Doctoral Thesis
DOI
https://doi.org/10.11606/T.25.2005.tde-11082005-143535
Document
Author
Full name
Stefania Carvalho Kano
Institute/School/College
Knowledge Area
Date of Defense
Published
Bauru, 2004
Supervisor
Committee
Bonfante, Gerson (President)
Bottino, Marco Antonio
Pinto, Joao Henrique Nogueira
Rubo, Jose Henrique
Sendyk, Claudio Luiz
Title in Portuguese
Avaliação do desajuste e do destorque em pilares protéticos com conexão tipo hexágono externo e interno
Keywords in Portuguese
pilares
prótese
Abstract in Portuguese
Objetivou-se com este trabalho foi avaliar o desajuste marginal e o efeito da aplicação de carga cíclica no destorque dos parafusos de retenção de pilares protéticos usinados, sobrefundidos e fundidos com conexão tipo hexágono externo (HE) e interno (HI). Foram avaliados 12 pilares protéticos para cada grupo com HE:(A1) usinados em titânio; (A2) com cinta metálica em paládio-prata, sobrefundidos com paládio-prata; (A3) plásticos fundidos em NiCr e (A4) plásticos fundidos em CoCr; e 12 pilares protéticos para cada grupo com HI: (B1) usinados em titânio e (B2) com cinta metálica em paládio-prata, sobrefundidos com paládio-prata. Foram realizadas análises de desajuste marginal (profundidade de fenda, desajuste vertical e horizontal) e de desajuste rotacional na interface implante/pilar protético. Os valores de destorque foram registrados antes e depois da aplicação de cargas cíclicas. As médias de cada grupo, para cada análise, foram calculadas e comparadas com ANOVA, Student-Newman Keuls (p<0,05). Os resultados obtidos foram: profundidade de fenda (µm): (A1) 54,1±127,75, (A2) 49,4±36,56, (A3) 21,2±21,36, (A4) 33,1±23,81, (B1) 8,4±13,74 e (B2) 34,9±20,49; desajuste horizontal (µm): (A1) 89,1 ± 14,15, (A2) 39,2 ± 16,87, (A3) 13,5 ± 9,48, (A4) 23,0 ± 21,42, (B1) 10,9 ± 5,68 e (B2) 18,2 ± 10,31; desajuste vertical (µm): (A1) 5,6 ± 6,46, (A2) 11,1 ± 8,22, (A3) 8,0 ± 9,35, (A4) 6,9 ± 3,78, (B1) 2,1 ± 3,21 e (B2) 12,1 ± 4,75; desajuste rotacional (em graus): (A1) 1,2 ± 0,57, (A2) 1,8 ± 1,31, (A3) 2,0 ± 0,73, (A4) 2,8 ± 1,14, (B1) 2,8 ± 1,08 e (B2) 2,0 ± 1,03; destorque inicial (%): (A1) 92,3 ±3,0, (A2) 81,6 ± 5,0, (A3) 86,4 ± 4,6, (A4) 84,0 ± 7,7, (B1) 88,8 ± 6,8 e (B2) 84,9 ± 2,4 e destorque final (%): (A1) 41,1 ± 19,3, (A2) 19,8 ± 13,0, (A3) 27,9 ± 6,5, (A4) 37,5 ± 16,2, (B1) 17,1 ± 16,2 e (B2) 23,3 ± 10,9. Para as análises de desajuste marginal, os resultados demonstraram que as diferenças entre pilares usinados, sobrefundidos e fundidos foram variáveis. Todos os grupos apresentaram desajuste rotacional inferior a 5º, indicando adequada estabilidade das conexões estudadas. Para a conexão tipo hexágono externo avaliada neste estudo, os pilares usinados apresentaram maior destorque inicial, entretanto, o destorque final foi igual para os pilares usinados e fundidos. O destorque final dos pilares usinados com hexágono externo avaliados neste estudo foi maior que dos pilares usinados com hexágono interno.
Abstract in English
Marginal misfit and the effect of cyclic loading on screw joint stability were analyzed for machined, cast-on and cast abutments with external and internal connection. Twelve samples from each abutment type for external hexagonal implants were included: (A1) machined titanium; (A2) metal premachined with plastic sleeve cast-on with palladium alloy; (A3) plastic abutment cast with NiCr alloy, and (A4) plastic abutment cast with CoCr alloy. And 24 samples for internal hexagonal implants: (B1) machined titanium, and (B2) metal premachined with plastic sleeve cast-on with palladium. Horizontal depth gap, vertical and horizontal gap and rotational misfit were analyzed at the implant/abutment interface. Detorque values were obtained for each group before and after cyclic loading. Mean values for each group for each analysis were evaluated for difference using ANOVA and Student-Newman Keuls. Results were: horizontal depth gap (A1) 54.1±127.75, (A2) 49.4±36.56, (A3) 21.2±21.36, (A4) 33.1±23.81, (B1) 8.4±13.74 and (B2) 34.9±20.49; horizontal gap: (A1) 89.1 ± 14.15, (A2) 39.2 ± 16.87, (A3) 13.5 ± 9.48, (A4) 23.0 ± 21.42, (B1) 10.9 ± 5.68 and (B2) 18.2 ± 10.31; vertical gap: (A1) 5.6 ± 6.46, (A2) 11.1 ± 8.22, (A3) 8.0 ± 9.35, (A4) 6.9 ± 3.78, (B1) 2.1 ± 3.21 and (B2) 12.1 ± 4.75; rotational misfit: (A1) 1.2 ± 0.57, (A2) 1.8 ± 1.31, (A3) 2.0 ± 0.73, (A4) 2.8 ± 1.14, (B1) 2.8 ± 1.08 and (B2) 2.0 ± 1.03; initial detorque: (A1) 92.3 ±3.0, (A2) 81.6 ± 5.0, (A3) 86.4 ± 4.6, (A4) 84.0 ± 7.7, (B1) 88.8 ± 6.8 and (B2) 84.9 ± 2.4 and final detorque: (A1) 41.1 ± 19.3, (A2) 19.8 ± 13.0, (A3) 27.9 ± 6.5, (A4) 37.5 ± 16.2, (B1) 17.1 ± 16.2 and (B2) 23.3 ± 10.9. Marginal gap analysis showed no major differences among all groups. All groups presented less than 5 degrees of rotational misfit, indicating good screw joint stability. External hexagonal machined abutments presented higher initial detorque than all groups, however, no differences were found for final detorque values when compared to cast-on and cast abutments. External hexagonal cast abutments presented higher final detorque when compared to cast-on abutments. External hexagonal machined abutments also presented higher final detorque values when compared to internal hexagonal machined abutments.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2005-08-16