data obtained from an operating black liquor multiple-effect evaporator are reported. Comparisons between these data and the ones generated by the simulation are described.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclatura</td>
<td>i</td>
</tr>
<tr>
<td>Lista de figuras</td>
<td>xiv</td>
</tr>
<tr>
<td>Lista de tabelas</td>
<td>xxi</td>
</tr>
<tr>
<td>Listagens impressas por computador</td>
<td>xxiii</td>
</tr>
<tr>
<td>1. Introdução</td>
<td></td>
</tr>
<tr>
<td>1.1. Comentários iniciais</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Revisão bibliográfica</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1. Simulação matemática de evaporadores de múltiplo efeito</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2. Técnicas de simulação de sistemas</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2.1. Abordagem sequencial-modular</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2.2. Abordagem com orientação por equações</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2.3. Abordagem simultânea-modular</td>
<td>11</td>
</tr>
<tr>
<td>1.3. Objetivos do trabalho</td>
<td>12</td>
</tr>
<tr>
<td>2. Modelagem matemática</td>
<td>18</td>
</tr>
<tr>
<td>2.1. Comentários iniciais</td>
<td>16</td>
</tr>
<tr>
<td>2.2. Modelagem matemática dos módulos</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1. Modelagem matemática do evaporador</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2. Modelagem matemática do trocador de calor vapor-solução</td>
<td>49</td>
</tr>
<tr>
<td>2.2.3. Modelagem matemática do tanque de reevaporação de condensado</td>
<td>57</td>
</tr>
</tbody>
</table>
2.2.4. Modelagem matemática do tanque de reevaporação de produto

2.2.5. Modelagem matemática do ejetor

2.3. Equações de ligação
 2.3.1. Nós de vapor
 2.3.2. Nós de solução
 2.3.3. Nós de condensado

3. Algoritmo de cálculo
 3.1. Comentários iniciais
 3.2. Modificação das equações
 3.3. Algoritmo para a versão de simulação matemática
 - concentração final desconhecida
 3.4. Algoritmo para a versão de simulação matemática
 - vazão de entrada de solução desconhecida
 3.5. Algoritmo para a versão de avaliação matemática

4. Análise de resultados
 4.1. Comentários iniciais
 4.2. Investigações experimentais
 4.3. Análise de casos
 4.3.1. Caso de referência
 4.3.2. Análise paramétrica
 4.3.2.1. Variação da temperatura de alimentação da solução
 4.3.2.2. Variação da concentração da solução na entrada do EME
 4.3.2.3. Variação da temperatura de saturação do vapor vivo
4.3.2.4. Variação da temperatura de saturação do vapor efluente do último efeito de evaporação

4.3.2.5. Variação da vazão mássica de solução na entrada do EME

4.3.3. Exemplo de utilização da versão de avaliação matemática

5. Conclusões e recomendações

Referências bibliográficas

Apêndice A: Evaporação e evaporadores

A.1. Classificação dos evaporadores

A.2. Tipos de evaporadores químicos

A.2.1. Evaporadores de circulação natural

A.2.1.1. Evaporadores de tubos horizontais

A.2.1.2. Evaporadores de tubos curtos verticais

A.2.1.3. Evaporador tipo cesto

A.2.1.4. Evaporadores de tubos longos verticais

A.2.2. Evaporadores de circulação forçada

A.3. Evaporadores de múltiplo efeito

A.3.1. Comentários iniciais

A.3.2. Formas de alimentação nos evaporadores de múltiplo efeito

A.4. Equipamentos e sistemas auxiliares

A.4.1. Condensadores

A.4.2. Trocadores de calor

A.4.3. Compressão mecânica de vapor
A.4.4. Termocompressor a.24
A.4.5. Tanques de reevaporação de condensado a.24
A.4.6. Tanques de reevaporação de produto a.26
A.4.7. Sangrias intermediárias de vapor a.26

Apêndice B: Propriedades físicas e termodinâmicas do licor negro, vapor d’água e condensado

B.1. Comentários iniciais b.1
B.2. Propriedades do vapor d’água b.1
B.3. Propriedades do condensado b.5
B.4. Propriedades do licor negro b.8

Apêndice C: Métodos numéricos para a solução de sistemas não lineares de equações algébricas

C.1. Comentários iniciais c.1
C.2. Método de substituição direta c.2
C.3. Método de Wegstein c.5
C.4. Método de Newton-Raphson c.7
C.5. Método de Broyden c.9
NOMENCLATURA

VARIÁVEIS

Aext : área externa de transferência de calor (m²).

Am : área de transferência de calor referida ao diâmetro médio (m²).

bound1 : nas relações de Gudmundson, variável para cálculo de htot.

bound2 : nas relações de Gudmundson, variável que delimita a região de baixo fluxo de transferência de calor.

C : nas relações de Gudmundson, variável que corrige htot.

Ceff : nas relações de Gudmundson, fator que considera o efeito do superaquecimento da solução.

Cf : nas relações de Gudmundson, fator que considera o efeito da vazão em massa de solução e da temperatura de alimentação da solução.

Cpin : calor específico à pressão constante da solução na entrada do elemento de aquecimento (J/kg.K)

Cplinc : calor específico à pressão constante do licor negro (J/kg.K).

Cpm : calor específico à pressão constante médio da solução no interior do elemento de aquecimento (J/kg.K).

Cpout : calor específico à pressão constante na saída do elemento de aquecimento (J/kg.K).

Csub : nas relações de Gudmundson, variável que considera o efeito do subresfriamento.
Ct : nas relações de Gudmundson, variável que considera o efeito do ponto de ebulição da solução no espaço de vapor do evaporador.

De : diâmetro externo dos tubos (m).

Di : diâmetro interno dos tubos (m).

DTLN : diferença de temperatura média logarítmica (°C).

EPE : elevação do ponto de ebulição de uma solução líquido-sólido (°C).

EPElicn : elevação do ponto de ebulição do licor negro (°C).

fe : fator de incrustação do lado externo dos tubos (m².K/W)

fi : fator de incrustação do lado interno dos tubos (m².K/W)

hbound : nas relações de Gudmundson, coeficiente global de transferência de calor no limite em que q=bound2 (W/m².K)

hconde : entalpia específica do condensado na entrada de um equipamento (J/kg).

hconds : entalpia específica do condensado na saída de um equipamento (J/kg).

hcondsl : entalpia específica do condensado na saída do evaporador 1 (J/kg).

he : coeficiente de transferência de calor por convecção do lado externo do tubo (W/m².K).

hi : coeficiente de transferência de calor por convecção do lado interno do tubo (W/m².K).

hlicn : entalpia específica do licor negro (J/kg).

hsol : entalpia específica da solução (J/kg).

hsolb : entalpia específica da solução na bomba (J/kg).
hsol : entalpia específica da solução na entrada de um equipamento (J/kg).

Hsole : entalpia total da solução na entrada do EME por unidade de massa de água evaporada (por facilidade será designada simplesmente entalpia específica da solução na entrada) (J/kg).

hsolm : entalpia específica média da solução no interior do elemento de aquecimento (J/kg).

hsols : entalpia específica da solução na saída de um equipamento (J/kg).

Hsols : entalpia total da solução na saída do EME por unidade de massa de água evaporada (por facilidade será designada simplesmente entalpia específica da solução na saída) (J/kg).

htot : nas relações de Gudmundson, coeficiente global de transferência de calor para evaporador limpo (W/m².K).

htotl : nas relações de Gudmundson, coeficiente global de transferência de calor para evaporador com incrustação (W/m².K).

htq : entalpia da solução no espaço de vapor do evaporador (J/kg)

hvap : entalpia específica do vapor (J/kg).

hvape : entalpia específica do vapor na entrada de um equipamento (J/kg).

hvape1 : entalpia específica do vapor condensante no evaporador 1 (J/kg).

hvaps : entalpia específica do vapor na saída de um equipamento (J/kg).
hvult : entalpia específica do vapor efluente do último efeito (J/kg).

Hvult : entalpia do vapor efluente do último efeito por unidade de massa de água evaporada (J/kg).

kcond : coeficiente de condutibilidade térmica do condensado (W/m.K).

kin : coeficiente de condutibilidade térmica da solução na entrada do elemento de aquecimento (W/m.K).

klicn : coeficiente de condutibilidade térmica do licor negro (W/m.K).

km : coeficiente de condutibilidade térmica médio da solução no interior do elemento de aquecimento (W/m.K).

kout : coeficiente de condutibilidade térmica na saída do elemento de aquecimento (W/m.K).

kt : coeficiente de condutibilidade térmica da parede do tubo (W/m.K).

Lt : comprimento dos tubos (m).

mee : vazão de água evaporada (kg/s).

Mconde : vazão em massa de condensado na entrada de um equipamento (kg/s).

Mconds : vazão em massa de condensado na saída de um equipamento (kg/s).

Mdesc : vazão em massa de vapor na descarga do termocompressor (kg/s).

Mmot : vazão em massa de vapor motor no termocompressor (kg/s).

Msolaq : vazão em massa de solução no elemento de aquecimento (kg/s).
Msolb : vazão em massa de solução na bomba (kg/s).
Msole : vazão em massa de solução na entrada de um equipamento (kg/s).
 Msols : vazão em massa de solução na saída de um equipamento (kg/s).
Msoltot : vazão em massa de solução total em um nó (kg/s).
Msuc : vazão em massa de vapor na sucção do termocompressor (kg/s).
Mvape : vazão em massa de vapor na entrada de um equipamento (kg/s).
Mvaps : vazão em massa de vapor na saída de um equipamento (kg/s).
Mvslult : vazão de vapor efluente do último efeito (kg/s).
Mvvivo : vazão de vapor vivo (kg/s).
Ncs : em um nó de condensado, número de correntes que saem dos equipamentos.
Np : número de passes.
Nsoe : em um nó de solução, número de correntes que entram nos equipamentos.
Nsos : em um nó de solução, número de correntes que saem dos equipamentos.
Nt : número de tubos.
Nve : em um nó de vapor, número de correntes que entram nos equipamentos.
Nvs : em um nó de vapor, número de correntes que saem dos equipamentos.
P : fração de perda de calor para o ambiente dos evaporadores.
Pdesc : pressão absoluta do vapor na descarga do termocompressor (Pa).

Pmot : pressão absoluta do vapor motor no termocompressor (Pa).

Pxm : número de Prandtl médio no elemento de aquecimento.

Psuc : pressão absoluta na sucção do termocompressor (Pa).

Pvap : pressão absoluta do vapor (Pa).

Pvaps : pressão absoluta do vapor na saída de um equipamento (Pa).

q : nas relações de Gudmundson, fluxo de calor recebido pela solução no evaporador (W/m²).

qp : taxa de perda de calor para o ambiente nos evaporadores (W).

qr : nas relações de Gudmundson, fluxo de calor cedido pelo vapor condensante no evaporador (W/m²).

Rb : taxa de recirculação da solução.

Rem : número de Reynolds médio no elemento de aquecimento.

Rinc : resistência total de incrustação (m².K/W).

Rsol : fração de solução dirigida a um evaporador.

T : temperatura (°C).

Tboil : nas relações de Gudmundson, temperatura de ebulição da solução no espaço de vapor do evaporador (°C).

Tconde : temperatura do condensado na entrada de um equipamento (°C).

Tcondm3-6 : temperatura média do condensado entre os evaporadores 3 e 6 (°C).

Tconds : temperatura do condensado na saída de um equipamento (°C).
Tdescst : temperatura de saturação do vapor na descarga do termocompressor (°C).

Tf : temperatura do fluido frio (°C).

Tfe : temperatura do fluido frio na entrada do trocador de calor (°C).

Tfs : temperatura do fluido frio na saída do trocador de calor (°C).

Tin : temperatura da solução na entrada do elemento de aquecimento (°C).

Tlicn : temperatura do licor negro (°C).

Tmax : nas relações de Gudmundson, temperatura máxima atingida pela solução no interior do evaporador (°C).

Tmotst : temperatura de saturação do vapor motor (°C).

Tout : temperatura da solução na saída do elemento de aquecimento (°C).

Tq : temperatura do fluido quente (°C).

Tqe : temperatura do fluido quente na entrada do trocador de calor (°C).

Tqs : temperatura do fluido quente na saída do trocador de calor (°C).

Tsol : temperatura da solução (°C).

Tsolb : temperatura da solução na bomba (°C).

Tsolo : temperatura da solução na entrada de um equipamento (°C).

Tsols : temperatura da solução na saída de um equipamento (°C).

Tsub : nas relações de Gudmundson, nível de subresfriamento da solução na entrada do evaporador (°C).
Tsuct : temperatura de saturação do vapor na sucção do termocompressor (°C).

Tsup : nas relações de Gudmundson, nível de superaquecimento da solução na entrada do evaporador (°C).

Ttq : temperatura da solução no espaço de vapor do evaporador (°C).

Tvape : temperatura do vapor na entrada de um equipamento (°C).

Tvaps : temperatura do vapor na saída de um equipamento (°C).

Tvapste : temperatura de saturação do vapor na entrada de um equipamento (°C).

Tvapstref : temperatura de saturação do vapor em uma corrente de referência (°C).

Tvapsts : temperatura de saturação do vapor na saída de um equipamento (°C).

U : coeficiente global de transferência de calor (W/m².K).

Uevap : coeficiente global de transferência de calor de um evaporador (W/m².K).

Uextap : coeficiente global de transferência de calor referido à área externa e à diferença aparente de temperatura (W/m².K).

Ulnext : coeficiente global de transferência de calor referido à área externa e à diferença de temperatura média logarítmica (W/m².K).

Uloc : coeficiente global local de transferência de calor (W/m².K).

Um : coeficiente global médio de transferência de calor do EME (W/m².K).

Xb : teor de sólidos da solução na bomba (fração decimal).
X_e : teor de sólidos da solução na entrada de um equipamento (fração decimal).

X_{in} : teor de sólidos da solução na entrada do elemento de aquecimento (fração decimal).

X_m : teor médio de sólidos da solução no elemento de aquecimento (fração decimal).

X_{out} : teor de sólidos da solução na saída do elemento de aquecimento (fração decimal).

X_s : teor de sólidos da solução na saída de um equipamento (fração decimal).

X_{tq} : teor de sólidos da solução no espaço de vapor do evaporador (fração decimal).

Z : variável utilizada nas relações de Gudmundson.
LETITRAS GREGAS

\(\alpha \): nas relações de Gudmundson, coeficiente de transferência de calor calculado pela relação de Dittus-Boelter (W/m\(^2\).K).

\(\alpha_t \): nas relações de Gudmundson, fator de incrustação nos tubos (m\(^2\).K/W).

\(\beta \): coeficiente de eficácia na compressão de vapor.

\(\Delta T \): diferença de temperatura (°C).

\(\Delta q \): nas relações de Gudmundson, acréscimo fictício de fluxo de calor devido ao efeito de reevaporação na entrada do evaporador (W/m\(^2\)).

\(\delta_t \): nas relações de Gudmundson, espessura do tubo (m).

\(\varepsilon \): efetividade do trocador de calor.

\(\Gamma, \Gamma' \): vazão em massa de condensado por unidade de comprimento (kg/s.m).

\(\psi \): relação de arraste do termocompressor.

\(\lambda_{in} \): coeficiente de condutibilidade térmica da solução na entrada do elemento de aquecimento (W/m.K).

\(\lambda_m \): coeficiente de condutibilidade térmica médio da solução no elemento de aquecimento (W/m.K).

\(\lambda_{out} \): coeficiente de condutibilidade térmica da solução na saída do elemento de aquecimento (W/m.K).

\(\lambda_t \): nas relações de Gudmundson, coeficiente de condutibilidade térmica do tubo (W/m.K).

\(\mu_{cond} \): viscosidade dinâmica do condensado (kg/s.m).

\(\mu_{in} \): viscosidade dinâmica da solução na entrada do elemento de aquecimento (kg/s.m).

\(\mu_{licn} \): viscosidade dinâmica do licor negro (kg/s.m).
\[\mu_m \] : viscosidade dinâmica média da solução no elemento de aquecimento (kg/s·m).

\[\mu_{out} \] : viscosidade dinâmica da solução na saída do elemento de aquecimento (kg/s·m).

\[\mu_w \] : viscosidade dinâmica da solução na temperatura da parede do tubo (kg/s·m).

\[\rho_{cond} \] : massa específica do condensado (kg/m³).

\[\rho_{licn} \] : massa específica do licor negro (kg/m³).
ÍNDICES

atm : indica unidade em atmosfera internacional.
CORR : indica corrigido.
cp : indica unidade em cP.
equi : indica um equipamento genérico, podendo ser:
 cd : condensador.
 ej : ejetor (termocompressor).
 ev : evaporador.
 ext : meio exterior ao sistema de evaporação.
rc : tanque de reevaporação de condensado.
rp : tanque de reevaporação de produto.
tc : trocador de calor.

fn : indica unidade em °F.
kcal : indica unidade em kcal/kg.
kel : indica unidade em kelvin.
pj : indica passe j do trocador de calor.
psia : indica unidade em libra força/polegada².

EXPOENTES

(n) : indica n-ésima iteração.
Sufixos

in : indica valor na entrada do elemento de aquecimento de um evaporador ou trocador de calor.

m : indica valor médio.

out : indica valor na entrada do elemento de aquecimento de um evaporador ou trocador de calor.

Algumas variáveis exclusivas dos apêndices B e C não são aqui mencionadas por serem de validade local naqueles apêndices, e a fim de evitar interpretação dúvida. Para estas variáveis existe sempre nota explicativa no local evidenciando o significado ou valor numérico.
<table>
<thead>
<tr>
<th>FIGURA</th>
<th>TÍTULO</th>
<th>PAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Evaporador de filme ascendente, circulação natural.</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Evaporador de filme ascendente, com recirculação mecânica e corrente de saída à jusante da bomba.</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Evaporador de filme ascendente, com recirculação mecânica e corrente de saída à montante da bomba.</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaporador do tipo "heat and flash" e corrente de saída à jusante da bomba.</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Evaporador do tipo "heat and flash" e corrente de saída à montante da bomba.</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Perfil típico de temperatura em trocadores de calor de correntes paralelas e escoamentos monocíclicos.</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Regimes de escoamento no escoamento bifásico no interior de um tubo vertical.</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Mecanismos de transferência de calor no escoamento bifásico no interior de um tubo vertical.</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Modelo físico do trocador de calor.</td>
<td>50</td>
</tr>
<tr>
<td>2.10</td>
<td>Modelo físico de um tanque de reevaporação de condensado.</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Modelo físico de um tanque de reevaporação de produto.</td>
<td>61</td>
</tr>
</tbody>
</table>
2.12 Desenho esquemático de um ejetor de vapor. 63
2.13 Representação no diagrama T x s da água dos processos termodinâmicos ocorridos no interior do ejetor. 64
2.14 Curva de seleção de ejetor extraída de catálogo de fabricante [18]. 66
2.15 Desenho esquemático de um exemplo de nó de vapor. 72
3.1 Parâmetros de entrada e variáveis calculadas na versão de avaliação matemática (aplicação em um caso particular de EME). 82
3.2 Parâmetros de entrada e variáveis calculadas na versão de simulação matemática (aplicação em um caso particular de EME). 83
3.3 Exemplo de sistema de evaporação com dois evaporadores e dois efeitos (evaporadores em série). 86
3.4 Exemplo de sistema de evaporação com dois evaporadores e um efeito (evaporadores em paralelo). 86
3.5 Exemplo de sistema de evaporação com evaporadores em paralelo. 88
3.6 Exemplo de sistema de evaporação com evaporadores em paralelo. 103
3.7 Sistema equivalente ao da figura 3.6. 103
4.1 Fluxograma do sistema de evaporação ensaiado. 107
4.2 Valores medidos e calculados no primeiro ensaio do EME analisado. 112
4.3 Valores medidos e calculados no segundo ensaio do EME analisado.

4.4 Valores medidos e calculados no terceiro ensaio do EME analisado.

4.5 Fluxograma do EME utilizado na análise de casos. Caso típico de concentração de licor negro.

4.6 Influência da temperatura de alimentação da solução na concentração final e na capacidade do EME.

4.7 Influência da temperatura de alimentação da solução na produção e consumo específicos do EME.

4.8 Influência da temperatura de alimentação da solução no U médio do EME.

4.9 Influência da temperatura de alimentação da solução no U dos evaporadores do EME.

4.10 Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U dos evaporadores 1, 2 e 3.

4.11 Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U dos evaporadores 4 e 5.

4.12 Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U do evaporador 6 e no índice mae/mv vivo.

4.13 Influência da concentração de entrada da solução na concentração final e na capacidade do EME.
4.14 Influência da concentração de entrada da solução na produção e consumo específicos do EME.

4.15 Influência da concentração de entrada da solução no U médio do EME.

4.16 Influência da concentração de entrada da solução no U dos evaporadores do EME.

4.17 Esquemas mostrando o efeito do aumento da concentração inicial da solução no U dos evaporadores 1, 2 e 3.

4.18 Esquemas mostrando o efeito do aumento da concentração inicial da solução no U dos evaporadores 4 e 5.

4.19 Esquemas mostrando o efeito do aumento da concentração inicial da solução no U do evaporador 6 e no índice mae/mv vivo.

4.20 Influência da temperatura de saturação do vapor vivo na concentração final e na capacidade do EME.

4.21 Influência da temperatura de saturação do vapor vivo na produção e consumo específicos do EME.

4.22 Influência da temperatura de saturação do vapor vivo no U médio do EME.

4.23 Influência da temperatura de saturação do vapor vivo no U dos evaporadores do EME.

4.24 Esquemas mostrando o efeito do aumento da temperatura de saturação do vapor vivo no U dos evaporadores 1, 2 e 3.
4.34 Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U do evaporador 5.

4.35 Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U do evaporador 6.

4.36 Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no índice mae/mvvivo.

4.37 Influência da vazão de entrada da solução na concentração final e na capacidade do EME.

4.38 Influência da vazão de entrada da solução na produção e consumo específicos do EME.

4.39 Influência da vazão de entrada da solução no U médio do EME.

4.40 Influência da vazão de entrada da solução no U dos evaporadores do EME.

4.41 Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U dos evaporadores 1, 2 e 3.

4.42 Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U dos evaporadores 4 e 5.

4.43 Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U do evaporador 6 e no índice mae/mvvivo.

a.1 Exemplo de evaporador de tubos horizontais.

a.2 Exemplo de evaporador de tubos curtos verticais.
a.3 Exemplo de evaporador do tipo cesto.
a.4 Exemplo de evaporador de tubos longos verticais de filme ascendente, com superfície de troca de calor interna.
a.5 Exemplo de evaporador de tubos longos verticais de filme ascendente, com superfície de troca de calor externa.
a.6 Exemplo de evaporador de tubos longos verticais de filme descendente.
a.7 Exemplo de evaporador de tubos longos verticais de filme ascendente/descendente.
a.8 Evaporador de circulação forçada com trocador de calor vertical.
a.9 Evaporador de circulação forçada com trocador de calor horizontal.
a.10 Sistema de evaporação de efeito simples.
a.11 Sistema de evaporação de múltiplo efeito.
a.12 Exemplo de curva de custos de um EME em função do número de efeitos de evaporação.
a.13 Formas de alimentação da solução em um EME.
a.14 Condensador com perna barométrica.
a.15 EME com trocador de calor para aquecimento da solução.
a.16 EME com sistema de compressão mecânica de vapor.
a.17 EME com tercompressão no primeiro efeito.
a.18 Sistema de reevaporação de condensado do tipo simples.
a.19 Sistema de reevaporação de condensado do tipo em cascata.

a.20 EME com sistema de reevaporação do produto.

a.21 EME com sangria intermediária de vapor.

c.1 Seqüência de cálculo no método de substituição direta. Processo convergente.

c.2 Seqüência de cálculo no método de substituição direta. Processo divergente.

c.3 Representação gráfica do método de Wegstein.

c.4 Representação gráfica do método de Newton-Raphson.
<table>
<thead>
<tr>
<th>TABELA</th>
<th>TÍTULO</th>
<th>PAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Principais características dos vários programas citados na literatura e do simulador desenvolvido no presente trabalho.</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Faixa de variação dos parâmetros para as medições na planta piloto.</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Faixa de variação dos parâmetros para as medições em plantas industriais.</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Coeficientes para uso na equação de cálculo da relação de arraste do termocompressor.</td>
<td>68</td>
</tr>
<tr>
<td>3.1</td>
<td>Relação de dados de entrada e algumas variáveis calculadas nas três versões de programa desenvolvidas.</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>Dimensões físicas do EME analisado.</td>
<td>108</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparação entre os valores medidos e os calculados pelo programa de algumas variáveis do EME analisado.</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparação entre os valores de U medidos no ensaio e os previstos pela formulação de Gudmundson.</td>
<td>111</td>
</tr>
<tr>
<td>b.1</td>
<td>Constantes para cálculo da viscosidade dinâmica do licor negro.</td>
<td>b.11</td>
</tr>
<tr>
<td>Listagem</td>
<td>Título</td>
<td>Pag.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Caso de referência - dados de entrada: versão de simulação matemática.</td>
<td>119</td>
</tr>
<tr>
<td>2</td>
<td>Caso de referência - valores calculados: versão de simulação matemática.</td>
<td>121</td>
</tr>
<tr>
<td>3</td>
<td>Caso de referência - dados de entrada: versão de avaliação matemática.</td>
<td>163</td>
</tr>
<tr>
<td>4</td>
<td>Caso de referência - valores calculados: versão de avaliação matemática.</td>
<td>165</td>
</tr>
</tbody>
</table>
1. INTRODUÇÃO

11. COMENTÁRIOS INICIAIS

Os evaporadores de múltiplo efeito (EME) são equipamentos largamente utilizados na indústria de processos químicos para concentração de soluções, sendo responsáveis, na maioria das vezes, por uma parcela considerável do consumo energético das unidades industriais onde encontram-se instalados. Além disso, existem importantes processos onde, independentemente de qualquer consideração energética, a etapa de concentração reveste-se de capital importância, podendo ocorrer que uma operação inadequada possa levar ao comprometimento de todo o processo industrial.

Não obstante tal fato, verifica-se não raramente uma grande dificuldade dos usuários desses equipamentos, tanto no acompanhamento de importantes variáveis de processo quanto na análise do comportamento do sistema face a alterações em qualquer uma dessas variáveis. Essa dificuldade decorre da relativa complexidade da operação pois, na realidade, um sistema de evaporação de múltiplo efeito é um conjunto composto por inúmeros equipamentos - evaporadores¹, tanques de reevaporação de condensado e produto, ejetores, trocadores de calor, compressores de vapor - todos eles operando em mútua dependência. É de se observar, também, que inúmeras unidades apresentam um bom potencial de otimização de desempenho, destacando-se a otimização

¹ Ao longo de todo o texto o termo "evaporador" será utilizado para indicar cada uma das unidades elementares de evaporação, em contraposição a "sistemas de evaporação" ou "evaporador de múltiplo efeito" que representam o processo como um todo.
energética, cuja análise de viabilidade é dificultada pelos fatores anteriormente expostos.

Nesse sentido, a operação unitária em questão mostra-se bastante propícia à utilização da simulação matemática como instrumento efetivo de apoio à solução de um espectro amplo de problemas.

A simulação matemática tem sido cada vez mais utilizada na prática de análise de processos. De maneira geral, são variados os objetivos da simulação matemática de operações unitárias ou conjunto de operações unitárias (sistemas) que envolvam processamentos termodinâmicos e ou termoquímicos. Resumidamente pode-se dizer, no entanto, que o objetivo essencial é prever o comportamento dessas operações sem que seja necessário, por exemplo, a construção de protótipos ou realização de testes em plantas industriais em operação, frequentemente difíceis de serem executadas. Deve-se ressaltar, contudo, que a simulação matemática não prescinde de algum tipo de investigação experimental que permita garantir de alguma forma a validade dos modelos matemáticos estabelecidos.

Especificamente no processo de evaporação de múltiplo efeito, a simulação matemática pode ser utilizada para os seguintes propósitos:

- levantamento de condições inadequadas de operação, tais como incrustação excessiva, vazamentos, tamponamento e constatação de funcionamento inadequado da instrumentação;
- acompanhamento do nível de eficiência do sistema;
- solução de problemas operacionais;
- otimização das condições operacionais;
- pré-análise de modificações na configuração (topologia) do sistema;
- análise do comportamento do sistema sob novas condições operacionais;

Exemplificando os propósitos anteriormente citados, apresenta-se a seguir um conjunto específico de questões encontradas na prática do projeto e operação dos evaporadores de múltiplo efeito:

- Qual o valor do coeficiente global de transferência de calor de cada evaporador? Qual o mais incrustado? Em quanto tempo o sistema deverá ser interrompido para limpeza? Qual(is) evaporador(es) deve(m) ser limpo(s) prioritariamente?
- Qual o intervalo de tempo ótimo para limpeza (campanha)?
- A instalação de um trocador de calor em determinado ponto do sistema pode aumentar em quanto a capacidade?
- Aumentando-se a vazão de vapor sangrado de um efeito, haverá manutenção da capacidade do sistema? Qual será o novo consumo de vapor "vivo"?
- Qual a redução de consumo energético aumentando-se o preaquecimento da solução?
- Quais serão as pressões no espaço de vapor dos efeitos intermediários quando se realiza determinada modificação? A temperatura de condensação do vapor sangrado será muito diminuída?
- O tipo de alimentação utilizado é o mais eficiente energeticamente?
- Qual o aumento de vácuo no condensador ou pressão de vapor "vivo" para obtenção de uma determinada capacidade?
- Qual a redução de consumo de vapor "vivo" com o aumento do número de efeitos?

As questões e propósitos colocados dizem respeito à operação em regime permanente, que é aquela considerada nesse trabalho.

No Brasil a evaporação em múltiplo efeito é utilizada em vários setores industriais importantes. Os principais são mencionados a seguir:

- Indústria de celulose e papel: na concentração de licor negro. Utiliza principalmente evaporadores de tubos longos verticais de filme ascendente, mas os de filme descendente vem penetrando no mercado ultimamente.

- Indústria de laticínios: na concentração de leite. Utiliza principalmente evaporadores de tubos longos verticais de filme descendente.

- Indústria de sucos concentrados. Utiliza principalmente evaporadores de tubos longos verticais de filme descendente.

No apêndice A são apresentadas informações acerca da tecnologia do processo de evaporação incluindo tipos de evaporadores, caracterização do sistema de evaporação de múltiplo efeito e principais concepções.
12. Revisão Bibliográfica

12.1. Simulação Matemática de Evaporadores de Múltiplo Efeito

A literatura especializada é bastante pródiga em artigos relativos ao assunto em questão. As principais publicações são encontradas nos periódicos da área de celulose e papel, uma vez que a concentração de licor negro é uma operação unitária de grande importância nesse processo.

Foi observado que existem inúmeros simuladores de EME, cada qual com suas particularidades. O objetivo deste item é apresentar um sumário da história da simulação de EME, destacando os principais desenvolvimentos.

A primeira publicação sobre simulação matemática de evaporadores de múltiplo efeito é devida a Marek, em 1962. Naturalmente o programa era bastante simples em virtude das limitações dos computadores então disponíveis e permitia analisar apenas configurações muito restritas.

Desde então até 1966, a literatura cita que surgiram cerca de dez publicações apresentando simuladores para casos relativamente restritos.

Em 1966, Jernqvist et al. [49], da Universidade de Chalmers (Suécia), apresentam o simulador EVAPOCHALM, o primeiro a tratar de EME genéricos, sem grandes restrições de natureza topológica. A estrutura do programa era baseada na denominada célula unitária, composta de um evaporador, três trocadores de calor, um tanque de reevaporação de condensado e um de produto, e um tanque de mistura de solução. A topologia do sistema era caracterizada pela “matriz
de conexão". O programa foi escrito em ALGOL 60, e implementado inicialmente em um computador FACIT EDB 3. Uma limitação do programa era o coeficiente global de transferência de calor (U) dos evaporadores ser parâmetro de entrada.

Em 1972, Gudmundson et al [33,34], da Universidade de Chalmers, apresentam o primeiro estudo sistematizado para cálculo do coeficiente global de transferência de calor de evaporadores do tipo de tubos longos verticais de filme ascendente. Adotando uma abordagem tipo "lumped"², e realizando ensaios laboratoriais e em unidades industriais, Gudmundson propôs relações empíricas para cálculo do U dos evaporadores.

As relações de Gudmundson foram incorporadas por Bolmstedt e Gudmundson [9], em 1974, ao programa INDUNS, uma versão aprimorada do programa EVAPOCHALM. O programa foi escrito em linguagem FORTRAN V e inicialmente implementado em um computador UNIVAC 1108. Talvez esse tenha sido o primeiro programa realmente poderoso na simulação de EME. Sua restrição é que se aplica a evaporadores do tipo filme ascendente com tubos de comprimento específico (8,5 m). Não se tem notícias que essas restrições tenham sido eliminadas, por exemplo, para análise de evaporadores de outras concepções. É possível que sim, uma vez que a Suécia é um país com várias unidades de celulose e papel e os evaporadores de filme descendente têm penetrado nesse setor mais recentemente.

² Não existe consenso quanto ao correspondente de "lumped" na língua portuguesa. São frequentemente usados os termos formulação integral, global e parâmetros concentrados para indicar que a formulação não é diferencial, considerando apenas variáveis pertinentes ao sistema como um todo, muito embora essas designações possam comportar entre si algumas diferenças sutis.
A partir de 1972 surgiram várias publicações mencionando a utilização das relações de Gudmundson em simuladores de EME.

Um outro grupo que trabalhou bastante com simulação de EME foi o da Universidade de Idaho. Em 1978, Baldus e Edwards adaptaram um programa executivo de simulação de sistemas (GEMS) para a simulação de EME. Inicialmente o U dos evaporadores era parâmetro de entrada. Posteriormente, Guimarães [35] incorporou ao GEMS as relações de Gudmundson. Mais adiante ainda, o próprio Edwards incorporou ao GEMS modelos distribuídos dos processos de transferência de calor, massa e quantidade de movimento que ocorrem nos evaporadores, estabelecendo comparações com os resultados advindos da utilização das relações de Gudmundson.

O autor do presente trabalho teve a oportunidade de realizar trabalhos experimentais onde ficou evidenciada a boa qualidade das relações sugeridas por Gudmundson.

12.2. TÉCNICAS DE SIMULAÇÃO DE SISTEMAS

Neste trabalho, entende-se sistema como um conjunto de operações unitárias envolvendo processos termodinâmicos e termoquímicos, as quais atuam de forma integrada visando a obtenção de um produto definido. No caso específico de evaporação química, o objetivo é a concentração de uma solução líquido-sólido até a obtenção do teor de sólidos requerido.

A simulação matemática de sistemas encontrou grande aplicação na área de processos químicos, muito embora não seja de utilização exclusiva da mesma. O primeiro simulador de processos é atribuído a BONNER e MOORE, em 1960, de acordo com KEHAT e SACHAM [52]. Ainda de acordo com esses autores, o simulador PACER, construído a
partir de uma tese de mestrado em 1964, se tornou muito conhecido, e sua estrutura foi imitada por muitos outros simuladores de processos. A área de simulação de processos vem se tornando desde então, e, principalmente a partir de 1975, bastante especializada, havendo uma quantidade grande de trabalhos afins publicados. Existem disponíveis atualmente diversos programas para simulação matemática de sistemas de processos termofísicos e termoquímicos ("process flowsheeting simulation"), sendo muito conhecidos os simuladores PROCESS, FLOWTRAN, ASPEN, entre outros.

Em sua forma mais fundamental, a simulação de sistemas de processos pode ser entendida como a solução de um conjunto de equações (diferenciais ou algébricas), frequentemente não lineares, o qual constitui o modelo matemático do modelo físico do processo real. As técnicas de simulação relacionam-se à metodologia utilizada para solução do sistema de equações. Devido à magnitude desse sistema de equações, a diferenciação de técnicas adquire um caráter muito importante, tendo consequências no que diz respeito, por exemplo, ao tempo de processamento, estabilidade numérica e facilidade de depuração de erros, entre outros.

Uma vez que o processo é constituído por um conjunto de operações unitárias (módulos) interligadas entre si, a representação matemática do sistema inclui:

- equações de ligação, indicando como as unidades ou módulos são interligados entre si;
- modelo matemático dos módulos, onde um conjunto de equações, traduzindo o desempenho da operação unitária, relaciona as denominadas variáveis de entrada com as variáveis de saída.
Adicionalmente devem ser incluídas as equações de propriedades físico-químicas das substâncias sendo processadas, as quais podem ser utilizadas paralelamente às equações anteriores.

Utilizando a terminologia adotada por CHEN e STADTHERR [14,15], bem como por RAMAN [82], pode-se classificar as técnicas de simulação de processos em sequencial-modular, orientada por equações e simultânea-modular.

12.2.1. ABORDAGEM SEQUENCIAL-MODULAR

Esta constitui a técnica mais comumente utilizada na simulação de processos e o seu princípio é similar ao método tradicional de cálculo manual de operações unitárias. Neste caso o simulador é constituído por um conjunto de módulos que representam as operações unitárias. Conhecidas as variáveis correspondentes às correntes de entrada da operação unitária - vazão, temperatura, entalpia, pressão, etc - no módulo são calculadas as variáveis correspondentes às correntes de saída. Essas últimas variáveis, por sua vez, serão variáveis de entrada em outros módulos e a sequência de cálculo continua como no módulo anterior até que todo o processo seja atingido. Normalmente o processo de cálculo exige reiterações até que a convergência seja conseguida.

Uma biblioteca de módulos constitui uma parte muito importante do simulador. Para a resolução do conjunto de equações dos módulos e equações de ligação, métodos numéricos adequados devem ser utilizados, devendo-se prever para isso uma biblioteca de rotinas matemáticas, da qual façam parte procedimentos de resolução de sistemas lineares e não-lineares de equações
algébricas e, eventualmente, de equações diferenciais. Deve-se prever também um banco de dados para cálculo de propriedades físico-químicas de substâncias.

São citados como pontos favoráveis da abordagem sequencial-modular:

- a nível dos módulos, podem ser utilizados algoritmos bastante específicos para a solução do sistema de equações; dessa forma os cálculos podem ser bastante eficientes e robustos;
- a nível do sistema, métodos de substituição direta com ou sem aceleração são bastante seguros;
- o fluxo de informações é bastante estruturado, uma vez que guarda estreita relação com o fluxo material do processo, podendo ser facilmente entendido;
- a estruturação mencionada facilita a depuração de erros.

Uma desvantagem desse método é o tempo de processamento, que, por ser grande, pode torná-lo inviável nos casos de otimização.

12.2.2. ABORDAGEM ORIENTADA POR EQUAÇÕES

Neste caso, todas as equações — dos modelos dos módulos e equações de ligação — são tratadas de forma a constituir um grande sistema de equações, usualmente não linear, a ser resolvido simultaneamente. As equações de propriedades das substâncias podem ser incluídas no sistema ou tratadas em subrotinas externas.

Essa abordagem é bastante propícia na otimização de processos, uma vez que as equações que constituem o modelo são os
vínculos no problema de programação não linear generalizada.

Em comparação com a abordagem anterior, esta oferece maior velocidade e maior flexibilidade. A reputação do método, no entanto, é a de que ele é pouco seguro. Isso decorre da dificuldade de se ter um conjunto de valores iniciais adequados e um método genérico de resolução do sistema de equações que seja apropriado a todos os problemas. Desenvolvimentos mais recentes têm proposto rotinas automáticas de inicialização como forma de superar as dificuldades.

Até 1985 existiam pelo menos cinco simuladores em diferentes estágios de desenvolvimento utilizando a abordagem orientada por equações: SPEEDUP, ASCEND II, QUASILIN, FLOWSIM e SEQUEL.

12.2.3. ABORDAGEM SIMULTÂNEA-MODULAR

O princípio desse método é similar ao do sequencial-modular. As etapas envolvidas são as seguintes:

1) Na primeira iteração devem ser estimados inicialmente os valores das correntes envolvidas em recíclus.

2) Resolução do problema usando a abordagem sequencial-modular.

3) Obtida a primeira estimativa para as correntes de entrada e saída de cada módulo, são estabelecidas relações lineares entre elas, isto é, são linearizadas as equações que constituem o modelo dos módulos.

4) Uma vez que as equações de ligação já são lineares, o sistema completo de equações obtido é linear, e pode ser resolvido por qualquer um dos vários tipos de métodos
conhecidos para resolução de sistemas lineares; o resultado é um novo conjunto de variáveis das correntes.

5) Se duas iterações sucessivas têm parâmetros com variação dentro de uma tolerância determinada, a simulação matemática está completada. Caso contrário, deve-se retornar ao passo (2).

Neste método os cálculos alternam entre a abordagem sequencial-modular e a solução de um sistema linear de equações e usualmente o tempo de computação resulta reduzido. Programas como o ASPEN e o FLOWPACK II podem se utilizar, em algumas condições, da abordagem simultânea-modular [82].

13. OBJETIVOS DO TRABALHO

O objetivo do presente trabalho é apresentar um modelo matemático e um programa computacional que permitam a análise matemática do processo de evaporação em múltiplo efeito.

Não se tem conhecimento da existência no Brasil de programas específicos para essa finalidade. Existem os programas executivos que podem ser especializados para a simulação de EME, como é por exemplo o caso do GEMS. Uma dificuldade é que esses programas são disponíveis para uso em "mainframes", interpondo obstáculos ao uso por parte, por exemplo, das empresas usuárias de EME. Obviamente cada empresa projetista de EME (multinacionais com empresas licenciadas no Brasil) tem o seu próprio simulador.

Nesse sentido, visando criar uma ferramenta com possibilidades mais amplas de utilização, o simulador foi desenvolvido para utilização em um microcomputador de 16 bits.
compatível com o IBM-PC.

A abordagem utilizada foi a orientada por equações. Para resolução do sistema não linear de equações algébricas utilizou-se o método de substituição direta com uso de fatores de relaxação (parâmetro de entrada).

Na modelagem matemática do EME foram considerados os seguintes equipamentos: evaporadores, trocadores de calor vapor-solução, tanques de reevaporação de condensado e de produto, termocompressores e possibilidade de sangrias intermediárias de vapor. Foram incorporados modelos para cálculo do \(U \) de evaporadores do tipo de filme ascendente e "heat and flash". Para os evaporadores de filme ascendente foram utilizadas as relações de Gudmundson e para os evaporadores "heat and flash", as relações consagradas para cálculo do coeficiente de transferência de calor em escoamento monofásico (Sieder e Tate) e coeficiente de transferência de calor para condensação em filme (teoria de Nusselt).

O programa foi construído visando a possibilidade de incorporação de subrotinas para cálculo do \(U \) de outros tipos de evaporadores. Infelizmente as informações disponíveis para outros tipos de evaporadores são escassas até o momento. Para evaporadores do tipo de tubos curtos verticais, o modelo matemático apresentado por Hugot [40] é muito pobre. De fato, o autor do presente trabalho realizou ensaios experimentais em evaporadores de tubos curtos verticais e não conseguiu resultados suficientemente concordantes com os esperados pelo uso das relações de Hugot. Em relação aos evaporadores de filme descendente, as publicações são exíguas, possivelmente porque eles sejam de tecnologia mais recente.
Na implementação do simulador foi utilizada linguagem Pascal, mais precisamente TURBO-PASCAL™. O ambiente utilizado para desenvolvimento do programa foi o TURBO-PASCAL™, versão 5.0, da Borland.

Em relação à interface homem-máquina foram criados vários recursos visando facilitar a entrada inicial de dados e sua modificação, permitindo a análise de vários casos em intervalos de tempo relativamente pequenos.

Foram desenvolvidas basicamente duas versões de programa. A primeira delas, denominada versão de avaliação matemática, visa a solução de problemas operacionais, e os dados de entrada referem-se a condições reais de operação. Nesta versão são utilizados basicamente balanços de massa e energia. A outra versão desenvolvida, denominada versão de simulação matemática, visa a análise de casos ou situações virtuais de operação. Esta versão faz uso dos modelos para estimar o U dos evaporadores e trocadores de calor.

A tabela 1.1 apresenta as principais características do programa desenvolvido comparando com as dos outros programas mencionados anteriormente.
Tabela 1.1: Principais características dos vários programas citados na literatura e do simulador desenvolvido no presente trabalho.

<table>
<thead>
<tr>
<th>Programa e autor(es)</th>
<th>Destinacao:</th>
<th>Formulacao:</th>
<th>Equacoes para calculo do U dos evaporadores</th>
<th>Tipo de abordagem</th>
<th>Metodos numericos utilizados</th>
<th>Linguagem</th>
<th>Equipamento</th>
<th>Observacoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marek (1962)</td>
<td>Especifico</td>
<td>"Lumped"</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>Mainframes</td>
<td></td>
<td>1º programa relatado</td>
</tr>
<tr>
<td>GEMS Edwards (2)</td>
<td>Genérico</td>
<td>Diferencial</td>
<td>Usado modelo distribuido para cálculo de Uvap de evaporadores de filme ascendente</td>
<td>Sequential-modular</td>
<td>(1)</td>
<td>Fortran</td>
<td>Mainframes</td>
<td>Grupo Un. Idaho</td>
</tr>
<tr>
<td>Presente trabalho</td>
<td>Genérico</td>
<td>"Lumped"</td>
<td>Subotina para cálculo de Uvap de evaporadores de filme ascendente (rel. Guddnason) e "heat and flag"</td>
<td>Orientado por equações</td>
<td>Substituição direta com fator de relaxação</td>
<td>Pascal</td>
<td>Microcomputador compatível com IBM-PC</td>
<td>Versões de avaliação e simulação matemática</td>
</tr>
</tbody>
</table>

Observações: (1) Informação não disponível na literatura consultada.
(2) Autores da adaptação do programa executivo.
2. MODELAGEM MATEMÁTICA

2.1. COMENTÁRIOS INICIAIS

A simulação matemática consiste na resolução de um conjunto de equações algébricas ou diferenciais que governam o problema, estas determinadas pela modelagem matemática dos fenômenos termofísicos e termoquímicos que ocorrem no processo. A modelagem matemática é constituída por leis físicas, químicas, termodinâmicas e pelas denominadas relações constitutivas (ou seja, que dependem da constituição das substâncias e materiais envolvidos).

A modelagem matemática deve se adequar às características particulares do processo estudado. Dessa forma, por exemplo, processos em regime permanente têm modelos matemáticos diferentes dos processos em regime transitório e a tentativa de utilização do modelo matemático de um deles para simular a operação do outro pode produzir resultados imprevisíveis.

A classificação dos modelos matemáticos corresponde àquela utilizada para os processos aos quais se destinam. No presente trabalho os modelos foram desenvolvidos para os seguintes tipos de processos:

- Processos em regime permanente (em contraposição aos processos em regime transitório): os valores das variáveis de processo são invariantes no tempo.
- Processos determinísticos (em contraposição ao processos estocásticos): as equações elaboradas não incluem fatores de caráter aleatório.
Além disso a modelagem das operações unitárias usará uma abordagem global ("lumped approach") em contraposição à abordagem diferencial. A validade desse tipo de abordagem será discutida com maiores detalhes mais adiante.

2.2. Modelagem Matemática dos Módulos

A modelagem matemática do EME como um todo será elaborada obedecendo às seguintes etapas:

- estabelecimento dos balanços de massa e energia e relações constitutivas para cada tipo de equipamento específico;
- estabelecimento das equações de ligação dos módulos, ou seja, balanços de massa, energia e equações de compatibilidade nos nós de vapor, solução e condensado;
- estabelecimento de correlações para cálculo de propriedades da solução, condensado e do vapor d'água; essas equações são apresentadas no Apêndice B.

Caberá posteriormente ao algoritmo de cálculo reunir as equações estabelecidas, segundo o particular fluxograma de processo e, em seguida, proceder à resolução simultânea do sistema.

2.2.1. Modelagem Matemática do Evaporador

Os balanços de massa e energia serão feitos para um evaporador genérico e no qual o agente de aquecimento é o vapor
condensante. O equacionamento geral é aplicável a qualquer tipo de evaporador. No entanto, no cálculo do coeficiente global de transferência de calor, encontram-se disponíveis equações apenas para evaporadores dos seguintes tipos: de tubos longos verticais de filme ascendente (de circulação natural ou forçada) e do tipo "heat and flash" (vide apêndice A). Nos casos em que existe recirculação mecânica, são consideradas ainda diferentes concepções conforme seja a posição relativa entre as correntes de entrada e saída da solução. As figuras 2.1 a 2.5 ilustram os vários tipos de evaporadores considerados e as principais variáveis pertinentes às correntes de entrada e saída.

São as seguintes as hipóteses admitidas no estabelecimento das equações:

- caso existam purgas de incondensáveis dos evaporadores, deve-se artificialmente considerá-las como uma sangria de vapor d'água efluente do efeito anterior;
- na saída do evaporador o condensado está no estado de líquido saturado na pressão de condensação do vapor;
- não existe arraste de solução pelo vapor d'água efluente e o vapor d'água efluente é uma substância pura, não havendo a contaminação por gases incondensáveis;
- é admitido o mesmo fator de perda de calor em todos os evaporadores;
- não existe reação química no interior do evaporador;
- é admitido equilíbrio termodinâmico (líquido-vapor) no espaço de vapor do evaporador;
Figura 2.1: Evaporador de filme ascendente, circulação natural.

Figura 2.2: Evaporador de filme ascendente, com recirculação mecânica e corrente de saída à jusante da bomba.
Figura 2.3: Evaporador de filme ascendente, com recirculação mecânica e corrente de saída à montante da bomba.

Figura 2.4: Evaporador do tipo "heat and flash" e corrente de saída à jusante da bomba.
Figura 2.5: Evaporador do tipo "heat and flash" e corrente de saída à montante da bomba.
- no caso de existência de recirculação mecânica, despreza-se o aporte energético correspondente à potência mecânica da bomba;
- nos evaporadores de filme ascendente, com ou sem recirculação mecânica, admite-se a existência de um único passe do lado da solução; caso exista mais de um passe, o evaporador deve ser ficticiamente dividido em dois ou mais evaporadores, conforme seja o número de passes;
- no cálculo do coeficiente global de transferência de calor, admite-se que o vapor condensante esteja saturado na entrada do evaporador;
- nos evaporadores tipo "heat and flash" admite-se que a solução não mude de fase no trocador de calor; como resultado de uma pressurização, admite-se que o escoamento ocorra com a solução na fase líquida;
- os mecanismos de transferência de calor, massa e quantidade de movimento ocorrem de forma idêntica em todos os tubos do evaporador, ou seja, o estudo de apenas um tubo é representativo do que ocorre em todo o evaporador;
- para cálculo do coeficiente global de transferência de calor dos evaporadores estudados, os modelos matemáticos estabelecidos consideram que a condensação ocorre do lado externo dos tubos, e a condensação é do tipo em filme.

A) BALANÇOS DE MASSA

O balanço de massa do lado do vapor condensante é:

\[\dot{m}_{vape} - \dot{m}_{conds} = 0 \]

(2.1)
O balanço de massa do lado da solução, considerando a mistura:

\[\dot{M}_{\text{sole}} - \dot{M}_{\text{sols}} - \dot{M}_{\text{vaps}} = 0 \] \hspace{1cm} (2.2)

Considerando agora o balanço de massa do soluto:

\[\dot{M}_{\text{sole,xo}} - \dot{M}_{\text{sols,xs}} = 0 \] \hspace{1cm} (2.3)

B) BALANÇO DE ENERGIA

O balanço de energia de todo o evaporador é:

\[\dot{M}_{\text{vape.hvape}} + \dot{M}_{\text{sole.hsole}} - \dot{M}_{\text{vaps.hvaps}} + \]
\[- \dot{M}_{\text{sols.hsols}} - \dot{M}_{\text{conds.hconds}} - Q_p = 0 \] \hspace{1cm} (2.4)

De acordo com as hipóteses:

\[Q_p = (\dot{M}_{\text{vape.hvape}} - \dot{M}_{\text{conds.hconds}})P \] \hspace{1cm} (2.5)

Substituindo (2.5) em (2.4):

\[\dot{M}_{\text{vape.hvape}} - \dot{M}_{\text{conds.hconds}}(1 - P) + \dot{M}_{\text{sole.hsole}} + \]
\[- \dot{M}_{\text{vaps.hvaps}} - \dot{M}_{\text{sols.hsols}} = 0 \] \hspace{1cm} (2.6)

Na equação (2.6), as propriedades são:

\[hvape = f(T_{\text{vape}}, T_{\text{vapste}}) \] \hspace{1cm} (2.7)

\[hvaps = f(T_{\text{vaps}}, T_{\text{vapsts}}) \] \hspace{1cm} (2.8)

\[hconds = f(T_{\text{conds}}) \] \hspace{1cm} (2.9)

\[hsole = f(T_{\text{sole}}, xe) \] \hspace{1cm} (2.10)

\[hsols = f(T_{\text{sols}}, xs) \] \hspace{1cm} (2.11)
As equações que permitem o cálculo dessas propriedades são apresentadas no Apêndice B.

C) **Equação de Compatibilidade de Temperatura do Condensado**

\[T_{\text{conds}} = T_{\text{vapste}} \]
(2.12)

D) **Equação da Elevação do Ponto de Ebulição**

A definição de elevação do ponto de ebulição de uma solução líquido-sólido permite escrever:

\[E_{\text{PE}} = T_{\text{vaps}} - T_{\text{vapsts}} \]
(2.13)

A elevação do ponto de ebulição da solução é uma função de estado, ou seja:

\[E_{\text{PE}} = f(P_{vaps},X_{tg}) \]
(2.14)

Uma correlação de EPE aplicável a licor negro é apresentada no Apêndice B.

E) **Equação de Transferência de Calor**

Conforme mencionado anteriormente, a abordagem do problema neste trabalho adota uma formulação global ("caixa preta", "lumped approach"). A grande maioria dos trabalhos na área de simulação matemática de evaporadores químicos adotando esse tipo de abordagem utiliza a equação de transferência de calor baseada na denominada diferença aparente de temperatura \((T_{\text{vapste}} - T_{\text{vaps}}) \). A equação de transferência de calor é então:
\[(Hvape.hvape - Hconds.hconds)(1 - P) =
= Uextap.Aext(Tvapste - Tvaps) \quad (2.15)\]

Tendo em vista o potencial de temperatura ("thermal driving force") utilizado, a variável Uextap da equação (2.15) pode ser denominada coeficiente global aparente de transferência de calor.

Para o entendimento das razões que levam a esse tipo de definição é conveniente lembrar o que acontece nos trocadores de calor com escoamento monofásico. A definição de coeficiente global local de transferência de calor, referido à área externa de transferência de calor:

\[6Q = Uloc.dAext(Tq - Tf) \quad (2.16)\]

O valor de Uloc pode ser determinado pela composição das resistências térmicas individuais existentes entre os dois fluidos que interagem. No caso da parede da superfície de transferência de calor ser cilíndrica, a expressão que permite o cálculo de Uloc é:

\[\frac{1}{Uloc} = \frac{1}{he} + fe + \frac{De}{2kt} \ln \left(\frac{De}{DI} \right) + \frac{De}{DI} f_i + \frac{De}{DI} h_i \quad (2.17)\]

Os termos do membro da direita da equação 2.17 consideram, respectivamente pela ordem, a convecção forçada do lado externo do tubo, a incrustação externa ao tubo, a condução de calor pela parede do tubo, a incrustação interna ao tubo e a convecção forçada do lado interno do tubo.

Deve ser observado que a equação 2.16 individualiza claramente cada um dos fatores que influenciam a transferência de calor entre os dois fluidos, a saber: condutância térmica (Uloc), potencial térmico (\(\Delta T = Tq - Tf\)) e extensão da superfície de troca.
de calor \((A_{ext})\). Quando se tem um trocador de calor com correntes paralelas e onde o valor de \(U_{loc}\) e dos calores específicos dos fluidos envolvidos sejam invariantes no espaço, a integração da equação 2.16 permite obter:

\[
Q_{A_{ext}} = \int U_{loc} (T_q - T_f) dA_{ext}
\]

\[
Q_{A_{ext}} = U_{loc} \int (T_q - T_f) dA_{ext}
\]

\[
Q_{A_{ext}} = U_{loc}.A_{ext}.DTLN
\]

DTLN é a diferença de temperatura média logarítmica do trocador de calor e representa o potencial térmico "médio". É uma função logarítmica das temperaturas terminais porque, sob as hipóteses mencionadas, os perfis de temperatura dos fluidos são exponenciais. A figura 2.6 ilustra este aspecto.

A expressão para cálculo de DTLN é:

\[
DTLN = \frac{(T_q - T_f) - (T_q - T_f)}{ln \left[\frac{T_q - T_f}{T_q - T_f} \right]}
\]

Quando as correntes não são paralelas a equação 2.20 pode ser escrita:

\[
Q = U_{loc}.A_{ext}.DTLN_{CORR}
\]

onde DTLN\(_{CORR}\) é o DTLN corrigido de forma a obter o verdadeiro valor do potencial médio de temperatura.

Quando o valor de \(U_{loc}\) sofre pequenas alterações ao longo do trocador de calor, a equação 2.22 é modificada, ficando:

\[
Q = U_m. A_{ext}. DTLN_{CORR}
\]
Figura 2.6: Perfil típico de temperatura em trocadores de calor de correntes paralelas e escoamentos monofásicos.
sendo um valor médio do coeficiente global de transferência de calor. Na equação 2.23, a exemplo do ocorre nas equações 2.20 e 2.23, condutância térmica e potencial térmico estão individualizados.

Nos evaporadores, náqueles tipos onde ocorre ebulação no interior dos tubos (por exemplo evaporadores de filme ascendente e filme descendente), o processo de transferência de calor é bastante mais complexo do que no caso dos trocadores de calor anteriormente citados. Nesse caso, a transferência de calor é afetada por diversos fatores que atuam de forma acoplada, tais como regime de escoamento (em bolhas, pistonado, etc., conforme será visto mais adiante) e perfil de pressão da solução ao longo do tubo. O perfil de pressão, por sua vez, condiciona o perfil de temperatura do lado da solução em ebulação e o potencial térmico ao longo do evaporador pode ser bastante variado, muito embora existam casos em que não o seja.

Verifica-se, dessa forma, que a escolha de um potencial térmico médio para evaporadores não pode ser tratada de forma tão universal como se faz em trocadores de calor com escoamento monofásico. A resposta prática a esse tipo de problema é a consideração de um potencial térmico de referência, conforme definido anteriormente.

Um dos problemas desse tipo de abordagem é que os fatores que afetam o processo de transferência de calor não aparecem isoladamente. É fácil perceber que o coeficiente global aparente de transferência de calor é, nesse caso, afetado pela variação do potencial térmico "médio". Para comprovar isso, basta considerar duas situações que tenham mesmas diferenças aparentes de temperatura, mesmas distribuições de Uloc, mesmas temperaturas de
condensação, mas perfis de temperatura da solução diferentes. Nesse caso, como as taxas de transferência de calor resultam diferentes, os valores de Uextap devem obrigatoriamente ser distintos, embora as distribuições de Uloc sejam idênticas, num aparente paradoxo. Do ponto de vista prático, um dos inconvenientes é certa dificuldade de comparação de Uextap de dois evaporadores.

Como forma de evitar esses inconvenientes, existem pesquisadores que propõem a utilização de valores de U baseados em diferenças médias de temperatura.

E.D CÁLCULO DO COEFICIENTE GLOBAL APARENTE PARA EVAPORADORES TIPO FILME ASCENDENTE DE CIRCULAÇÃO NATURAL (FAN) OU FORÇADA (FAF).

Asfiguras 2.7 e 2.8 apresentam os regimes de escoamento e os mecanismos de transferência de calor no tubo vertical de um evaporador de filme ascendente. O desempenho desse tipo de evaporador é decorrente de mecanismos combinados de transferência de calor, massa e quantidade de movimento. Esses mecanismos sofrem usualmente grandes variações ao longo dos tubos, sendo dependentes de inúmeras variáveis. Quando se deseja estabelecer um estudo analítico do problema é imperativo uma abordagem diferencial (parâmetros distribuídos), em que as equações de continuidade, equação do primeiro princípio da termodinâmica e equação da quantidade de movimento são estabelecidas localmente e integradas ao longo do tubo.

De acordo com o relatado por KELLY & EDWARDS [53], até recentemente os modelos distribuídos adotados para evaporadores de
Figura 2.7: Regimes de escoamento no escoamento bifásico no interior de um tubo vertical.

Figura 2.8: Mecanismos de transferência de calor no escoamento bifásico no interior de um tubo vertical.
tubos longos verticais de filme ascendente eram decorrentes de trabalhos provenientes dos estudos efetuados para reforçadores de colunas e geradores de vapor de centrais nucleares. Apenas em 1980 LARS OLAUSON [73], da Universidade Tecnológica de Chalmers, Gothenburg, Suécia, propôs correlações específicas para aplicação em evaporadores de tubos longos verticais de filme ascendente, fundamentadas em uma gama abrangente de resultados experimentais. Essas correlações foram aproveitadas por KELLY & EDWARDS no trabalho desenvolvido em [83].

Uma outra linha interessante de desenvolvimento foi a adotada por GUDMUNDSON [33,34], também da Universidade de Chalmers. Gudmundson, em 1973, estabeleceu uma linha puramente experimental (e abordagem "lumped") para o cálculo do coeficiente global aparente de transferência de calor de evaporadores de tubos longos verticais de filme ascendente.

Gudmundson investigou a dependência de Uextap com as seguintes variáveis: fluxo de calor, ponto de ebulação da solução, velocidade mássica¹ da solução, temperatura de entrada da solução, viscosidade e tensão superficial da solução. Os ensaios foram elaborados inicialmente em uma bancada laboratorial usando água pura e solução de água com açúcar. Para simular a ocorrência de espuma², foi utilizado detergente.

Foi realizado vários ensaios laboratoriais (cerca de 500), buscando estabelecer a dependência do coeficiente global aparente de transferência de calor com cada uma das variáveis

¹ Velocidade mássica: vazão mássica por unidade de área.
² Quando não se usa aditivos é comum a formação de espuma nas soluções sendo concentradas, o que é indesejável por trazer dificuldades à operação.
independentes admitidas. Além de Uextap, foram também estabelecidos através de cálculos e medições os perfis de temperatura da solução e a distribuição espacial do coeficiente local de transferência de calor. Os resultados numéricos obtidos permitiram o estabelecimento de equações matemáticas que ajustavam a dependência de Uextap com as variáveis independentes.

Uma vez estabelecidas as correlações para o evaporador de laboratório, foram realizados ensaios em várias unidades industriais de concentração de licor negro de processo Kraft (ou sulfato). Os resultados permitiram a introdução de fatores de correção nas equações previamente estabelecidas. Uma das principais causas desses fatores de correção foi a discrepância entre o comprimento dos tubos usados em laboratório (10 m) e o das unidades industriais (comprimento padrão de 8,5 m). Deve-se observar aqui que essa é uma das principais limitações dos resultados de Gudmundson, ou seja, o comprimento dos tubos não é considerado uma variável independente, e os resultados obtidos para comprimentos de tubo diferentes devem ser aceitos com reserva.

Apresenta-se a seguir o equacionamento de Gudmundson obtido
para unidades industriais de concentração de licor negro (processo sulfato), admitida a não formação de espuma. As tabelas 2.1 e 2.2 apresentam o domínio em que foram realizados os ensaios laboratoriais e industriais. Fora desse domínio as equações devem ser aceitas com reserva. As equações apresentadas tem incerteza de ± 15% segundo Gudmundson. No modelo de Kelly & Edwards, a incerteza é de ± 10%.

Tabela 2.1: Faixa de variação dos parâmetros para as medições na planta piloto.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>C/ espuma</th>
<th>S/ espuma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>q (W/m²)</td>
<td>500</td>
<td>60.000</td>
</tr>
<tr>
<td>F (Kg/s.m²)</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Tboil (ºC)</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>μm (Kg/s.m)</td>
<td>0, 3.10⁻³</td>
<td>4.10⁻³</td>
</tr>
<tr>
<td>Tsub (ºC)</td>
<td>-15</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabela 2.2: Faixa de variação dos parâmetros para as medições em plantas industriais.

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>C/ espuma</th>
<th>S/ espuma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>q (W/m²)</td>
<td>6.000</td>
<td>11.000</td>
</tr>
<tr>
<td>F (Kg/s.m²)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Tboil (ºC)</td>
<td>65</td>
<td>95</td>
</tr>
<tr>
<td>μm (Kg/s.m)</td>
<td>1.10⁻³</td>
<td>2.10⁻³</td>
</tr>
<tr>
<td>Tsub (ºC)</td>
<td>-5</td>
<td>6</td>
</tr>
</tbody>
</table>

No equacionamento aqui apresentado, a nomenclatura segue quase que totalmente a do texto original.

Inicialmente são feitos alguns cálculos visando determinar se o fluxo de calor transferido para a solução é pequeno. Determina-se inicialmente a máxima temperatura atingida pela solução no interior dos tubos:
\[T_{\text{max}} = T_{\text{boil}} + \Delta T_{\text{max}} \]

onde,

\[\Delta T_{\text{max}} = 15 + (0.12 - 0.001 \cdot T_{\text{boil}})F + \]

\[+ (3 - 0.025 \cdot T_{\text{boil}}) \ln \frac{\mu_{\text{in}} + \mu_{\text{out}}}{2} \frac{\mu_{\text{cp}}}{\mu_{\text{cp}}} - 0.12 \cdot T_{\text{boil}} \]

\[F = \frac{4 \cdot \dot{m}_{\text{solaq}}}{Nt \cdot \pi \cdot D_i^2} \]

O grau de subresfriamento da solução na entrada do evaporador é definido por:

\[T_{\text{sub}} = T_{\text{max}} - T_{\text{in}} \]

Quando \(T_{\text{sub}} < 0 \), define-se contrariamente o grau de superaquecimento da solução na entrada do evaporador:

\[T_{\text{sup}} = T_{\text{in}} - T_{\text{max}} \]

O fluxo de calor transferido do vapor condensante para a solução:

\[q_r = \frac{(\dot{m}_{\text{vape}} \cdot h_{\text{vape}} - \dot{m}_{\text{cond}} \cdot h_{\text{cond}})(1 - P)}{Am} \]

\[Am = Nt \cdot \pi \frac{D_e + D_i}{2} \frac{D_e}{L_t} \]

Quando \(T_{\text{sub}} > 0 \) utiliza-se:

\[q = q_r \]

Quando \(T_{\text{sub}} < 0 \), ou seja, quando a solução reevapora ("flash") na entrada do evaporador, o que se verifica é uma alteração no coeficiente de transferência de calor como resultado desse efeito.
A forma encontrada para considerar isso foi criar artificialmente um fluxo de calor que equivalesse ao resultado produzido pela reevaporação da solução. Ou seja:

\[q = qr + Aq \] \hspace{1cm} (2.33)

onde,

\[Aq = \frac{T_{sup}.C_{pin}.\dot{m}_{solaq}.C_{eff}}{A_m} \] \hspace{1cm} (2.34)

Na equação anterior \(C_{eff} \) é definido por Gudmundson como um fator de ajuste, que relaciona o efeito da reevaporação com aquele provocado por um incremento no fluxo de calor. Nos ensaios experimentais determinou-se \(C_{eff} = 0,61 \).

A magnitude de \(q \) deve ser agora comparada com o seguinte parâmetro:

\[\text{bound2} = 4300 + 100 \ln \mu_{cp} - 14.T_{boil} \] \hspace{1cm} (2.35)

A equação 2.35 é válida para \(\mu_{cp} \leq 1 \) cP. Caso contrário, deve-se adotar:

\[\text{bound2} = 4.300 - 14.T_{boil} \] \hspace{1cm} (2.36)

E.11) EQUACIONAMENTO PARA Q ≥ BOUND2

O coeficiente global de transferência de calor é dado por:

\[h_{tot} = 0,991\cdot10^{-1} - 0,1008\cdot10^{-4}.q^{2} + 0,1362\cdot10^{-9}.q^{3} \] \hspace{1cm} (2.37)

A equação anterior vale para \(q \leq 20.000 \text{ W/m}^2.\text{°C} \). Para \(q > 20.000 \text{ W/m}^2.\text{°C} \), deve-se adotar artificialmente na equação 2.37
\[q = 20.000 \text{ W/m}^2\text{.}^\circ\text{C}. \]

A equação 2.37 evidencia o principal fator na determinação de \(h_{tot} \), que é o fluxo de calor transferido para a solução. O parâmetro \(G \) é um fator de correção, dado por:

\[G = G\mu C_t C_f \quad (2.38) \]

\(G\mu \) considera o efeito da viscosidade da solução. Para \(\mu m_{cp} \leq 15 \text{ cP} \):

\[G\mu = 1 - 0.07858.\mu m_{cp} + 0.002735.\mu m_{cp}^2 - 0.1021.10^{-4}.\mu m_{cp}^3 \quad (2.39) \]

Para \(\mu m_{cp} \geq 15 \text{ cP} \),

\[G\mu = 1.578 - 0.068 \ln \mu m_{cp} \quad (2.40) \]

\(C_t \) considera o efeito da temperatura de ebulição da solução na câmara de descarga:

\[C_t = -1.02 + 0.0476.\text{tboil} - 0.364.10^{-3}.\text{tboil}^2 + \]
\[+ 0.948.10^{-6}.\text{tboil}^3 \quad (2.41) \]

\(C_f \) considera combinadamente o efeito da velocidade mássica da solução e temperatura de alimentação da solução (ou seja, subresfriamento ou superaquecimento da solução).

\[C_f = Z + (-0.0515 + 0.0505.Z)F \quad (2.42) \]

Para \(\text{tsub} \geq 0 \), o valor de \(Z \) é:

\[Z = 1 + 0.01 \tanh \left[\left(\frac{q - \text{bound1}}{21800} \right) \text{tsub}^{0.4} \right] \quad (2.43) \]
onde, para $\mu m_{cp} \geq 1$ cP:

$$\text{bound1} = 19500 + 2000 \ln \mu m_{cp} - 95.\text{Tboil} \quad (2.44)$$

Para $\mu m_{cp} < 1$ cP:

$$\text{bound1} = 19500 - 95.\text{Tboil} \quad (2.45)$$

Para $T_{sub} < 0$, $Z=1$.

E.12) Equacionamento para $0 < \text{bound2}$

Esse é o caso em que o fluxo de calor é extremamente pequeno. O equacionamento toma por referência o caso em que o fluxo de calor tende a zero. Nesse caso o coeficiente de transferência de calor por convecção do lado da solução pode ser calculado pela equação de Dittus-Boelter, admitindo o escoamento turbulento:

$$\alpha = 0.023.\text{Rem}^{0.8}\text{Pr}_{m}^{0.4}\frac{\lambda m}{D} \quad (2.46)$$

onde,

$$\text{Rem} = \frac{4.\text{M}_{solv}}{\pi.\text{D}i.\mu m.\text{Nt}} \quad (2.47)$$

$$\text{Pr}_{m} = \frac{C_{pm}.\mu m}{\lambda m} \quad (2.48)$$

As propriedades médias da fase líquida:

$$C_{pm} = \frac{C_{pin} + C_{pout}}{2} \quad (2.49)$$

$$\mu m = \frac{\mu_{in} + \mu_{out}}{2} \quad (2.50)$$

$$\lambda m = \frac{\lambda_{in} + \lambda_{out}}{2} \quad (2.51)$$
Seja agora o valor do coeficiente global de transferência de calor para \(q = \text{bound2} \), conforme calculado pela equação 2.37:

\[
\text{hbound} = \text{htot}(\text{bound2})
\]
\[(2.52) \]

Desprezando as resistências térmicas do filme condensante e da parede do tubo no caso de \(q = 0 \), e fazendo uma interpolação linear entre os valores de \(\alpha \) e \(\text{hbound} \), a nova expressão de \(\text{htot} \) fica:

\[
\text{htot} = [\alpha + (\text{hbound} - \alpha).q/\text{bound2}].\text{Csub}
\]
\[(2.53) \]

O fator de correção \(\text{Csub} \) considera o efeito favorável do subresfriamento da solução na entrada do evaporador.

\[
\text{Csub} = 1 + 0.04.\text{Tsub} [(\text{bound2} - q)/\text{bound2}]^2
\]
\[(2.54) \]

Para \(\text{Tsub} < 0 \), \(\text{Csub} = 1 \).

O cálculo de \(\text{htot} \) é baseado em tubos com espessura e material especificados, e tubos destituídos de incrustação quer do lado interno, quer do lado externo. Para espessuras e materiais diferentes, e admitindo a possibilidade de incrustação, a correção é:

\[
\text{htot1} = \frac{\text{htot}}{1 - \left[1 - \frac{1}{5840} \frac{\delta t}{\Delta t} - \frac{1}{\alpha t} \right].\text{htot}}
\]
\[(2.55) \]

Os valores de \(\text{htot} \) e \(q \) usados na formulação de Gudmundson desprezam a diferença entre \(\alpha \) e \(\Delta \) e \(\Delta \) para efeito de cálculo de \(\text{htot} \) e \(q \). Para relacionar \(\text{htot1} \) com \(\text{Uextap} \) será aqui admitido um diâmetro médio:
\[\text{U}_{\text{extap}} = h_{\text{tot1}} \frac{D_{e} + D_{l}}{2 \cdot D_{e}} \]

(2.56)

No equacionamento de Gudmundson a temperatura \(T_{\text{boil}} \) é a temperatura de ebulição da solução ao adentrar a câmara de descarga do evaporador. Como é admitido que existe equilíbrio entre vapor e solução na câmara de descarga (ou espaço de vapor) e como o regime é permanente, então:

\[T_{\text{boil}} = T_{\text{tq}} \]

(2.57)

Analogamente, a concentração da solução na saída dos tubos:

\[X_{\text{out}} = X_{\text{tq}} \]

(2.58)

Nas equações anteriores, é preciso estabelecer uma compatibilidade entre as variáveis \(q_{\text{solaq}}, T_{\text{in}}, X_{\text{in}}, T_{\text{tq}}, X_{\text{tq}} \) e variáveis relacionadas às correntes que cruzam o volume de controle do evaporador. Isso será feito em item posterior.

E.2) CÁLCULO DO COEFICIENTE GLOBAL APARENTE PARA EVAPORADORES TIPO AQUECIMENTO E REEVAPORAÇÃO ("HEAT AND FLASH" - HF).

Nesses evaporadores a solução é aquecida externamente ao corpo principal do evaporador conforme descrito em item anterior. A circulação da solução é promovida por uma bomba e o elemento de aquecimento é um trocador de calor tradicional. Nesse tipo de evaporador não se costuma permitir, através do projeto e operação adequados, que a solução atinja a temperatura de ebulição no interior do trocador de calor, ou seja, o escoamento ocorre completamente na fase líquida. A evaporação ocorre somente quando
a solução é expandida ao adentrar uma câmara de recepção. Ao se evitar a evaporação no trocador de calor, objetiva-se diminuir a formação de incrustações.

Nesse sentido o equacionamento da transferência de calor nesse tipo de evaporador é o mesmo de um trocador de calor tradicional.

Será adotada uma metodologia em que se determina inicialmente um coeficiente global de transferência de calor para cada passe. Como o escoamento é monofásico, o potencial térmico adotado é o DTLN. Os coeficientes assim determinados serão posteriormente combinados para a fixação do coeficiente global de transferência de calor de todo o trocador de calor.

O coeficiente global de transferência de calor de cada passe do trocador de calor é resultado de uma composição de resistências térmicas em série, de acordo com a equação:

\[
\frac{1}{U_{l\text{next}}_{pj}} = \frac{D_e}{D_l} \frac{1}{h_{l_{pj}}} + \frac{D_e}{D_l} \frac{1}{f_i} + \frac{D_e}{2.\pi} \ln \left(\frac{D_e}{D_l} \right) + \frac{1}{h_{e_{pj}}} + \frac{1}{h_{p_{pj}}}
\]

(2.59)

A equação 2.59 pode ser reescrita:

\[
\frac{1}{U_{l\text{next}}_{pj}} = \frac{D_e}{D_l} \frac{1}{h_{l_{pj}}} + \frac{D_e}{2.\pi} \ln \left(\frac{D_e}{D_l} \right) + \frac{1}{h_{e_{pj}}} + R_{inc}
\]

(2.60)

onde,

\[
R_{inc} = \left(\frac{D_e}{D_l} \right) \frac{1}{f_i} + \frac{1}{h_{p_{pj}}}
\]

(2.61)

é a resistência térmica total de incrustação.

\section*{E2.1 CÁLCULO DE \(h_l \)}

O número de Reynolds define a relação a ser utilizada no
cálculo de \(h_{pj} \).

\[
R_{em_{pj}} = \frac{4.\dot{m}_{solaq}}{N_{t_{pj}} \cdot n \cdot D_{i} \cdot \mu_{m_{pj}}} \tag{2.62}
\]

onde,

\[
\mu_{m_{pj}} = \frac{\mu_{in_{pj}} + \mu_{out_{pj}}}{2} \tag{2.63}
\]

Para \(R_{em} \geq 10.000 \), Özisik [75] sugere a relação de Sieder & Tate modificada por Nusselt, que considera o efeito de desenvolvimento dos perfis de velocidade e de temperatura:

\[
\frac{h_{i_{pj}} \cdot D_{i}}{k_{m_{pj}}} = 0.036 \left(R_{em_{pj}} \right)^{0.8} \left(Pr_{m_{pj}} \right)^{1/3} \left(D_{i}/L_{t} \right)^{0.055} \left(\mu_{m_{pj}}/\mu_{w} \right)^{0.14} \tag{2.64}
\]

onde,

\[
Pr_{m_{pj}} = \frac{C_{pm_{pj}} \cdot \mu_{m_{pj}}}{k_{m_{pj}}} \tag{2.65}
\]

\[
C_{pm_{pj}} = \frac{C_{pin_{pj}} + C_{pout_{pj}}}{2} \tag{2.66}
\]

\[
k_{m_{pj}} = \frac{k_{in_{pj}} + k_{out_{pj}}}{2} \tag{2.67}
\]

Vale lembrar que a equação 2.64 é válida para \(10 \leq L_{t}/D_{i} \leq 400 \) e \(0.7 \leq Pr_{m_{pj}} \leq 160 \). O termo de relação de viscosidades é utilizado para considerar o efeito de variações bruscas de viscosidade com a temperatura. O valor de \(\mu_{w} \) pode ser calculado na temperatura \(T_{vapste} \).

Para \(R_{em_{pj}} \leq 2.100 \), Özisik indica para temperatura de parede
constante (como é o caso, uma vez que a temperatura de parede é muito próxima da temperatura do vapor condensante) a equação de Hausen:

\[
\frac{h_{i_{pj}}}{\mu_{p_j}} = \frac{3.66 + 0.0668 \cdot \left(\text{Di}/\text{Lt}\right) \cdot \text{Rem}_{p_j} \cdot \text{Pr}_{p_j}^{2/3}}{1 + 0.04 \cdot \left(\text{Di}/\text{Lt}\right) \cdot \text{Rem}_{p_j} \cdot \text{Pr}_{p_j}^{2/3}} \cdot \left(\mu_{m_{p_j}}/\mu_{w}\right)^{0.14}
\]

(2.68)

A equação 2.68 é válida para qualquer valor de \(\text{Di}/\text{Lt}\). Nessa equação, o segundo termo entre chaves considera o efeito de desenvolvimento do perfil dinâmico e de temperatura na entrada dos tubos. Quando os perfis são plenamente desenvolvidos o número de Nusselt para temperatura de parede constante é o valor clássico de 3,66.

Quando \(2.100 < \text{Rem}_{p_j} < 10.000\), KERN [55] sugere que se faça uma interpolação linear:

\[
\frac{h_{i_{pj}} - h_{i_{pj}, \text{Rem}=2100}}{h_{i_{pj}, \text{Rem}=10000} - h_{i_{pj}, \text{Rem}=2100}} \cdot \frac{\text{Rem}_{p_j} - 2100}{10000 - 2100} = (2.69)
\]

E2.2) CÁLCULO DE HE

Será admitido que o coeficiente de transferência de calor do lado do vapor condensante tem valor constante. Portanto não existe a necessidade de diferenciação por passe.

Em evaporadores químicos onde o meio de aquecimento se condensa do lado externo dos tubos com formação de filme, o cálculo do coeficiente de transferência de calor é feito de acordo com a teoria de Nusselt para condensação de vapores puros. Para tubos horizontais, de acordo com o apresentado em Özisik.
onde,

\[g = 9.806 \text{ m/s}^2 \]
\[\Gamma = \frac{\dot{m}_{vape}}{n \cdot D \cdot e \cdot N_t} \]
\[N_t = \sum_{j=1}^{N_p} N_t \]

A equação 2.70 é válida para \(4.\Gamma/\mu_{cond} \leq 1.800 \). Para \(4.\Gamma/\mu_{cond} > 1.800 \) vale a expressão:

\[he \left(\frac{\mu_{cond}^2}{k_{cond}^3 \cdot \rho_{cond}^2 \cdot g} \right)^{1/3} = 0.076 \left(\frac{4.\Gamma}{\mu_{cond}} \right)^{0.4} \]

Para tubos horizontais Kern sugere a equação:

\[he \left(\frac{\mu_{cond}^2}{k_{cond}^3 \cdot \rho_{cond}^2 \cdot g} \right)^{1/3} = 1.76 \left(\frac{4.\Gamma' \rho}{\mu_{cond}} \right)^{-1/3} \]

onde,

\[\Gamma' = \frac{\dot{m}_{vape}}{L \cdot n \cdot e \cdot N_t^{2/3}} \]

E2.3) CÁLCULO DE ULNEXT

Uma vez calculado Ulnext\(_{pj}\) de todos os passos através da equação 2.59, deve-se calcular o coeficiente global de transferência de calor referido ao DTLN de todo o trocador de calor, Ulnext. Considerando que do lado externo aos tubos existe
uma substância pura em processo de condensação, e que é admitida uma temperatura de condensação constante, a efetividade de cada passe pode ser relacionada com o coeficiente de transferência de calor através da expressão [75]:

\[\varepsilon_{pj} = 1 - \exp \left(-A_{ext\ pj} U_{next\ pj} / (\dot{m}_{solaq} \cdot C_{pm\ pj}) \right) \]

(2.77)

onde,

\[A_{ext\ pj} = N_{t\ pj} \cdot \pi \cdot D_{e\ Lt} \]

(2.78)

Ainda nessas condições a efetividade pode ser relacionada com as temperaturas dos fluidos que interagem:

\[\varepsilon_{pj} = \frac{T_{out\ pj} - T_{in\ pj}}{T_{vapste\ pj} - T_{in\ pj}} \]

(2.79)

ou seja:

\[T_{out\ pj} = T_{in\ pj} + \varepsilon_{pj} \cdot \left(T_{vapste\ pj} - T_{in\ pj}\right) \]

(2.80)

onde,

\[T_{in\ pj} = T_{out\ p(j-1)} \]

(2.81)

\[T_{in\ p1} = T_{in} \]

(2.82)

através de cálculos recursivos pode-se determinar \(T_{out} \) e a efetividade global do trocador de calor é:

\[\varepsilon = \frac{T_{out} - T_{in}}{T_{vapste} - T_{in}} \]

(2.83)

E o coeficiente global de transferência de calor:

\[U_{next} = \frac{\dot{m}_{solaq} \cdot C_{pm}}{A_{ext}} \ln \left(\frac{1}{1 - \varepsilon} \right) \]

(2.84)
A relação de Ulnext com Uextap é feita lembrando que a taxa de calor transferida à solução independe do referencial de temperatura adotado:

\[Ulnext \cdot Aext \cdot DTLN = Uextap \cdot Aext \cdot (Tvapste - Tvaps) \quad (2.85) \]

Rearranjando a equação 2.85 e lembrando a definição de DTLN:

\[Uextap = \frac{Ulnext}{(Tvapste - Tvaps)} \cdot \frac{(Tout - Tin)}{\ln \left(\frac{Tvapste - Tin}{Tvapste - Tout} \right)} \quad (2.86) \]

F) EQUAÇÕES RELACIONANDO AS VARIÁVEIS INTERNAS COM AS VARIÁVEIS DAS CORRENTES DE ENTRADA E SAÍDA DO MÓDULO.

Para que o modelo do evaporador fique completo é necessário relacionar as variáveis internas com as variáveis das correntes de entrada e saída do módulo. Especificamente devem ser obtidas expressões para as seguintes variáveis internas: \(\dot{m}_{solaq}, \dot{m}_{x}, \dot{m}_{in}, \dot{m}_{tq}, \dot{m}_{tx}, \dot{m}_{solb}, \dot{m}_{x} e \dot{m}_{tob} \).

Devido ao particular algoritmo de cálculo desenvolvido (ordem de cálculo de algumas variáveis) para resolução do problema, conforme será visto em capítulo seguinte, as relações para cálculo de temperatura não devem envolver \(Tsolb \).

O equacionamento é específico para cada tipo de evaporador. No entanto para todos eles existem algumas equações comuns. A equação do equilíbrio termodinâmico na câmara de descarga de solução:

\[\dot{m}_{tq} = Tvaps \quad (2.87) \]

Nos evaporadores com recirculação mecânica, a vazão mássica de
solução através da bomba:

\[M_{\text{solb}} = R_b M_{\text{sole}} \] \hspace{1cm} (2.88)

Eventualmente \(M_{\text{solb}} \) pode ser um dado de entrada.

F.1) Equações para Evaporadores Tipo FAN

Deve ser observada a figura 2.1 anteriormente apresentada. As variáveis na entrada do evaporador:

\[M_{\text{ solaq}} = M_{\text{sole}} \] \hspace{1cm} (2.89)

\[X_{\text{in}} = X_e \] \hspace{1cm} (2.90)

\[T_{\text{in}} = T_{\text{sole}} \] \hspace{1cm} (2.91)

A concentração da solução na câmara de descarga:

\[X_{\text{tq}} = X_s \] \hspace{1cm} (2.92)

F.2) Equações para Evaporadores Tipo FAF1 e HF1

Para o perfeito entendimento é conveniente a observação das figuras 2.2 e 2.4 anteriores. A concentração da solução na bomba:

\[X_b = X_s \] \hspace{1cm} (2.93)

Para determinação da concentração da solução na câmara de descarga são feitos os balanços de massa global e de soluto no nó de entrada da solução no evaporador. O resultado é:

\[(M_{\text{solb}} - M_{\text{sole}}) X_{\text{tq}} + M_{\text{sole}} X_e = M_{\text{solb}} X_b \] \hspace{1cm} (2.94)
Resolvendo a equação anterior para X_{tq}:

$$X_{tq} = \frac{(M_{solb} \cdot X_b - M_{solute} \cdot X_e)}{(M_{solb} - M_{solute})}$$ \hspace{1cm} (2.95)$$

Para determinação da temperatura da solução na bomba, é feito um balanço de energia no nó de entrada da solução. A combinação com o balanço de massa resulta:

$$M_{solute} \cdot h_{solute} + (M_{solb} - M_{solute}) \cdot h_{tq} = M_{solb} \cdot h_{solb}$$ \hspace{1cm} (2.96)$$

onde,

$$h_{tq} = f(X_{tq}, T_{tq})$$ \hspace{1cm} (2.97)$$

Resolvendo a equação 2.96 para h_{solb}:

$$h_{solb} = \frac{M_{solute} \cdot h_{solute} + (M_{solb} - M_{solute}) \cdot h_{tq}}{M_{solb}}$$ \hspace{1cm} (2.98)$$

E a temperatura T_{solb}:

$$T_{solb} = f(h_{solb}, X_b)$$ \hspace{1cm} (2.99)$$

As variáveis relativas à entrada da solução no elemento de aquecimento:

$$M_{solaq} = M_{solb} - M_{sols}$$ \hspace{1cm} (2.100)$$

$$X_{in} = X_s$$ \hspace{1cm} (2.101)$$

$$T_{in} = T_{solb}$$ \hspace{1cm} (2.102)$$

F.3) Equações para Evaporadores Tipo FAF2 e HF2

Esses tipos de evaporadores foram mostrados na figuras 2.3 e 2.5 anteriores. A concentração da solução na câmara de descarga:
$X_{tq} = X_s$ \hspace{1cm} (2.103)

Fazendo os balanços de massa global e de soluto no nó de entrada da solução, obtém-se a concentração da solução na bomba:

$$(M_{solb} - M_{sole}).X_{tq} + M_{sole}.X_e = M_{solb}.X_b$$ \hspace{1cm} (2.104)

Resolvendo para X_b:

$$X_b = \frac{(M_{solb} - M_{sole}).X_{tq} + M_{sole}.X_e}{M_{solb}}$$ \hspace{1cm} (2.105)

Analogamente, a equação que permite o cálculo de h_{solb} é:

$$h_{solb} = \frac{(M_{solb} - M_{sole}).htq + M_{sole}.h_{sole}}{M_{solb}}$$ \hspace{1cm} (2.106)

onde,

$$htq = f(T_{tq}, X_{tq})$$ \hspace{1cm} (2.107)

A temperatura T_{solb} é então:

$$T_{solb} = f(h_{solb}, X_b)$$ \hspace{1cm} (2.108)

Na entrada do elemento de aquecimento:

$$M_{solaq} = M_{solb}$$ \hspace{1cm} (2.109)

$$X_{in} = X_b$$ \hspace{1cm} (2.110)

$$T_{in} = T_{solb}$$ \hspace{1cm} (2.111)

6) Equações Relacionando a Temperatura de Saída da Solução e a Temperatura de Saída do Vapor

É a equação que completa o modelo matemático do evaporador.
Para os evaporadores tipo FAH, FAF2 e HF2 (figuras 2.1, 2.3 e 2.6) vale:

\[Tsol_s = T_{vaps} \quad (2.112) \]

Para os demais:

\[Tsol_s = T_{solb} \quad (2.113) \]

onde, na equação 2.113 Tsolb já foi determinado no item f.2.

2.2.2. Modelagem Matemática do Trocador de Calor Vapor - Solução

Os trocadores de calor vapor - solução são os mais utilizados em sistemas de evaporação em múltiplo efeito. Pode ser utilizado tanto vapor "vivo" como vapor efluente de algum evaporador. A figura 2.9 apresenta um desenho esquemático de um trocador de calor com as correntes envolvidas.

As hipóteses adotadas na modelagem matemática desse equipamento são:

- as perdas de calor para o ambiente são desprezíveis; essa hipótese é feita porque a dimensão física do trocador de calor é usualmente pequena quando comparada com a de um evaporador;

- despreza-se o superaquecimento do vapor na entrada do trocador de calor;

- a temperatura do condensado na saída do trocador de calor equivale à temperatura de saturação do vapor na entrada do trocador de calor.
Figura 2.9: Modelo físico do trocador de calor.
Para efeito de simulação matemática do sistema de evaporação deve-se distinguir a modelagem do trocador de calor em dois casos. No primeiro conhece-se apenas a efetividade do trocador de calor, enquanto no segundo caso é conhecida a sua configuração física: número de passes, número de tubos por passe, comprimento e diâmetro dos tubos, coeficiente de condutibilidade térmica dos tubos.

É costume usar a efetividade como dado de entrada quando se deseja fazer uma simulação preliminar para verificar qual o resultado da virtual instalação de um trocador de calor. Neste caso deve-se adotar valores usuais de efetividade, evitando-se assim a utilização de trocadores de calor com dimensões antieconômicas.

Quando o trocador de calor já é existente, ou já dimensionado, evidentemente a simulação matemática deve considerar essa restrição, devendo-se prever um modelo matemático que simule a operação do equipamento.

As equações matemáticas que governam a operação do trocador de calor são a seguir apresentadas.

A) BALANÇOS DE MASSA

O balanço de massa do lado do vapor condensante:

\[\dot{m}_{vape} - \dot{m}_{conds} = 0 \] \hspace{1cm} (2.114)

O balanço de massa da solução:

\[\dot{m}_{sole} - \dot{m}_{sols} = 0 \] \hspace{1cm} (2.115)
O balanço de massa do soluto:

\[M_{\text{sole}} \dot{X}_e - M_{\text{sols}} \dot{X}_s = 0 \] \hspace{1cm} (2.116)

Combinando as equações 2.115 e 2.116 resulta:

\[X_s = X_e \] \hspace{1cm} (2.117)

B) BALANÇO DE ENERGIA

Com as hipóteses feitas, a equação do primeiro princípio da termodinâmica é:

\[\dot{M}_{\text{vape}} h_{\text{vape}} + M_{\text{sole}} h_{\text{sole}} - \dot{M}_{\text{conds}} h_{\text{conds}} - \dot{M}_{\text{sols}} h_{\text{sols}} = 0 \] \hspace{1cm} (2.118)

onde,

\[h_{\text{vape}} = f(T_{\text{vapste}}) \] \hspace{1cm} (2.119)
\[h_{\text{conds}} = f(T_{\text{conds}}) \] \hspace{1cm} (2.120)
\[h_{\text{sole}} = f(T_{\text{sole}}, X_e) \] \hspace{1cm} (2.121)
\[h_{\text{sols}} = f(T_{\text{sols}}, X_s) \] \hspace{1cm} (2.122)

C) COMPATIBILIDADE DE TEMPERATURAS

Por hipótese:

\[T_{\text{conds}} = T_{\text{vapste}} \] \hspace{1cm} (2.123)
D) EQUAÇÃO DE TRANSFERÊNCIA DE CALOR

D.1) EFETIVIDADE DO TROCADOR DE CALOR CONHECIDA

Uma vez que pelas hipóteses adotadas, para efeito de cálculo do potencial térmico, considera-se a temperatura do lado do vapor constante, a efetividade do trocador de calor é:

$$\varepsilon = \frac{T_{sols} - T_{sole}}{T_{vapste} - T_{sole}} \quad (2.124)$$

Manipulando a equação 2.124, obtém-se:

$$T_{sols} - T_{sole} - \varepsilon \cdot (T_{vapste} - T_{sole}) = 0 \quad (2.125)$$

D.2) TROCADOR DE CALOR COM DIMENSÕES FÍSICAS CONHECIDAS

Nesse caso deve-se calcular o coeficiente global de transferência do trocador de calor, a partir do qual pode-se calcular o valor de ε. O procedimento a seguir apresentado é análogo ao do trocador de calor do evaporador tipo "heat and flash". O cálculo do coeficiente global de transferência de calor de um passe genérico do trocador de calor é feito através da equação:

$$\frac{1}{U_{lnext}} = \frac{D_{e}}{D_{i}} \cdot \frac{1}{h_{i}} + \frac{D_{e}}{2 \cdot k_{t}} \ln \left(\frac{D_{e}}{D_{i}} \right) + \frac{1}{h_{e}} + R_{inc} \quad (2.126)$$

onde,

$$R_{inc} = (D_{e}/D_{i}) \cdot f_{i} + f_{e} \quad (2.127)$$

é a resistência térmica total de incrustação.
D.2.1) CÁLCULO DE HI

O número de Reynolds define a relação a ser utilizada no cálculo de h_{pj},

$$\text{Rem}_{pj} = \frac{4. Nsolaq}{Nt_{pj}. \pi. \text{Di} \cdot \mu m_{pj}}$$ \hspace{1cm} (2.128)

onde,

$$\mu m_{pj} = \frac{\mu in_{pj} + \mu out_{pj}}{2}$$ \hspace{1cm} (2.129)

Para $\text{Rem}_{pj} \geq 10.000$: \hspace{1cm}

$$\frac{h_{pj} \cdot \text{Di}}{k_{m_{pj}}} = 0.036 \cdot (\text{Rem}_{pj})^{0.8} \cdot (Prm_{pj})^{1/3} \cdot (\text{Di} / \text{Lm})^{0.055} \cdot (\mu m_{pj} / \mu w)^{0.14}$$ \hspace{1cm} (2.130)

onde,

$$Prm_{pj} = \frac{C_{p} \cdot \mu m_{pj}}{k_{m_{pj}}}$$ \hspace{1cm} (2.131)

$$C_{p_{pj}} = \frac{C_{pin_{pj}} + C_{pout_{pj}}}{2}$$ \hspace{1cm} (2.132)

$$k_{m_{pj}} = \frac{\text{kin}_{pj} + \text{kout}_{pj}}{2}$$ \hspace{1cm} (2.133)

O valor de μw na equação 2.130 pode ser calculado na temperatura T_{vap}. Para $\text{Rem}_{pj} \leq 2100$, h_{pj} é calculado por:
\[
\frac{h_{pj}}{\mu m_{pj}} = \left\{ 3,68 + \frac{0,0668 \cdot (Di/Lt) \cdot Rem_{pj} \cdot Prm_{pj}}{1 + 0,04 \cdot (Di/Lt) \cdot Rem_{pj} \cdot Prm_{pj}^{2/3}} \right\} \cdot (\mu m_{pj}/\mu W)^{0,14}
\]
(2.134)

Quando \(2.100 < Rem < 10.000\):

\[
\frac{h_{pj} - h_{pj,Rem=2100}}{h_{pj,Rem=10000} - h_{pj,Rem=2100}} = \frac{Rem_{pj} - 2100}{10000 - 2100}
\]
(2.135)

D.2.2 CÁLCULO DE \(He\)

A equação de \(He\) para tubos verticais é:

\[
He \left(\frac{\mu_{cond}^2}{k_{cond} \cdot \rho_{cond} \cdot g} \right)^{1/3} = 1,76 \left(\frac{4 \cdot \Gamma}{\mu_{cond}} \right)^{-1/3}
\]
(2.136)

onde,

\[
g = 9,806 \text{ m/s}^2
\]
(2.137)

\[
\Gamma = \frac{\text{Mvape}}{\pi \cdot Dc \cdot Nt}
\]
(2.138)

\[
Nt = \sum_{j=1}^{Np} \frac{Nt_{pj}}{pj}
\]
(2.139)

A equação 2.136 é válida para \(4 \cdot \Gamma/\mu_{cond} \leq 1.800\). Para \(4 \cdot \Gamma/\mu_{cond} > 1.800\) vale a expressão:

\[
He \left(\frac{\mu_{cond}^2}{k_{cond} \cdot \rho_{cond} \cdot g} \right)^{1/3} = 0,076 \left(\frac{4 \cdot \Gamma}{\mu_{cond}} \right)^{0,4}
\]
(2.140)
Para tubos horizontais:

\[\text{he} \left(\frac{\mu_{\text{cond}}^2}{k_{\text{cond}}^3 \cdot \rho_{\text{cond}}^2 \cdot g} \right)^{1/3} = 1.76 \left(\frac{4 \cdot \Gamma'}{\mu_{\text{cond}}} \right)^{-1/3} \quad (2.141) \]

onde,

\[\Gamma' = \frac{\dot{m}_{\text{vape}}}{\dot{m}_{\text{L}} \cdot \Delta T^{2/3}} \quad (2.142) \]

D.2.3) Cálculo de ULnext

Uma vez calculado ULnext, de todos os passos através da equação 2.119, deve-se calcular a efetividade global do trocador de calor através das equações seguintes. A efetividade de um passe genérico:

\[\varepsilon_{p_j} = 1 - \exp \left(-A_{\text{ext}} \cdot \frac{\text{ULnext}_{p_j}}{\dot{m}_{\text{solaq}} \cdot C_{\text{pm}}_{p_j}} \right) \quad (2.143) \]

onde,

\[A_{\text{ext}}_{p_j} = N_{p_j} \cdot \pi \cdot \Delta \cdot \Delta T \quad (2.144) \]

A efetividade pode ser relacionada com as temperaturas dos fluidos que interagem:

\[\varepsilon_{p_j} = \frac{T_{\text{out}_{p_j}} - T_{\text{in}_{p_j}}}{T_{\text{vapste}} - T_{\text{in}_{p_j}}} \quad (2.145) \]

Ou seja:

\[T_{\text{out}_{p_j}} = T_{\text{in}_{p_j}} + \varepsilon_{p_j} \cdot (T_{\text{vapste}} - T_{\text{in}_{p_j}}) \quad (2.146) \]

onde,
\[T_{in_p} = T_{out_p(j-1)} \]
\[T_{in_p} = T_{in} \]
(2.147)
(2.148)

A efetividade global do trocador de calor:

\[\varepsilon = \frac{T_{out} - T_{in}}{T_{vapste} - T_{in}} \]
(2.149)

Caso seja de interesse, o coeficiente global médio de transferência de calor pode ser obtida da equação:

\[U_{next} = \frac{M_{solaq} \cdot C_{pm}}{A_{ext}} \ln \left(\frac{1}{1 - \varepsilon} \right) \]
(2.150)

2.2.3. MODELO MATEMÁTICO DO TANQUE DE REEVAPORAÇÃO DE CONDENSADO

Esse equipamento é um receptáculo onde se faz a expansão de condensado, normalmente contaminado, visando o aproveitamento do vapor originado. Muitas vezes o "flash" é feito diretamente no corpo do evaporador, quando então esse tanque deixa de existir. Quando isso ocorre, para a correta utilização do simulador, deve-se criar um tanque fictício.

As hipóteses admitidas no estabelecimento do modelo matemático são as seguintes:

- não existe perda de calor para o ambiente;
- não existe perda de carga na linha que leva o vapor de "flash" ao evaporador;
- não existe arraste de condensado pelo vapor.
A figura 2.10 apresenta um desenho esquemático desse equipamento. O equacionamento é:

A) BALANÇO DE MASSA

\[\dot{M}_{\text{conde}} - \dot{M}_{\text{vaps}} - \dot{M}_{\text{conds}} = 0 \quad (2.151) \]

B) BALANÇO DE ENERGIA

\[\dot{M}_{\text{conde}} \cdot h_{\text{conde}} - \dot{M}_{\text{vaps}} \cdot h_{\text{vaps}} - \dot{M}_{\text{conds}} \cdot h_{\text{conds}} = 0 \quad (2.152) \]

onde,

\[h_{\text{conde}} = f(T_{\text{conde}}) \quad (2.153) \]

\[h_{\text{conds}} = f(T_{\text{conds}}) \quad (2.154) \]

\[h_{\text{vaps}} = f(T_{\text{vapsts}}) \quad (2.155) \]

C) COMPATIBILIDADE DE TEMPERATURAS

\[T_{\text{conds}} = T_{\text{vapsts}} \quad (2.155) \]

2.2.4. MODELO MATEMÁTICO DO TANQUE DE REEVAPORAÇÃO DE PRODUTO

Esse equipamento é um receptáculo onde se promove a expansão de solução, existente normalmente no final do processo de concentração. A finalidade pode ser retirar água do produto, resfriar o produto ou fazer o aproveitamento do vapor de "flash". As hipóteses adotadas no modelo matemático desse equipamento são análogas às do tanque de reevaporação de condensado, ou seja:

- não existe perda de calor para o ambiente;
Figura 2.10: Modelo físico de um tanque de reevaporação de condensado.
- não existe perda de carga na linha que leva o vapor de "flash" ao evaporador;
- não existe arraste de solução pelo vapor.

A figura 2.11 apresenta um desenho esquemático do equipamento. O equacionamento matemático é:

A) BALANÇO DE MASSA

O balanço de massa global é:

\[\dot{M}_{sole} - \dot{M}_{vaps} - \dot{M}_{sols} = 0 \] \hspace{1cm} (2.157)

O balanço de massa do soluto:

\[\dot{M}_{sole}.X_e - \dot{M}_{sols}.X_s = 0 \] \hspace{1cm} (2.158)

B) BALANÇO DE ENERGIA

\[\dot{M}_{sole}.h_{sole} - \dot{M}_{vaps}.h_{vaps} - \dot{M}_{sols}.h_{sols} = 0 \] \hspace{1cm} (2.159)

onde,

\[h_{sole} = f(T_{sole}, X_e) \] \hspace{1cm} (2.160)

\[h_{vaps} = f(T_{vaps}, T_{vapsts}) \] \hspace{1cm} (2.161)

\[h_{sols} = f(T_{sols}, X_s) \] \hspace{1cm} (2.162)

C) COMPATIBILIDADE DE TEMPERATURAS

\[T_{sols} = T_{vaps} \] \hspace{1cm} (2.163)

\[T_{vaps} - T_{vapsts} = EPE \] \hspace{1cm} (2.164)

onde,
Figura 2.11: Modelo físico de um tanque de reevaporação de produto.
EPE = f(Pvap, Xs) \hspace{1cm} (2.165)

2.2.5. **MODELO MATEMÁTICO DO EJETOR (TERMOCOMPRESSOR)**

O ejetor é um equipamento destinado a comprimir um fluido a baixa pressão mediante a utilização de energia proveniente de outro fluido. No caso de sistemas de evaporação é comum a utilização de ejetores de vapor a vapor, onde tanto o fluido motor como o fluido a ser comprimido é vapor d'água.

O desenho esquemático de um ejetor é apresentado na figura 2.12 e o processo termodinâmico que ocorre em seu interior é mostrado no diagrama T x s da água da figura 2.13.

No processo, o vapor motor a alta pressão é expandido em um bocal, havendo a conversão da entalpia em energia cinética, ficando numa pressão levemente inferior à do vapor de baixa pressão. Na câmara de mistura, essa energia cinética é transferida ao vapor de baixa pressão e, no difusor, a energia cinética é convertida novamente em entalpia, havendo um aumento de pressão. Na seção de saída do ejetor o vapor alcança uma pressão intermediária entre a pressão do vapor motor e a pressão do vapor na sucção.

As equações utilizadas na modelagem matemática desse equipamento são mostradas a seguir.

A) BALANÇO DE MASSA

\[\dot{m}_{suc} + \dot{m}_{mot} - \dot{m}_{desc} = 0 \] \hspace{1cm} (2.166)
Figura 2.12: Desenho esquemático de um ejetor de vapor.
Figura 2.13: Representação no diagrama T × s da água dos processos termodinâmicos ocorridos no interior do ejetor.
B) BALANÇO DE ENERGIA

\[\dot{m}_{suc} h_{suc} + \dot{m}_{mot} h_{mot} - \dot{m}_{desc} h_{desc} = 0 \]

(2.107)

C) CURVA DE OPERAÇÃO

A relação de arraste do ejetor é definida por:

\[\psi = \frac{\dot{m}_{suc}}{\dot{m}_{mot}} \]

(2.108)

Para a obtenção de uma curva de operação que relacione \(\psi \) com \(T_{sucst} \), \(T_{motst} \) e \(T_{descst} \), poderia ser feita, em princípio, a modelagem matemática dos processos de expansão, mistura e compressão no ejetor. Quando isso é feito, verifica-se a necessidade do conhecimento das "eficiências" dos processos que ocorrem em cada uma dessas etapas. Essas eficiências, principalmente a do processo de mistura, não são constantes, mas dependem das próprias condições de operação, o que pode ser verificada prontamente pela consulta aos catálogos fornecidos pelos fabricantes desses equipamentos. São escassas as informações relacionadas ao cálculo dessas eficiências.

Nesse sentido verifica-se ser muito mais prático e eficaz a utilização dos próprios dados fornecidos pelos fabricantes. Nesse trabalho serão utilizados os dados fornecidos pela CROLL-REYNOLDS [18]. Os catálogos desse fabricante fornecem curvas do tipo,

\[\frac{1}{\psi} = f(P_{desc}, P_{suc}, P_{mot}) \]

(2.109)

A figura 2.14 ilustra uma curva desse tipo.

Para cada nível de pressão do vapor motor são construídas
Figura 2.14: Curva de seleção de ejetor extraída de catálogo de fabricante [18].
curvas parametrizadas na relação de pressões (pressão de descarga/pressão de sucção). A fim de facilitar a utilização dos dados, foram estabelecidas curvas de ajuste que permitem a condensação das informações. A relação de arraste é então obtida através da equação:

\[
\frac{1}{\psi} = a + b \cdot e^{(c \cdot P_{\text{desc}})}
\]
(2.170)

onde as constantes \(a\), \(b\) e \(c\) são obtidas na tabela 2.3, em função da pressão do vapor motor e da relação de pressões. Valores intermediários exigem interpolação.

O modelo anterior, constituído pela equações 2.164, 2.167 e 2.168 pode ainda ser simplificado, uma vez que o vapor obtido na descarga do ejetor é normalmente saturado ou levemente superaquecido. A simplificação adotada neste trabalho é admitir que o vapor de descarga no ejetor seja saturado seco. Dessa forma, o balanço de energia, equação 2.167, é desnecessário.

2.3. Equações de ligação

Até aqui foram estabelecidas equações que analisavam os equipamentos isoladamente. Neste item serão estabelecidas as equações de ligação, ou seja, aquelas que compatibilizam as variáveis relacionadas às correntes provenientes ou dirigidas aos vários equipamentos.

A conexão das correntes materiais relativas aos equipamentos é feita através dos denominados nós. Um nó pode ter uma ou mais correntes de entrada e uma ou mais correntes de saída. A seguir
<table>
<thead>
<tr>
<th>Pressão vapor motor (psig)</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relação de pressão</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1,5</td>
<td>0,71111</td>
<td>0,0873368</td>
</tr>
<tr>
<td>2,0</td>
<td>0,227270</td>
<td>0,705579</td>
</tr>
<tr>
<td>2,5</td>
<td>-0,277043</td>
<td>1,38482</td>
</tr>
<tr>
<td>3,0</td>
<td>-0,215445</td>
<td>1,54773</td>
</tr>
<tr>
<td>3,5</td>
<td>0,418699</td>
<td>1,13985</td>
</tr>
<tr>
<td>4,0</td>
<td>-0,087528</td>
<td>1,74429</td>
</tr>
</tbody>
</table>

(continua na página seguinte)
Tabela 2.3 (cont.): Coeficientes para uso na equação de cálculo da relação de arraste do termocompressor.

<table>
<thead>
<tr>
<th>Pressão no compressor (psig)</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relação de pressão</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1.5</td>
<td>0.757142</td>
<td>0.0414595</td>
</tr>
<tr>
<td>2.0</td>
<td>1.43653</td>
<td>0.1358315</td>
</tr>
<tr>
<td>2.5</td>
<td>-0.59494</td>
<td>0.1096509</td>
</tr>
<tr>
<td>3.0</td>
<td>2.04045</td>
<td>0.0196312</td>
</tr>
<tr>
<td>3.5</td>
<td>-9.74254</td>
<td>0.0006457</td>
</tr>
<tr>
<td>4.0</td>
<td>7.72056</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

Coeficientes para uso na equação de cálculo da relação de arraste do termocompressor.

<table>
<thead>
<tr>
<th>Pressão no compressor (psig)</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relação de pressão</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.0414595</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.1358315</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.1096509</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.0196312</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.0006457</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.0000000</td>
<td></td>
</tr>
</tbody>
</table>
serão apresentadas as equações de ligação relacionadas aos nós de vapor, solução e condensado.

2.3.1. NÓS DE VAPOR

O escoamento do vapor em um sistema de evaporação de múltiplo efeito ocorre no sentido das pressões decrescentes. Não existe recíclo, a menos que exista um ejetor de vapor ou um compressor mecânico de vapor (este último não é incluído na modelagem matemática neste trabalho).

Um nó de vapor pode receber (entradas) as seguintes correntes:

- N_{ve} correntes provenientes de evaporadores;
- N_{rc} correntes provenientes de tanques de reevaporação de condensado;
- N_{rp} correntes provenientes de tanques de reevaporação de produto;
- N_{ej} correntes provenientes de ejetores;
- N_{ext} correntes provenientes do meio externo (vapor "vivo").

Observe-se que o sufixo s em N_{vs} indica que as correntes saem dos equipamentos e entram nos nós. As correntes de saída do nó de vapor (e entrada em equipamentos) são:

- N_{ve} correntes destinadas a evaporadores;
- N_{to} correntes destinadas a trocadores de calor;
- N_{ej} correntes destinadas a ejetores;
- \(N_{ve} \) correntes destinadas a condensadores;
- \(N_{ve} \) correntes destinadas ao meio externo.

A figura 2.15 apresenta um desenho esquemático com um nó de vapor em uma configuração particular.

Deve-se destacar aqui que quando há mais de uma corrente de saída de um nó de vapor, não é usual a existência de válvulas para regulagem das vazões. A distribuição das vazões ocorre naturalmente, sendo ditada pelo equilíbrio da operação dos equipamentos que recebem o vapor.

No estabelecimento das equações de ligação admite-se como hipótese que as tubulações não perdem calor para o ambiente e que a perda de carga é desprezível.

A) BALANÇO DE MASSA

\[
\begin{align*}
\sum_{i=1}^{N_{vs}} \dot{m}_{\text{vaps}_{ev,i}} + \sum_{j=1}^{N_{vs}} \dot{m}_{\text{vaps}_{rc,j}} + \sum_{k=1}^{N_{vs}} \dot{m}_{\text{vaps}_{rp,k}} + \\
+ \sum_{l=1}^{N_{vs}} \dot{m}_{\text{vaps}_{ej,l}} + \sum_{m=1}^{N_{vs}} \dot{m}_{\text{vaps}_{e_{m,t},m}} - \sum_{p=1}^{N_{vs}} \dot{m}_{\text{vaps}_{e_{p,v},p}} + \\
N_{ve} \dot{m}_{\text{vaps}_{e_{j,t}}} - \sum_{q=1}^{N_{ve}} \dot{m}_{\text{vaps}_{e_{j,q}}} - \sum_{r=1}^{N_{ve}} \dot{m}_{\text{vaps}_{e_{j,r}}} - \sum_{a=1}^{N_{ve}} \dot{m}_{\text{vaps}_{e_{j,a}}} + \\
N_{ve} \dot{m}_{\text{vaps}_{e_{j,t}}} - \sum_{l=1}^{N_{ve}} \dot{m}_{\text{vaps}_{e_{j,t,l}}} = 0
\end{align*}
\]

(2.171)

Quando um nó não recebe ou não envia vapor para um dos equipamentos anteriormente mencionados, deve-se desprezar o termo correspondente.
Figura 2.13: Desenho esquemático de um exemplo de nó de vapor.
B) COMPATIBILIDADE DE PRESSÕES

As linhas de vapor dos evaporadores de múltiplo efeito não possuem válvulas intermediárias, pois estas introduziriam perdas de carga prejudiciais ao total aproveitamento do potencial térmico disponível. Como também é desprezada a perda de carga nas linhas, resulta a compatibilidade de pressões nos nós de vapor. Para facilitar o uso posterior das equações utiliza-se alternativamente a compatibilidade das temperaturas de saturação do vapor das várias correntes.

Para cada nó considerado deve-se eleger inicialmente uma corrente de referência, em relação à qual serão estabelecidas as igualdades de temperatura de saturação. A corrente de referência deve ser preferencialmente aquela destinada ou proveniente de um evaporador. exceção feita aos seguintes casos: no primeiro efeito de evaporação a corrente de referência deve ser a do vapor "vivo" e no último efeito de evaporação, a do condensador, uma vez que, como veremos em capítulo posterior, essas correntes terão as pressões como dados de entrada. As equações são as seguintes:

\[
\text{Tvapst}_{ev, i} = \text{Tvapstref}, \ (i=1,2,\ldots, Nv_{ev}) \tag{2.172}
\]

\[
\text{Tvapst}_{rc, j} = \text{Tvapstref}, \ (j=1,2,\ldots, Nv_{rc}) \tag{2.173}
\]

\[
\text{Tvapst}_{rp, k} = \text{Tvapstref}, \ (k=1,2,\ldots, Nv_{rp}) \tag{2.174}
\]

\[
\text{Tvapst}_{ej, l} = \text{Tvapstref}, \ (l=1,2,\ldots, Nv_{ej}) \tag{2.175}
\]

\[
\text{Tvapst}_{ext, m} = \text{Tvapstref}, \ (m=1,2,\ldots, Nv_{ext}) \tag{2.176}
\]

\[
\text{Tvapste}_{ev, p} = \text{Tvapstref}, \ (p=1,2,\ldots, Nv_{ev}) \tag{2.177}
\]

\[
\text{Tvapste}_{tc, q} = \text{Tvapstref}, \ (q=1,2,\ldots, Nv_{tc}) \tag{2.178}
\]
Tvapste_{e,r} = T vapstref , (r=1,2,...,Nve_{e}) \quad (2.179)

Tvapste_{ext,t} = T vapstref , (t=1,2,...,Nve_{ext}) \quad (2.180)

Deve haver o descarte de uma das equações anteriores, já que uma das correntes foi escolhida como a de referência.

C) BALANÇO DE ENERGIA

O balanço de energia dos nós de vapor deveria ser utilizado para determinar a temperatura do vapor nas correntes de saída. No entanto, o vapor nas correntes de saída tem um nível de superaquecimento muito pequeno e, tanto do ponto de vista energético quanto do ponto de vista de acréscimo do potencial térmico médio no elemento de aquecimento, a influência é desprezível, razão pela qual considera-se que o vapor nas correntes de saída encontra-se no estado saturado seco. O balanço de energia não é portanto considerado.

2.3.2. NÓS DE SOLUÇÃO

Um nó de solução pode receber as seguintes correntes:

- Nsos_{e,v} correntes provenientes de evaporadores;
- Nsos_{t,c} correntes provenientes de trocadores de calor;
- Nsos_{t,p} correntes provenientes de tanques de reevaporação de produto;
- Nsos_{ext} correntes provenientes do meio externo.

Pode ter as correntes de saída:
- Nsoc\textsubscript{ev} correntes dirigidas a evaporadores;
- Nsoc\textsubscript{tc} correntes dirigidas a trocadores de calor;
- Nsoc\textsubscript{rp} correntes dirigidas a tanques de reevaporação de produto;
- Nsoc\textsubscript{ext} correntes dirigidas ao meio externo.

As hipóteses adotadas em relação às correntes de solução são as seguintes:

- não existe perda de calor para o ambiente;
- é desprezado o aquecimento por efeito de bombeamento mecânico;
- no caso de expansão da solução, admite-se que a mesma ocorra na entrada do(s) equipamento(s) ao(s) qual(is) ela se destina.

A seguir, as equações utilizadas.

A) BALANÇO DE MASSA DA SOLUÇÃO

\[
\begin{align*}
\text{Nsos}_{\text{ev}} & = \sum_{i=1} \dot{m}_{\text{sols},i} + \sum_{j=1} \dot{m}_{\text{sols},j} + \sum_{k=1} \dot{m}_{\text{sols},k} + \\
\text{Nsos}_{\text{tc}} & + \sum_{l=1} \dot{m}_{\text{sols},l} - \sum_{m=1} \dot{m}_{\text{sols},m} - \sum_{p=1} \dot{m}_{\text{sols},p} + \\
\text{Nsoc}_{\text{ev}} & - \sum_{q=1} \dot{m}_{\text{sols},q} - \sum_{r=1} \dot{m}_{\text{sols},r} = 0 \\
\text{Nsos}_{\text{ext}} & \quad \text{(2.181)}
\end{align*}
\]
B) BALANÇO DE ENERGIA

O balanço de energia de um nó de solução permite determinar a temperatura da solução em todas as correntes de saída. A equação é:

\[
\sum_{i=1}^{Nsos_{ev}} \dot{m}_{sols_{ev},i} h_{sols_{ev},i} + \sum_{j=1}^{Nsos_{lc}} \dot{m}_{sols_{lc},j} h_{sols_{lc},j} + \\
\sum_{k=1}^{Nsos_{rp}} \dot{m}_{sols_{rp},k} h_{sols_{rp},k} + \sum_{l=1}^{Nsos_{ext}} \dot{m}_{sols_{ext},l} h_{sols_{ext},l} = \\
\left\{ \begin{array}{l}
\sum_{i=1}^{Nsos_{ev}} \dot{m}_{sols_{ev},i} h_{sols_{ev},i} + \\
\sum_{j=1}^{Nsos_{lc}} \dot{m}_{sols_{lc},j} h_{sols_{lc},j} + \\
\sum_{k=1}^{Nsos_{rp}} \dot{m}_{sols_{rp},k} h_{sols_{rp},k} \\
\end{array} \right\} \cdot h_{sols_{m}}
\]
(2.182)

onde,

\[h_{sols} = f(T_{sols},X_{s}) \]
(2.183)

A equação 2.182 permite calcular \(h_{sols_{m}} \), resultando a temperatura \(T_{sols_{m}} \):

\[T_{sols_{m}} = f(h_{sols_{m}},X_{m}) \]
(2.184)

C) COMPATIBILIDADE DE TEMPERATURAS

Uma vez calculada a temperatura de mistura no nó de solução, \(T_{sols_{m}} \) (eq. 2.184), pode-se agora determinar a temperatura da solução em cada uma das correntes de saída:

\[T_{sol_{ev,i}} = T_{sols_{m}}, (i=1,2,...,Nsos_{ev}) \]
(2.185)
D) BALANÇO DE MASSA DE SOLUTO

Permite determinar a concentração de soluto de mistura, X_m.

\[
\text{Nsos}_e = \sum_{i=1}^{\text{Nsos}_{ev}} M_{\text{sols, } ev, i} \cdot X_{e, i} + \sum_{j=1}^{\text{Nsos}_{tc}} M_{\text{sols, } tc, j} \cdot X_{e, j} + \sum_{k=1}^{\text{Nsos}_{rp}} M_{\text{sols, } rp, k} \cdot X_{e, k} + \sum_{l=1}^{\text{Nsos}_{ext}} M_{\text{sols, } ext, l} \cdot X_{e, l} = \left\{ \sum_{i=1}^{\text{Nsos}_{ev}} M_{\text{sols, } ev, i} + \sum_{j=1}^{\text{Nsos}_{tc}} M_{\text{sols, } tc, j} + \sum_{k=1}^{\text{Nsos}_{rp}} M_{\text{sols, } rp, k} + \sum_{l=1}^{\text{Nsos}_{ext}} M_{\text{sols, } ext, l} \right\} \cdot X_m
\]

(2.189)

E) COMPATIBILIDADE DE CONCENTRAÇÕES

Determinada a concentração de mistura em 2.189, pode-se determinar a concentração de cada uma das correntes de saída.

\[
X_{e, ev, i} = X_m, \quad (i=1,2,\ldots, N_{\text{soe}_{ev}}) \\
X_{e, tc, j} = X_m, \quad (j=1,2,\ldots, N_{\text{soe}_{tc}}) \\
X_{e, rp, k} = X_m, \quad (k=1,2,\ldots, N_{\text{soe}_{rp}}) \\
X_{e, ext, l} = X_m, \quad (l=1,2,\ldots, N_{\text{soe}_{ext}})
\]

(2.190) (2.191) (2.192) (2.193)
F) Equações de Determinação das Vazões de Solução na Divisão de Fluxos

Nos casos em que exista mais de uma corrente de saída no nó de solução, diferentemente do que ocorre no caso dos nós de vapor, a vazão destinada a cada uma das correntes é determinada pela manobra de válvulas. Usualmente é fixada a fração da vazão total destinada a cada uma das correntes. O equacionamento é então:

\[M_{\text{sole}ev,i} = R_{\text{sol}ev,i} \cdot M_{\text{sol tot}}, (i=1,2,..., N_{\text{sos ev}}) \] \hspace{1cm} (2.194)

onde \(M_{\text{sol tot}} \) é a vazão total de entrada no nó. Analogamente:

\[M_{\text{sole}tc,j} = R_{\text{sol}tc,j} \cdot M_{\text{sol tot}}, (j=1,2,..., N_{\text{sos tc}}) \] \hspace{1cm} (2.195)

\[M_{\text{sole}rp,k} = R_{\text{sol}rp,k} \cdot M_{\text{sol tot}}, (k=1,2,..., N_{\text{sos rp}}) \] \hspace{1cm} (2.196)

\[M_{\text{sole}ext,l} = R_{\text{sol}ext,l} \cdot M_{\text{sol tot}}, (l=1,2,..., N_{\text{sos ext}}) \] \hspace{1cm} (2.197)

2.3.3. Nós de Condensado

Um nó de condensado pode receber as seguintes correntes:

- \(N_{\text{sos ev}} \) correntes provenientes de evaporadores;
- \(N_{\text{sos tc}} \) correntes provenientes de trocadores de calor;
- \(N_{\text{sos rc}} \) correntes provenientes de tanques de reevaporação de condensado.

Pode ter uma corrente de saída destinada a evaporador ou uma corrente de saída destinada ao meio externo, o que é uma hipótese adotada para a configuração do sistema. O equacionamento é:
A) BALANÇO DE MASSA

\[
\begin{align*}
Ncs_{ev} & \quad Ncs_{to} & \quad Ncs_{rc} \\
\sum_{i=1}^{Ncs_{ev}} M\text{conds}_{ev,i} + \sum_{j=1}^{Ncs_{to}} M\text{conds}_{to,j} + \sum_{k=1}^{Ncs_{rc}} M\text{conds}_{rc,k} + \\
- M\text{cond}_{equi} &= 0 \\
\end{align*}
\]

onde, na equação 2.198, o índice equi designa ext ou ev.

B) BALANÇO DE ENERGIA

\[
\begin{align*}
Ncs_{ev} & \quad Ncs_{to} & \quad Ncs_{rc} \\
\sum_{i=1}^{Ncs_{ev}} M\text{conds}_{ev,i} \cdot h\text{conds}_{ev,i} + \sum_{j=1}^{Ncs_{to}} M\text{conds}_{to,j} \cdot h\text{conds}_{to,j} + \\
+ \sum_{k=1}^{Ncs_{rc}} M\text{conds}_{rc,k} \cdot h\text{conds}_{rc,k} - M\text{cond}_{equi} \cdot h\text{cond}_{equi} &= 0 \\
\end{align*}
\]

onde,

\[
\begin{align*}
h\text{conds}_{ev,i} &= f(T\text{conds}_{ev,i}) , \quad (i=1,2,\ldots,Ncs_{ev}) \\
h\text{conds}_{to,j} &= f(T\text{conds}_{to,j}) , \quad (j=1,2,\ldots,Ncs_{to}) \\
h\text{conds}_{rc,k} &= f(T\text{conds}_{rc,k}) , \quad (k=1,2,\ldots,Ncs_{rc}) \\
\end{align*}
\]

A equação 2.199 é utilizada para determinar h\text{cond}, permitindo o cálculo de:

\[
T\text{cond}_{equi} = f(h\text{cond}_{equi}) \\
\]

(2.200)
3. ALGORITMO DE CÁLCULO

3.1. COMENTÁRIOS INICIAIS

O objetivo deste capítulo é apresentar o algoritmo de cálculo que sustenta cada uma das versões do programa computacional para análise matemática de EME. Para cada uma das versões são apresentadas as variáveis de entrada (dados de entrada) e de saída.

Os algoritmos desenvolvidos admitem algumas restrições relativas ao fluxograma de processo do sistema de evaporação, as quais correspondem de fato à situação encontrada na prática. As hipóteses são:

- existência de no máximo um termocompressor;
- existência de uma única entrada e uma única saída de solução no EME;
- não existência de reciclos de solução, excetuados os casos de reciclos internos aos evaporadores;
- não existência de divisão de fluxo de condensado.

Conhecidas as variáveis e as equações que governam a operação de um sistema de evaporação de múltiplo efeito, pode-se determinar precisamente qual o número de graus de liberdade do problema.

Dada a generalidade da configuração do sistema que se está considerando neste trabalho, a análise que permite a determinação do número de graus de liberdade do problema não é trivial, e não será apresentada neste trabalho, devendo-se citar, contudo, a publicação devida a WESTERBERG [97], muito útil nesse estudo.
O número de graus de liberdade equivale ao número de variáveis que devem ser fixadas (dados de entrada) para a determinação do problema. Conforme sejam as variáveis fixadas, resulta um problema e uma metodologia de cálculo muito bem caracterizados.

Quando as variáveis fixadas são tais que o problema prescinde do uso das equações que permitem estimar o cálculo do coeficiente global de transferência de calor dos evaporadores e trocadores de calor, sendo utilizados quase que exclusivamente os balanços de massa e energia, diz-se que se está avaliando matematicamente o sistema de evaporação. Para esse caso, foram criados um algoritmo e um código computacional que constituem a denominada versão de avaliação matemática de EME. Essa versão destina-se ao caso de análise matemática de um sistema de evaporação em operação, em que algumas variáveis são medidas, desejando-se determinar analiticamente as demais variáveis que caracterizam o processo. Para fixar ideias, a figura 3.1 apresenta um caso particular de sistema de evaporação de múltiplo efeito onde se utiliza a versão de avaliação matemática.

Quando, além dos balanços de massa e energia, são utilizadas equações para estimativa do coeficiente global de transferência de calor dos evaporadores e trocadores de calor, diz-se que se está simulando matematicamente o evaporador. Os algoritmos e códigos computacionais utilizados nesse caso constituem as denominadas versões de simulação matemática do problema. A figura 3.2 apresenta um caso particular exemplificando a utilização da simulação matemática.
Figura 3.1: Parâmetros de entrada e variáveis calculadas na versão de avaliação matemática (aplicação a um caso particular de BME).
Figura 3.2: Parâmetros de entrada e variáveis calculadas na versão de simulação matemática (aplicação a um caso particular de EME).
3.2. MODIFICAÇÃO DAS EQUAÇÕES

Conforme será visto mais adiante, a abordagem orientada por equações foi a escolhida para a análise matemática do problema. Nesse sentido, uma vez interpretada a configuração física do sistema, o problema consiste na resolução de um sistema não linear de equações algébricas. Já foi visto que esse sistema de equações é constituído pelos modelos matemáticos dos módulos, equações de ligação e equações de cálculo de propriedades.

Para resolução do sistema de equações, foram estudados vários métodos numéricos, os quais são apresentados no Apêndice C. Dentre os métodos analisados, o inicialmente escolhido foi o de substituição direta, pela sua simplicidade. Posteriormente foram introduzidos fatores de relaxação convenientes visando acelerar o processo de convergência.

Durante o estabelecimento dos algoritmos de cálculo, e devido ao particular método numérico escolhido, verificou-se a necessidade de modificação de algumas das equações dos modelos matemáticos anteriormente apresentados. Visando o entendimento dessa necessidade, apresenta-se a seguir um esboço muito resumido do algoritmo de resolução do problema utilizado na versão de simulação matemática. Os passos são os seguintes:

1) Interpretação da configuração física do sistema.
2) Avaliação inicial de temperaturas nos nós de vapor, condensado e solução e do coeficiente global de transferência de calor dos evaporadores e trocadores de calor.
3) Resolução de um sistema linear de equações algébricas onde as incógnitas são as vazões mássicas de vapor, condensado e
solução.

4) Utilização de outras equações para determinação de novos valores de temperatura de saturação, condensado e vapor d'água, e concentração da solução, segundo fórmulas de substituição direta, com ou sem relaxação.

5) Cálculo de propriedades.

6) Cálculo de novos valores de U dos evaporadores e trocadores de calor.

7) Verificação da convergência. Retorno ao passo 3 enquanto esta não seja atingida.

Uma das equações que compõe o sistema linear de equações mencionado no passo 3 anterior é o balanço de massa nos nós de vapor. Uma dificuldade surge quando existe divisão de fluxo de vapor (linha de evaporadores em paralelo). Para exemplificar, considere-se os sistemas de evaporação da figuras 3.3 e 3.4, ambos com o mesmo número de evaporadores (dois), sendo que naquele da figura 3.3 os evaporadores estão em série e no outro estão em paralelo.

Muito embora o número de vazões de vapor desconhecidas seja o mesmo nos dois casos, no sistema em série existem três balanços de massa em nós de vapor (nós N1, N2 e N3), enquanto no sistema em paralelo existem apenas dois (nós N1' e N2'). O sistema em paralelo tem mais equações de compatibilidade de pressão do que o sistema em série (quatro no sistema em paralelo contra três no sistema em série), resultando o mesmo número total de equações do problema, mas isso não resolve a dificuldade da falta de uma equação no sistema linear correspondente ao sistema de evaporação em paralelo, tendo em vista a particular metodologia adotada.
Figura 3.3: Exemplo de sistema de evaporação com dois evaporadores e dois efeitos (evaporadores em série).

Figura 3.4: Exemplo de sistema de evaporação com dois evaporadores e um efeito (evaporadores em paralelo).
A seguir será apresentada a maneira encontrada para suplantar essa dificuldade. Para fixar ideias, considere-se um sistema de evaporação particular, conforme apresentado na figura 3.5.

Para cada divisão de fluxo de vapor existe a perda de uma equação no sistema linear de equações. As equações de compatibilidade de pressão no nó N2 são:

\[\text{Tvapst}_{ev,3} = \text{Tvapste}_{cd}\]
\[\text{Tvapst}_{ev,5} = \text{Tvapste}_{cd}\]
\[\text{Tvapst}_{ev,6} = \text{Tvapste}_{cd}\]

As equações 3.2 e 3.3 podem ser reescritas:

\[\text{Tvapst}_{ev,5} = \text{Tvapst}_{ev,3}\]
\[\text{Tvapst}_{ev,6} = \text{Tvapst}_{ev,3}\]

Considere-se também que:

\[\text{Tvapste}_{ev,4} = \text{Tvapste}_{ev,1}\]
\[\text{Tvapste}_{ev,6} = \text{Tvapste}_{ev,1}\]

Subtraindo membro a membro a equação 3.4 da equação 3.6 e a equação 3.5 da equação 3.7 resulta:

\[\text{Tvapste}_{ev,4} - \text{Tvapst}_{ev,5} = \text{Tvapste}_{ev,1} - \text{Tvapst}_{ev,3}\]
\[\text{Tvapste}_{ev,6} - \text{Tvapst}_{ev,6} = \text{Tvapste}_{ev,1} - \text{Tvapst}_{ev,3}\]
Figura 3.5: Exemplo de sistema de evaporação com evaporadores em paralelo.
O termo da esquerda da equação 3.8 pode ser manipulado:

\[
Tvapste_{ev,4} - Tvapsts_{ev,5} = (Tvapste_{ev,4} - Tvapsts_{ev,4}) + \\
+ (Tvapste_{ev,5} - Tvapsts_{ev,5})
\]
(3.10)

Da definição de EPE resulta:

\[
Tvapsts_{ev,4} = Tvaps_{ev,4} - EPE_{ev,4}
\]
(3.11)

\[
Tvapsts_{ev,5} = Tvaps_{ev,5} - EPE_{ev,5}
\]
(3.12)

Substituindo as equações 3.11 e 3.12 na equação 3.10:

\[
Tvapste_{ev,4} - Tvapsts_{ev,5} = (Tvapste_{ev,4} - Tvaps_{ev,4}) + \\
+ (Tvapste_{ev,5} - Tvaps_{ev,5}) + EPE_{ev,4} + EPE_{ev,5}
\]
(3.13)

Os termos entre parênteses da equação 3.13 representam a diferença aparente de temperatura dos evaporadores 4 e 5 e podem ser relacionados com o coeficiente global aparente de transferência de calor através da equação 2.15, ou seja:

\[
Tvapste_{ev,4} - Tvaps_{ev,4} = \\
= \frac{(\tilde{h}_{vape_{ev,4}} - \tilde{h}_{vape_{ev,4}} - \tilde{h}_{cond_{ev,4}} - \tilde{h}_{cond_{ev,4}})(1 - P)}{U_{ext}A_{ext_{ev,4}}}
\]
(3.14)

Analogamente:

\[
Tvapste_{ev,5} - Tvaps_{ev,5} = \\
= \frac{(\tilde{h}_{vape_{ev,5}} - \tilde{h}_{vape_{ev,5}} - \tilde{h}_{cond_{ev,5}} - \tilde{h}_{cond_{ev,5}})(1 - P)}{U_{ext}A_{ext_{ev,5}}}
\]
(3.15)
Substituindo as equações 3.14 e 3.15 em 3.13 resulta:

\[
Tvapste_{ev,4} - Tvapsts_{ev,5} = \\
\frac{(\bar{M}_{vape_{ev,4}} + \bar{h}_{vape_{ev,4}} - \bar{M}_{cond_{ev,4}} - h_{cond_{ev,4}})(1 - P)}{U_{extap_{ev,4}} A_{ext_{ev,4}}} + \\
\frac{\bar{M}_{vape_{ev,5}} + \bar{h}_{vape_{ev,5}} - \bar{M}_{cond_{ev,5}} - h_{cond_{ev,5}})(1 - P)}{U_{extap_{ev,5}} A_{ext_{ev,5}}} + \\
+ EPE_{ev,4} + EPE_{ev,5}
\]

(3.16)

Manipulando agora o membro da direita da equação 3.8, resulta analogamente à equação 3.16:

\[
Tvapste_{ev,i} - Tvapsts_{ev,i} = \\
\sum_{i=1}^{3} \frac{(\bar{M}_{vape_{ev,i}} + \bar{h}_{vape_{ev,i}} - \bar{M}_{cond_{ev,i}} - h_{cond_{ev,i}})(1 - P)}{U_{extap_{ev,i}} A_{ext_{ev,i}}} + \\
+ \sum_{i=1}^{3} EPE_{ev,i}
\]

(3.17)

Substituindo as equações 3.16 e 3.17 na equação 3.8 resulta:

\[
\sum_{i=1}^{3} \frac{(\bar{M}_{vape_{ev,i}} + \bar{h}_{vape_{ev,i}} - \bar{M}_{cond_{ev,i}} - h_{cond_{ev,i}})(1 - P)}{U_{extap_{ev,i}} A_{ext_{ev,i}}} + \\
- \sum_{j=4}^{5} \frac{(\bar{M}_{vape_{ev,j}} + \bar{h}_{vape_{ev,j}} - \bar{M}_{cond_{ev,j}} - h_{cond_{ev,j}})(1 - P)}{U_{extap_{ev,j}} A_{ext_{ev,j}}} + \\
+ \sum_{i=1}^{3} EPE_{ev,i} - \sum_{j=4}^{5} EPE_{ev,j} = 0
\]

(3.18)

Fazendo uma manipulação na equação 3.9, analogamente ao que foi feito para a equação 3.8, resulta:
\[
\sum_{i=1}^{N_2} (\eta_{vape_{ev,i}} - \eta_{cond_{ev,i}}) (1 - P)
\]

\[
\sum_{i=1}^{N_3} \frac{\rho (\eta_{vape_{ev,i}} - \eta_{cond_{ev,i}}) (1 - P)}{U_{ext_{ev,i}} A_{ext_{ev,i}}}
\]

\[
\sum_{j=1}^{N_2} EPE_{ev,v} - \sum_{j=1}^{N_4} EPE_{ev,j} = 0
\]

Nas equações 3.18 e 3.19 aparecem vazões mássicas de vapor e condensado. Dessa forma estas equações podem ser aquelas adicionadas ao sistema linear, muito embora existam outras possibilidades. A vantagem das equações 3.18 e 3.19 é que elas implicam que a compatibilidade de temperaturas de saturação do vapor no nó de reunião decorre naturalmente. Além disso, a distribuição de temperatura de vapor nas linhas de evaporadores em paralelo usualmente apresentam valores fisicamente coerentes nas iterações intermediárias de cálculo. Outras metodologias tentadas provocaram grandes instabilidades do processo de cálculo.

Generalizando, para cada sequência de evaporadores em paralelo, a equação de compatibilidade de pressão na união dos fluxos pode ser substituída por:

\[
\sum_{i=N_1}^{N_2} (\eta_{vape_{ev,i}} - \eta_{cond_{ev,i}}) (1 - P)
\]

\[
\sum_{i=N_1}^{N_3} \frac{\rho (\eta_{vape_{ev,i}} - \eta_{cond_{ev,i}}) (1 - P)}{U_{ext_{ev,i}} A_{ext_{ev,i}}}
\]

\[
\sum_{j=N_3}^{N_4} (\eta_{vape_{ev,j}} - \eta_{cond_{ev,j}}) (1 - P)
\]

\[
\sum_{j=N_3}^{N_4} \frac{\rho (\eta_{vape_{ev,j}} - \eta_{cond_{ev,j}}) (1 - P)}{U_{ext_{ev,j}} A_{ext_{ev,j}}}
\]

\[
\sum_{i=N_1}^{N_2} EPE_{ev,v} - \sum_{j=N_3}^{N_4} EPE_{ev,j} = 0
\]
onde,

N1, N2: numeração inicial e final, respectivamente, da sequência de evaporadores de referência;
N3, N4: idem, idem, da sequência em paralelo;

Além da dificuldade anteriormente mencionada, resultante da divisão de fluxos de vapor, verifica-se a necessidade de uma equação adicional no sistema linear, qualquer que seja a planta analisada. Por uma metodologia análoga à anterior pode-se chegar à seguinte equação:

\[
\sum_{i=N_1}^{N_2} \left(\frac{\theta_{vape, i} \cdot h_{vape, i} \cdot \theta_{conds, i} \cdot h_{conds, i}}{U_{extap, i} \cdot A_{ext, i}} \right) (1 - P) + \sum_{i=N_1}^{N_2} \frac{\theta_{EPE, i}}{\theta_{vap, i}} = \Delta T_g
\]

onde, \(\Delta T_g\) é o salto térmico global do EME dado por:

\[
\Delta T_g = T_{vapste, i} - T_{vapsts, i}
\]

N1 e N2 correspondem à numeração dos evaporadores de uma sequência de evaporadores que leve do primeiro ao último efeito.

3.3. ALGORITMO PARA A VERSÃO DE SIMULAÇÃO MATEMÁTICA - CONCENTRAÇÃO FINAL DESCONHECIDA

Os dados de entrada e as principais variáveis calculadas nesta e nas outras versões analisadas são apresentados na tabela 3.1.

Na apresentação do algoritmo adota-se uma convenção em que,
Tabela 3.1: Relação de dados de entrada e algumas variáveis calculadas nas três versões de programa desenvolvidas.

<table>
<thead>
<tr>
<th>Versão do programa</th>
<th>Avaliação</th>
<th>Simulação</th>
<th>Simulação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dado de entrada</td>
<td>Variável calculada</td>
<td>Dado de entrada</td>
</tr>
<tr>
<td>Parâmetro</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dimensões e número de tubos dos evaporadores</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dimensões e número de tubos dos trocadores de calor</td>
<td>X</td>
<td>X (1)</td>
<td>X (1)</td>
</tr>
<tr>
<td>Efetividade dos trocadores de calor</td>
<td>X</td>
<td>X (1)</td>
<td>X (1)</td>
</tr>
<tr>
<td>Coeficiente global aparente de transferência de calor dos evaporadores</td>
<td>X (real)</td>
<td>X (est.)</td>
<td>X (est.)</td>
</tr>
<tr>
<td>Coeficiente global de transferência de calor dos trocadores de calor</td>
<td>X (real)</td>
<td>X(est.) (2)</td>
<td>X(est.) (2)</td>
</tr>
<tr>
<td>Pressão do vapor vivo</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Temperatura do vapor vivo</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vazão de vapor vivo</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vazão mássica das sangrias intermediárias de vapor</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vazão mássica de vapor destinado aos trocadores de calor</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) A efetividade e as dimensões geométricas do trocador de calor são dados de entrada mutuamente exclusivos.
(2) É calculado apenas quando as dimensões geométricas são dados de entrada.

(continua na página seguinte)
Tabela 3.1 (cont.): Relação de dados de entrada e algumas variáveis calculadas nas três versões de programa desenvolvidas.

<table>
<thead>
<tr>
<th>Versão do programa</th>
<th>Avaliação</th>
<th>Simulação versão 1</th>
<th>Simulação versão 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parâmetro</td>
<td>Dado de entrada</td>
<td>Variável calculada</td>
<td>Dado de entrada</td>
</tr>
<tr>
<td>Vazão mássica de vapor efluente dos evaporadores, tanques de reevaporação de condensado e produto</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vazão mássica de vapor na sucção e descarga do ejetor</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vazão mássica e estado do vapor motor no ejetor</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Concentração da solução diluída</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Temperatura da solução diluída</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vazão mássica de solução diluída</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Concentração do produto</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Temperatura do produto</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Vazão mássica de produto</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

(continua na página seguinte)
Tabela 3.1 (cont.): Relação de dados de entrada e algumas variáveis calculadas nas três versões de programa desenvolvidas.

<table>
<thead>
<tr>
<th>Versão do programa</th>
<th>Avaliação</th>
<th>Simulação versão 1</th>
<th>Simulação versão 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parâmetro</td>
<td>Dado de entrada</td>
<td>Variável calculada</td>
<td>Dado de entrada</td>
</tr>
<tr>
<td>Vazão mássica de água evaporada</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Diferença de temperatura aparente em cada evaporador</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pressão no espaço de vapor do último efeito de evaporação</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pressão no espaço de vapor dos evaporadores</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Temperatura real no espaço de vapor dos evaporadores</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Concentrações intermediárias da solução</td>
<td>X (3)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Na divisão de fluxo de solução, percentagem de vazão mássica destinada a cada corrente</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Temperatura da solução na saída dos trocadores de calor</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

(3) Quando existe divisão de fluxo de vapor deve-se conhecer uma concentração intermediária para cada linha de evaporadores em paralelo.
por exemplo, quando se menciona calcular o valor da variável $T_{vapste_{ev,i}}$ através da equação N significa que a variável $T_{vapste_{ev,i}}$ correspondente a todos os evaporadores deve ser calculada, a menos de menção em contrário.

O algoritmo para a presente versão é o seguinte:

1) Interpretação da configuração física do sistema.

2) Estimativa inicial das seguintes variáveis:

a) Temperatura de saturação do vapor na saída de cada evaporador – $T_{vapsts_{ev,i}}$. Na saída do último efeito a temperatura é um dado de entrada. Deve-se adotar um perfil linear de temperatura entre o primeiro e último efeitos.

b) Admite-se $E_{P_{ev,i}}$ e $E_{P_{rp,i}}$ nulos.

c) Calcula-se as temperaturas de saturação do vapor nos demais pontos:

- c.1) $T_{vapsts_{rc,k}}$, equação 2.175.
- c.2) $T_{vapsts_{rp,i}}$, equação 2.176.
- c.3) $T_{vapsts_{ej,m}}$, equação 2.177.
- c.4) $T_{vapsts_{ext,p}}$, equação 2.178.
- c.5) $T_{vapste_{ev,i}}$, equação 2.179.
- c.6) $T_{vapste_{ic,j}}$, equação 2.180.
- c.7) $T_{vapste_{ej,m}}$, equação 2.181.
- c.8) $T_{vapste_{ext,p}}$, equação 2.182.

d) Calcula-se $T_{vaps_{ev,i}}$ através da equação 2.13.

e) Calcula-se $T_{vaps_{rp,i}}$ através da equação 2.166.

f) Calcula-se $T_{conds_{ev,i}}$ através da equação 2.12.

g) Admite-se:

$$T_{sols_{ev,i}} = T_{vaps_{ev,i}}$$

$$T_{sols_{rp,i}} = T_{vaps_{rp,i}}$$
h) Acompanhando o trajeto da solução, deve-se calcular a temperatura da solução nos demais pontos.

h.1) Calcula-se \(T_{s_{\text{ev},i}} \), \(T_{s_{\text{rpl}}} \) e \(T_{s_{\text{ext},p}} \) através das equações 2.186 a 2.189. Em cada nó, adota-se \(T_{s_{\text{ol}}} \) como média aritmética de \(T_{s_{\text{ev},i}} \), \(T_{s_{\text{lc},i}} \), \(T_{s_{\text{rpl}}} \) e \(T_{s_{\text{ext},p}} \).

h.2) Nos trocadores de calor, calcula-se \(T_{s_{\text{lc},i}} \) através da equação 2.127. Caso a efetividade não seja dado de entrada, adota-se \(U_{\text{next}_{\text{lc},i}} = 400 \) kcal/h.m\(^2\).\(^\circ\)C e calcula-se \(\varepsilon \) através da equação 2.152, devidamente rearranjada.

i) Calcula-se \(T_{\text{conde}_{\text{equi}}} \) usando uma média aritmética, no nó de condensado, entre \(T_{\text{conde}_{\text{ev},i}} \), \(T_{\text{conde}_{\text{lc},i}} \) e \(T_{\text{conde}_{\text{rck}}} \).

j) Admitindo a solução com concentração nula em todos os pontos, calcula-se as propriedades termodinâmicas do vapor, condensado e solução em todos os pontos.

k) Admite-se \(U_{\text{extap}_{\text{ev},i}} = 1.000 \) kcal/h.m\(^2\).\(^\circ\)C para os evaporadores de filme ascendente e \(U_{\text{extap}_{\text{ev},i}} = 400 \) kcal/h.m\(^2\).\(^\circ\)C para os evaporadores tipo "heat and flash".

l) Calcula-se \(\Phi \) do ejetor, equação 2.172.

A partir deste ponto são calculadas as variáveis correspondentes à iteração \((n+1)\).

3) Calcula-se as vazões mássicas de vapor, condensado e solução em todos os pontos do sistema. Para tanto, deve-se resolver um

Como, por hipótese, não existem reciclos nas correntes de solução, essa metodologia permite calcular a temperatura da solução em todos os pontos do sistema.
sistema linear de equações algébricas constituídas pelas equações.

a) Balanço de massa do lado do vapor condensante nos evaporadores, equação 2.1.
b) Balanço de massa da solução nos evaporadores, equação 2.2.
c) Balanço de energia global nos evaporadores, equação 2.4.
d) Balanço de massa do lado do vapor nos trocadores de calor, equação 2.116.
e) Balanço de massa da solução nos trocadores de calor, equação 2.117.
f) Balanço de energia nos trocadores de calor, equação 2.120.
g) Balanço de massa nos tanques de reevaporação de condensado, equação 2.153.
h) Balanço de energia nos tanques de reevaporação de condensado, equação 2.154.
i) Balanço de massa global e energia nos tanques de reevaporação de produto, equações 2.159 e 2.161.
j) Balanço de massa e curva de operação do ejetor, equações 2.168 e 2.170.
k) Balanço de massa nos nós de vapor, equação 2.173.
l) Balanço de massa nos nós de solução, equação 2.183.
m) Equações de divisão de fluxo nos nós de solução com divisão de fluxo, equações 2.196 a 2.199.
n) Balanço de massa nos nós de condensado, equação 2.200.
o) Nos nós de vapor com divisão de fluxo, para cada sequência de evaporadores em paralelo, equação 3.20.
p) Equação modificada complementar, número 3.21.

4) Cálculo da temperatura do vapor em todas as correntes. O procedimento é o seguinte:
a) Partindo do primeiro efeito, calcula-se $\text{Tvaps}^{(n+1)}_{\text{ev},i}$ através da equação de transferência de calor, 2.15, e, em seguida, $\text{Tvapste}^{(n+1)}_{\text{ev},i}$ através da equação de definição de EPE, 2.13.

Deve-se usar EPE$^{(n)}_{\text{ev},i}$ nos cálculos.

b) Calcula-se $\text{Tvapste}^{(n+1)}_{\text{ev},i}$ do efeito seguinte através das equações de compatibilidade de pressão.

c) Repete-se o cálculo sucessivamente a partir do passo 2.a até se chegar ao último efeito.

5) Repetindo o procedimento do passos 2.c e 2.e, calcula-se as temperaturas de vapor nos demais pontos.

6) Calcula-se $\psi^{(n+1)}$ do ejetor, equação 2.172.

7) Acompanhando o trajeto da solução, calcula-se as concentrações da solução da iteração $(n+1)$ usando-se as equações:

a) Balanço de massa do soluto nos equipamentos: evaporadores (equação 2.3), trocadores de calor (equação 2.119) e tanques de reevaporação de produto (equação 2.160).

b) Balanço de massa e equações de compatibilidade nos nós de solução, equações 2.191 e 2.192 a 2.195.

8) Acompanhando o trajeto da solução, calcula-se as temperaturas da solução da iteração $(n+1)$ nos vários pontos.

a) Usando as equações 2.89 a 2.115, calcula-se as concentrações e temperaturas internas nos evaporadores, bem como $\text{Tsol}^{(n+1)}_{\text{ev},i}$. A equação 2.185 deve ser usada para o cálculo de $\text{Tsol}^{(n+1)}_{\text{tp},i}$.

b) Calcula-se $\text{Tsole}^{(n+1)}_{\text{ev},i}$, $\text{Tsole}^{(n+1)}_{\text{tp},i}$ e $\text{Tsole}^{(n+1)}_{\text{tp},i}$ através do uso combinado das equações 2.184, 2.186, 2.187 e 2.188 a 2.189.

c) Nos trocadores de calor, calcula-se $\text{Tsol}^{(n+1)}_{\text{tc},i}$ através da equação 2.127. Caso $\epsilon_{\text{tc},i}$ não seja dado de entrada,
deve-se utilizar o procedimento apresentado no item 2.22-e.2 para cálculo de $U_{\text{next}}^{(n+1)}_{l_{c,j}}$, calculando-se em seguida $\varepsilon_{l_{c,j}}$ através da equação 2.152.

9) Calcula-se as temperaturas de condensado nos vários pontos, usando as equações 2.12, 2.158 e 2.201 a 2.205.

10) Calcula-se as propriedades do vapor, solução e condensado nos vários pontos.

11) Calcula-se $E^{(n+1)}_{\text{EPE, ev., l}}$ e $E^{(n+1)}_{\text{EPE, rp, l}}$.

12) Calcula-se $U^{(n+1)}_{\text{extap, ev., l}}$ dos evaporadores através dos procedimentos apresentados nos itens 2.2.1-e.1 e 2.2.1-e.2.

13) Verifica-se a convergência das vazões mássicas e temperaturas; retorna-se ao passo 3 se os erros forem superiores a um valor pré-fixado.

Conforme visto no algoritmo apresentado, com exceção da combinação linear de algumas equações, não existe nenhuma modificação nas equações que constituem o modelo matemático do problema. Nesse sentido, o procedimento iterativo proposto constitui claramente o método de substituição direta.

Devido a dificuldades de convergência do método de cálculo, foram introduzidos fatores de relaxação iguais a 0,5 no cálculo iterativo de EPE, T_vapst, T_vap e U. Tal procedimento eliminou os casos de instabilidade inicialmente verificados e aumentou significativamente a velocidade de convergência.

3.4. ALGORTIMO PARA A VERSÃO DE SIMULAÇÃO MATEMÁTICA - VAZÃO DE ENTRADA DE SOLUÇÃO DESCONHECIDA

O algoritmo é bastante semelhante ao do item 3.3, devendo-se
realizar apenas algumas modificações.

1) No passo 3 deve-se acrescentar a equação:

\[\dot{m}_{\text{solute}} X_e^{\text{ext}} - \dot{m}_{\text{solute}} X_s^{\text{ext}} = 0 \] \hspace{1cm} (3.23)

A equação 3.23 é um balanço de massa global de soluto no EME, contendo uma informação adicional, qual seja, a concentração final da solução, conhecida nesta versão do programa. Observe-se que essa equação adicional é necessária porque agora \(\dot{m}_{\text{solute}} \) é uma incógnita.

2) No passo 7 não se deve realizar o balanço de massa no nó de solução em que a solução é enviada ao meio externo, uma vez que a concentração final \(X_s^{\text{ext}} \) é agora um dado de entrada.

3.5. ALgoritmo Para a Versão de Avaliação Matemática

Conforme visto anteriormente, esta versão do programa destina-se principalmente ao acompanhamento operacional de um EME.

Nesta versão é calculado o valor real dos coeficientes de transferência de calor dos evaporadores e trocadores de calor, contrariamente ao que acontece nas versões de simulação, onde esses coeficientes são estimados através de modelos estabelecidos experimentalmente. Isso decorre do fato de que o sistema de equações é determinado (isto é, podem ser calculadas as vazões mássicas e temperaturas do vapor, condensado e solução nos vários pontos do sistema onde elas são desconhecidas) sem o uso de correlações para estimativa de \(U \). Os valores reais de \(U \) são
calculados ao final do programa usando-se a equação 2.15 que o define. Observe-se que esta é exatamente uma das finalidades desta versão do programa, ou seja, através do acompanhamento dos valores reais dos \(U \) poder vislumbrar o ritmo de formação de inscrutura nos equipamentos.

No estabelecimento do algoritmo de resolução do problema, uma das dificuldades que aparece na elaboração desta versão, à semelhança do que ocorre nas outras versões, é a falta de equações no sistema linear de equações quando o EME tem evaporadores em paralelo. Nesta versão não pode ser utilizada a equação modificada 3.20, tendo em vista que os coeficientes de transferência de calor são agora variáveis desacopladas do problema principal, conforme visto anteriormente.

Para cada sequência de evaporadores em paralelo deve ser conhecida então uma informação adicional. No desenvolvimento deste trabalho foi estabelecido que esta informação adicional é a concentração da solução em algum ponto intermediário do EME. De maneira geral, qualquer ponto intermediário do EME pode ser escolhido, existindo entretanto exceções.

Para fixar ideias, considere-se o sistema da figura 3.6. O sistema possui uma divisão de fluxo de vapor, com dois evaporadores em paralelo. Como a solução que sai de um desses evaporadores entra no outro, é possível o agrupamento "fictício" destes dois evaporadores, gerando o EME "equivalente" da figura 3.7. Neste caso, equivalente significa que externamente ao volume de controle contendo os equipamentos agrupados não existe alteração das variáveis do processo. Como o sistema equivalente tem solução matemática determinada, independentemente de qualquer informação outra, a concentração adicional conhecida deve ser
Figura 3.6: Exemplo de sistema de evaporação com evaporadores em paralelo.

Figura 3.7: Sistema equivalente ao da figura 3.6.
interna ao volume de controle anteriormente mencionado. Caso contrário o sistema linear de equações não tem solução – quando a concentração fornecida é diferente daquela que é a resposta natural do sistema equivalente, figura 3.7 – ou é indeterminado – quando a concentração fornecida é igual àquela que é a resposta natural do sistema equivalente.

A informação adicional é introduzida no sistema linear sob a forma da seguinte equação:

\[\dot{M}_{\text{sole}} \dot{X}_e \dot{\text{ext}} - \dot{M}_{\text{sole}} \dot{X}_e \dot{\text{ev}_i} = 0 \] \hspace{1cm} (3.24)

onde \(X_e \dot{\text{ev}_i} \) é a concentração adicional conhecida (entrada do evaporador \(i \)). A variável \(\dot{M}_{\text{sole}} \dot{\text{ev}_i} \) é a única incógnita da equação 3.24. Essa equação é um balanço de massa do soluto entre a entrada da solução no EME e a entrada da solução no evaporador \(i \), razão pela qual toda a vazão de solução deve passar por estes dois pontos.

Outra equação que não pode ser aproveitada é a 3.21 (equação modificada), igualmente pelo desconhecimento de \(U \). Essa equação é substituída pelo balanço de massa de soluto entre a entrada e a saída do EME, que é:

\[\dot{M}_{\text{sole}} \dot{X}_e \dot{\text{ext}} - \dot{M}_{\text{sols}} \dot{X}_s \dot{\text{ext}} = 0 \] \hspace{1cm} (3.25)

na qual \(\dot{M}_{\text{sols}} \dot{\text{ext}} \) é a única incógnita.

Feito isto, o algoritmo desta versão é análogo ao da versão do item 3.3 com as seguintes modificações:

1) No passo 2.a a temperatura de saturação do vapor no espaço de vapor de todos os evaporadores é um dado de entrada, pois são
conhecidas as pressões.

2) No passo 2.h.2, \(T_{sols_{tc,j}} \) é um dado de entrada.

3) No passo 3.o, a equação 3.20 é substituída pela equação 3.24.

4) No passo 3.p, a equação 3.21 é substituída pela equação 3.25.

5) Não se executa os passos 4, 5 e 6, uma vez que, fixadas as pressões de vapor, as temperaturas de saturação e \(\psi \) do ejetor necessitam ser calculados apenas uma vez, no início.

6) Após a execução do passo 7, calcula-se \(EPE_{ev,i}^{(n+1)} \) e \(EPE_{rp,l}^{(n+1)} \). Em seguida, deve-se computar os valores de \(T_{vap_{ev,i}}^{(n+1)} \) pela equação 2.13 e \(T_{vap_{rp,l}}^{(n+1)} \) pela equação 2.188.

7) Não se executa o passo 8.c, uma vez que \(T_{sols_{tc,j}} \) é dado de entrada.

8) Não se executa o passo 9, uma vez que \(T_{cond} \) só deve ser calculado uma vez no início, permanecendo constante em seguida.

9) Não se executa o passo 12.

10) Atingida a convergência, pode-se calcular \(U_{next_{ev,i}} \), equação 2.15 e \(U_{next_{tc,j}} \) pela equação:

\[
U_{next_{tc,j}} = A_{next_{tc,j}} \frac{T_{sols_{tc,j}} - T_{sols_{tc,j}}}{ln \left[\frac{T_{vap_{tc,j}} - T_{sols_{tc,j}}}{T_{vap_{tc,j}} - T_{sols_{tc,j}}} \right]} = M_{vape_{tc,j}} h_{vape_{tc,j}} - M_{conds_{tc,j}} h_{conds_{tc,j}} \quad (3.26)
\]
4. ANÁLISE DE RESULTADOS

4.1. COMENTÁRIOS INICIAIS

Neste capítulo serão apresentados os resultados de vários estudos efetuados com o auxílio dos simuladores desenvolvidos, alguns deles com o suporte de ensaios experimentais. Muito embora os simuladores possam ser utilizados para análise de sistemas de evaporação concentrando qualquer tipo de solução (desde que se disponha de correlações para o cálculo de propriedades), este capítulo considera apenas EME para concentração de licor negro da indústria de celulose e papel. Essa escolha não é casual mas decorre do fato da indústria de celulose e papel ser um setor de grande importância em nosso país, e a etapa de concentração do licor negro tem papel relevante no processo, tanto do ponto de vista de produção como do de consumo energético. Em vista disso, o autor do presente trabalho teve a oportunidade de visitar, analisar e realizar ensaios em algumas plantas industriais de papel e celulose.

4.2. INVESTIGAÇÕES EXPERIMENTAIS

Com a finalidade de investigar com que grau de segurança podem ser aceitas as relações de Gudmundson, estabelecidas para evaporadores de filme ascendente, foi realizado um ensaio experimental num sistema de evaporação de uma planta de celulose e papel (concentração de licor negro).

O fluxograma do sistema de evaporação analisado é apresentado na figura 4.1. Trata-se de um sistema de quatro evaporadores e
Figura 4.1: Fluxograma do sistema de evaporação ensaiado.
quatro efeitos, a solução percorrendo o trajeto 3-4-2-1. Entre o 4º e o 2º efeitos a solução passa pelos pós-aquecedores do 4º e 3º efeitos, os quais nada mais são do que seções dos evaporadores onde a solução recebe calor em escoamento monofásico, podendo ser representados por trocadores de calor convencionais.

Por ocasião do ensaio o processo estava utilizando madeira numa proporção de 97% de Pinus taeda e 3% de Pinus elliottii. Devido a condições específicas de processo, não existe a formação de espuma no sistema de evaporação de múltiplo efeito analisado.

As dimensões físicas dos evaporadores que constituem o EME analisado são apresentadas na tabela 4.1.

Tabela 4.1: Dimensões físicas do EME analisado.

<table>
<thead>
<tr>
<th></th>
<th>Efeito 1</th>
<th>Efeito 2</th>
<th>Efeito 3</th>
<th>Efeito 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro externo dos tubos (mm)</td>
<td>50,8</td>
<td>50,8</td>
<td>50,8</td>
<td>50,8</td>
</tr>
<tr>
<td>Espessura (mm)</td>
<td>1,24</td>
<td>3,40</td>
<td>3,40</td>
<td>3,40</td>
</tr>
<tr>
<td>No. de tubos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Seção de evaporação (SE)</td>
<td>510</td>
<td>575</td>
<td>552</td>
<td>572</td>
</tr>
<tr>
<td>- Seção de pós-aquecimento (SP)</td>
<td></td>
<td></td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>No. de tubos obstruídos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- SE</td>
<td>14</td>
<td></td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>- SP</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Área de troca de calor (m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interna: SE</td>
<td>642</td>
<td>678</td>
<td>628</td>
<td>652</td>
</tr>
<tr>
<td>- Externa: SE</td>
<td>676</td>
<td>783</td>
<td>725</td>
<td>753</td>
</tr>
</tbody>
</table>

Apenas os evaporadores que constituem o 3º e o 4º efeito de evaporação são do tipo filme ascendente, razão pela qual serão

1 Deve ser observado que o simulador desenvolvido tem relações para cálculo de U de evaporadores de filme ascendente apenas para soluções não espumantes.
analisados mais detalhadamente. Os outros dois evaporadores são do tipo filme ascendente/descendente, não havendo ainda equacionamento adequado para estimativa do coeficiente global de transferência de calor, U.

Para a obtenção dos valores reais de U dos evaporadores foi utilizada a versão de avaliação matemática do programa desenvolvido. Nesse sentido foram medidas as seguintes variáveis:

- Vazão, temperatura e concentração da solução na entrada do EME.
- Temperatura da solução após os pós-aquecedores.
- Concentração da solução na saída do 2º efeito.
- Concentração da solução na saída do EME.
- Pressão no espaço de vapor de cada efeito.
- Pressão e temperatura do vapor "vivo".

Adicionalmente foram medidas a concentração da solução na saída do 2º e 4º efeitos e a vazão mássica de vapor "vivo", tendo em vista uma comparação com os valores obtidos através do uso do programa computacional.

A vazão mássica foi medida através de placa de orifício, as temperaturas, através de termômetros bimétalicos e as pressões, através de manômetros de Bourdon, todos calibrados previamente. As pressões absolutas foram obtidas acrescentando-se às pressões efetivas a pressão barométrica medida por ocasião dos ensaios. As concentrações da solução foram obtidas indiretamente através da medição das densidades em °Bé. Para correlacionar, °Bé e

\[°Bé = \text{Gr}au \text{ Beumé}.\]
concentração foram utilizados os resultados de ensaios efetuados pelos técnicos da empresa.

Para avaliação das proprietades do licor negro foram utilizadas as correlações apresentadas no Apêndice B.

Foram realizados ensaios em três condições de operação, sendo dispensada atenção especial para que essas condições estivessem muito próximas do regime permanente. Os tubos dos evaporadores e trocadores de calor foram limpos do lado interno previamente à realização dos ensaios.

As figuras 4.2, 4.3 e 4.4 mostram os valores médicos (dados de entrada do programa e valores para comparação) e os calculados pelo programa computacional.

Deve-se ressaltar a excelente concordância obtida entre os valores medidos e os calculados da vazão mássica de vapor "vivo" e concentrações da solução nos três ensaios realizados. A tabela 4.2 apresenta a comparação.

A tabela 4.3 apresenta os valores de U do 3º e 4º efeitos, comparando os valores reais, obtidos com o auxílio do programa de avaliação matemática, e os valores previstos através do uso das relações de Gudmundson para evaporadores sem incrustação.

Os resultados apresentados na tabela 4.3 evidenciam valores reais de U sistematicamente menores que os valores previstos. As diferenças relativas percentuais variam de 12,4 a 17,3 %, exceção feita ao 3º efeito, onde a diferença atingiu 25,7 % no 2º ensaio.

Mesmo sem fazer uma análise de erros das medições e resultados, pode-se dizer que tais diferenças parecem aceitáveis, tendo em vista a incerteza das equações de Gudmundson (+15 %) e principalmente a possibilidade de haver certa incrustação externamente aos tubos. Isto decorre do fato de que o vapor
Tabela 4.2: Comparação entre os valores medidos e os calculados pelo programa de algumas variáveis do BME analisado.

<table>
<thead>
<tr>
<th>Ensaio</th>
<th>Vazão de vapor vivo (kg/h)</th>
<th>Concentração na saída do 2o. efeito (%)</th>
<th>Concentração na saída do 4o. efeito (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medida</td>
<td>Calculada</td>
<td>Medida</td>
</tr>
<tr>
<td>Ensaio 1</td>
<td>21.300</td>
<td>20.010</td>
<td>42.5</td>
</tr>
<tr>
<td>erro rel.</td>
<td>-6.1 %</td>
<td>6.1 %</td>
<td>-0.9 %</td>
</tr>
<tr>
<td>Ensaio 2</td>
<td>20.300</td>
<td>19.250</td>
<td>42.5</td>
</tr>
<tr>
<td>erro rel.</td>
<td>-5.2 %</td>
<td>-5.2 %</td>
<td>+0.2 %</td>
</tr>
<tr>
<td>Ensaio 3</td>
<td>18.200</td>
<td>16.810</td>
<td>44.5</td>
</tr>
<tr>
<td>erro rel.</td>
<td>-7.6 %</td>
<td>-7.6 %</td>
<td>-3.4 %</td>
</tr>
</tbody>
</table>

Tabela 4.3: Comparação entre os valores de U obtidos através das medições e do uso do programa de avaliação matemática e os valores previstos pela formulação de Gudmundson.

<table>
<thead>
<tr>
<th>Ensaio</th>
<th>U (kcal/h.m².°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3º efeito</td>
</tr>
<tr>
<td></td>
<td>Medido</td>
</tr>
<tr>
<td>1º Ensaio</td>
<td>972</td>
</tr>
<tr>
<td>erro relativo</td>
<td>-16,5 %</td>
</tr>
<tr>
<td>2º Ensaio</td>
<td>852</td>
</tr>
<tr>
<td>erro relativo</td>
<td>-25,7 %</td>
</tr>
<tr>
<td>2º Ensaio</td>
<td>954</td>
</tr>
<tr>
<td>erro relativo</td>
<td>-14,3 %</td>
</tr>
</tbody>
</table>
Observações:
1 - Os valores indicados por (*) foram medidos.
2 - Tst indica temperatura de saturação do vapor d'água.
3 - Todas as pressões são apresentadas em valor absoluto.

Figura 4.2: Valores medidos e calculados no primeiro ensaio do EME analisado.
Observações:
1 - Os valores indicados por (%) foram medidos.
2 - Tst indica temperatura de saturação do vapor d'água.
3 - Todas as pressões são apresentadas em valor absoluto.

Figura 4.3: Valores medidos e calculados no segundo ensaio do ENE analisado.
Observações:
1. Os valores indicados por (C) foram medidas.
2. Todas as pressões são apresentadas em valor absoluto.
3. A temperatura de saturação do vapor d'água.

Figura 4.4: Valores medidos e calculados no terceiro ensaio do ENH analisado.
condensante no 2º, 3º e 4º efeitos é contaminado (água extraída da solução) e a limpeza externa dos tubos não havia sido efetuada imediatamente antes dos ensaios. Se de fato houvesse essas incrustações, as mesmas por si só justificariam as diferenças observadas.

Nesse sentido, os ensaios realizados permitem concluir, numa primeira análise, que as relações de Gudmundson fornecem estimativas boas do U de evaporadores de filme ascendece.

4.3. ANÁLISE DE CASOS

Neste item o programa de simulação matemática de EME será utilizado para investigar a influência de alguns parâmetros no comportamento de um sistema típico de concentração de licor negro. Os parâmetros variados são: temperatura de alimentação da solução na entrada do EME, concentração da solução na entrada do EME, temperatura de saturação do vapor "vivo", temperatura de saturação do vapor efluente do último efeito e vazão mássica de solução na entrada do EME. Será investigado o comportamento das variáveis: concentração final da solução, capacidade, índice de produção específica (kg água evaporada/kg vapor "vivo"), consumo específico (kg vapor "vivo"/kg água evaporada), coeficiente global médio de transferência de calor do EME e coeficiente global de transferência de calor de cada evaporador.

O sistema de evaporação típico analisado é apresentado na figura 4.5. Trata-se de um sistema com seis evaporadores e cinco efeitos de evaporação, uma vez que o vapor "vivo" é fornecido em paralelo aos evaporadores 1 e 2. A solução percorre a sequência de evaporadores 4-5-6-3-2-1 seguindo para um tanque de reevaporação
TRC : Tanque de reevaporação de condensado
TRP : Tanque de reevaporação do produto
TC : Trocador de calor
Observação: Pressões indicadas em valor absoluto

Figura 4.5: Fluxograma do EME utilizado na análise de casos. Caso típico de concentração de licor negro.
de produto. Existe um trocador de calor para aquecimento da solução entre os evaporadores 6 e 3. O sistema possui ainda três tanques de reevaporação de condensado.

Os evaporadores 1 e 2 são do tipo "heat and flash" e os demais, tipo filme ascendente. As características físicas dos evaporadores são apresentadas na folha de entrada de dados do programa, listagem 1.

4.3.1 CASO DE REFERÊNCIA

É o caso a partir do qual serão feitas as modificações. Os dados de entrada são:

- Temperatura de saturação do vapor "vivo": 120 °C.
- Temperatura do vapor "vivo": 152 °C.
- Temperatura de saturação do vapor efluente do último efeito: 65 °C.
- Vazão mássica de solução na entrada do EME: 44.800 kg/h.
- Temperatura de alimentação da solução na entrada do EME: 70 °C.
- Teor mássico de sólidos da solução na entrada do EME: 0,14.
- Taxa de recirculação da solução no evaporador 1: 74.
- Taxa de recirculação da solução no evaporador 2: 90.
- Fração de perda de calor dos evaporadores para o meio ambiente: 2 %.
Os dados anteriores referem-se a um projeto real de EME9.

As listagens 1 e 2 apresentam respectivamente os dados de entrada e os valores calculados pela versão de simulação matemática, concentração final desconhecida.

Observando a listagem dos valores calculados, deve-se destacar o pequeno valor relativo do coeficiente global de transferência de calor dos evaporadores 5 e 6 (principalmente devido ao baixo valor de T\textsubscript{boil}). No evaporador 6 isto implica um aumento da diferença aparente de temperatura (conforme definição no capítulo 2), representando um "gargalo" na operação do sistema.

Outros resultados:

- Concentração final da solução: 40,4 %.
- Vazão total de água evaporada: 29.270 kg/h.
- Consumo específico: 0,265 kg vapor "vivo"/kg água evaporada.
- Produção específica: 3,77 kg água evaporada/kg vapor "vivo".

O produção específica real deve ser comparada com o valor 5 (equivalente ao número de efeitos), obtido em um evaporador ideal.

9 O autor do presente trabalho foi convidado a opinar sobre um projeto de EME para concentração de licor negro em processo que utiliza madeira do tipo pinus.
Listagem 1: Caso de referência - dados de entrada

Versão de simulação matemática
<table>
<thead>
<tr>
<th>Dados de Entrada</th>
<th>EVAPORADOR DE MULTIPLA EFETO</th>
<th>licor negro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versão Simulação</td>
<td>10- 4-1990</td>
<td></td>
</tr>
</tbody>
</table>

Condições de Entrada e Saída do E.M.E.

<table>
<thead>
<tr>
<th></th>
<th>Vapor</th>
<th>Solução</th>
<th>S. Vacuo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.028</td>
<td>44800.0</td>
<td>0.255</td>
</tr>
</tbody>
</table>

Temperatura

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>152.00</td>
<td></td>
<td>119.99</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70.00</td>
<td></td>
<td>65.00</td>
</tr>
</tbody>
</table>

Concentração

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.00</td>
</tr>
</tbody>
</table>

Sequência de Fluxos do Vapor e da Solução

<table>
<thead>
<tr>
<th>corpo</th>
<th>corpo(s) de origem</th>
<th>corpo(s) de destino</th>
<th>divisão</th>
<th>da solução</th>
<th>da vapor</th>
<th>da solução</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>vapor viva</td>
<td>saída</td>
<td>100%</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>vapor viva</td>
<td>1</td>
<td>100%</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1 2</td>
<td>2</td>
<td>4</td>
<td>100%</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3 alimentação</td>
<td>5 6</td>
<td>5</td>
<td>5</td>
<td>100%</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5 6</td>
<td>6</td>
<td>5</td>
<td>100%</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
<td>3</td>
<td>sistema vacuo</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Configuração física e geométrica

<table>
<thead>
<tr>
<th>corpo</th>
<th>área</th>
<th>Dint/Dext</th>
<th>número</th>
<th>compr.</th>
<th>Tx Recirc</th>
<th>K tubo</th>
<th>tipo</th>
<th>número</th>
<th>troca</th>
<th>dos tubos</th>
<th>tubos</th>
<th>total</th>
<th>prod</th>
<th>(kcal/h.m.°C)</th>
<th>de</th>
<th>H/V</th>
<th>(m²)</th>
<th>(mm)</th>
<th>evap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107.5</td>
<td>35.1 38.1</td>
<td>200 V</td>
<td>6.5</td>
<td>74.000</td>
<td>14.600</td>
<td>1</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>FHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107.5</td>
<td>35.1 38.1</td>
<td>200 V</td>
<td>6.5</td>
<td>90.000</td>
<td>14.600</td>
<td>2</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>FHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>14.600</td>
<td>FHF</td>
<td>3</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>FHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>14.600</td>
<td>FHF</td>
<td>4</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>FHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>14.600</td>
<td>FHF</td>
<td>5</td>
<td>341.6</td>
<td>47.8 50.8</td>
<td>325</td>
<td>7.0</td>
<td>FHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FHF, FHF = filme ascendente c/ circ. natural ou forçada; H=horizontal

Periféricos

<table>
<thead>
<tr>
<th>ERL</th>
<th>ERL</th>
<th>ERL</th>
<th>TFC</th>
<th>TFC</th>
<th>TFC</th>
<th>TFF</th>
<th>TFF</th>
<th>EJETOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Periféricos de trocadores de calor

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4 total</td>
</tr>
<tr>
<td>3</td>
<td>5 total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Periféricos: trocadores de calor

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>solucao</td>
<td>vapor</td>
<td>geometria dos tubos</td>
<td></td>
</tr>
<tr>
<td>origen</td>
<td>destino</td>
<td>pressão</td>
<td>temper.</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4</td>
<td>27.0 30.0</td>
</tr>
</tbody>
</table>
Listagem 2: Caso de referência - valores calculados

Versão de simulação matemática
Valores Calculados ——— EVAPORADOR DE MÚLTIPLA EFEITO ——— licor negro

<table>
<thead>
<tr>
<th>Corpo</th>
<th>Pressão (kgf/cm²)</th>
<th>Temperatura de saturação (ºC)</th>
<th>Temperatura real de alimentação (ºC)</th>
<th>Temperatura de alimentação (ºC)</th>
<th>Saída (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.442</td>
<td>109.58</td>
<td>114.03</td>
<td>112.97</td>
<td>100.47</td>
</tr>
<tr>
<td>2</td>
<td>1.442</td>
<td>109.58</td>
<td>114.03</td>
<td>112.97</td>
<td>100.47</td>
</tr>
<tr>
<td>3</td>
<td>0.950</td>
<td>97.94</td>
<td>100.48</td>
<td>98.67</td>
<td>88.67</td>
</tr>
<tr>
<td>4</td>
<td>0.648</td>
<td>87.40</td>
<td>100.48</td>
<td>98.67</td>
<td>88.67</td>
</tr>
<tr>
<td>5</td>
<td>0.435</td>
<td>77.41</td>
<td>100.48</td>
<td>98.67</td>
<td>88.67</td>
</tr>
<tr>
<td>6</td>
<td>0.255</td>
<td>65.00</td>
<td>100.48</td>
<td>98.67</td>
<td>88.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corpo</th>
<th>Vapor cond. (Kg/h)</th>
<th>Dif. Temp (ºC)</th>
<th>Carga Term. (Kcal/h)</th>
<th>U global (Kcal/h.m².ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3051.1</td>
<td>5.96</td>
<td>1621462.9</td>
<td>1452.57</td>
</tr>
<tr>
<td>2</td>
<td>4717.6</td>
<td>7.03</td>
<td>2506502.4</td>
<td>1901.13</td>
</tr>
<tr>
<td>3</td>
<td>7229.1</td>
<td>9.11</td>
<td>3775433.7</td>
<td>1214.19</td>
</tr>
<tr>
<td>4</td>
<td>5674.4</td>
<td>9.26</td>
<td>3536512.2</td>
<td>1116.76</td>
</tr>
<tr>
<td>5</td>
<td>4247.3</td>
<td>8.51</td>
<td>2766591.3</td>
<td>781.43</td>
</tr>
<tr>
<td>6</td>
<td>5151.1</td>
<td>10.56</td>
<td>2791745.9</td>
<td>773.63</td>
</tr>
</tbody>
</table>

Vazões Massicas de Vapor (Kg/h) do/para o corpo

<table>
<thead>
<tr>
<th>Corpo</th>
<th>Sfuente</th>
<th>Vap vivo</th>
<th>Ejetor</th>
<th>do TFC</th>
<th>do TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3051.23</td>
<td>3051.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4197.5</td>
<td>4717.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6191.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4947.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4831.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5747.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 28946.77 7769.28 740.92

Periferico

- Temp. solução ——— trocador(es) de calor ——— U global ——— Efetiv:
<table>
<thead>
<tr>
<th>Entrada</th>
<th>Saída</th>
<th>Vazão</th>
<th>Pressão</th>
<th>Real</th>
<th>Sat.</th>
<th>(Kcal/h.m².ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.86</td>
<td>85.13</td>
<td>965.7</td>
<td>0.646</td>
<td>88.67</td>
<td>87.43</td>
<td>1089.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Produto Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vazão (Kg/h)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>15525.89</td>
</tr>
</tbody>
</table>
4.3.2. ANÁLISE PARAMÉTRICA

A partir deste item é analisado o efeito que a variação de alguns parâmetros - temperatura de alimentação da solução na entrada do EME, concentração da solução na entrada do EME, temperatura de saturação do vapor "vivo", temperatura de saturação do vapor efluente do último efeito e vazão mássica de solução na entrada do EME - provoca no comportamento do EME. O comportamento de variáveis do EME - capacidade, concentração final da solução, produção e consumo específicos, coeficiente global médio de transferência de calor do EME (U_m) e coeficientes de transferência de calor individuais dos evaporadores - é apresentado em gráficos específicos para cada caso.

A fim de facilitar a visualização dos parâmetros que influenciam a variação do coeficiente de transferência de calor individual dos evaporadores e do índice de produção específica, foram criados também esquemas apresentando qualitativamente qual o comportamento das principais variáveis quando a temperatura de alimentação da solução é aumentada. No caso de elevação da temperatura de alimentação da solução, por exemplo, esses esquemas são mostrados nas figuras 4.10 a 4.12. Os símbolos † e ‡ indicam respectivamente elevação e diminuição do valor da variável. O significado da nomenclatura restante pode ser encontrado no início deste trabalho.

Para construção desses esquemas, inicialmente foi investigado como cada parâmetro influenciava a variável enfocada. Em seguida, utilizando os resultados completos fornecidos pelo programa de simulação matemática (e não apresentados aqui), estudou-se quais parâmetros influenciavam favoravelmente, no sentido de provocar o
comportamento observado na variável enfocada, independentemente da intensidade da influência (caso em que a análise deveria ser muito mais elaborada).

Ainda em relação a esses esquemas cabe um comentário adicional. Sugere-se que o U dos evaporadores possa ser influenciado pela variável \(q \), resultante da soma do valor das variáveis \(\Delta q \) e \(qr \). De maneira geral \(\Delta q \) é de pequena magnitude, de forma que quase sempre \(qr \) se iguala a \(q \). Nas experiências de Gudmundson, \(q \) era variado independentemente através da variação da diferença aparente de temperatura. Quando essa diferença de temperatura é invariante, \(q \) é apenas um resultado da variação de \(U \) (uma vez que \(q = U \Delta \text{Taparente} \)). Na apresentação dos esquemas, no entanto, o que se apresenta é a variação global de \(q \), seja ele causa ou efeito.

Nas análises feitas, uma das variáveis existentes é o coeficiente global médio de transferência de calor, \(U_m \), definido por [27]:

\[
\frac{1}{U_m} = \frac{\sum_{i=1}^{N} A_i}{N^2} \sum_{i=1}^{N} \left(\frac{1}{U_i A_i} \right) \quad (4.1)
\]

onde \(N \) indica o número de efeitos. Como os evaporadores 1 e 2 operam em paralelo, a expressão aproximada de \(U_m \) é no caso:

\[
\frac{1}{U_m} = \frac{\sum_{i=1}^{\sigma} A_i}{5^2} \left[\frac{1}{U_1 A_1 + U_2 A_2} + \sum_{i=3}^{\sigma} \left(\frac{1}{U_i A_i} \right) \right] \quad (4.2)
\]
4.3.2.1 Variação da Temperatura de Alimentação da Solução

A temperatura de alimentação da solução na entrada do EME foi variada de 50 a 90 °C e foram mantidos os valores dos demais parâmetros do caso de referência. Os comentários a seguir apresentam os principais efeitos decorrentes do aumento de temperatura.

A influência nos principais parâmetros característicos do EME é apresentada nos gráficos das figuras 4.6 a 4.9.

Observando a figura 4.9, verifica-se que o aumento da temperatura de alimentação da solução no EME provoca diminuição no U dos evaporadores 1 a 4 e aumento no U dos evaporadores 5 e 6. Os parâmetros que influenciam esse comportamento podem ser observados nos esquemas das figuras 4.10 a 4.12. Nos evaporadores 5 e 6 a influência no U é devida principalmente ao aumento ocorrido na taxa específica de transferência de calor. As variações observadas nos valores de U são mais significativas nos dois últimos efeitos.

A figura 4.8 mostra que existe aumento de Um com a elevação da temperatura de alimentação da solução, embora a variação não seja muito significativa. Verifica-se também que esse aumento se reduz à medida que se incrementa a temperatura de alimentação.

A capacidade e a concentração final da solução seguem o comportamento observado em Um. Uma vez que a diferença global de temperatura do vapor (ΔTglobal) e os demais parâmetros da solução na entrada do EME permanecem inalterados (vide figura 4.6).

Em relação à produção específica (kg de água evaporada/kg vapor "vivo"), verifica-se um aumento praticamente linear com a temperatura de alimentação da solução (figura 4.7). A variável que
mais influência esse comportamento é a elevação da entalpia específica da solução na entrada do EME (vide figura 4.12).

Em conformidade com o aumento de produção específica, verifica-se a diminuição do consumo específico. A redução observada é de cerca de 7% para cada 10°C de elevação da temperatura da solução. Essa aparente vantagem pode deixar de existir caso a elevação da temperatura da solução seja conseguida às custas do uso de vapor "vivo" em um trocador de calor. Por exemplo, considerando somente o EME, o consumo específico é 0,265 kg vapor "vivo"/kg água evaporada, para temperatura da solução de 70°C e, 0,25, para temperatura de 80°C. Quando se considera que o acréscimo de 10°C na temperatura da solução é conseguido com uso de vapor "vivo", o índice global passa de 0,25 para 0,269, superior a 0,265, evidenciando um aumento de consumo energético. Conclui-se portanto que a vantagem somente acontece quando o aumento de temperatura é conseguido através de recuperações energéticas. Uma forma de se conseguir isto é utilizar vapor efluente de um efeito de evaporação no aquecimento da solução.
Figura 4.5: Influência da temperatura de alimentação da solução na concentração final e na capacidade do EME.

Figura 4.7: Influência da temperatura de alimentação da solução na produção e consumo específicos do EME.
Figura 4.8: Influência da temperatura de alimentação da solução no U médio do EME.

Figura 4.9: Influência da temperatura de alimentação da solução no U dos evaporadores do EME.
<table>
<thead>
<tr>
<th>Evaporador 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu m \uparrow)</td>
</tr>
<tr>
<td>(X_m \uparrow)</td>
</tr>
<tr>
<td>(R_{em} \downarrow)</td>
</tr>
<tr>
<td>(k_m \downarrow)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaporador 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu m \uparrow)</td>
</tr>
<tr>
<td>(X_m \uparrow)</td>
</tr>
<tr>
<td>(R_{em} \downarrow)</td>
</tr>
<tr>
<td>(k_m \downarrow)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaporador 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu in \uparrow)</td>
</tr>
<tr>
<td>(X_{in} \uparrow)</td>
</tr>
<tr>
<td>(X_{out} \downarrow)</td>
</tr>
<tr>
<td>(\mu m \uparrow)</td>
</tr>
<tr>
<td>(\mu o_{ut} \uparrow)</td>
</tr>
<tr>
<td>(U_{evap} \downarrow)</td>
</tr>
<tr>
<td>(F \downarrow)</td>
</tr>
<tr>
<td>(q \downarrow)</td>
</tr>
<tr>
<td>(q_r \downarrow)</td>
</tr>
</tbody>
</table>

Figura 4.10: Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U dos evaporadores 1, 2 e 3.
Figura 4.11: Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U dos evaporadores 4 e 5.
Efeito do aumento da temperatura de alimentação da solução.

Evaporador 6

- $T_{sup} \uparrow$ → $\Delta q \uparrow$ → $q \uparrow$ → $qr \uparrow$
- $U_{evap} \uparrow$

Análise do comportamento de maes/mvvivo

- $H_{sole} \uparrow$
- $H_{sole} - H_{sols} \uparrow$
- $H_{sols} \downarrow$
- $mae/mvvivo \uparrow$

Figura 4.12: Esquemas mostrando o efeito do aumento da temperatura de alimentação da solução no U do evaporador 6 e no índice $mae/mvvivo$.
4.3.2.2. Variação da Concentração da Solução na Entrada do EME

A concentração da solução na entrada do EME foi variada de 12 a 16% e foram mantidos os valores dos demais parâmetros do caso de referência. Os comentários a seguir apresentam os principais efeitos decorrentes do aumento de concentração.

Observando a figura 4.16, verifica-se que existe aumento do U dos evaporadores 1 e 2 e diminuição nos demais, embora as variações não sejam muito significativas. As figuras 4.17 a 4.19 apresentam como os vários parâmetros influenciam os valores de U dos evaporadores. A figura 4.15 mostra que, como resultado médio, existe uma diminuição praticamente linear de U com a elevação da concentração de entrada, embora a variação não seja igualmente muito significativa.

Resulta disto uma diminuição praticamente linear da capacidade do sistema com a concentração de entrada (figura 4.13). A redução de capacidade é de aproximadamente 3,2% para cada 1% de acréscimo de concentração.

Na figura 4.13 também pode-se verificar que a concentração final da solução vai aumentando com a concentração de entrada da solução, mas as variações são cada vez menores.

Em relação à produção específica (figura 4.14), existe uma diminuição praticamente linear com a elevação da concentração, resultante principalmente do aumento da entalpia específica da solução na saída do sistema de evaporação (vide figura 4.19).

Concomitantemente verifica-se (figura 4.14) um aumento quase linear do consumo específico com a concentração, numa proporção de cerca de 1,1% para cada 1% de aumento de concentração.
A elevação da concentração inicial da solução pode ser obtida através de medidas que introduzam modificações e aprimoramentos na operação unitária que precede a evaporação. Fica evidente, através dos resultados obtidos, que essas medidas permitiriam a obtenção de maiores concentrações na saída do EME (que é afinal a variável mais importante a ser controlada), em que pese o maior consumo específico verificado.
Figura 4.13: Influência da concentração de entrada da solução na concentração final e na capacidade do EME.

Figura 4.14: Influência da concentração de entrada da solução na produção e consumo específicos do EME.
Figura 4.15: Influência da concentração de entrada da solução no U médio do EME.

Figura 4.16: Influência da concentração de entrada da solução no U dos evaporadores do EME.
Figura 4.17: Esquemas mostrando o efeito do aumento da concentração inicial da solução no U dos evaporadores 1, 2 e 3.
Efeito do aumento da concentração inicial da solução.

Evaporador 4

\[\text{Xin} \uparrow \quad \text{Xout} \downarrow \quad \text{μin} \uparrow \quad \text{μout} \quad \text{μm} \uparrow \]

\[\text{q} \downarrow \quad \text{qr} \quad \text{Uevap} \downarrow \]

Evaporador 5

\[\text{Xin} \uparrow \quad \text{Xout} \downarrow \quad \text{μin} \uparrow \quad \text{μout} \quad \text{μm} \uparrow \]

\[\text{q} \downarrow \quad \text{qr} \quad \text{Uevap} \downarrow \]

Figura 4.18: Esquemas mostrando o efeito do aumento da concentração inicial da solução no U dos evaporadores 4 e 5.
Figura 4.19: Esquemas mostrando o efeito do aumento da concentração inicial da solução no U do evaporador 6 e no índice mao/mvivo.
4.3.2.3. Variação da Temperatura de Saturação do Vapor Vivo

A temperatura de saturação do vapor "vivo" foi variada neste caso de 100 a 130 °C e foram mantidos os valores dos demais parâmetros do caso de referência. Os comentários a seguir apresentam os principais efeitos decorrentes do aumento de temperatura.

Nesse caso as variações observadas nos coeficientes de transferência de calor dos evaporadores são bastante significativas, principalmente nos de números 1 e 2. A grande diminuição de \(U \) observada nos evaporadores 1 e 2 decorre principalmente do aumento da concentração da solução, conforme pode ser observado na figura 4.24. Nos demais evaporadores existe aumento de \(U \) com a elevação da temperatura do vapor "vivo".

Em relação a \(U_m \) (figura 4.22), verifica-se aumento para temperatura do vapor variando de 100 a 120 °C e diminuição para temperaturas entre 120 a 130 °C. As variações são relativamente grandes (de cerca de 400 a 1000 kcal/h.m²°C). Dessa forma as variações na capacidade são ainda mais significativas na faixa de 100 a 120 °C, uma vez que ao aumento de \(U_m \) soma-se o efeito de elevação do \(AT_{global} \) do vapor (figura 4.20). De forma análoga comporta-se a concentração final da solução. Para se ter uma ideia, quando a temperatura de saturação do vapor "vivo" varia de 100 a 130 °C a capacidade é aumentada em cerca de 125 %, enquanto que a concentração final da solução passa de 17,9 para 48,6 %.

Em relação à produção específica (figura 4.21), verifica-se elevação na faixa de 100 a 120 °C e diminuição a partir desse valor. Na faixa de 100 a 120 °C a principal influência é a da
diminuição da entalpia específica da solução na saída do EME.

Dessa forma, existe redução do consumo específico na faixa de 100 a 120 °C e elevação a partir desse valor. Variando a temperatura de saturação do vapor "vivo" de 100 para 120 °C, o consumo específico reduz-se em cerca de 27,8 %, valor esse significativo.

Em que pese o grande aumento de capacidade observado com a elevação da temperatura do vapor "vivo", existem limites para essa elevação. No caso de licor negro, por exemplo, temperaturas muito altas no primeiro efeito provocam precipitação de sais e causam o aumento da velocidade de incrustação no interior dos tubos, que implica maior frequência de limpeza. Muito embora essa temperatura dependa da qualidade do licor negro sendo processado, o que se verifica é que até 130 °C a operação do EME ocorre sem maiores problemas, mas a partir desta temperatura os riscos de aceleração das incrustações são razoáveis.
Figura 4.20: Influência da temperatura de saturação do vapor vivo na concentração final e na capacidade do EME.

Figura 4.21: Influência da temperatura de saturação do vapor vivo na produção e consumo específicos do EME.
Figura 4.22: Influência da temperatura de saturação do vapor vivo no U médio do EME.

Figura 4.23: Influência da temperatura de saturação do vapor vivo no U dos evaporadores do EME.
Figura 4.24: Esquemas mostrando o efeito do aumento da temperatura de saturação do vapor vivo no U dos evaporadores 1, 2 e 3.
Figura 4.25: Esquemas mostrando o efeito do aumento da temperatura de saturação do vapor vivo no U dos evaporadores 4 e 5.
Efeito do aumento da temperatura de saturação do vapor vivo.

Evaporador G

\[T_{boil} \rightarrow U_{evap} \]

\[T_{sup} \rightarrow \Delta q \rightarrow q \rightarrow qr \]

Análise do comportamento de mae/mvvivo

\[H_{sole} - H_{sols} \]

\[H_{sols} \rightarrow mae/mvvivo \]

Figura 4.28: Esquemas mostrando o efeito do aumento da temperatura de saturação do vapor vivo no U do evaporador G e no índice mae/mvvivo.
4.3.2.4. VARIAÇÃO DA TEMPERATURA DE SATURAÇÃO DO VAPOR EFLUENTE DO ÚLTIMO EFEITO DE EVAPORAÇÃO

Essa temperatura foi variada de 50 a 80 ºC, sendo mantidos os valores dos demais parâmetros do caso de referência. Os comentários a seguir apresentam os principais efeitos decorrentes do aumento de temperatura.

Em relação ao U dos evaporadores (figura 4.30), a principal influência ocorre nos de números 1 e 2, que sofrem grande elevação em virtude da conjugação favorável de um grande número de fatores, conforme mostrado na figura 4.31. Para os demais evaporadores, existe aumento de U na faixa de 50 a 85 ºC e diminuição a partir desse valor, mas as variações são menos significativas. Na faixa de 50 a 85 ºC, a principal causa da elevação de U é a diminuição da viscosidade da solução, enquanto que faixa de temperatura restante o que mais influencia a diminuição de U é a diminuição da taxa específica de transferência de calor (vide esquemas nas figuras 4.32 a 4.35).

Como resultado, verifica-se a elevação de Um na faixa de 50 a 85 ºC e diminuição a partir deste valor, conforme pode ser observado na figura 4.29.

Em relação à capacidade (figura 4.27), o que se verifica é uma pequena diminuição na faixa de 50 a 85 ºC (cerca de 6,9 %), a qual se intensifica a partir desse valor (cerca de 40,2 % para temperatura variando de 65 a 90 ºC). Ocorre aqui que, até 65 ºC, Um e ΔTglobal interferem em sentidos opostos (prevalecendo a diminuição do ΔTglobal do vapor), enquanto que, a partir de 65 ºC, essas duas variáveis atuam no mesmo sentido.

Em relação à produção específica (figura 4.28), a diminuição
é pequena na faixa de 50 a 65 °C, aumentando a partir desse valor. O principal fator a influenciar essa diminuição é o aumento da entalpia específica da solução na saída do EME. Ainda na figura 4.28 pode-se verificar que o aumento do consumo específico se intensifica com a elevação da temperatura do vapor no último efeito, havendo uma variação de cerca de 28,6 % para temperatura do vapor variando de 50 a 80 °C.

A elevação da temperatura de saturação do vapor efluente do último efeito de evaporação pode ocorrer durante a operação em virtude de problemas na operação do condensador. Isto pode acontecer por excesso de gases incondensáveis ou mesmo por falta de água de resfriamento (ou elevação de sua temperatura). Dessa forma, a análise dos resultados obtidos é importante para permitir a adoção de medidas que minimizem os reflexos que a operação do EME pode provocar na planta.

Um outro enfoque a ser dado a este item é a verificação de qual temperatura deve ser imposta para aumento de capacidade do sistema. A partir dos resultados obtidos pode ser efetuado um estudo de modificações no sistema de condensação.
Figura 4.27: Influência da temperatura de saturação do vapor efluente do último efeito na concentração final e na capacidade do EME.

Figura 4.28: Influência da temperatura de saturação do vapor efluente do último efeito na produção e consumo específicos do EME.
Figura 4.29: Influência da temperatura de saturação do vapor efluente do último efeito no U médio do EME.

Figura 4.30: Influência da temperatura de saturação do vapor efluente do último efeito no U dos evaporadores do EME.
Figura 4.31: Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U dos evaporadores 1 e 2.
Figura 4.32: Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U do evaporador 3.
Efeito do aumento da temperatura de saturação do último efeito.

Evaporador 4 - Tult. efeito de 50 a 65 °C

Xout ↓

μm ↑

μout ↓

Tout ↑

Tboil ↑ → Uevap ↑

Tsub ↑

Evaporador 4 - Tult. efeito de 69 a 80 °C

Uevap ↓

q ↓

qf ↓

Figura 4.34: Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U do evaporador 5.
Figura 4.35: Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no U do evaporador 6.
Efeito do aumento da temperatura de saturação do último efeito.

Análise do comportamento de mae/mvvivo

\[\text{Hsole} \rightarrow \text{Hsols} \downarrow \]
\[\text{Hsols} \uparrow \rightarrow \text{mae/mvvivo} \downarrow \]

Figura 4.36: Esquemas mostrando o efeito do aumento da temperatura de saturação do último efeito no índice mae/mvvivo.
4.3.25. **Variação da Vazão Mássica de Solução na Entrada do EME**

A vazão mássica da solução foi variada de 40.000 a 50.000 kg/h, mantendo-se inalterado o valor dos demais parâmetros do caso de referência. Os comentários a seguir apresentam os principais efeitos decorrentes do aumento dessa vazão mássica.

Em relação ao U dos evaporadores (figura 4.40), existe elevação em todos eles, relativamente grande nos dois primeiros, menor nos demais. O valor de U sofre elevação, mas os incrementos diminuem com o aumento da vazão de solução (figura 4.39).

A variação da capacidade segue a tendência verificada em U, havendo um aumento de cerca de 15% para vazão de solução variando de 40.000 a 50.000 kg/h (figura 4.37).

Também na figura 4.37 pode-se verificar que a concentração final da solução sofre diminuição, em que pese o aumento de capacidade. Isto decorre do fato de que, apesar do aumento da vazão de água evaporada, existe também aumento da vazão de soluto.

Em relação à produção específica, a diminuição verificada na figura 4.36 decorre principalmente do aumento da entalpia específica da solução na saída do EME (vide esquema da figura 4.43).

O aumento do consumo específico verificado na figura 4.38 é de cerca de 14,9% para vazão de solução variando de 40.000 a 50.000 kg/h.
Figura 4.37: Influência da vazão de entrada da solução na concentração final e na capacidade do EME.

Figura 4.38: Influência da vazão de entrada da solução na produção e consumo específicos do EME.
Figura 4.39: Influência da vazão de entrada da solução no U médio do EME.

Figura 4.40: Influência da vazão de entrada da solução no U dos evaporadores do EME.
Figura 4.41: Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U dos evaporadores 1, 2 e 3.
Efeito do aumento da vazão de entrada da solução.

Evaporador 4

\[T_{sub} \uparrow \]
\[F \uparrow \]
\[q \uparrow \]
\[q_{r} \uparrow \]

Evaporador 2

\[T_{in} \uparrow \]
\[\mu_{in} \uparrow \]
\[\mu_{m} \uparrow \]
\[\mu_{out} \uparrow \]
\[X_{out} \uparrow \]
\[T_{out} \uparrow \]
\[T_{boil} \uparrow \rightarrow U_{evap} \uparrow \]
\[F \uparrow \]
\[q \uparrow \]
\[q_{r} \uparrow \]

Figura 4.42: Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U dos evaporadores 4 e 5.
Efeito do aumento da vazão de entrada da solução.

Evaporador B

\[\text{Xin} \downarrow \quad \mu\text{in} \quad \downarrow \quad \mu\text{m} \quad \downarrow \quad \text{Uevap} \uparrow \]

\[\text{Xout} \downarrow \quad \mu\text{out} \quad \downarrow \quad \text{F} \uparrow \]

\[\quad \text{q} \uparrow \quad \text{qr} \uparrow \]

Análise do comportamento de mae/mvivivo

\[\text{Hsole} \quad \text{Hsols} \downarrow \]

\[\text{Hsols} \uparrow \quad \text{mae/mvivivo} \downarrow \]

Figura 4.43: Esquemas mostrando o efeito do aumento da vazão de entrada da solução no U do evaporador B e no índice mae/mvivivo.
4.3.3. Exemplo de Utilização da Versão de Avaliação Matemática

O EME analisado é idêntico ao do caso de referência, alterando-se apenas a versão do programa utilizada, agora a de avaliação matemática. Obviamente alguns dados de entrada desse caso são valores calculados no caso de referência. O objetivo aqui é evidenciar a coerência existente entre os resultados obtidos nas duas versões do programa.

Os dados de entrada e os valores calculados são apresentados respectivamente nas listagens 2 e 3.

A comparação dos resultados obtidos evidencia a coerência entre os valores das variáveis correspondentes às duas versões do programa. Por exemplo, as pressões de vapor nos evaporadores obtidas (valores calculados) na versão de simulação são iguais às fixadas (dados de entrada) na versão de avaliação. O mesmo se pode dizer das vazões mássicas de vapor e concentrações intermediárias calculadas.
Listagem 3: Caso de referência - dados de entrada

Versão de avaliação matemática
Dados de Entrada

EVAPORADOR DE MÚLTIPLA EFEITO

Versão de avaliação: 10-4-1990

<table>
<thead>
<tr>
<th>Vazão (kg/h)</th>
<th>Pressão (kgf/cm²)</th>
<th>Temperatura (°C)</th>
<th>Temp. Sat. (°C)</th>
<th>Concentr. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44800.0</td>
<td>2.024</td>
<td>152.00</td>
<td>119.99</td>
<td>14.00</td>
</tr>
</tbody>
</table>

| Solução | 0.255 | - | 65.00 | 40.40 |

| Produto | - | - | - | - |

Sequência de Fluxos do Vapor e da Solução

<table>
<thead>
<tr>
<th>Corpo de origem</th>
<th>Corpo de destino</th>
<th>Divisão</th>
<th>D. da solução</th>
<th>D. do vapor</th>
<th>D. da solução</th>
<th>D. do vapor</th>
<th>D. da solução</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>100 %</td>
<td>3</td>
<td>100 %</td>
<td>3</td>
<td>100 %</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>100 %</td>
<td>3</td>
<td>100 %</td>
<td>3</td>
<td>100 %</td>
<td>3</td>
</tr>
</tbody>
</table>

Condições nos Corpos

<table>
<thead>
<tr>
<th>Corpo</th>
<th>Área (m²)</th>
<th>Pressão (kgf/cm²)</th>
<th>Temperatura (°C)</th>
<th>Concentr. (%)</th>
<th>Con. de troca na cabeça</th>
<th>Con. de saturação</th>
<th>Con. entrada</th>
<th>Con. saída</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>167.5</td>
<td>1.442</td>
<td>109.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>167.5</td>
<td>1.442</td>
<td>109.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>341.6</td>
<td>0.961</td>
<td>97.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>341.6</td>
<td>0.648</td>
<td>87.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>341.6</td>
<td>0.435</td>
<td>77.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>341.6</td>
<td>0.255</td>
<td>65.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Periféricos

ERL: entrada(s)/retirada(s) laterais de vapor
TFG, TFP: tanques de flash de condensado e do produto
Ejetor

<table>
<thead>
<tr>
<th>Corpo</th>
<th>Vazão (kg/h)</th>
<th>Corpo de destino</th>
<th>Vazão (kg/h)</th>
<th>Pressão (kgf/cm²)</th>
<th>Vapor motor (kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Periféricos: Trocadores de calor

Obs. (*1)*: Numero de passas ou efetividade

<table>
<thead>
<tr>
<th>Código da solução</th>
<th>Corpo de destino</th>
<th>Pressão</th>
<th>Temperatura</th>
<th>(*1)</th>
<th>Dint/Dext</th>
<th>Numero</th>
<th>Compr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>27.0</td>
<td>30.0</td>
<td>30 V</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Geometria dos tubos

<table>
<thead>
<tr>
<th>Código da solução</th>
<th>Corpo de destino</th>
<th>Pressão</th>
<th>Temperatura</th>
<th>(*1)</th>
<th>Dint/Dext</th>
<th>Numero</th>
<th>Compr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>27.0</td>
<td>30.0</td>
<td>30 V</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Listagem 4: Caso de referência - valores calculados

Versão de avaliação matemática
<table>
<thead>
<tr>
<th>Corpo</th>
<th>Pressão (kgf/cm²)</th>
<th>Temperatura (°C)</th>
<th>Concentração</th>
<th>Carga Termica (kg/h)</th>
<th>Carga Termica (kcal/h)</th>
<th>Carga Termica (kcal/h.m².°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.442</td>
<td>109.58</td>
<td>114.06</td>
<td>112.96</td>
<td>149.95</td>
<td>211.57</td>
</tr>
<tr>
<td>2</td>
<td>1.442</td>
<td>106.58</td>
<td>112.96</td>
<td>100.48</td>
<td>190.73</td>
<td>273.34</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>97.94</td>
<td>100.46</td>
<td>85.13</td>
<td>111.57</td>
<td>164.29</td>
</tr>
<tr>
<td>4</td>
<td>0.648</td>
<td>87.40</td>
<td>88.67</td>
<td>70.00</td>
<td>99.62</td>
<td>139.93</td>
</tr>
<tr>
<td>5</td>
<td>0.435</td>
<td>77.41</td>
<td>78.90</td>
<td>84.67</td>
<td>123.13</td>
<td>178.35</td>
</tr>
<tr>
<td>6</td>
<td>0.255</td>
<td>65.00</td>
<td>66.85</td>
<td>78.69</td>
<td>111.57</td>
<td>164.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vazões Massicas de Vapor (kg/h) do/para o corpo</th>
<th>Soluente</th>
<th>Vap Vivo</th>
<th>Ejetor</th>
<th>do TFC</th>
<th>do TPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3022.35</td>
<td>3043.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4265.76</td>
<td>4724.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6192.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4948.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3631.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5747.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periférico</th>
<th>Trocador(s) de calor</th>
<th>Tempo, Solução</th>
<th>Vapor</th>
<th>U Global</th>
<th>Efetiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entreata...</td>
<td>Saida</td>
<td>Vazao</td>
<td>Pressao</td>
<td>Real</td>
<td>Sat.</td>
</tr>
<tr>
<td>(°C)</td>
<td>(°C)</td>
<td>(kg/h)</td>
<td>(kgf/cm²)</td>
<td>(°C)</td>
<td>(°C)</td>
</tr>
<tr>
<td>66.85</td>
<td>65.13</td>
<td>956.2</td>
<td>0.646</td>
<td>88.67</td>
<td>87.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Produto Final</th>
<th>Vazao</th>
<th>Concentração</th>
<th>Temperatura</th>
<th>Total de Agua Evaporada</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kg/h)</td>
<td>(%)</td>
<td>(°C)</td>
<td>(kg/h)</td>
<td></td>
</tr>
<tr>
<td>15524.75</td>
<td>40.40</td>
<td>102.55</td>
<td>29275.2</td>
<td></td>
</tr>
</tbody>
</table>
5. CONCLUSÕES E RECOMENDAÇÕES

A evaporação em múltiplo efeito é uma operação unitária onde uma quantidade relativamente grande de equipamentos trabalha de forma integrada, constituindo um sistema termofísico cuja análise matemática é fundamental na solução de problemas operacionais e estudo de modificações.

O trabalho elaborado apresenta um modelo matemático que permite a análise de sistemas genéricos de evaporação constituídos por evaporadores, trocadores de calor vapor-solução, termocompressores, tanques de reevaporação de condensado e de produto e possibilidade de sangrias intermediárias de vapor. Na modelagem matemática desses equipamentos foi utilizada formulação "lumped". A grande maioria dos EME existentes é constituída apenas pelos equipamentos modelados neste trabalho.

A partir do modelo matemático desenvolvido foram elaboradas duas versões de programa de análise matemática:

a) Versão de avaliação matemática: visando analisar as condições reais de operação de um EME, permitindo a solução de problemas e, em certa medida, o controle do processo.

b) Versão de simulação matemática: visando a análise de condições virtuais de operação, permitindo o estudo de modificações e a possibilidade de otimização do processo.

Na elaboração dos algoritmos de cálculo, foi utilizada uma abordagem orientada por equações. Para solução do sistema não linear de equações algébricas foram estudados vários métodos
numéricos, tendo-se optado pelo método de substituição direta com relaxação.

Os programas desenvolvidos foram elaborados em linguagem Turbo-Pascal e implementados em um microcomputador compatível com o IBM-PCw. Esse fato é importante, na medida que permite ampliar as possibilidades de uso do programa por parte de usuários de EME. Esses usuários dispõem até o presente momento, no Brasil, apenas de programas implementados em computadores de grande porte, de difícil acesso.

Na versão de simulação matemática foram incluídas subrotinas que permitem a estimativa do coeficiente global de transferência de calor de evaporadores do tipo de filme ascendente e do tipo "heat and "flash".

Foram realizados ensaios experimentais em um EME de concentração de licor negro de uma planta de celulose e papel, os quais visaram obter informações acerca do nível de confiabilidade das relações utilizadas para o cálculo do coeficiente global de transferência de calor, U, de evaporadores de filme ascendente. Os resultados mostraram uma boa concordância entre os valores previstos e os medidos. Para obtenção dos valores reais dos U dos evaporadores foi utilizada a versão de avaliação matemática do programa. Além dos valores de U, foram feitas comparações entre valores medidos e calculados de vazões mássicas e concentrações da solução, tendo sido verificada excelente concordância entre os resultados.

Em relação aos evaporadores "heat and flash", não foram realizados ensaios similares em virtude das equações utilizadas já terem sido objeto de inúmeros estudos experimentais, estando elas devidamente consagradas na área de transferência de calor. Nesse
sentido pode-se citar, por exemplo, as relações de Dittus-Boelter e de Sieder e Tate, para escoamento turbulento plenamente desenvolvido no interior de tubos.

Foram realizadas também investigações visando incorporar aos programas equações para cálculo de U de evaporadores de tubos curtos verticais, ainda muito utilizados na indústria suro-alcooleira nacional. As equações encontradas na literatura mostraram-se muito pobres em sua conceituação. De fato, ensaios experimentais realizados pelo autor deste trabalho evidenciaram uma grande discrepância entre os valores medidos e os obtidos através da formulação indicada na literatura. Dessa forma tais formulações não foram incluídas neste trabalho.

A versão de simulação matemática do programa foi utilizada para investigar o comportamento de um sistema típico de concentração de licores negros face a alterações de alguns dos parâmetros de entrada. Os parâmetros variados foram: temperatura de alimentação da solução na entrada do EME, concentração e vazão mássica da solução na entrada do EME, temperatura de saturação do vapor "vivo" e temperatura de saturação do vapor efluente do último efeito de evaporação. Os principais resultados são apresentados a seguir.

a) A elevação da temperatura de alimentação da solução causa aumento de capacidade, aumento da concentração final da solução e redução do consumo específico do EME. O aumento de capacidade verificado deve-se exclusivamente à elevação do U médio do EME. Foi observado também que a redução do consumo específico pode deixar de existir caso a elevação da temperatura da solução seja obtida através do uso de vapor "vivo" em um trocador de
calor adicional. Isto ocorre porque a solução adentra ao EME no terceiro efeito de evaporação (quarto evaporador). Quanto mais distante do primeiro efeito entrar a solução maior a possibilidade do preaquecimento com vapor “vivo” ser desvantajoso.

b) A elevação da concentração inicial da solução provoca diminuição da capacidade e aumento da concentração final e do consumo específico do EME. A diminuição de capacidade deve-se exclusivamente à diminuição do valor de U médio do EME.

c) A elevação da temperatura de saturação do vapor “vivo” causa grande aumento de capacidade e da concentração final da solução, principalmente na faixa de 100 a 120 ºC. Nessa faixa de temperatura existe a superposição favorável das elevações do ΔTglobal do vapor e do U médio do EME (bastante significativa) obtidos. Em relação ao consumo específico foi verificada grande redução na faixa de 100 a 120 ºC e pequena elevação na faixa de 120 a 130 ºC.

d) A elevação da temperatura de saturação do vapor efluente do último efeito de evaporação provoca pequena redução de capacidade e concentração final na faixa de 50 a 60 ºC, as quais se acentuam a partir deste último limite. O U médio do EME sofre elevação na faixa de 50 a 65 ºC e diminuição significativa de 65 a 80 ºC. Os evaporadores que têm maior variação de U são os dois primeiros. Em relação ao consumo específico, o que se observa é uma constante elevação, a qual
se processa com maior intensidade à medida que cresce a temperatura.

Os resultados anteriores são exemplos das potencialidades do simulador desenvolvido. Estudos dessa natureza são indispensáveis quando se deseja proceder a modificações em um EME. Os resultados apresentados podem permitir, além da análise do comportamento do sistema em novas condições de operação, o estudo de configurações e condições mais adequadas de operação, tanto do ponto de vista de eficiência energética como do ponto de vista de capacidade.

Nesse sentido pode-se dizer que o trabalho atingiu um estágio bastante razoável de desenvolvimento, permitindo a análise de uma parcela considerável de problemas encontrados na prática do processo de evaporação. Não obstante, são vislumbradas inúmeras oportunidades de desenvolvimentos futuros na linha de pesquisa ora iniciada. Tais desenvolvimentos dizem respeito tanto ao aprimoramento daquilo que já foi desenvolvido, quanto ao início de pesquisas em linhas relacionadas ao assunto em questão. Nesse sentido, são recomendadas as seguintes atividades de continuidade:

a) Na versão de avaliação matemática pode ser incorporado o cálculo da resistência térmica média de incrustação dos
evaporadores e trocadores de calor através da comparação dos U reais calculados com os valores estimados para equipamentos limpos. Na versão de simulação matemática tais resistências podem ser utilizadas como parâmetros de entrada.

b) A interação homem-máquina pode ser aprimorada, facilitando a correção e entrada de dados.

c) A listagem de valores calculados pode ser dividida em duas etapas: uma contendo um conjunto resumido de resultados e outra, um conjunto mais completo que o atualmente fornecido.

d) Podem ser incorporados ao presente trabalho modelos matemáticos dos seguintes equipamentos: condensador (ao invés de se adotar como parâmetro de entrada o vácuo no espaço de vapor do último efeito), compressor mecânico de vapor e trocadores de calor solução-solução e condensado-solução.

e) Pode-se incorporar subrotinas para cálculo de propriedades de outras soluções tais como caldo de cana, suco de laranja, leite, etc.

f) Devem ser pesquisadas publicações sobre modelos distribuídos dos processos de transferência de massa, calor e quantidade de movimento em evaporadores de filme ascendente visando sua incorporação ao simulador. A principal vantagem disso é a possibilidade de simulação de evaporadores com comprimentos diversos daquele utilizado nos estudos de Gudmundson.
g) Devem ser pesquisadas e incorporadas relações para cálculo do U de evaporadores de filme descendente. Esses evaporadores são mais modernos que os de filme ascendente e têm sido utilizados com mais frequência que estes últimos, inclusive no setor de papel e celulose, que até recentemente utilizava apenas evaporadores de filme ascendente. A propósito, deve-se mencionar que a quantidade de publicações afins deve aumentar significativamente, pois existe um número relativamente grande de pesquisadores que se dedica a assuntos afetos à área de papel e celulose, tendo em vista a importância desse setor industrial.

h) Durante os vários testes realizados com o simulador, foi verificado que existem situações particulares onde a estabilidade do método numérico utilizado ficou comprometida. Nesse sentido, sugere-se que sejam implementadas subrotinas adicionais alternativas para solução do sistema não linear de equações. O Apêndice C apresenta alguns métodos possíveis.

i) Recomenda-se o aprofundamento dos estudos de sensibilidade realizados no capítulo 4. Tais estudos devem ser realizados para sistemas típicos de evaporação buscando a obtenção de projetos e condições operacionais ótimos.

j) Visando o estudo de técnicas de controle adequadas, pode ser desenvolvido um simulador dinâmico de EME. Na simulação dinâmica o presente trabalho pode ser útil sob dois aspectos. Em primeiro lugar o simulador dinâmico necessita ter incorporado um simulador estático, na medida em que este último
deve calcular as condições iniciais a partir das quais se estabeleça o comportamento dinâmico do sistema face a uma perturbação. Além disso, a metodologia adotada na simulação estática pode ser em maior ou menor grau aproveitada na abordagem da simulação dinâmica.
REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BIBLIOGRÁFICAS

18. CROLL-REYNOLDS. Catálogo de ejesores.

27. FREDERICK, W.J. Multiple-effect evaporation and heat transfer evaporators. Evaporator scaling. (Curso apresentado pelo IPC - The Institute of Paper Chemistry).

31. GRACE, T.M. Concentrators and other concentration methods. (Curso apresentado no IPC - The Institute of Paper Chemistry).
32. GRACE, T.M. Nature and analysis of black liquor. (Curso apresentado no IPC - The Institute of Paper Chemistry).

APÊNDICE A: EVAPORAÇÃO E EVAPORADORES

A.1. CLASSIFICAÇÃO DOS EVAPORADORES

São dois os tipos principais de equipamentos para vaporização. Usando a nomenclatura sugerida por KERN (55), os vaporizadores podem ser do tipo trocador de calor e caldeira. Na caldeira o aquecimento é conseguido através da queima de um combustível em um gerador de vapor. Num trocador de calor, um fluido aquecido (normalmente vapor d'água) cede "calor sensível" ou "calor latente" para a vaporização de outro fluido. Quando um trocador de calor é usado para água ou para solução aquosa, costuma-se denominá-lo evaporador. Quando usado para suprir as necessidades energéticas no fundo de uma coluna de destilação é chamado de rebedor. À parte essas duas possibilidades, é genericamente denominado vaporizador.

Quando um evaporador é utilizado juntamente com um sistema gerador de potência para a produção de água pura ou em de processos de evaporação associados à geração de potência, ele se chama evaporador de planta de potência. Por outro lado, se é usado para concentrar uma solução química pela evaporação da água solvente, ele se denomina evaporador químico. É desses últimos evaporadores que esse trabalho irá tratar.

1 Ao longo de todo o texto o termo "evaporador" é utilizado para indicar cada uma das unidades elementares de evaporação, em contraposição a "sistema de evaporação" ou "evaporador de múltiplo efeito" que representam o processo como um todo.
A2. TIPOS DE EVAPORADORES QUÍMICOS

Os evaporadores químicos podem ser de circulação natural ou forçada. Os evaporadores de circulação natural são usados para as necessidades mais simples de evaporação, enquanto que os de circulação forçada são utilizados para concentração de soluções salinas e soluções com tendência à formação de incrustações.

A2.1. EVAPORADORES DE CIRCULAÇÃO NATURAL

Os evaporadores com circulação natural dividem-se em quatro tipos principais:

- evaporador de tubos horizontais;
- evaporador de tubos curtos verticais ou tipo calandra;
- evaporador de tubos verticais com cesto;
- evaporador de tubos longos verticais.

A2.1.1. EVAPORADOR DE TUBOS HORIZONTAIS

A figura a.1, a seguir, apresenta um desenho típico de um evaporador desse tipo.

É o mais antigo tipo de evaporador químico, mas já foram em grande parte substituídos por evaporadores de concepção mais moderna. As principais desvantagens desse tipo de evaporador são:

- baixos coeficientes globais de transferência de calor;
- incrustações relativas à solução formadas externamente aos tubos, dificultando a limpeza.
Figura a.1: Exemplo de evaporador de tubos horizontais [55]
Aspectos vantajosos:

- gases incondensáveis presentes no vapor d'água podem ser retirados adequadamente, eliminando a perda de capacidade devido a esse fator, tão comum em outros tipos de evaporadores;
- pode armazenar grandes quantidades de solução em seu corpo, oferecendo vantagens operacionais.

A2.12. EVAPORADOR DE TUBOS CURTOS VERTICAIS

É conhecido também como evaporador do tipo calandra. A figura a.2 apresenta o desenho de um evaporador desse tipo.

Consiste de um feixe de tubos verticais curtos, geralmente com comprimentos não superiores a 2 m, colocados entre dois espelhos fixos que são parafusados com os flanges da carcaça. A solução circula pelo interior dos tubos, existindo um grande tubo central por onde a solução retorna ao fundo do evaporador por meio de circulação natural. Como a incrustação relativa à solução é formada no interior dos tubos é possível utilizar esse evaporador para soluções com tendência moderada à incrustação.

A2.13. EVAPORADOR TIPO CESTO

A figura a.3 mostra um evaporador desse tipo.

É um tipo semelhante ao evaporador do tipo calandra, exceto que possui um feixe de tubos removível que pode ser limpo muito facilmente. Outra vantagem desse tipo de evaporador é a
Figura a.2: Exemplo de evaporador de tubos curtos verticais [55].

Figura a.3: Exemplo de evaporador do tipo cesto [55].
inexistência de problemas mecânicos decorrentes da expansão térmica diferenciada entre os tubos e a carcaça, já que o feixe pode oscilar livremente.

A2.1.4. EVAPORADORES DE TUBOS LONGOS VERTICAIS

São os evaporadores mais comuns na indústria de processos químicos atualmente. Eles são constituídos por tubos verticais com comprimento variando entre 3,5 e 11 m. A solução pode passar uma única vez pelo interior dos tubos, ou pode haver recirculação externa. A superfície de aquecimento pode ser interna ou externa ao corpo principal do evaporador. As figuras a.4 e a.5 apresentam evaporadores desse tipo. Nesse tipo de evaporador é possível a utilização de grandes áreas de troca de calor com pequena ocupação de área de planta, salientando-se também os altos coeficientes de transferência de calor produzidos pelo mesmo. De acordo com o sentido percorrido pela solução no interior dos tubos, esses evaporadores podem ser classificados em três tipos principais: evaporadores de filme ascendente ("rising film" ou "climbing film"), evaporadores de filme descendente ("falling film") e evaporadores de filme ascendente/descendente. Exemplos desses dois últimos tipos de evaporadores são mostrados nas figuras a.6 e a.7.

O evaporador do tipo filme ascendente é a versão original do evaporador de tubos longos verticais, sendo utilizado mais tradicionalmente nos casos de concentração de soluções com tendência à incrustação. O evaporador do tipo filme descendente surgiu como uma evolução do evaporador de filme ascendente, caracterizando-se pela produção de maiores coeficientes globais de transferência de calor e possibilidade de operação com menores
Figura a.4: Exemplo de evaporador de tubos longos verticais de filme ascendente, com superfície de troca de calor interna [59].

Figura a.5: Exemplo de evaporador de tubos longos verticais de filme ascendente, com superfície de troca de calor externa [55].
Figura a.6: Exemplo de evaporador de tubos longos verticais de filme descendente [69].

Figura a.7: Exemplo de evaporador de tubos longos verticais de filme ascendente/descendente [69].
diferenças de temperatura entre o vapor condensante e a solução. Esses evaporadores se firmaram principalmente nas aplicações de concentração de soluções alimentícias, mas recentemente tem se verificado a sua penetração em mercados que até recentemente eram exclusivos dos evaporadores de filme ascendente, podendo-se citar o exemplo da indústria de papel e celulose, na concentração do licor negro.

A.2.2. EVAPORADORES DE CIRCULAÇÃO FORÇADA

Existem diversos modelos de evaporadores de circulação forçada. O elemento aquecedor pode ser interno ou externo ao corpo principal. Quando externo, pode ser horizontal ou vertical.

Os evaporadores de circulação forçada fazem-se necessários quando a solução sendo concentrada tem alta viscosidade nas condições do processo, tendência à formação de incrustação, ou ainda, quando as características de sensibilidade térmica da solução exigem tempo de residência reduzido na temperatura do processo. As figuras a.8 e a.9 apresentam alguns tipos de evaporadores de circulação forçada.

As taxas de recirculação e velocidades da solução no interior dos tubos são usualmente altas e a distribuição de pressão no interior dos tubos é tal que a ebulição é parcial ou totalmente suprimida, passando a ocorrer somente por efeito de "flash" no separador. Neste último caso o mecanismo de transferência de calor para a solução é de convecção forçada com escoamento monofásico e o coeficiente de transferência de calor do lado da solução pode ser previsto por uma equação, por exemplo, do tipo da equação de Dittus-Boelter, no caso de escoamento turbulento. Em virtude das
Figura a.8: Evaporador de circulação forçada com trocador de calor vertical [55].

Figura a.9: Evaporador de circulação forçada com trocador de calor horizontal [55].
consideráveis velocidades alcançadas, o coeficiente de transferência de calor atinge valores elevados. As velocidades elevadas contribuem também para minimizar a formação de incrustações.

Em certos casos, esse tipo de evaporador é usado para soluções que exijam tubos de material altamente resistente à corrosão, dispendiosos, e a circulação forçada permite a diminuição da área de transferência de calor. Isso é uma vantagem, muito embora a circulação forçada exija a instalação de equipamentos adicionais, como bombas de recirculação, válvulas de manobra, etc.

A.3. EVAPORADORES DE MÚLTIPLO EFEITO

A.3.1. COMENTÁRIOS INICIAIS

Segundo JENKINS [48], o princípio de evaporação em múltiplo efeito foi criado por Norbert Rilheux, na Louisiana (EUA), em 1844.

Em um evaporador simples, a evaporação de 1 kg de água da solução exige o consumo aproximado de 1 kg de vapor "vivo", dependendo da temperatura de alimentação da solução. Em um sistema de evaporação de múltiplo efeito, faz-se a interligação entre vários evaporadores simples, de forma que o vapor liberado em cada um deles (a menos do último) é o agente de aquecimento do seguinte. Considerando a situação ideal em que a condensação de 1 kg de vapor provoca a evaporação de 1 kg de água em cada evaporador simples, e tomando um sistema com "N efeitos de evaporação" ter-se-á que a condensação de 1 kg de vapor "vivo" no
primeiro efeito possibilitará a evaporação de \(N \) kg de água da solução. Embora, na prática, ocorram desvios da situação ideal apresentada, o exemplo serve para ilustrar a redução de consumo de vapor "vivo" que o aumento do número de efeitos pode propiciar em um sistema de evaporação. Para que ocorra transferência de calor entre o vapor e a solução nos efeitos intermediários, a pressão no espaço de vapor dos evaporadores (região ocupada pelo vapor proveniente da evaporação de água da solução) deve ir decrescendo à medida que se vai do primeiro para o último efeito, ocorrendo normalmente que o último efeito encontra-se sob vácuo. As figuras a.10 e a.11 ilustram a comparação entre um sistema de simples e um sistema de múltiplo efeito.

Embora o aumento do número de efeitos possa propiciar uma redução do custo operacional (redução de consumo de vapor "vivo"), existem alguns fatores que, na prática, limitam o número de efeitos. A principal delas é a restrição imposta pelo salto térmico global, que não pode ultrapassar certos limites. O salto térmico global é a diferença entre a temperatura de condensação do vapor "vivo" no primeiro efeito e a temperatura de saturação da água pura na pressão do espaço de vapor do último efeito. De maneira geral, a temperatura de condensação do vapor "vivo" no primeiro efeito é limitada pela máxima temperatura que a solução pode suportar devido à sensibilidade térmica da solução ou possibilidade de precipitação de sólidos que provocam incrustação excessiva no evaporador, inviabilizando a operação do sistema. Por outro lado, a mínima temperatura no espaço de vapor do último efeito é condicionada pelo máximo vácuo que se consegue obter. Quanto maior o vácuo produzido, maiores são os custos operacionais e de investimento no condensador.
Figura a.10: Sistema de evaporação de efeito simples.

Figura a.11: Sistema de evaporação de múltiplo efeito.
O salto térmico global é dividido entre todos os efeitos, de modo que, se não existisse o efeito da elevação do ponto de ebulação, seria igual à soma das diferenças de temperatura de todos os efeitos. Neste trabalho será definida "diferença de temperatura aparente" de um evaporador como a diferença entre a temperatura de saturação do vapor condensante e a temperatura de ebulação da solução nas condições de pressão e concentração reinantes no espaço de vapor desse evaporador (vide capítulo 4 para maiores comentários a respeito). Comparando dois sistemas de evaporação com a mesma área total de troca de calor, com elevação desprezível do ponto de ebulação, e com números de efeitos diferentes, tem-se que, na igualdade dos demais parâmetros, e para o mesmo salto térmico global, a capacidade de evaporação ou capacidade térmica do sistema de menor número de efeitos será maior, já que as diferenças de temperatura em cada efeito serão proporcionalmente maiores. O comentário anterior é ilustrado com o exemplo a seguir. Considere-se um sistema de evaporação de \(N \) efeitos, cada um deles com a mesma área de troca de calor \(A \), o mesmo coeficiente global de transferência de calor \(U \) e a mesma diferença de temperatura \(\Delta T \). O salto térmico global \(\Delta T_g \) será, portanto:

\[
\Delta T_g = N \Delta T
\] (a.1)

E a capacidade térmica:

\[
\dot{Q} = N \cdot U \cdot A \Delta T
\] (a.2)

Considere-se agora um evaporador de um único efeito com área de troca de calor \(A_1 \), igual à área total do sistema de \(N \) efeitos, ou seja:
Se o coeficiente global de transferência de calor for igual ao do caso anterior, o mesmo acontecendo com o salto térmico global, a capacidade térmica será:

\[\dot{Q}_1 = U \cdot A \cdot \Delta T_g \]

(a.4)

Utilizando agora as equações (a.1) e (a.3), e substituindo na equação (a.4):

\[\dot{Q}_1 = U \cdot \Delta T \]

(a.5)

\[\dot{Q}_1 = N \cdot \Delta T \]

(a.6)

\[\dot{Q}_1 = N \cdot Q \]

(a.7)

Ou seja, para a mesma área total de troca de calor e mesmo salto térmico global, a capacidade térmica do evaporador de um único efeito será \(N \) vezes maior do que a do sistema de \(N \) efeitos, no caso ideal.

Na prática existe um outro fator que limita a capacidade quando se aumenta o número de efeitos. Trata-se da elevação do ponto de ebulação (EPE), que faz com que a soma dos \(\Delta T \) dos efeitos seja menor que o salto térmico global. O EPE mede a diferença entre a temperatura de ebulação da solução e a temperatura de saturação da água pura na mesma pressão. Existindo EPE não nulo, o vapor efluente de um efeito estará no estado superaquecido e, ao adentrar no efeito seguinte, sofrerá um resfriamento, só condensando quando sua temperatura tenha diminuído de um valor igual ao EPE.
Em um sistema real de \(N \) efeitos, se a diferença de temperatura aparente no \(i \)-ésimo efeito é indicada por \(\Delta T_i \) e a elevação do ponto de ebulição, por \(EPE_i \), o salto têrmico global \(\Delta T_g \) é dado por:

\[
\Delta T_g = \sum_{i=1}^{N} \Delta T_i + \sum_{i=1}^{N} EPE_i \quad \text{(a.8)}
\]

O primeiro termo do membro da direita da equação anterior será denominado variação total aparente de temperatura que, pelo visto anteriormente, diminui quando aumenta o número de efeitos no caso de salto têrmico global fixado. Dessa forma, ilustrando esse fenômeno, pode-se dizer que a capacidade de um evaporador de duplo efeito com \(EPE \) não desprezível é menor que a metade da capacidade de um evaporador simples operando com a mesma área total de transferência de calor e sob a mesma \(\Delta T_g \).

Em suma, o aumento do número de efeitos diminui os custos de operação (diminuição do consumo de vapor) mas eleva os custos de investimento (aumento da área total de transferência de calor).

O número ótimo de efeitos deve, em última análise, atender ao critério econômico de custo mínimo global, conforme mostrado na figura a.12, a seguir.

A.3.2. Formas de Alimentação nos Evaporadores de Múltiplo Efeito

As formas de alimentação e direcionamento da solução em um evaporador de múltiplo efeito são ilustradas na figura a.13.

A escolha da forma de alimentação apropriada depende de fatores ligados às características particulares do processo. Entre
Figura a.12: Exemplo de curva de custos de um EME em função do número de efeitos de evaporação [70].
Figura a.13: Formas de alimentação da solução em um EME.
esses fatores pode-se citar as propriedades da solução (variação da viscosidade com a temperatura, sensibilidade térmica, propensão à formação de espuma), a temperatura da solução ao final do processo de montante e a temperatura da solução requerida no início do processo de jusante.

Não existe nenhuma fórmula que permita prever com antecedência qual a configuração ótima da forma de alimentação. Na prática as análises para determinação de um sistema ótimo de evaporação devem atender ao conceito de custo mínimo global e devem observar o concepção geral do sistema considerado: número de efeitos, existência de sistemas de recuperação de calor com tanques de reevaporação, existência de preaquecedores de alimentação, etc.

A.4. EQUIPAMENTOS E SISTEMAS AUXILIARES

Os evaporadores constituem, sem dúvida nenhuma, os elementos principais de um sistema de evaporação. Existe, contudo, um conjunto relativamente grande de equipamentos auxiliares sem os quais o sistema de evaporação de múltiplo efeito não poderia operar de forma conveniente e eficiente. Os principais equipamentos auxiliares são apresentados a seguir.

A.4.1. CONDENSADORES

Como já foi mencionado, usualmente o último efeito de evaporação encontra-se sob vácuo, devendo existir um meio de extrair o vapor gerado nesse evaporador. A forma econômica de se realizar essa função é enviar esse vapor para um condensador, que
pode ser um trocador de calor de mistura ou de superfície. O fluido frio é normalmente água de um circuito fechado com torre de resfriamento. Como a superfície livre do condensado formado encontra-se sob vácuo, a retirada do condensado é feita por bombas hidráulicas ou mediante a utilização de uma perna barométrica que comunica o interior do condensador com um tanque atmosférico, conforme figura a.14.

Os condensadores recebem, além do vapor efluente do último efeito de evaporação, gases incondensáveis originários dos evaporadores. A extração desses gases dos condensadores é feita mediante a utilização de ejetores a vapor ou bombas de vácuo.

A.4.2. TROCADORES DE CALOR

Os trocadores de calor auxiliares de um evaporador de múltiplo efeito podem servir para aumentar a capacidade e para promover um melhor rendimento energético da unidade. Podem ser do tipo solução - solução, vapor "vivo" - solução, vapor contaminado (vapor efluente de um efeito) - solução e condensado - solução. O tipo mais comum é o trocador vapor contaminado-solução, utilizado para aquecimento da solução previamente à entrada em um evaporador, principalmente quando a solução encontra-se subresfriada. A figura a.15 ilustra uma aplicação típica de aquecimento.

A.4.3. COMpressão MECÂNICA DE Vapor

Passando-se um volume de controle ao redor do sistema de evaporação, verifica-se que a quase totalidade da energia
Figura a.14: Condensador com perna barométrica [56].

Figura a.15: EME com trocador de calor para aquecimento da solução.
fornecida pelo vapor "vivo" no primeiro efeito corresponde à energia disponível no vapor efluente do último efeito. Essa energia é "desperdiçada" no condensador, uma vez que o vapor é condensado, gerando água quente a baixa temperatura, que normalmente circula em um circuito provido de uma torre de resfriamento. O motivo da não utilização do vapor d'água efluente do último efeito é sua baixa pressão e baixa temperatura de saturação.

A compressão mecânica de vapor tem a finalidade de promover o aproveitamento desse vapor de baixa pressão, comprimindo-o até a pressão do vapor "vivo" utilizado no primeiro efeito. A figura a.16 ilustra um sistema desse tipo.

O consumo de potência mecânica para compressão do vapor é bem menor que a energia recuperada com o aproveitamento do vapor de baixa pressão, o que pode ser medido pelo chamado coeficiente de eficácia do sistema, \(\beta \) (\(\beta \) = potência térmica obtida pela condensação do vapor de baixa pressão recuperado/potência mecânica utilizada pelo compressor). Neste caso são comuns coeficientes de eficácia acima de 10 [70]. A grande dificuldade relacionada a esse tipo de equipamento deve-se ao elevado custo do compressor de vapor d'água. Normalmente são utilizados compressores centrífugos ou de parafuso devido às altas vazões volumétricas existentes, tendo em vista que o vapor d'água à baixa pressão tem elevado volume específico.
Figura a.18: EME com sistema de compressão mecânica de vapor.
A.4.4. TERMOCOMPRESSOR (EJEITOR DE VAPOR A VAPOR)

A utilização do termocompressor tem objetivo análogo ao do compressor mecânico de vapor. No lugar deste último é usado um ejetor de vapor a vapor para se conseguir a compressão do vapor de baixa pressão; em lugar da potência mecânica transmitida pelo eixo de acionamento do compressor, no termocompressor a energia para compressão é obtida pela expansão do vapor de alta pressão em um bocal existente no interior do mesmo.

Um dos parâmetros que condiciona e limita a aplicação da termocompressão é a relação de arraste do ejetor, definida como a razão entre a vazão mássica do vapor de baixa pressão arrastado e a vazão mássica requerida de vapor motor de alta pressão. Dessa forma, a máxima quantidade de vapor do último efeito que pode ser recuperada é menor do que no caso da compressão mecânica de vapor.

A relação de arraste de um termocompressor é tanto menor quanto maior for a relação de pressão (pressão de descarga/pressão de sucção), razão pela qual é usual utilizar-se a termocompressão apenas no primeiro efeito, conforme indicado na figura a.17.

A.4.5. TANQUES DE REEVAPORAÇÃO DE CONDENSADO

O objetivo da utilização desse tipo de equipamento é aumentar o rendimento energético da unidade. São vasos colocados entre os efeitos de evaporação destinados à coleta dos condensados provenientes dos mesmos. Esses vasos operam em pressões inferiores

2 No texto são utilizados indistintamente os termos termocompressor e ejetor.
Figura a.17: EME com tercompressão no primeiro efeito.
às dos condensados contaminados coletados e, durante a expansão, se dá a formação de uma certa quantidade de vapor de "flash" que é reaproveitado como agente de aquecimento nos efeitos seguintes. As figuras a.18 e a.19 ilustram os dois tipos de reevaporação de condensado existentes.

A.4.6. Tanques de Reevaporação do Produto

O princípio de operação do tanque de reevaporação de produto é o mesmo do tanque de reevaporação de condensado, somente que agora é feita a expansão do produto. A figura a.20, a seguir, mostra um exemplo típico.

No caso da reevaporação do produto o benefício energético é duplo, pois, além do vapor formado ser aproveitado para aquecimento, existe a retirada de água da solução.

A.4.7. Sangrias Intermediárias de Vapor

Consistem na retirada de vapor contaminado efluente dos efeitos para aproveitamento como agente de aquecimento na própria unidade de evaporação ou em outros módulos de processo da unidade industrial, objetivando o aumento do rendimento energético global da unidade industrial. A figura a.21 ilustra um tipo de aplicação.
Figura a.18: Sistema de reevaporação de condensado do tipo simples.

Figura a.19: Sistema de reevaporação de condensado do tipo em cascata.
Figura a.20: EME com sistema de reevaporação do produto.

Figura a.21: EME com sangria intermediária de vapor.
APÉNDICE B
APÊNDICE B: PROPRIEDADES FÍSICAS E TERMODINÂMICAS DO LICOR NEGRO.
VAPOR D'ÁGUA E CONDENSADO

B.1. COMENTÁRIOS INiciais

As propriedades físicas e termodinâmicas do licor negro, vapor d'água e condensado foram extraídas das seguintes referências bibliográficas:

- Vapor d'água: as propriedades entalpia específica, temperatura de saturação e volume específico foram obtidas de STELTZ & SILVESTRI [92].
- Condensado: a entalpia específica do líquido saturado foi extraída de STELTZ & SILVESTRI. O coeficiente de condutibilidade térmica, a viscosidade dinâmica e a massa específica foram extraídas de [100,101].
- Licor negro: propriedades obtidas em várias referências, conforme indicado no texto.

B.2. PROPRIEDADES DO VAPOp D'ÁGUA

A) ENtalpia Específica e Volume Específico do Vapor Superaquecido

A entalpia específica é calculada pela equação:

\[
\begin{align*}
\text{hvap} &= \left\{ (P_{\text{vap}} - 2\tau(1 + \beta)) \cdot (1 + 1.41 \mu_1 + 1.41 \mu_2 + 1.41 \mu_3) \cdot Q + \\
& \quad L \cdot t^{-1} \cdot \frac{1}{2} M t^{-2} - N \cdot \tau + W + h' \right\} \times 2328. U \text{ (J/kg)} \quad (b.1)
\end{align*}
\]

onde,
\[\lambda_1 = B_0^2 \tau^2 (36 - Fr) - 26\tau^2 B_0^3 \gamma \]
\[\lambda_2 = B_0^4 \tau^2 (4x^2 - 2H\tau^2) - 4\varepsilon B_0^3 \gamma \]
\[\lambda_3 = -B_0^{13} \tau^2 (13\rho - 24K (10^{-3}\tau)^{24}) + 13\rho B_0^{12} \gamma \]
\[\tau = (K^* + T_{vap})^{-1} \]
\[\alpha = BC Dr^2 \]
\[\beta = D (\ln C) \tau^2 \]
\[\gamma = \alpha (1 + 2\beta) \]
\[\delta = E - Fr \]
\[\varepsilon = G - H\tau^2 \]
\[\rho = J - K (10^3\tau)^{24} \]
\[B_0 = A - \tau\alpha \]
\[\mu_1 = \frac{P_{vap}^2}{2} \]
\[\mu_2 = \frac{(\tau, P_{vap})^4}{4} \]
\[\mu_3 = \frac{(\tau, P_{vap})^{18}}{13} \]

\[A = 1.89 \]
\[B = 2641.62 \]
\[C = 10 \]
\[D = 80.870 \]
\[E = 82.548 \]
\[F = 1.6246.10^5 \]
\[G = 0.21828 \]
\[H = 1.2697.10^5 \]
\[J = 3.635.10^{-4} \]
\[K = 8.768.10^{-8} \]
\[L = 1.4720 \]
M = 7,5585.10^{-4}
N = 47,8365
Q = 0,101325
R = 4,55504
U = 0.43
W = -698.55
Y = 0,0150185
h' = 2902,36
K' = 273,16

Pvap_{atm}: pressão do vapor d'água em atmosferas internacionais

\[\frac{Pvap_{atm}}{1,013 \cdot 10^5} = \frac{Pvap}{1,013 \cdot 10^5} \quad (b.16) \]

O volume específico do vapor é:

\[v_{vap} = \left[\frac{R}{Pvap_{atm}} + B_0 + B_0^2 \tau^2 \delta \cdot Pvap_{atm} + B_0^4 \left(\tau \cdot Pvap_{atm} \right)^3 \varepsilon + \right. \]

\[\left. - B_0^{12} \left(\tau \cdot Pvap_{atm} \right)^{12} \rho \right] \cdot 0,06242 \cdot \gamma \quad (m^3/kg) \quad (b.17) \]

B) TEMPERATURA DE SATURAÇÃO NO EQUILÍBRIO LÍQUIDO-VAPOR

Para 1380 \textless \text{Pvap} \textless 3.10.10^6 Pa:

\[T_{vap} = \sum_{i=0}^{8} A_i \left(\ln \left(\text{10.Pvap}_{psia} \right) \right)^i \quad (\circ C) \quad (b.18) \]

onde:

\[A_0 = 35,157890 \]
\[A_1 = 24,592588 \]
\[A_2 = 2,1182069 \]
$$A_3 = -0.34144740$$
$$A_4 = 0.15741542$$
$$A_5 = -0.031329585$$
$$A_6 = 0.0038658282$$
$$A_7 = -0.00024901784$$
$$A_8 = 6.8401559.10^{-6}$$

\[P_{\text{vap, psia}} \text{ pressão do vapor d'água em libra força/polegada}^2. \]

\[P_{\text{vap, psia}} = p_{\text{vap}} \cdot 6.8947.10^3 \text{ (Pa)} \] \hspace{1cm} (b.19)

Para \(3.10^{10} < P_{\text{vap}} < 2.21.10^7 \text{ Pa} \) vale a equação:

\[T_{\text{vap, st}} = \left[\sum_{i=0}^{5} B_i \left(\ln P_p \right)^i \right] - 32 \frac{1}{1.8} \text{ (°C)} \] \hspace{1cm} (b.20)

onde,

$$B_0 = 11.545,164$$
$$B_1 = -8366,0182$$
$$B_2 = 2477,7561$$
$$B_3 = -363,44271$$
$$B_4 = 26,590978$$
$$B_5 = -0,78073813$$

C) PRESSÃO DE SATURAÇÃO PARA EQUILÍBRIO LÍQUIDO-VAPOR

Para \(10 \leq T_{\text{vap}} < 93,3 \text{ °C} \):

\[\log_{10}\left(\frac{P_{\text{crit}}}{P_{\text{vap, st}}} \right) = \frac{X}{T_{\text{vap, kel}}} \left(\frac{A + B.X + C.X^2}{1 + D.X} \right) \] \hspace{1cm} (b.21)

onde,

$$A = 3,2437814$$
B = 5.86926.10^{-8}
C = 1.1702379.10^{-8}
D = 2.1978462.10^{-8}

X = T_{cr\text{it_kel}} - T_{vap_kel}

\text{X: } T_{cr\text{it_kel}} = \text{temperatura crítica do vapor d'água}

\text{T}_{cr\text{it_kel}} = 647.27 \text{ (K)}

\text{T}_{vap_kel} = \text{temperatura do vapor d'água em K}

\text{T}_{vap_kel} = T_{vap} + 273.16 \tag{b.23}

\text{P}_{cr\text{it}}: \text{pressão crítica em Pa}

\text{P}_{cr\text{it}} = 2.21.10^{7} \text{ (Pa)}

\text{Para } 93.3 \leq T_{vap} < 373 \text{ °C:}

\log_{10} \left(\frac{\text{P}_{cr\text{it}}}{\text{P}_{vap\text{st}}} \right) = \frac{X}{T_{vap_kel}} \left(\frac{A + B \cdot X + C \cdot X^2 + E \cdot X^4}{1 + D \cdot X} \right) \tag{b.24}

onde,

\begin{align*}
A &= 3.3453130 \\
B &= 4.14113.10^{-2} \\
C &= 7.515484.10^{-9} \\
D &= 1.3794481.10^{-2} \\
E &= 8.58444.10^{-11}
\end{align*}

\text{B.3. PROPRIEDADES DO CONDENSADO}

As propriedades do condensado (água pura no estado líquido) a seguir apresentadas são válidas para o líquido saturado. Cabe ressaltar, contudo, que as mesmas expressões podem ser utilizadas para os casos em que o líquido subresfriado estiver submetido a níveis moderados de pressão, o que de fato ocorre no processo de
evaporação. Desta forma, o presente trabalho utiliza as expressões seguintes indistintamente para líquido saturado e subresfriado.

A) ENタルPIA ESPECÍFICA DO LÍQUIDO SATURADO

\[h_{\text{cond}} = 2.328 \left(\sum_{i=0}^{3} A_i \cdot (\text{Tcond}_{fn})^i \right) \text{ (J/kg)} \] \hspace{1cm} (b.25)

onde, para \(10 \leq \text{Tcond} < 182,2\ ^\circ\text{C}:\)

\[
\begin{align*}
A_0 &= -32,179105 \\
A_1 &= 1,0088084 \\
A_2 &= -1,1516996.10^{-4} \\
A_3 &= 4,6553836.10^{-7} \\
A_4 &= -7,3618778.10^{-10} \\
A_5 &= 9,6850315.10^{-13}
\end{align*}
\]

\[\text{Tcond}_{fn} : \text{temperatura do condensado em } ^\circ\text{F} \]

\[\text{Tcond}_{fn} = 1,8 \cdot \text{Tcond} + 32 \] \hspace{1cm} (b.28)

Para \(182,2 \leq \text{Tcond} < 315\ ^\circ\text{C}:\)

\[
\begin{align*}
A_0 &= -9,0411706.10^{-2} \\
A_1 &= 1,0673902.10 \\
A_2 &= -4,2753836.10^{-2} \\
A_3 &= 9,41244.10^{-5} \\
A_4 &= -1,0315357.10^{-7} \\
A_5 &= 4,560248.10^{-11}
\end{align*}
\]

B) TEMPERATURA EM FUNÇÃO DA ENタルPIA ESPECÍFICA

As equações a seguir apresentadas foram obtidas por ajuste de
dados das tabelas de vapor d'água, tendo em vista o tipo das equações apresentadas no item a anterior.

\[T_{cond} = D_0 + \sum_{i=1}^{5} D_i (h_{cond_{kcal}})^{1/5} \] \[^{0C} \] \[(b.27) \]

onde, para \(10.0 \leq h_{cond_{kcal}} < 384.6 \) kcal/kg:

\[D_0 = 5.33326507418.10^3 \]
\[D_1 = -3.3145755521 \]
\[D_2 = 2.07531377789.10^3 \]
\[D_3 = -3.0041884354.10^4 \]
\[D_4 = 8.72841527472.10^4 \]
\[D_5 = -6.4571681137.10^4 \]

\(h_{cond_{kcal}} \): entalpia específica do condensado em kcal/kg

\[h_{cond_{kcal}} = h_{cond} \cdot 4186.8 \] \[(b.28) \]

Para \(384.6 \leq h_{cond_{kcal}} \leq 315 \) kcal/kg:

\[D_0 = 1.28219755715.10^3 \]
\[D_1 = -6.128039512.10 \]
\[D_2 = 4.04878866013.10^4 \]
\[D_3 = -6.45459256466.10^5 \]
\[D_4 = 1.95239842982.10^6 \]
\[D_5 = -1.4749877178.10^6 \]

C) COEFICIENTE DE CONDUTIBILIDADE TÉRMICA

\[k_{cond} = 4.185.10^{-4} \cdot (-916.62 + 1254.73.10^{-2} T_{cond_{kcal}} + \]
\[-152.12.10^{-4} T_{cond_{kcal}}^2) \] \[(W/m.K) \] \[(b.29) \]
D) MASSA ESPECÍFICA

\[
\rho_{\text{cond}} = 347,1 \cdot 0,274 \left(1 - \frac{T_{\text{crit}}}{T_{\text{cond}}}
ight)^{2/7} \text{ (kg/m}^3\text{)}
\]

(c. 30)

E) VISCOSIDADE DINÂMICA

\[
\log_{10} \mu_{\text{cond}} = \left[-13,73 + \frac{1828}{T_{\text{cond}}} + 1,006 \cdot 10^{-2} T_{\text{cond}} + -14 \cdot 86^{-9} T_{\text{cond}}^2 \right]
\]

(c. 31)

B.4. LICOR NEGRO

O licor negro não é uma substância pura, mas uma solução de água misturada com várias substâncias orgânicas e inorgânicas decorrentes do processo de polpação da madeira.

Fatores tão diversos como espécie da madeira sendo processada, processo de polpação utilizado (do qual dependem as reações químicas envolvidas) e tipo de reagente de reposição influenciam diretamente a composição do licor negro. Resulta disto uma certa dificuldade na caracterização do licor negro naquilo que diz respeito às suas propriedades físicas e termodinâmicas. Deve-se ter sempre em mente que o procedimento ideal consiste na realização de ensaios em amostras da particular substância processada a fim de obter valores seguros para as propriedades desejadas.

Particularmente neste trabalho, as propriedades utilizadas foram obtidas na literatura (há uma exceção) e se referem ao licor negro do processo sulfato, usando madeira tipo pinus como
matéria-prima. Muito embora no Brasil o eucalipto seja de longe a madeira mais utilizada na indústria de papel e celulose, a escolha pelo pinus prende-se ao fato de que, durante a realização deste trabalho, foram realizados levantamentos experimentais em uma planta que usava este tipo de madeira como matéria-prima.

À semelhança do condensado, as expressões a seguir apresentadas são válidas para líquido subresfriado, desde que em níveis moderados de pressão.

A) MASSA ESPECÍFICA [33]

\[\rho_{\text{licn}} = 1007,0 - 0,495 \cdot T_{\text{sol}} + 600 \cdot X \quad (\text{kg/m}^3) \quad (b.32) \]

B) CALOR ESPECÍFICO À PRESSÃO CONSTANTE [32]

\[C_{\text{licn}} = 4186 \cdot \frac{1001,25}{\rho_{\text{licn}}} \quad (\text{J/kg} \cdot ^\circ\text{C}) \quad (b.33) \]

C) ENALPIA ESPECÍFICA

Como o vapor efluente do evaporador origina-se da água que compõe a solução, a temperatura de referência para cálculo da entalpia não pode ser arbitrária, mas deve guardar coerência com o estado de referência utilizado para o vapor d'água. O estado de referência para o vapor d'água é o líquido saturado a 0 ºC. Portanto, a temperatura de referência para a solução deve ser 0 ºC, e a entalpia específica é:

\[h_{\text{licn}} = \int_{0}^{T_{\text{sol}}} C_{\text{licn}} \cdot dT_{\text{sol}} \quad (b.34) \]
hlicn = 8,457,10°F ln \left(\frac{1007,0 + 600 \cdot X}{1007,0 - 0,498 \cdot Tsol + 600 \cdot X} \right) \quad (J/kg) \\
(b.35)

D) TEMPERATURA EM FUNÇÃO DA ENTALPIA ESPECÍFICA E CONCENTRAÇÃO

Obtida pela manipulação da equação anterior.

Tlicn = 2,020 \cdot (1,007,0 + 600 \cdot X).

\left\{ 1 - \exp \left[- \frac{hsol}{8,476,10^6} \right] \right\} \quad (^\circ C) \\
(b.36)

E) COEFICIENTE DECONDUTIBILIDADE TÉRMICA [42, 35, 32]

klicn = 1,130 \cdot (0,5038 - 0,282 \cdot X + 0,00135 \cdot Tsol) \quad (W/m.\, ^\circ C) \\
(b.37)

F) ELEVAÇÃO DO PONTO DE EBUILÇÃO

De acordo com GRACE, conforme citado em [2], a expressão que permite calcular o EPE do licor negro é do tipo:

EPElicn = K \cdot \frac{X}{1 - X} \quad (^\circ C) \\
(b.38)

Para uma amostra de licor negro de pinus o valor de K obtido foi de 0,1.
G) Viscosidade Dinâmica

\[\mu \text{licn} = a \cdot T \text{sol}^b \quad (\text{kg/s.m}) \]

onde as constantes \(a\) e \(b\) dependem da faixa de concentração, conforme apresentado na tabela b.1.

Tabela b.1: Constantes para cálculo da viscosidade dinâmica do licor negro.

<table>
<thead>
<tr>
<th>X (%)</th>
<th>(a \cdot 10^3)</th>
<th>b</th>
<th>Faixa de validade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26,823</td>
<td>-0,98777</td>
<td>60 - 100 °C</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>-1</td>
<td>60 - 100 °C</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>-1</td>
<td>60 - 100 °C</td>
</tr>
<tr>
<td>30</td>
<td>396,42</td>
<td>-1,2727</td>
<td>60 - 100 °C</td>
</tr>
<tr>
<td>40</td>
<td>6,848,5</td>
<td>-1,6818</td>
<td>60 - 100 °C</td>
</tr>
<tr>
<td>50</td>
<td>161,958</td>
<td>-2,0537</td>
<td>80 - 150 °C</td>
</tr>
<tr>
<td>60</td>
<td>2,6234.10^{-8}</td>
<td>-3,2264</td>
<td>80 - 150 °C</td>
</tr>
</tbody>
</table>
APÊNDICE C
APÉNDICE C: MÉTODOS NUMÉRICOS PARA SOLUÇÃO DE SISTEMAS NÃO LINEARES DE EQUAÇÕES ALGÉBRICAS

C.1. COMENTÁRIOS INiciais

Os principais métodos numéricos para resolução de sistemas não lineares de equações algébricas são apresentados sucintamente neste apêndice.

A representação do sistema de equações é feita através de duas notações alternativas. A notação resumida é:

\[\mathbf{f}(\mathbf{x}) = 0 \]
\[(c.1) \]

onde,

\[\mathbf{f} = (f_1, f_2, \ldots, f_n) \]
\[(c.2) \]

\[\mathbf{x} = (x_1, x_2, \ldots, x_n) \]
\[(c.3) \]

de modo que \(c.1 \) é a notação simplificada de:

\[f_1(x_1, x_2, \ldots, x_n) = 0 \]
\[(c.4) \]

\[f_2(x_1, x_2, \ldots, x_n) = 0 \]
\[(c.5) \]

\[\vdots \]

\[f_n(x_1, x_2, \ldots, x_n) = 0 \]
\[(c.6) \]

Em alguns métodos numéricos particulares as equações escritas sob a forma \(c.1 \) são manipuladas de forma a se obter:

\[\dot{x} = 0 \]
\[\mathbf{x} \]

indicando,
\[x_1 = g_1(x_1, x_2, \ldots, x_n) \] \hspace{1cm} (c. 8)

\[x_2 = g_2(x_1, x_2, \ldots, x_n) \] \hspace{1cm} (c. 9)

\[\vdots \]

\[x_n = g_n(x_1, x_2, \ldots, x_n) \] \hspace{1cm} (c. 10)

Existem ainda alguns métodos que fazem uso da matriz jacobiana, definida por:

\[
J(x) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\] \hspace{1cm} (c. 11)

C.2. Método de Substituição Direta

A fórmula de reiteração desse método é:

\[x^{(n+1)} = g(x^{(n)}) \] \hspace{1cm} (c. 12)

ou seja,

\[x_1^{(n+1)} = g_1(x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}) \] \hspace{1cm} (c. 13)

\[x_2^{(n+1)} = g_2(x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}) \] \hspace{1cm} (c. 14)

\[\vdots \]

\[x_n^{(n+1)} = g_n(x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}) \] \hspace{1cm} (c. 15)
Ou genericamente:

\[x_i^{(n+1)} = g_i(x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}) \]
(c.16)

Quando o sistema anterior é de ordem singular, a equação é:

\[x^{(n+1)} = g(x^{(n)}) \]
(c.17)

A representação gráfica da sequência de cálculo propiciada pela equação c.17 pode ser vista no exemplo da figura c.1, onde o processo de cálculo converge para a solução. Na figura c.2 apresenta-se um caso onde existe divergência.

Quando o sistema de equações é linear, o método representado pela equação c.16 é equivalente ao método de Jacobi.

Na resolução de sistemas lineares é também muito conhecido o método de Gauss-Seidel. O equivalente ao método de Gauss-Seidel para resolução de sistemas não lineares é:

\[x_i^{(n+1)} = g_i(x_1^{(n+1)}, x_2^{(n+1)}, \ldots, x_{i-1}^{(n+1)}, x_i^{(n)}, \ldots, x_n^{(n)}) \]
(c.18)

A referência [13] não faz comparações entre os métodos representados pelas equações c.16 e c.18, fazendo supor que as vantagens comparativas variam de caso a caso.

A referência [82] cita que o método de substituição direta é normalmente muito lento, exigindo grande número de iterações.

O método de substituição direta pode ser modificado através da introdução de um fator de relaxação (ou aceleração). A equação c.16 torna-se:

\[x_i^{(n+1)} = x_i^{(n)} + \left[g_i(x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}) - x_i^{(n)} \right] R_i \]
(c.19)
Figura c.1: Sequência de cálculo no método de substituição direta. Processo convergente.

Figura c.2: Sequência de cálculo no método de substituição direta. Processo divergente.
onde R_i é o fator de relaxação relativa à variável x_i. $R_i = 1$ equivale ao método de substituição direta e a diminuição de seu valor garante normalmente grande estabilidade. Por outro lado, em alguns casos isto implica diminuição da velocidade de convergência.

C.3. MÉTODO DE WEISTEIN

Este método foi desenvolvido originalmente para equações não lineares de uma variável independente e usualmente acelera a velocidade de convergência. A fórmula de reiteração é:

$$x^{(r+1)} = qx^{(r)} + (1 - q)g(x^{(r)})$$ \hspace{1cm} (c.20)

onde,

$$q = \frac{A}{A - 1}$$ \hspace{1cm} (c.21)

$$A = \frac{g(x^{(r)}) - g(x^{(r-1)})}{x^{(r)} - x^{(r-1)}}$$ \hspace{1cm} (c.22)

No início pode-se admitir um valor $x^{(0)}$, calculando-se $x^{(1)}$ através da fórmula de substituição direta. Somente a partir de $x^{(2)}$ deve-se utilizar a equação c.20.

A representação gráfica desse método para uma variável é mostrada na figura c.3.

Para um sistema de equações o método de Wegstein é:

$$x_{i}^{(r+1)} = q_i x_{i}^{(r)} + (1 - q_i)g_i(x^{(r)})$$ \hspace{1cm} (c.23)

onde,
Figura c.3: Representação gráfica do método de Wegstein.
\[q_i = \frac{A_i}{A_i - 1} \]
\[A_i = \frac{g_i(x_i^{(r)}) - g_i(x_i^{(r-1)})}{x_i^{(r)} - x_i^{(r-1)}} \]

O método de Wegstein para problemas com múltiplas variáveis admite implicitamente o desacoplamento entre as variáveis, o que é frequentemente falso, podendo levar à instabilidade. Para se evitar esse problema, ROSEN e PAULS [87] propuseram o método de Wegstein limitado. Nesse caso, o parâmetro \(q_i \) deve obedecer à limitação:

\[0 \geq q_i \geq -5 \]

Se \(q_i \) estiver fora desse intervalo, deve ser igualado a zero, o que equivale a aplicar o método de substituição direta.

C.4. MÉTODO DE NEWTON-RAPHSON

A fórmula de reiteração desse método é:

\[x^{(r+1)} = x^{(r)} + h^{(r)} \]
\[h^{(r)} = -J^{-1}(F^{(r)}), F^{(r)} \]

onde,

\[h^{(r)} = -J^{-1}(F^{(r)}) \cdot F^{(r)} \]

A representação gráfica desse método para o caso particular de uma variável é mostrado na figura c.4.

O método de Newton-Raphson tem usualmente velocidade de
Figura c.4: Representação gráfica do método de Newton-Raphson.
convergência alta, mas, dependendo do tipo de problema, pode apresentar dificuldades com a estabilidade.

C.5. MÉTODO DE BROYDEN

O método de Broyden é uma modificação do método de Newton-Raphson, apresentando em relação a este algumas vantagens. A matriz Jacobiana é calculada apenas uma vez (no início), e nas iterações subsequentes a sua inversa é obtida de forma aproximada a partir de valores anteriores de \(\tilde{p} \). A divergência da sequência de cálculo é prevenida através do uso de um fator de relaxação escolhido convenientemente.

Os passos que constituem esse método são apresentados a seguir.

1) Inicialmente define-se:

\[
\tilde{p}^{(0)} = -J^{-1} \tilde{F}^{(0)} \quad \text{(c. 29)}
\]

2) Usando os valores mais recentes de \(\tilde{A} \) e \(\tilde{F} \), sejam \(\tilde{A}^{(r)} \) e \(\tilde{F}^{(r)} \), calcula-se:

\[
\tilde{p}^{(r)} = \tilde{A}^{(r)} \tilde{F}^{(r)} \quad \text{(c. 30)}
\]

3) Escolhe-se \(t^{(r)} \) de forma que a norma de \(\tilde{F}(x^{(r)} + t^{(r)} \tilde{p}^{(r)}) \) seja menor que a norma de \(\tilde{F}(x^{(r)}) \). O procedimento para determinação de \(t^{(r)} \) é o seguinte:
a) Inicialmente tenta-se $t^{(r)}_{(4)} = 1$. Se,

$$
\left[\sum_{i=1}^{n} f_i(x^{(r)} + t^{(r)} p) \right]^{1/2} < \left[\sum_{i=1}^{n} f_i^2(x^{(r)}) \right]^{1/2}
$$ (c. 31)

então faz-se $x^{(r+1)} = x^{(r)} + t^{(r)} p$ e segue-se a partir do passo 4. Caso contrário, calcula-se outro valor de $t^{(r)}$ através da equação:

$$t^{(r)}_{(2)} = \frac{(1 + 86)^{1/2} - 1}{36}$$ (c. 32)

onde,

$$\delta = \frac{\sum_{i=1}^{n} f_i^2(x^{(r)} + t^{(r)} p^{(r)} p)}{\sum_{i=1}^{n} f_i^2(x^{(r)})}$$ (c. 33)

Verifica-se agora se a desigualdade c. 31 é verificada. Se a norma não for ainda reduzida deve-se fazer $x^{(r)} = x^{(r)} + t^{(r)} p^{(r)}$ e voltar ao passo 2 para reavaliar a matriz jacobiana.

4) Testar a convergência:

$$\sum_{i=1}^{n} f_i^2(x^{(r+1)}) < \text{erro}$$ (c. 34)

Se a convergência não é verificada, prossegue-se pelo passo 5.

5) Calcula-se:

$$y_i^{(r)} = f_i(x^{(r+1)}) - f_i(x^{(r)}) \quad (i = 1, 2, \ldots, n)$$ (c. 35)
6) Calcula-se:

\[\hat{y}^{(r+1)} = \hat{y}^{(r)} - \frac{A^{(r)} \hat{y}^{(r)} + t^{(r)}}{p^{(r)} H^{(r)} H^{(r)} \hat{y}^{(r)}} \]

(c. 36)

onde \(\hat{r} \) indica matriz transposta.

7) Retorna-se ao passo 2.