UNIVERSIDADE DE SÃO PAULO FACULDADE DE ODONTOLOGIA DE BAURU

THAMYRIS DE SOUZA CARVALHO

Acquired enamel pellicle engineering for protection against dental erosion: in vivo evaluation of the protective effect of sugarcane-derived cystatin (CaneCPI-5), hemoglobin and statherin-derived peptide (StN15)

Engenharia de película adquirida do esmalte para proteção contra a erosão dentária: avaliação in vivo do efeito protetor da cistatina derivada da cana-de-açúcar (CaneCPI-5), hemoglobina e peptídeo derivado da estaterina (StN15)

> BAURU 2023

Acquired enamel pellicle engineering for protection against dental erosion: in vivo evaluation of the protective effect of sugarcane-derived cystatin (CaneCPI-5), hemoglobin and statherin-derived peptide (StN15)

Engenharia de película adquirida do esmalte para proteção contra a erosão dentária: avaliação in vivo do efeito protetor da cistatina derivada da cana-de-açúcar (CaneCPI-5), hemoglobina e peptídeo derivado da estaterina (StN15)

> Tese constituída por artigo apresentada à Faculdade de Odontologia de Bauru da Universidade de São Paulo para obtenção do título de Doutora em Ciências no Programa de Ciências Odontológicas Aplicadas, na área de concentração de Biologia Oral, Estomatologia, Radiologia e Imaginologia.

> Orientadora: Profa. Dra. Marília Afonso Rabelo Buzalaf

> > Versão Corrigida

Carvalho, Thamyris de Souza Acquired enamel pellicle engineering for protection against dental erosion: in vivo evaluation of the protective effect of sugarcane-derived cystatin (CaneCPI-5), hemoglobin and statherin-derived peptide (StN15) / Thamyris de Souza Carvalho. ---Bauru, 2023.

101 p. : il. ; 31 cm.

Tese (doutorado) -- Faculdade de Odontologia de Bauru, Universidade de São Paulo, 2023.

Orientadora: Profa. Dra. Marília Afonso Rabelo Buzalaf.

Nota: A versão original desta tese encontra-se disponível no Serviço de Biblioteca e Documentação da Faculdade de Odontologia de Bauru – FOB/USP.

Autorizo, exclusivamente para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação/tese, por processos fotocopiadores e outros meios eletrônicos.

Comitê de Ética da FOB-USP Protocolo nº: 99709318.1.0000.5417 Data: 19 de fevereiro 2019

FOLHA DE APROVAÇÃO

DEDICATÓRIA

Dedico este trabalho aos meus pais Kaylan e Eugênio, aos meus irmãos Marcus Vinícius e Eugênio Henrique pelo amor e incentivo de sempre voar cada vez mais alto. Ao meu noivo André, pela parceria incondicional. Amo muito vocês.

Em especial, aos meus amigos, que fazem da minha jornada mais leve e alegre. Vocês moram no meu coração.

Dedico também essa importante etapa a todos Professores e Pesquisadores pelos conhecimentos compartilhados e adquiridos.

AGRADECIMENTOS

Reconhecendo meu esforço, sou grata a mim, por ter tido a coragem de trilhar esse caminho desafiador e ao mesmo tempo gratificante. Agora, finalizo esse ciclo com chave de ouro. Porém, nada disso seria concretizado, se não fosse por uma energia maior que me ampara, sustenta e fortalece, trazendo a certeza de que sempre sou capaz.

Obrigada aos meus pais **Kaylan** e **Eugênio** pela vida, ensinamentos, confiança, amor, honestidade, por sempre terem me apoiado nas minhas escolhas e acreditado em mim. Sei que tudo que conquistei hoje, foi por esforço e empenho de vocês também. O amor por vocês vai além dessa vida.

Queridos irmãos **Marcus Vinícius** e **Eugênio Henrique**, obrigada pela parceria, boas conversas e ainda, por sempre me incentivarem positivamente nas horas difíceis. Vocês são meu escudo.

Agradeço também a todos os meus **familiares** pelo apoio nessa etapa tão importante. O estudo foi o caminho escolhido e sempre me espelhei nisso. Obrigada por essa linda base, especialmente ao meu **avô Ciro**.

Querido noivo **André**, você chegou de forma tão leve na minha vida, somando tanto, sou extremamente grata por termos escolhido caminhar juntos. Obrigada pelo companheirismo e amor incondicional.

Obrigada a minhas amigas de infância por tantos anos de amizade que convivemos e independente da distância, estávamos e estamos ligadas em pensamentos e coração. Em especial, a **Vanessa**, **Gabriela** e a **Renata**. Amo muito vocês.

Agradeço também aos meus queridos amigos da faculdade, **Rafaela**, **Maria Paula**, **Marina**, **Lucas**, que mesmo depois de formados, a nossa amizade continua.

Queridas amigas do mestrado, Lana, Maria Luiza, Natália, Bárbara, Taisa, vocês foram meu grande apoio para que eu continuasse minha jornada e fosse para o doutorado. Obrigada por nossos momentos de estudo, felicidade e muitas histórias maravilhosas. Vocês são incríveis!!!

E dentro dessa trajetória do doutorado, apareceram anjos em forma humana...

Estudar na USP sempre foi um sonho e através da querida amiga **Letícia Prestes**, fui apresentada a essa linda Universidade. Obrigada Lê e toda sua família, pelo acolhimento em Bauru. Vocês moram no meu coração.

Obrigada também a Lea e Romildo, Thaís, Katarina por termos descobertos juntos o quanto Bauru seria uma cidade de grandes oportunidades. Vocês são uma família muito especial para mim.

Agradeço também a vocês, **Lucy** e **Mere**. Pessoas tão queridas, que me ajudaram tanto nos momentos que mais precisei. Muita saudade das nossas boas conversas. Obrigada a todas as amizades da cidade de Bauru, em especial a amiga **Altamires**.

Amiga **Tamara**, também carinhosamente chamada de Cairlos, Super Cairlos, Cairlão...você foi a primeira pessoa que conheci no laboratório. Sempre com um sorriso largo e pronta para ajudar, você desde o primeiro instante me fez sentir em "casa". Fomos construindo uma amizade tão linda e leve, que me emociono em dizer o quanto sou grata a tudo que você fez por mim. Foram e são tantos momentos de risadas, alegrias, conversas, trabalho juntas e mais trabalhos. Você foi e é peça fundamental para a concretização desse grande sonho, a conclusão do meu doutorado. Amiga, obrigada também pela vivência do nosso sonho Canadense, guardo as melhores lembranças desse momento único e do nosso primeiro de muitos congressos internacionais, foi surreal. Você é muito amada por mim.

Querida **Samanta** obrigada pela amizade, parceria infinita, inclusive até de data de aniversário. Arianas natas, temos a característica de desbravarmos o desconhecido e amo isso!! Te desejo tudo de mais lindo e que continuemos a trilhar nosso caminho juntas. Carrego você e sua família no meu coração.

Minha amiga **Aline Dionizio**, sempre vendo o lado positivo de tudo e não mede esforços para ajudar as pessoas, inclusive uma dessas, sou eu, você fez com que o meu caminho ficasse mais leve. Digo que isso é uma característica para poucos, mas você Aline, faz isso com uma pureza tão grande e tenho certeza que o universo sempre irá conspirar ao seu favor e da sua linda família, porque vocês merecem. Obrigada por tudo, pela sua luz, alegria, nunca se esqueça, que você é uma pessoa sensacional.

Agradeço aos **Professores da Bioquímica**, **Dra. Ana Carolina Magalhães** e **Dr. Rodrigo Cardoso**, pelo aprendizado na disciplina e no laboratório de bioquímica, as Professoras Dra. Anuradha Prakki e Dra. Karina Carneiro, pelo acolhimento e conhecimento adquirido na Universidade de Toronto. Especialmente, agradeço aos Professores participantes da minha banca de Doutorado. Obrigada aos meus colegas de laboratório da bioquímica e as técnicas Larissa e Thelma pelos ensinamentos. A todos os funcionários do departamento de Biologia Oral, em destaque a Dalva, pelo carinho e auxílio de sempre.

Obrigada a todos do **departamento de odontopediatria**, pela participação no estágio PAE, nas clínicas, aulas teóricas, em especial, a Profa. **Dra. Daniela Rios**, e as queridas, **Aliny**, **Fabiana**, **Isabella**, pela parceria e aprendizado. Agradeço a todos os Professores, colegas de Pós-Graduação e aos alunos envolvidos na expedição USP em Rondônia, foi uma experiência única, ficará para sempre na minha memória. Agradeço especialmente, à minha amiga **Gabriela Rando**, pelo companheirismo, amizade, por estar comigo nos momentos que mais necessitei de ajuda. Gratidão também pela oportunidade de ter participado do **projeto ABDA saúde bucal**, em especial a **Dra. Nárima** e a **Fernanda**, pelo carinho e confiança no meu trabalho.

Dentro todas as pessoas especiais da minha caminhada do Doutorado, agradeço imensamente a minha querida orientadora **Profa. Dra. Marília Buzalaf**. Exemplo de liderança, pesquisadora, você Professora, é uma pessoa que nos inspira. Obrigada por nos ensinar a voar como águias, por acreditar que sempre podemos mais. O seu "sim" de anos atrás, me fez conquistar tantas coisas lindas e muito importantes na minha trajetória. Minha eterna gratidão pela nossa parceria.

Agradeço profundamente à **Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- CAPES**, à **Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP**, pelo apoio financeiro para a realização dessa pesquisa (nº processo: 2019/16254-8). Além disso, agradeço à FAPESP, pela concessão da Bolsa Estágio de Pesquisa no Exterior-BEPE (nº processo: 2021/1213-2), que proporcionou uma experiência enriquecedora durante meu período de pesquisa no exterior. À **Faculdade de Odontologia de Bauru-FOB/USP**, por utilizado as dependências e equipamentos da instituição para a realização dessa pesquisa. Me sinto honrada por ter sido aluna dessa Universidade de ensino de excelência e renomada.

"Saiba que suas decisões e não suas condições, que determinam o seu destino. Para ter o que você nunca teve, você precisa fazer o que nunca fez".

Mary Kay Ash

RESUMO

Este trabalho avaliou, in vivo, 1) as alterações na composição proteica da PAE após tratamento da superfície dentária com cistatina derivada da cana-deaçúcar (CaneCPI-5), hemoglobina humana (HB), peptídeo derivado da estaterina (StN15) ou a combinação das 3 proteínas (Comb) antes da formação da PAE e posterior desafio erosivo intrínseco ou extrínseco; 2) o potencial protetor desses tratamentos contra a erosão intrínseca ou extrínseca do esmalte. Dez voluntários participaram de um protocolo cruzado e triplo-cego, constituído por 10 fases. Em cada fase, após profilaxia, fizeram bochecho (1 min; 10 mL) com (1) água deionizada, (2) CaneCPI-5 0,1 mg/mL, (3) HB 1 mg/mL, (4) StN15 1,88 × 10⁻⁵M ou solução contendo a Comb (5). A PAE foi formada (2h) e a biópsia do esmalte foi realizada sobre o dente 21. Nesta área foi realizado desafio erosivo com ácido cítrico 1% pH 2,5 ou HCl 0,01 M pH 2 por 10s. Os íons cálcio liberados do esmalte foram analisados pelo método de Arsenazo. Sobre as superfícies dos demais dentes foram realizados os mesmos desafios erosivos. A PAE foi coletada com papeis filtro de eletrodo, embebidos em ácido cítrico 3% e as amostras foram analisadas por proteômica quantitativa livre de marcadores. Na erosão extrínseca, o tratamento com as proteínas/peptídeos, isolados ou combinados, aumentou várias proteínas ácido-resistentes na PAE, em comparação ao controle. Os maiores aumentos foram observados para PRPs (32 vezes, StN15), profilina (15 vezes, combinação), alfa-amilase (9 vezes; StN15), gueratinas (8 vezes, CaneCPI-5 e HB), histatina-1 (7 vezes, StN15), imunoglobulinas (6,5 vezes, StN15), lactotransferrina (4 vezes, CaneCPI-5), cistatinas, lisozima, proteína S-100-A9 e actinas (3,5 vezes, StN15), albumina sérica (3,5 vezes, CaneCPI-5 e HB) e hemoglobina (3 vezes, StN15). Anexina, calmodulina, queratina, tubulina e cistatinas foram identificadas exclusivamente após tratamento com as proteínas/peptídeo, isolados ou combinados. Grupos 2, 3 e 4 tiveram Ca liberado do esmalte significativamente menor em comparação ao grupo 1 (Kruskal-Wallis / Dunn's, p <0,05). Assim, os tratamentos com CaneCPI-5, HB ou StN15 aumentam notavelmente as proteínas ácido-resistentes na PAE, protegendo contra a erosão. Na erosão intrínseca, os tratamentos também aumentaram várias proteínas ácidoresistentes na PAE, em comparação ao controle. Os aumentos foram observados para piruvato quinase PKM (11 vezes, CaneCPI-5), imunoglobulinas e proteína 3B da glândula submaxilar regulada por androgênio (4 vezes, StN15) e Hb e lisozima-C (2 vezes, StN15). Várias proteínas não tipicamente descritas na PAE, mas que se ligam ao cálcio ou outras proteínas, foram identificadas exclusivamente nos grupos tratados com as proteínas/peptídeos testados, isolados ou combinados. As concentrações médias (SD, mM) de cálcio liberado do esmalte foram 3,67 ± 1,48^a, 3,11 ± 0,72^a, 1,94 ± 0,57^b, 2,37 ± 0,90^a e 2,38 ± 0,45^a para os grupos 1-5, respectivamente (ANOVA/Tukey, p <0,05). Assim, os tratamentos com CaneCPI-5, HB ou StN15 aumentaram notavelmente as proteínas ácido-resistentes na PAE, mas apenas a HB foi capaz de proteger contra a erosão intrínseca. Em conclusão, todas as proteínas/peptídeos avaliados aumentam proteínas ácido-resistentes na PAE, independentemente do tipo de desafio erosivo, mas apenas a HB protegeu o esmalte da erosão intrínseca.

Palavras-chave: Erosão dentária, película adquirida do esmalte, estaterina, caneCPI-5, hemoglobina, proteoma.

ABSTRACT

Acquired enamel pellicle engineering for protection against dental erosion: in vivo evaluation of the protective effect of sugarcane-derived cystatin (CaneCPI-5), hemoglobin and statherin-derived peptide (StN15)

Current study examined, in vivo 1) acquired enamel pellicle (AEP) protein composition after treatment of tooth surface utilizing sugarcane-derived cystatin (CaneCPI-5), human hemoglobin (HB), statherin-derived peptide (StN15) or its combination (Comb) prior AEP formation and following intrinsic or extrinsic erosive attack; 2) preventive potential of these treatments versus intrinsic or extrinsic enamel erosive demineralization. Ten volunteers participated in a crossover and triple-blind protocol, composed of ten phases. In every phase, following prophylaxis, volunteers rinsed (1 min; 10 mL) with (1) deionized H₂O, (2) 0.1 mg/mL CaneCPI-5, (3) 1 mg/mL HB, (4) 1.88×10^{-5} M StN15 or solution containing Comb (5). Following AEP formation (2h), enamel biopsy was performed on tooth 21. In this area, an erosive attack was executed utilizing 1% citric acid pH 2.5 or with 0.01 M HCl pH 2 for 10s. Calcium ions released from enamel were analyzed by Arsenazo method. The remaining teeth endured identical erosive challenges. Further, electrode filter papers soaked in 3% citric acid was utilized to collect AEP. Specimens were assessed by quantitative labelfree proteomics. In extrinsic erosion, treatment utilizing proteins/peptides, alone or in combination, boosted multiple proteins acid-resistant within AEP in contrast to control. The greatest boost occurred on PRPs (32-fold, StN15), profilin (15-fold, combination), alpha-amylase (9-fold; StN15), keratins (8-fold, CaneCPI-5 and HB), histatin-1 (7-fold, StN15), immunoglobulins (6.5-fold, StN15), lactotransferrin (4-fold, CaneCPI-5), cystatins, lysozyme, S-100-A9 protein and actins (3.5-fold, StN15), serum albumin (3.5-fold, CaneCPI-5 and HB) and hemoglobin (3-fold, StN15). However, solely after proteins/peptides treatment, alone or in combination, Annexin, calmodulin, keratin, tubulin and cystatins were detected. Groups two, three and four had expressively lower enamel Ca release in contrast to group one (Kruskal-Wallis / Dunn's, p < 0.05). Thus, treatments with CaneCPI-5, HB or StN15 notably increase proteins acid-resistant within AEP, preventing erosion. In intrinsic erosion, the treatments also boosted multiple proteins acid-resistant within AEP in contrast to control. Observing an increase for PKM pyruvate kinase (11-fold, CaneCPI-5), immunoglobulins and submaxillary

gland androgen-regulated protein 3B (4-fold, StN15), and Hb and Iysozyme-C (2-fold, StN15). Multiple proteins not usually described within AEP, but that bind calcium or other proteins were exclusively in groups treated within tested proteins/peptides, alone or in combination. The mean concentrations (SD, mM) of calcium released from enamel were 3.67 ± 1.48^{a} , 3.11 ± 0.72^{a} , 1.94 ± 0.57^{b} , 2.37 ± 0.90^{a} and 2.38 ± 0.45^{a} for groups 1-5, respectively (ANOVA/Tukey, p<0.05). Thus, treatments utilizing CaneCPI-5, HB or StN15 notably increased proteins acid-resistant within AEP, but only HB was able to prevent intrinsic erosion. Concluding, all the proteins/peptide evaluated increased proteins acid-resistant within AEP, regardless type of erosive challenge, but only Hb protected enamel against intrinsic erosion.

Keywords: Dental erosion, acquired enamel pellicle, statherin, caneCPI-5, hemoglobin, proteome.

LIST OF FIGURES

Figure 1 -	Calcium released from enamel	51
Figure 2 -	Hemoglobin vs control	51

LIST OF TABLES

Table 1 -	Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in	
	comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric	
	acid pH 2) for 10 seconds.	52
Table 2 -	Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control	
	(water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.	56
Table 3 -	Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with statherin- derived peptide (StN15) (1.88 x 10-5M) for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric	
Table 4 -	acid pH 2) for 10 seconds Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same concentrations already described for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10	61
	seconds	67

LIST OF ABBREVIATIONS AND ACRONYMS

AEP	Acquired enamel pellicle
AFM	Atomic force microscopy
CaneCPI-5	Sugarcane-derived cystatin
Comb	Combination
ETW	Erosive tooth wear
GERD	Gastroesophageal reflux disease
HB	Human hemoglobin
IADR	International Association for Dental Research
IPTG	Isopropyl-beta-D-Thiogalactosidio
MIX	Mixed
PRPs	Proline-rich proteins
StN15	Statherin-derived peptide

TABLE OF CONTENTS

1		17
2	ARTICLES	24
2.1	ARTICLE 1	25
2.2	ARTICLE 2	37
3	DISCUSSION	72
	REFERENCES	84
	ANNEXES	90

1-Introduction

1 INTRODUCTION

Irreversible loss of mineralized tooth substance, caused by intrinsic or extrinsic acids of non-bacterial origins is defined as dental erosion (Schlueter et al., 2020). Erosive injury develops in stages. Initially, there is tooth surface softening, followed by an ongoing dissolution, of enamel crystals, layer by layer (Lussi et al., 2011). The etiology of erosion is multifactorial, with the lesion being the result of an intricate relation between factors related to patient and nutritional factors (Lussi at al., 2014). Alternatively, saliva provides important biological properties that counteract erosive challenges. In addition to its buffering and remineralizing capacity, saliva contributes to the development of acquired enamel pellicle (AEP), a layer consisting primarily of proteins, but also containing glycoproteins and lipids, which prevents direct contact between tooth surface and acids (Hara et al., 2006; Buzalaf et al., 2012; Vukosavljevic et al., 2014).

Development of AEP occurs shortly following contact of saliva with enamel surface, quickly increasing its thickness, remaining stabilized for up to thirty minutes (Hannig, 1999). At the beginning, there is adherence of some precursor proteins that have great attraction for hydroxyapatite, developing electrostatic interactions with dental enamel (Hay, 1973). Among them are proline-rich proteins (PRPs), statherin and histatins, according to in vitro studies (Yao et al., 2000; Vitorino et al., 2004), although in situ researches have also proved the presence of mucins, amylase, cystatins, lysozyme and lactoferrin (Vitorino et al., 2007; Siqueira et al., 2012). The first layer of proteins that adheres seems to be the one that provides the highest dental demineralization protection, since it is a highly electron dense layer. Posterior layers have a substantial relaxed structure in comparison to the basal layer (Hannig, 1999), being formulated of globular proteins, that links to the predecessor proteins. Therefore, it is predicted that changes in predecessor proteins might alter the later proteins, what do not show hydroxyapatite affinity, but binds to predecessor proteins. In spite of this, "acquired pellicle engineering" concept was recently suggested, which aims to modify AEP composition and also prevent tooth demineralization (Vukosavljevic et al., 2014).

In the literature, a plethora of researches had shown that incorporation of salivary proteins within AEP surface affects its ability to protect against erosive

tooth wear (ETW), which is described as tooth wear having erosion as the main causal factor (Schlueter et al., 2020). Patients with erosion present half of proteins amount within AEP in comparison to patients without erosion (Carpenter et al., 2014). Among the protective proteins are mucins that, when adhered to tooth enamel, alone or in combination with other proteins, inhibit enamel demineralization induced by erosive attacks (Cheaib et al., 2011). Additionally, to mucins, statherin and PRPs are able to sustain saturation levels regard to calcium and phosphate in the oral cavity, preventing precipitation at neutral pH and these ions release after acid attacks during the process of demineralization. It was lately found that AEP calcium concentration is reduced by 50% in patients with dental erosion, and statherin, a calcium-binding protein, is 35% less available compared to patients without erosion (Carpenter et al., 2014). With regard to dietary proteins, casein appears to have preventive properties against acid attack, especially when combined with mucin (Cheaib et al., 2011).

Interestingly, even after severe erosive attacks, some AEP components are not stripped from enamel surface. Our research group has recently observed, through quantitative proteomics approaches, that some proteins remain adhered to the enamel even following erosive attacks that simulate extrinsic acids (citric acid 1%, pH 2.5, for 20 seconds) (Delecrode et al., 2015) or intrinsic acids (Taira et al., 2018). It was observed that some proteins had their concentrations relatively increased after exposure to citric acid, compared to exposure to deionized water, such as cystatin-B (20.7 times), lysozyme-C (2.8 times) and PRP1/2 (2.5 times) (Delecrode et al., 2015).

Specifically, cystatins are reversible inhibitors of cysteine peptidases, whose mechanism of action are based on competitive inhibition, throughout blockade of proteolytic activity (Abrahamson, 1993). Human cystatin B, however, has a very high cost, so that, considering the inclusion of these proteins in dental products for erosion prevention, it would be interesting to develop alternatives with better cost-effectiveness. Phytocystatins are inhibitors of plant cysteine peptidases, whose family was first suggested by Kondo et al., in 1991 (Kondo et al., 1991). These proteins have a consensus sequence L-A-R-F-A-V-X(3)-N, exclusive to plant cystatins, which justifies their inclusion in a new family (Margis et al., 1998). The first sugarcane cystatin produced in a

heterologous expression system was named Cana cystatin (CaneCPI-1) (Soares-Costa et al., 2002). This protein demonstrated inhibitory activity contra cysteine peptidases, including human cathepsins (Oliva et al., 2004). In addition to CaneCPI-1, another 4 sugarcane cystatins were produced recombinantly and studied for their inhibitory activity (Gianotti et al., 2006; Gianotti et al., 2008; Miguel, 2014). The CaneCPI-4 protein showed significant inhibitory activity contra human cathepsins B and L (Gianotti et al., 2008). Recently, a new cystatin from sugarcane, CaneCPI-5, was identified and characterized, which showed activities very similar to those of CaneCPI-4, being able to effectively inhibit a significant amount of cysteine peptidases, including cathepsin B, which is resistant to inhibition by cystatins. On the other hand, it proved to be much more soluble when produced in a bacterial expression system, what promotes its formulation and purification, in addition to presenting a strong adherence to quartz cuvettes, suggesting that it could bind more strongly to tooth enamel (Santiago et al., 2017). Thus, by accumulating these desirable characteristics, CaneCPI-5 was one of the proteins tested in the current research, in attempt to increase acid resistance within AEP. Due to the existing homology between plant and animal cystatins (Margis et al., 1998) and the low cost of production of plant cystatins, they can be excellent alternatives for insertion in dental products aimed at preventing caries and dental erosion. A publication by our research group revealed, by atomic force microscopy (AFM), that CaneCPI-5 has a high binding strength to enamel (6 times higher than the control). Topographic images of enamel samples coated with mucin 2.7 mg/mL, casein 10 mg/mL and CaneCPI-5 0.086 mg/mL were also taken before and after incubation with citric acid (0.65%, pH 3.4 for 1 min). Solely CaneCPI-5 prevented citric acid-induced damage to the enamel. In addition, using an in vitro early erosion model (Cheaib et al., 2011), we rattested that treating the enamel surface with CaneCPI-5 protects enamel against early erosion, with the best concentration being 0.1 mg/mL (Santiago et al., 2017), with no additional benefits utilizing higher concentrations.

Results make clear the great potential of CaneCPI-5 in preventing tooth erosion due to its aptitude to interrelate with tooth enamel. It is also a protein of low production cost and high thermal stability, which makes it ideal for inclusion in dental products. However, before new products are developed for insertion in the market, further studies are needed, using models closer to clinical reality.

More recently, we searched for proteins resistant to disposition by intrinsic acids (Taira et al., 2018). This issue is extremely important, since gastric acids pH is lower and its buffering capability is higher than dietary acids, which steers to a generally more serious destruction of tooth tissue (Moazzez et al., 2014). In addition, patients with eating disorders have been reported to be at increased erosion risk (OR = 12.4), which even increases after selfinduced vomiting (OR = 19.6) (Hermont et al., 2014). In a recent study (Taira et al., 2018), we observed that statherin remained in the AEP in vivo after challenges with HCI 0.01 M (pH 2) and HCI 0.1M (pH1), even in cases of AEPs formed in the short-term (for only 3 min). Statherin is a phosphorylated salivary protein, with 43 amino acid residues with a primary sequence alike osteopontin and casein, capable of binding calcium. Its negative charge density (due to phosphorylation of serines two and three) and helical conformation in the Nterminal region are major for the interaction with hydroxyapatite (Raj et al., 1992), which has been confirmed in experiments involving nuclear magnetic resonance solid state (Naganagowda et al., 1998). In addition, an in vitro research described that at least 15 N-terminal residues or farther are required in statherin-derived peptides to decrease enamel demineralization (Shah et al., 2011). These data together indicate that statherin is an AEP protein resistant to displacement by intrinsic acids and, therefore, with great potential to be integrated into ETW preventive dental products such as mouthwash solutions. Epidemiological data corroborate these findings, since in patients with dental erosion, the concentration of statherin within AEP is reduced by 35% (Carpenter et al., 2014). Reduction in statherin concentration was also observed within AEP collected in vivo from regions with erosion, when compared to regions without erosion within the same patient (Mutahar et al., 2017). Thus, statherin-derived peptides with at least 15 N-terminal residues seem to be excellent candidates to protect against erosion when adsorbed to the enamel surface, which was investigated in the current research.

Another interesting study from our group compared differences in the AEP protein profile, collected from the vestibular surface, in volunteers with gastroesophageal reflux disease (GERD) without dental demineralization, in

comparison to those with GERD with dental demineralization and control patients (without GERD and without tooth erosion). Among the proteins with differential expression, hemoglobin called our attention, as several subunits were found to be expressed more than 3 times higher in the group of patients with GERD and without erosion, in comparison to patients with the same disease, but with erosive lesions (Martini et al., 2019). Hemoglobins are not usually incorporated amidst AEP protein components. The first research related its presence in the pellicle was lately conducted by our group, and this protein was identified exclusively in the posterior dental arches area (Ventura et al., 2017). This could be the cause why this protein had not been identified within AEP in prior proteomics researches, since they gathered pellicle only from the anterior teeth (Siqueira et al., 2007; Lee et al., 2013; Delecrode et al., 2015; Zimmermann et al., 2019). The hemoglobin affinity for hydroxyapatite has been well known, since hydroxyapatite columns present an excellent performance for the purification of hemoglobin (Kawasaki et al., 1985). Due to its ability to adsorb hemoglobin, hydroxyapatite microspheres (Qi et al., 2013) or polyhedral (Yu et al., 2017) have been elaborated for controlled delivery of this protein. Interesting, adsorption of hemoglobin to hydroxyapatite elevates as the pH reduces, which can be clarified by electrostatic interactions among hemoglobin molecules and hydroxyapatite, which occur through van der Waals forces, hydrophobic or electrostatic interactions. Hemoglobin isoelectric point is around 6.8-7.0, making this protein positively charged when the pH is under 6.8 (Yu et al., 2017). Patients with GERD usually show a lower pH in the oral cavity than healthy patients, and a linkage has been found between pH < 4 in the distal esophagus and pH <5.5 in the oral cavity (Bartlett et al., 1996).

Therefore, the lower pH in the oral cavity of patients with GERD may enhance hemoglobin adsorption on tooth surfaces, since it grants this protein a positive charge. Since, higher levels of hemoglobin is noticed in patients with GERD and without erosion suggests that this protein may have intrinsic erosion preventive role. Recently, our research group evaluated the differential protein expression in the saliva of these patients, having observed an increase of more than 20 times in the alpha subunit of hemoglobin in patients with GERD without erosion. A proof-of-concept study was also carried out, in which it was verified that treating the enamel surface utilizing hemoglobin, in concentrations ranging between 1 and 4 mg/mL, prevents enamel initial intrinsic erosion in vitro (Martini et al., 2020).

The elaboration of this research was grounded on previous studies by our research team started approximately 7 years ago which, using proteomic strategies that allowed us to identify candidate proteins or enamel protection against ETW (Delecrode et al., 2015; Taira et al., 2018; Martini et al., 2019). Additionally, recent studies by our group, involving in vitro (Santiago et al., 2017; Taira et al., 2018; Martini et al., 2020; Reis et al., 2023) in situ (Pela et al., 2021) and in vivo (Carvalho et al., 2020; Pela et al., 2023) protocols, demonstrated good performance of sugarcane-derived cystatin (CaneCPI-5), statherinderived peptide (StN15) and human hemoglobin (HB) in reducing enamel erosive demineralization.

Using this knowledge, in this study, focused on acquired pellicle engineering, we evaluated, in vivo, 1) AEP protein composition following tooth surface treatment utilizing CaneCPI-5, HB, StN15 or its mix (Comb) prior of AEP formation and subsequent intrinsic or extrinsic erosive attack; 2) the protective potential of these treatments against intrinsic or extrinsic enamel erosive demineralization. The thesis is organized in the form of two articles. In the first one, already published, an extrinsic erosive challenge was employed, while in the second, which is under final review for publication, the effect of an intrinsic erosive challenge, under the same conditions, was evaluated.

2- Articles

Article 1

Carvalho TS, Araújo TT, Ventura TMO, Dionízio A, Câmara JVF, Moraes SM, et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent [Internet]. 2020 [cited 2023 Sep 4]; 102:103478. Available from: https://dx.doi.org/ 10.1016/j.jdent.2020.103478 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0

license https://creativecommons.org/licenses/by-nc-nd/4.0/ (ANNEX A). Declaration of exclusive use of the article (ANNEX B)

Larissa Tercilia Grizzo^a, Edson Crusca^b, Priscila Yumi Tanaka Shibao^c, Reinaldo Marchetto^b, Flavio Henrique-Silva^c, Juliano Pelim Pessan^d, Marília Afonso Rabelo Buzalaf

^a Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brasil ^b Department of Biochemistry and Technology, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brasil ^c Department of Genetics and Evolution, São Carlos Federal University, São Carlos, Brasil

^d Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil

protecting against erosion.

ABSTRACT

ARTICLE INFO Keywords: Acquired enamel pellicle Proteomics Statherin Cystatin Hemoglobin Dental erosion

with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), statherin-derived peptide (StN15) or their combination before the formation of the AEP and subsequent erosive challenge; 2) the protection of these treatments against erosive demnineralization. Materials and methods: In 5 crossover phases, after prophylaxis, 10 volunteers rinsed (10 mL, 1 min) with deionized water-1, 0.1 mg/mL CaneCPI-5-2, 1.0 mg/mL HB-3, 1.88 \times 10⁵ M StN15-4 or their combination-5. AEP was formed (2h) and enamel biopsy (10 μ L, 1%citric acid, pH 2.5, 10 s) was performed on one incise for calcium analysis. The same acid was applied on the vestibular surfaces of the remaining teeth. The acid resistant proteins within the remaining AEP were collected. Samples were quantitatively analyzed by labelfree prot mics. Results: Treatment with the proteins/peptide, isolated or combined, increased several acid-resistant proteins in the AEP, compared with control. The highest increases were seen for PRPs (32-fold, StN15), profilin (15-fold, combination), alpha-amylase (9-fold; StN15), keratins (8-fold, CaneCPI-5 and HB), Histatin-1 (7-fold, StN15), immunoglobulins (6.5-fold, StN15), lactotransferrin (4-fold, CaneCPI-5), cystatins, lysozyme, protein S-100-A9 and actins (3.5-fold, StN15), serum albumin (3.5-fold, CaneCPI-5 and HB) and hemoglobin (3-fold, StN15). and a dual (correct out), became around (correct out out out out) and neutopoint (or eq. (correct, out)). Annexin, calmodulin, keratin, tubulin and cystatins were identified exclusively upon treatment with the pro-teins/peptide, alone or combined. Groups 2, 3 and 4 had significantly lower Ca released from enamel compared to group 1 (Kruskal-Wallis/Dunn's, p < 0.05).

Conclusions: Treatment with CaneCPI-5, HB or StN15 remarkably increases acid-resistant proteins in the AEP,

Clinical significance: Our results show, for the first time, that treatment with proteins/peptide remarkably increases acid-resistant proteins in the AEP, protecting against erosive demineralization. These findings open an avenue for a new preventive approach for erosive demineralization, employing acquired pellicle engineering procedures that may in the future be incorporated into dental products.

Objectives: To evaluate, in vivo: 1) proteomic alterations in the acquired enamel pellicle (AEP) after treatme

* Corresponding author at: Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.

E-mail address: mbuzalaf@fob.usp.br (M.A.R. Buzalaf).

oi.org/10.1016/i.ident.2020.10347

Received 7 September 2020; Received in revised form 11 September 2020; Accepted 14 September 2020 Available online 17 September 2020

0300-5712/© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important preventive factors against erosive demineralization is the acquired enamel pellicle (AEP), an organic, bacteria-free film that covers enamel, composed mainly by proteins and glycoproteins [1]. AEP prevent direct contact between acids and dental surface, acting as a mechanical barrier against acid attack [2–4].

The development of the AEP takes place shortly after contact of the enamel surface with saliva, with a rapid increase in its thickness, which will be stabilized for up to 30 minutes [5]. In the beginning, some precursor proteins with strong affinity for hydroxyapatite develop electrostatic interactions with the enamel, being adsorbed onto the enamel surface [6]. This first layer of proteins seems to provide the greatest protection against dental demineralization, since it is a very electron dense layer. The subsequent layers have a much looser structure when compared to the basal layer, being composed of globular proteins, which bind to precursor proteins [5]. Thus, it is expected that the change in the binding of precursor proteins can alter the binding of subsequent proteins, which have no affinity for hydroxyapatite, but adhere to the precursor proteins. With this in mind, the concept "acquired pellicle engineering" was proposed, intending to modify the composition of the AEP, further preventing dental demineralization [4].

Interestingly, some components of the AEP, especially those constituting its basal layer, are not removed from the tooth surface, even after severe erosive challenges [7]. This prompted our group to investigate, using quantitative proteomic approaches, which proteins within the AEP are resistant to removal by erosive acids. Among them, cystatin [8], statherin [9] and hemoglobin [10] were identified. Due to their high affinity for hydroxyapatite, these proteins are potential candidates to be included in dental products for procedures of "acquired pellicle engineering", aiming to protect the teeth against erosive demineralization. It was hypothesized that upon treatment of the enamel surface with these proteins, alone or in combination, there would be the formation of a reinforced basal layer that would alter the proteome of the subsequently formed AEP. This stronger AEP would then make the tooth surface more resistant to erosive demineralization.

To investigated this, the present proof-of-concept study evaluated, *in vivo*: 1) alterations in the proteome of the AEP after treatment with sugarcane-derived cystatin (CaneCPI-5), human hemoglobin (HB), statherin-derived peptide (StN15) or their combination before the formation of the AEP and subsequent erosive challenge; and 2) the protective potential of these treatments against erosive demineralization. The null hypotheses evaluated were: 1) treatment CaneCPI-5, HB, statherin-derived peptide (StN15) or their combination before the formation of the AEP and subsequent erosive challenge does not change the proteome of the remaining AEP; and 2) does not protect enamel against erosive demineralization.

2. Materials and methods

2.1. Ethical aspects and subjects

The protocol of this study was approved by the Ethics Committee of Bauru School of Dentistry, University of São Paulo, (#CAAE 99709318.1.0000.5417). All volunteers were made aware of the importance of the research and participated after signing the Informed Consent Form. The sample size was calculated with MSstats [11] using data from our previous experiment [9], considering $\alpha = 0.05$ and 1- $\beta = 0.8$. The effect size (difference in protein abundance) was considered as 1.5. The estimated number of samples was 3/group. Considering the low amount of proteins typically recovered from the AEP in vivo, we decided to include 10 volunteers, in order to constitute 3 pools (biological triplicates).

Volunteers from both genders (6 female, 4 male; 18–35 years of age) participated in this *in vivo* triple-blind study (volunteers, researchers and analysts). They were non-smokers, had good general and oral health

Journal of Dentistry 102 (2020) 103478

(without active caries lesions, gingivitis, periodontitis or any other oral condition affecting the composition of the oral fluids), were not using medications that would reduce salivary flow and did not have restorations on the buccal surfaces of the upper and lower teeth. The stimulated and unstimulated salivary flow was greater than 1 and 0.25 mL/min, respectively. Volunteers who presented risk factors for erosion, such as excessive consumption of carbonated drinks, fruit juices or acidic fruits, swimmers or patients with gastric disorders, such as bulimia and gastroesophageal reflux, were excluded. Clinical examinations and salivary flow exams were conducted by a dentist in a dental clinic with volunteers in the supine position using artificial light, air compressor, suction, clinical mirror and probe.

2.2. In vivo experiment

The factor under study was the type of protein solution used in the form of mouthwash, at 5 levels. It was a crossover and triple-blind study, consisting of 5 parallel phases, with all volunteers participating in all study groups. To avoid the circadian effects on the composition of the AEP, its collection occurred in the morning.

In each phase, after prophylaxis, volunteers rinsed with 10 mL (1 min) of the following solutions: deionized water (1), 0.1 mg/mL CaneCPI-5 (2), 1.0 mg/mL HB (3), 1.88×10^{-5} M StN15 (4) or combination of the 3 proteins/peptide (5). The concentrations of CaneCPI-5 [12], HB [13] and StN15 [14] were based in previous in vitro studies from our group. The pH of the protein solutions was native. The volunteers were deprived of eating and drinking for 2 hours and the AEP was allowed to form. After 120 min, an adhesive tape containing an orifice (4.92 mm²) was attached to the left central incisor and 10 µL of 1% citric acid (pH 2.5) were applied on the exposed dental surface for 10s. The drop was collected after 10 s with a pipette for calcium analysis, using the Arsenazo III method [15].

On the vestibular surfaces of the other upper and lower teeth, $200 \ \mu L$ of the same acid was applied for $10 \ s$ with a pipette. After washing with deionized water for acid removal, the acid-resistant proteins within the AEP were collected using electrode filter papers, soaked in 3 % citric acid [16]. In order to avoid contamination of the gingival margin, only two thirds of the buccal coronal surfaces were rubbed, where 3 % citric acid papers were used for each hemiarch. Thus, 4 papers were obtained from each volunteer, and a pool was made with the papers of 3-4 volunteers for each treatment. Therefore, the proteomic analysis of AEP was performed in biological triplicate.

2.3. Proteomic analysis and statistical analysis

After protein extraction and quantification, which occurred exactly as described by Ventura et al. [17], the samples were submitted to nano reverse phase liquid chromatography coupled to mass spectrometry (nLC-ESI-MS/MS), using pre-established parameters [17]. Samples were run in triplicates. Label-free proteomic quantification was performed using Protein Lynx Global Service (PLGS) software. Difference in expression among the groups was calculated using Monte-Carlo algorithm embedded in the software and expressed as p < 0.05 for proteins present in lower abundance and 1-p>0.95 for proteins present in higher abundance.

The data related to the Ca concentration released from the enamel were analyzed using the GraphPad InStat software (version 3.0 for Windows). Data did present normal distribution (Kolmogorov-Smirnov test) and were analyzed by Kruskal-Wallis and Dunn's test (p < 0.05).

3. Results

3.1. Effect of rinsing with proteins/peptide increases in the protein profile of the AEP

The mean \pm SD amounts of proteins recovered from the AEP were

 $8.2\pm2.5,\,21.7\pm5.2,\,17.5\pm3.9,\,16.2\pm3.7$ and $19.6\pm4.3\,\mu g,\,respec$ tively, for groups 1-5. Treatment with the tested proteins/peptide, isolated or combined, increased several acid-resistant proteins in the AEP, compared with control. The highest increases were seen for PRPs (up to 32-fold, StN15), profilin (up to 15-fold, combination), alpha-amylase (up to 9-fold; StN15), keratin (up to 8-fold, CaneCPI-5 and HB), histatin-1 (up to 7-fold, StN15), immunoglobulins (up to 6.5-fold, StN15), lactotransferrin (up to 4-fold, CaneCPI-5), cystatins, lysozyme, protein S-100-A9 and actins (up to 3.5-fold, StN15), serum albumin (up to 3.5-fold, caneCPI-5 and HB) and hemoglobin (up to 3-fold, StN15). Interestingly, several isoforms of 14-3-3 protein, histone H2B, annexin, calmodulin, keratin, tubulin and cystatins, as well as myeloperoxidase were identified exclusively upon treatment with the proteins/peptide, alone or in combination (Tables 1-4).

3.2. Effect of rinsing with proteins/peptide on enamel erosive demineralization

In order to check if the alterations in the proteomic profile of the AEP after rinsing with the proteins/peptide alone or in combination would affect the resistance of enamel to erosive demineralization we analyzed the concentration of calcium (Ca) released from the enamel. There was a significant difference among the groups (KW = 25.452, p < 0.0001). The groups treated with StN15, CaneCPI-5 and HB had significantly lower Ca release compared to the negative control (deionized water). The combination of the 3 proteins, however, did not significantly reduce the Ca release when compared to deionized water. In addition, StN15 significantly reduced Ca release compared to the combination (Fig. 1).

4. Discussion

The present study was designed to test the concept that acquired pellicle engineering by the enrichment of the enamel surface with potentially protective proteins/peptide changes the proteome of the AEP, thus increasing the protection against erosive demineralization. The proteins/peptide evaluated were chosen based on previous studies that revealed their potential as acid-resistant molecules in the AEP submitted to erosive challenges [8-10]. All the proteins/peptide evaluated provoked extensive changes in the protein composition of the remaining AEP and significantly reduced enamel erosive demineralization. Thus, both null hypotheses were rejected.

CaneCPI-5 is a sugarcane derived cystatin that was recently cloned by our group and shown to have strong affinity to hydroxyapatite. At the concentration employed in the present study (0.1 mg/mL), it significantly reduced initial erosive demineralization in vitro [12]. Regarding statherin, it has been shown that it is not necessary to employ the whole molecule to achieve protection against demineralization. Statherin-derived peptides containing at least 15 N-terminal residues have been shown to provide protection [18]. In the present study, we evaluated StN15, a peptide representing the first 15 N-terminal residues of statherin, with phosphorylated serine residues in positions 2 and 3. The density of negative charges in the N-terminus of the statherin-derived peptides is important for the interaction with hydroxyapatite [19], since the negative charges of the phosphate residues are attracted by the calcium residues within the hydroxyapatite. Regarding the concentration of StN15 employed (1.88×10^{-5} M), it corresponds to the mean range of statherin concentrations found in saliva [20] and was shown to provide protection against initial erosion in vitro [14]. HB was evaluated in the present study because it was shown to be increased in the AEP [10] and saliva [13] of gastroesophageal reflux disease (GERD) patients without erosive tooth wear, when compared with GERD patients with erosive tooth wear. Moreover, HB has strong affinity for hydroxyapatite and hydroxyapatite columns are used to purify this protein [21]. The HB concentration chosen was based on our recent in vitro study, which showed that 1.0 mg/mL provides the same protection as CaneCPI-5 at 0.1 mg/mL against initial enamel

Journal of Dentistry 102 (2020) 103478

Table 1

3

Proteins with significantly altered expression that remained in the acquired enamel pellicle after rinse with 0.1 mg/mL CaneCPI-5 for 1 minute in comparison with water (H2O), followed by formation of the acquired enamel pellicle for 2 hours and subsequent challenge with 1% citric acid pH 2.5 for 10 seconds.

³ Acession	Protein name	PLGS	^b Ratio
number		Score	CANE:
			H ₂ O
D13647	Karatin type II gytoskalatal 5	93	8.08
P04259	Keratin_type II cytoskeletal 6B	230	7 32
P04239	Keratin_ type II cytoskeletal 64	230	7.52
P/2658	Keratin_type II cytoskeletal 6C	240	6.90
P43008	Immunoglobulin heavy constant	140	5.16
101039	ramma 2	149	5.10
P01861	Immunoglobulin heavy constant	176	4 57
101001	gamma 4	1/0	4.07
P01857	Immunoglobulin heavy constant	486	4.44
0562B1	Beta-actin-like protein 2	1478	4 14
P02814	Submaxillary gland androgen-	3876	3.97
102014	regulated protein 3B	0070	0.57
P01860	Immunoglobulin heavy constant	179	3.94
	gamma 3		0.01
P02788	Lactotransferrin	2.27	3.94
Q9BYX7	Putative beta-actin-like protein 3	1141	3.94
P02810	Salivary acidic proline-rich	389	3.86
	phosphoprotein 1/2		
P25311	Zinc-alpha-2-glycoprotein	237	3.86
Q9UJZ1	Stomatin-like protein 2	65	3.63
	mitochondrial		
P60709	Actin_ cytoplasmic 1	5974	3.49
P63261	Actin_ cytoplasmic 2	5974	3.49
P04746	Pancreatic alpha-amylase	2963	3.46
Q9UGM3	Deleted in malignant brain tumors 1	72	3.39
	protein		
P04745	Alpha-amylase 1	4579	3.35
P19961	Alpha-amylase 2B	3771	3.29
P68133	Actin_alpha skeletal muscle	4504	3.22
Q6S8J3	POTE ankyrin domain family member	2559	3.22
	E		
P62736	Actin_aortic smooth muscle	4504	3.19
P63267	Actin_ gamma-enteric smooth muscle	4504	3.19
P01876	Immunoglobulin heavy constant alpha 1	997	3.16
P68032	Actin_alpha cardiac muscle 1	4504	3.13
P02768	Serum albumin	5056	3.06
A0M8Q6	Immunoglobulin lambda constant 7	171	2.97
P01877	Immunoglobulin heavy constant	565	2.94
	alpha 2		020201
A5A3E0	POTE ankyrin domain family member F	2500	2.94
POCF74	Immunoglobulin lambda constant 6	226	2.92
P13646	Keratin_ type I cytoskeletal 13	153	2.77
P00738	Haptoglobin	281	2.61
P01834	Immunoglobulin kappa constant	627	2.53
P04792	Heat shock protein beta-1	1774	2.44
Q96DA0	Zymogen granule protein 16 homolog	744	2.34
BODOVO	B	006	2.20
PODOYS	Immunoglobulin lambda constant 3	220	2.20
POCG38	POTE ankyrin domain family member	1359	2.18
B06702	Protein \$100 A0	0270	0.10
P00/02	Immunoglobulin lembdo constant 1	93/9	2.16
POCG04	Immunoglobulin lambda constant 1	249	2.10
F0D012	Immunoglobulin lambda-like	220	2.10
D7A004	nolypentide 5	220	2.00
P05109	Protein S100-A8	3832	2.08
P1 2273	Prolactin-inducible protein	1127	1 72
P04083	Annexin A1	2548	1.38
P59666	Neutrophil defensin 3	2682	0.69
P59665	Neutrophil defensin 1	2682	0.68
P15516	Histatin-3	3388	0.08
P31946	14-3-3 protein beta/alpha	245	CANE
P62258	14-3-3 protein epsilon	273	CANE
004917	14-3-3 protein eta	245	CANE*
P61981	14-3-3 protein gamma	245	CANE*
P31947	14-3-3 protein sigma	329	CANE*

(continued on next page)

Table 1 (continued)

^a Acession	Protein name	PLGS	^b Ratio	^a Acession	Protein name
number		beore	H ₂ O	intimoer	
P27348	14-3-3 protein theta	245	CANE*	O9NY61	Protein AATF
P63104	14-3-3 protein zeta/delta	277	CANE*	Q8IY45	Protein AMN1 homolog
Q86SQ4	Adhesion G-protein coupled receptor G6	132	CANE*	Q8NCA5	Protein FAM98A
P02763	Alpha-1-acid glycoprotein 1	154	CANE*	Q9Y5E8	Protocadherin beta-15
P01009	Alpha-1-antitrypsin	87	CANE*	Q8IXJ9	Putative Polycomb group protein ASXL1
Q9P2G1	Ankyrin repeat and IBR domain-	279	CANE*	Q7Z2F6	Putative protein ZNF720
	containing protein 1			Q96QB1	Rho GTPase-activating protein 7
Q01484	Ankyrin-2	106	CANE*	Q92622	Run domain Beclin-1-interacting and
P12429	Annexin A3	172	CANE*	1000000	cysteine-rich domain-containing protein
P08133	Annexin A6	97	CANE	075494	Serine/arginine-rich splicing factor 10
P04280	Basic salivary proline-rich protein 1	480	CANE	P02/8/	Serotransferrin
043670	containing protein ZNF207	280	CANE	P42229	Signal transducer and activator of transcription 5A
P27482	Calmodulin-like protein 3	352	CANE	P51692	Signal transducer and activator of
P23280	Carbonic anhydrase 6	1310	CANE*	1121222101021	transcription 5B
P23528	Cofilin-1	345	CANE	Q9Y448	Small kinetochore-associated protein
Q8NEU8	DCC-interacting protein 13-beta	498	CANE	Q5MJ70	Speedy protein A
P53602	Diphosphomevalonate decarboxylase	138	CANE	Q9C093	Sperm flagellar protein 2
QARA01	Electrogenic sodium bicarbonate cotransporter 4	149	CANE"	Q86VE3	Spermidine/spermine N(1)- acetyltransferase-like protein 1
Q5JZY3	Ephrin type-A receptor 10	543	CANE	Q15772	Striated muscle preferentially expressed
Q04637	Eukaryotic translation initiation factor	304	CANE		protein kinase
	4 gamma 1			Q9Y6N5	Sulfide:quinone oxidoreductase_
P78344	Eukaryotic translation initiation factor	155	CANE		mitochondrial
	4 gamma 2			C9J3V5	Testis-expressed protein 22
Q7Z6M2	F-box only protein 33	117	CANE	Q8N584	Tetratricopeptide repeat protein 39C
P21333	Filamin-A	63	CANE*	P07202	Thyroid peroxidase
P14136	Glial fibrillary acidic protein	150	CANE	Q9NX61	Transmembrane protein 161A
Q13439	Golgin subfamily A member 4	144	CANE	B1AL88	Transmembrane protein FAM155A
Q96A08	Histone H2B type 1-A	425	CANE	Q9H972	Uncharacterized protein C14orf93
P33778	Histone H2B type 1-B	637	CANE*	Q9NRW7	Vacuolar protein sorting-associated
P62807	Histone H2B type 1-C/E/F/G/I	637	CANE*		protein 45
P58876	Histone H2B type 1-D	637	CANE	Q9P202	Whirlin
Q93079	Histone H2B type 1-H	637	CANE	QSTBZS	Zinc finger protein 564
P06899	Histone H2B type 1-J	637	CANE	Q96MU6	Zinc finger protein 778
060814	Histone H2B type 1-K	637	CANE	Q9C0K1	Zinc transporter ZIP8
Q99880	Histone H2B type 1-L	637	CANE	P00330	Alcohol dehydrogenase 1
Q99879	Histone H2B type 1-M	637	CANE	Q8N7×0	Androgio bin
Q996/7	Histone H2B type 1-N	627	CANE	Q0149P4	Ankyrin repeat domain-containing
016778	Histone H2B type 1-0	637	CANE	P0 3073	Antileukoproteinase
050NW6	Histone H2B type 2-E	637	CANE	P1 3942	Collagen alpha-2(XI) chain
08N257	Histone H2B type 3-B	637	CANE	OSWX12	Connector enhancer of kinase
P57053	Histone H2B type 5-5	637	CANE	Quintin	suppressor of ras 2
096028	Histone-lysine N-methyltransferase	181	CANE	053SF7	Cordon-bleu protein-like 1
0,0020	NSD2	101	GINE	O9UBG3	Cornulin
015811	Intersectin-1	165	CANE*	Q86T13	C-type lectin domain family 14 member
O9NZM3	Intersectin-2	163	CANE*	Quality	A
P13645	Keratin type I cytoskeletal 10	96	CANE	014976	Cyclin-G-associated kinase
P19012	Keratin type I cytoskeletal 15	86	CANE	096RT1	Erbin
P35908	Keratin type II cytoskeletal 2 epidermal	424	CANE	05T1M5	FK506-binding protein 15
P19013	Keratin, type II cytoskeletal 4	164	CANE*	Q14687	Genetic suppressor element 1
Q86Y46	Keratin, type II cytoskeletal 73	290	CANE*	P47897	Glutamine-tRNA ligase
095678	Keratin_ type II cytoskeletal 75	420	CANE*	Q8IWJ2	GRIP and coiled-coil domain-containing
O5XKE5	Keratin type II cytoskeletal 79	420	CANE*		protein 2
Q8IV03	Leucine rich adaptor protein 1-like	168	CANE*	P0DMV8	Heat shock 70 kDa protein 1A
Q9Y608	Leucine-rich repeat flightless-	256	CANE*	P17066	Heat shock 70 kDa protein 6
	interacting protein 2			P69905	Hemoglobin subunit alpha
P33121	Long-chain-fatty-acid–CoA ligase 1	219	CANE	P68871	Hemoglobin subunit beta
Q8NCY6	Myb/SANT-like DNA-binding domain-	114	CANE	P02042	Hemoglobin subunit delta
	containing protein 4			P02100	Hemoglobin subunit epsilon
P05164	Myeloperoxidase	216	CANE	P69891	Hemoglobin subunit gamma-1
P60660	Myosin light polypeptide 6	291	CANE	P69892	Hemoglobin subunit gamma-2
Q7Z406	Myosin-14	455	CANE*	P56524	Histone deacetylase 4
Q14CX7	N-alpha-acetyltransferase 25_ NatB	251	CANE*	P02533	Keratin_ type I cytoskeletal 14
	auxiliary subunit			Q04695	Keratin_ type I cytoskeletal 17
Q8NGW1	Olfactory receptor 6B3	109	CANE*	P08493	Matrix Gla protein
Q6ZVD8	PH domain leucine-rich repeat-	150	CANE*	A0JLT2	Mediator of RNA polymerase II
	containing protein phosphatase 2				transcription subunit 19
Q6VY07	Phosphofurin acidic cluster sorting	86	CANE*	Q9P1T7	MyoD family inhibitor domain-
	protein 1				containing protein
Q15102	Platelet-activating factor	402	CANE	P07737	Profilin-1
	acetylhydrolase IB subunit gamma			Q9P2K9	Protein dispatched homolog 3
015460	Prolyl 4-hydroxylase subunit alpha-2	488	CANE*	Q08188	

97 37 50 H₂O* H₂O* H₂O* (continued on next page)

128 142 66 mber

Journal of Dentistry 102 (2020) 103478

PLGS Score

553 113

195 129

123

101

170 141 104

94

69

^bRatio CANE:

 H_2O

CANE CANE CANE CANE CANE CANE CANE CANE

CANE CANE CANE

CANE

CANE CANE CANE CANE

CANE

CANE

CANE CANE CANE CANE CANE CANE

CANE

CANE CANE CANE CANE H2O H2O H2O H2O

H₂O* H₂O* H₂O*

H₂O* H₂O* H₂O*

H₂O* H₂O* H₂O* H₂O* H₂O* H₂O*

 $\begin{array}{c} H_2 O^+ \\ H_2 O^+ \\$

 H_2O^{\ast}

Table 1 (continued)

Table 1 (continued)

^a Acession number	Protein name	PLGS Score	^b Ratio CANE: H ₂ O
	Protein-glutamine gamma-		
	glutamyltransferase E	112121	cienary.
Q9HBR0	Putative sodium-coupled neutral amino acid transporter 10	73	H ₂ O*
Q9H1J1	Regulator of nonsense transcripts 3A	60	H ₂ O
Q9P2K3	REST corepressor 3	61	H ₂ O*
Q9NRY4	Rho GTPase-activating protein 35	53	H ₂ O*
Q9P0V9	Septin-10	249	H ₂ O*
$A1 \times 283$	SH3 and PX domain-containing protein 2B	54	H ₂ O*
P12757	Ski-like protein	44	H ₂ O
Q9Y6J9	TAF6-like RNA polymerase II p300/	91	H ₂ O
	CBP-associated factor-associated factor 65 kDa subunit 6 L		
Q9Y4G6	Talin-2	76	H ₂ O*
A0A1B0GUA7	Testis-expressed protein 51	72	H ₂ O
Q13144	Translation initiation factor eIF-2B subunit epsilon	76	H ₂ O*
Q8IXQ3	Uncharacterized protein C9orf40	143	H ₂ O [®]
Q7L1V2	Vacuolar fusion protein MON1 homologB	206	H ₂ O*
Q7Z2W4	Zinc finger CCCH-type antiviral protein 1	42	H ₂ O*
Q86XU0	Zinc finger protein 677	94	H ₂ O

Proteins highlighted in bold are increased or decreased more than 2-fold.

^a Identification is based on proteins ID from UniProt protein database, reviewed only (http://www.uniprot.org/).

^b Proteins with expression significantly altered are organized according to the ratio.

Indicates unique proteins in alphabetical order.

erosion [13].

The protocol carried out for proteomic analysis followed a methodology that was recently developed by our research group, which increases the protein identification of the samples [17]. Our results showed that the treatment of the dental surface in vivo with proteins that have affinity for hydroxyapatite considerably increased the amount of proteins immobilized within the AEP after the erosive challenge (8.2 μg for the control group versus 16.2-21.7 µg for the experimental groups). Moreover, it was observed a remarkable increase in several proteins in the AEP that are potentially resistant to removal by acids (Tables 1-4), protecting against erosive demineralization (Fig. 1). Interestingly, the families of proteins with changes in expression as well as the ratios found were distinct for the different proteins evaluated (Tables 1-4). However, considering the main outcome of the experiment (protection against erosive demineralization), these differences do not seem to be of importance, since all the isolated proteins/peptide provided similar protection. The combination of the 3 proteins, however, was not able to provide protection in comparison with the control. This might be because the concentrations of the 3 proteins in combination were similar to the ones used when the proteins were isolated. Considering that all of them have affinity for hydroxyapatite, they might have competed for binding sites onto this mineral. Further evaluation of the effect of the combination of these proteins at lower concentrations is interesting, since different proteins alter the composition of the AEP in a distinct manner (Tables 1-3).

One important finding of the present study is that despite some proteins with increased expression or exclusively found upon treatment with the proteins/peptide are those secreted by the salivary glands that are typically found in the AEP (e.g. PRPs, cystatins, amylase, lactotransferrin, histatins), most of them are intracellular proteins (e.g. keratins, histones, actin and profilin, tubulins, 14-3-3 proteins). It is known that the precursor proteins found in the basal layer of the AEP are the most protective ones against erosive demineralization [7]. Thus, increasing the amount of proteins with strong affinity for hydroxyapatite

Table 2

Proteins with significantly altered expression that remained in the acquired enamel pellicle after rinse with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with water (H2O), followed by formation of the acquired enamel pellicle for 2 hours and subsequent challenge with 1% citric acid pH 2.5 for 10 seconds.

^a Acession	Protein name	PLGS	Ratio
number		Score	HB:H ₂ O
D19647	Kenntin, turne II euterkeletel E	0.2	7.02
P1304/	Reratin_ type II cytoskeletal 5	83	7.92
P0//3/	Fromin-1 Venetin, trues II extended at a 6 P	97	6.35
P04259	Keratin_type ii cytoskeletal 66	230	6.11
P40000	Keratin_type II cytoskeletal 60	240	6.05
P02556	Canden blev nestain like 1	190	0.05
Q535F7	Cordon-bleu protein-like 1	120	4.90
P01801	immunogiobulin neavy constant	170	4.81
001060	gamma 4	170	4.96
P01800	immunoglobulin neavy constant	1/9	4.20
D00014	gamma 3	2076	4.10
P02814	Submaxinary giand androgen-	38/0	4.18
B01057	regulated protein 3B	404	2.04
P01857	Immunoglobulin heavy constant	480	3.94
B007/0	gamma 1	5054	0.00
P02/68	Serum albumin	5056	3.63
P01859	Immunoglobulin heavy constant	149	3.49
	gamma 2	222	
P13646	Keratin_type I cytoskeletal 13	153	3.46
P00738	Haptoglobin	281	3.32
Q9UBG3	Cornulin	142	3.16
POCF74	Immunoglobulin lambda constant 6	226	3.13
P04792	Heat shock protein beta-1	1774	3.03
P06702	Protein S100-A9	9379	3.00
Q562R1	Beta-actin-like protein 2	1478	2.89
P01876	Immunoglobulin heavy constant alpha	997	2.89
	1		
P05109	Protein S100-A8	3832	2.89
P0DOY3	Immunoglobulin lambda constant 3	226	2.80
P63261	Actin_ cytoplasmic 2	5974	2.72
P0DOY2	Immunoglobulin lambda constant 2	226	2.72
P02788	Lactotransferrin	227	2.69
A0M8Q6	Immunoglobulin lambda constant 7	171	2.69
P60709	Actin_ cytoplasmic 1	5974	2.66
P01877	Immunoglobulin heavy constant alpha	565	2.66
	2		
P68032	Actin_ alpha cardiac muscle 1	4504	2.56
P63267	Actin_ gamma-enteric smooth muscle	4504	2.53
Q9BZW7	Testis-specific gene 10 protein	93	2.53
P68133	Actin_ alpha skeletal muscle	4504	2.51
P62736	Actin_ aortic smooth muscle	4504	2.51
P04080	Cystatin-B	1982	2.46
O9BYX7	Putative beta-actin-like protein 3	1141	2.46
POCG04	Immunoglobulin lambda constant 1	249	2.44
Q6S8J3	POTE ankyrin domain family member E	2559	2.39
A5A3E0	POTE ankyrin domain family member F	2500	2.32
P0CG39	POTE ankyrin domain family member J	657	2.20
O9UGM3	Deleted in malignant brain tumors 1	72	2.18
-	protein		
P0CG38	POTE ankyrin domain family member I	1359	2.18
P01037	Cystatin-SN	2445	2.12
P04745	Alpha-amylase 1	4579	2.08
P04083	Annexin Al	2548	2.05
P12273	Prolactin-inducible protein	1127	2.05
P19961	Alpha-amylase 2B	3771	2.01
P04746	Pancreatic alpha-amylase	2963	2.01
096DA0	Zymogen granule protein 16 homolog B	744	1.92
P01036	Cystatin-S	2529	1.57
P69892	Hemoglohin subunit gamma-2	257	1.48
P50665	Neutrophil defensio 1	2692	1.32
P59665	Neutrophil defensin 2	2602	1.32
P04064	Immunoglabulin lambda lika nalumantida	2002	0.07
DINUUT	5	220	0.07
D21046	14.2.2 protoin boto (alpha	1424	LIR *
D60050	14.9.2 motein pera/aipina	1424	LID
004017	14-3-3 protein epsilon	1424	
Q04917	14-3-3 protein eta	1424	
P01981	14-3-3 protein gamma	1424	HB T
P3194/	14-3-3 protein sigma	1615	HB
P2/348	14-3-3 protein theta	1424	HB
P03104	14-3-3 protein zeta/delta	1801	HB *

5

(continued on next page)

abre E (conta	(det)			Tuble E (conta	(dou)
^a Acession number	Protein name	PLGS Score	^b Ratio HB:H ₂ O	^a Acession number	Protein name
P07108	Acyl-CoA-binding protein	482	HB*	Q15323	Keratin_ type I cuticular
P02763	Alpha-1-acid glycoprotein 1	632	HB	Q14532	Keratin_ type I cuticular
P01009	Alpha-1-antitrypsin	120	HB	076009	Keratin_ type I cuticular
P01023	Alpha-2-macroglobulin	189	HB	Q14525	Keratin_ type I cuticular
P30533	Alpha-2-macroglobulin receptor-	134	HB	0/6011	Keratin_type I cuticular
P12429	Annexin A3	500	HB*	076013	Keratin_type I cuticular
P02647	Apolipoprotein A-I	298	HB	076014	Keratin type I cuticular
P06576	ATP synthase subunit beta_ mitochondrial	190	HB*	076015	Keratin_ type I cuticular
Q8NHQ9	ATP-dependent RNA helicase DDX55	107	HB	P13645	Keratin_ type I cytoskelet
095429	BAG family molecular chaperone	94	HB*	Q99456	Keratin_ type I cytoskelet
	regulator 4			P19012	Keratin_ type I cytoskelet
P04280	Basic salivary proline-rich protein 1	2560	HB	P08779	Keratin_ type I cytoskelet
Q9H159	Calmedulin 1	131	HB	P05/83	Keratin_ type I cytoskelet
PODP23	Calmodulin-1	22/2	HB	P08/2/ P35900	Keratin_ type I cytoskelet Keratin_ type I cytoskelet
PODP25	Calmodulin-3	2272	HB	090075	Keratin_type I cytoskelet
P27482	Calmodulin-like protein 3	2665	HB	02M2I5	Keratin type I cytoskelet
P23280	Carbonic anhydrase 6	423	HB*	Q7Z3Y7	Keratin_ type I cytoskelet
P16070	CD44 antigen	227	HB	Q6A162	Keratin_ type I cytoskelet
P51788	Chloride channel protein 2	267	HB*	P04264	Keratin_ type II cytoskele
P23528	Cofilin-1	267	HB*	P35908	Keratin_ type II cytoskele
P01024	Complement C3	69	HB*	P19013	Keratin_ type II cytoskele
Q9NWV4	CXXC motif containing zinc binding	243	HB*	Q86Y46	Keratin_ type II cytoskele
D04000	protein			095678	Keratin_ type II cytoskele
P24903	Cytochrome P450 2F1	444	HB	Q5XKE5	Keratin_ type II cytoskele
QSIAQS	Dodigator of gutakingsis protein 4	240		Q51313	interacting factor 1
P13716	Delta-aminolevulinic acid debydratase	116	HB	092219	Microtubule-associated a
002487	Desmocollin-2	215	HB	Q912119	protein kinase 1
09P1A6	Disks large-associated protein 2	201	HB	P05164	Myeloperoxidase
Q9UBX2	Double homeobox protein 4	103	HB*	P14649	Myosin light chain 6B
POCJ85	Double homeobox protein 4-like protein 2	103	HB	P60660	Myosin light polypeptide
P0CJ86	Double homeobox protein 4-like protein 3	103	HB*	O43847	Nardilysin
POCJ88	Double homeobox protein 4-like protein 5	103	HB*	P14543	Nidogen-1
POCJ89	Double homeobox protein 4-like protein 6	103	HB*	Q13287	N-myc-interactor
POCJ90	Double homeobox protein 4-like protein 7	103	HB	075376	Nuclear receptor corepre
0950/1	E3 ubiquitin-protein ligase UBR5	90	HB	Q90Q90	Paraplegin Dhambafarin a ddia alaat
Q3M132	dinhosphohydrolase 8	82	пв	Q0V107	Phosphorurin acture crust
Q01469	Fatty acid-binding protein 5	1115	HB	P01833	Polymeric immunoglobu
P02679	Fibrinogen gamma chain	111	HB*	Q9UL51	Potassium/sodium hyper
P21333	Filamin-A	276	HB	8	activated cyclic nucleotic
Q12950	Forkhead box protein D4	92	HB		2
P04075	Fructose-bisphosphate aldolase A	708	HB	P20648	Potassium-transporting A
Q96176	G patch domain-containing protein 3	251	HB		chain 1
P47929	Galectin-7	573	HB	Q9HAT1	Protein ERGIC-53-like
P19447	General transcription and DNA repair	188	HB	Q9BS92	Protein NipSnap homolo
001106	factor IIH helicase subunit XPB	544	11D	Q8WZA1	Protein O-linked-mannos
P04406	Giyceraidenyde-3-phosphate	200	HB	OOLOW/9	acetyigiucosaminyitransi Dratain SMCO
P00739	Hantoglobin-related protein	107	HB	099407	Protein/nucleic acid deg
094927	HAUS augmin-like complex subunit 5	176	HB	014289	Protein-tyrosine kinase 2
O96A08	Histone H2B type 1-A	153	HB	A8MUU1	Putative fatty acid-bindir
P33778	Histone H2B type 1-B	641	HB*		protein 3
P62807	Histone H2B type 1-C/E/F/G/I	641	HB	Q86U02	Putative uncharacterized
P58876	Histone H2B type 1-D	641	HB*		by LINC00596
Q93079	Histone H2B type 1-H	641	HB*	P14618	Pyruvate kinase PKM
P06899	Histone H2B type 1-J	641	HB*	Q9Y2J0	Rabphilin-3A
060814	Histone H2B type 1-K	641	HB	095267	RAS guanyl-releasing pro
Q99880	Histone H2B type 1-L	641	HB	P52566	Rho GDP-dissociation inf
Q99879	Histone H2B type 1-M	641	HB	QOP557	Ribonuciease kappa
D23527	Histone H2B type 1-N	641	HB	015468	SCL interrupting locus pr
016778	Histone H2B type 2-E	641	HB	P02787	Serotransferrin
050NW6	Histone H2B type 2-E	641	HB	O9NBF2	SH2B adapter protein 1
Q8N257	Histone H2B type 3-B	641	HB	O9H299	SH3 domain-binding glut
P57053	Histone H2B type F-S	641	HB*		like protein 3
000291	Huntingtin-interacting protein 1	118	HB	Q86VE3	Spermidine/spermine N(
P01871	Immunoglobulin heavy constant mu	276	HB*	-22	acetyltransferase-like pro
P01591	Immunoglobulin J chain	804	HB*	Q15772	Striated muscle preferent
O00458	Interferon-related developmental	832	HB*		protein kinase
	regulator 1			015400	Syntaxin-7
Q8TAC2	Josephin-2	178	HB	P10599	Thioredoxin
060259	Kallikrein-8	134	HB	Q86UQ8	Transcription factor NF-

Journal of Dentistry 102 (2020) 103478

Table 2 (continued)

Protein name	PLGS	Ratio
	Score	HRILO
	acore	nB:H20
Keratin_ type I cuticular Ha1	396	HB *
Keratin type I cuticular Ha2	239	HB*
Keratin, type I cuticular Ha3-I	175	LIB *
Keratin_ type I cuticular Ha5-1	460	LID
Keratin_ type I cuticular Ha3-II	408	HB
Keratin_ type I cuticular Ha4	205	HB
Keratin_ type I cuticular Ha5	277	HB *
Keratin_ type I cuticular Ha6	248	HB*
Keratin type I cuticular Ha7	221	HB *
Keratin type Louticular Haß	221	HB*
Kenatia type I cutchini (100	550	LID
Keratin_ type I cytoskeletal 10	552	HB
Keratin_ type I cytoskeletal 12	270	HB *
Keratin_ type I cytoskeletal 15	676	HB *
Keratin_ type I cytoskeletal 16	578	HB *
Keratin type I cytoskeletal 18	287	HB*
Keratin, type I cytoskeletal 19	252	HB*
Keratin tume Leuteskeletal 20	107	LIR
Keraun_ type i cytoskeletai 20	197	HD I
Keratin_type I cytoskeletal 23	1/5	HB .
Keratin_ type I cytoskeletal 24	248	HB *
Keratin_ type I cytoskeletal 28	244	HB *
Keratin_ type I cytoskeletal 40	297	HB *
Keratin, type II cytoskeletal 1	225	HB*
Keratin, type II enteskeletal 2 enidermal	162	LID
Keratin_ type ii cytoskeletai 2 epidermai	162	FID .
Keratin_ type II cytoskeletal 4	499	HB
Keratin_type II cytoskeletal 73	302	HB*
Keratin_ type II cytoskeletal 75	672	HB *
Keratin type II cytoskeletal 79	672	HB*
Ligand-dependent nuclear recentor-	125	LIR *
Ligand-dependent nuclear receptor-	120	TID
interacting factor 1	200	
Microtubule-associated serine/threonine-	906	HB *
protein kinase 1		
Myeloperoxidase	1593	HB*
Myosin light chain 6B	355	HB *
Myosin light polynontide 6	544	LIR
Nyosin ngne polypeptide o	07	TID
Nardiiysin	87	HB
Nidogen-1	75	HB*
N-myc-interactor	129	HB *
Nuclear receptor corepressor 1	164	HB *
Paraplegin	275	HB*
	275	TID
Phosphorurin actuic cluster sorting protein	80	FID .
1		
Polymeric immunoglobulin receptor	170	HB "
Potassium/sodium hyperpolarization-	88	HB *
activated cyclic nucleotide-gated channel		
0		
2 Determine to a strand the ATD and a labor	719	I ID *
2 Potassium-transporting ATPase alpha	713	HB*
2 Potassium-transporting ATPase alpha chain 1	713	HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like	713 199	HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B	713 199 169	HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein 0-linked-mannose beta-1 2-N-	713 199 169 210	HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acettylelupcoming/transferres 1	713 199 169 210	HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein C-100	713 199 169 210	HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9	713 199 169 210 437	HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BEGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1	713 199 169 210 437 591	HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/rucsine kinase 2-beta	713 199 169 210 437 591 302	HB * HB * HB * HB * HB * HB *
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-betn Protein-tyrosine kinase 2-betn Protein-tyrosine kinase 2-betn Protein-tyrosine kinase 2-betn	713 199 169 210 437 591 302 383	HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3	713 199 169 210 437 591 302 383	HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/rucein kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative unchargeterized protein ap-od-od	713 199 169 210 437 591 302 383	HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/stronine kinase 2-betn Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded	713 199 169 210 437 591 302 383 175	HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596	713 199 169 210 437 591 302 383 175	HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein SMG9 Protein /nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM	713 199 169 210 437 591 302 383 175 706	HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative uncharacterized protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A	713 199 169 210 437 591 302 383 175 706 279	HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Protative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1	713 199 169 210 437 591 302 383 175 706 279 162	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein INjSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/sucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/sucleic acid acid deglycase DJ-1 Protein/sucleic acid acid deglycase DJ-1 Protein/sucleic acid acid deglycase DJ-1 Protein/sucleic acid acid acid acid deglycase DJ-1 Protein/sucleic acid acid acid deglycase DJ-1 Protein/sucleic acid acid deglycase DJ-1 Protein/sucleic acid deglycase DJ-1 Protein/sucleic acid deglycase DJ-1 Protein/sucleic acid deglycase DJ-1 Protein/sucleic acid deglycase DJ-1 Protein/su	713 199 210 437 591 302 383 175 706 279 162 123	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1,2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Bibonuelaze kanan	713 199 169 210 437 591 302 383 175 706 279 162 123 220	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein NipSnap homolog 3B Protein SMG9 Protein SMG9 Protein SMG9 Protein SMG9 Protein introsine kinase 2-betn Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa	713 199 169 210 437 591 302 383 175 706 279 162 123 220	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein BRGIC-53-like Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein-tyrosine kinase 2-beta Putative uncharacterized protein 5-like protein 3 Putative uncharacterized protein nencoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-disociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein SMG9 Protein /nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative anthrace 2-beta Putative anthrace 2-beta Putative uncharacterized protein 5-like protein 3 Putative uncharacterized protein necoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226	HB。 HB。 HB。 HB。 HB。 HB。 HB。 HB。 HB。 HB。
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein IO-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/successferase 1 Protein/successferase 2 Protein/successferase 2 Protein/successferase 2 Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein S	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative atty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adanter protein 1	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332	18° 18° 18° 18° 18° 18° 18° 18° 18° 18°
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/stopin kinase 2-beta Putative afaty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2 domain-binding guttemic acid_rich.	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 2153	18°。 188。 188。 188。 188。 188。 188。 188。
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINCOOS96 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2 domain-binding glutamic acid-rich-	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153	昭 ・ 昭 - 昭 -
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/synoine kinase 2-beta Putative anty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2B adapter protein 1 SH2B doanin-binding glutamic acid-rich- like protein 3	713 199 169 210 437 591 302 383 175 706 279 162 220 123 220 125 226 2016 332 153	18°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188°。 188° 188°
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1,2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINCO0596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-diasociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2B dangter protein 1 SH3 domain-binding glutamic acid-rich- like protein 3	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509	HB* HB+HB+ HB+ HB+ HB+ HB+ HB+ HB+ HB+ HB+
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMO9 Protein SMO9 Protein SMO9 Protein / nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative anthrace 2-beta Putative anthrace 2-beta Putative uncharacterized protein 5-like protein 3 Rob GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein SH2B adapter protein 1 SH2B dapter protein 1 SH2B dapter protein 1 SH2B dapter protein 1 Sh2B adapter protein 1 Sh2B adapter protein 1 Sh2B main-binding glutamic acid-rich- like protein 3	713 199 169 210 437 591 302 383 175 706 279 162 220 123 220 123 220 125 226 2016 332 153 509	18、 18日
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1,2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein s-like protein 3 Putative uncharacterized protein no- solution of the state of the state of the state protein 3 Putative uncharacterized protein 1 Rob GDP-disociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2 domain-binding glutamic acid-rich- like protein 3 Spermidine/spermine N(1)- acetyltransferase-like protein 1	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509	HB* HB* HB* HB* HB* HB* HB* HB* HB* HB*
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMO9 Protein SMO9 Protein SMO9 Protein cyronine kinase 2-beta Putative anthrace 2-beta Putative anthrace 2-beta Putative uncharacterized protein 5-like protein 3 Putative uncharacterized protein necoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein SH2B adapter protein 1 SH2B adapter protein 1 SH2B adapter protein 1 SH2B adapter protein 1 Spermidine/spermine N(1)- acetyltransferase-like protein 1 Striated muscle preferentially expressed	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509 120	HB。 HB· HB· HB· HB· HB· HB· HB· HB· HB· HB·
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1,2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-diasociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2 dangter protein 1 SH3 domain-binding glutamic acid-rich- like protein 3 Spermidine/spermine N(1)- acetyltransferase-like protein 1 Striated muzcle preferentially expressed protein kinase	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509 120	118° 118° 118° 118° 118° 118° 118° 118°
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein SMG9 Protein sMG9 Protein ityrosine kinase 2-beta Putative anthracetrized protein s-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein SH2B adapter protein 1 SH2B adapter protein 1 Strated muscle preferentially expressed protein kinase	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509 120 180	18°。 18°。 18°。 18°。 18°。 18°。 18°。 18°。
2 Potassium-transporting ATPase alpha chain 1 Protein IRGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/nucleic acid deglycase DJ-1 Protein/synoine kinase 2-beta Putative anthracetrized protein s-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B danpter protein 1 SH2B danpter protein 1 SH2B danpter protein 1 Systrated muscle preferentially expressed protein kinase Syntaxin-7 Thioredoxin	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509 120 180 202	18。 18日
2 Potassium-transporting ATPase alpha chain 1 Protein ERGIC-53-like Protein NipSnap homolog 3B Protein O-linked-mannose beta-1_2-N- acetylglucosaminyltransferase 1 Protein SMG9 Protein SMG9 Protein/nucleic acid deglycase DJ-1 Protein-tyrosine kinase 2-beta Putative fatty acid-binding protein 5-like protein 3 Putative uncharacterized protein encoded by LINC00596 Pyruvate kinase PKM Rabphilin-3A RAS guanyl-releasing protein 1 Rho GDP-dissociation inhibitor 2 Ribonuclease kappa Roundabout homolog 1 SCL-interrupting locus protein Serotransferrin SH2B adapter protein 1 SH2B adapter protein 1 SH2B adapter protein 1 SH2B adapter protein 1 SH2B adapter protein 1 Striated mucle preferentially expressed protein kinase Syntaxin-7 Thioredoxin Transcription factor NF-E4	713 199 169 210 437 591 302 383 175 706 279 162 123 220 125 226 2016 332 153 509 120 180 202 109	18、18、18、18、18、18、18、18、18、18、18、18、18、1

6

Table 2 (continued)

^a Acession	Protein name	PLGS	Ratio
number		Score	HB:H ₂ O
Q9C040	Tripartite motif-containing protein 2	270	HB*
P17752	Tryptophan 5-hydroxylase 1	122	HB
P07332	Tyrosine-protein kinase Fes/Fps	572	HB
Q9H9J4	Ubiquitin carboxyl-terminal hydrolase 42	350	HB
P08670	Vimentin	433	HB
Q96N77	Zinc finger protein 641	300	HB
Q96MU6	Zinc finger protein 778	205	HB*
$Q8N7 \times 0$	Androglobin	70	H ₂ O*
Q8N9B4	Ankyrin repeat domain-containing protein 42	82	H ₂ O*
Q12955	Ankyrin-3	79	H ₂ O*
P13942	Collagen alpha-2(XI) chain	122	H ₂ O*
Q8WXI2	Connector enhancer of kinase suppressor of ras 2	94	H ₂ O*
Q86T13	C-type lectin domain family 14 member A	66	H ₂ O*
014976	Cyclin-G-associated kinase	75	H ₂ O*
Q96RT1	Erbin	56	H ₂ O*
Q5T1M5	FK506-binding protein 15	42	H ₂ O*
Q14687	Genetic suppressor element 1	89	H ₂ O*
P47897	Glutamine-tRNA ligase	79	H ₂ O*
P0DMV8	Heat shock 70 kDa protein 1A	32	H ₂ O*
PODMV9	Heat shock 70 kDa protein 1B	32	H ₂ O*
P17066	Heat shock 70 kDa protein 6	33	H ₂ O*
P56524	Histone deacetylase 4	87	H-O*
OSN1A0	Keratin-like protein KRT222	104	H-O*
A0JLT2	Mediator of RNA polymerase II	372	H ₂ O*
Q9P1T7	MyoD family inhibitor domain-containing	69	H ₂ O*
OGD5K0	Protein dispatched homolog 3	37	H-O*
008188	Protein-glutamine gamma-	50	H-O*
Quoroo	glutamyltransferase E		1120
Q9HBR0	Putative sodium-coupled neutral amino acid transporter 10	73	H ₂ O*
O9H1J1	Regulator of nonsense transcripts 3A	60	H-O*
O9P2K3	REST corepressor 3	61	H-O*
O9NRY4	Rho GTPase-activating protein 35	53	H-O*
O9P0V9	Septin-10	249	H-O*
A1 × 283	SH3 and PX domain-containing protein 2B	54	H-O*
P12757	Ski-like protein	44	H ₂ O*
Q9Y6J9	TAF6-like RNA polymerase II p300/CBP- associated factor-associated factor 65 kDa	91	H ₂ O*
097466	Talin-2	76	H-O*
A0A1BOGUA7	Testis evolvesed protein 51	70	H_0*
Q13144	Translation initiation factor eIF-2B subunit	76	H ₂ O*
081X03	Uncharacterized protein C9orf40	143	H-O*
077.2W4	Zinc finger CCCH-type antiviral protein 1	42	H-O*
OPEVILO	Zine Enger coort type unternal protein 1	04	IL O

Proteins highlighted in bold are increased or decreased more than 2-fold.

^a Identification is based on proteins ID from UniProt protein database, reviewed only (http://www.uniprot.org/).

^b Proteins with expression significantly altered are organized according to the ratio.

Indicates unique proteins in alphabetical order.

in the basal layer, as tested in the present study, may also increase the amount of other proteins that do not bind to hydroxyapatite, but bind to the precursor proteins, which could have been the case of the intracellular proteins. One example of this is the increase of actin, found upon treatment with HB and StN15 and in protein combination. In the same study groups, profilin (an actin-binding protein) was also increased. Thus, actin and profilin might be part of the protein aggregates that are taken up in the second stage of formation of the AEP [5]. It is noteworthy that treatment with the proteins/peptide increased several proteins with antimicrobial properties in the AEP, such as several isoforms of immunoglobulins, cystatins, histatins and lysozyme. Therefore, it is possible that they also provide protection against dental caries, which should be evaluated in further studies.

One limitation of the present study was the lack of a positive control

Journal of Dentistry 102 (2020) 103478

Table 3

Proteins with significantly altered expression that remained in the acquired enamel pellicle after rinse with StN15 - StN15pS2pS3 $(1.88\times 10^{-5}M)$ for 1 minute in comparison with water (H₂O), followed by formation of the acquired enamel pellicle for 2 hours and subsequent challenge with 1% citric acid pH 2.5 for 10 seconds.

^a Acession	Protein name	PLGS	Ratio
number		Score	StN15:
			H_2O
P02814	Submaxillary gland androgen-	3876	32.46
P07737	Profilin-1	97	11.70
P19961	Alpha-amylase 2B	3771	9.12
P02812	Basic salivary proline-rich protein 2	273	8.67
P04746	Pancreatic alpha-amylase	2963	8.67
P04745	Alpha-amylase 1	4579	7.39
P15515	Histatin-1	1504	7.10
P01834	Immunoglobulin kappa constant	627	6.49
P02810	Salivary acidic proline-rich phosphoprotein 1/2	389	6.49
P25311	Zinc-alpha-2-glycoprotein	237	6.30
P13647	Keratin_ type II cytoskeletal 5	83	6.17
A0M8Q6	Immunoglobulin lambda constant 7	171	5.10
P04259	Keratin_ type II cytoskeletal 6B	230	4.81
P48668	Keratin_ type II cytoskeletal 6C	246	4.81
P00738	Haptoglobin	281	4.76
P02538	Keratin_ type II cytoskeletal 6A	246	4.71
P01876	Immunoglobulin heavy constant alpha 1	997	4.48
P0CF74	Immunoglobulin lambda constant 6	226	4.48
Q9UGM3	Deleted in malignant brain tumors 1 protein	72	4.35
P12273	Prolactin-inducible protein	1127	4.26
P01877	Immunoglobulin heavy constant alpha 2	565	4.01
Q96DA0	Zymogen granule protein 16 homolog B	744	4.01
P01861	Immunoglobulin heavy constant gamma 4	176	3.97
Q9UBG3	Cornulin	142	3.74
P01857	Immunoglobulin heavy constant	486	3.74
	gamma 1		
P01037	Cystatin-SN	2445	3.56
P61626	Lysozyme C	1523	3.56
P0CG04	Immunoglobulin lambda constant 1	249	3.49
P0DOY2	Immunoglobulin lambda constant 2	226	3.46
B9A064	Immunoglobulin lambda-like polypeptide 5	226	3.46
P06702	Protein S100-A9	9379	3.46
P0DOY3	Immunoglobulin lambda constant 3	226	3.35
Q562R1	Beta-actin-like protein 2	1478	3.32
P01036	Cystatin-S	2529	3.22
P02100	Hemoglobin subunit epsilon	257	2.9/
P69892	Hemoglobin subunit gamma-2	25/	2.97
P02042	Hemoglobin subunit delta	25/	2.89
P01059	gamma 2	149	2.09
P02788	Lactotransferrin	227	2.89
P69891	Hemoglobin subunit gamma-1	257	2.86
P01860	Immunoglobulin heavy constant	179	2.86
P02768	Serum albumin	5056	2.66
P69905	Hemoglobin subunit alpha	540	2.66
P04792	Heat shock protein beta-1	1774	2.56
O9BYX7	Putative beta-actin-like protein 3	1141	2.56
Q8IWJ2	GRIP and coiled-coil domain-	73	2.51
P68871	containing protein 2 Hemoglobin subunit beta	1520	2.48
P63261	Actin cytoplasmic 2	5974	2.41
P62736	Actin aortic smooth muscle	4504	2.32
091171	Stomatin-like protein 2	65	2.32
2.0000	mitochondrial		
P63267	Actin gamma-enteric smooth muscle	4504	2.29
P60709	Actin_ cytoplasmic 1	5974	2.27
P68032	Actin_ alpha cardiac muscle 1	4504	2.25
Q658J3	POTE ankyrin domain family member	2559	2.23
- 52	E.		

(continued on next page)

Table 3 (continued)

^a Acession	Protein name	PLGS	Ratio	^a Acession	Protein name
number		50010	H ₂ O	intiliper	
P68133	Actin_ alpha skeletal muscle	4504	2.16	Q5QNW6	Histone H2B ty
P04080	Cystatin-B	1982	2.12	Q8N257	Histone H2B ty
P09228	Cystatin-SA	1029	2.05	P57053	Histone H2B ty
A5A3E0	POTE ankyrin domain family member	2500	2.05	P62805	Histone H4
	F			O96028	Histone-lysine
P59666	Neutrophil defensin 3	2682	1.95	201071	NSD2
P05109	Protein S100-A8	3832	1.93	P01871	Immunoglobuli
Q81AA/	Mucin-/	3/4	1.08	A0A0J91A35	Immunoglobuli
P 3900 38	BOTE anturin domain family member I	1250	1.50	096520	Integrator com
P04083	Annexin A1	2548	1.28	09NWB7	Intraflagellar tr
P31946	14-3-3 protein beta/alpha	184	StN15*	2	homolog
P62258	14-3-3 protein epsilon	184	StN15*	P06870	Kallikrein-1
Q04917	14-3-3 protein eta	184	StN15*	Q14145	Kelch-like ECH
P61981	14-3-3 protein gamma	184	StN15*	P19012	Keratin_ type I
P31947	14-3-3 protein sigma	479	StN15*	P08779	Keratin_ type I
P27348	14-3-3 protein theta	184	StN15*	P08727	Keratin_ type I
P63104	14-3-3 protein zeta/delta	586	StN15*	P19013	Keratin_ type II
015528	25-hydroxyvitamin D-1 alpha	351	StN15*	Q86Y46	Keratin_ type II
	hydroxylase_mitochondrial			095678	Keratin_ type II
Q9BTT0	Acidic leucine-rich nuclear	213	StN15*	Q8NBT2	Kinetochore pro
	phosphoprotein 32 family member E			Q96S06	Lipase maturati
P01009	Alpha-1-antitrypsin	143	StN15*	060244	Mediator of RN
P48728	Aminomethyltransferase_mitochondrial	312	StN15*		transcription su
Q01432	AMP deaminase 3	292	StN15*	Q9BQA1	Methylosome p
Q6UB99	Ankyrin repeat domain-containing	189	StN15*	Q96J65	Multidrug resis
DOTOFF	protein 11	015	0.0115	005164	9
P0/355	Annexin A2	600	SUN 15	P05104	Myeloperoxida
P02047	Apolipoprotein A-1	200	SUN 15	P14049	Myosin light cr
P03090	Rosis solivary proline rish protein 1	432	SeN15	000308	NEDDA-like E2
077586	Bone morphogenetic protein SA	120	StN15*	000308	WWD2
OSTDL5	BPI fold-containing family B member 1	156	StN15*	000533	Neural cell adh
O9UBW5	Bridging integrator 2	202	StN15*	000000	protein
09H251	Cadherin-23	319	StN15*	P49321	Nuclear autoan
013554	Calcium/calmodulin-dependent protein	168	StN15*	O7Z3K3	Pogo transposa
	kinase type II subunit beta				domain
P27482	Calmodulin-like protein 3	257	StN15*	P01833	Polymeric imm
P23280	Carbonic anhydrase 6	2105	StN15*	P25789	Proteasome sub
075390	Citrate synthase_ mitochondrial	494	StN15*	Q9HAT1	Protein ERGIC-
P23528	Cofilin-1	1132	StN15*	Q5W0V3	Protein FAM16
Q5T9S5	Coiled-coil domain-containing protein	77	StN15*	P31949	Protein S100-A
	18			O95785	Protein Wiz
Q5W186	Cystatin-9	285	StN15*	Q99497	Protein/nucleic
P01034	Cystatin-C	571	StN15*	A6NMY6	Putative annex
Q5VZ89	DENN domain-containing protein 4C	123	StN15*	Q9Y2K5	R3H domain-co
Q14919	Dr1-associated corepressor	138	StN15*	Q12967	Ral guanine nu
Q9HAT8	E3 ubiquitin-protein ligase pellino	515	StN15*	1200203	stimulator
	homolog 2			P46940	Ras GTPase-act
Q81Y85	EF-hand calcium-binding domain-	1589	StN15*	0.07	IQGAP1
OOPV07	containing protein 13	240	CANIIS	Q86 × 27	Ras-specific gu
Qap 10/	Electrogenic solium bicarbonate	240	SUNIS	0961/96	Sering /threening
DO1599	Earthropolotin	160	S+N15	000707	Seratransformin
071217	Enviropoieun Eukarrotic translation initiation factor 3	410	StN15	P36052	Seroin B5
Queen	eubunit M	410	Suvis	OSTCVO	Smallintegral
015360	Eanconi anemia group A protein	176	StN15*	OSNHG7	Small VCP/p07
001469	Fatty acid-binding protein 5	456	StN15*	098345	Sodium- and ch
P04075	Fructose-bisphosphate aldolase A	155	StN15*	QUIDID	transporter 2
O9BY60	Gamma-aminobutyric acid receptor-	238	StN15*	O9BXS9	Solute carrier f
	associated protein-like 3			090093	Sperm flagellar
A6NK44	Glyoxalase domain-containing protein 5	163	StN15*	0658L1	Stabilizer of ax
Q96A08	Histone H2B type 1-A	334	StN15*	Q15772	Striated muscle
P33778	Histone H2B type 1-B	447	StN15*		protein kinase
P62807	Histone H2B type 1-C/E/F/G/I	447	StN15*	Q92537	Sushi domain-c
P58876	Histone H2B type 1-D	447	StN15*	015061	Synemin
Q93079	Histone H2B type 1-H	447	StN15*	Q8IYX1	TBC1 domain f
P06899	Histone H2B type 1-J	447	StN15	Q16650	T-box brain pro
O60814	Histone H2B type 1-K	447	StN15*	Q5UIP0	Telomere-assoc
Q99880	Histone H2B type 1-L	447	StN15*	O14530	Thioredoxin do
Q99879	Histone H2B type 1-M	447	StN15*	Q6ZWK6	Transmembran
Q99877	Histone H2B type 1-N	447	StN15*	P45379	Troponin T_ ca
P23527	Histone H2B type 1-O	447	StN15*	P07437	Tubulin beta cl
Q16778	Histone H2B type 2-E	447	StN15*	Q13885	Tubulin beta-2/

Table 3 (continued)

Journal of Dentistry 102 (2020) 103478

PLGS

Ratio

Score StN15: H_2O /pe 2-F 447 StN15 /pe 3-B /pe F-S 447 StN15 447 StN15 887 StN15 N-methyltransferase 114 StN15 StN15 in heavy constant mu 302 in heavy variable 3-64D in J chain 128 4960 StN15* StN15 239 217 StN15 StN15 plex subunit 14 ransport protein 57 970 StN15* l-associated protein 1 cytoskeletal 15 95 147 StN15 StN15 cytoskeletal 16 139 StN15 cytoskeletal 19 246 StN15 cytoskeletal 4 cytoskeletal 73 371 137 StN15 StN15* 98 209 cytoskeletal 75 StN15 otein Spc24 StN15 ion factor 1 249 StN15 136 StN15 IA polymerase II ubunit 14 protein 50 133 StN15* tance-associated protein 144 StN15 176 StN15* hain 6B 116 StN15 olypeptide 6 890 StN15 ubiquitin-protein ligase 296 StN15 nesion molecule L1-like StN15 154 ntigenic sperm protein able element with ZNF StN15 54 684 StN15 unoglobulin receptor 482 StN15 bunit alpha type-4 191 StN15 53-like 686 StN15 50B1 632 StN15 522 StN15 220 StN15 acid deglycase DJ-1 204 StN15 in A2-like protein ontaining protein 2 icleotide dissociation 915 StN15 106 StN15 588 StN15 tivating-like protein 173 StN15 137 anine nucleotide-StN15 RalGPS2 ne-protein kinase pim-3 112 StN15 1875 StN15 221 StN15 309 StN15* membrane protein 11B 7-interacting protein hloride-dependent glycine 237 StN15 StN15 227 178 StN15* amily 26 member 6 protein 2 onemal microtubules 2 229 StN15 154 StN15 preferentially expressed 140 StN15 containing protein 6 271 StN15 146 StN15 amily member 21 115 StN15 149 otein 1 StN15 ciated protein RIF1 44 180 StN15 StN15 omain-containing protein9 e protease serine 11 F 112 StN15 rdiac muscle 287 StN15 hain A chain 453 StN15 453 StN15 (continued on next page)

8

Acession number	Protein name	PLGS Score	^b Ratio StN15: H ₂ O
Q9BVA1	Tubulin beta-2B chain	453	StN15*
Q13509	Tubulin beta-3 chain	292	StN15*
P04350	Tubulin beta-4A chain	172	StN15*
P68371	Tubulin beta-4B chain	172	StN15*
Q9BUF5	Tubulin beta-6 chain	172	StN15*
Q3ZCM7	Tubulin beta-8 chain	172	StN15*
P35236	Tyrosine-protein phosphatase non- receptor type 7	153	StN15*
Q93009	Ubiquitin carboxyl-terminal hydrolase 7	259	StN15*
Q9H972	Uncharacterized protein C14orf93	373	StN15*
Q502W6	von Willebrand factor A domain- containing protein 3B	162	StN15*
Q8N9V3	WD repeat_ SAM and U-box domain- containing protein 1	75	StN15*
Q6P2D8	X-ray radiation resistance-associated protein 1	138	StN15*
Q96NG8	Zinc finger protein 582	326	StN15*
$Q8N7 \times 0$	Androglobin	70	H ₂ O*
28N9B4	Ankyrin repeat domain-containing protein 42	82	H ₂ O*
P13942	Collagen alpha-2(XI) chain	122	H ₂ O*
Q8WXI2	Connector enhancer of kinase suppressor of ras 2	94	H ₂ O*
Q53SF7	Cordon-bleu protein-like 1	128	H ₂ O*
Q86T13	C-type lectin domain family 14 member A	66	H_2O^*
014976	Cyclin-G-associated kinase	75	H ₂ O*
Q96RT1	Erbin	56	H ₂ O*
Q5T1M5	FK506-binding protein 15	42	H ₂ O*
214687	Genetic suppressor element 1	89	H ₂ O*
47897	Glutamine-tRNA ligase	79	H ₂ O*
P17066	Heat shock 70 kDa protein 6	33	H ₂ O*
956524	Histone deacetylase 4	87	H ₂ O*
02533	Keratin_ type I cytoskeletal 14	28	H ₂ O*
204695	Keratin_ type I cytoskeletal 17	28	H ₂ O*
28N1A0	Keratin-like protein KRT222	104	H ₂ O [®]
P08493	Matrix Gla protein	690	H ₂ O*
A0JLT2	Mediator of RNA polymerase II transcription subunit 19	372	H ₂ O*
Q9P1T7	MyoD family inhibitor domain- containing protein	69	H ₂ O*
Q9P2K9	Protein dispatched homolog 3	37	H ₂ O*
Q08188	Protein-glutamine gamma- glutamyltransferase E	50	H ₂ O*
Q9HBR0	Putative sodium-coupled neutral amino acid transporter 10	73	H ₂ O*
Q9H1J1	Regulator of nonsense transcripts 3A	60	H ₂ O*
Q9P2K3	REST corepressor 3	61	H ₂ O*
Q9NRY4	Rho GTPase-activating protein 35	53	H ₂ O*
Q9P0V9	Septin-10	249	H ₂ O*
A1 × 283	SH3 and PX domain-containing protein 2B	54	H ₂ O*
P12757	Ski-líke protein	44	H ₂ O*
Q9Y6J9	TAF6-like RNA polymerase II p300/CBP- associated factor-associated factor	91	H ₂ O*
	65 kDa subunit 6 L		
Q9Y4G6	Talin-2	76	H ₂ O*
AUA1BOGUA7	Testis-expressed protein 51	72	H ₂ O*
Q9BZW7	Testis-specific gene 10 protein	93	H ₂ O
213144	I ranslation initiation factor eIF-2B subunit epsilon	76	H ₂ O*
Q8IXQ3	Uncharacterized protein C9orf40	143	H ₂ O*
Q7L1V2	Vacuolar fusion protein MON1 homolog B	206	H_2O^*
Q7Z2W4	Zinc finger CCCH-type antiviral protein 1	42	H ₂ O*
Q9C0A1	Zinc finger homeobox protein 2	176	H ₂ O*
Q86XU0	Zinc finger protein 677	94	H ₂ O*

reviewed only (http://www.uniprot.org/). ^b Proteins with expression significantly altered are organized according to

the ratio. Indicates unique proteins in alphabetical order. Journal of Dentistry 102 (2020) 103478

P23280 Q9BXL7

Table 4 Proteins with significantly altered expression that remained in the acquired enamel pellicle after rinse with Combination (COMB) of the 3 proteins (Cane, StN15 and HB) at the concentrations already described for 1 minute in comparison with water (H_2O) , followed by formation of the acquired enamel pellicle for 2 hours and subsequent challenge with 1% citric acid pH 2.5 for 10 seconds.

		202.555	120-01-0-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
Acession	Protein name	PLGS	Ratio
number		Score	COMB
number		SCOLE	COMD.
			H ₂ O
P07737	Profilin-1	97	15.18
P01861	Immunoglobulin heavy constant	176	5.37
	gamma 4		
-	gamma 4		5.04
P01860	Immunoglobulin heavy constant	179	5.21
	gamma 3		
D01950	Immunoglobulin beaux constant	140	4 21
F01039	minunogioburni neavy constant	149	4.31
	gamma 2		
07L1V2	Vacuolar fusion protein MON1	206	4.10
	homolog P		
	nomorog B		
P01877	Immunoglobulin heavy constant	565	3.86
	alpha 2		
B01076	In the second se	007	2 70
P018/0	immunogiobulin neavy constant	997	3.78
	alpha 1		
P01857	Immunoglobulin heavy constant	486	3 53
	gamma 1		
P15515	Histatin-1	1504	3.49
P01834	Immunoglobulin kappa constant	627	3.35
BLOCK	The second se		0.00
P13646	Keratin_ type I cytoskeletal 13	153	3.10
A0M8Q6	Immunoglobulin lambda constant 7	171	3.03
OQUBG3	Cornulin	142	2 97
Q900003		142	2.37
P02810	Salivary acidic proline-rich	389	2.86
	phosphoprotein 1/2		
D02799	Lastatransfermin	227	2 92
F02/00	Lactotransierrin	221	2.03
Q9UGM3	Deleted in malignant brain tumors 1	72	2.59
	protein		
BOCE74	Immune alabadin lambda asastant 6	226	3 50
PUCF/4	immunogioburin fambda constant o	220	2.59
P63261	Actin_ cytoplasmic 2	5974	2.51
P04792	Heat shock protein beta-1	1774	2.51
B60700	Artin antenlamia 1	5074	0.46
P00/09	Actin_ cytopiasmic 1	59/4	2.40
P06702	Protein S100-A9	9379	2.46
P04746	Pancreatic alpha-amylase	2963	2.36
DOOTCO	· · · ·	FOFE	0.00
P02/68	Serum albumin	5056	2.29
P12273	Prolactin-inducible protein	1127	2.27
P04745	Alpha-amylase 1	4579	2 25
P04/40	Alpha-anylase 1	4079	2.20
P19961	Alpha-amylase 2B	3771	2.25
P05109	Protein S100-A8	3832	2.25
P04080	Cystatin-B	1982	2.08
00000		1 170	0.05
Q562R1	Beta-actin-like protein 2	14/8	2.05
P02814	Submaxillary gland androgen-	3876	1.97
	regulated protein 3B		
	regulated protein 5D		
P68032	Actin_alpha cardiac muscle 1	4504	1.95
P68133	Actin alpha skeletal muscle	4504	1.95
P62736	Actin aortic smooth muscle	4504	1.90
102/00		1001	1.00
P6326/	Actin_ gamma-enteric smooth muscle	4504	1.88
P01037	Cystatin-SN	2445	1.73
OSTAX7	Mucin-7	874	1 55
012055	A - lumin 2	70	1 5 4
Q12955	Анкупп-з	19	1.54
Q9BYX7	Putative beta-actin-like protein 3	1141	1.49
P09228	Cystatin-SA	1029	1.46
065912	POTE and among for the second second	2550	1.42
202013	FOIL ankyrin domain family member E	2009	1.42
P01036	Cystatin-S	2529	1.39
A5A3E0	POTE ankyrin domain family member F	2500	1.35
DO 40.02	America A1	2540	1.20
F04063	Annexin Al	2348	1.30
P59665	Neutrophil defensin 1	2682	0.40
P15516	Histatin-3	3388	0.28
001047	14.0.0	014	00112
P3194/	14-3-3 protein sigma	214	COMB
Q05823	2-5A-dependent ribonuclease	116	COMB
016515	Acid-sensing ion channel 2	83	COMB
OOUINE		107	COMP
Q90112	ADP-ribosylation factor-binding	13/	COMB
	protein GGA1		
P12429	Annexin A3	292	COMB
. 12127	Ample II	2.72	COMD
Q9NUQ8	AIP-binding cassette sub-family F	56	COMB
	member 3		
P04280	Basic salivary proline-rich protein 1	178	COMB
104200	paste sanvary prome-rich protein 1	170	CONID
Q07817	Bc1-2-like protein 1	352	COMB
P27482	Calmodulin-like protein 3	309	COMB
D23280	Carbonic anhydrace 6	272	COMP
123200	carbonic annyurase o	213	COWD
O9BXL7		220	COMB

(continued on next page)

Table 4 (continued)

able 4 (continued)				Table 4 (continued)			
^a Acession number	Protein name	PLGS Score	^b Ratio COMB: H ₂ O	^a Acession number	Protein name	PLGS Score	
	Caspase recruitment domain-			Q9C035	Tripartite motif-containing protein 5	634	
	containing protein 11			P07437	Tubulin beta chain	262	
075175	CCR4-NOT transcription complex	207	COMB*	Q13885	Tubulin beta-2A chain	262	
	subunit 3			Q9BVA1	Tubulin beta-2B chain	262	
Q8N137	Centrobin	206	COMB*	P04350	Tubulin beta-4A chain	262	
P12110	Collagen alpha-2(VI) chain	132	COMB*	P68371	Tubulin beta-4B chain	262	
Q2VPA4	Complement component receptor 1- like protein	79	COMB*	Q9NYH9	U3 small nucleolar RNA-associated protein 6 homolog	139	
P17927	Complement receptor type 1	57	COMB	Q9H972	Uncharacterized protein C14orf93	180	
P28325 Q9BY07	Cystatin-D Electrogenic sodium bicarbonate	187 337	COMB* COMB*	Q99437	V-type proton ATPase 21 kDa proteolipid subunit	197	
	cotransporter 4			Q641Q2	WASH complex subunit 2A	129	
043556	Epsilon-sarcoglycan	505	COMB*	Q9Y4E1	WASH complex subunit 2C	129	
P14324	Farnesyl pyrophosphate synthase	124	COMB	014628	Zinc finger protein 195	96	
O00358	Forkhead box protein E1	58	COMB*	Q3KQV3	Zinc finger protein 792	68	
Q9NXC5	GATOR complex protein MIOS	66	COMB	P06733	Alpha-enolase	384	
P04406	Glyceraldehyde-3-phosphate	352	COMB*	$Q8N7 \times 0$	Androglobin	70	
	dehydrogenase			Q8N9B4	Ankyrin repeat domain-containing	82	
Q96A08	Histone H2B type 1-A	121	COMB*		protein 42		
P33778	Histone H2B type 1-B	181	COMB*	P13929	Beta-enolase	384	
P62807	Histone H2B type 1-C/E/F/G/I	181	COMB*	P13942	Collagen alpha-2(XI) chain	122	
P58876	Histone H2B type 1-D	181	COMB*	Q8WX12	Connector enhancer of kinase	94	
Q93079	Histone H2B type 1-H	181	COMB*		suppressor of ras 2		
P06899	Histone H2B type 1-J	181	COMB	Q53SF7	Cordon-bleu protein-like 1	128	
060814	Histone H2B type 1-K	181	COMB*	Q86T13	C-type lectin domain family 14 member	66	
Q99880	Histone H2B type 1-L	181	COMB		A	_	
Q99879	Histone H2B type 1-M	181	COMB*	014976	Cyclin-G-associated kinase	75	
Q99877	Histone H2B type 1-N	181	COMB*	Q96RT1	Erbin	56	
P23527	Histone H2B type 1-O	181	COMB	Q5T1M5	FK506-binding protein 15	42	
Q16778	Histone H2B type 2-E	181	COMB	P09104	Gamma-enolase	384	
Q5QNW6	Histone H2B type 2-F	181	COMB	Q1468/	Genetic suppressor element 1	89	
Q8N257	Histone H2B type 3-B	181	COMB	P4/89/	Glutamine-triva ligase	79	
P5/053	Histone H2B type F-S	181	COMB	Q8IWJ2	GRIP and colled-coll domain-	13	
P01591	immunogiobulin J chain	500	COMB	DODMUN	containing protein 2	20	
Q9INZM3	Research Research Labor 1	49	COMB	PODMV8	Heat shock 70 kDa protein 1A	32	
P04204	Keratin_ type ii cytoskeletal 1	342	COMB	PUDMV9	Heat shock 70 kDa protein 1B	32	
Q07866	Kinesin light chain 1	190	COMB	P1/000	Heat snock /0 kDa protein o	55	
Q9HAQ2	Kinesin-like protein KIF9	193	COMB	P69905	Hemoglobin subunit alpha	540	
Q90110	hemelogy domain containing protein 2	330	COMB	P30324	Keretin, type I gyteskeletel 14	20	
D05164	Muelon gravidase	2.25	COMP	004605	Keratin_ type I cytoskeletal 17	20	
P50047	NACHT I BR and BVD domains-	160	COMB	Q04095 D13647	Keratin_type I cytoskeletal 5	20	
F 39047	containing protein 5	109	COMB	P02538	Keratin_type II cytoskeletal 5	246	
O7BTR0	NACHT LER and PVD domains-	65	COMB	P04250	Keratin_type II cytoskeletal 6B	230	
Quinto	containing protein 9	05	COMD	P48668	Keratin_ type II cytoskeletal 6C	246	
09H7 v 0	N-alpha-acetultransferase 60	00	COMB	OSN140	Keratin-like protein KRT222	104	
P18615	Negative elongation factor E	231	COMB*	P08493	Matrix Gla protein	690	
AGNDB9	Paralemmin-3	61	COMB	A01172	Mediator of BNA polymerase II	372	
060664	Perilipin-3	372	COMB	1100 01 0	transcription subunit 19	07.0	
053H76	Phospholipase A1 member A	214	COMB	O9P1T7	MyoD family inhibitor domain-	69	
P01833	Polymeric immunoglobulin receptor	171	COMB*	Q.I.I.I	containing protein		
P28290	Protein ITPRID2	151	COMB	O9P2K9	Protein dispatched homolog 3	37	
O6P5S2	Protein LEG1 homolog	208	COMB*	008188	Protein-glutamine gamma-	50	
O9UKK3	Protein mono-ADP-ribosyltransferase	71	COMB		glutamyltransferase E		
2001003	PARP4			O9HBR0	Putative sodium-coupled neutral amino	73	
O6GMV3	Putative peptidyl-tRNA hydrolase	343	COMB*		acid transporter 10		
•	PTRHD1	1013		O9H1J1	Regulator of nonsense transcripts 3A	60	
P23468	Receptor-type tyrosine-protein phosphatase delta	164	COMB*	Q9NRY4 O9P0V9	Rho GTPase-activating protein 35 Septin-10	53 249	
O9UKL0	REST corepressor 1	292	COMB*	$A1 \times 283$	SH3 and PX domain-containing protein	54	
P52566	Bho GDP-dissociation inhibitor 2	336	COMB*	111 / 200	28	5.	
P21817	Ryanodine receptor 1	120	COMB	P12757	Ski-like protein	44	
07Z7L1	Schlafen family member 11	316	COMB	09[1]21	Stomatin-like protein 2 mitochondrial	65	
P02787	Serotransferrin	488	COMB	09Y6J9	TAF6-like RNA polymerase II p300/	91	
Q8TF17	SH3 domain and tetratricopeptide	164	COMB*	Q. COL	CBP-associated factor-associated factor	<i></i>	
099250	Sodium channel protein type 2 subunit	225	COMB	098406	Talin-2	76	
299230	alpha	223	COMB	A0A1B0GUA7	Testis-expressed protein 51	72	
P78383	Solute carrier family 35 member B1	158	COMB*	Q9BZW7	Testis-specific gene 10 protein	93	
043581	Synaptotagmin-7	272	COMB*	Q13144	Translation initiation factor eIF-2B	76	
Q8N584	Tetratricopeptide repeat protein 39C	105	COMB*	177 <u>99 (18</u> 09) 1980	subunit epsilon	12,779-020	
P30048	Thioredoxin-dependent peroxide reductase_ mitochondrial	154	COMB*	Q8IXQ3 Q7Z2W4	Uncharacterized protein C9orf40 Zinc finger CCCH-type antiviral protein	143 42	
Q9NQE7	Thymus-specific serine protease	122	COMB*		1		

(continued on next page)

Journal of Dentistry 102 (2020) 103478

^bRatio COMB: H₂O

COMB COMB COMB COMB COMB COMB

COMB[®] COMB[®]

COMB COMB COMB COMB H₂O H₂O H₂O

H₂O* H₂O* H₂O*

H₂O* H₂O*

 $H_2O = H_2O =$

 $\begin{array}{c} H_2 O \\ H_2 O \\$

H₂O[®] H₂O* H₂O*

 H_2O^*

H₂O H₂O H₂O H₂O

H₂O * H₂O * H₂O *

H₂O* H₂O* H₂O* H₂O*

H₂O* H₂O*

Table 4 (continued)							
^a Acession number	Protein name	PLGS Score	^b Ratio COMB:				
09C0A1	Zinc finger homeobox protein 2	176	H ₂ O [®]	-			
Q86XU0	Zinc finger protein 677	94	H ₂ O*				

Proteins highlighted in bold are increased or decreased more than 2-fold. ^a Identification is based on proteins ID from UniProt protein database, reviewed only (http://www.uniprot.org/).

^b Proteins with expression significantly altered are organized according to the ratio.

^{*} Indicates unique proteins in alphabetical order.

recognized for its ability to reduce erosive demineralization, such as SnF_2 rinse [22]. Despite the mechanism of action of SnF_2 to reduce erosion does not involve acquired pellicle engineering, it would have been interesting to compare the performance of this agent with that of the proteins/peptides tested in the present study.

5. Conclusion

Our results show, for the first time, that treatment with CaneCPI-5, HB or StN15 remarkably increases acid-resistant proteins in the AEP, which protects against erosive demineralization. These findings open an avenue for a new preventive approach for erosive demineralization, employing acquired pellicle engineering procedures that may in the future be incorporated into dental products.

CRediT authorship contribution statement

Thamyris Souza Carvalho: Validation, Formal analysis, Data curation, Investigation, Visualization, Writing - review & editing. Tamara Teodoro Araújo: Formal analysis, Investigation, Writing - review & editing. Talita Mendes Oliveira Ventura: Formal analysis, Investigation, Writing - review & editing. João Victor Frazão Câmara: Investigation. Samanta Mascarenhas Moraes: Investigation. Vinicius Taioqui Pelá: Investigation. Tatiana Martini: Investigation. Julia Chaparro Leme: Investigation. Ana Luiza Bogaz Derbotolli: Investigation. Larissa Tercilia Grizzo: Investigation. Edson Crusca: Resources, Writing - review & editing. Priscila Yumi Tanaka Shibao: Resources, Writing - review & editing. Reinaldo Marchetto: Resources, Writing - review & editing. Reinaldo Marchetto: Resources, Writing - review & editing. Resources, Writing - review & editing. Marília Afonso Rabelo Buzalaf: Conceptualization,

Fig. 1. Calcium released after challenge with 10 μ L of 1% citric acid (pH 2.5), for enamel treated in vivo after rinsing for 1 min with 10 mL of deionized water, 0.1 mg/mL CaneCPI-5, 1.0 mg/mL hemoglobin (HB), 1.88 \times 10 $^{-5}$ M statherinderived peptide (StN15) or combination of the 3 proteins/peptide and subsequent acquired enamel pellicle formation for 2 h (Kruskal-Wallis and Dunn's test, p < 0.05, n = 10).

Journal of Dentistry 102 (2020) 103478

Methodology, Validation, Formal analysis, Data curation, Writing original draft, Writing - review & editing, Supervision, Project administration.

Declaration of Competing Interest

The authors have declared no conflict of interest.

Acknowledgements

FAPESP provided a PhD Student fellowship to the first author of this study (2019/16254-8). This study was funded by FAPESP (2018/12041-7) and CNPq (407853/2018-9). F.H.-S. is the recipient of a Research Productivity Scholarship from the National Council for Research and Development (CNPq 311746/2017-9). M.A.R.B is the recipient of a Research Productivity Scholarship from the National Council for Research and Development (CNPq 302371/2018-4). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. All authors gave their final approval and agree to be accountable for all aspects of the work.

References

- C. Dawes, G.N. Jenkins, C.H. Tonge, The nomenclature of the integuments of the enamel surface of the teeth, Br. Dent J. 115 (1963) 65–68.
 A.T. Hara, M. Ando, C. Gonzalez-Cabezas, J.A. Cury, M.C. Serra, D.T. Zero,
- [2] A.T. Hara, M. Ando, C. Gonzalez-Cabezas, J.A. Cury, M.C. Serra, D.T. Zero, Protective effect of the dental pellicle against erosive challenges in situ, J. Dent. Res. 85 (7) (2006) 612–616.
- M.A.R. Buzalaf, A.R. Hannas, M.T. Kato, Saliva and dental erosion, J. Appl. Oral. Sci. 20 (5) (2012) 493–502.
 D. Vukosavljevic, W. Custodio, M.A.R. Buzalaf, A.T. Hara, W.L. Siqueira, Acquired
- D. Vukosavljevic, W. Custotlio, M.A.R. Buzalaf, A.T. Hara, W.L. Siqueira, Acquired pellicle as a modulator for dental erosion, Arch. Oral. Biol. 59 (6) (2014) 631–638.
 M. Hannig, Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period, Clin. Oral. Investig. 3 (2) (1999) 88–95.
- intranal sites during a 24-h period, Clin. Oral. Investig. 3 (2) (1999) 88-95.
 D.I. Hay, The interaction of human parotid salivary proteins with hydroxyapatite Arch. Oral. Biol. 18 (12) (1973) 1517-1529.
- Arch. Oral. Biol. 18 (12) (1973) 1517–1529.
 C. Hannig, D. Berndt, W. Hoth-Hannig, M. Hannig, The effect of acidic beverages on the ultrastructure of the acquired pellicle-an in situ study, Arch. Oral. Biol. 54
- (6) (2009) 518-526.
 (7) R. Delecrode, W.L. Siqueira, F.C. Zaidan, M.R. Bellini, E.B. Moffa, M.C. Mussi, V. Yao, M.A. Breck, M. S. Bourger, and M. S. Bourger, and M. S. Breck, and M. S. Bourger, and M. S. Breck, and M.
- Y. Niao, M.A. Buzalaf, Identification of acid-resistant proteins in acquired enamel pellicle, J. Dent. 43 (12) (2015) 1470–1475.
 E.A. Taira, T.M.S. Ventura, L.P.S. Cassiano, C.M.S. Silva, T. Martini, A.L. Leite,
- pennets, o. Jenit, 45 (12) (2015) 1470-1475.
 [9] E.A. Taira, T.M.S. Ventra, L.P.S. Cassiano, C.M.S. Silva, T. Martini, A.L. Leite, D. Rios, A.C. Magalhaes, M.A.R. Buzalaf, Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure, Caries Res. 52 (5) (2018) 367–377.
- acquired enamel pencies as a function of their time of romation and hydrochoire acid exposure, Carles Res. 52 (2018) 367–377.
 [10] T. Martini, D. Rios, L.P.S. Cassiano, C.M.S. Silva, E.A. Taira, T.M.S. Ventura, H. Pereira, A.C. Magalhaes, T.S. Carvalho, T. Baumann, A. Lussi, R.B. Oliveira, R. G. Palma-Dibb, M.A.R. Buzalaf, Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear, J. Dent. 81 (2019) 64–69.
- [11] M. Choi, C.Y. Chang, T. Clough, D. Broudy, T. Killeen, B. MacLean, O. Vitek, MSstats: an R package for statistical analysis of quantitative mass spectrometrybased proteomic experiments, Bioinformatics 30 (17) (2014) 2524-2526.
- [12] A.C. Santiago, Z.N. Khan, M.C. Miguel, C.C. Gironda, A. Soares-Costa, V.T. Pela, A. L. Leite, J.M. Edwardson, M.A.R. Buzalaf, F. Henrique-Silva, A new sugarcane cystatin strongly binds to dental enamel and reduces erosion, J. Dent. Res. 96 (9) (2017) 1051–1057.
- [13] T. Martini, D. Rios, A. Dionizio, L.P. Cassiano, V.T. Pela, C.M.S. Silva, E.A. Taira, T. M. Ventura, A.C. Magalhies, T.S. Carvalho, T. Baumann, A. Lussi, R.B. Oliveira, R. G. Palma-Dibb, M.A.R. Buzalaf, Salivary hemoglobin protects against erosive tooth wear in gastric reflux patients, Carles Res. (2020) (in press).
- [14] E.A. Taira, G. Carvalho, C.R. Ferrari, T. Martini, V.T. Pela, T.M. Ventura, A. S. Dionizio, E. Crusca, R. Marchetto, M.A.R. Buzalaf, Statherin-derived peptide protects against intrinsic evolution, Arch Oral Biol (2020) (in press).
- [15] G.L. Vogel, L.C. Chow, C.M. Carey, G.E. Schumacher, S. Takagi, Effect of a calcium prerince on salivary fluoride after a 228-ppm fluoride rinse, Caries Res. 40 (2) (2006) 178–180.
- (2006) 178-180.
 [16] W.L. Siqueira, W. Zhang, E.J. Helmerhorst, S.P. Gygi, F.G. Oppenheim, Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS, J. Proteome Res. 6 (6) (2007) 2152-2160.
 [17] T.M. Ventura, L.P. Cassiano, E.S.C.M. Souza, E.A. Taira, A.L. Leite, D. Rios, M.
- T.M. Ventura, L.P. Cassiano, E.S.C.M. Souza, E.A. Taira, A.L. Leite, D. Rios, M. A. Buzalaf, The proteomic profile of the acquired enamel pellicle according to its location in the dental arches, Arch. Oral. Biol. 79 (2017) 20–29.
 S. Shah, J. Kosoric, M.P. Hector, P. Anderson, An in vitro scanning
- [18] S. Shah, J. Kosoric, M.P. Heetor, P. Anderson, An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length, Eur. J. Oral. Sci. 119 (Suppl. 1) (2011) 13–18.
T.S. Carvalho et al.

- P.A. Raj, M. Johnsson, M.J. Levine, G.H. Nancollas, Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization, J. Biol. Chem. 267 (9) (1992) 5968-5976.
 J. Kosoric, R.A.D. Williams, M.P. Hector, P.A. Anderson, A synthetic peptide based on a natural salivary protein reduces demineralization in model systems for dental caries and erosion, Int. J. Pept. Res. Ther. 13 (2007) 497-503.

Journal of Dentistry 102 (2020) 103478

- [21] T. Kawasaki, S. Takahashi, K. Ikeda, Hydroxyapatite high-performance liquid chromatography: column performance for proteins, Eur. J. Biochem. 152 (2) (1985) 361-371.
 [22] A. Lussi, M.A.R. Buzalaf, D. Duangthip, V. Anttonen, C. Ganss, S.H. Joao-Soura, T. Baumann, T.S. Carvalho, The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents, Eur. Arch. Paediatr. Dent. 20 (6) (2019) 517-527.

Article 2: formatted according to Caries Research

Declaration of exclusive use of the article (ANNEX C)

Proof of final review (ANNEX D)

Hemoglobin protects enamel against intrinsic enamel erosive demineralization

Thamyris Souza Carvalho^a, Tamara Teodoro Araújo^a, Talita Mendes Oliveira Ventura^a, Aline Dionizio^a, João Victor Frazão Câmara^a, Samanta Mascarenhas Moraes^a, Júlia Chaparro Leme^a, Larissa Tercilia Grizzo^a, Edson Crusca^b, Priscila Yumi Tanaka Shibao^c, Reinaldo Marchetto^b, Flavio Henrique-Silva^c, Juliano Pelim Pessan^d, *Marília Afonso Rabelo Buzalaf^a

^a Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.

^b Department of Biochemistry and Technology, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.

^c Department of Genetics and Evolution, São Carlos Federal University, São Carlos, Brazil.

^d Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.

Short title: Hemoglobin reduces intrinsic erosion

* Corresponding Author:

Dr. Marília Afonso Rabelo Buzalaf.

Department of Biological Sciences.

University of São Paulo.

Al. Octávio Pinheiro Brisolla, 9-75.

Bauru, São Paulo, 17012-901, Brazil.

Tel: +55-14-3535-8346.

E-mail: mbuzalaf@fob.usp.br.

Number of Tables: 4.

Number of Figures: 2.

Word count: 3.960.

Keywords: Acquired enamel pellicle, proteomics, hemoglobin, dental erosion.

Abstract

Introduction: This study investigated the changes in the acquired enamel pellicle (AEP) proteome when this integument is formed in vivo after treatment with sugarcanederived cystatin (CaneCPI-5), hemoglobin (HB), and a statherin-derived peptide (StN15), or their combination and then exposed to an intrinsic acid challenge. The effectiveness of these treatments in preventing intrinsic erosion was also evaluated. **Methods:** Ten volunteers, after prophylaxis, in 5 crossover phases, rinsed with the following solutions (10mL, 1min): control (deionized water-H₂O)-group 1, 0.1mg/mL CaneCPI-5- group 2, 1.0mg/mL HB- group 3, 1.88x10⁻⁵M StN15- group 4 or a blend of these- group 5. Following this, AEP formation occurred (2h) and an enamel biopsy (10µL, 0.01M HCl, pH 2.0, 10s) was conducted on one incisor. The biopsy acid was then analyzed for calcium (Arsenazo method). The vestibular surfaces of the other teeth were treated with the same acid. Acid-resistant proteins in the residual AEP were then collected and analyzed quantitatively via proteomics. Results: Compared to control, treatment with the proteins/peptide, mixed or isolated, markedly enhanced acid-resistant proteins in the AEP. Notable increases occurred in pyruvate kinase PKM (11-fold, CaneCPI-5), immunoglobulins and submaxillary gland androgen-regulated protein 3B (4-fold, StN15), Hb and lysozyme-C (2-fold, StN15). Additionally, a range of proteins not commonly identified in the AEP, but known to bind calcium or other proteins were in groups treated with the tested proteins/peptide either in isolation or as a mixture. The mean (SD, mM) calcium concentrations released from enamel were 3.67 ± 1.48^{a} , 3.11 ± 0.72^{a} , 1.94 ± 0.57^{b} , 2.37 ± 0.90^{a} and 2.38 ± 0.45^{a} for groups 1-5, respectively (RM-ANOVA/Tukey, p<0.05). Conclusions: Our findings demonstrate that all treatments, whether using a combination of proteins/peptides or in isolation, enhanced acid-resistant proteins in the AEP. However, only HB showed effectiveness in protecting against intrinsic erosive demineralization. These results pave the way for innovative preventive methods against intrinsic erosion, using "acquired pellicle engineering" techniques.

1 INTRODUCTION

The organic bacteria-free layer covering the enamel, known as acquired enamel pellicle (AEP), is primarily composed of proteins and glycoproteins, but also includes lipids [1, 2]. It serves as a crucial biological factor to prevent erosive demineralization, acting as a physical protection against acid dissolution [3, 4, 5].

The AEP forms in distinct stages [6]. In the initial stage, leading proteins such as proline-rich proteins (PRPs), histatins, statherin and cystatins, which have a strong affinity for hydroxyapatite and form electrostatic connections with dental enamel, make up the basal layer of the AEP [7]. This layer is extremely electron-dense and appears to provide the majority of the defense against erosive demineralization. Conversely, the later layers exhibit a more relaxed arrangement compared to the initial coating, being composed of globular proteins, which attach to proteins of the basal layer [6].

Interestingly, some proteins forming the foundation of the AEP, even after extensive and severe acid challenges, remain attached to the enamel surface [8, 9]. This prompted our research group to explore, through quantitative proteomic analysis, which proteins within the AEP are stable and not displaced by acids. Several proteins were identified, but cystatin [10], statherin [11] and hemoglobin (HB) [12] were emphasized. These proteins exhibit a high affinity for hydroxyapatite, and it it is proposed, through "acquired pellicle engineering" approaches, that these proteins are ideal candidates to reinforce the AEP, thereby enhancing the enamel surface's resistance to demineralization by erosive acids. These proteins, whether used alone or in mixture, pave the way for an innovative erosion preventive strategy and are potential candidates for incorporation into dental products.

In a preceding proof-of-concept *in vivo* investigation, we showed that protein treatment significantly increases proteins that are more resistant to removal by citric acid, mimicking extrinsic erosive challenges [13]. However, researching protection against intrinsic erosive demineralization is crucial because the pH of gastric acids is lower, and their buffering ability is stronger when compared with the dietary acids, resulting in more severe damage to dental hard tissues [14]. Therefore, the aim of this study was to assess *in vivo*: 1) the changes in the proteome AEP following treatments with sugarcane-derived cystatin (CaneCPI-5), HB, statherin-derived peptide (StN15) or their mixture prior to AEP formation and subsequent intrinsic acid challenge; 2) the potential of these treatments for protection against intrinsic erosion. The tested null hypotheses were: 1) treatment with CaneCPI-5, HB, StN15 or their mixture prior to

AEP formation and subsequent acid challenge does not modify the proteome of the remaining AEP; and 2) does not protect against intrinsic enamel erosion.

2 Materials and methods

2.1 Ethical aspects and subjects

The Human Ethics Committee (No. 99709318.1.0000.5417) approved the protocol for this study. Prior to the commencement of the study, written informed consent was obtained from all volunteers. For the proteomic analysis, the sample size (n=10) was determined using MSstats [14], based on findings from a previous study [13], with α = 0.05 and 1- β = 0.8 considered. The effect size (difference in protein quantity) was set at as 1.5. The anticipated number of volunteers was 3/group. Due to the limited quantity of proteins extracted from the AEP *in vivo*, we recruited 10 participants, enabling the realization the experimental design of 5 groups, while forming 3 pools (biological triplicates). Sample size was also calculated for calcium released from enamel, based on our previous study [13]. With a minimum detectable difference in calcium release of 1.31 mM and standard deviation (SD) of 0.82 mM, an α error of 5% and a β error of 20%, the required sample size was n=7. We decided to include 10 volunteers in the present study, which was sufficient for both response variables (proteomics and calcium released from enamel).

Ten volunteers (4 males and 6 females, age range 18–35) participated in this *in vivo* study. The volunteers met the following inclusion criteria: good health, both oral and general (could not present gingivitis, dental caries, periodontal disease, nor any oral cavity changes that might alter oral fluids' composition), absence of restorations on the buccal surfaces of all upper and lower teeth, non-smokers and not on medication that might decrease saliva flow. Mean (SD) unstimulated and stimulated salivary flows were 0.37(0.07) and 1.29(0.39) mL/min, respectively. Individuals with risk factors for dental erosion, such as excessive consumption of acidic fruits, soft drinks, those with gastric disorders such as gastroesophageal reflux and bulimia, or swimmers, were excluded from participating in this study.

2.2 Types of mouthwash treatments

This research protocol adopted an in vivo, triple-blind (researchers, participants and analysts) and crossover (5 treatment phases) design. All participants underwent each

of the 5, with two participants randomly assigned to one of the 5 treatment groups (selected by computerized random numbers). The rinse solutions used were deionized water (control) (1), 0.1 mg/mL CaneCPI-5 (2), 1.0 mg/mL HB (3), 1.88x10⁻⁵M StN15 (4) or a combination of all proteins/peptide (5).

2.3 In vivo experiment

To mitigate circadian effects in the composition of the AEP, sampling was performed in the morning. In each stage, after prophylaxis, participants rinsed with 10 mL (1 min) of the compounds outlined in section 2.2. Participants were instructed to abstain from drinking and eating for a period of 2h so the AEP was allowed to form. Following, an adhesive tape with an area of 4.92 mm² was placed on the left central incisor. Then the exposed surface was treated with 10 μ L of 0.01 M hydrochloric acid, (pH 2.0) for 10s and the entire volume was collected with a pipette for calcium analysis performed using the Arsenazo III method [15]. For this purpose, a calibration curve was established with varying calcium concentrations (0.25 to 8.0 mM), and absorbance was measured at 650 nm and 25 °C, using a Biotek spectrophotometer. Analyses were conducted in duplicate.

The vestibular surfaces of the remaining lower and upper teeth were randomly treated with 200 μ L of the same acid for a duration of 10 seconds, applied using a pipette. Each quadrant of the mouth was rinsed with deionized water to remove the acid, dried gently with compressed air and isolated with cotton rolls to prevent lip contamination. Acid-resistant proteins within AEP were harvested using electrode filter papers, saturated in 3% citric acid [16]. To prevent gingival margin contamination, only 2/3 of the buccal coronal surfaces were treated, where 3% citric acid papers were used for each quadrant. Thus, four papers were obtained from each participant, and a pool was formed by combining papers from 3-4 participants for each treatment. This uniform pooling approach, involving the same participants, aided the proteomic analysis of the AEP in biological triplicate.

2.4 Statistical and proteomic analysis

Protein extraction and quantification were carried out as reported by Ventura et al., 2017. Samples underwent nano reverse phase liquid chromatography coupled to mass spectrometry (nLC-ESI-MS/MS), using the system nanoAcquity UPLC-Xevo QTof MS (Waters, Manchester, UK). All parameters employed were described

elsewhere [16]. Samples were assessed in technical triplicates. Nine MS raw files from every pooled group were submitted to label-free proteomic quantification using Protein Lynx Global Service (PLGS) software (Version 3.0, Waters, Manchester, UK), as reported elsewhere [16]. Variation in expression among groups was verified by *t* test (p<0.05), using PLGS software.

2.5 Calcium analysis and statistical analysis

Concentrations of Ca ions released from dental enamel were evaluated using GraphPad InStat software (GraphPad software Inc. La Jolla, CA, USA; version 3.0 for Windows). After checking normality with the test Kolmogorov-Smirnov and homogeneity with Bartlett's test, data were analyzed by repeated-measures ANOVA and Tukey's (p<0.05).

2.6 Bioinformatics and statistical analysis

Analyses were performed using the Bioinformatics & Evolutionary Genomics software. To create the graph, the IDs of all proteins molecules showing significant changes in the AEP after with HB compared to control, followed by formation of AEP for two hours and further HCI challenge were included. These protein IDs used in the bioinformatics analysis are listed in the complementary table 2. Enrichment-Bonferroni's test was applied.

3 Results

3.1 Rinsing with proteins/peptide increases acid-resistant proteins in the AEP

The average amounts of proteins recovered from the AEP were 6.4 ± 1.5 , 8.6 ± 2.2 , 9.1 ± 3.9 , $13.6 \pm 2.7 e 11.5 \pm 3.3 \mu g$, treatments 1-5 respectively. The groups treated with proteins/peptide, whether alone or in combination, showed significant increases in many acid-resistant proteins within AEP, compared to the water group. The most notable increases were observed in pyruvate kinase PKM (11-fold, CaneCPI-5), immunoglobulins and submaxillary gland androgen-regulated protein 3B (4-fold, StN15), as well as Hb and Iysozyme-C (2-fold, StN15). Furthermore, several proteins not typically found within the AEP, but that bind calcium or other proteins were uniquely identified in the groups treated with the proteins/peptide tested, either alone or in combination (Complementary Tables 1-4).

3.2 Rinsing with Hemoglobin reduces intrinsic enamel erosion and affects biological/molecular processes related to demineralization

After a 10-second challenge with HCl 0.01 M at pH 2, the mean concentrations (\pm SD) of released Ca were 3.67 \pm 1.48, 3.11 \pm 0.72, 1.94 \pm 0.57, 2.37 \pm 0.90 and 2.38 \pm 0.45 mM for the groups where volunteers rinsed with deionized H₂O, CaneCPI-5, HB, StN15 or a mixture of the three proteins, respectively. RM-ANOVA revealed a significant variation among the groups (F = 2.807, p = 0.043). Tukey's test only found a significant difference only between the hemoglobin group and the control (p<0.05) (Figure 1).

Due to the differences in Ca results, the HB group underwent further analysis regarding biological and molecular processes. The biological and/or molecular processes identified in the comparison of the HB *vs.* H₂O groups were: humoral immune response (37%), keratinocyte differentiation (22%), antimicrobial peptide-mediated antimicrobial humoral immune response (13%), focal adhesion cluster (11%), alpha hemoglobin binding (8%), regulation of epidermal development (6%), and alpha-amylase activity (3%) (Figure 2).

4 Discussion

Acquired pellicle engineering with acid-resistant proteins has emerged as an innovative and promising tool to prevent dental caries [17] and ETW [13, 18, 19]. Various studies, utilizing in vitro [20, 21, 22, 23], in situ [18] and in vivo [13, 19, 24] protocols, have demonstrated the potential of CaneCPI-5, StN15 and HB in reducing dental demineralization. However, before dental products containing these proteins/peptide can be widely employed to manage dental caries and/or ETW, a deeper understanding of their mechanism of action and additional evidence on their efficacy, particularly from studies that closely mimic clinical conditions, are needed. The in vivo protocol used in this study fulfills this requirement. It was initially developed (and proven effective) for evaluating the capability of these proteins/peptide to alter the AEP's proteome and to lessen initial extrinsic dental enamel erosion (induced by citric acid) [13, 19]. In this study, we focused on an intrinsic erosive challenge, induced by an enamel biopsy of a central incisors with 0.01M HCI, pH 2.0, for 10 s. It appears that in acquired pellicle engineering with proteins/peptides, there is an acid-specific protective effect offered by the proteins. For instance, cystatin B, was found to increase 20- and 13-fold in AEP challenged with citric and lactic acids, respectively [10]. Conversely, statherin levels increased after exposure to HCI [11], and hemoglobin (HB)

showed a threefold increase in AEP in GERD patients without ETW compared to GERD patients with ETW [12]. This variation might be attributed to the different pH levels of these acids and the distinct pK values of the involved proteins and peptides. In this study, after challenge with HCl, the HB treatment notably decreased Ca released from enamel compared to the water group, leading to the rejection of our second null hypothesis. However, this was not observed for CaneCPI-5, Stn15 or their mixture, suggesting that among the evaluated treatments, HB is likely the most effective in preventing demineralization from intrinsic erosive challenges (Figure 1).

In this present study, the concentrations of proteins/peptide were based on prior research. CaneCPI-5 at 0.1 mg/mL has been effective against extrinsic erosion *in vitro* [20], *in situ* [18] and *in vivo* [13], but no studies have shown its effectiveness against intrinsic erosion, aligning with our findings. Typically, gastric acids have a lower pH and higher buffering capacity than dietary acids [25], making intrinsic erosion control more challenging. In our previous extrinsic erosion *in vivo* study, using a similar protocol where CaneCPI-5 protected against extrinsic erosion, 1% citric acid pH 2.5 was [13], while in this study, to simulate intrinsic erosion, we used 0.01 M HCl at pH 2.0.

The statherin-derived peptide in this study contains the 15 N-terminal statherin residues, with phosphorylated serine residues at second and third positions. The entire structure of statherin is not necessary for protective action against erosive challenges [26]. The presence of negative charge density at the N-terminus of statherin-derived peptides facilitates the interaction with hydroxyapatite [27], as the negative charges of the phosphate residues are attracted to the calcium ions of hydroxyapatite. The concentration of StN15 used was 1.88 x 10⁻⁵M, similar to the average concentrations of statherin in saliva [28].

Hemoglobin was evaluated in the present study because recent by our group showed that this protein increased significantly in both AEP [12] and saliva [21] of GERD patients with without ETW compared to those with GERD but with ETW. Additionally, HB is known to have high affinity for hydroxyapatite and is often purified using hydroxyapatite columns [29]. The concentration of HB used was based on an *in vitro* study showing that 1.0 mg/mL HB provides similar protection as 0.1 mg/mL CaneCPI-5 against early intrinsic enamel demineralization [21].

Proteomic analysis was conducted using a protocol developed by our research group, which enhanced protein identification in the samples [30]. Our results revealed that treatment of the tooth surface *in vivo* with proteins having high affinity for

hydroxyapatite increased the number of proteins immobilized in the AEP after the acid challenge (6.4 µg for the control-water group against 8.6-13.6 µg for the experimental groups). Additionally, an increase in many acid-resistant proteins in the AEP was observed (Complementary Tables 1-4), leading to the rejection of the first null hypothesis. Interestingly, protein families with alterations in expression were different among the distinct proteins analyzed (Complementary Tables 1-4). A significant finding of this study is that several proteins not typically associated with the AEP, but that bind calcium or other proteins, were detected exclusively in the groups treated with the tested proteins/peptide, either isolated or in combination. In addition, many proteins with enhanced expression or observed only in the groups that rinsed with the proteins/peptide solutions are produced by the salivary glands and are commonly found in the AEP (e.g., PRPs, cystatin, lysozyme-C, submaxillary gland androgenregulated protein 3B). These were identified in the groups treated with the rinse solutions containing Cane-CPI-5 and StN15. However, the mixture of the 3 proteins was not as effective in providing protection compared to the water group. The reason behind this finding might be related to the fact that the concentration of each protein in the mixture was equivalent to the concentration of each protein when it was used alone. Considering that they all have great affinity for hydroxyapatite, they may have competed for binding sites on this mineral. Further examination of the effect of mixing these 3 proteins at lower concentrations is necessary, as distinct proteins change AEP structure in different ways (Complementary Tables 1-4).

Among the treatments tested, several intracellular proteins (for example, keratins, histones, and actins) were identified. It is known that proteins in the basal layer of AEP provide the strongest protection against erosive demineralization [8]. Thus, increasing the number of proteins with high affinity for hydroxyapatite in the basal layer, as explored in the present work, may also increase the number of distinct proteins that do not bind to hydroxyapatite, but bind to these key proteins, which may be the case of intracellular proteins. This is consistent with the results found in a recent work by our research group, in which these proteins were highly expressed in the group treated with HB in the AEP formed for 3 min [31]. In the Cane-CPI-5 treatment group, pyruvate kinase (a cadherin-binding protein, which belongs to the calcium-dependent transmembrane glycoprotein family) showed the greatest increase among the identified proteins. Thus, pyruvate kinase could be part of the aggregates of proteins formed in the second phase of AEP formation [6]. It is noteworthy that protein/peptide

treatment increased numerous proteins with antimicrobial properties within the AEP, such as multiple isoforms of immunoglobulins, cystatins, histatins, and lysozyme. Therefore, it is possible that it also provides dental caries prevention, which should be investigated in future studies.

In the current study, where a more intense erosive challenge was administered using 0.01 M HCl pH 2.0, only HB was effective in protecting enamel against erosive demineralization, unlike our previous study, which used an extrinsic erosive demineralization (1% citric acid pH 2.5) [13]. In another recent *in vivo* study by our group, a marked increase (more than 18-fold) in various HB subunits was detected in the 3-min AEP, after 1-min rinse with human HB [31]. These findings collectively support the great potential of HB to enhance the basal layer of the AEP and protect against ETW. Based on this, we conducted bioinformatics analysis to determine which biological and/or molecular processes were most affected by rinsing with HB, compared to the negative control. Most of the affected processes (Figure 2) involved antimicrobial defense, such as humoral immune response (37%) and antimicrobial peptide-mediated antimicrobial humoral immune response (13%). These processes might be significant for anticaries activity, which should be further investigated in future studies.

Among biological processes affected in the comparison between the HB and water groups, we found alpha-amylase activity (3%) and binding to alpha hemoglobin (8%), underscoring the protective effect of the treatment with the HB-containing solution. The alpha-amylase protein is typically present in the basal layer of AEP [32], and two subunits of alpha-amylases decreased upon treatment with HB (Complementary Table 2), suggesting that HB, owing to its strong affinity for hydroxyapatite, likely bound preferentially to this mineral, leaving fewer binding sites for other proteins of the basal layer. HB is a tetramer comprising 2 pairs of globins, each linked to a heme group. In adult humans, HBs consist of 96.5-98.5% HbA1 (α 2β2 dimer) and 1.5-3.5% HbA2 (α 2δ2 dimer), while Hb ϵ replaces the β chain in embryos. The various Hb subunits have distinct amino acid sequences [33]. Among them, the α chain contains the highest proportion of serine, threonine, and tyrosine residues that could be phosphorylated, imparting a negative charge to the protein, thereby enhancing its capacity to bind to hydroxyapatite.

Another noteworthy observation was that 11% of the processes related to focal adhesion assembly. These structures are multiprotein complexes comprising integrins, forming mechanical linkages between intracellular actin bundles and the extracellular substrate in multiple cell types. Intracellular proteins were also prominently featured in the proteomic analysis of previous studies [13, 24]. They appear to be integral to some important structural arrangements within the AEP. The fact that 22% of biological processes pertain to the differentiation of keratinocytes and 6% to the regulation of epidermal development may be associated with proteins from desquamated epithelial cells, which are also components of the AEP [32, 24].

Despite the present study being conducted in vivo, both the treatment and the acidic challenge were administered only once. In addition, an abrasive challenge, commonly associated with erosive conditions in the clinical setting, was not included. Thus, future studies should focus on protocols involving prolonged erosive challenges combined with abrasion by toothbrushing. Solutions [18] and chitosan gels [34] containing CaneCPI-5 have been shown to be more effective than placebo and as effective as commercial stannous mouthwash or NaF gel in preventing prolonged erosion (citric acid) combined with abrasion in situ. Similar results were observed for StN15 for erosive challenges conducted with HCI (unpublished data). However, HB has yet to be evaluated under similar protocols. Another limitation of the study was the requirement for the application of the mouthwashes on pellicle-free teeth, necessitating professional prophylaxis and limiting their practical use. Recently, we observed that CaneCPI-5 and vitamin-E solutions have a synergistic effect against enamel erosion, being more effective than commercial stannous mouthwash in vitro. Additionally, this combination was effective regardless of the presence of the pellicle during its application [35]. These findings should be validated using protocols that more closely mimic clinical conditions.

In conclusion, our results indicate that the *in vivo* enamel proteins/peptide treatment, either independently or combined, can increase acid-resistant proteins within the AEP, but only HB prevents intrinsic initial erosion. These findings lay the groundwork for an innovative approach for intrinsic erosive demineralization prevention, using engineering of the acquired pellicle techniques that could be incorporated into future dental products.

Statement of Ethics: *Hemoglobin protects enamel against intrinsic enamel erosive demineralization* was conducted under the World Medical Association Declaration of Helsink, and approved by the Human Ethics Committee of Bauru School of Dentistry, University of São Paulo (protocol No. 99709318.1.0000.5417). Participants signed a written informed consent.

Conflict of interest statement: The authors have no conflicts of interest to declare that are pertinent to the content of this study.

Funding Sources: FAPESP (The São Paulo Research Foundation) provided financial support to this study (2019/16254-8 and 2019/26070-1).

Author contributions: Conceived and designed the experiments: T.S.C, R.M., F.H.-S. and M.A.R.B; Acquired data: T. S. C, T. T. A, T. M. O. V, A. D, J. V. F. C, S. M. M, J. C. L, L. T. G, E. C, P. Y. T. S, R. M, F. Henrique-Silva and J. P. P; Analyzed and interpreted data: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C, T. T. A, A. D and M. A. R. B; Drafted the manuscript: T. S. C and M. A. R. B; Approved the final version to be submitted: All the authors.

Data Availability Statement: All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

1 Slomiany BL, Murty VL, Zdebska E, Slomiany A, Gwozdzinski K, Mandel ID. Tooth surface-pellicle lipids and their role in the protection of dental enamel against lactic-acid diffusion in man. Arch Oral Biol. 1986;31(3):187-91.

2 Dawes C, Jenkins GN, Tonge CH. The nomenclature of the integuments of the enamel surface of the teeth. Br. Dent. J. 1963;115:65-8.

3 Hara AT, Ando M, Gonzalez-Cabezas C, Cury JA, Serra MC, Zero DT. Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res. 2006;85(7):612-16.

4 Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012;20(5):493-502.

5 Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol. 2014;59(6):631-8.

6 Hannig M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig. 1999;3(2):88-95.

7 Hay DI. The interaction of human parotid salivary proteins with hydroxyapatite. Arch Oral Biol. 1973;18(12):1517-29.

8 Hannig C, Berndt D, Hoth-Hannig W, Hannig M. The effect of acidic beverages on the ultrastructure of the acquired pellicle--an in situ study. Arch Oral Biol. 2009;54(6): 518-26.

9 Hannig M, Hannig C. The pellicle and erosion. Monogr Oral Sci. 2014;25:206-14. 10 Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, et al. Identification of acid-resistant proteins in acquired enamel pellicle. J Dent. 2015;43(12):1470-5.

11 Taira EA, Ventura TMS, Cassiano LPS, Silva CMS, Martini T, Leite AL, et al. Changes in the Proteomic Profile of Acquired Enamel Pellicles as a Function of Their Time of Formation and Hydrochloric Acid Exposure. Caries Res. 2018;52(5):367-77. 12 Martini T, Rios D, Cassiano LPS, Silva CMS, Taira EA, Ventura TMS, et al. Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear. J Dent. 2019;81:64-9.

13 Carvalho TS, Araujo TT, Ventura TMO, Dionizio A, Camara JVF, Moraes SM, et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent. 2020;102: 103478.

14 Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics. 2014;30(17):2524-26.

15 Vogel GL, Chow LC, Carey CM, Schumacher GE, Takagi S. Effect of a calcium prerinse on salivary fluoride after a 228-ppm fluoride rinse. Caries Res. 2006;40(2):178-80.

16 Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res. 2007;6(6):2152-60.

17 Araujo TT, Camiloti GD, Valle AD, Silva NDG, Souza BM, Carvalho TS, et al. A sugarcane cystatin (CaneCPI-5) alters microcosm biofilm formation and reduces dental caries. Biofouling. 2021; 37(1):109-16.

18 Pela VT, Lunardelli JGQ, Tokuhara CK, Gironda CC, Silva NDG, Carvalho TS, et al. Safety and In Situ Antierosive Effect of CaneCPI-5 on Dental Enamel. J Dent Res. 2021;100(12):1344-50.

19 Pela VT, Ventura TMO, Taira EA, Thomassian LTG, Brito L, Matuhara YE, et al. Use of Reflectometer Optipen to assess the preventive effect of a sugarcane cystatin on initial dental erosion in vivo. J Mech Behav Biomed Mater. 2023;141:105782. 20 Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pela VT, et al.

A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion. J Dent Res. 2017;96(9):1051-7.

21 Martini T, Rios D, Dionizio A, Cassiano LPS, Pela VT, CMS ES, et al. Salivary Hemoglobin Protects against Erosive Tooth Wear in Gastric Reflux Patients. Caries Res. 2020;54(5-6):466-74.

22 Taira EA, Carvalho G, Ferrari CR, Martini T, Pela VT, Ventura TMO, et al. Statherin-derived peptide protects against intrinsic erosion. Arch Oral Biol. 2020;119:104890.

23 Reis FN, Francese MM, Silva N, Pela VT, Camara JVF, Trevizol JS, et al. Gels containing statherin-derived peptide protect against enamel and dentin erosive tooth wear in vitro. J Mech Behav Biomed Mater. 2023;137:105549.

24 Martini T, Rios D, Dionizio A, Cassiano LPS, Silva CMS, Taira EA, et al. Acquired enamel pellicle protects gastroesophageal reflux disease patients against erosive tooth wear. Braz Oral Res. 2023;15:37:e085.

25 Moazzez R, Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci. 2014;25:180-96.

26 Shah S, Kosoric J, Hector MP, Anderson P. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. Eur J Oral Sci. 2011;119 Suppl 1:13-8.

27 Raj PA, Johnsson M, Levine MJ, Nancollas GH. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem. 1992;267(9):5968-76.

28 Kosoric J, Williams RAD, Hector MP, Anderson PA. A synthetic peptide based on a natural salivary protein reduces demineralization in model systems for dental caries and erosion. Int J Pept Res Ther. 2007;13:497-503.

29 Kawasaki T, Takahashi S, Ikeda K. Hydroxyapatite high-performance liquid chromatography: column performance for proteins. Eur J Biochem. 1985;152(2):361-71.

30 Ventura TMO, Cassiano LPS, Souza ESCM, Taira EA, Leite AL, Rios D, et al. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol. 2017;79:20-9.

31 Araujo TT, Carvalho TS, Dionizio A, Debortolli ALB, Ventura TMO, Souza BM, et al. Protein-based engineering of the initial acquired enamel pellicle in vivo: Proteomic evaluation. J Dent. 2022;116:103874.

32 Siqueira WL, Custodio W, McDonald EE. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91(12):1110-8.

33 Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018; 70:13-42.

34 Pela VT, Gironda CC, Taira EA, Brito L, Pieretti JC, Seabra AB, et al. Different vehicles containing CaneCPI-5 reduce erosive dentin wear in situ. Clin Oral Investig. 2023;27(9):5559-68.

35 Oliveira AA, Xavier ALM, Silva TT, Debortolli ALB, Ferdin ACA, Boteon AP, et al. Acquired pellicle engineering with the association of cystatin and vitamin E against enamel erosion. J Dent. 2023;25:138:104680.

Figures Legends

Fig 1. Calcium released from dental enamel after rinsing (1 min) with 10 mL of water (control), 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), 1.0 mg/mL hemoglobin (HB), 1.88×10^{-5} M statherin-derived peptide (StN15) or mixture of the 3 proteins/peptide, followed by formation of the AEP (2 h) and acid challenge (0.01 M hydrochloric acid pH 2) for 10 s (RM-ANOVA and Tukey's, p<0.05, n=10).

Fig 2. Graph representing the biological and/or molecular processes present in the comparison 1.0 mg/mL hemoglobin (HB) *vs.* water (control).

Fig 1. Calcium released from dental enamel after rinsing (1 min) with 10 mL of water (control), 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), 1.0 mg/mL hemoglobin (HB), 1.88x10⁻⁵ M statherinderived peptide (StN15) or mixture of the 3 proteins/peptide, followed by formation of the AEP (2 h) and acid challenge (0.01 M hydrochloric acid pH 2) for 10 s (RM-ANOVA and Tukey's, p<0.05, n=10).

Figure 2- Hemoglobin vs control

Complementary Tables

Table 1. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle(AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in comparisonwith control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 Mhydrochloric acid pH 2) for 10 seconds.

201		0	hD-(i-
	Destains	Score	
acession	Proteins		CANE:water
P14618	Pvruvate kinase PKM	383	11.13
P01037	Cystatin-SN	467	2,25
P02814	Submaxillary gland androgen-	1492	2,23
	regulated protein 3B		
P02768	Serum albumin	1688	1,19
P04083	Annexin A1	183	0,73
P01876	Immunoglobulin heavy constant	213	0,47
	alpha 1		
P04745	Alpha-amylase 1	1445	0,41
P01877	Immunoglobulin heavy constant	132	0,39
D40064	aipna 2 Ainha amylaaa 28	1204	0.27
P19901	Alpha-amylase 2B	1394	0,37
P27482	Calmodulin-like protein 3	126	CANE*
Q99795	Cell surface A33 antigen	111	CANE*
Q8N2C3	DEP domain-containing protein 4	366	CANE*
Q8TDM6	Disks large homolog 5	107	CANE*
O00423	Echinoderm microtubule-	74	CANE*
	associated protein-like 1		
Q6PIW4	Fidgetin-like protein 1	244	CANE*
P01834	Immunoglobulin kappa constant	437	CANE*
Q13099	Intraflagellar transport protein 88 homolog	76	CANE*
Q9NYL2	Mitogen-activated protein kinase kinase 20	172	CANE*
Q9GZN6	Orphan sodium- and chloride- dependent neurotransmitter transporter NTT5	152	CANE*
O43660	Pleiotropic regulator 1	128	CANE*
O15037	Protein KHNYN	114	CANE*
Q99497	Protein/nucleic acid deglycase DJ- 1	200	CANE*
Q15287	RNA-binding protein with serine- rich domain 1	123	CANE*
Q9NQU5	Serine/threonine-protein kinase PAK 6	335	CANE*
Q8WXA9	Splicing regulatory glutamine/lysine-rich protein 1	95	CANE*

Table 1. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle(AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

	··· · · · · · · · · · · · · · · · · ·		(continue		
^a Number of acession	Proteins	Score of PLGS	^b Ratio CANE:water		
Q9BZW7	Testis-specific gene 10 protein	56	CANE*		
O00268	Transcription initiation factor TFIID subunit 4	133	CANE*		
Q9C035	Tripartite motif-containing protein 5	301	CANE*		
Q96JP2	Unconventional myosin-XVB	104	CANE*		
P02708	Acetylcholine receptor subunit alpha	77	Water*		
Q9UJX3	Anaphase-promoting complex subunit 7	149	Water*		
Q5T2E6	Armadillo-like helical domain- containing protein 3	96	Water*		
Q6PL18	ATPase family AAA domain- containing protein 2	64	Water*		
O75185	Calcium-transporting ATPase type 2C member 2	66	Water*		
P27797	Calreticulin	163	Water*		
P0D097	Coiled-coil domain-containing protein 192	98	Water*		
Q96A83	Collagen alpha-1(XXVI) chain	111	Water*		
Q02246	Contactin-2	172	Water*		
Q9UBG3	Cornulin	105	Water*		
Q86XP0	Cytosolic phospholipase A2 delta	68	Water*		
Q8TEA8	D-aminoacyl-tRNA deacylase 1	152	Water*		
Q8N1I0	Dedicator of cytokinesis protein 4	397	Water*		
Q9UGM3	Deleted in malignant brain tumors 1 protein	75	Water*		
Q9Y485	DmX-like protein 1	83	Water*		
Q9UNA4	DNA polymerase iota	537	Water*		
Q8N136	Dynein assembly factor with WDR repeat domains 1	86	Water*		
Q8NHG8	E3 ubiquitin-protein ligase ZNRF2	113	Water*		
Q5MNV8	F-box only protein 47	156	Water*		
P14136	Glial fibrillary acidic protein	87	Water*		
P68871	Hemoglobin subunit beta	310	Water*		
P02042	Hemoglobin subunit delta	310	Water*		
P02100	Hemoglobin subunit epsilon	310	Water*		
P69891	Hemoglobin subunit gamma-1	310	Water*		

Table 1. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in comparison
with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M
hydrochloric acid pH 2) for 10 seconds.

	· · · /		(cor
Number of acession	Proteins	Score	^b Ratio CANE:water
accocion		PLGS	O/ ITE: Mator
P69892	Hemoglobin subunit gamma-2	310	Water*
A0A2R8Y 619	Histone H2B	106	Water*
Q96A08	Histone H2B type 1-A	106	Water*
P33778	Histone H2B type 1-B	292	Water*
P62807	Histone H2B type 1-C/E/F/G/I	292	Water*
P58876	Histone H2B type 1-D	292	Water*
Q93079	Histone H2B type 1-H	292	Water*
P06899	Histone H2B type 1-J	292	Water*
O60814	Histone H2B type 1-K	292	Water*
Q99880	Histone H2B type 1-L	292	Water*
Q99879	Histone H2B type 1-M	292	Water*
Q99877	Histone H2B type 1-N	292	Water*
P23527	Histone H2B type 1-O	292	Water*
Q16778	Histone H2B type 2-E	292	Water*
Q5QNW6	Histone H2B type 2-F	292	Water*
Q8N257	Histone H2B type 3-B	292	Water*
P57053	Histone H2B type F-S	292	Water*
Q4G0P3	Hydrocephalus-inducing protein homolog	192	Water*
P01857	Immunoglobulin heavy constant gamma 1	90	Water*
P01859	Immunoglobulin heavy constant gamma 2	33	Water*
P01860	Immunoglobulin heavy constant gamma 3	38	Water*
P01861	Immunoglobulin heavy constant gamma 4	38	Water*
P0CG04	Immunoglobulin lambda constant 1	191	Water*
P0DOY2	Immunoglobulin lambda constant 2	191	Water*
P0DOY3	Immunoglobulin lambda constant 3	191	Water*
P0CF74	Immunoglobulin lambda constant 6	98	Water*
A0M8Q6	Immunoglobulin lambda constant 7	98	Water*
B9A064	Immunoglobulin lambda-like polypeptide 5	191	Water*
Q9NVH2	Integrator complex subunit 7	229	Water*
Q99456	Keratin_ type I cytoskeletal 12	75	Water*
P19013	Keratin type II cytoskeletal 4	336	Water*

Table 1. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in comparison
with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M
hydrochloric acid pH 2) for 10 seconds.

			(continued		
^a Number of		Score	^b Ratio		
acession	Proteins	of	CANE:water		
		PLGS			
P13647	Keratin_ type II cytoskeletal 5	101	Water*		
P02538	Keratin_ type II cytoskeletal 6A	147	Water*		
P04259	Keratin_ type II cytoskeletal 6B	147	Water*		
P48668	Keratin_ type II cytoskeletal 6C	147	Water*		
P08729	Keratin_ type II cytoskeletal 7	87	Water*		
Q86Y46	Keratin_ type II cytoskeletal 73	229	Water*		
P05787	Keratin_ type II cytoskeletal 8	87	Water*		
Q6KB66	Keratin_ type II cytoskeletal 80	87	Water*		
Q86W92	Liprin-beta-1	202	Water*		
Q9BY66	Lysine-specific demethylase 5D	77	Water*		
Q8TAX7	Mucin-7	257	Water*		
Q99972	Myocilin	96	Water*		
Q06710	Paired box protein Pax-8	168	Water*		
P0CG38	POTE ankyrin domain family member I	98	Water*		
P0CG39	POTE ankyrin domain family member J	98	Water*		
Q9UKI3	Pre-B lymphocyte protein 3	355	Water*		
Q9HCU5	Prolactin regulatory element- binding protein	148	Water*		
Q9H714	Protein associated with UVRAG as autophagy enhancer	58	Water*		
Q9HAT1	Protein ERGIC-53-like	400	Water*		
Q9Y5H0	Protocadherin gamma-A3	140	Water*		
Q9BRP9	Putative uncharacterized protein MGC13053	148	Water*		
Q86TS7	Putative UPF0730 protein encoded by LINC00643	411	Water*		
A5PLK6	Regulator of G-protein signaling protein-like	139	Water*		
Q8N122	Regulatory-associated protein of mTOR	102	Water*		
Q9Y2P8	RNA 3'-terminal phosphate cyclase-like protein	184	Water*		
Q96PQ1	Sialic acid-binding Ig-like lectin 12	242	Water*		
Q9BSK2	Solute carrier family 25 member 33	122	Water*		
Q15772	Striated muscle preferentially expressed protein kinase	327	Water*		

Table 1. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with 0.1 mg/mL sugarcane-derived cystatin (CaneCPI-5), for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

	··· , -·· ··· ··· ··· ··· ··· ··· ··· ··		(con
^a Number of acession	Proteins	Score of PLGS	^b Ratio CANE:water
Q9NXG6	Transmembrane prolyl 4- hydroxylase	166	Water*
Q7L1V2	Vacuolar fusion protein MON1 homolog B	511	Water*
O43895	Xaa-Pro aminopeptidase 2	188	Water*
Q8WYQ9	Zinc finger CCHC domain- containing protein 14	55	Water*

^aIdentification is based on proteins ID from UniProt protein database, reviewed only (http://www.uniprot.org/).

^bProteins with expression significantly modified are organized according to the ratio. *Indicates unique proteins in alphabetical order.

Proteins highlighted in bold are enhanced or decreased more than 2-fold.

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

^a Number of acession	Proteins	PLGS Score	^b Ratio HB:water
P01036	Cystatin-S	693	0,66
P02808	Statherin	10611	0,64
P06702	Protein S100-A9	3052	0,61
P02814	Submaxillary gland androgen- regulated protein 3B	1492	0,54
P02768	Serum albumin	1688	0,53
P60709	Actin_ cytoplasmic 1	1073	0,52
P63261	Actin_ cytoplasmic 2	1073	0,51
P01857	Immunoglobulin heavy	90	0,49
	constant gamma 1		
P05109	Protein S100-A8	972	0,48
P04792	Heat shock protein beta-1	2077	0,48
P19013	Keratin_ type II cytoskeletal 4	336	0,47
P04745	Alpha-amylase 1	1445	0,45
P19961	Alpha-amylase 2B	1394	0,42
P02788	Lactotransferrin	122	0,42
P31947	14-3-3 protein sigma	269	0,40
Q6S8J3	POTE ankyrin domain family member E	290	0,39
P25311	Zinc-alpha-2-glycoprotein	914	0,39

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water),
followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for
10 seconds.

			(conti	nued
^a Number of	Proteins	PLGS	^b Ratio	
acession		Score	HB:water	
D68032	Actin alpha cardiac muscle 1	860	0 38	
P00032		212	0,30	
FU10/0	constant alpha 1	213	0,30	
Q562R1	Beta-actin-like protein 2	377	0.38	
P68133	Actin alnha skeletal muscle	860	0,36	
P62736	Actin aortic smooth muscle	860	0,36	
P63267	Actin gamma-enteric smooth	860	0,36	
1 05207	muscle	000	0,00	
P01877	Immunoglobulin heavy	132	0,35	
	constant alpha 2			
P04746	Pancreatic alpha-amylase	836	0,35	
P04083	Annexin A1	183	0,32	
A5A3E0	POTE ankyrin domain family	290	0,32	
	member F			
Q9BYX7	Putative beta-actin-like	62	0,32	
500000	protein 3	~~		
PUCG38	POTE ankyrin domain family	98	0,29	
P59665	Neutrophil defensin 1	1578	0.24	
P59666	Neutrophil defensin 3	1578	0.23	
P04264	Keratin type II cytoskeletal 1	140	0.18	
Q8TEA8	D-aminoacyl-tRNA deacylase	152	0.15	
	1		0,10	
P12814	Alpha-actinin-1	388	HB*	
P35609	Alpha-actinin-2	383	HB*	
Q08043	Alpha-actinin-3	383	HB*	
O43707	Alpha-actinin-4	388	HB*	
P27482	Calmodulin-like protein 3	232	HB*	
P23280	Carbonic anhydrase 6	310	HB*	
Q8WXI2	Connector enhancer of kinase	75	HB*	
	suppressor of ras 2			
P04080	Cystatin-B	341	HB*	
P09228	Cystatin-SA	385	HB*	
Q8WTX7	Cytosolic arginine sensor for mTORC1 subunit 1	88	HB*	
Q9Y620	DNA repair and recombination	272	HB*	
	protein RAD54B	_· _		
Q09019	Dystrophia myotonica WD	79	HB*	

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water),
followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for
10 seconds.

			(continued	(t
^a Number of	Protoins	PLGS	^b Ratio	
acession	FIOLEINS	Score	HB:water	
Q969U6	F-box/WD repeat-containing protein 5	218	HB*	
P04075	Fructose-bisphosphate aldolase A	132	HB*	
P62805	Histone H4	153	HB*	
P01834	Immunoglobulin kappa constant	1398	HB*	
P56192	MethioninetRNA ligase_ cytoplasmic	140	HB*	
Q9UKY7	Protein CDV3 homolog	218	HB*	
Q13464	Rho-associated protein kinase 1	83	HB*	
O75116	Rho-associated protein kinase 2	83	HB*	
Q8WXA9	Splicing regulatory glutamine/lysine-rich protein 1	92	HB*	
Q03169	Tumor necrosis factor alpha- induced protein 2	360	HB*	
Q96DA0	Zymogen granule protein 16 homolog B	481	HB*	
P02708	Acetylcholine receptor subunit alpha	77	water*	
Q9UJX3	Anaphase-promoting complex subunit 7	149	water*	
Q01484	Ankyrin-2	189	water*	
Q5T2E6	Armadillo-like helical domain- containing protein 3	96	water*	
Q6PL18	ATPase family AAA domain- containing protein 2	64	water*	
O75185	Calcium-transporting ATPase type 2C member 2	66	water*	
P27797	Calreticulin	163	water*	
P0DO97	Coiled-coil domain-containing protein 192	98	water*	
Q96A83	Collagen alpha-1(XXVI) chain	111	water*	
Q02246	Contactin-2	172	water*	
Q9UBG3	Cornulin	105	water*	
Q86XP0	Cytosolic phospholipase A2 delta	68	water*	
Q8N1I0	Dedicator of cytokinesis protein 4	397	water*	
Q9UGM3	Deleted in malignant brain tumors 1 protein	75	water*	
Q9Y485	DmX-like protein 1	83	water*	

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle(AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water),followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for10 seconds.

			(continu	ued)
^a Number of	Proteins	PLGS	^b Ratio	
acession		Score	HB:water	
Q9UNA4	DNA polymerase iota	537	water*	
Q8N136	Dynein assembly factor with	86	water*	
00011100	WDR repeat domains 1	440	4 ×	
Q8NHG8	E3 ubiquitin-protein ligase ZNRF2	113	water^	
Q5MNV8	F-box only protein 47	156	water*	
P14136	Glial fibrillary acidic protein	87	water*	
P68871	Hemoglobin subunit beta	310	water*	
P02042	Hemoglobin subunit delta	310	water*	
P02100	Hemoglobin subunit epsilon	310	water*	
P69891	Hemoglobin subunit gamma-1	310	water*	
P69892	Hemoglobin subunit gamma-2	310	water*	
A0A2R8Y619	Histone H2B	106	water*	
Q96A08	Histone H2B type 1-A	106	water*	
P33778	Histone H2B type 1-B	292	water*	
P62807	Histone H2B type 1-C/E/F/G/I	292	water*	
P58876	Histone H2B type 1-D	292	water*	
Q93079	Histone H2B type 1-H	292	water*	
P06899	Histone H2B type 1-J	292	water*	
O60814	Histone H2B type 1-K	292	water*	
Q99880	Histone H2B type 1-L	292	water*	
Q99879	Histone H2B type 1-M	292	water*	
Q99877	Histone H2B type 1-N	292	water*	
P23527	Histone H2B type 1-O	292	water*	
Q16778	Histone H2B type 2-E	292	water*	
Q5QNW6	Histone H2B type 2-F	292	water*	
Q8N257	Histone H2B type 3-B	292	water*	
P57053	Histone H2B type F-S	292	water*	
P01859	Immunoglobulin heavy constant	33	water*	
	gamma 2			
P01860	Immunoglobulin heavy constant	38	water*	
	gamma 3			
P0CG04	Immunoglobulin lambda constant 1	191	water*	
P0DOY2	Immunoglobulin lambda	191	water*	
P0DOY3	Immunoglobulin lambda	191	water*	
	constant 3		,	
PUCF74	Immunoglobulin lambda constant 6	98	water*	

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water),
followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for
10 seconds.

^a Number of	Dreteine	PLGS	^b Ratio
acession	Proteins	Score	HB:water
A0M8Q6	Immunoglobulin lambda	98	water*
	constant 7		
B9A064	Immunoglobulin lambda-like	191	water*
O o N 11 // 10	polypeptide 5		
Q9NVH2	Integrator complex subunit 7	229	water*
P13645	Keratin_ type I cytoskeletal 10	140	water*
P13647	Keratin_ type II cytoskeletal 5	101	water*
P02538	Keratin_ type II cytoskeletal 6A	147	water*
P04259	Keratin_ type II cytoskeletal 6B	147	water*
P48668	Keratin_ type II cytoskeletal 6C	147	water*
P08729	Keratin_ type II cytoskeletal 7	87	water*
P05787	Keratin_ type II cytoskeletal 8	87	water*
Q6KB66	Keratin_ type II cytoskeletal 80	87	water*
Q86W92	Liprin-beta-1	202	water*
Q9BY66	Lysine-specific demethylase 5D	77	water*
P61626	Lysozyme C	519	water*
Q8TAX7	Mucin-7	257	water*
P05164	Myeloperoxidase	133	water*
Q99972	Myocilin	96	water*
P60660	Myosin light polypeptide 6	498	water*
Q06710	Paired box protein Pax-8	168	water*
P0CG39	POTE ankyrin domain family	98	water*
	member J		
Q9UKI3	Pre-B lymphocyte protein 3	355	water*
P07737	Profilin-1	134	water*
Q9HCU5	Prolactin regulatory element-	148	water*
	binding protein		
Q9H714	Protein associated with UVRAG	58	water*
	as autophagy enhancer		
Q9HAT1	Protein ERGIC-53-like	400	water*
Q9Y5H0	Protocadherin gamma-A3	140	water*
Q9BRP9	Putative uncharacterized protein MGC13053	148	water*
Q86TS7	Putative UPF0730 protein encoded by LINC00643	411	water*
A5PLK6	Regulator of G-protein signaling protein-like	139	water*
Q8N122	Regulatory-associated protein of mTOR	102	water*

Table 2. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle (AEP) after wash with 1.0 mg/mL Hemoglobin (HB) for 1 minute in comparison with control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

			(conclu	ision)
^a Number of	Drotoine	PLGS	^b Ratio	
acession	Proteins	Score	HB:water	
Q9Y2P8	RNA 3'-terminal phosphate cyclase-like protein	184	water*	
Q96PQ1	Sialic acid-binding Ig-like lectin 12	242	water*	
Q9BSK2	Solute carrier family 25 member 33	122	water*	
Q9NXG6	Transmembrane prolyl 4- hydroxylase	166	water*	
Q7L1V2	Vacuolar fusion protein MON1 homolog B	511	water*	
O43895	Xaa-Pro aminopeptidase 2	188	water*	
Q8WYQ9	Zinc finger CCHC domain- containing protein 14	55	water*	

^aIdentification is based on proteins ID from UniProt protein database, reviewed only (<u>http://www.uniprot.org/</u>).

^bProteins with expression significantly modified are organized according to the ratio. *Indicates unique proteins in alphabetical order.

Proteins highlighted in bold are enhanced or decreased more than 2-fold.

^a Number of acession	Proteins	Score of	^b Ratio StN15:water
D04050		PLGS	4.60
P01859	immunogiobulin neavy	33	4,02
P02814	Submaxillary gland	1492	4.10
	androgen-regulated protein 3B		.,
P61626	Lysozyme C	519	1,86
P02042	Hemoglobin subunit delta	310	1,68
P69891	Hemoglobin subunit gamma-1	310	1,68
P02100	Hemoglobin subunit epsilon	310	1,67
P69892	Hemoglobin subunit gamma-2	310	1,67
P68871	Hemoglobin subunit beta	310	1,65
P0CG38	POTE ankyrin domain family member I	98	1,26
P01857	Immunoglobulin heavy constant gamma 1	90	0,87

		(continue		
^a Number of		Score	^b Ratio	
acession	Proteins	of	StN15:water	
		PLGS		
P05109	Protein S100-A8	972	0,84	
P04792	Heat shock protein beta-1	2077	0,84	
P06702	Protein S100-A9	3052	0,76	
Q9BYX7	Putative beta-actin-like protein 3	62	0,76	
P05164	Myeloperoxidase	133	0,75	
P01860	Immunoglobulin heavy constant gamma 3	38	0,75	
P13646	Keratin_ type I cytoskeletal 13	146	0,71	
P25311	Zinc-alpha-2-glycoprotein	914	0,63	
P13645	Keratin_ type I cytoskeletal 10	140	0,63	
P01861	Immunoglobulin heavy constant gamma 4	38	0,61	
P01861	Immunoglobulin heavy constant gamma 4	38	0,61	
P01861	Immunoglobulin heavy	38	0,61	
P06899	Histone H2B type 1-J	292	0.60	
P59666	Neutrophil defensin 3	1578	0.59	
099879	Histone H2B type 1-M	292	0.59	
P33778	Histone H2B type 1-B	292	0.58	
P62807	Histone H2B type 1-C/E/E/G/L	292	0.58	
Q8N257	Histone H2B type 3-B	292	0.58	
P57053	Histone H2B type E-S	292	0.57	
P58876	Histone H2B type 1-D	292	0.57	
Q93079	Histone H2B type 1-H	292	0.57	
Q60814	Histone H2B type 1-K	292	0.57	
Q99880	Historie H2B type 1-I	292	0.57	
Q99877	Histone H2B type 1-N	292	0.57	
P23527	Histone H2B type 1-0	292	0.57	
Q16778	Histone H2B type 2-E	292	0.57	
Q5QNW6	Historie H2B type 2-E	292	0.57	
P59665	Neutrophil defensin 1	1578	0.55	
A0A2R8Y619	Histone H2B	106	0.54	
P01876	Immunoglobulin heavy	213	0,54	
P01877	Immunoglobulin heavy constant alpha 2	132	0,54	
Q96A08	Histone H2B type 1-A	106	0,53	
P02768	Serum albumin	1688	0,45	

Table 3. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with statherin-derived peptide (StN15) (1.88 x 10 ⁻⁵ M) for 1 minute in comparison with
control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M
hydrochloric acid pH 2) for 10 seconds.

	hydrochione acid pri 2) for to second.		(continued)
^a Number of		Score	^b Ratio
acession	Proteins	of	StN15:water
		PLGS	
Q8TAX7	Mucin-7	257	0,44
Q9UGM3	Deleted in malignant brain tumors 1 protein	75	0,44
Q9UGM3	Deleted in malignant brain tumors 1 protein	75	0,44
P13647	Keratin_ type II cytoskeletal 5	101	0,37
P02538	Keratin_ type II cytoskeletal 6A	147	0,36
P04259	Keratin_ type II cytoskeletal 6B	147	0,36
P48668	Keratin_ type II cytoskeletal 6C	147	0,35
P60660	Myosin light polypeptide 6	498	0,35
P27797	Calreticulin	163	0,29
P12273	Prolactin-inducible protein	155	0,24
P19961	Alpha-amylase 2B	1394	0,22
P04746	Pancreatic alpha-amylase	836	0.18
P04745	Alpha-amylase 1	1445	0,17
Q13131	5'-AMP-activated protein	192	StN15*
	kinase catalytic subunit alpha-1		
P54646	5'-AMP-activated protein	97	StN15*
	kinase catalytic subunit alpha-2		
O14561	Acyl carrier protein_	575	StN15*
	mitochondrial		
Q96CM8	Acyl-CoA synthetase family member 2_ mitochondrial	427	StN15*
P10696	Alkaline phosphatase_ germ cell type	95	StN15*
Q13367	AP-3 complex subunit beta-2	80	StN15*
A6NEK1	Arrestin domain-containing protein 5	94	StN15*
O43252	Bifunctional 3'-	78	StN15*
	phosphoadenosine 5'-		
	phosphosulfate synthase 1		
	Carabin	110	StN15*
Q6ZRK6	Coiled-coil domain-containing protein 73	127	StN15*
Q9H6Q4	Cytosolic iron-sulfur assembly component 3	80	StN15*
Q13561	Dynactin subunit 2	84	StN15*

			(continued)
^a Number of		Score	^b Ratio
acession	Proteins	of	StN15:water
		PLGS	
095208	Epsin-2	84	StN15*
Q969U6	F-box/WD repeat-containing	368	StN15*
	protein 5		
Q9NSN8	Gamma-1-syntrophin	485	StN15*
Q12879	Glutamate receptor ionotropic_ NMDA 2A	77	StN15*
P69905	Hemoglobin subunit alpha	256	StN15*
P01834	Immunoglobulin kappa constant	209	StN15*
P11215	Integrin alpha-M	109	StN15*
P78413	Iroquois-class homeodomain protein IRX-4	284	StN15*
Q53EV4	Leucine-rich repeat-containing protein 23	84	StN15*
Q9C0I9	Leucine-rich repeat-containing protein 27	89	StN15*
Q14676	Mediator of DNA damage checkpoint protein 1	119	StN15*
A0JLT2	Mediator of RNA polymerase II transcription subunit 19	671	StN15*
P01106	Myc proto-oncogene protein	152	StN15*
P29597	Non-receptor tyrosine-protein kinase TYK2	196	StN15*
Q9GZN6	Orphan sodium- and chloride- dependent neurotransmitter transporter NTT5	100	StN15*
O60664	Perilipin-3	273	StN15*
P20618	Proteasome subunit beta type- 1	79	StN15*
Q8IXR5	Protein FAM178B	67	StN15*
Q8TDP1	Ribonuclease H2 subunit C	135	StN15*
Q8WVD5	RING finger protein 141	164	StN15*
Q8TE82	SH3 domain and tetratricopeptide repeat- containing protein 1	68	StN15*
Q1XH10	SKI/DACH domain-containing protein 1	65	StN15*
P0DMW4	Small integral membrane protein 10-like protein 2A	255	StN15*

	hydrochione deld pri 2/10/10/3000hd	5.	(continued
^a Number of		Score	^b Ratio
acession	Proteins	of	StN15:water
		PLGS	
P0DMW5	Small integral membrane	255	StN15*
	protein 10-like protein 2B		
Q8WXA9	Splicing regulatory	95	StN15*
	glutamine/lysine-rich protein 1		
P59095	StAR-related lipid transfer protein 6	101	StN15*
Q9BZW7	Testis-specific gene 10 protein	193	StN15*
Q969Y2	tRNA modification GTPase GTPBP3 mitochondrial	66	StN15*
	• • • • • • • • • • • • • • • • • • • •		StN15*
P08631	Tvrosine-protein kinase HCK	324	StN15*
Q96KH6	Uncharacterized protein	192	StN15*
	C18orf12		
Q86WZ6	Zinc finger protein 227	309	StN15*
P51508	Zinc finger protein 81	208	StN15*
Q96DA0	Zymogen granule protein 16	373	StN15*
	homolog B		
P31947	14-3-3 protein sigma	269	water*
P02708	Acetylcholine receptor subunit alpha	77	water*
Q9UJX3	Anaphase-promoting complex subunit 7	149	water*
Q01484	Ankyrin-2	189	water*
Q5T2E6	Armadillo-like helical domain-	96	water*
	containing protein 3		
Q6PL18	ATPase family AAA domain-	64	water*
	containing protein 2		
O75185	Calcium-transporting ATPase	66	water*
	type 2C member 2		
P0D097	Coiled-coil domain-containing	98	water*
000000	protein 192		, th
Q96A83	Collagen alpha-1(XXVI) chain	111	water*
Q02246	Contactin-2	172	water*
Q9UBG3	Cornulin	105	water*
Q86XP0	Cytosolic phospholipase A2 delta	68	water*
Q8TEA8	D-aminoacyl-tRNA deacylase 1	152	water*
Q9Y485	DmX-like protein 1	83	water*
Q8N136	Dynein assembly factor with WDR repeat domains 1	86	water*

Table 3. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with statherin-derived peptide (StN15) (1.88 x 10 ⁻⁵ M) for 1 minute in comparison with
control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M
hydrochloric acid pH 2) for 10 seconds.
(continued)

^a Number of		Score	b Patio
	Protoins	of	StN15-wator
acession	i lotenis	PLGS	Stivi J. Water
Q8NHG8	E3 ubiquitin-protein ligase ZNRF2	113	water*
Q5MNV8	F-box only protein 47	156	water*
P14136	Glial fibrillary acidic protein	87	water*
Q4G0P3	Hydrocephalus-inducing protein homolog	192	water*
Q9NVH2	Integrator complex subunit 7	229	water*
P04264	Keratin_ type II cytoskeletal 1	140	water*
P08729	Keratin_ type II cytoskeletal 7	87	water*
P05787	Keratin_ type II cytoskeletal 8	87	water*
Q6KB66	Keratin_ type II cytoskeletal 80	87	water*
Q86W92	Liprin-beta-1	202	water*
Q9BY66	Lysine-specific demethylase 5D	77	water*
Q99972	Myocilin	96	water*
Q06710	Paired box protein Pax-8	168	water*
Q9UKI3	Pre-B lymphocyte protein 3	355	water*
Q9HCU5	Prolactin regulatory element- binding protein	148	water*
Q9H714	Protein associated with UVRAG as autophagy enhancer	58	water*
Q9HAT1	Protein ERGIC-53-like	400	water*
Q9Y5H0	Protocadherin gamma-A3	140	water*
Q9BRP9	Putative uncharacterized protein MGC13053	148	water*
Q86TS7	Putative UPF0730 protein encoded by LINC00643	411	water*
A5PLK6	Regulator of G-protein signaling protein-like	139	water*
Q8N122	Regulatory-associated protein of mTOR	102	water*
Q9Y2P8	RNA 3'-terminal phosphate cyclase-like protein	184	water*
Q96PQ1	Sialic acid-binding Ig-like lectin 12	242	water*
Q9BSK2	Solute carrier family 25 member 33	122	water*
Q15772	Striated muscle preferentially expressed protein kinase	327	water*

Table 3. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle(AEP) after wash with statherin-derived peptide (StN15) (1.88 x 10-5M) for 1 minute in comparison with
control (water), followed by formation of the AEP (2 hours) and later acid challenge (0.01 M
hydrochloric acid pH 2) for 10 seconds.(conclusion)

			(conclus	SIO.
^a Number of		Score	^b Ratio	
acession	Proteins	of	StN15:water	
		PLGS		
Q9NXG6	Transmembrane prolyl 4-	166	water*	
	hydroxylase			
Q7L1V2	Vacuolar fusion protein MON1	511	water*	
	homolog B			
O43895	Xaa-Pro aminopeptidase 2	188	water*	
Q8WYQ9	Zinc finger CCHC domain-	55	water*	
	containing protein 14			

^aIdentification is based on proteins ID from UniProt protein database, reviewed only (<u>http://www.uniprot.org/</u>).

^bProteins with expression significantly modified are organized according to the ratio. *Indicates unique proteins in alphabetical order.

Proteins highlighted in bold are enhanced or decreased more than 2-fold.

Table 4. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same
concentrations already described for 1 minute in comparison with control (water), followed by formation
of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

^a Number of		Score	^b Ratio
acession	Proteins	of	MIX:water
		PLGS	
P59666	Neutrophil defensin 3	1578	1,42
P06702	Protein S100-A9	3052	1,28
P63261	Actin_ cytoplasmic 2	1073	0,68
P60709	Actin_ cytoplasmic 1	1073	0,65
P04083	Annexin A1	183	0,59
Q5QNW6	Histone H2B type 2-F	292	0,55
O60814	Histone H2B type 1-K	292	0,54
P62807	Histone H2B type 1-C/E/F/G/I	292	0,54
Q93079	Histone H2B type 1-H	292	0,54
P02538	Keratin_ type II cytoskeletal 6A	147	0,53
P06899	Histone H2B type 1-J	292	0,53
Q8N257	Histone H2B type 3-B	292	0,53
Q16778	Histone H2B type 2-E	292	0,53
P04259	Keratin_ type II cytoskeletal 6B	147	0,52
P23527	Histone H2B type 1-O	292	0,52
P48668	Keratin_ type II cytoskeletal 6C	147	0,51
Q99877	Histone H2B type 1-N	292	0,51
Q99879	Histone H2B type 1-M	292	0,50
P57053	Histone H2B type F-S	292	0,50

(continued) ^bRatio ^aNumber of Score acession Proteins **MIX:water** of PLGS Histone H2B type 1-L 0,49 Q99880 292 P01876 Immunoglobulin heavy 213 0,46 constant alpha 1 P01877 Immunoglobulin heavy 0,41 132 constant alpha 2 P25311 Zinc-alpha-2-glycoprotein 914 0,41 P04264 Keratin type II cytoskeletal 1 140 0,37 P05164 Myeloperoxidase 133 0,34 P04746 Pancreatic alpha-amylase 836 0,31 P04745 0,29 Alpha-amylase 1 1445 P19961 Alpha-amylase 2B 1394 0,26 Q01813 ATP-dependent 6-170 MIX* phosphofructokinase_platelet type P27482 Calmodulin-like protein 3 125 MIX* Q8TCT0 Ceramide kinase 78 MIX* MIX* P36222 Chitinase-3-like protein 1 238 P42773 Cyclin-dependent kinase 4 114 MIX* inhibitor C P09228 Cystatin-SA 307 MIX* Q969U6 F-box/WD repeat-containing 296 MIX* protein 5 MIX* Q7L622 G2/M phase-specific E3 53 ubiquitin-protein ligase MIX* Q9NSN8 Gamma-1-syntrophin 248 Q13439 Golgin subfamily A member 4 103 MIX* MIX* P01834 Immunoglobulin kappa constant 336 Q9UGB7 Inositol oxygenase 226 MIX* O95232 Luc7-like protein 3 303 MIX* O95222 Olfactory receptor 6A2 105 MIX* Q96AQ6 Pre-B-cell leukemia transcription 156 MIX* factor-interacting protein 1 197 Q8IWL2 Pulmonary surfactant-associated MIX* protein A1 Serine/threonine-protein kinase MIX* Q86UX6 66 32C MIX* Q66K14 TBC1 domain family member 9B 108

Table 4. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same
concentrations already described for 1 minute in comparison with control (water), followed by formation
of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.

Table 4. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same
concentrations already described for 1 minute in comparison with control (water), followed by formation
of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.
(continued)

^a Number of		Score	^b Ratio
acession	Proteins	of	MIX:water
		PLGS	
Q9C035	Tripartite motif-containing protein 5	208	MIX*
Q92834	X-linked retinitis pigmentosa GTPase regulator	107	MIX*
Q8N8L2	Zinc finger protein 491	122	MIX*
P31947	14-3-3 protein sigma	269	water*
P02708	Acetylcholine receptor subunit alpha	77	water*
Q9UJX3	Anaphase-promoting complex subunit 7	149	water*
Q01484	Ankyrin-2	189	water*
Q5T2E6	Armadillo-like helical domain- containing protein 3	96	water*
Q6PL18	ATPase family AAA domain- containing protein 2	64	water*
O75185	Calcium-transporting ATPase type 2C member 2	66	water*
P27797	Calreticulin	163	water*
P0DO97	Coiled-coil domain-containing protein 192	98	water*
Q96A83	Collagen alpha-1(XXVI) chain	111	water*
Q02246	Contactin-2	172	water*
Q9UBG3	Cornulin	105	water*
Q86XP0	Cytosolic phospholipase A2 delta	68	water*
Q8TEA8	D-aminoacyl-tRNA deacylase 1	152	water*
Q8N1I0	Dedicator of cytokinesis protein 4	397	water*
Q9UGM3	Deleted in malignant brain tumors 1 protein	75	water*
Q9Y485	DmX-like protein 1	83	water*
Q9UNA4	DNA polymerase iota	537	water*
Q8N136	Dynein assembly factor with WDR repeat domains 1	86	water*
Q8NHG8	E3 ubiquitin-protein ligase ZNRF2	113	water*
Q5MNV8	F-box only protein 47	156	water*
P14136	Glial fibrillary acidic protein	87	water*
A0A2R8Y619	Histone H2B	106	water*
Q96A08	Histone H2B type 1-A	106	water*

Table 4. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same
concentrations already described for 1 minute in comparison with control (water), followed by formation
of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.
(continued)

^a Number of		Score	^b Ratio
acession	Proteins	of	MIX:water
		PLGS	
Q4G0P3	Hydrocephalus-inducing protein homolog	192	water*
P01857	Immunoglobulin heavy constant gamma 1	90	water*
P01859	Immunoglobulin heavy constant gamma 2	33	water*
P01860	Immunoglobulin heavy constant gamma 3	38	water*
P01861	Immunoglobulin heavy constant gamma 4	38	water*
P0CG04	Immunoglobulin lambda constant	191	water*
P0DOY2	Immunoglobulin lambda constant 2	191	water*
P0DOY3	Immunoglobulin lambda constant 3	191	water*
P0CF74	Immunoglobulin lambda constant 6	98	water*
A0M8Q6	Immunoglobulin lambda constant 7	98	water*
B9A064	Immunoglobulin lambda-like polypeptide 5	191	water*
Q9NVH2	Integrator complex subunit 7	229	water*
P13645	Keratin_ type I cytoskeletal 10	140	water*
Q99456	Keratin_ type I cytoskeletal 12	75	water*
P13646	Keratin_ type I cytoskeletal 13	146	water*
P19013	Keratin_ type II cytoskeletal 4	336	water*
P13647	Keratin_ type II cytoskeletal 5	101	water*
P08729	Keratin_ type II cytoskeletal 7	87	water*
Q86Y46	Keratin_ type II cytoskeletal 73	229	water*
P05787	Keratin_ type II cytoskeletal 8	87	water*
Q6KB66	Keratin_ type II cytoskeletal 80	87	water*
P02788	Lactotransferrin	122	water*
Q86W92	Liprin-beta-1	202	water*
P61626	Lysozyme C	519	water*
Q8TAX7	Mucin-7	257	water*
Q99972	Myocilin	96	water*
P60660	Myosin light polypeptide 6	498	water*
Q06710	Paired box protein Pax-8	168	water*
Q9UKI3	Pre-B lymphocyte protein 3	355	water*

Table 4. Proteins with significantly modified expression that dwelled in the acquired enamel pellicle
(AEP) after wash with mixture (MIX) of the 3 proteins (Cane, StN15 and HB) at the same
concentrations already described for 1 minute in comparison with control (water), followed by formation
of the AEP (2 hours) and later acid challenge (0.01 M hydrochloric acid pH 2) for 10 seconds.
(conclusion)

^a Number of acession	Proteins	Score of PLGS	^b Ratio MIX:water
P07737	Profilin-1	134	water*
Q9HCU5	Prolactin regulatory element- binding protein	148	water*
Q9H714	Protein associated with UVRAG as autophagy enhancer	58	water*
Q9HAT1	Protein ERGIC-53-like	400	water*
Q9Y5H0	Protocadherin gamma-A3	140	water*
Q9BRP9	Putative uncharacterized protein MGC13053	148	water*
Q86TS7	Putative UPF0730 protein encoded by LINC00643	411	water*
P14618	Pyruvate kinase PKM	383	water*
A5PLK6	Regulator of G-protein signaling protein-like	139	water*
Q8N122	Regulatory-associated protein of mTOR	102	water*
Q9Y2P8	RNA 3'-terminal phosphate cyclase-like protein	184	water*
Q96PQ1	Sialic acid-binding Ig-like lectin 12	242	water*
Q9BSK2	Solute carrier family 25 member 33	122	water*
Q15772	Striated muscle preferentially expressed protein kinase	327	water*
Q9NXG6	Transmembrane prolyl 4- hydroxylase	166	water*
Q7L1V2	Vacuolar fusion protein MON1 homolog B	511	water*
O43895	Xaa-Pro aminopeptidase 2	188	water*
Q8WYQ9	Zinc finger CCHC domain- containing protein 14	55	water*

^aIdentification is based on proteins ID from UniProt protein database, reviewed only (<u>http://www.uniprot.org/</u>).

^bProteins with expression significantly modified are organized according to the ratio. *Indicates unique proteins in alphabetical order.

Proteins highlighted in bold are enhanced or decreased more than 2-fold.
3-Discussion

3 DISCUSSION

ETW is progressive, i.e., the prevalence and severity progress with age (Jaeggi et al., 2014) so that preventive measures are extremely important. Moreover, the prevalence of this clinical condition has been increasing, which has led to an increase in the research in this area (Kreulen et al., 2010; Donovan et al., 2021; Rocha et al., 2022; Chatzidimitriou et al., 2023).

The demineralization involved in ETW happens partially on the tooth surface, due to frequent exposure to intrinsic, extrinsic acids or their combination (Donovan et al., 2021). Within the ETW there is no fixed characteristic "critical" pH, a value at which the erosive solution is exactly saturated in relation to a specific solid, in this study in question, that of dental enamel. This depends both on the solubility of the enamel (the solid of our interest) and on the activities of the relevant mineral constituents of the solution (calcium, phosphate and fluoride, to a lesser extent) (Lussi et al., 2014). Thus, the continuous loss of dental tissue occurs due to undersaturation both in relation to hydroxyapatite and in relation to fluorapatite, since the pH of the causative agents is lower than 4.5 (Lussi et al., 2011).

An important protective factor against ETW, mainly due to its extensive biological properties, is the saliva present in the oral cavity. It is formed by the secretion of the salivary glands, presenting a neutral pH. Among its various functions, saliva maintains oral health and also participates directly in the remineralization of dental tissue, as it is a source of calcium and phosphate ions (Buzalaf et al., 2012). In addition, saliva is responsible for contributing to the formation of a protein-rich pellicle, the AEP. This pellicle is responsible for protecting the tooth surface against chemical and mechanical agents. The thickness of the film varies according to the surface and is proportional to the contact with saliva. Research has detected hundreds of proteins in the composition of the AEP in vivo, such as mucin, amylase, lysozyme, PRPs, statherin, varying according to its location in the dental arches (Ventura et al., 2017), as well as several peptides (Siqueira et al., 2007). Among these proteins, the presence of intact histatin in the acquired pellicle was confirmed, which is resistant to degradation when adsorbed to hydroxyapatite, which may give it the potential to protect the surface of dental enamel against acid attacks (Sigueira et al., 2010; McDonald et al., 2011). Thus, AEP works as a mechanical barrier against acid dissolution (Buzalaf et al., 2012; Vukosavljevic et al., 2014).

Our research group in recent years, through AEP engineering, has focused on the search for proteins that resistant to removal by erosive acids (Delecrode et al., 2015; Cassiano et al., 2018; Taira et al., 2018), so that enrichment of the AEP with these proteins might help protect against ETW. Several candidates have been found out, which have remained in the AEP even after severe erosive attacks. Among them, we highlight HB (Martini et al., 2019), statherin (Taira et al., 2018) and CaneCPI-5 (Santiago et al., 2017), which are target proteins evaluated in this study.

The study involved the participation of 10 volunteers, of both genders, aged between 18 and 35 years. They were selected after using the inclusion and exclusion criteria and also the analysis of stimulated and non-stimulated salivary flow. An average of 4 samples per treatment group were collected from 3-4 volunteers. Considering the low proteins count normally retrieved from AEP in vivo, the number of 10 volunteers is enough to compose pools (biological triplicates) for the proteomic analysis of AEP. This sample size (n=10) was calculated based on previous studies that presented a similar methodology (Ventura et al., 2017; Cassiano et al., 2018; Taira et al., 2018, 2020).

Thus, it was an in vivo, triple-blind (volunteer, researcher and analyst) and crossover study, i.e., all volunteers went through all phases of the study (5 types of mouthwashes X 2 types of erosive challenges, totaling 10 phases. The great advantage of this experimental design was to reproduce a clinical picture, so that in the future, we can have a dental product focused on the prevention of ETW.

The proteins evaluated both in the extrinsic and intrinsic study were: 1commercially available lyophilized human hemoglobin (#H7379) (Sigma-Aldrich); 2- CaneCPI-5 that was recombinantly produced under the coordination of Prof. Dr. Flávio Henrique Silva, at UFSCAR. A bacterial strain of E. coli Rosetta (DE3) was used, altered utilizing plasmid pET28aCaneCPI-5 (Miguel, 2014). Purification of expressed protein from the soluble fraction of bacterial cultures induced was achieved by IPTG (IsopropyI-beta-D-Thiogalactosidio), subjected to centrifugation and sonication. Purification was performed by affinity chromatography, using Ni-NTA Superflow nickel resin columns (Qiagen); 3Peptide containing 15 N-terminal residues of statherin (DSSEEKFLRRIGRFG), with phosphorylated serines two and three (StN15pSpS), synthesized chemically by solid phase method (Merrifield, 1963; Amblard et al., 2005), based on the standard protocol that employs the FMOC group as a protector of the α -amino groups and t-butyl derivatives for protection of side chains of trifunctional amino acid residues (Chan et al., 2000) in the laboratory of Prof. Reinaldo Marchetto, from Biochemistry and Chemical Technology Department, Institute of Chemistry – UNESP, Araraquara. A Wang type resin containing the first amino acid of the prior incorporated sequence was utilized as starting polymer. This peptide was synthesized because research reported that at least 15 N-terminal residues or more are required in statherin-derived peptides to lower demineralization of the enamel (Shah et al., 2011). Still thinking about a future commercial application of our findings, the use of peptides derived from statherin with 15 N-terminal residues is much more attractive than the use of the whole protein, due to the low cost and easier of storage.

The factors involved in the research design were the type of protein solution utilized as mouthwash, in five levels and the type of erosive challenge in 2 levels. In each phase, dental prophylaxis was performed, the volunteers rinsed (10 mL for one min) utilizing control (deionized water) (1), 0.1 mg/mL CaneCPI-5 (2), 1.0 mg/mL HB (3), 1.88 × 10⁻⁵M StN15 (4) solutions or mixture of the three proteins/peptide (5). Concentrations of CaneCPI-5 (Santiago et al., 2017), HB (Martini et al., 2020) and StN15 (Taira et al., 2020) were based on prior in vitro researches by our team. The protein solutions pH was native and the proteins/peptides were diluted in deionized water. Participants were deprived for two hours of eating and drinking, so AEP could form. This in vivo study protocol was recently used by Araujo et al., 2022, for the evaluation of the protein profile of the AEP formed for 3 min, with the same protein mouthwashes with the CaneCPI-5, HB and StN15.

After 2 hours of formation of the AEP, an enamel biopsy was performed on the buccal surface of tooth 21, for 10 s (10 μ l of extrinsic or intrinsic acid, depending on the phase), for subsequent calcium analysis, using the Arsenazo III colorimetric method (Vogel et al., 2006). Then, we also for 10 s, we performed the erosive challenge (extrinsic or intrinsic, depending on the phase) on upper and lower teeth buccal surfaces, with a pipette (200 μ l of acid). It is important to highlight that all these procedures were performed during the morning, to avoid the influence of the circadian rhythm. Subsequently, the remaining AEP proteins were harvested with an electrode filter paper and the samples were analyzed quantitatively by label-free proteomics.

Extrinsic factors are very often related to eating habits, such as consumption of soft drinks, fruit juices, with low pH value, lifestyle, drug use (Zero, 1996). In contrast, intrinsic factors involve the contact of acids from the stomach with the oral cavity, exceeding the existing buffer function in saliva (Salas et al., 2015). On the other hand, intrinsic ETW involves the clinical conditions of GERD, bulimia nervosa and chronic alcohol consumption (Zero, 1996; Carvalho et al., 2015; Salas et al., 2015). We evaluated the potential of mouthwashes with distinct proteins/peptide that were previously identified with acid-resistant properties to change the proteome of the AEP, persist in this integument after intrinsic or extrinsic erosive challenges and protect enamel against demineralization, which was directly evaluated by enamel biopsies. It is also worth highlighting that this study was awarded among all the USP units, and several videos submitted referring to researches carried out involving master's and/or PhD studies, with honorable mention at Prêmio Vídeo Pós-Graduação USP 2021, da Grande Área: Ciências da Saúde II (**Annex E**)

Since two difference types of erosive challenges were performed, and their results were distinct, and also considering that clinically the extrinsic and intrinsic erosive challenges are very different conditions the discussion of the thesis will be carried out separately for each type of acid.

Extrinsic erosive enamel demineralization

Due to its novelty, this part of the study received the Science Award from the Cariology Group of the International Association for Dental Research (IADR) in 2020 (**Annex F**). Each year, the Cariology Group selects up to 3 abstracts submitted for presentation in the general session of the IADR to be awarded, but our study was awarded by itself that year, being selected among 450 abstracts submitted for this award. It is important to highlight that the IADR is the biggest and most important research congress in Dentistry. The new eating habits have turned more towards a diet rich in acidic foods and these, in contact with the dental surface, can cause a continuous demineralization of the teeth, and a loss in volume of this structure may occur, through ETW (Lussi et al., 2014). This has been subject of great concern in dentistry (Schlueter et al., 2020; Pedrosa et al., 2020), so it is important that studies are focused on this area.

In the present study, to simulate the extrinsic erosive challenge, 1% citric acid pH 2.5 was used. This protocol has been successfully employed in other in vivo studies (Pela et al., 2023; Delecrode et al., 2015).

Proteomic analysis revealed that all solutions of the proteins/peptides caused marked changes in the protein profile of the AEP that remained on the tooth surface after the extrinsic erosive challenge and also significantly reduced the extrinsic enamel erosive demineralization. Recently, our findings with the CaneCPI-5 solution were corroborated in another study by our group that showed that rinsing with CaneCPI-5 solution was as effective as rinsing with Elmex Erosion[™] to reduce erosive demineralization (Pela et al., 2023). It is important to mention that in the latter study, another response variable (reflectometry) was employed, besides Ca analysis, which gives additional confidence to the data.

Results also demonstrated that dental surface in vivo treatment with hydroxyapatite bonding proteins expressively increased proteins count immobilized within AEP following erosive challenge (8.2 µg for the control group versus 16.2-21.7 µg for the experimental groups). In addition, a notable increase of numerous proteins within AEP that are potentially displacement resistant by acids (Supplementary Tables 1-4, article 1) was observed, protecting against erosive demineralization (Figure 1, article 1). Intriguing, proteins families with expression changes as well as the ratios discovered were distinct for the different proteins analyzed (Supplementary Tables 1-4, article 1-4, article 1). Therefore, considering the experiment main outcome (erosive demineralization prevention), these differences do not seem to be of relevant, since all proteins/peptide isolated appointed analogous protection. The 3 proteins combined, however, was not capable of providing protection in comparison to water. This might be a result of the 3 proteins combined concentrations' being identical to the ones utilized when the proteins were isolated. Taking in

consideration that all of them have attraction for hydroxyapatite, they might have contested for binding sites. Further examination of these proteins combination effect at lower concentrations could be of interest, since distinctive proteins could alter AEP composition in a unique manner (Supplementary Tables 1-3, article 1).

A notable finding of the current research is that although some increased expression proteins or found solely within proteins/peptide treatment are those released by salivary glands, which are usually noticed within AEP (for example, PRPs, cystatins, amylase, lactotransferrin, histatins), nearly all of which are intracellular proteins (e.g., keratins, histones, actins and profilins, tubulins, 14-3-3 proteins). It is known that predecessor proteins observed within AEP basal layer presents the highest erosive demineralization prevention (Hannig et al., 2009). Therefore, boosting the number of proteins with high hydroxyapatite affinity in the basal layer, as tested in the current work, may also enhance other proteins number that do not link to hydroxyapatite, but bind to predecessor proteins, what could have been the case of intracellular proteins. An example of this is the actin enhance, noted in HB and StN15 treatments and in the combined proteins. Within the same research groups, profilin (an actin-binding protein) also increased. Thus, actin and profilin may formulated a portion of the protein aggregates captured in the second phase of AEP formulation (Hannig, 1999). It is important to mention that the proteins/peptides treatment enhanced numerous antimicrobial proteins within AEP, such as countless isoforms of immunoglobulins, cystatins, histatins and lysozyme. Thus, it is possible that they also prevent dental caries. In fact, CaneCPI-5 was shown in vitro to significantly decreases microcosm biofilms activity, the counts of lactobacilli and mutans streptococci, as well as the enamel demineralization (integrated mineral loss; transverse microrradiography) (Araújo et al., 2021).

These findings are very promising as it is the first time that an in vivo study has tested the pellicle engineering concept for enamel surface enrichment with CaneCPI-5, HB or StN15 after extrinsic erosive challenges. The tested treatments notably increase acid-resistant proteins in AEP and are potentially protective against extrinsic erosive enamel demineralization.

Intrinsic erosive enamel demineralization

This part of this study was awarded at the International Association for Dental Research (IADR) in 2021 for the Colgate Research in Prevention Travel Award (**Annex G**). Each year, 6 people from around the world are selected for this award.

In this work, to simulate intrinsic ETW, we used HCI 0.01 M as it corresponds to pH 2 (Taira et al., 2018), and the pH of the gastric juice typically ranges between 1 and 3 (Milosevic et al., 1997). Our intention when using this acid was two-fold, as follows: 1) identify in the AEP proteins that resist to intrinsic acid (HCI) and 2) to evaluate which of the protein/peptide would protect against the intrinsic erosive challenge. It is very important to identify proteins in the AEP that are resistant to removal by HCI. This acid, in question, comes from the stomach and is found in the oral cavity after episodes of gastroesophageal reflux, vomiting and bulimia nervosa (Moazzez et al., 2014).

Results demonstrated that tooth surface in vivo treatment utilizing proteins with hydroxyapatite affinity hydroxyapatite enhanced the number of proteins immobilized within AEP following erosive attack (6.4 µg for the control group versus 8.6-13.6 µg for the experimental groups). In addition, a boost in numerous AEP proteins that are potentially displacement resistant by acids was observed (Complementary Tables 1-4, article 2). Intriguing, proteins families' presenting changes in expression, as well as the reasons noticed, were distinct for various proteins studied (Complementary Tables 1-4, article 2). An expressive finding of the current research is that several proteins that are not typically described in AEP, but that bind calcium or other proteins, were identified exclusively in the groups treated with the tested proteins / peptides, isolated or mixed (MIX). In addition, some increased expression proteins or found solely in protein/peptide treatment are released by salivary glands, which are usually noticed within AEP (e.g., PRPs, cystatin, lysozyme-C, submaxillary gland and rogen-regulated protein 3B), evidenced by the Cane-CPI-5 and StN15 peptide treatment group. The 3 proteins mixed, however, was not capable to provide protection in comparison to water. This might be a result of the 3 proteins combined concentrations' being identical to the ones utilized when the proteins were isolated. Taking in consideration that all of them have attraction

for hydroxyapatite, they might have contested for binding sites. Further examination of these proteins combination effect at lower concentrations could be of interest, since distinctive proteins could alter AEP composition in a unique manner (Complementary Tables 1-4, article 2).

Among the treatments tested with the proteins/peptides, several intracellular proteins (for example, keratins, histones and actins) were evidenced. It is known that predecessor proteins observed within AEP basal layer are the highest erosive demineralization preventive (Hannig et al., 2009). Thus, boosting proteins with high hydroxyapatite affinity in the basal layer, as examined in the current research, may also enhance other proteins that do not link to hydroxyapatite, but link to predecessor proteins, which could have been the case of intracellular proteins, which is in agreement with the result found in a recent work by our research group, in which these proteins were highly expressed in the group treated with HB in the AEP formed for 3 min (Araujo et al., 2022). In the CaneCPI-5 protein treatment group, pyruvate kinase (a the calcium-dependent cadherin-binding protein, which belongs to transmembrane glycoprotein family) showed a greater increase among the identified proteins. Thus, pyruvate kinase may formulate portion of the protein aggregates that are captured in the second phase of AEP formation (Hannig, 1999). It is important to mention that the proteins/peptides treatment enhanced numerous antimicrobial proteins within AEP, such as countless isoforms of immunoglobulins, cystatins, histatins and lysozyme. Thus, it is possible that they also prevent dental caries. As mentioned above, AEP engineering, at least with CaneCPI-5 was shown to reduce microcosm biofilm formation and reduce dental caries. The anticaries effect of these proteins/peptide should be evaluated in further studies, employing protocols that more closely mimic clinical condition.

In this work, in which a stronger erosive challenge was performed with HCl, only HB was able to protect enamel against erosive demineralization. These findings are in-line with an in vivo study by our group that found that GERD patients without ETW have HB levels 3-fold higher in the AEP (Martini et al., 2019) and 22-fold higher in saliva (Martini et al., 2020) when compared to GERD patients with ETW. It was also recently found that after rinsing with HB, there was an increase of up to 18x in the subunits of this protein in the AEP

formed for 3 minutes (Araujo et al., 2022). As mentioned above, HB has strong affinity for hydroxyapatite, and hydroxyapatite columns show an excellent performance for purification of HB (Kawasaki et al., 1985). It is important to highlight that the adsorption of HB to hydroxyapatite increases as the pH decreases (Yu et al., 2017). Patients with erosive tooth wear have a pH in the oral cavity typically lower than that found in healthy patients (Bartlett et al., 1996). Thus, the lower pH in the oral cavity in patients with GERD may increase the chance of HB adsorption to tooth surfaces, since it confers a positive charge on this protein.

In summary, our results showed that protein/peptide treatment, alone or combined, increased acid-resistant proteins in AEP, but only HB was able to protect against intrinsic erosive demineralization. These findings open the avenue for a new preventive approach to intrinsic erosive demineralization, employing acquired pellicle engineering procedures involving the incorporation of HB in dental products for the prevention of intrinsic erosion. Due to the fact that for intrinsic erosion only HB was protective, we decided to use bioinformatic tools in attempt to better understand the differences among the proteins/peptide evaluated in the intrinsic erosion condition.

The biological and/or molecular processes found in this comparison of the 1.0 mg/mL group of Hemoglobin (HB) vs control (water) were: humoral immune response (37%), keratinocyte differentiation (22%), humoral immune response antimicrobial peptide-mediated activity (13%), focal adhesion cluster (11%), alpha hemoglobin binding (8%), regulation of epidermal development (6%), and alpha-amylase activity (3%) (Figure 2, article 2).

Among the evidenced processes, 37% of them refer to the humoral immune response. This process is directly related to the body's defense, in which we have the participation of immunoglobulins. Through the proteomic approach, the differential expression of several immunoglobulins was identified, which were reduced or absent in the HB group, compared to the water group (Complementary Table 2, article 2). It has been reported that immunoglobulins contribute to protection against intrinsic erosive challenges, in addition to having antimicrobial action (Araujo et al., 2022). In addition, 13% of the processes presented through this bioinformatics analysis are linked to the antimicrobial humoral immune response mediated by antimicrobial peptide, which is an

important factor of antimicrobial action when we associate it with carious lesions and the intrinsic erosive challenge (Araujo et al., 2022).

AEP is typically composed of proteins, being considered an important protective factor against ETW (Carvalho et al., 2020). Among the biological processes affected when comparing the HB vs control (water) group, we found alpha-amylase activity (3%) and binding to alpha hemoglobin (8%), which reinforces the protective effect of treatment with the solution containing HB. Alpha-amylase protein is typically found in the basal layer of AEP (Martins et al., 2013) and two alpha-amylase subunits were decreased upon HB treatment (Complementary Table 2, article 2), which indicates that HB, due to its high affinity for hydroxyapatite, must have preferentially bound to this mineral, leaving fewer binding sites for other basal layer proteins. HB is a tetramer composed of two pairs of globins, each linked to a heme group. In adult humans, HBs consist of 96.5-98.5% HbA1 (α2β2 dimer) and 1.5-3.5% HbA2 (α2δ2 dimer), while Hb ε replaces the β chain in embryos. The different HB subunits have unique amino acid sequences (Gell, 2018). Amidst them, the α chain is the one with the most elevated serine, threonine and tyrosine residues content that could be phosphorylated, giving the protein a negative charge, thus enhancing its hydroxyapatite binding capability (Kawasaki et al., 1986, 1987).

Another finding that caught our attention was that 11% of the processes were related to focal adhesion assembly. These structures are multiprotein complexes containing integrins, which form mechanical links among intracellular actin bundles and the extracellular substrate in various cell types. Intracellular proteins were also highly expressed in the proteomic analysis of part of this previously published study (Carvalho et al., 2020). We believe they are part of some important structural arrangement within the AEP. The fact that 22% of biological processes are related to the differentiation of keratinocytes and 6% are related to the regulation of epidermal development, may be related to proteins from desquamated epithelial cells, which are also reported as constituents of AEP (Martins et al., 2013).

In conclusion, the bioinformatics analyses presented helped to better understand the results obtained with the proteomic analysis, corroborating previous studies and bringing new insights. All the proteins/peptide evaluated increased acid-resistant proteins in the AEP, regardless the type of erosive challenge, but only HB protected enamel against intrinsic erosion. Our findings open new avenues for the development of dental products to prevent ETW based on AEP engineering procedures.

References

Abrahamson M. Cystatins - Protein inhibitors of papain-like cysteine proteinases. Journal of the Brazilian Association of the Advancement of Science. 1993;45(5):299-304.

Amblard, M, Fehrentz JA, Martinez J, Subra G. Fundamentals of modern peptide. Methods Mol Biol. 2005;298:3-24.

Araujo TT, Camiloti GD, Valle AD, Silva NDG, Souza BM, Carvalho TS, et al. A sugarcane cystatin (CaneCPI-5) alters microcosm biofilm formation and reduces dental caries. Biofouling. 2021;37:109-16.

Araujo TT, Carvalho TS, Dionizio A, Debortolli ALB, Ventura TMO, Souza BM, et al. Protein-based engineering of the initial acquired enamel pellicle in vivo: Proteomic evaluation. J Dent. 2022;116:103874.

Bartlett DW, Evans DF, Anggiansah A, Smith BG. A study of the association between gastro-esophageal reflux and palatal dental erosion. Br Dent J. 1996;181(4):125-31.

Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012;20(5):493-502.

Carpenter G, Cotroneo E, Moazzez R, Rojas-Serrano M, Donaldson N, Austin R, et al. Composition of enamel pellicle from dental erosion patients. Caries Res. 2014;48(5):361-67.

Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JVF, Moraes SM, et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J Dent. 2020;102:103478.

Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N. Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear--diagnosis and management. Clin Oral Investig. 2015;19(7):1557-61.

Cassiano LPS, Ventura TMS, Silva CMS, Leite AL, Magalhaes AC, Pessan JP, et al. Protein Profile of the Acquired Enamel Pellicle after Rinsing with Whole Milk, Fat-Free Milk, and Water: An in vivo Study. Caries Res. 2018;52(4): 288-96.

Chan WC, White PD. Fmoc solid phase peptide synthesis: a practical approach New York: Oxford University Press. 2000.

Chatzidimitriou K, Papaioannou W, Seremidi K, Bougioukas K, Haidich AB. Prevalence and association of gastroesophageal reflux disease and dental erosion: An overview of reviews. J Dent. 2023;133:104520.

Cheaib Z, Lussi A. Impact of acquired enamel pellicle modification on initial dental erosion. Caries Res. 2011;45(2):107-12.

Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, et al. Identification of acid-resistant proteins in acquired enamel pellicle. J Dent. 2015;43(12):1470-75.

Donovan T, Nguyen-Ngoc C, Abd Alraheam I, Irusa K. Contemporary diagnosis and management of dental erosion. J Esthet Restor Dent. 2021;33(1):78-87.

Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018;70:13-42.

Gianotti A, Rios WM, Soares-Costa A, Nogaroto V, Carmona AK, Oliva ML, et al. Recombinant expression, purification, and functional analysis of two novel cystatins from sugarcane (Saccharum officinarum). Protein Expr Purif. 2006;47(2): 483-89.

Gianotti A, Sommer CA, Carmona AK, Henrique-Silva F. Inhibitory effect of the sugarcane cystatin CaneCPI-4 on cathepsins B and L and human breast cancer cell invasion. Biol Chem. 2008;389(4):447-53.

Hannig C, Berndt D, Hoth-Hannig W, Hannig M. The effect of acidic beverages on the ultrastructure of the acquired pellicle--an in situ study. Arch Oral Biol. 2009;54(6):518-26.

Hannig, M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig. 1999;3(2):88-95.

Hara AT, Ando M, Gonzalez-Cabezas C, Cury JA, Serra MC, Zero, DT. Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res. 2006;85(7): 612-16.

Hay DI. The interaction of human parotid salivary proteins with hydroxyapatite. Arch Oral Biol. 1973;18(12):1517-29.

Hermont AP, Oliveira PA, Martins CC, Paiva SM, Pordeus IA, Auad SM. Tooth erosion and eating disorders: a systematic review and meta-analysis. PLoS One 9. 2014(11): e111123.

Jaeggi T, Lussi A. Prevalence incidence and distribution of erosion. Monogr Oral Sci. 2014; 25:55-73.

Kawasaki T, Ikeda K, Takahashi S, Kuboki Y. Further study of hydroxyapatite highperformance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency. Eur J Biochem. 1986;155(2):249-57.

Kawasaki T, Niikura M, Takahashi S, Kobayashi W. Strontium-phosphate hydroxyapatite high-performance liquid chromatography. Biochem Int. 1987;15(6):1137-49.

Kawasaki T, Takahashi S, Ikeda K. Hydroxyapatite high-performance liquid chromatography: column performance for proteins. Eur J Biochem. 1985;152(2):361-71.

Kondo H, Abe K, Emori Y, Arai S. Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 1991;278(1):87-90.

Kreulen CM, Van 't Spijker A, Rodriguez JM, Bronkhorst EM, Creugers NH, Bartlett DW. Systematic review of the prevalence of tooth wear in children and adolescents. Caries Res. 2010;44(2):151-9.

Lee YH, Zimmerman JN, Custodio W, Xiao Y, Basiri T, Hatibovic-Kofman S, et al. Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS One. 2013;8(7):e67919.

Lussi A, Carvalho TS. Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci. 2014;25:1-15.

Lussi A, Schlueter N, Rakhmatullina E, Ganss C. Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res. 2011;45 Suppl 1: 2-12.

Margis R, Reis EM, Villeret V. Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys. 1998;359(1):24-30.

Martini T, Rios D, Cassiano LPS, Silva CMS, Taira EA, Ventura TMS, et al. Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear. J Dent. 2019;81:64-9.

Martini T, Rios D, Dionizio A, Cassiano LP, Pela VT, Silva CMS, et al. Salivary hemoglobin protects against erosive tooth wear in gastric reflux patients. Caries Res. 2020;54(5-6):466-74.

Martins C, Buczynski AK, Maia LC, Siqueira WL, Castro GF. Salivary proteins as a biomarker for dental caries--a systematic review. J Dent. 2013;41(1):2-8.

McDonald EE, Goldberg AH, Tabbara N, Mendes FM, Siqueira WL. Histatin 1 resists proteolytic degradation when adsorbed to hydroxyapatite. J Dent Res. 2011;90(2):268-72.

Merrifield, RB. Solid-phase peptide synthesis. I: the synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149-54.

Miguel MC. Produção recombinante e caracterização de duas cistatinas de cana-deaçúcar. Universidade Federal de São Carlos. 2014.

Milosevic A, Brodie DA, Slade PD. Dental erosion, oral hygiene, and nutrition in eating disorders. Int J Eat Disord. 1997;21(2):195-99.

Moazzez R, Bartlett D. Intrinsic causes of erosion. Monogr Oral Sci. 2014;25:180-96.

Mutahar M, O'Toole S, Carpenter G, Bartlett D, Andiappan M, Moazzez R. Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: An in-vivo study. PLoS One. 2007;12(8):e0183660.

Naganagowda, GA, Gururaja TL, Levine MJ. Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations. J Biomol Struct Dyn. 1998;16(1):91-107.

Oliva ML, Carmona AK, Andrade SS, Cotrin SS, Soares-Costa A, Henrique-Silva, F. Inhibitory selectivity of canecystatin: a recombinant cysteine peptidase inhibitor from sugarcane. Biochem Biophys Res Commun. 2004;320(4):1082-86.

Pedrosa BRV, de Menezes VA. Prevalence of Erosive Tooth Wear and Related Risk Factors in Adolescents: An Integrative Review. J Dent Child (Chic). 2020;87(1):18-25.

Pela VT, Lunardelli JGQ, Tokuhara CK, Gironda CC, Silva NDG, Carvalho TS, et al. Safety and In Situ Antierosive Effect of CaneCPI-5 on Dental Enamel. J Dent Res. 2021;100(12):1344-50.

Pela VT, Ventura TMO, Taira EA, Thomassian LTG, Brito L, Matuhara YE, et al. Use of Reflectometer Optipen to assess the preventive effect of a sugarcane cystatin on initial dental erosion in vivo. J Mech Behav Biomed Mater. 2023; 141:105782.

Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, et al. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chemistry. 2013;19(17):5332-41.

Raj PA, Johnsson M, Levine MJ, Nancollas GH. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J Biol Chem. 1992;267(9):5968-76.

Reis FN, Francese MM, da Silva NDG, Pela VT, Camara JVF, Trevizol JS, et al. Solutions Containing a Statherin-Derived Peptide Reduce Enamel Erosion in vitro. Caries Res. 2023;57(1):52-8.

Rocha AO, Santos PS, Machado BA, Bolan M, Cardoso M, Martins-Junior PA, et al. The Top 100 Most-Cited Papers in Erosive Tooth Wear: A Bibliometric Analysis. Caries Res. 2022;56(1):29-35.

Salas MM, Nascimento GG, Vargas-Ferreira F, Tarquinio SB, Huysmans MC, Demarco FF. Diet influenced tooth erosion prevalence in children and adolescents: Results of a meta-analysis and meta-regression. J Dent. 2015;43(8):865-75.

Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pela VT, et al. A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion. J Dent Res. 2017;96(9):1051-57.

Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR, Ganss C, Hara AT, et al. Erosive tooth wear: consensus recommendations on terminology. Caries Res. 2020;54(1):2-6.

Shah S, Kosoric J, Hector MP, Anderson P. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. Eur J Oral Sci. 2011;119(1):13-8.

Siqueira WL, Custodio W, McDonald EE, et al. New insights into the composition and functions of the acquired enamel pellicle. J Dent Res. 2012;91(12):1110-18.

Siqueira WL, Margolis HC, Helmerhorst EJ, Mendes FM, Oppenheim FG. Evidence of intact histatins in the in vivo acquired enamel pellicle. J Dent Res. 2010;89(6):626-30.

Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG, et al. Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res. 2007;6(6):2152-60.

Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun. 2002;296(5):1194-99.

Taira EA, Carvalho G, Ferrari CR, Martini T, Pela VT, Ventura TMO, et al. Statherinderived peptide protects against intrinsic erosion. Arch Oral Biol. 2020;119:104890.

Taira EA, Ventura TMS, Cassiano LPS, Silva CMS, Martini T, Leite AL, et al. Changes in the Proteomic Profile of Acquired Enamel Pellicles as a Function of Their Time of Formation and Hydrochloric Acid Exposure. Caries Res. 2018;52(5):367-77.

Ventura TMS, Cassiano LPS, Souza ESCM, Taira EA, Leite AL, Rios D, et al. The proteomic profile of the acquired enamel pellicle changes according to its location in the dental arches. Arch Oral Biol. 2017;79:20-9.

Vitorino R, Calheiros-Lobo MJ, Duarte J, Ferrer-Correia AJ, Tomer KB, Dubin JR, et al. In vitro hydroxyapatite adsorbed salivary proteins. Biochem Biophys Res Commun. 2004;320(2):342-46.

Vitorino R, Calheiros-Lobo MJ, Williams J, Ferrer-Correia AJ, Tomer KB, Duarte JA, et al. Peptidomic analysis of human acquired enamel pellicle. Biomed Chromatogr. 2007;21(11):1107-17.

Vogel GL, Chow LC, Carey CM, Schumacher GE, Takagi S. Effect of a calcium prerinse on salivary fluoride after a 228-ppm fluoride rinse. Caries Res. 2006;40(2):178-80.

Vukosavljevic, D., et al., 2014. Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 59(6), 631-638.

Yao Y, Lamkin MS, Oppenheim FG. Pellicle precursor protein crosslinking characterization of an adduct between acidic proline-rich protein (PRP-1) and statherin generated by transglutaminase. J Dent Res. 2000;79(4):930-38.

Yu YD, Zhu YJ, Qi C, Jiang YY, Li H, Wu J. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci. 2017;496:416-24.

Zero DT. Etiology of dental erosion--extrinsic factors. Eur J Oral Sci. 1996;104(2 (Pt 2)):162-77.

Zimmermann R, Delius J, Friedrichs J, Stehl S, Hofmann T, Hannig C, et al. Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth-saliva interphase. Colloids Surf B Biointerfaces. 2019;174: 451-58.

Annexes

ANNEX A- Publishment authorization

03/09/2023, 20:03 mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=afacb5f3e9&attid=0.1&permmsgid=msg-f:167793169728...Elsevier Logo **Rights and Access** Acquired pellicle protein-based engineering protects against erosive demineralization Corresponding authorProfessor Marília Afonso Rabelo Buzalaf E-mail addressmbuzalaf@fob.usp.br Journal Journal of Dentistry Article number103478 Our referenceJJOD_103478 PII S0300-5712(20)30224-4 **Order Confirmation** Thank you for taking the time to complete the Rights and Access form. Order numberOACSRJJOD1034780 Order date15 September 2020 Research Funders Fundação de Amparo à Pesquisa do Estado de São Paulo Grant numbers: 2019/16254-8, 2018/12041-7 Conselho Nacional de Desenvolvimento Científico e Tecnológico Grant numbers: 311746/2017-9, 302371/2018-4 Publishing OptionSubscription Publishing Agreement I am one author signing on behalf of all co-authors of the manuscript I may post the accepted manuscript in my institutional repository and make this public after an embargo period. To ensure the sustainability of peer-reviewed research in journal publications, I may not share the final article publicly, for example on ResearchGate or Academia.edu. Further details on Elsevier Sharing Policy here. Based on information provided the embargo period/end date is 12 months.

Copyright © 2020 Elsevier B.V. All rights reserved.

REL:

https://mail-attachment.googleusercontent.com/attachment/u/0/?ui=2&ik=afacb5f3e9&attid=0.1&permmsgid=msg-fr:1677931697286226229&th=1... 1/1

ANNEX B- Declaration of exclusive use of the article 1

Pós-Graduação

Assistência Técnica Acadêmica

GUERRAÇÃO DE USO EXCLUSIVO DE ARTIGO EM DISSERTAÇÃO/TESE

Declaramos estarmos cientes de que o trabalho "Acquired pellicle protein-based engineering protects against erosive demineralization" será apresentado na Dissertação/Tese do(a) aluno(a) Thamyris de Souza Carvalho e que não foi e nem será utilizado em outra dissertação/tese dos Programas de Pós-Graduação da FOB-USP

Bauru, 28 de agosto de 2023.

Thamyris de Souza Carvalho NOME 1

Tamara Teodoro Araújo NOME 2

Talita Mendes Oliveira Ventura

NOME 3

Aline Dionízio NOME 4

João Victor Frazão Câmara NOME 5 Thamipi Stanalho

Assinatura

Assinatura

Latita Mendes Delivera Sentura

Assinatura

aline Dionizia

Assinatura

rfeño Uicter Grozoo Comana

Assinatura

AL Dr. Octóvio Pnheiro Brisola, 9-75 – Bauru-SP – CEP 17012-901 – C.P. 73 e-mat: posgrad@fobuspbr – Fone/Fax (Dxx14) 3235-8223 www.fobuspbr 92

Assistência Técnica Acadêmica

Serviço de Pós Graduação

Samanta Mascarenhas Moraes NOME 6

> Vinicius Taioqui Pelá NOME 7

Tatiana Martini NOME 8

Júlia Chaparro Leme NOME 9

Ana Luiza Bogaz Derbotolli NOME 10

Larissa Tercilia Grizzo NOME 11

> Edson Crusca NOME 12

Priscila Yumi Tanaka Shibao NOME 13

> Reinaldo Marchetto NOME 14

Jamanta m.m.

Assinatura

Assinatura

Assinatura

fulia Deme

Assinatura

Include Bouland

Assinatura

Assinatura

Outor

Assinatura

Tukino

Assinatura

Inanche 115

Assinatura

A.D.: Octóvio Pinheiro Brisola, 9-75 – Bauru-SP – CEP 17012-901 – C.P. 73 e-mait: posgrad@fobuspbr – Fone/Fax (Jux14) 3235-8223 www.fobuspbr

Flavio Henrique-Silva NOME 15

Juliano Pelim Pessan NOME 16

Marília Afonso Rabelo Buzalaf NOME 17 Assistência Técnica Acadêmica

Serviço de Pós Graduação

tio flor film

Assinatura

glico P. Pero

Assinatura

manurate

Assinatura

ALDr. Octávio Priheiro Brisola, 9-75 – Bauru-SP – CEP 17012-901 – C.P. 73 e-mait posgrad@fobusp.br – Fone/Fax (0xx14) 3235-8223 www.fobusp.br

ANNEX C- Declaration of exclusive use of the article 2

Assistência Técnica Acadêmica

Serviço de Pós Graduação DECLARAÇÃO DE USO EXCLUSIVO DE ARTIGO EM DISSERTAÇÃO/TESE

Declaramos estarmos cientes de que o trabalho "Hemoglobin protects enamel against intrinsic erosive demineralization" será apresentado na Dissertação/Tese do(a) aluno(a) Thamyris de Souza Carvalho e que não foi e nem será utilizado em outra dissertação/tese dos Programas de Pós-Graduação da FOB-USP

Bauru, 28 de agosto de 2023.

Thamyris de Souza Carvalho NOME 1

Tamara Teodoro Araújo NOME 2

Talita Mendes Oliveira Ventura

NOME 3

Aline Dionízio NOME 4

João Victor Frazão Câmara NOME 5 Thamipiglanalho

Assinatura

Assinatura

Laite Mendes Deivena Sentina

Assinatura

aline anije

Assinatura

Baño Alton Frazão Câmara

Assinatura

ALDr. Octówło Pinheiro Brisoła, 9-75 – Bauru-SP – CEP 17012-901 – C.P. 73 e-mait posgrad@fobuspbr – Fone/Fax (0xx14) 3235-8223 www.fobuspbr

Samanta Mascarenhas Moraes NOME 6

> Júlia Chaparro Leme NOME 7

Larissa Tercilia Grizzo NOME 8

> Edson Crusca NOME 9

Priscila Yumi Tanaka Shibao NOME 10

> Reinaldo Marchetto NOME 11

Flavio Henrique-Silva NOME 12

Juliano Pelim Pessan NOME 13

Marília Afonso Rabelo Buzalaf NOME 14 Assistência Técnica Acadêmica

Serviço de Pós Graduação

Samanta m.m.

Assinatura

Assinatura

Assinatura

Assinatura

Tukimo

Assinatura

Inaule 115

Assinatura

tion flory of film

Assinatura

glias P. Pene

Assinatura

Assinatura

Fil Dr. Octávio Pinheiro Brisola, 9-75 – Bauru-SP – CEP 17012-901 – C.P. 73 e-mail posgrad@fobuspbr – Fone/Fax (0xx14) 3235-8223 www.fobuspbr

ANNEX D- Proof of final review- article 2

1	
×.	

Caries Research <cre@manuscriptmanager.net> Fri, Dec 1, 9:58 AM (12 days ago) 🔆 🕤 : to mbuzalaf, me, tamarateodoro, talitaventura, alinesdionizio, jvfrazao92, samantamoraes, julialemeodonto, larissagrizzo, ecrusca, reinaldo.marchetto 🗸

Manuscript: CRE-2023-9-2/R1 RESUBMISSION - Hemoglobin protects enamel against intrinsic enamel erosive demineralization Authors: Thamyris Souza Carvalho (Co-author), Tamara Teodoro Araujo (Co-author), Talita Mendes Oliveira Ventura (Co-author), Aline Dionizio (Coauthor), João Victor Frazão Câmara (Co-author), Samanta Mascarenhas Moraes (Co-author), Júlia Chaparro Leme (Co-author), Larissa Tercilia Grizzo (Co-author), Edson Crusca (Co-author), Priscila Yumi Tanaka Shibao (Co-author), Reinaldo Marchetto (Co-author), Flavio Henrique-Silva (Co-author), Juliano Pelim Pessan (Co-author), Marília Afonso Rabelo Buzalaf (Corresponding Author) Date submitted: 2023-10-30

Dear Prof. Dr. Buzalaf,

Thank you for submitting your above-mentioned manuscript to Caries Research.

It has now been evaluated by our experts and they have recommended that minor changes be made to the submission. To assist you in making your alterations, you will find the reviewers' remarks below. Please be aware that your revised manuscript may undergo another round of review before a final decision is made.

When you submit a revised version, please enclose

1. a point-to-point reply to the reviewers' comments that addresses each comment of each reviewer. Please be as specific as possible in your response to the reviewer(s).

- 2. a revised version of the manuscript with changes made in bold, underlined or highlighted (adding page and line numbers)
- 3. a clean revised version (WITHOUT line numbers).

Please note that manuscripts accepted for publication will undergo basic proofreading to check for obvious spelling and grammar mistakes, and substantial text changes will not be possible after acceptance. If you would like more extensive language editing, we recommend you contact a professional language editing service before submitting your revised manuscript. Please consult <u>https://www.karger.com/Resources/Authors</u> ("External Language Editing Services") for further information and possible discount options.

We are looking forward to receiving your revised manuscript no later than Monday 1st of January 2024.

Thank you for your interest in Caries Research.

Sincerely,

Carolina Ganss Editor ' Caries Research' <u>cre@karger.com</u>

Associate Editor comments:

Thanks for submitting a revised version of this paper. It addresses the comments made in the initial review, however there is still a need for English style/grammar review. Below are only some examples/suggestions (from a non-native English speaker), but I advise the authors to seek proper assistance for a thorough review of the paper:

^{1.} The first sentence of the Abstract is extremely long and grammatically incorrect.

4. Line 117-120: these sentences are difficult to read. Perhaps better construction would be: 'The vestibular surfaces of the remaining lower and upper teeth were coated with....'; 'Each quadrant of the mouth was flushed with deionized water for acid removal, gently dried with compressed air and isolated with cotton rolls to avoid lip contamination'.

5. Line: 123-126: There is a lot of redundancy between these two sentences and they can be merged.

6. Line 193: the sentence 'This can be observed...' is unnecessary in the context and can be deleted.

7. Line 195: the sentence 'On the other hand...' is difficult to follow and needs to be revised for clarity.

Others:

1. Line 10: what does '10s' refer to? It can be deleted.

2. Line 76: numbers should have the commas replaced by periods.

3. Line 109: would the number indicate diameter? If so, please add.

4. Line 117: please clarify how this procedure was done. Was a specific surface area for each tooth isolated? If so, how? If not, how even distribution of the acid was achieved?

Reviewer 1 report:

Comments to authors

The manuscript was improved, all my comments were addressed. I have no further comments on it.

Reviewer 2 report:

Reviewer 2 report:

Comments to authors The authors have addressed all issues raised in the review. Thank you.

YOUR SIGN IN INFORMATION Website: <u>https://www.manuscriptmanager.net/cre</u> Email: <u>mbuzalaf@fob.usp.br</u>

Forgot password or not signed in before?

Click the URL below to create/reset your password.

https://www.manuscriptmanager.net/sLib/v4/retrieve_pw.php?paramScreen=kSRkzn2l1qTtpzzQxi7i7nXO6LWdtTvoRJIHz9Ak2vo=

[Message clipped] View entire message

^{2.} The second sentence of the Abstract could start with the subject (Ten volunteers) for clarity.

^{3.} Line 111-113: these sentences are repetitive and could be merged.

ANNEX E- Honorable mention award

International Association for Dental Research and the Cariology Research Group AWARD CERTIFICATE Presented to Thampris Souza Carvalho "Acquired pellicle engineering by treatment with proteins/peptide protects against erosion" Recipient of Science Award March 18-21, 2020

ANNEX F- Cariology Research Group Award

ANNEX G- IADR Colgate Research in Prevention Travel Award