CÍNTIA HANNA SANTOS BONDIOLI

Tendência temporal de contaminantes orgânicos na Baía do Almirantado -

1ª Área Antártica Especialmente Gerenciada

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Ciências, Programa de Oceanografia, área de Oceanografia Química.

Orientador: Profa. Dra. Rosalinda Carmela Montone

CÍNTIA HANNA SANTOS BONDIOLI

Tendência temporal de contaminantes orgânicos na Baía do Almirantado -

1ª Área Antártica Especialmente Gerenciada

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Ciências, Programa de Oceanografia, área de Oceanografia Química.

Orientador: Profa. Dra. Rosalinda Carmela Montone

Cintia Hanna Santos Bondioli, **Tendência temporal de contaminantes orgânicos na Baía do Almirantado -** 1^a Área Antártica Especialmente Gerenciada. Dissertação (Mestrado) apresentada ao Instituto Oceanográfico da Universidade de São Paulo para obtenção do título de Mestre em Ciências, Programa de Oceanografia, área de Oceanografia Química

Aprovado em: 18/10/2023.

Versão Corrigida

Banca Examinadora

Profa. Dra. Rosalinda Carmela Montone Instituição: Instituto Oceanográfico USP (IO – USP) Julgamento: Aprovado

Assinatura _____

Profa. Dra. Ana Cecilia Rizzatti de Albergaria Barbosa Instituição: Universidade Federal da Bahia (UFBA) Julgamento: Aprovado

Assinatura

Prof. Dr. Marcio Rocha Francelino Instituição: Universidade Federal de Viçosa (UFV) Julgamento: Aprovado

Assinatura _____

Dedico este trabalho ao meu filho João Vinícius Bondioli de Lima, pelo seu olhar esperançoso nas horas em que mais precisei.

AGRADECIMENTOS

À Prof^a Dra. Rosalinda C. Montone, que nos anos de convivência, muito me ensinou, contribuindo para meu crescimento científico e intelectual, sendo uma constante fonte de motivação e por quem tenho uma enorme admiração.

À Profa. Dra. Juliana G.Freitas, pelo apoio na elaboração do modelo conceitual.

À Dra. Satie Taniguchi pelas valiosas contribuições na discussão dos resultados.

Ao Lourival Pereira de Souza pelo laborioso trabalho no processamento das amostras.

Ao meu colega Antonio Derley de Sousa Pereira pela revisão do texto e infinita paciência na elaboração das tabelas e formatação do arquivo final.

Aos meus colegas da CETESB, que me influenciaram nessa trajetória, e com quem compartilho minhas alegrias e dúvidas técnicas sobre o tema diariamente.

À Secretaria da Biodiversidade do Ministério do Meio Ambiente pelo apoio financeiro para a realização do Monitoramento Ambiental da área de influência direta da Estação Antártica Comandante Ferraz (EACF) - convênio SB-MMA/IO-USP 779081/12012.

Por fim, agradeço a todo momento, pela família abençoada que tenho: pais, irmãs, filho e meu marido; que ao longo deste trabalho, enfrentaram comigo todos os desafios que a vida nos proporcionou.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

"Se estivermos vigilantes, não passará um só dia sem que aconteça um milagre em nossas vidas."

Rudolf Steiner

RESUMO

Bondioli, Cintia Hanna Santos. **Tendência temporal de contaminantes orgânicos na Baía do Almirantado -** 1ª Área Antártica Especialmente Gerenciada. 2023. 149 f. Dissertação (Mestrado) – Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 2023.

A presença do homem afeta o ambiente antártico, seja para o desenvolvimento de pesquisas ou apoio logístico, bem como o aumento do turismo nas últimas décadas. Para firmar o interesse das nações na Antártica há necessidade de diversas facilidades logísticas que também podem causar um impacto ambiental. Dessa maneira, o monitoramento ambiental é um compromisso firmado pelos países, na assinatura do Protocolo ao Tratado da Antártica sobre Proteção do Meio Ambiente. O Brasil monitora a primeira área antártica especialmente gerenciada, a Baía do Almirantado, Ilha Rei George, onde está localizada a Estação Antártica Comandante Ferraz (EACF) construída em 1984. Após o incêndio da EACF, ocorrido em fevereiro de 2012, iniciou-se um monitoramento de longo prazo dos aportes de poluentes na Baía do Almirantado, através de indicadores químicos e biológicos em diversas matrizes ambientais. Para este trabalho foram avaliados os resultados de bifenilos policlorados (PCBs) e hidrocarbonetos policíclicos aromáticos (HPAs) em matrizes abióticas com ênfase nas áreas de influência direta das atividades desenvolvidas na Estação Antártica Comandante Ferraz (EACF). As amostras de solos (170) e de sedimentos (44) foram extraídas com uma mistura de solventes orgânicos e analisadas em um cromatógrafo a gás acoplado a um espectrômetro de massas com triplo quadrupolo (GC/MS/MS). PCBs em solo e sedimento variaram de <0,0025 a 58,5 e <0,0025 a 23,0 ng g⁻¹ peso seco, respectivamente. A faixa de concentração de HPAs em solo variou de < 0,1 a 79.158 ng g⁻¹ peso seco e para os sedimentos de 2 a 904 ng g⁻¹ peso seco. As maiores concentrações tanto de PCBs quanto de HPAs foram observadas próximas da EACF na zona entremarés e são comparáveis às outras regiões antárticas nas imediações de estações de pesquisas. O monitoramento dos contaminantes orgânicos em solos mostra uma tendência temporal estacionária para os PCBs e uma redução significativa em comparação ao longo dos últimos anos para os HPAs. Por outro lado, nos sedimentos observa-se uma tendência de aumento de PCBs e HPAs nos últimos 30 anos, o qual pode refletir a ocupação gradual crescente na região. Os congêneres de PCBs predominantes em solo foram hexa-PCBs > penta-PCBs >hepta-PCBs, enquanto que os sedimentos apresentaram um perfil ligeiramente diferente sendo dominado por penta-PCBs > tetra-PCBs > hexa-PCBs. O naftaleno e seus derivados alquilados foram os compostos predominantes dos HPAs em solo e sedimento principalmente na área da EACF. A principal fonte de PCBs para regiões polares é a deposição atmosférica, entretanto, observam-se indícios de fontes pontuais provavelmente associadas com locais contaminados por óleo e próximas de estações de pesquisa. A origem dos HPAs foi associada com fontes mistas, tanto petrogênicas (vazamentos de combustível e derramamentos de óleo) quanto pirogênicas (combustão incompleta de combustíveis derivados de petróleo e petróleo bruto, emissões de diesel e acumulação e degradação do óleo). O modelo conceitual preliminar da contaminação por HPAs na EACF mostra que atualmente o centro de massa da contaminação é a área dos antigos geradores.

Palavras-chave: Bifenilos policlorados (PCBs), Hidrocarbonetos policíclicos aromáticos (HPAs), solo, sedimento marinho, monitoramento ambiental, modelo conceitual

ABSTRACT

Bondioli, Cintia Hanna Santos. **Time trend of organic contaminants in Admiralty Bay -** 1st Specially Managed Antarctic Area. 2023. 149 f. Dissertation (Masters) – Oceanographic Institute, University of São Paulo, São Paulo, 2023.

The presence of human affects the Antarctic environment, whether for the development of research or logistical support, as well as the large increase in tourism in recent decades. To establish the interest of nations in Antarctica there is a need for several logistical facilities that can also cause an environmental impact. In this way, environmental monitoring is a commitment signed by countries when signing the Protocol to the Antarctic Treaty on Environmental Protection. Brazil monitors the first Antarctic area specially managed, the Admiralty Bay, King George Island, where the Comandante Ferraz Antarctic Station (EACF), built in 1984, is located. After the EACF fire, which occurred in February 2012, a long-term monitoring of inputs of pollutants into Admiralty Bay, through chemical and biological indicators in various environmental matrices. For this work, the results of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in abiotic matrices were evaluated with emphasis on the areas of direct influence of the activities developed at the Comandante Ferraz Antarctic Station (EACF). Soil (170) and sediment (44) samples were extracted with a mixture of organic solvents and analyzed in a gas chromatograph coupled to a triple quadrupole mass spectrometer (GC/MS/MS). PCBs in soil and sediment ranged from <0.0025 to 58.5 and <0.0025 to 23.0 ng g-1 dry weight, respectively. The PAHs concentration in soil ranged from < 0.1 to 79,158 ng g-1 dry weight and for sediments from 2 to 904 ng g-1 dry weight. The highest concentrations of both PCBs and PAHs were observed near the EACF in the intertidal zone and are comparable to other Antarctic regions in the vicinity of research stations. Monitoring of organic contaminants in soils shows a constant temporal trend for PCBs and a significant reduction in comparison over recent years for PAHs. On the other hand, in the sediments there has been an increasing trend of PCBs and PAHs in the last 30 years, which may reflect the gradually increasing occupation in the region. The predominant PCBs congeners in soil were hexa-PCBs>penta-PCBs>hepta-PCBs, while the sediments showed a slightly different profile being dominated by penta-PCBs>tetra-PCBs>hexa-PCBs. Naphthalene and its alkylated derivatives were the predominant PAHs compounds in soil and sediment mainly in the EACF area. The main source of PCBs for polar regions is atmospheric deposition, however, there are indications of point sources probably associated with sites contaminated by oil and close to research stations. The origin of PAHs has been associated

with mixed sources, both petrogenic (fuel leaks and oil spills) and pyrogenic (incomplete combustion of petroleum-derived fuels and crude oil, diesel emissions, and oil accumulation and degradation). The preliminary conceptual model of PAH contamination at EACF shows that currently the center of mass of contamination is the area of old generators.

Keywords: Polychlorinated biphenyls (PCBs), Polycyclic aromatic hydrocarbons (PAHs), soil, marine sediment, environmental monitoring, conceptual model

LISTA DE ILUSTRAÇÕES

Figura 1 - Estruturas moleculares de 16 HPAs geralmente investigados em estudos ambientais	18
Figura 2 - Hidrocarbonetos de petróleo na Antártica.	20
Figura 3 - Estrutura molecular dos bifenilos policlorados (PCBs) onde x+y≤10.	21
Figura 4 - Estrutura molecular de 7 congêneres de PCBs recomendados pelo Conselho Internacio	onal
para a Exploração do Mar (ICES).	23
Figura 5 - Processo de destilação global dos POPs.	23
Figura 6 - Localização da Baía do Almirantado - área antártica especialmente gerenciada.	31
Figura 7 - Área de estudo destacando os pontos de amostragem.	34
Figura 8 - Pontos de amostragem de solo na área da antiga EACF.	35
Figura 9 - Pontos de amostragem de solo na área da nova EACF.	36
Figura 10 - Coleta de solo no entorno da EACF e três áreas controle.	36
Figura 11 - Coleta de sedimento nas proximidades da EACF em pontos potenciais de poluição.	37
Figura 12 - UDs e Cavas investigadas pela CETESB.	46
Figura 13 - Valores médios de PCBs em solo da EACF e seus arredores e áreas controle.	48
Figura 14 - Variação temporal de PCBs em solo da Baía do Almirantado (ng g-1)	49
Figura 15 - Concentrações de PCBs totais em solo da Base G (ng g ⁻¹).	49
Figura 16 - Contribuição relativa (%) de congêneres de PCBs em solo (valores médios/ano).	52
Figura 17 - Variação anual dos congêneres de PCBs em solo.	53
Figura 18 - Variação anual da razão R em solos da Baía do Almirantado.	54
Figura 19 - Total PCB _{ICES} em solos da Baía do Almirantado (ng g-1).	55
Figura 20 - SPCBs em sedimentos nas proximidades da EACF e áreas controle no período de 201	l2 a
2020 (ng g ⁻¹).	58
Figura 21 - Variação temporal de PCBs ICES em sedimentos da Baía do Almirantado.	59
Figura 22 - Contribuição relativa (%) de congêneres de PCBs em sedimentos (valores médios/ano).	60
Figura 23 - Variação anual dos congêneres de PCBs em sedimentos.	61
Figura 24 - Variação nos valores de R em sedimentos da Baía do Almirantado.	62
Figura 25 - Evolução temporal de R em sedimentos da Baía do Almirantado.	63
Figura 26 - Valores de PCBs totais e PCBs-ICEs em sedimentos da Baía do Almirantado.	63
Figura 27 - HPAs totais em solo da EACF e arredores no período de 2012 a 2020 (ng g ⁻¹).	66
Figura 28 - Valores médios de HPAs nos arredores da EACF e na área controle durante o período) de
2012 a 2020	66
Figura 29 - Σ_{16} HPAs em solo da EACF e arredores no período de 2012 a 2020 (ng g ⁻¹).	69
Figura 30 - Valores médios de Σ_{16} HPAs em solo no período de 2012 a 2020 (ng g ⁻¹).	69
Figura 31 - Variação temporal de HPAs em solos da área e arredores da EACF e áreas controle (ng g	g ⁻¹).

70

Figura 32 - Relação entre as propriedades dos compostos (pressão de vapor e solubilidade) e a reduçã	D
de concentração observada. 7	1
Figura 33 - Relação entre a remoção dos compostos HPAs no período de 2012 a 2020 e o log Kow. 72	2
Figura 34 - Log das concentrações de HPAs obtidas no Diesel Fuel Arctic - DFA (ng g-1 peso seco). 72	2
Figura 35 - Cromatograma de hidrocarbonetos policíclicos aromáticos (HPAs) em Diesel Fuel Arctic. 72	3
Figura 36 - Biplot HPAS (fenantreno/antraceno) e (fluoranteno/pireno).76	5
Figura 37 - Biplot HPAs leves/pesados e fluoranteno/fluoranteno + pireno.7474	3
Figura 38 - Biplot HPAS: antraceno/(antraceno+fenantreno) e (benzo[a]antraceno/ benzo[a]antraceno -	ł
pireno). 80)
Figura 39 - HPAs totais em sedimento nas regiões entremarés e proximidades da EACF no período d	e
2012 a 2020 85	3
Figura 40 - HPAs em sedimentos no período de 1990 a 2020 (ng g-1).80	5
Figura 41 - Biplot de razões de HPAS em sedimentos da Baía do Almirantado.8'	7
Figura 42 - Biplot de razão antraceno/(fenantreno/antraceno) vs benzo[a]antraceno/(benzo[a]antraceno/	D
+ criseno) em sedimentos da Baía do Almirantado. 8	3
Figura 43 - Plumas de contaminação de hidrocarbonetos indicadas pela CETESB.	9

LISTA DE TABELAS

Tabela 1 - Bases e Estações de Pesquisa na Ilha Rei George - Antártica.	15
Tabela 2 - Número de cloração dos congêneres de PCBs.	21
Tabela 3 - Amostras coletadas nas Operações Antárticas XXX (2011/12) a XXXVIII (2019/20).	32
Tabela 4 - Localização geográfica dos pontos de coleta de solo na EACF, arredores e pontos con	trole
na Baia do Almirantado.	35
Tabela 5 - Coordenadas das estações de coleta de sedimento na Baía do Almirantado.	38
Tabela 6 - Transições e energias de colisão (eV) utilizadas para a identificação dos bifenilos policior	ados
(PCBs) no GC/MS/MS.	39
Tabela 7 - Transições e energias de colisão (eV) utilizadas para a identificação dos hidrocarbor	ietos
policíclicos aromáticos (HPAs) no GC/MS/MS.	40
Tabela 8 - Frequência de ocorrência de contaminantes orgânicos em solo e sedimento da Baía	a do
Almirantado (%).	47
Tabela 9 - PCBs em solos da Baía do Almirantado (ng g-1).	48
Tabela 10 - POPs em solos de regiões antárticas (ng g ⁻¹ peso seco).	50
Tabela 11 - PCBs em sedimentos da Baía do Almirantado (ng g ⁻¹).	56
Tabela 12 - POPs em sedimentos de regiões antárticas (ng g-1 peso seco).	57
Tabela 13 - HPAs totais em solo da Baía do Almirantado (ng g ⁻¹).	65
Tabela 14 - HPAs em solos de regiões antárticas (ng g ⁻¹ peso seco).	67
Tabela 15 - Razões isoméricas para avaliação de possíveis fontes de HPAs.	75
Tabela 16 - Valores orientadores para solo proposta na Resolução Conama 420 (µg g ⁻¹ peso seco).	82
Tabela 17 - HPAs em sedimentos da Baía do Almirantado (ng g ⁻¹).	83
Tabela 18 - HPAs em sedimentos de regiões antárticas (ng g ⁻¹ peso seco).	84
Tabela 19 - Modelo conceitual descritivo para HPAs e incertezas restantes das investigações.	90

SUMÁRIO

1 INTRODUÇÃO	15
1.1 Contaminantes orgânicos no ambiente antártico	16
1.2 Monitoramento ambiental na Antártica	26
1.3 GERENCIAMENTO DE ÁREAS CONTAMINADAS	26
2 OBJETIVOS	29
2.1 Objetivos específicos	29
3 MATERIAL E MÉTODOS	30
3.1 Área de estudo	30
3.2. Amostragem	32
3.3 Determinação de hidrocarbonetos policíclicos aromáticos (HPAs) e	
BIFENILOS POLICLORADOS (PCBS) EM SOLO E SEDIMENTO	38
3.3.1. O timização dos métodos e controle de qualidade	41
3.4 MODELO CONCEITUAL	46
4 RESULTADOS E DISCUSSÃO	47
4.1 Distribuição de PCBs em solos e sedimentos da Baía do Almirantado	47
4.2 Distribuição de HPAs em solos e sedimentos da Baía do Almirantado	64
4.3 Identificação da Área Contaminada por HPAs	89
5 CONCLUSÃO	91
6 REFERÊNCIAS	92
APÊNDICE A – Propriedades físico-químicas dos compostos dos HPAs	
ANALISADOS	104
APÊNDICE B – PCBs em solos da Baía do Almirantado (ng g-1 peso seco)	105
APÊNDICE C - PCBs em sedimentos da Baia do Almirantado (ng g-1 peso seco) 120
APÊNDICE D - HIDROCARBONETOS POLICÍCLICOS AROMÁTICOS EM SOLOS BAIA DO	
Almirantado (ng g-1 peso seco)	128
APÊNDICE E - HIDROCARBONETOS POLICÍCLICOS AROMÁTICOS EM SEDIMENTOS BAL	A DO
Almirantado (ng g-1 peso seco)	148

1 INTRODUÇÃO

A Antártica é o único continente que, junto com seus mares circundantes, é regido por um tratado internacional. Apesar da governança internacional e da ocupação humana relativamente baixa, a Antártica é impactada por atividades humanas (BARGAGLI, 2005; SILVA et al. 2023). O ecossistema antártico é particularmente sensível às modificações antrópicas, pois estas se concentram em áreas livres de gelo, que representam menos de 2% do continente (SANTOS et al., 2005). Houve um aumento das atividades humanas no continente desde o Ano Geofísico Internacional (1957) e a ratificação do Tratado da Antártica (1961). O Conselho de Gestores de Programas Antárticos Nacionais (COMNAP) lista atualmente 112 instalações de pesquisa nacionais (43 abertas durante todo o ano e 69 apenas sazonalmente, normalmente abertas a cada verão ou na maioria dos verões) operadas por 31 países (COMNAP, 2019). A capacidade total das acomodações estabelecidas para os programas nacionais de pesquisa antártica é estimada em 4.500 pessoas, sendo grande parte ocupada durante o período de verão e centrada principalmente na Península Antártica. No inverno, normalmente há aproximadamente 1.000 pessoas na Antártica mantendo as instalações da estação e realizando as atividades científicas que ocorrem durante esse período do ano (SILVA et al., 2003).

A Ilha Rei George é a maior das Ilhas Shetland do Sul (coordenadas 62°23'S 58°27' O) e localiza-se a 120 km da Península Antártica e 849 km do sul do Cabo Horn, no Sul da América do Sul. Essa ilha abriga a maior quantidade de estações antárticas (Tabela 1), bem como o aeroporto *Teniente Rodolfo Marsh Martin* e um povoado chamado *Villa Las Estrellas*, habitado pelos chilenos.

Ba	ses e Estações de Pesquisa	Latitude	Longitude	País	Estabelecida
1	Carlini Base (Ex-Jubany)	62°14′16.7″S	58°40′0.2″W	Argentina	1953
2	Bellingshausen	62°11′47″S	58°57′39″W	Rússia	1968
3	Base Presidente Eduardo Frei Montalva e Villa Las Estrellas	62°11.7′S	58°58.7′W	Chile	1969
4	Henryk Arctowski	62°09′0.14″S	058°28′2.1″W	Polônia	1977
5	Comandante Ferraz	62°05′00″S	58°23′28.2″W	Brasil	1984
6	Artigas	62°11′3.4″S	58°54′11.9″W	Uruguai	1984
7	King Sejong	62°13′23.2″S	58°47′13.4″W	Coréia do Sul	1988
8	Machu Picchu	62°05′29.9″S	58°28′15.4″W	Peru	1989
9	Base Professor Julio Escudero Base	62°12′4.2″S	58°57′45.3″W	Chile	1994

Tabela 1 - Bases e Estações de Pesquisa na Ilha Rei George - Antártica.

1.1 Contaminantes orgânicos no ambiente antártico

O ambiente antártico tem sido afetado pelo desenvolvimento de pesquisas e aumento do turismo nas últimas décadas, introduzindo óleo combustível como resultado de atividades locais. Os hidrocarbonetos são os principais constituintes de petróleos e derivados (NRC, 2003) e produtos refinados como o "*Diesel Fuel Arctic*" (DFA) combustível mais usado nas regiões polares, é composto principalmente por alcanos leves e hidrocarbonetos aromáticos como naftaleno e seus alquil substituídos (KENNICUTT et al., 1992).

Os Hidrocarbonetos Policíclicos Aromáticos (HPAs) são os que contêm um ou mais núcleos benzênicos condensados, os quais são muitos estáveis e, portanto, podem ser persistentes no ambiente. Além disso, alguns HPAs apresentam propriedades cancerígenas despertando interesse no estudo de suas fontes, distribuição, mecanismos de transporte, impacto ambiental e destino (KASIOTIS; EMMANOUIL, 2015; NEFF, 2002). No apêndice A são apresentadas as propriedades físico-químicas dos compostos de HPAs.

A figura 1 mostra 16 HPAs classificados pela Agência de Proteção Ambiental dos Estados Unidos (EPA) como poluentes prioritários, principalmente com base em sua toxicidade e frequência de exposição a seres humanos (ATSDR, 1995).

HPAs são constituintes importantes de combustíveis fósseis como petróleo e derivados, sendo associados a produtos de combustão incompleta. Essas fontes fornecem misturas com diferentes quantidades relativas de HPAs. O mecanismo geral da formação desses compostos é dependente da temperatura. Quando são formados a baixas temperaturas, as misturas apresentam quantidades abundantes de compostos menos estáveis do que as misturas provenientes de processos que são dependentes de temperaturas mais elevadas. O petróleo, por exemplo, foi formado em baixas temperaturas e apresenta quantidades abundantes de homólogos alquilados, enquanto os HPAs formados em temperaturas elevadas, como ocorre durante a pirólise, são praticamente destituídos dos compostos substituídos.

A estabilidade relativa dos HPAs pode ser estimada em função da diferença entre os calores de formação dos compostos de mesma massa molecular, obtidos através de complexos modelos cinéticos e matemáticos. Processos de combustão são geralmente associados a um aumento na proporção entre o isômero mais estável e o menos estável em virtude da energia envolvida. As introduções de origem petrogênica não estão sujeitas às condições energéticas dos processos de combustão, resultando em baixos valores relativos nesta proporção (YUNKER et al., 2002). Algumas razões obtidas a partir desses princípios são usadas para

indicar a fonte dos HPAs, entretanto, quando há mistura de fontes ou processos de degradação, o uso dessas relações pode não ser conclusivo.

Hidrocarbonetos podem ser introduzidos no ambiente antártico de forma recorrente ou acidental durante atividades de apoio científico, operações de navios, incineração e turismo (CRIPPS, 1992; KENNICUTT, II et al., 1995; UNEP, 2002; BÍCEGO et al., 2009; KLEIN et al., 2012). Segundo o COMNAP (2016), existem cerca de 4.462 pessoas trabalhando em estações de pesquisa no verão na Antártica. Durante o inverno, 38 estações ainda funcionam e oferecem espaço para cerca de 1.000 pessoas. Na temporada de verão 2019/20, o turismo trouxe para a região antártica 73.991 pessoas (incluindo passageiros, tripulantes e funcionários), praticamente o dobro de pessoas no verão de 2014/15 (IAATO, 2020). Todos os tipos de transporte e energia nessas atividades precisam de derivados de petróleo, o que torna a região suscetível à contaminação localizada de petróleo (UNEP, 2002). Acidentes com derramamento de óleo ocorreram na área, como o naufrágio do navio Bahia Paraíso em 1989 (CRIPPS, 1992), o derramamento de combustível na Estação de Pesquisa Faraday em 1992 (CRIPPS; SHEARS, 1997), o incêndio na Estação Antártica Brasileira em 2012 (COLABUONO et al., 2015) e outros (RUOPPOLO et al., 2013). A contaminação química de locais abandonados e derramamentos de combustível anteriores são outra fonte de contaminação na Antártica (TIN et al., 2009).

Estudos sobre hidrocarbonetos no ambiente marinho foram realizados na região antártica e mostraram a influência de atividades antrópicas, particularmente nas proximidades de estações de pesquisa (KENNICUTT et al., 1991, 1992; CRIPPS, 1992; KENNICUTT, II et al., 1995; KIM; KENNICUTT; QIAN, 2006; CINCINELLI et al., 2008; BÍCEGO et al., 2009; PRUS; FABIAŃSKA; ŁABNO, 2015).

Nas proximidades da estação americana McMurdo, que é a maior instalação de pesquisa da Antártica, foram detectadas concentrações de hidrocarbonetos em sedimentos comparáveis aos portos mais poluídos em regiões temperadas (LENIHAN, 1992). O estudo também encontrou mudanças drásticas na biota devido à contaminação.

Hidrocarbonetos aromáticos policíclicos (HPAs) e hidrocarbonetos alifáticos foram detectados na água do mar, sedimentos e biota na Baía do Almirantado (BÍCEGO; WEBER; ITO, 1996; BÍCEGO; ZANARDI-LAMARDO; WEBER, 2003; MARTINS et al., 2004, 2010; BÍCEGO et al., 2009; COLABUONO et al., 2015; MONTONE et al., 2016) como resultado do consumo de combustíveis fósseis, combustão de matéria orgânica e derivados de petróleo principalmente das estações de pesquisa da área.

nomenclatura	Estrutura molecular	nomenclatura	Estrutura molecular
Naftaleno		Benzo[a]antraceno	
Acenaftileno		criseno	
Acenafteno		Benzo[b]fluoranteno	
Fluoreno		Benzo[k]fluoranteno	
Fenantreno		Benzo[a]pireno	
Antraceno		Indeno[1,2,3-cd]pireno	
Fluoranteno		Dibenzo[a,h]antraceno	
Pireno		Benzo[g,h,i]perileno	

|--|

Cripps (1992) relatou baixos níveis de contaminação na água do mar por hidrocarbonetos e sedimentos em uma estação de pesquisa britânica na estação de Signy, Ilhas Orkney do Sul. Na Península de Clark, um monitoramento da extensão da contaminação mostrou que os hidrocarbonetos no sedimento e na água estavam abaixo dos limites de quantificação na maioria das amostras (FRYIRS et al., 2015).

Estudos desenvolvidos em sedimentos de Potter Cove, localizado na Baía Maxwell, Ilha Rei George, nas proximidades da estação de pesquisa argentina Carlini, apresentaram níveis de hidrocarbonetos menores ou dentro da faixa daqueles encontrados perto de outras estações de pesquisa (DAUNER et al., 2015).

Raymond et al. (2017) mapearam as concentrações de hidrocarbonetos de origem antropogênica em diversas matrizes (ar, água, solo, sedimento) para várias regiões na Antártica (Figura 2). Embora a comparação direta das concentrações entre os estudos deva ser feita com cautela, devido aos diferentes métodos analíticos usados, os autores observaram que a poluição por óleo atinge toda a Antártica, sendo que as regiões sem gelo apresentam as concentrações mais altas em relação à deposição atmosférica. Os autores também discutem os impactos potenciais da poluição por óleo no ambiente antártico, incluindo o impacto potencial sobre o krill, que é uma importante fonte de alimento para muitas espécies da região.

O aumento das atividades de pesquisa e turismo tem exposto a região antártica aos hidrocarbonetos, sendo necessária atenção contínua aos níveis de hidrocarbonetos antrópicos quanto à potencial influência sobre a biota local.

Além dos hidrocarbonetos de petróleo, outros contaminantes orgânicos podem estar presentes no ambiente antártico, como é o caso dos bifenilos policlorados (PCBs) como resultado de contaminação por transporte de longa distância, bem como contaminação local por atividade humana nas estações de pesquisa.

Os PCBs pertencem a uma ampla família de produtos químicos orgânicos produzidos pelo homem, conhecidos como organoclorados, resultante da reação do grupo bifenil com cloro anidro na presença de catalisador. A estrutura genérica dos PCBs é mostrada na Figura 3 e consiste em uma molécula de bifenila contendo de um a dez átomos de cloro. Foram sintetizados na Alemanha por Schmidt & Schulz no final do século 19, porém sua produção em escala industrial foi iniciada a partir de 1922 e suas formulações técnicas variavam de

20-80% de cloro, sendo vendidos com vários nomes comerciais tais como: Aroclor (EUA), Chlophen (RFA), Kanechlor (Japão) (PENTEADO; VAZ, 2001; TANABE, 1988). Eles variam em consistência de líquidos finos e de cor clara a sólidos cerosos amarelos ou pretos. Devido à sua não inflamabilidade, estabilidade química, alto ponto de ebulição e propriedades de isolamento elétrico, os PCBs foram usados em centenas de aplicações industriais e comerciais, incluindo equipamentos elétricos, de transferência de calor e hidráulicos; como plastificantes em tintas, plásticos e produtos de borracha; em pigmentos, corantes e papel de cópia sem carbono; e muitas outras aplicações industriais (VON STACKELBERG, 2011).

Figura 3 - Estrutura molecular dos bifenilos policlorados (PCBs) onde x+y≤10.

Fonte: Penteado e Vaz (2001)

Devido aos isômeros estruturais possíveis em cada nível de cloração (homólogo), existem teoricamente 209 PCBs diferentes (chamados de congêneres), os quais foram sistematicamente numerados por Ballschmiter e Zell (1980). A Tabela 2 apresenta o grau de cloração na molécula de PCB em função do número de átomos de cloro. Os congêneres de PCB podem ser divididos em PCBs coplanares, mono-orto-substituídos e outros PCBs não semelhantes a dioxinas. O significado desta designação é que os PCBs coplanares e alguns dos mono-orto-substituídos têm efeitos toxicológicos semelhantes aos das dioxinas (ATSDR, 2014).

Tabela 2 - Número de cloração dos congêneres de PCBs.

bifenil	Nº de isômeros	Massa molecular	% cloro
monocloro	3	188,7	18,8
dicloro	12	223,1	21.8
tricloro	24	257,5	41,3
tetracloro	42	292.0	48,6
pentacloro	46	326,4	54,3
hexacloro	42	360,9	58,9
heptacloro	24	395,3	62,8
octacloro	12	429,8	66,0
nonacloro	3	464,2	68,7
decacloro	1	498,7	71,2
total	209		

Fonte: Penteado e Vaz (2001)

As misturas técnicas de PCBs, como Aroclor e Clophen, consistem em muitos compostos individuais e diferem em seu grau de cloração e no padrão de distribuição de átomos de cloro. Os PCBs que ocorrem em sedimentos e outras matrizes ambientais geralmente se originam de mais de um produto técnico, e estão sujeitos aos efeitos do intemperismo, o que dificulta a identificação de possíveis fontes. O intemperismo é o resultado dos efeitos combinados de processos como volatilização diferencial, solubilidade, sorção, desclorinação anaeróbica e metabolismo, e resulta em mudanças na composição da mistura de PCB ao longo do tempo e entre níveis tróficos (Froese et al. 1998). Assim, a contaminação de PCBs é avaliada pela determinação de congêneres individuais selecionados (SMEDES; DE BOER, 1998). O Conselho Internacional para a Exploração do Mar (*International Council for the Exploration of the Sea*, ICES) recomenda o monitoramento de sete congêneres (28, 52, 101, 118, 138, 153 e 180), nominados como Σ_{ICES} PCB (Figura 4). Esses PCBs foram selecionados como indicadores devido à sua ampla faixa de cloração (3 a 7 átomos de cloro por molécula) e suas concentrações relativamente altas em misturas técnicas (WEBSTER et al., 2013).

Os PCBs são poluentes orgânicos persistentes (POPs) que têm uma longa vida útil no meio ambiente. Devido à sua persistência, bioacumulação e toxicidade, os PCBs estão incluídos na Convenção de Estocolmo (UNEP, 2009). Apesar de seu uso ter sido eliminado ou restrito, esses compostos ainda são encontrados na natureza, também em áreas remotas (PAPALE et al., 2022).

Os PCBs assim como a maioria dos POPs apresentam capacidade de dispersão global por meio do transporte atmosférico de longo alcance. Esses compostos volatilizam a partir de solos e corpos d'água e, portanto, são propensos a serem transportados para longe das áreas de origem e uso. A volatilidade depende da temperatura e, portanto, os POPs passam por vários ciclos de volatilização-deposição antes de serem depositados em áreas frias (WANIA, 2003). Esse processo é conhecido como "destilação global". Neste processo, exemplificado na Figura 5, os POPs produzidos em baixas latitudes tendem a evaporar, sendo então emitidos para a atmosfera, podendo ser transportados até regiões de altas latitudes e, consequentemente, mais frias, onde irão novamente depositar e entrar nas cadeias alimentares da região (UNEP, 2003).

Figura 4 - Estrutura molecular de 7 congêneres de PCBs recomendados pelo Conselho Internacional para a Exploração do Mar (ICES).

Figura 5 - Processo de destilação global dos POPs.

Fonte: UNEP (2003)

A região antártica provavelmente representa um sumidouro para PCBs e a maioria dos POPs. As condições físicas favorecem o acúmulo de PCBs e desfavorecem sua "reexportação" da região. Tanto os fatores físicos como os biológicos implicam que o tempo de vida de PCBs e muitas substâncias tóxicas persistentes (PTSs) no ambiente e na biota será prolongado. Várias condições físicas do ambiente e do ecossistema modificaram a maneira como os PTSs incluindo os PCBs são liberados e distribuídos depois de chegarem na Antártica (UNEP, 2002).

As características físicas incluem:

• Baixas temperaturas que reduzem ou eliminam a evaporação subsequente de PTSs voláteis;

• A importância da queda de neve na precipitação geral;

• A capacidade de neve e gelo para atuar como reservatórios para PTSs em escalas de tempo que variam potencialmente de anos a séculos;

• Os efeitos do gelo marinho no isolamento da superfície oceânica das entradas atmosféricas durante parte do ano.

As características do ecossistema incluem:

• A baixa biomassa, simplicidade e extensão geográfica restrita do ecossistema terrestre, incluindo a ausência de grandes herbívoros e predadores;

• A integração muito próxima dos ecossistemas marinhos e terrestres em locais costeiros e insulares;

• Desenvolvimento pobre de solos em áreas sem gelo;

• A intensa sazonalidade da produção primária e outros processos metabólicos nos ecossistemas terrestres e aquáticos, que por sua vez influenciará a variabilidade temporal da suscetibilidade da biota a PTSs no ambiente;

• Taxas metabólicas e de crescimento lentas, contribuindo para longos tempos de residência de PTSs em reservatórios biológicos.

Uma vez no ambiente antártico, os PCBs são distribuídos e reciclados através dos compartimentos bióticos e abióticos. Estudos de contaminação por PCBs e outros POPs, bem como seu impacto ambiental nos ecossistemas antárticos foram conduzidos por vários programas antárticos em diferentes matrizes. A ocorrência de PCBs na Antártica foi relatada nas décadas de 1960 e 1970 por Risebrough et al. (1968; 1976). Uma vez que esses compostos não são fabricados nem aplicados na região, a principal fonte de PCBs é atribuída

ao transporte de longa distância. No entanto, fontes locais (locais de queima e despejo de lixo) de estações antárticas também podem introduzir PCBs na região (RISEBROUGH; DE LAPPE; YOUNGHANS-HAUG, 1990).

Solos em regiões polares são considerados como "sumidouros" de POPs, mas a direção das trocas gasosas de POPs no ar pode mudar com variações de temperatura e matéria orgânica do solo (WANG et al., 2019). Portanto, os solos também são matrizes utilizadas para o estudo de POPs transportados pelo ar, pois esses poluentes estão em contato direto com a atmosfera (BORGHINI et al., 2005). Cabrerizo et al. (2013) forneceram fortes evidências de que tanto a mudança climática (temperatura) quanto a ciclagem de carbono (conteúdo de matéria orgânica no solo) impulsionam a remobilização de PCBs na Antártica, não apenas devido ao aquecimento.

A distribuição espacial de POPs em solo na Antártica foi examinada principalmente em ilhas antárticas. No geral as concentrações de POPs são baixas e os valores mais altos foram observados esporadicamente perto de estações de pesquisa indicando fontes locais nessas regiões (NEGOITA et al., 2003; BORGHINI et al., 2005; KLÁNOVÁ et al., 2008; PARK et al., 2010; CABRERIZO et al., 2013; WANG et al., 2012, 2022).

Os sedimentos costeiros também podem servir como sumidouros temporários ou de longo prazo para muitas classes de contaminantes antropogênicos e, consequentemente, como fontes dessas substâncias nos oceanos e na biota (GUZZELLA et al., 2005). As distribuições geográficas de POPs em sedimentos de superfície são geralmente semelhantes às do solo ou da água. Além disso, as variações temporais de POPs verticalmente em sedimentos fornecem um registro de seu histórico de emissões globalmente (WANG et al., 2019).

Risebrough, De Lappe e Younghans-Haug (1990) e Kennicutt et al. (1995) relataram concentrações altas de PCBs em sedimentos de Winter Quarters Bay, principalmente devido a uma única fonte pontual como resultado da introdução antropogênica de uma mistura comercial de PCB (Aroclor 1260).

Por outro lado, locais remotos na Enseada McMurdo apresentaram baixas concentrações de PCBs (KENNICUTT, II et al., 1995). Outras regiões antárticas também apresentam baixa contaminação de PCBs em sedimentos conforme observado para a Baía da Grande Muralha, Ilha Rei George (PU et al., 1996), Baía de Terra Nova e do Mar de Ross (FUOCO et al., 1996), Baía do Almirantado (MONTONE; TANIGUCHI; WEBER, 2001) e Ilha James Ross (KLÁNOVÁ et al., 2008).

Estudos mais recentes na Baía do Almirantado conduzidos por Combi et al. (2017) também mostraram concentrações baixas de PCB sugerindo uma possível influência menor

relacionada às atividades logísticas próximas, especialmente no testemunho sedimentar coletado próximo à Estação Ferraz.

1.2 Monitoramento ambiental na Antártica

A presença do homem, a existência de estações científicas, de refúgios e acampamentos, a necessidade de navios, helicópteros e voos de reabastecimento que são elementos indispensáveis para o desenvolvimento de pesquisas e para firmar o interesse das nações na Antártica, mas são também fatores que causam impacto ambiental. Consequentemente, o monitoramento ambiental das áreas onde são realizadas atividades na Antártica é um compromisso firmado pelos países, na assinatura do Protocolo ao Tratado da Antártica sobre Proteção do Meio Ambiente (SECRETARIAT OF THE ANTARCTIC TREATY, 2021).

No caso do Brasil, a área monitorada é a Baía do Almirantado, Ilha Rei George, onde está localizada a Estação Antártica Comandante Ferraz (EACF) construída em 1984. A Baía do Almirantado é primeira área antártica especialmente gerenciada (*Antarctic Specially Managed Areas*, ASMA-1) e vários estudos têm sido conduzidos na região. A partir de 2002, pesquisadores brasileiros iniciaram uma avaliação ambiental utilizando abordagem multidisciplinar que forneceu a base para diversos estudos posteriores e principalmente para o monitoramento ambiental de longo prazo na ASMA-1. Esse estudo revelou que a contaminação da baía do Almirantado ainda é pontual e restrita às proximidades da EACF, especialmente ao redor da saída do efluente doméstico e no solo, ao redor dos tanques de combustível (MONTONE et al., 2013).

Após o incêndio da EACF, ocorrido em 25 de fevereiro de 2012, o segmento ambiental do Programa Antártico Brasileiro (PROANTAR) estabeleceu um convênio com o Instituto Oceanográfico da Universidade de São Paulo (IOUSP) para monitorar os aportes de poluentes na Baía do Almirantado, com ênfase na área da EACF, através de indicadores químicos e biológicos em diversas matrizes ambientais.

1.3 Gerenciamento de Áreas Contaminadas

O número de áreas contaminadas vem aumentando exponencialmente, e alguns estudos acadêmicos indicaram a existência dessas áreas inclusive na Antártica, que é considerada pelos pesquisadores como um "laboratório limpo". Ressalta-se que o conhecimento sobre o assunto obtido nas regiões temperadas não pode ser aplicado sem modificação às regiões polares (POLAND; RIDDLE; ZEEB, 2003).

Na Antártica, alguns dos impactos ao meio ambiente ocorrem onde as estações de pesquisa estão localizadas, e geralmente estas áreas são livres de gelo e possuem predominantemente solo exposto, sendo esse o primeiro meio a ser impactado, principalmente nos casos de derrames de combustíveis, que é o tipo de ocorrência mais comum na região (AISLABIE et al., 2004). Os subprodutos da queima de combustíveis fósseis e a descarga de esgoto doméstico das estações de pesquisa geralmente são as principais fontes potenciais de poluição crônica no ambiente marinho antártico (MONTONE et al., 2013).

A necessidade de gerenciar uma área contaminada surge quando, após a realização de uma investigação ambiental ou ocorrência de um acidente, são detectadas concentrações de Substâncias Químicas de Interesse (SQIs) no solo ou na água subterrânea acima dos Valores Orientadores para Solo e Água Subterrânea (VO), listados na Decisão de Diretoria n.º 125/2021/E, de 09 de dezembro de 2021 da Companhia Ambiental do Estado de São Paulo (CETESB). Após o incêndio ocorrido em 2012, a CETESB foi acionada pelo Ministério do Meio Ambiente (MMA) para realizar o trabalho de Gerenciamento de Áreas Contaminadas (GAC) na área da EACF, uma vez que esse órgão ambiental possui grande experiência nessa área de atuação.

O objetivo do GAC é viabilizar o uso proposto de uma área contaminada sem que haja risco à saúde humana. Para tanto, são realizadas ações de identificação, caracterização, remediação e implantação de medidas de intervenção (CETESB, 2001) nos locais afetados pela contaminação. A metodologia do GAC é composta pelo Processo de Identificação de Áreas Contaminadas e pelo Processo de Reabilitação de Áreas Contaminadas (DD 038/C/2017). O Processo de Identificação, consiste em quatro etapas sequenciais, que são: Avaliação Preliminar, Investigação Confirmatória, Investigação Detalhada, e Avaliação de Risco. Durante o período de 2013 a 2018 (Operações Antárticas XXXI a XXXVI) a equipe técnica da CETESB realizou o Processo de Identificação de Áreas Contaminadas nos arredores da EACF, chegando até a etapa de Investigação Detalhada.

No procedimento de GAC aprovado pela Cetesb, ao final de cada etapa de investigação é gerado um Modelo Conceitual da Área (MCA), portanto, considerando as etapas descritas acima, durante a execução do GAC teremos o primeiro Modelo Conceitual da Área (MCA 1) após a realização da etapa de Avaliação Preliminar, o MCA 2 após a etapa de Investigação Confirmatória, o MCA 3 após a etapa de Investigação Detalhada e o MCA 4

após a etapa de Avaliação de Risco, sendo assim o MCA é a consolidação dos resultados e interpretações obtidas em cada etapa do GAC.

O MCA poderá ser apresentado por meio de representação gráfica, tabela, planta georreferenciada ou texto explicativo; demonstrando o transporte de contaminantes da(s) fonte(s) através dos meios que compõem este sistema, até os potenciais receptores dentro deste sistema. No MCA 1 espera-se que seja apresentado uma hipótese sobre áreas fontes potenciais de contaminação (AP) ou fontes potenciais, as substâncias químicas de interesse (SQIs) e os caminhos de exposição que as SQIs podem percorrer até atingir os receptores. Já o quarto modelo conceitual (MCA 4), com base em uma investigação detalhada e na Avaliação de Risco, espera-se que seja apresentado um modelo muito mais robusto de informações, indicando todo o caminho de exposição dos contaminantes até os risco à saúde humana identificados e caracterizados a partir de cada fonte de contaminação primária identificada (CETESB, 2021).

Para avaliação do modelo conceitual preliminar foi consultado o Relatório interno da CETESB intitulado "Investigação Ambiental Detalhada Complementar e Monitoramento Ambiental da Área da Estação Antártica Comandante Ferraz – OPERANTAR XXXVI", elaborado em 14/12/2018, o qual fornece uma síntese dos estudos referentes ao GAC desenvolvidos até a época.

2 OBJETIVOS

Avaliar os padrões temporais de bifenilos policlorados (PCBs) e hidrocarbonetos policíclicos aromáticos (HPAs) na área da Baía do Almirantado, bem como avaliar o modelo conceitual preliminar da contaminação na área na Estação Antártica Comandantes Ferraz (EACF).

2.1 Objetivos específicos

- a. Determinar as concentrações de PCBs e HPAs nos solos e sedimentos da Baía do Almirantado;
- b. Avaliar variações espaço temporais de PCBs e HPAs e suas possíveis fontes no período de 2010 a 2020;
- c. Avaliar o modelo conceitual preliminar proposto pela Cetesb, identificando as áreas fontes e o caminho de exposição da contaminação por óleo na área da EACF até os receptores.

3 MATERIAL E MÉTODOS

3.1 Área de estudo

A área de estudo é a Baía do Almirantado, localizada no setor central da Ilha Rei George e integra o Arquipélago das Shetlands do Sul, a 120 km ao norte da Península Antártica (Figura 6). A Baía do Almirantado foi designada uma área antártica especialmente gerenciada (*Antarctic Specially Managed Area*, ASMA 1), durante a reunião Consultiva do Sistema do Tratado Antártico em 1996 (ATCM XXVIII 2005) para gerenciar o impacto das atividades dos países na área. A ASMA-1 abrange uma área de 362 km², dividida em setores cobertos por gelo, permanentemente livres de gelo, e a própria baía. 195 km² (54%) são ocupados por 36 geleiras que drenam a massa glacial da ilha, que atinge uma altitude de 700 metros no centro do campo de gelo. As águas da baía ocupam 138 km2 (38%) e as profundidades chegam a mais de 550 m no fiorde da baía e a conecta ao Estreito de Bransfield (RAKUZA-SUSZCZEWSKI; MIETUS; PIASECKI, 1993). Apenas 29 km² (8%) estão livres de gelo e localizados ao longo da costa, incluindo afloramentos rochosos do interior, como a Península Keller, Hennequin Point, Demay Point e Thomas Point (a área ao redor da estação polonesa Henryk Arctowski).

As condições meteorológicas da ASMA-1, e de todo o arquipélago, são controladas por sistemas ciclônicos que se originam no Mar de Bellingshausen e se deslocam para leste trazendo umidade e calor, causando neblina e mantendo temperaturas amenas (RAKUZA-SUSZCZEWSKI; MIETUS; PIASECKI, 1993; SETZER; HUNGRIA, 1994). A temperatura média anual do ar é de -2,8°C, variando de 0,9°C no verão a -7°C no inverno (FERRON et al., 2004). A umidade relativa média é superior a 80% e a precipitação anual é de 500 mm, ultrapassando 1.000 mm nas partes superiores das calotas glaciais (RAKUZA-SUSZCZEWSKI; MIETUS; PIASECKI, 1993).

Na Ilha Rei George tem sido observado um aumento na temperatura do ar nas últimas seis décadas. A temperatura média anual durante o período de 1947-1995 foi de -2,8° C, com um mínimo de -5,2° C em 1959 e um máximo de -0,8° C em 1989 [Ferron et a. 2003]. Outro estudo cobrindo o período de 1944-1996 encontrou uma tendência de aumento estatisticamente significativa na temperatura, com um aumento de 1,5°C ao longo dos anos [Kejna, 1998]. No período de 1948-2011, houve um aumento estatisticamente significativo na temperatura do ar de 0,19°C por 10 anos, com o inverno apresentando uma tendência de aquecimento maior que o verão [Kejna et al. 2013].

Figura 6 - Localização da Baía do Almirantado - área antártica especialmente gerenciada.

A variabilidade nas temperaturas do ar superficial na Ilha King George também foi analisada de 1968 a 2019, mostrando uma tendência de resfriamento durante o verão e nas temperaturas máximas médias mensais ao longo da década de 1990 [Bello et al. 2022]. O comportamento das geleiras na área da Enseada Martel, na Baia do Almirantado, também foi estudado, com um mapeamento do recuo glacial mostrando uma perda de 13,21% da área entre 1979-2011 (Rosa et al. 2013).

Nessa região há intensas atividades de pesquisa e logística. Existem três estações de pesquisa: Brasil, Polônia e Peru, sendo que duas delas, a estação brasileira "Comandante Ferraz" (EACF) e a estação polonesa Henryk Arctowski, operam durante todo o ano. A estação peruana Machu Picchu, uma instalação permanente e o refúgio equatoriano e o estadunidense Pieter J. Refúgio Lenie Copacabana somente no verão. Devido ao acesso relativamente fácil, é frequentemente visitado por turistas.

3.2. Amostragem

A etapa de amostragem geralmente é uma das mais críticas na área ambiental e particularmente para a oceanografia, a qual envolve a necessidade de embarcações ou grandes deslocamentos como é o caso das expedições para a Antártica.

Para o desenvolvimento do projeto de mestrado foram utilizados uma parte dos resultados do convênio firmado entre o Ministério do Meio Ambiente (MMA) e Instituto Oceanográfico da Universidade de São Paulo (IOUSP) (SBF 009/2012, e-convênio USP 30.759), que visa o monitoramento ambiental pós-incêndio da Estação Antártica Comandante Ferraz (EACF). A coleta de amostras foi realizada nos verões austrais 2011/2012 a 2019/2020, durante as operações antárticas XXX a XXXVIII do Programa Antártico Brasileiro (Tabela 3).

Operantar	30	31	32	33	34	35	36	37	38	Total de
Ano	2012	2013	2014	2015	2016	2017	2018	2019	2020	amostras
Solo	24	19	21	21	22	23	15	13	12	170
Sedimento	4	3	7	7	3	5	5	5	5	44
Total	28	22	28	28	25	28	20	18	17	214

Tabela 3 - Amostras coletadas nas Operações Antárticas XXX (2011/12) a XXXVIII (2019/20).

A escolha dos locais de amostragem foi adaptada da estratégia de monitoramento proposta pelo projeto integrado "Gerenciamento Ambiental da Baía do Almirantado, Antártica – REDE-2" desenvolvido entre 2002-2006 (Montone et al., 2013). A estratégia de amostragem na Baía do Almirantado (Figura 7) envolveu a coleta no ambiente terrestre (solo) e marinho

(sedimento) em quatro áreas para acompanhamento temporal, sendo uma nas proximidades da EACF (enseada Martel) e pelo menos três consideradas como áreas de referência: Ponta Ulmann, Botany (enseada Martel) e Refúgio 2 (enseada Mackellar).

Figura 7 - Área de estudo destacando os pontos de amostragem da Baía do Almirantado – Antártica

Solo: A = EACF e proximidades, B = P. Ullmann, C = P. Botany, D = P. Hennequin, E = P.Plaza, F= Refúgio II

Sedimento: 1 – EACF, 2 – P. Ullman, 3 – Botany, 4 – Hennequin, 5 – Refúgio II, 6 – Geleira Mackellar, 7 – Ilha Dufayel, 8 – Ponta Barreal

Amostragem de solo em março/12 foi realizada em 8 pontos ao redor da antiga EACF (#01 a #08) e no transecto entre os geradores e a linha d'água foram coletadas 4 amostras (G1, G2, G3, G4). A partir do verão 2012/13 foram incluídos 2 pontos dentro da área da EACF (#9 e 10). Amostras de solos também foram coletadas nas proximidades da EACF (Baleia, Base G, Módulo de Químico, Meteoro) e áreas controle (Punta Plaza, Refúgio II, Hennequin, Botany, P. Ullman). Procurou-se manter a mesma malha amostral nas amostragens anuais, mas nem sempre foi possível devido às restrições logísticas e ou condições climáticas. A partir do verão 2107-2018 só foi possível coletar nos pontos 5,6,7,9 em função das obras da nova EACF. As coordenadas geográficas são apresentadas na Tabela 4 e os pontos nas figuras 8, 9 e 10.

Tabela 4 - Localização geográfica dos pontos de coleta de solo na EACF, arredores e pontos controle na Baia do Almirantado.

local	Latitude (S)	Longitude (W)	local	Latitude (S)	Longitude (W)
A = EACF			A = Proximidad	es da EACF	
EACF #01	62°05'03,3"	058°23'35,2"	Baleia	62°04'55,0"	058°23'31,6"
EACF #02	62°05'04,4"	058°23'35,0"	Base G	62°04'58,9"	058°23'30,1"
EACF #03	62°05'06,1"	058°23'35,2"	Mod. Química	62°05'27,2"	058°23'43,5"
EACF #04	62°05'06,6"	058°23'33,0"	Mod. Meteoro	62°05'09,0"	058°23'34,5"
EACF #05	62°05'06,3"	058°23'31,6"			
EACF #06	62°05'04,9"	058°23'31,3"	Áreas controle		
EACF #07	62°05'03,5"	058°23'31,2"	B) P.Ullmann	62°04'51,2"	058°20'20,1"
EACF #08	62°05'02,9"	058°23'32,6"	C) P.Botany	62°06'17,0"	058°21'04,2"
EACF #09	62°05'04,2"	058°23'32,4"	D) Hennequin	62°07'16,0"	058°23'47,5"
EACF #10	62°05'04,9"	058°23'32,8"	E) P.Plaza	62°05'27,3"	058°24'22,1"
EACF#G1	62°05'04,3"	058°23′32,3"	F) Refúgio II	62°04'34,3"	058°25'15,8"
EACF#G2	62°05'04,4''	058°23′31,7"			
EACF#G3	62°05'04,4''	058°23′31,3"			
EACF#G4	62°05'04,2"	058°23′30,1"			

Figura 8 – Coleta de solo no entorno da EACF e três áreas controle (P. Ullman, P. Plaza e Refúgio 2)

Figura 9 – Pontos de amostragem de solo na área da antiga EACF. (2012 a 2016)

Figura 10 - Pontos de amostragem de solo na área da nova EACF (2017 a 2020)

As amostras de sedimentos foram coletadas com auxílio de um amostrador tipo Van Veen, operado em embarcação de pequeno porte (bote), nas profundidades entre 20-30 m ou 50-60m). A Figura 11 mostra os dois pontos escolhidos em frente da EACF (tanque de óleo e saída do esgoto/Heliponto), os quais devem refletir fontes potenciais de poluição. As coordenadas geográficas das amostras de sedimentos são apresentadas na Tabela 5. Similar à coleta de solos, procurou-se manter a mesma malha amostral nas amostragens anuais, mas nem sempre foi possível devido às restrições logísticas e/ou condições climáticas.

Figura 11 - Coleta de sedimento nas proximidades da EACF em pontos potenciais de poluição.

As amostras coletadas foram secas em estufa a 45-50°C ou no liofilizador Thermo Savant Modulyo D, quando disponível. Antes da secagem, as amostras de solos foram peneiradas em malha de 2 mm para remoção de pedregulhos. Após a secagem as amostras de solo e sedimentos foram peneiradas em malha de 1 mm, homogeneizadas em almofariz com pistilo e acondicionadas à temperatura ambiente em frascos de vidro previamente muflados.

Local	Latitude (S)	Longitude (W)	Características
<u>Enseada Martel</u>			
EACF Tanques 30m	62°05'03,8"	058°23'12,2"	Lama, seixo, organismo e
			coloração cinza escuro.
Ferraz Heliponto 30m	62°05'08,0"	058°23'10,6"	Lama e areia, cor cinza escura
			com muitos organismos
EACF Tanques 60m		05000000 01	Lama, seixo, organismos e
-	62°05°05,3"	058°23'03,3"	coloração cinza escuro.
Ferraz Heliponto 60m	62°05'10,4"	058°22'52,5"	Lama e areia com muitos
			organismos
Ponta Botany	62°05'59,9"	058°23'34,9"	Lama arenosa e pedra
			-
Ponta Ullman	62°04'54,6"	058°21'04,8"	Lama arenosa, organismos,
			coloração cinza.
Ponta Hennequin	62°07'14,0"	058°23'57,3"	Areia e pedra
Enseada Mackellar			
Refúgio II	62°04'26,0"	058°25'24,7"	Lama, pedra, areia, cor cinza
			clara.
Mackelar Glacier	62°04'08,0"	058°26'33,1"	Lama cinza escura, pedra,
			areia e organismos
<u>Enseada Ezcurra</u>			
Ponta Barreal	62°10'25,2"	058°35'52,9"	Areia, pedra e lama
I. Dufayel (Norte)	62°10'20,9"	058°31'27,7"	Lama pedra areia organismos
• 、 /			· · ·
Zona entre-marés.	Latitude (S)	Longitude (W)	Características
Base G	62°04'58,60"	058°23'23,10"	areia e pedras
EACF tanques	62°05'02,40"	058°23'26,10"	areia e pedras
EACF heliponto	62°05'07,80"	058°23'28,20"	areia e pedras

Tabela 5 - Coordenadas das estações de coleta de sedimento na Baía do Almirantado.

3.3 Determinação de hidrocarbonetos policíclicos aromáticos (HPAs) e bifenilos policlorados (PCBs) em solo e sedimento

As amostras de solo e sedimento secas (~10g) foram extraídas em sistema Soxhlet com n-hexano/diclorometano 50% (v/v) segundo método descrito em UNEP (1992) e Combi et al. (2013). Antes da extração foram adicionados 100 µl dos padrões *surrogate* PCB-103, PCB-198 (1 ng µl⁻¹), naftaleno-d₈, acenafteno-d₁₀, fenantreno-d₁₀, criseno-d₁₂ e perileno-d₁₂ (5 ng µl⁻¹), em todas as amostras, brancos e material de referência certificados (SRM 1944) proveniente da *National Institute of Standards and Technology* (NIST) dos EUA. O extrato foi concentrado em sistema de rotaevaporação para aproximadamente 1 ml e purificado em uma coluna cromatográfica de vidro contendo 3,2 g de alumina 5% desativada onde os PCBs e HPAs foram eluidos com 20 ml de uma mistura de 30% de diclorometano em n-hexano (v/v). O eluato foi concentrado novamente e 100 µl dos padrões internos TCMX (tetracloro-meta-xileno) (1 ng µl⁻¹) e terfenil (5 ng µl⁻¹) foram adicionados. Uma alíquota de 1 µl do extrato final foi injetada no cromatógrafo a gás 7890B da Agilent acoplado a um espectrômetro de massas 7010B com triplo quadrupolo (GC/MS/MS) para análise dos PCBs e HPAs. A aquisição foi feita em monitoramento de múltipla reação (MRM). As temperaturas do GC/MS/MS foram de 300°C no injetor, interface e fonte de íons. A coluna cromatográfica utilizada foi a HP-5MS ultra inerte da Agilent J&W com 30 metros de comprimento, 0,25 mm de diâmetro interno e 0,25 µm de espessura de filme de 5% fenilmetilsiloxana. A rampa de temperatura do forno foi: início a 50°C durante 1 minuto, aumento a uma taxa de 20°C até 200°C e a 10°C até 300°C permanecendo constante durante 5 minutos. Os íons monitorados e a energia de colisão estão listadas nas Tabela 6 e Tabela 7.

Tabela 6 - Transições e energias de colisão (eV) utilizadas para a identificação dos bifenilos policlorados (PCBs) no GC/MS/MS.

Composto	Íon precursor	Íon produto	Energia de colisão - CE (eV)
2 CI-PCB	224	152	25
2 CI-PCB	224	152	25
3 CI-PCB	258	188	25
3 CI-PCB	256	186	25
4 CI-PCB	328	256	30
4 CI-PCB	326	256	30
5 CI-PCB	328	256	30
5 CI-PCB	326	256	30
6 CI-PCB	362	290	30
6 Cl-PCB	360	290	30
7 Cl-PCB	396	326	30
7 Cl-PCB	394	324	30
8 CI-PCB	429,8	357,8	25
8 CI-PCB	427,8	357,8	25
9 CI-PCB	463,7	393,8	30
9 Cl-PCB	461,7	391,8	30
10 CI-PCB	427,7	357,8	30
10 CI-PCB	427,7	355,9	30

	Íon prequesor	Íon produto	Energia de colisão - CE (eV)
Naftaleno	128	78	20
Naftaleno	128	102	20
Naftaleno D ₈	136	134,06	25
Naftaleno D ₈	136	108	25
C1-Naftaleno	142	89	35
C1-Naftaleno	142	115	15
Acenaftileno	152	126	20
Acenaftileno	152	102	30
Acenafteno	153	151	40
Acenafteno	153	126	45
C2-Naftaleno	156	141	10
C2-Naftaleno	156	115	25
Acenafteno D ₁₀	164	162	20
Acenafteno D ₁₀	164	160	30
Fluoreno	165	139	30
Fluoreno	165	163	30
C3-Naftaleno	170	155	10
C3-Naftaleno	170	128	30
C1-Fluoreno	180	179	15
C1-Fluoreno	180	165	10
Dibenzotiofeno	184	152	20
Dibenzotiofeno	184	139	25
Fenathreno D ₁₀	188	158	30
Fenathreno D ₁₀	188	160	30
Fenantreno	178	152	25
Fenantreno	178	176	20
Antraceno	178	152	25
Antraceno	178	176	20
C1-Fenantreno	192	165	30
C1-Fenantreno	192	189	30
C2-Fluoreno	194	179	10
C2-Fluoreno	194	178	25
C1-Dibenzotiofeno	198	165	25
C1-Dibenzotiofeno	198	152	35
Fluoranteno	202	200	30
Fluoranteno D'	202	1/6	35
Pireno Dimana	202	200	30
Fireno	202	170	35
C2-Fenantreno	206	191	10
C2-Fenantreno	200	105	10
C2-Dibenzotiofeno	212	178	25
C1-Pireno	212	189	25
C1-Pireno	216	215	25
Benz[a]Antraceno	210	2215	30
Benz[a]Antraceno	228	2.02	35
Criseno D ₁₂	240	212	30
Criseno D12	240	236	30
Criseno	270	226	30
Criseno	228	2.02	35
C2-Pireno	230	229	15
C2-Pireno	230	215	20
C1 Criseno	242	226	30
C1 Criseno	242	215	35
C2 Criseno	2.56	241	15
C2 Criseno	256	239	30
Ternhenvl	230	240.3	30
Benzolel e IalPireno	257	250	35
Benzolel e [a]Pireno	252	236	35
Benzo[b] e [k]Fluorantono	252	220	35
Benzolol e [K]Linoi anteno	232	220	55

Tabela 7 - Transições e energias de colisão (eV) utilizadas para a identificação dos hidrocarbonetos policíclicos aromáticos (HPAs) no GC/MS/MS.

Continuação							
	Íon precursor	Íon produto	Energia de colisão - CE (eV)				
Benzo[b] e [k]Fluoranteno	252	250	30				
Perileno	252	226	35				
Perileno D ₁₂	264	230	30				
Perileno D ₁₂	264	260	30				
Perileno	252	250	30				
Indeno[123cd]Pireno	276	274	40				
Indeno[123cd]Pireno	276	272	60				
Dibenz[ah]Antraceno	278	276	30				
Dibenz[ah]Antraceno	278	274	60				
Benzo[ghi]Perileno	276	274	40				
Benzo[ghi]Perileno	276	272	60				

3.3.1. Otimização dos métodos e controle de qualidade

Antes do processamento das amostras, é necessária a otimização da metodologia para cada parâmetro bem como o controle de qualidade das análises.

Um dos aspectos fundamentais nas análises de resíduos de poluentes orgânicos é a garantia de que todo material envolvido no procedimento analítico seja isento de contaminação e/ou interferentes para não falsear os resultados das análises. Dessa maneira foram tomados os devidos cuidados com o material e métodos utilizados para gerar resultados confiáveis.

Vidraria e solventes

Toda a vidraria utilizada foi previamente lavada com detergente Extran alcalino Merck e enxaguada em água corrente. Depois de seca foi coberta com alumínio e levada à mufla durante 4 horas a 450°C. Vidrarias volumétricas que não podiam ser calcinadas foram enxaguadas com os solventes diclorometano e n-hexano antes do uso. Os solventes utilizados da marca J. T. Baker (grau resíduos) eram de altíssimo grau de pureza e, portanto, apropriados para os procedimentos desenvolvidos no presente trabalho.

Tratamento dos Reagentes Sólidos

Os reagentes sólidos utilizados da Merck (sulfato de sódio e alumina neutra para preenchimento das colunas de adsorção durante purificação dos extratos) foram calcinados em mufla a pelo menos 450°C durante 4 horas e posteriormente estocados em apropriados frascos de vidro descontaminados com uma mistura de n-hexano/diclorometano (50%) e tampados, e logo em seguida guardados em dessecadores. A passagem da alumina pela mufla, para que sejam eliminados quaisquer resíduos orgânicos que possam interferir nas análises, faz com que estes reagentes sejam completamente ativados. Porém estes compostos são utilizados a 5% de desativação, para melhor desempenho nas análises (deixando alguns sítios menos polares, do contrário seria necessário um solvente mais polar para eluir os compostos mais polares, além

de poder aumentar a quantidade de interferentes). Portanto são adicionados 5% em massa de água ultra-pura Milli-Q, extraída cinco vezes com o mesmo n-hexano de grau de pureza para análise de resíduos orgânicos.

Soluções Padrão

As soluções de padrões de PCBs foram adquiridas do laboratório internacional AccuStandard (EUA) e preparados três tipos de soluções: 1) misturas com padrões externos, 2) solução de *surrogates* e 3) padrão interno (PI).

A mistura de PCBs continha 51 congêneres, com compostos contendo de 2 a 10 átomos de cloro na concentração de 1,0 ng μ L⁻¹ para cada congênere. A solução de hidrocarbonetos policíclicos aromáticos foi feita a partir da diluição de padrões certificados da *AccuStandard* e *Sigma-Aldrich* da Alemanha e contêm os 16 compostos prioritários (naftaleno, acenafteno, acenafteno, fluoreno, fenantreno, antraceno, fluoranteno, pireno, benzo[a]antraceno, criseno, Indeno [1,2,3-c,d]pireno, Dibenzo(a,h)antraceno, Benzo[g,h,i)perileno] e seus respectivos compostos alquilados.

A solução *surrogate* continha o PCB 103, PCB 198, naftaleno-d8, acenafteno-d10, fenantreno-d10, criseno-d12 e perileno-d12 e a solução de Padrão Interno (PI) continha o composto TCMX (2,3,5,6-tetracloro-m-xileno) em concentração de 1,0 ng μ L⁻¹ e benzo(b)fluoranteno-d₁₂ a 5,0 ng μ L⁻¹.

Curva analítica

A curva analítica para os PCBs foi construída segundo método matemático conhecido como regressão linear, com nove pontos, nas seguintes concentrações: 1, 5, 10, 20, 50, 80, 100, 150 e 200 pg μ L⁻¹. A curva dos HPAs foi montada com padrões nas concentrações de 0,1, 0,25, 0,5, 0,8, 1,0, 1,2, 1,5 ng μ L⁻¹. Foi considerado um coeficiente de correlação linear (r2) maior ou igual a 0,995. Esse parâmetro permite uma estimativa da qualidade da curva obtida, pois quanto mais próximo de 1,0, menor a dispersão do conjunto de pontos experimentais e menor a incerteza dos coeficientes de regressão estimados (RIBANI et al., 2004).

A quantificação foi feita pelo método de padronização interna, calculando-se razões entre os *surrogates* e os compostos de interesse, baseada nas curvas analíticas montadas com as nove concentrações citadas acima para cada grupo de compostos.

As curvas eram verificadas periodicamente recalculando-se seus próprios pontos e consideradas apropriadas para o uso analítico se apresentasse um fator de resposta com menos de 25% de variação.

Controle de Qualidade

O controle de qualidade é uma ferramenta adequada para assegurar a eficiência das técnicas analíticas empregadas na análise dos compostos de interesse, pois garante a qualidade e confiabilidade dos resultados em termos de identificação e quantificação avaliando a precisão, exatidão, seletividade e sensibilidade do método. Os parâmetros e procedimentos definidos para avaliação do controle de qualidade foram baseados em Wade e Cantillo (1994) e estão descritos a seguir.

Branco do Método

O branco do método é qualquer matriz isenta dos compostos de interesse submetida a análise de forma a detectar qualquer contaminante proveniente do procedimento analítico capaz de inviabilizar a detecção e quantificação dos compostos de interesse, seja pela inserção de impurezas durante o procedimento ou mesmo pela pré-existência de interferentes no material analítico. Realizando-se a análise de branco do método, pode-se estabelecer o grau de contaminação e o nível de interferentes dos reagentes e vidraria a que as amostras estão sujeitas.

O branco aceitável não pode apresentar mais de três interferentes coeluentes aos analitos e seu nível não pode ser mais que 3 vezes o limite de detecção do método.

A contaminação apresentada na análise de um branco aceitável é considerada como correspondente à contaminação do método e, portanto, supostamente adquirida por todas as amostras nas eventuais etapas da análise. Com base nessa premissa emprega-se como procedimento padrão descontar tal contaminação do resultado das amostras.

Branco Spike

Para avaliar o comportamento dos analitos sem a influência da matriz foi adicionada uma mistura dos mesmos em concentração conhecida ao sulfato de sódio (Na₂SO₄) utilizado como branco no procedimento de análise. Consideram-se aceitáveis as recuperações entre 50% e 120%

Duplicatas da Amostra

A amostra duplicata é útil para a demonstração da homogeneidade e precisão analítica do método e é preparada executando-se todos os procedimentos de extração e purificação em uma replicata de uma amostra escolhida randomicamente.

A análise da duplicata deve apresentar um percentual relativo da diferença (PRD) menor ou igual a 25% calculado pela seguinte equação:

PRD (%) =
$$\begin{bmatrix} (Cma - Cmd) \\ (Cma + Cmd)/2 \end{bmatrix} x100$$
, onde

Cma = concentração medida do analito na amostra Cmd = concentração medida do analito na amostra duplicata

Matriz Spike

Através da fortificação dos analitos em concentração conhecida numa porção de amostra pode-se avaliar a eficiência do método de análise na presença de uma matriz representativa. Essa eficiência é caracterizada pela medida da recuperação percentual dos analitos adicionados e como tal é considerada aceitável se contiver 80% dos analitos adicionados numa faixa de recuperação entre 60% e 120%.

Material de Referência Certificado (MRC)

Através da análise do material de referência certificado (MRC) pelo método de trabalho pode-se assegurar um maior grau de confiança no resultado, uma vez que o MRC é uma amostra bem caracterizada com relação à presença e quantidade dos analitos de interesse e com valores de incerteza certificados.

Foram utilizados como materiais de referência certificados: *Organics in Marine Sediment SRM1941b* e New York/New Jersey Waterway Sediment SRM1944 – (SRM/NIST – Standard Reference Material/National Institute of Standards and Technology). Os resultados foram considerados aceitáveis resultados de análises que estivessem próximos aos valores certificados com erro máximo de \pm 30%.

Com base nesses parâmetros as análises realizadas pela metodologia proposta foram satisfatórias apresentando resultados dentro do intervalo de confiança pré-estabelecido.

Recuperação do Surrogate

O *surrogate* é um determinado composto que apresenta similaridade química com os analitos de interesse para que seja representativo em termos de recuperação, porém é ausente na amostra. É utilizado de forma a minimizar os erros aleatórios e sistemáticos, bem como verificar variações provocadas durante o processo de medida.

O surrogate deve corresponder às seguintes condições analíticas:

• O composto escolhido deve eluir da coluna adequadamente separado de todos os compostos da amostra e o mais perto possível dos compostos de interesse;

• Ser estável nas condições de análise;

• A quantidade injetada deve ser próxima à da substância de interesse e deve ser suficientemente estável para permitir a estocagem por um tempo adequado.

Dentro dos parâmetros observados, os *surrogates* foram, portanto, adicionados em todas as amostras e brancos antes de cada extração. O cálculo da recuperação do *surrogate* foi realizado através da relação:

$$Rec.(\%) = \left(\frac{Cm(S) * Ca(PI)}{Cm(PI) * Ca(S)}\right) * 100$$

onde Cm é a concentração média na amostra, Ca é a concentração adicionada na amostra, S é o *surrogate* e PI é o padrão interno.

Em todas as análises de rotina bem como nos testes metodológicos e de controle de qualidade os resultados de recuperação para o *surrogate* variaram de 60% a 120%, tomando-se o cuidado de repetir a análise que apresentasse resultados fora das condições de qualidade.

Limites de Quantificação do Método

O Limite de Quantificação do Método (LQM) representa a menor concentração da substância em análise que pode ser determinada com precisão e exatidão aceitáveis, nas devidas condições experimentais e confiabilidade estatística (RIBANI et al., 2004). Neste trabalho foi utilizado como LQM o menor ponto da curva analítica que foi de 0,1 ng g⁻¹ para HPAs e 0,0025 ng g⁻¹ para PCBs.

3.4 Modelo Conceitual

Para a avaliação do modelo conceitual preliminar foram utilizados os dados do Relatório interno da Cetesb "Investigação Ambiental Detalhada Complementar e Monitoramento Ambiental da Área da Estação Antártica Comandante Ferraz – OPERANTAR XXXVI". Para a investigação de solo superficial foi realizada a amostragem multi-incremento, em cada Unidades de Decisão – UDs, que são subáreas da área investigação de áreas contaminadas é descrita no Guia Técnico do ITRC - *The Interstate Technology & Regulatory Council* (ITRC) elaborado em outubro de 2020.

Para a investigação de solo subsuperficial, nesta campanha de monitoramento e investigação, foram coletadas amostras pontuais nas cavas abertas devido à construção da Nova EACF, essas amostras pontuais foram coletadas à profundidade 1,5 metros. A Figura 12, mostra as UDs selecionadas para a investigação de solo na área da EACF e os pontos das Cavas. Nessa figura são observadas as instalações da antiga EACF, a qual foi incendiada em 2012.

4 RESULTADOS E DISCUSSÃO

Os contaminantes orgânicos, hidrocarbonetos policíclicos aromáticos (HPAs) e os bifenilos policlorados (PCBs), foram detectados em 98% e 97% das amostras de solo, respectivamente. Para os sedimentos, os HPAs ocorreram em 100% das amostras, enquanto que para os PCBs foram observados em 90% das amostras (Tabela 8). As concentrações de contaminantes orgânicos detectados em solos e sedimentos da Baía do Almirantado para o período de 2012 a 2020 são apresentados nos apêndices B a E.

	2012	2013	2014	2015	2016	2017	2018	2019	2020
<u>solo</u>									
HPAs	100	95	91	95	100	100	100	100	100
PCBs	100	93	100	na	100	87	92	100	100
sedimento									
HPAs	100	100	100	100	100	100	100	100	100
PCBs	100	100	100	na	33	89	100	100	100

Tabela 8 - Frequência de ocorrência de contaminantes orgânicos em solo e sedimento da Baía do Almirantado (%).

na = não analisado

4.1 Distribuição de PCBs em solos e sedimentos da Baía do Almirantado

As concentrações médias de PCBs em solos foram $3,0 \pm 7,2$ ng g⁻¹ no intervalo de <0,0025 a 58,5 ng g⁻¹ peso seco (Tabela 9), sendo que em 57% das amostras de solo ocorreram concentrações menores que 1,0 ng g⁻¹ (mediana = 0,7 ng g⁻¹).

As maiores concentrações foram observadas no ponto #9 (22 ng g⁻¹) na área da EACF e arredores da EACF (58 ng g⁻¹) durante o verão austral de 2015/16 (Figura 13). No verão seguinte (2016/17) também foram detectados valores nessa ordem de grandeza nos mesmos pontos (20 e 16 ng g⁻¹, respectivamente). Esses períodos correspondem ao início das obras na nova EACF. Valores dessa ordem de grandeza foram observados por Negoita et al. (2003) em solos coletados próximos à estação russa Novolazarevskaya, localizada na costa leste da Antártica (Queen Maud Land). Os autores associaram os valores mais altos com fontes locais como equipamentos elétricos antigos descartados de forma inapropriada e incineração de resíduos gerados pelas estações de pesquisa.

	mar/12	fev/13	2013/14	2015/16	2016/17	2017/18	2018/19	2019/20
EACF-4	0,48	3,08	0,20	4,06	0,24	nc	nc	nc
EACF-5	3,50	1,79	0,36	1,39	0,64	0,32	0,86	0,85
EACF-6	0,80	5,25	3,44	4,07	1,57	2,54	3,39	2,75
EACF-7	0,46	1,85	0,48	1,11	0,24	0,33	1,04	1,31
EACF-9	nc	0,17	1,07	21,88	20,2	1,20	2,06	0,67
EACF-10	nc	1,49	4,08	4,55	1,29	nc	nc	nc
EACF-G1	nc	0,73	7,03	6,76	0,44	nc	nc	nc
Base G	1,34	3,82	6,41	8,50	15,5	8,04	3,25	12,54
Baleia	0,09	1,23	0,57	58,52	<0,003	0,92	0,06	0,08
Qui/meteoro	0,94	15,22	0,76	26,41	1,34	0,10	0,17	0,2
P. Plaza	0,07	0,88	0,44	0,74	1,98	0,13	0,30	0,46
Botany	nc	0,30	0,30	0,09	2,25	<0,003	nc	0,07
P. Ullman	nc	0,62	0,42	0,08	0,1	0,18	0,06	0,04
Hennequin	nc	<0,003	0,19	5,62	<0,003	0,22	0,22	0,33
Refúgio II	nc	0,20	0,33	0,04	0,03	0,90	0,15	<0,003

Tabela 9 - PCBs em solos da Baía do Almirantado (ng g-1).

nc = não coletado

Figura 13 - Valores médios e medianas de PCBs em solo da EACF e seus arredores e áreas controle (ng g-1).

Embora as concentrações de contaminantes possam variar devido aos diferentes períodos e locais de amostragem, a avaliação temporal mostra uma tendência estacionária de PCBs em solo, tanto para a área da EACF e arredores como na área controle (Figura. 14) no período de 2012 a 2020.

Linha vermelha: linha de tendência; linhas azuis: intervalo de predição

A Base G apresentou valores crescentes de PCBs totais (Figura 15) o que pode ser associado com o período de manobra nos arredores tanto para o desmonte da antiga EACF (2013 a 2014) quanto à reconstrução da EACF (2016-2020).

As concentrações de PCBs em solos deste estudo foram similares ou 1 ordem de grandeza maiores aos resultados encontrados em outros locais da Antártica (Tabela 10).

Os solos da Ilha Pinguim próxima da Rei George e Ponta Turret (CIPRO et al., 2019) apresentaram valores de PCBs da mesma ordem de grandeza que os solos da Baía do Almirantado. Klanová et al. (2008) detectaram PCBs no solo e sedimentos da Ilha James Ross, Antártica, variando entre 0,51–1,82 ng g⁻¹. Por outro lado, são uma ordem de grandeza maiores que os valores de PCB (0,01–0,34 ng g⁻¹) em solos da Península Barton nas proximidades da Estação coreana King Sejong (PARK et al., 2010) e de solos coletados em Terra Nova Bay (0,06–0,12 ng g⁻¹), durante a expedição italiana de 1989–1990 (FUOCO; COLOMBINI; ABETE, 1994). Borghini et al. (2005) relataram PCBs em concentrações de 0,36–0,59 ng g⁻¹

no solo de locais remotos de Victoria Land, Antártica. Wang et al. (2012a) reportaram PCBs em solo da Peninsula Fildes no intervalo de 0,060–1,4 ng g⁻¹ durante o verão austral 2009/10 nos arredores da estação chinesa "Great Wall". Estudos realizados por Wang et al. (2022) na baía Prydz, Antártica Leste, apontaram valores similares de PCB em solo e (0,014 - 0,993 ng g^{-1}).

período	n	Área de estudo	PCBs	Referências
2012	8	Baia do Almirantado -I. Rei George	0,07-3,5 (0,6)	Esse estudo
2013	15	Baia do Almirantado -I. Rei George	<0,003-15,2 (1,2)	Esse estudo
2014	15	Baia do Almirantado -I. Rei George	0,19 -6,4 (0,5)	Esse estudo
2016	15	Baia do Almirantado -I. Rei George	0,04-58,2 (4,1)	Esse estudo
2017	15	Baia do Almirantado -I. Rei George	<0,003-20,2 (0,6)	Esse estudo
2018	12	Baia do Almirantado -I. Rei George	<0,003-8,04 (0,3)	Esse estudo
2019	11	Baia do Almirantado -I. Rei George	0,06-3,39 (0,3)	Esse estudo
2020	12	Baia do Almirantado -I. Rei George	<0,003-12,5 (0,4)	Esse estudo
1989-90		Baia Terra Nova (Antártica Leste)	0.061-0.120	Fuoco et al (1994)
1990-92		Baia Terra Nova (Antártica Leste)	0.040 - 0.070	Function (1991)
1770 72		Build Forth Hove (Fillarfied Lesie)	0,010 0,070	1 uoco et ul. (1995)
jan-jul		Costa leste Antártica		
1998	11	(5 estações russas)	0,20 -157,45	Negoita et al. (2003)
1999	4	Victoria Land	0,36 - 0,59	Borghini et al. (2005)
2005	9	James Ross Island	0,5 - 1,8	Klanová et al, (2008)
		Devinenta Devien		
2006	5	(Estação coreana King Seiong)	0 008 - 0 034	Park et al. (2010)
2000	U	(Zeuişue coreana ring sejong)	0,000 0,000 1	
		Peninsula Fildes		
2007-2008	15	(Estação chinesa Great Wall)	0,002 - 0,027	Wang et al. (2012a)
2009/10	7	Peninsula Fildes	0,060–1,4 (0,4)	Wang et al. (2012b)
fev/11	17	Larsemann Hills - Prydz Bay,	0,014- 0,993 (0,17)	Wang et al. (2022);
		Antarctica Leste		
2013-15	3	Ilha Deception	$0,76 \pm 0,64$	
2013-15	3	Ilha Pinguim - controle	1,0 <u>+</u> 0,33	
2013-15	3	Ilha Half Moon	0,42	
2013-15	3	Ilha Livingston Ponta Hannah	2,2+2,6	Cipro et al. (2019)
2013-15	3	Ilha Rei George Ponta Turret	5,9 <u>+</u> 9,5	
2013-15	3	Ilha Pinguim – Colônia pinguim Papua	12,5 + 16,5	

Tabela 10 - PCBs em solos de regiões antárticas (ng g⁻¹ peso seco).

() Valores de medianas

Estudos sobre variação interanual de PCBs e outros POPs em solos são praticamente inexistentes na Antártica. Fuoco et al. (1995) avaliaram a presença de PCBs em solos próximos da Base Italiana Mario Zucchelli durante as expedições de 1990-1991 e 1991-1992. Os resultados apontaram concentrações de 0,040–0,070 ng g⁻¹ para PCBs, sendo similares à expedição anterior de 1989-90. Também demonstraram depender fortemente da distribuição do tamanho de partícula de cada amostra.

Nos monitoramentos de POPs em matrizes abióticas, destacam-se os estudos sobre as tendências temporais na atmosfera. PCBs e PBDEs foram medidos no ar atmosférico próximo da estação chinesa "Great Wall", na Península Fildes, Ilha Rei George e apresentaram tendência de queda de 2011 a 2012, o que pode ser causado principalmente pela variação da condição meteorológica (WANG et al., 2017). Um estudo posterior conduzido por Hao et al. (2019) na mesma região, relata a tendência decrescente de PCBs e outros POPs (DDTs, HCHs, Endosulfan) na atmosfera no período entre dezembro de 2010 e janeiro de 2018. Verificou-se que o transporte atmosférico de longo alcance ainda era considerado o principal fator contribuinte para os níveis atmosféricos dos POPs na Antártica Ocidental, em relação à contribuição das atividades humanas na estação chinesa "Great Wall".

A predominância de congêneres foi variável tanto na escala temporal como espacial (Figura 16). No período de 2012 a 2017 os congêneres penta, hexa e hepta clorados ocorreram nas amostras de solo na área da EACF e proximidades representando mais de 68,5% do total de PCBs. A partir de 2018, a presença de leves (<4 cloros) passou a contribuir com 40-50% do total de PCBs. Na área controle predominaram congêneres penta e tetra-clorados na maior parte das amostras representando 61-94% do total de PCBs. No período de 2016 a 2019 a contribuição dos congêneres hexaclorados aumentou para 22-42%, o que pode estar associado com o período de reconstrução da nova EACF. Em 2020 a presença de congêneres mais leves (di e triclorados) também aumentou para 59% do total de PCBs (Figura 17).

Figura 16 - Contribuição relativa (%) de congêneres de PCBs em solo (valores médios/ano).

Os congêneres predominantes em solo foram os hexaclorados (138 e 153) seguidos pelo pentaclorados (101, 110 e 118) e heptaclorados (180). A presença dos congêneres mais leves (28, 44, 49, 52) tornou-se mais evidente a partir de 2018.

Wang et al. (2022) também detectaram PCB com alto teor de cloro nos solos de Larsemann Hills (Antártica Oriental) dentro da área da Base Law e próximo à estrada principal enquanto que os congêneres de PCB com baixo teor de cloro foram encontrados em amostras de solo distantes das áreas das estações de pesquisa (Zhongshan, Progress II e Progress I).

Figura 17 - Variação anual dos congêneres de PCBs em solo (%).

Park et al. (2010) detectaram congêneres de PCB menos clorados (di-, tri- e penta) representando mais de 75% do total em amostras de solo da Península Barton próximo da estação coreana King Sejong na Ilha Rei George. Wang et al. (2012b) também observaram predomínio de congêneres com baixo teor de cloro em amostras de solo da Península Fildes, exceto para os solos de Ardley Island, onde os congêneres hexaclorados eram mais abundantes. Em solos da Costa leste da Antártica, o perfil dos congêneres de PCB também foi dominado pelos congêneres mais voláteis (tri-, tetra- e penta-PCBs) nas proximidades de 5 estações russas e foram associados com o transporte de longo alcance (NEGOITA et al., 2003).

Os congêneres mais leves (< 5 cloros) geralmente são associados com o transporte de longa distância. Naffrechoux et al. (2015) propuseram, para sedimento, um indicador de distância/via de contaminação baseado na razão entre congêneres leves (28 e 52) e somatória de congêneres leves (28 e 52) e pesados (138, 153, 180):

$$R = \frac{[PCB28] + [PCB52]}{[PCB28] + [PCB52] + [PCB138] + [PCB153] + [PCB180]}$$

PCB-28 e PCB-52 são mais voláteis, e ligeiramente mais hidrofílicos do que PCB 138, 153 e 180, os quais são menos voláteis, mas adsorvem fortemente em fases sólidas. Assim um alto valor de R pode estar relacionado à deposição atmosférica de PCB, enquanto que um baixo valor de R pode ser consistente com uma fonte local de PCB.

Aplicando-se essa razão nos resultados de solos observa-se uma grande variabilidade nos valores de R (0,1 a 0,9). Tanto a área da EACF e arredores (média $0,33 \pm 0,26$ ng g⁻¹) como as áreas controle (média $0,46 \pm 0,28$ ng g⁻¹), apresentaram valores abaixo de 0,60 indicando influência de fontes locais. Entretanto, a evolução temporal da razão R foi diferente para essas regiões. Na área da EACF e arredores os menores valores (R<0,2) foram observados principalmente em 2016 e 2017 (Figura 18), período que coincide com o início das obras da nova EACF. A partir de 2018 a tendência crescente de R indica influência de deposição atmosférica de PCBs, a qual é associada com os congêneres mais leves (< 4 cloros). Para as áreas controle, os maiores valores (R>0,7) foram observados em 2013-2014. A partir de 2016 os valores de R apresentaram tendência decrescente indicando influência de fontes locais. A presença de congêneres leves (di, tri e tetra) e pesados (> 5 cloros) indica uma tendência à mistura de fontes tanto pela deposição atmosférica quanto de fontes locais.

Figura 18 - Variação anual da razão R em solos da Baía do Almirantado.

Linha vermelha: linha de tendência; linhas azuis: intervalo de predição

Para avaliação da qualidade do solo, foi considerada a somatória dos congêneres ICES (28, 52, 101, 118,138,153,180) para comparar com os valores orientadores da Resolução Conama 420. Na maioria dos pontos na área da EACF e arredores, os valores de Σ_{KCES} PCBs (mediana 0,53 ng g⁻¹) ultrapassam o valor de prevenção (VP = 0,3 ng g⁻¹), mas não atingem os valores de intervenção considerados para área residencial (VI = 30 ng g⁻¹). Na área controle, a maioria dos pontos (mediana 0,11 ng g⁻¹) está abaixo do valor de prevenção e de intervenção (Figura 19).

Os valores de Σ_{ICES} PCBs na Base G (0,6 a 6,8 ng g⁻¹) mantiveram-se acima do valor de VP entre 2012 e 2020. De fato, essa região foi intensamente ocupada logo após o incêndio e também durante as obras de reconstrução da nova EACF. Além disso, devido às atividades da estação baleeira inglesa no período de 1943 a 1961, a região tem um histórico de contaminação no solo por óleo, o que pode favorecer a adsorção de PCBs via atmosfera. Dessa forma, essa região caracteriza-se como uma fonte pontual de PCBs. Em uma amostra de solo coletada na área de obras em 2018, o valor de Σ_{ICES} PCB foi 7,2 ng g⁻¹, também acima do valor de prevenção, porém abaixo do valor de intervenção.

VP = valor de prevenção = 0,3 ng g-1

As concentrações de PCBs em sedimentos variaram de <0,0025 a 23,0 ng g⁻¹ peso seco com média de $1,5 \pm 4,7$ ng g⁻¹ (Tabela 11). Esses valores são comparáveis aos estudos pretéritos na região realizados em 2006/07 (<0,09 - 11,9 ng g⁻¹) e 1993/94 (1,4 ± 0,5 ng g⁻¹) (COMBI et al., 2017; MONTONE; TANIGUCHI; WEBER, 2001). Também são da mesma ordem de grandeza que outras regiões na Antártica nas proximidades de estações científicas (Tabela 12). Fuoco et al (1996) detectaram concentrações de PCBs (0,03–0,16 ng g⁻¹) na Baia Terra Nova, Mar de Ross durante a expedição de 1990-1991. Relacionaram a variabilidade dos resultados com à distribuição do tamanho das partículas. Os perfis de profundidade do conteúdo de PCB em amostras de sedimentos marinhos coletadas em algumas estações mostram claramente que os PCBs estão confinados em uma camada superficial de cerca de 10 cm. Klanova et al. (2008) investigaram PCBs na Ilha James Ross e os resultados mostraram que as concentrações de PCB variaram entre 0,32–0,83 ng g⁻¹ no sedimento.

	mar/12	fev/13	2013/14	2015/16	2016/17	2017/18	2018/19	2019/20
Tanques 30m	0,55	0,44	0,72	0,27	<0,003	0,50	0,17	20,90
Heliponto 30m	0,71	0,30	0,24	0,34	<0,003	0,20	0,25	23,00
Tanques 60m	nc	nc	0,40	nc	0,20	1,45	6,58	0,08
Heliponto 60m	nc	nc	nc	nc	0,16	<0,003	0,06	0,24
P.Ullman	0,13	0,82	0,42	0,46	<0,003	0,54	0,10	18,90
Botany	nc	0,21	0,44	0,33	0,34	0,45	0,09	0,06
Hennequin	nc	nc	0,43	0,57	<0,003	1,21	nc	0,03
Refúgio 2	nc	0,14	0,36	0,28	<0,003	0,07	0,43	0,05
Mackelar	nc	nc	nc	nc	nc	0,51	0,04	nc
Ezcurra	nc	0,57	nc	nc	<0,003	nc	nc	nc

Tabela 11 - PCBs em sedimentos da Baía do Almirantado (ng g⁻¹).

nc = não coletado

Park et al. (2010) encontraram concentrações menores de PCBs (8,0–33,8 pg g⁻¹) na Peninsula Fildes (Ilha Rei George, Ilhas Shetland do Sul, Antártica), o que pode ser devido aos diferentes locais de amostragem e período de amostragem. Estudo posterior realizado no verão austral 2009/10 também detectou concentração PCBs da mesma ordem de grandeza (182 pg g⁻¹) numa única amostra de sedimento coletada na mesma região (WANG et al., 2012).

Também são comparáveis com resultados obtidos em sedimentos na Passagem do Drake (3,8 - 7,3 ng g⁻¹), porém 1-2 ordens de grandezas menores que os detectados no Mar de Ross (7,6-247 ng g⁻¹) no período de 2014-2017 (DENG et al., 2020).

As maiores concentrações de PCBs em sedimentos deste estudo foram observadas em 2020 na zona rasa (20-30m) próxima da EACF (Figura 20), que não atingem os valores

detectados (100-1400 ng g⁻¹) nas proximidades da estação americana McMurdo, na Baía Winter Quarters, a qual é uma região com histórico de contaminação por PCBs (KENNICUTT, II et al., 1995; RISEBROUGH; DE LAPPE; YOUNGHANS-HAUG, 1990).

período	n	Área de estudo	PCBs	Referências
2012	3	Baia do Almirantado -I. Rei George	0,1 - 0,7 (0,4)	Esse estudo
2013	6	Baia do Almirantado -I. Rei George	0,1 - 0,8 (0,4)	Esse estudo
2014	7	Baia do Almirantado -I. Rei George	0,2-0,7 (0,4)	Esse estudo
2016	6	Baia do Almirantado -I. Rei George	0,3-0,6 (0,3)	Esse estudo
2017	9	Baia do Almirantado -I. Rei George	<0,003-0,3 (0,003)	Esse estudo
2018	9	Baia do Almirantado -I. Rei George	<0,003-1,5 (0,5)	Esse estudo
2019	8	Baia do Almirantado -I. Rei George	0,04-6,6 (0,1)	Esse estudo
2020	8	Baia do Almirantado -I. Rei George	0,03-23 (0,2)	Esse estudo
1993/94	11	Baia do Almirantado	0,9-2,5 (1,4±0,5)	Montone et al. (2001)
2006-07	9	Baía do Almirantado	<0,09 - 11,9	Combi et al. (2017)
1988	12	Baía Winter Quarters (McMurdo Base)	<0,01-1400	Risebrought et al. (1990)
1989		Ilha Anvers (Palmer Station) Arthur Harbor	2,8-4,2	
		Baía Winter Quarters	2,8-1280	Kennicutt et al. (1995)
1993	38	Baía Winter Quarters	250-4300	
1988- 1992	4	Baia Terra Nova (Antártica Leste)	0,1-0,2	Fuoco et al. (1996)
2005	9	Ilha James Ross	0,3-0,8	Klanová et al. (2008)
2009/10	1	Peninsula Fildes (Estação chinesa Great Wall)	0,4	Wang et al. (2012b)
2008	5	Península Antártica Ocidental	<0,01–0,35	Zhang et al. (2013)
2011-14	8	Passagem Drake	3,8-6,7 (5,5)	Deng et al. (2020)
2014-1/	15	iviar de Koss	/,0 - 246,9 (89)	

Tabela 12 - PCBs em sedimentos de regiões antárticas (ng g⁻¹ peso seco).

() valores de mediana

Figura 20 - ΣPCBs em sedimentos nas proximidades da EACF e áreas controle no período de 2012 a 2020 (ng g-1).

Para avaliar a tendência temporal também foram incluídos dados pretéritos baseados nos estudos de Combi et al. (2017) e Montone, Taniguchi e Weber (2001), englobando o período de 1993 a 2020. Para padronização dos dados foi utilizada a somatória dos PCBs-ICES (28,52, 101,118, 138,180). A variação interanual de PCBs-ICES em sedimento é marcada por 3 fases bem evidentes (Figura 21). Na primeira fase (1993 e 2006), os valores médios de PCBs-ICES foram similares, 0,8 e 1,1 ng g⁻¹, respectivamente. No período entre 2012 e 2017, foram observadas as menores médias (0,01 - 0,2 ng g⁻¹) que correspondem ao período pós incêndio e redução de atividades na região. Em 2019, o valor médio é similar (0,9 ng g⁻¹) ao período 1993-2006, o qual pode ter ocorrido devido à maior ocupação e aumento de atividades na região. Em 2020, houve um aumento de 1 ordem de grandeza no valor médio de PCBs em relação aos dados pretéritos.

No geral, a introdução de PCB nos sedimentos da Baía do Almirantado ao longo dos anos mostra uma tendência levemente crescente, refletindo principalmente a influência do transporte de longo alcance para a região. O aumento da pressão antropogênica começa a ser observada nos últimos anos nas zonas mais rasas próximas da EACF.

Figura 21 - Variação temporal de PCBs ICES em sedimentos da Baía do Almirantado.

Linha vermelha: linha de tendência; linhas azuis: intervalo de predição

A distribuição de congêneres de PCBs em sedimentos apresentou um perfil ligeiramente diferente dos solos, sendo dominada por penta-PCBs > tetra-PCBs > hexa-PCBs. Esses três homólogos representam 73-100% do total de PCBs em sedimentos superficiais (Figura 22). Os congêneres pentaclorados (101, 110, 95 e 118) foram predominantes seguidos pelos congêneres tetraclorados (52, 44 e 49). Os congêneres mais pesados (138 e 153) também foram observados com frequência nas amostras. Nas proximidades da EACF os congêneres leves (<4 cloros) predominaram em todo o período (média 44 \pm 26%). Na área controle os congêneres mais leves também predominaram representando em média 50 \pm 13% do total de PCBs. Os pentaclorados contribuíram com 36 e 38% nas proximidades da EACF e área controle, respectivamente. Os congêneres mais pesados (> 6 cloros) apresentaram variabilidade entre 0 e 45% nas proximidades da EACF, enquanto na área controle, a contribuição não ultrapassou 21%. A partir de 2016, nota-se um aumento na proporção de congêneres leves, incluindo triclorados principalmente os congêneres 28, 33 e 18 nas proximidades da EACF (Figura 23).

Figura 22 - Contribuição relativa (%) de congêneres de PCBs em sedimentos (valores médios/ano).

Figura 23 - Variação anual dos congêneres de PCBs em sedimentos. (%)

Estudos pretéritos na Baía do Almirantado (MONTONE; TANIGUCHI; WEBER, 2001) também detectaram predominância de congêneres mais leves (< PCB-101) em sedimentos representando 56,2% do total. Resultados similares foram encontrados em sedimentos da Ilha James Ross, nos quais predominaram congêneres mais leves, principalmente PCB-52 e PCB-28 (KLÁNOVÁ et al., 2008). Na Península Fildes, os congêneres de PCBs com baixo teor de cloro também dominaram as amostras de sedimentos coletadas no verão austral 2009/2010 (WANG et al., 2012). Os sedimentos coletados no inverno austral de 2008 ao longo da plataforma continental da Península Antártica Ocidental apresentaram predominância dos congêneres hexaclorados variando de 40 a 100% do total (ZHANG et al., 2013). No Mar de Ross, os congêneres hexaclorados também predominaram nas amostras de sedimentos,

enquanto na Passagem do Drake, a maior contribuição foi dos tetraclorados (DENG et al., 2020). A proporção entre congêneres leves e pesados pode ser considerada um indicador da distância/via de contaminação (NAFFRECHOUX et al., 2015).

Os congêneres PCB-28 e PCB-52 são mais voláteis, e ligeiramente mais hidrofílicos do que PCB 138, 153 e 180, os quais são menos voláteis, mas adsorvem fortemente em fases sólidas. Assim um alto valor de R pode estar relacionado à deposição atmosférica de PCB, enquanto que um baixo valor de R pode ser consistente com uma fonte local de PCB. Essas razões devem ser analisadas criteriosamente, pois os produtos comerciais possuem quantidades variáveis desses congêneres.

A evolução temporal da razão R mostra grande variabilidade (Figura 24). Para os sedimentos coletados próximos da EACF, a razão variou de 0,1 a 0,9 (média 0,51 \pm 0,18). Valores menores que 0,6 foram observados em 2012 e 2013 indicando fontes locais. Durante esse período foram realizadas manobras de desmonte da EACF antiga após o incêndio. Entre 2016 e 2019 também foram observados valores de R<0,60, os quais podem ser associados com as obras da nova EACF. Em 2020 o valor de R aumentou para 0,70 indicando contribuição de deposição atmosférica. A presença de congêneres leves (di, tri e tetra) também corrobora essa indicação.

Figura 24 - Variação nos valores de R em sedimentos da Baía do Almirantado.

Para as áreas controle, a razão R variou de 0,34 a 1 (média 0,67 \pm 0,11) indicando predominância de deposição atmosférica de PCBs. A predominância de congêneres mais leves (tri e tetra) também reforça essa indicação.

No geral, observa-se uma tendência estacionária nos valores de R (~0,5) para a região da EACF (Figura 25), enquanto que nas áreas controle uma ligeira redução indicando aumento da contribuição de fontes pontuais nos últimos anos.

Para avaliar potencial efeito tóxico em organismos bentônicos, os valores de PCBs totais foram comparados com valores propostos pela *National Oceanic and Atmospheric Administration* (NOAA), agência do governo dos Estados Unidos, a qual estabeleceu valores limiares (Threshold Effect Level, TEL = 21,5 ng g⁻¹) e de efeitos prováveis em organismos (Probable Effect Level, PEL = 189 ng g⁻¹) (BUCHMAN, 2008). Os valores de PCBs em sedimentos próximos de TEL foram observados apenas na zona rasa da EACF (Tanques e Heliponto 30m) em 2020. Para o período de 2012 a 2019, os valores de PCBs totais (<0,003 a 6,6 ng g⁻¹) permaneceram abaixo de TEL e PEL. Considerando a somatória dos congêneres propostos pelo Conselho Internacional para a Exploração do Mar (ICES), todos valores de PCBs_{ICEs} estavam abaixo dos valores propostos pela NOAA (Figura 26).

Figura 26 - Valores de PCBs totais e PCBs-ICEs em sedimentos da Baía do Almirantado.

4.2 Distribuição de HPAs em solos e sedimentos da Baía do Almirantado

As concentrações de HPAs totais em solos variaram de < 0,6 - 79.158 ng g⁻¹ peso seco (Tabela 13). As maiores concentrações foram observadas em solos no entorno da EACF em 2012, logo após o incêndio, com valores médios de HPAs 38.822 ± 24.787 ng g⁻¹ peso seco (Figura 27). No ano seguinte, os valores mantiveram a mesma ordem de grandeza nos pontos próximos do antigo gerador (14.670- 54.542 ng g⁻¹ peso seco) onde ocorreu o incêndio.

O grande incêndio que ocorreu na estação em fevereiro de 2012 destruiu 70% das instalações (GUERRA et al., 2013), incluindo os laboratórios de pesquisa, materiais, equipamentos, pertences pessoais e os geradores de energia (quatro movidos a diesel e um por etanol) (COLABUONO et al., 2015). Esse evento acarretou um grande derrame de combustível no solo e consequentemente no sedimento próximo ao local da EACF. Esse óleo diesel foi parte para o solo e uma parte sofreu uma combustão incompleta em função do fogo, gerando HPAs relativamente mais pesados. Em função disso, a partir de 2014, observou-se uma redução de uma ordem de grandeza nos valores médios de HPAs na área da EACF (média 1923 \pm 737 ng g⁻¹). Entretanto, os valores ainda são 2 ordens de grandeza maiores que os detectados por Oliveira et al. (2007) em amostras de solo coletadas nas proximidades dos tanques de combustível da EACF durante o verão austral de 2003.

Os arredores da EACF apresentaram valores médios de HPAs entre 430 ± 672 a 10.355 \pm 15.519 ng g⁻¹ (Figura 28). A grande variabilidade foi devida aos altos valores encontrados nas proximidades do módulo da antiga Base G, sendo que alguns pontos ultrapassaram 10.000 ng g⁻¹ para HPAs totais. A chamada Base G foi a primeira estação científica permanente estabelecida na Baía do Almirantado pelo Reino Unido em 1943 e que funcionava como uma estação baleeira e foi ocupada até 1961 (HEADLAND; KEAGE, 1985). Aparentemente, essa estação foi abandonada e muitos materiais foram deixados para trás, o que inclui o local altamente contaminado por óleo. A estação foi desmontada no final do século 20 pela Marinha do Brasil, mas o solo continuou contaminado com altas concentrações de óleo e consequentemente de HPAs. Além disso, após o derrame de óleo ocorrido devido ao incêndio da EACF, as áreas próximas também foram contaminadas devido à circulação de pessoas e máquinas que manipulavam o solo com óleo.

	2012a	2012b	2013	2014	2015	2016	2017	2018	2019	2020
solo EACF										
n amostral	8	12	11	14	14	14	14	4	4	4
min-max	7492-79.158	1106-64.770	30 - 54.542	3,5 - 8.937	63 -7.989	66-5.387	32-25.210	479-1.998	606-2.839	635-3.762
média	38.823	12.265	8.023	1.852	2.343	1.603	3.392	1.238	1.426	1.605
Desvio padrão	24.782	18.706	15.962	2.356	2.620	1.421	6.597	634	983	1.453
arredores EACI	F									
n amostral		3	3	3	3	3	3	3	3	3
min-max		245-1.902	514-11.542	4,9 - 1.313	17-1.206	87-8663	1031-28.269	235-2.794	16-1.968	131-19.849
média		1.205	566	38	43	4.375	1.398	269	76	198
Desvio padrão		985	74	48	36	6.064	518	48	70	95
áreas controle										
n amostral		1	5	4	4	5	5	5	4	5
min-max			<0,6 - 412	<0,6 - 5	<0,6 - 50	3 - 18,7	13-922	9 - 88,2	19-38	70-1.893
média		190	94	2	21	13	203	56	27	89
Desvio padrão			178	2	21	6	402	34	8	90

Tabela 13 - HPAs totais em solo da Baía do Almirantado (ng g⁻¹).

2012a = 14 dias após incêndio, 2012b = 30 dias após incêndio

Figura 27 - HPAs totais em solo da EACF e arredores no período de 2012 a 2020 (ng g⁻¹).

Figura 28 - Valores médios de HPAs nos arredores da EACF e na área controle durante o período de 2012 a 2020 (ng g⁻¹).

Áreas altamente contaminadas por HPAs podem ser observadas em locais onde ocorreram derramamentos acidentais de petróleo (Tabela 14). Na Estação britânica Signy (Ilhas Orcadas do Sul) foram detectados valores de 71 000 ng g⁻¹ em amostras de solo contaminado por óleo diesel (CRIPPS, 1992). Kennicutt et al. (1992) também encontraram valores de HPAs na faixa de 841- 85.659 ng g⁻¹ em solos na Ilha Anvers, um ano após o naufrágio do navio "Bahia Paraíso" nas proximidades da Estação Americana Palmer.

período	n	Área de amostragem	Concentração	Referências
1990	12	Ilha Anvers – Estação Palmer (EUA)	841-85.659	Kennicutt et al. 1992
1989	1	Ilhas South Orkney	71.000	Cripps et al. 1992
	10	I. Ross - McMurdo Dry Valley	41-8.105	Aislabie et al. 1999
1997	20	I. Ross - McMurdo (EUA)	5,3 - 88.452	Mazzera et al. 1999
2003	242	Baia do Almirantado - EACF	0,05 - 3,84	Oliveira et al. 2007
2004	10	Estação Jubany (0-5 cm)	12 <u>+</u> 1 a 42 <u>+</u> 3	Curtosi et al. 2007
		70-75 cm	162 <u>+</u> 15 a 1182 <u>+</u> 113	Curtosi et al. 2007
2005	9	Ilha James Ross	34,9-171	Klánová et al. 2008
2008-09	17	Ilha Deception	4,4 - 47,2	Cabrerizo et al. 2016
2008-09	2	Barrientos	9,4 e 99,3	
2008-09	1	Ilha Livingston	54,3	
2008-09	1	Ilha Pinguin	66,1	
2013	23	Península Fildes	136	Na et al. 2020
2014	4	Península Fildes	95,1	Na et al. 2020
2015	29	Península Fildes	134	Na et al. 2020
2016	14	Península Fildes	131	Na et al. 2020
2017	8	Península Fildes	64	Na et al. 2020
2018	12	Península Fildes	57,6	Na et al. 2020
2019	11	Península Fildes	446	Na et al. 2020
2015	26	Estação Artigas (Uruguai)	1,36-51.650	Rodriguez et al. 2018
fev/16	33	Ilha Rei George	1,9- 34,9 (12,1 <u>+</u> (9,3)	Deelaman et al. 2020
fev/17	11	Ilha Rei George	1,8 - 32,9 (11.2 <u>+</u> 9,7)	Deelaman et al. 2020
		Peninsula Fildes ASPA 125/ASPA		Alekseev
2018	6	150	550-1667	&Abakumov, 2020
2019/20	11	Base São Clemente de Ohrid (Bulgária)	170 - 200	Abakumov et al. 2021
2012	24	Baia do Almirantado	245 -69.116	este estudo
2013	19	Baia do Almirantado	<0,6 - 54542	este estudo
2014	21	Baia do Almirantado	<0.6 - 8.947	este estudo
2015	21	Baia do Almirantado	<0,6-7.989	este estudo
2016	22	Baia do Almirantado	3 - 8.663	este estudo
2017	23	Baia do Almirantado	9 - 28.269	este estudo
2018	15	Baia do Almirantado	9,0 - 2794	este estudo
2019	13	Baia do Almirantado	19 - 1968	este estudo
2020	12	Baia do Almirantado	0,4 - 19.849	este estudo

Tabela 14 - HPAs em solos de regiões antárticas (ng g⁻¹ peso seco).

Perto de estações de pesquisa também é possível encontrar concentrações de até milhares de ng g⁻¹ como observado em alguns pontos ao redor da estação ucraniana "Acadêmico Vernadsky", cujo conteúdo de HPAs atingiu 94.771,2 ng g⁻¹ (ABAKUMOV et al., 2021). Na estação americana McMurdo, localizada na Ilha Ross, também foram detectados altos valores (88.452 ng g⁻¹) em solo próximo das bombas de combustível (MAZZERA et al., 1999). Estudo realizado por Rodriguez et al (2018), também indicou um alto valor de HPAs (51.610 ng g⁻¹) em solo próximo dos tanques de combustível da Estação Científica Uruguaia Artigas.

Outras estações antárticas também apresentam valores da mesma ordem de grandeza (Tabela 14) como observado por Curtosi et al. (2007) em solos próximos da estação argentina Jubany e nas proximidades da estação uruguaia "Artigas" (RODRÍGUEZ et al., 2018). Por outro lado, baixas concentrações de HPAs, inclusive próximas do limite de detecção, foram relatadas para solo em diversas áreas nas proximidades de estações antárticas tanto na Ilha Rei George (DEELAMAN et al., 2020; NA et al., 2020; RODRÍGUEZ et al., 2018) como na Ilha Livingston, que também faz parte das Shetlands do Sul (ABAKUMOV et al., 2021).

Estudos de contaminação ambiental de HPAs também avaliam 16 compostos prioritários estabelecidos pela Agência de Proteção Ambiental dos Estados Unidos (EPA) principalmente devido a sua toxicidade e ocorrência ambiental. A concentração de 16 PAHs prioritários na superfície do solo nos arredores da EACF atingiu o nível de "contaminado (200-600 ng g⁻¹)" ou "fortemente contaminado (>1000 ng g⁻¹)" segundo padrão proposto por Maliszewska-Kordybach (1996). Entretanto, com base na classificação de Baumard et al. (1998) para sedimentos da camada superfícial, a maioria dos locais ao redor da EACF pode ser categorizada com níveis moderados de contaminação por HPAs (100 -1000 ng g⁻¹). Valores acima de 5000 ng g⁻¹, caracterizando contaminação muita alta, foram encontrados na área da EACF no verão austral de 2012 no ponto #7(22.438 ng g⁻¹), em frente onde ocorreu o incêndio da EACF, bem como em 2013 no ponto #9 (5546 ng g⁻¹) localizado na área do antigo gerador (Figura 29).

A partir de 2014 os valores médios de Σ 16HPAs em solos da área de EACF mantiveramse entre 207 e 1089 ng g⁻¹, enquanto as imediações da antiga base G ainda apresentou valores médios acima de 1000 ng g⁻¹, inclusive acima de 5000 ng g-1 (Figura 30). Altos valores encontrados na base G podem estar associados com o uso constante dessa área já contaminada, logo após o incêndio e intensificando-se com o início das obras da nova EACF a partir de 2016.

Nas proximidades da antiga base G, também foram observados valores acima de 5000 ng. g⁻¹ durante os verões austrais de 2013 (7160 ng g⁻¹), 2016 (6539 ng g⁻¹), 2017 (20.621 ng g⁻¹) e 2020 (10.799 ng g⁻¹).

Figura 30 – Valores de mediana de Σ_{16} HPAs em solo no período de 2012 a 2020 (ng g⁻¹).

Figura 29 - Σ₁₆HPAs em solo da EACF e arredores no período de 2012 a 2020 (ng g⁻¹).

2500 25000 2000 20000 1500 15000 1000 10000 500 5000 n arredores EACH controle base G ■ 2012 ■ 2012 ■ 2013 ■ 2014 ■ 2015 ■ 2016 ■ 2017 ■ 2018 ■ 2019 ■ 2020 ■ 2012 ■ 2013 ■ 2014 ■ 2015 ■ 2016 ■ 2017 ■ 2018 ■ 2019 ■ 2020

Para avaliação da tendência interanual foram utilizados os dados da somatória de 16 HPAs prioritários. Uma redução acentuada dos valores de Σ_{16} HPAs em solo pode ser observada quando se compara com os valores obtidos logo após o incêndio na área da EACF (Figura 31). Por outro lado, observa-se uma tendência de aumento nos últimos anos nas imediações da base G, refletindo o uso intensivo da área como abordado anteriormente. Outros dois pontos nos arredores da EACF mantiveram uma tendência constante com valor médio de 198 ± 252 ng g⁻¹ Para os pontos controle também foi observada uma tendência constante com valor médio de 29 ± 84 ng g⁻¹.

Embora o monitoramento de longo prazo seja essencial para revelar as tendências de vários contaminantes ambientais, há poucos estudos em solo relevantes na Antártica. Na et al. (2020) avaliaram Σ_{15} HPAs na atmosfera e solo da Península Fildes, Ilha Rei George durante o período de 7 anos (2013-2019). Os resultados não mostraram tendência de variação interanual em Σ_{15} HPAs no solo. Por outro lado, houve uma tendência de declínio para HPAs no ar. Os Σ_{15} HPAs totais nas amostras de solo variaram entre 20,9 ng g⁻¹ dw e 2197 ng g⁻¹ dw (média de 155 ng g⁻¹ dw). As maiores concentrações de HPAs foram detectadas perto do aeroporto,

estações e em habitats de animais. No entanto, a ocorrência de HPAs no solo da Península Fildes apresentaram diferença espacial devido a diversas atividades locais.

Levando-se em consideração os compostos individuais de HPAs também foi observado uma redução nas suas concentrações, porém em proporções diferentes de acordo com suas propriedades físico-químicas (Apêndice A).

Linha vermelha: linha de tendência; linhas azuis: intervalo de predição

No período de 2012 a 2020, do total de compostos avaliados, todos apresentaram uma redução da concentração no solo na área da EACF, variando de 11,4% (benzo(e)pireno) a 99,74% (antraceno). Não se obtém uma correlação linear significativa entre as propriedades dos compostos e a taxa de remoção no período avaliado, mas algumas tendências podem ser observadas. De forma geral, o comportamento foi similar em relação à pressão de vapor e à solubilidade (Figura 32). As maiores reduções de concentração foram obtidas para compostos com maior pressão de vapor (mais voláteis) e maior solubilidade, indicando que esses processos devem ter sido importantes para a atenuação das concentrações. Compostos com pressão de vapor inferior a 10^{-7} mmHg não atingem mais do que 80% de remoção, assim como compostos com solubilidade inferior a 9×10^{-3} mg L⁻¹.

Figura 32 - Relação entre as propriedades dos compostos (pressão de vapor e solubilidade) e a redução de concentração observada.

Também se observa uma relação entre a redução de concentração e a hidrofobicidade do composto, indicado pelo log Kow (Figura 33). Compostos mais hidrofóbicos (maior Kow) de forma geral apresentaram uma persistência maior. Por exemplo, compostos com log Kow maior que 6 tiveram uma redução de concentrações da ordem de 40% (mediana), enquanto compostos com log Kow inferior a 5 tiveram reduções superiores a 90% (mediana).

Assim, pode-se concluir que a taxa de atenuação no período monitorado foi dependente das propriedades dos contaminantes, ainda que outros processos (como movimentação de massa para realização de obras civis) tenham impactado na distribuição dos contaminantes.

Tanto a solubilidade quanto a pressão de vapor se relacionaram de forma geral com a porcentagem de remoção, indicando que os processos de volatilização e dissolução e transporte em fase dissolvida podem ter sido mecanismos importantes. Considerando que as amostras são de solo superficial, é esperado que esses processos de atenuação sejam significativos. É possível ainda que a biodegradação tenha auxiliado em parte na degradação dos compostos, sendo que os HPAs mais hidrofóbicos (cadeias mais longas) tendem a ser mais recalcitrantes. Assim o log Kow foi um bom indicador da persistência dos contaminantes no local, sendo uma propriedade indicativa do comportamento dos poluentes em relação a diferentes processos, como volatilização, dissolução e biodegradação.

O principal óleo combustível utilizados em estações antárticas é o *Diesel Fuel Arctic* (DFA) que apresenta altas concentrações de naftaleno, fluoreno, fenantreno e dibenzotiofeno e seus derivados alquilados (KENNICUTT et al., 1992). A distribuição de HPAs no DFA utilizado na EACF foi obtida por Barroso (2010) a qual mostra a predominância de naftaleno e alquilnaftalenos (Figura 34). O perfil cromatográfico é apresentado na Figura 35.

Figura 33 - Relação entre a remoção dos compostos HPAs no período de 2012 a 2020 e o log Kow.

Figura 34 - Log das concentrações de HPAs obtidas no *Diesel Fuel Arctic* - DFA (ng g⁻¹ peso seco).

Fonte: Barroso (2010)

Figura 35 - Cromatograma de hidrocarbonetos policíclicos aromáticos (HPAs) em Diesel Fuel Arctic.

Fonte: Barroso (2010)

Portanto, a predominância de HPAs leves e homólogos alquilados é esperada para a região antártica uma vez que esses compostos são geralmente atribuídos ao uso de diesel especial como combustível nas estações de pesquisa. Os musgos e líquens localizados próximos da estação também foram contaminados por óleo, devido a sua utilização e volatilidade (CABRERIZO et al., 2012) e também em função do incêndio de 2012 (COLABUONO et al., 2015).

As amostras de solo na área da EACF são compostas principalmente por naftalenos alquilados em todos os períodos coletados na área da EACF, exceto em 2020 cuja distribuição representou 34,8 a 45,1% do total de HPAs. As maiores porcentagens (51,1 a 96,9, mediana 85,7) foram observadas no mês seguinte ao incêndio ocorrido em fevereiro de 2012. Os arredores da EACF apresentaram valores médios entre 10,4 e 46,3%, exceto logo após o incêndio, que atingiu 65,9% de naftalenos alquilados. Já os pontos controle apresentaram porcentagens variáveis (31,3 a 89,5).

Além dos naftalenos alquilados, outros HPAs leves (com 2-3 anéis aromáticos) como fluorenos, fenantrenos e compostos contendo enxofre como os dibenzotiofenos também estavam presentes na maioria das amostras de solo, principalmente na área da EACF. A predominância de HPAs leves também foi observada em outros estudos realizados na Ilha Rei George. Solos coletados próximo da estação chinesa "Great Wall", os HPAs com três e quatro anéis (leves) foram os mais abundantes representando 48,3% e 27,1% do total, respectivamente (DEELAMAN et al., 2020). HPAs leves também predominaram em solos nas proximidades da estação argentina Jubany (CURTOSI et al., 2007). Estudos realizados por Alekseev e Abakumov (2020) mostraram a predominância de HPAs leves em solos nas áreas antárticas especialmente protegidas (ASPA 125 e ASPA 150) na Península Fildes.

Em outras ilhas próximas os resultados foram semelhantes. Na estação búlgara, Ilha Livingston, foram encontrados HPAs leves em praticamente todos os pontos amostrados indicando origem petrogênica (ABAKUMOV et al., 2021). Estudos anteriores realizados por Cabrerizo et al. (2016) na Ilha Livingston e demais ilhas próximas (Deception, Barrientos e Pinguim) também apresentaram perfil dominado por HPAs de baixo a médio peso molecular (3 e 4 anéis aromáticos), cuja contribuição representou ~ 60 % de Σ HPAs.

As razões entre HPAs com 2-3 anéis aromáticos (HPAs leves) e HPAs com 4-6 anéis aromáticos (HPAs pesados) podem indicar a origem desses hidrocarbonetos. Valores acima de 1 indicam origem petrogênica e valores abaixo de 1 indicam origem pirogênica.

A grande maioria dos pontos (92%) apresentou razão >1 indicando origem petrogênica principalmente ao redor da EACF. A origem pirogênica foi observada nas proximidades da antiga Base "G" principalmente no período de 2018-2020. Razões similares foram encontradas em solos próximos da Estação Uruguaia "Artigas" (RODRÍGUEZ et al., 2018). O motivo da presença dos compostos mais pesados provavelmente é em função do intemperismo, uma vez que o óleo da região foi sendo degradado, sendo que os compostos mais leves foram evaporando enquanto que os compostos mais pesados se acumularam.

Além da razão HPAs leves/pesados, diferentes razões isoméricas de HPAs têm sido usadas para identificar a natureza da origem dos HPAs (YUNKER et al., 2002). O petróleo geralmente contém mais fenantreno em relação ao antraceno, que é um isômero aromático tricíclico termodinamicamente mais estável, de modo que a razão fenantreno/antraceno (FEN/ANT) é muito alta no caso de poluição petrogênica com HPAs, e mais baixa em casos de contaminação pirolítica. Além da relação FEN/ANT, a razão fluoranteno/pireno (FLA/PIR) também pode indicar a origem dos HPAs. Assim, HPAs com massa molecular 178 (fenantreno e antraceno) e 202 (fluoranteno e pireno) são geralmente usados para distinguir entre fontes pirogênicas e petrogênicas (KHAIRY et al., 2009). As proporções isoméricas de HPAs usadas são apresentadas na Tabela 15 e os resultados no Apêndice D.

Razão isomérica	Faixa de valores/Possíveis fontes de HPAs	Referências		
fenantreno (antraceno)	> 10 petróleo < 10 pirólise	Khairy et al. (2009); Yunker et al. (2002)		
fluoranteno (pireno)	< 1,0 petróleo > 1,0 combustão	Khairy et al. (2009)		
<u>Antraceno</u> (antraceno + fenantreno)	<0,10 petróleo/Baseline >0,10 combustão			
Fluoranteno (fluoranteno+pireno)	<0,40 petróleo/Baseline 0,40-0,50 Combustível fóssil líquido (veículo e petróleo bruto), combustão >0,50 combustão de grama, madeira ou carvão	Yunker et al. (2002)		
<u>_benzo[a]antraceno</u> (benzo[a]antraceno + <u>criseno)</u>	<0,20 petróleo 0,20-0,35 mista >0,35 combustão			

Tabela 15 - Razões isoméricas para avaliação de possíveis fontes de HPAs.

A razão FEN/ANT mostrou que 70,6% das amostras apresentaram valores abaixo de 10 indicando uma forte contribuição pirogênica. Essa indicação é reforçada na razão FLA/PIR onde 48% das amostras apresentaram valores acima de 1.0, os quais são associados com fontes pirogênicas (apêndice D). Combinando as duas razões (FEN/ANT e FLA/PIR) é possível observar que a predominância das fontes variou ao longo do período, bem como a presença de fontes mistas (Figura 36).

A razão antraceno/(antraceno + fenantreno) também mostrou que a região da EACF recebe tanto fontes de petróleo como de combustão. No período de 2012 a 2017 predominaram as fontes pirogênicas na área da EACF e arredores. Entre 2018 e 2020 a origem petrogênica foi mais evidente. Já, a razão fluoranteno/(fluoranteno + pireno) mostra fontes de combustão em todos os períodos para a maioria dos pontos da EACF e arredores. Aplicando a razão benzo[a]antraceno/(benzo[a]antraceno + criseno) foi possível observar fontes mistas de petróleo e combustão para a maioria dos pontos na EACF e proximidades. Os pontos controles alternam entre fontes petrogênicas, pirogênicas ou mistas.

Figura 36 - Biplot HPAS (fenantreno/antraceno) e (fluoranteno/pireno).

Para elucidar as possíveis fontes, também foram elaborados gráficos "biplots" entre algumas razões isoméricas obtidas. A razão binária Σ HPA leves/ Σ HPAs pesados e fluoranteno /(fluoranteno + pireno) indicou predominância de fontes pirogênicas, associadas com emissão de óleo diesel (Figura 37). A combinação das razões antraceno/(antraceno + fenantreno) e benzo[a]antraceno/(benzo[a]antraceno + criseno), está apresentada na Figura 38 onde é possível observar a contribuição de fontes mistas para a região.

Figura 37 - Biplot HPAs leves/pesados e fluoranteno/fluoranteno + pireno.

Figura 38 - Biplot HPAS: antraceno/(antraceno+fenantreno) e (benzo[a]antraceno/ benzo[a]antraceno + pireno).

Resultados similares também foram observados por Rodriguez et al. (2018) em amostras de solos da Estação Uruguai Artigas. Com base nas razões aplicadas ((antraceno/(antraceno + fenantreno) vs fluoranteno/(fluoranteno + pireno)) e Benzo[a]antraceno/(benzo[a]antraceno + criseno) vs fluoranteno/(fluoranteno + pireno)), as principais fontes de HPAs nesses locais foram petróleo (óleo bruto) e combustão. Deelaman et al. (2020) também aplicaram diversas razões binárias em solos coletados nas proximidades de 5 estações de pesquisa na Ilha Rei George (Great Wall, Artigas, Frei Montalva, Belingshausen, King Sejong). Embora as razões binárias de diagnóstico indicassem fontes petrogênicas como as principais fontes de emissão de HPA, a análise de componentes principais e a análise de agrupamento hierárquico sugeriram que geradores de eletricidade (22,84%) e gasolina leve (18,94%) são as principais fontes no solo do Rei George Ilha, Antártica.

De uma maneira geral as razões entre HPAs e suas as combinações cruzadas reforçam a existência de fontes mistas de introdução de HPAs, tanto petrogênicas (vazamentos de combustível e derramamentos de óleo) quanto pirogênicas (combustão incompleta de combustíveis derivados de petróleo e petróleo bruto, emissões de diesel e acumulação e degradação do óleo).

Como não há uma legislação específica sobre contaminação na Antártica, os resultados de HPAs foram avaliados segundo a Resolução CONAMA nº 420, de 28 de dezembro de 2009, a qual dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. A Tabela 16 apresenta os valores de prevenção e intervenção de HPAs em solos contaminados.

Substância	valor de prevenção (VP)	valor de intervenção (VI) (residencial)
antraceno	0,3	4600
antraceno	0,3	4600
Benzo[a]antraceno	0,2	7
Benzo[b]fluoranteno	0,7	7,2
Benzo[k]fluoranteno	0,8	75
Benzo[g,h,i]perileno	0,5	-
Benzo[a]pireno	0,1	0,8
criseno	1,6	600
Dibenzo[a,h]antraceno	0,2	0,8
fenantreno	3,6	40
Indeno [1,2,3-c,d]pireno	0,4	8
naftaleno	0,7	1,8

Tabela 16 - Valores orientadores para solo proposta na Resolução Conama 420 (µg g-1 peso seco).

Fonte: https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2014/12/valores-orientadores-nov-2014.pdf

Concentrações de HPAs ultrapassaram os valores de prevenção (VP) estabelecidos pela Resolução Conama 420/2009 para os compostos naftaleno, antraceno, benzo[a]antraceno, benzo[a]pireno e indeno[1,2,3-c,d-]pireno em amostras de solo coletadas 14 dias após o incêndio. A presença de naftaleno acima do VP foi observada até 2013 e o benzo[a]antraceno até 2016, porém restritos aos pontos próximos do antigo gerador da EACF. Após 2016, concentrações de HPAs acima dos VPs foram observadas próximo da Módulo Rádio Emergência (antiga base inglesa) que passou a ter intensa circulação de veículos e área de manobras na região com o início das obras da nova EACF.

HPAs em sedimentos marinhos variaram entre 1,8 e 904 ng g⁻¹ peso seco (Tabela 17) e são comparáveis aos obtidos por Martins et al. 2004 nas proximidades da EACF no período de 1997 a 1998. Entretanto, são uma ordem de grandeza maiores que os obtidos por Bícego et al. (1998) para coletas anteriores a 1993 na mesma região (Tabela 18). As maiores concentrações ocorreram no ponto em frente à EACF, Heliponto 30 m, tanto no verão 2018/19 (401 ng g⁻¹)

como no verão 2019/20 (904 ng g⁻¹). A região entremarés próxima aos tanques de combustível também apresentou as concentrações mais altas em 3 verões consecutivos 2012/13 (628 ng g⁻¹), 2013/14 (496,0 ng g⁻¹) e verão 2014/15 (413,9 ng g⁻¹) (Figura 39).

	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Sedimentos (20 – 30 metros de profundidade										
Tanques 30m		27	10	4	19	148	22	401	904	
Heliponto 30m		17	174	2	31	36	43	288	192	
Tanques 60m			8	5		64	14	128	137	
Heliponto 60m P.Ullman	447	6	21	10	23	52 34	74 6	127 372	144 217	
Entremarés										
Base G	218		10	72						
Tanques	628		496	414						
Heliponto	361		43	65						

Tabela 17 - HPAs em sedimentos da Baía do Almirantado (ng g-1).

Figura 39 - HPAs totais em sedimento nas regiões entremarés e proximidades da EACF no período de 2012 a 2020

(ng g⁻¹).

O aumento de HPAs próximo da EACF observado nos últimos dois anos corresponde à fase final de obras e inauguração da nova EACF, o qual envolveu centenas de pessoas na região e muita movimentação de máquinas e tráfego de veículos polares. Interessante observar que entre 2013 e 2017 os valores de HPAs não ultrapassaram 175 ng g⁻¹ o que pode refletir a menor ocupação da área, uma vez que o número de pessoas foi reduzido ao grupo de apoio/manutenção e poucos pesquisadores nesse período.

período	n	área de amostragem	concentração	referências
2012	4	Baía do Almirantado	218 - 447	este estudo
2013	3	Baía do Almirantado	6,1 - 26,8	este estudo
2014	7	Baía do Almirantado	7,6 - 496	este estudo
2015	7	Baía do Almirantado	1,8 - 414	este estudo
2016	3	Baía do Almirantado	18,7 - 30,7	este estudo
2017	5	Baía do Almirantado	33,7 - 147,5	este estudo
2018	5	Baía do Almirantado	6,3 - 73,6	este estudo
2019	5	Baía do Almirantado	94 - 401	este estudo
2020	5	Baía do Almirantado	137 - 904	este estudo
1998-2000	17	Baía do Almirantado	95-2705	Martins et al. (2004)
1990-2004	6	Baía do Almirantado	0,75 - 234	Bicego et al., (2009)
1989-92	3	Estação Davis (Austrália)	7 -7270	Green et al. (1992)
1990	5	Estação Palmer (EUA) antiga	5.643-59.478	Kennicutt et al. (1992)
	11	Estação Palmer (EUA)	201 - 14.491	
1991-93	15	Enseada McMurdo (EUA)	6.267-6.339	Kennicutt et al. (1995)
2004	10	Estação Jubany (Argentina)	36 - 1908	Curtosi et al. (2009)
2005	9	Ilha James Ross	1,4 - 205	Klanova et al. (2008)
2005/07	32	Peninsula Fildes	0,54 - 228,2	Préndez et al. (2011)
2015	26	Estação Artigas (Uruguai)	21,5 - 751	Rodriguez et al. (2018)
2010-11	16	Enseada Potter (I.Rei George)	12 - 210	Dauner et al. (2015)
2010-12	68	Baia Maxwell (I.Rei George)	4,6 - 146	Vodopivez et al. (2021)

Tabela 18 - HPAs em sedimentos de regiões antárticas (ng g⁻¹ peso seco).

Os valores de HPAs em sedimentos nas proximidades da EACF também são comparáveis às outras estações de pesquisas na Ilha Rei George (CURTOSI et al., 2009; DAUNER et al., 2015; PRÉNDEZ et al., 2011; RODRÍGUEZ et al., 2018).

Os valores de HPAs totais e Σ_{16} HPAs também foram comparados com valores de referência propostos pela NOAA, a qual estabeleceu valores limiares (Threshold Effect Level, TEL =1.684 ng g⁻¹) e de efeitos prováveis em organismos (Probable Effect Level, PEL =16.770 ng g⁻¹). TEL é a concentração abaixo da qual a probabilidade de encontrar efeitos adversos é baixa, e PEL é a concentração química acima da qual os efeitos adversos são frequentemente encontrados. Tanto os valores e HPAs totais como Σ 16HPAs estão abaixo de TEL e PEL, indicando que não há potencial tóxico para os organismos bentônicos nas proximidades da EACF. Por outro lado, comparando com os valores propostos por Buchmann (2008) para a soma de HPAs leves (TEL = 312 e PEL =1442 ng g⁻¹) e para a soma de HPAs pesados (TEL = 655 e PEL = 6676 ng g⁻¹), as concentrações de HPAs leves ficaram acima desses valores para os pontos localizados nas entremarés Heliponto (2012) e tanques (2014), bem como em frente ao Heliponto (2020). Para os HPAs pesados obtidos neste estudo ficaram muito abaixo desses valores. Entretanto, nenhuma concentração ultrapassou os valores de PEL tanto para os HPAs leves como os pesados.

Para avaliar a tendência temporal também foram incluídos alguns dados pretéritos baseados nos estudos de Martins et al. (2004) e Bicego et al. (2009) na área da EACF, englobando o período de 1990 a 2020. A variação interanual de HPAs em sedimento é marcada por 4 fases bem evidentes (Figura 40). A primeira, (1990 a 2012), mostra um aumento gradual de HPAs até 2002 e depois uma redução até 2010. Na segunda fase (2012), marcada pelo incêndio da EACF, mostra um aumento de uma ordem de grandeza em relação aos dados pretéritos. A terceira fase (2012 a 2018) mostra uma redução nos valores médios e mediana de HPAs seguindo um padrão semelhante à primeira fase. A quarta fase mostra um aumento gradual de HPAs comparável a 2012 quando ocorreu o incêndio da EACF. Esse aumento pode refletir a ocupação crescente coincidindo com a finalização da nova EACF e retorno às atividades de pesquisa.

Figura 40 - HPAs em sedimentos no período de 1990 a 2020 (ng g⁻¹)

Nos sedimentos, os HPAs de baixo peso molecular (compostos com dois a três anéis aromáticos) apresentaram concentrações entre 1,4 ng g⁻¹ Heliponto 30m (2015) e 689 ng g⁻¹ Heliponto 30 m (2020) (Apêndice E). HPAs de alto peso molecular (compostos com quatro a seis anéis aromáticos) variaram de nd–215 ng g⁻¹ em P.Ullman (2012, 2013) e Heliponto 30m (2020), respectivamente.

Os homólogos alquilados, como metilnaftaleno, dimetilnaftaleno e trimetilnaftaleno, predominaram nas amostras, com exceção dos pontos próximos aos Tanques e Heliponto entre as profundidades de 30 a 60 m. A maior concentração de alquilnaftalenos foi detectada nos pontos entre marés próximos da EACF (Tanques, Heliponto, Base G) em 2012, logo após o incêndio. Nesses pontos estão concentradas as áreas de tráfego de embarcações e ancoragem dos navios de apoio logístico para a EACF. Também foi observada a presença de HPAs de alto peso molecular em função da acumulação de óleo e sua degradação em função da saída do esgoto da EACF.

A redução de compostos alquilados pode ocorrer devido ao intemperismo, foto oxidação e/ou biodegradação. Para os alquil naftalenos há uma proporção de 7,3:1 em relação ao naftaleno na composição do óleo diesel utilizado em regiões polares (YU et al., 1995). A razão alquil naftalenos/naftaleno variou entre 3 e 290 para as amostras de sedimentos, sendo que 20% correspondem a valores menores que 7,3. Esse padrão é diferente do observado por Martins et al. (2004) para amostras coletadas próximas da EACF há duas décadas, na qual observou a predominância de processos de degradação de alquil naftalenos.

Similar aos solos, a grande maioria dos pontos (91%) apresentou razão HPAs leve/pesados > 1, indicando origem petrogênica principalmente ao redor da EACF. A origem pirogênica foi observada em frente ao Heliponto (30 e 60 m). Martins et al. (2004) também observaram predomínio de HPAs leves nas amostras de sedimento coletadas próximo da EACF, reforçando que a origem desses compostos pode ser relacionada a pequenos vazamentos de óleo utilizado na logística da EACF.

Entretanto, a razão FEN/ANT para as amostras de sedimento mostrou que 90% das amostras apresentaram valores abaixo de 10 indicando uma forte contribuição pirogênica. Essa indicação é reforçada na razão FLA/PIR onde 84% das amostras apresentaram valores acima de 1.0, os quais são associados com fontes pirogênicas (apêndice D). Combinando as duas razões (FEN/ANT e FLA/PIR) é possível observar a predominância das fontes pirogênicas. A razão binária ΣHPA leves/ΣHPAs pesados e fluoranteno (fluoranteno + pireno) também indicou predominância de fontes pirogênicas, associadas com emissão de óleo diesel (Figura 41).

Figura 41 - Biplot de razões de HPAS em sedimentos da Baía do Almirantado. A figura da esquerda representa o biplot da razão (fenantreno/antraceno) vs (fluoranteno/pireno), enquanto a figura da direita os HPAs leves/pesados vs fluoranteno/(fluoranteno+pireno)

A combinação das razões antraceno/(antraceno+fenantreno) e benzo[a]antraceno/ (benzo[a]antraceno + criseno) para sedimentos está apresentada na Figura 42 onde é possível observar a contribuição de fontes mistas para a região.

Indicações de fontes mistas também foram observadas em sedimentos costeiros ao longo da Península Fildes, Ilha Rei George, durante os verões de 2005 e 2007. Nas proximidades das estações da China, Chile e Rússia predominaram as fontes de combustão (PRÉNDEZ et al., 2011). Estudos posteriores realizados por Vodopivez et al. (2021) para sedimentos coletados em seis áreas diferentes da Baía Maxwell, na costa sudeste da Ilha Rei George, incluindo as regiões dessas estações também indicaram tendência dominante de fontes mistas, ou seja, óleo e combustão de óleo.

Por outro lado, na Enseada Potter, Ilha Rei George, onde está localizada a estação de pesquisa argentina Carlini (antiga Jubany), os HPAs em sedimentos, indicaram fontes petrogênicas associadas com o tráfego de navios e barcos (DAUNER et al., 2015).

Figura 42 - Biplot de razão antraceno/(fenantreno/antraceno) vs benzo[a]antraceno/(benzo[a]antraceno + criseno) em sedimentos da Baía do Almirantado.

4.3 Identificação da Área Contaminada por HPAs

O modelo conceitual preliminar proposto pela Cetesb foi elaborado com base nos resultados das investigações e monitoramentos durante o período de 2013 a 2018 (Figura 43). Nesse modelo pode-se observar a área impactada por HPAs na área da EACF localiza-se na região da praia, desde o local onde estão instalados os tanques de combustíveis (antigos e novos) até o heliponto, sendo o centro de massa dessa contaminação (*hot spot*) localizado na região onde estavam instalados os antigos geradores que deram origem ao incêndio em 2012. Segundo a CETESB, foram apontadas duas áreas fontes a saber: a área de tancagem de combustíveis (antigos e novos) e a área dos geradores.

Além dessas áreas fontes, concentrações de HPAs acima dos VPs (tabela 16) foram observadas próximo do Módulo Rádio Emergência (antiga base inglesa), no verão 2015/2016, tornando-se uma "nova área fonte". Assim, há indicativo de um aumento na extensão da pluma de contaminantes identificada pela CETESB, pois a pluma pode ter sido deslocada para norte, como também pode ter surgido uma nova área fonte após 2016 que deverá ser melhor investigada.

Figura 43 - Plumas de contaminação de hidrocarbonetos indicadas pela CETESB.

Até o momento, o modelo conceitual preliminar da contaminação na área, identifica as áreas fontes, as substâncias químicas de interesse (HPAs), e os receptores, como descrito na tabela 19.

Áreas fontes	Mecanismos de liberação das substâncias	Meios de transporte das SQIs	Vias de ingresso das substâncias nos receptores	Receptores humanos
Área de tancagem (antiga e nova)	pequenos vazamentos de combustíveis	zona não saturada	contato dérmico	Equipe de apoio técnico da Marinha do Brasil
Área da Antiga EACF e geradores	incêndio ocorrido em 2012	zona não saturada	contato dérmico	Equipe de apoio técnico da Marinha do Brasil, pesquisadores e visitantes da nova EACF
Módulo Rádio Emergência (antiga base inglesa)	pequenos vazamentos de combustíveis	zona não saturada	contato dérmico	Equipe de apoio técnico da Marinha do Brasil

Tabela 19 - Modelo conceitual descritivo para HPAs e incertezas restantes das investigações.

Para a elaboração de um modelo conceitual consistente além da informação sobre as áreas fontes, faz-se necessário um estudo mais detalhado sobre os mecanismos de liberação dos contaminantes específicos para o caso, características geológicas e hidrogeológicas dos meios físicos investigados (solo superficial, subsuperficial e sedimentos antárticos na região estudada), e as vias de ingresso das substâncias nos receptores locais.

Embora a área impactada pela contaminação de HPAs não esteja totalmente delimitada, pode ser observado que atualmente o centro de massa da contaminação é a área dos antigos geradores, onde foram detectadas as maiores concentrações de HPAs tantos nos estudos procedidos pela CETESB como no monitoramento ambiental realizado pelo IOUSP relatado neste trabalho. Na área de tancagem e na área do Módulo Rádio Emergência (antiga base G), também foram detectadas altas concentrações de HPAs.

5 CONCLUSÃO

O monitoramento contínuo na Baía do Almirantado no período de 2012 a 2020 apontou a ocorrência de PCBs e HPAs entre 90 e 100% das amostras de solo e sedimento. Os PCBs em solo mostram uma tendência temporal estacionária, enquanto que nos sedimentos há uma introdução levemente crescente de PCBs na Baía do Almirantado ao longo dos anos. A influência da pressão antropogênica pode ser observada na região da EACF. Os PCBs em solo ultrapassam os valores de prevenção (VP = 0,3 ng g⁻¹), mas não atingem os valores de intervenção (VI = 30 ng g⁻¹), considerados pela Resolução Conama para a qualidade de solos residenciais. A distribuição de congêneres foi variável tanto na escala temporal como espacial. Os congêneres de PCBs predominantes em solo foram hexa-PCBs > penta-PCBs >hepta-PCBs, enquanto que os sedimentos apresentaram um perfil ligeiramente diferente sendo dominado por penta-PCBs > tetra-PCBs > hexa-PCBs. A deposição atmosférica é a fonte predominante de PCBs para a Baía do Almirantado, entretanto, observam-se indícios de fontes pontuais provavelmente associadas com locais contaminados por óleo.

Há uma redução significativa nos HPAs em solo ao longo dos anos. Entretanto, prevalecem valores acima da referência antes do incêndio, principalmente nas proximidades da EACF (Base G), a qual tem um histórico de contaminação por óleo. Os sedimentos mostraram um aumento de HPAs nos últimos 30 anos, o qual pode refletir a ocupação gradual crescente coincidindo com a finalização da nova EACF. Os valores de HPAs em sedimentos são comparáveis às outras regiões antárticas com estações de pesquisas próximas.

O naftaleno e seus derivados alquilados foram os compostos predominantes na área da EACF, os quais são os principais constituintes do "*Diesel Fuel Arctic*" (DFA), combustível mais usado nas regiões polares. Há indicação de fontes mistas de HPAs tanto petrogênicas (vazamentos de combustível e derramamentos de óleo) quanto pirogênicas (combustão incompleta de combustíveis derivados de petróleo e petróleo bruto, emissões de diesel e acumulação e degradação do óleo) para a baía do Almirantado.

A área impactada pela contaminação de HPAs não está totalmente delimitada, entretanto, o centro de massa está localizado na área dos antigos geradores, onde atualmente foi edificada parte na nova estação de pesquisa. Para a sua adequada delimitação de gerenciamento da contaminação, sugere-se a continuidade dos monitoramentos ambientais e investigação da área, ressaltando a importância dos estudos sobre mecanismos de liberação das substâncias, meios de transporte de contaminantes, e vias de ingresso de substâncias químicas de interesse nos receptores, no ambiente antártico.

6 REFERÊNCIAS

- ABAKUMOV, Evgeny; NIZAMUTDINOV, Timur; YANEVA, Rossitsa; ZHIYANSKI, Miglena. Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements in Soils of the Vicinity of the Bulgarian Antarctic Station "St. Kliment Ohridski" (Antarctic Peninsula). Frontiers in Environmental Science, [S. 1.], v. 9, p. 656271, 2021. DOI: 10.3389/FENVS.2021.656271/BIBTEX.
- AISLABIE, Jackie M.; BALKS, Megan R.; FOGHT, Julia M.; WATERHOUSE, Emma J. Hydrocarbon Spills on Antarctic Soils: Effects and Management. Environmental Science & Technology, *[S. l.]*, v. 38, n. 5, p. 1265–1274, 2004. DOI: 10.1021/es0305149.
- ALEKSEEV, Ivan; ABAKUMOV, Evgeny. The content and distribution of trace elements and polycyclic aromatic hydrocarbons in soils of Maritime Antarctica. Environmental monitoring and assessment, [S. l.], v. 192, n. 11, 2020. DOI: 10.1007/S10661-020-08618-2.
- ATSDR. Toxicological profile for Polycyclic aromatic hydrocarbons (PAHs) Updata, U.S. Department of Health & Human Services, U.S. Government Printing Office, 1995.
- ATSDR. ATSDR Case Studies in Environmental Medicine Polychlorinated Biphenyls (PCBs) Toxicity. 2014.
- BALLSCHMITER, K.; ZELL, M. Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography - Composition of technical aroclor- and Clophen-PCB mixtures. Fresenius' Zeitschrift für Analytische Chemie, [S. l.], v. 302, n. 1, p. 20–31, 1980. DOI: 10.1007/BF00469758/METRICS.
- BARGAGLI, Roberto. Antarctic Ecosystems. Berlin/Heidelberg: Springer-Verlag, 2005. v. 175 DOI: 10.1007/b137608.
- BARROSO, Hiléia dos Santos. Hidrocarbonetos policíclicos aromáticos (HPAs) em organismos marinhos da Baía do Almirantado, Península Antártica. 2010. Tese -Universidade de São Paulo, São Paulo, 2010.
- BAUMARD, P.; BUDZINSKI, H.; MICHON, Q.; GARRIGUES, P.; BURGEOT, T.; BELLOCQ, J. Origin and Bioavailability of PAHs in the Mediterranean Sea from Mussel and Sediment Records. Estuarine, Coastal and Shelf Science, [S. l.], v. 47, n. 1, p. 77– 90, 1998. DOI: 10.1006/ECSS.1998.0337.
- BÍCEGO, Márcia Caruso; WEBER, Rolf Roland; ITO, Rosane Gonçalves. Aromatic hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica. Marine

Pollution Bulletin, *[S. l.]*, v. 32, n. 7, p. 549–553, 1996. DOI: 10.1016/0025-326X(96)84574-7.

- BÍCEGO, Márcia Caruso; ZANARDI-LAMARDO, Eliete; WEBER, Rolf Roland. Four-year survey of dissolved/dispersed petroleum hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica. Revista Brasileira de Oceanografia, [S. l.], v. 51, n. unico, p. 33–38, 2003. DOI: 10.1590/S1413-77392003000100004.
- BÍCEGO, Mrcia C. et al. Results from a 15-year study on hydrocarbon concentrations in water and sediment from Admiralty Bay, King George Island, Antarctica. Antarctic Science, [S. 1.], v. 21, n. 3, p. 209–220, 2009. DOI: 10.1017/S0954102009001734.
- BORGHINI, Francesca; GRIMALT, Joan O.; SANCHEZ-HERNANDEZ, Juan C.; BARGAGLI, Roberto. Organochlorine pollutants in soils and mosses from Victoria Land (Antarctica). Chemosphere, [S. l.], v. 58, n. 3, p. 271–278, 2005. DOI: 10.1016/j.chemosphere.2004.07.025.
- BUCHMAN, Michael F. NOAA Screening Quick Reference Tables. Seattle.
- CABRERIZO, Ana; DACHS, Jordi; BARCELÓ, Damià; JONES, Kevin C. Influence of Organic Matter Content and Human Activities on the Occurrence of Organic Pollutants in Antarctic Soils, Lichens, Grass, and Mosses. Environmental Science & Technology, [S. 1.], v. 46, n. 3, p. 1396–1405, 2012. DOI: 10.1021/es203425b.
- CABRERIZO, Ana; DACHS, Jordi; BARCELÓ, Damià; JONES, Kevin C. Climatic and Biogeochemical Controls on the Remobilization and Reservoirs of Persistent Organic Pollutants in Antarctica. Environmental Science & Technology, [S. l.], v. 47, n. 9, p. 4299–4306, 2013. DOI: 10.1021/es400471c.
- CABRERIZO, Ana; TEJEDO, Pablo; DACHS, Jordi; BENAYAS, Javier. Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). Science of The Total Environment, [S. l.], v. 569–570, p. 1500–1509, 2016. DOI: 10.1016/J.SCITOTENV.2016.06.240.
- CETESB. Manual de gerenciamento de áreas contaminadas. CETESB, GTZ, 2.ed. São Paulo. CETESB 2001.
- CETESB. Manual de gerenciamento de áreas contaminadas [recurso eletrônico]/CETESB; Organizadores [e] revisores Elton Gloeden, André Silva Oliveira, Fernando Ricardo Scolamieri Pereira. 3.ed. São Paulo. **CETESB**, **2021**.
- CINCINELLI, Alessandra; MARTELLINI, Tania; BITTONI, Lucilla; RUSSO, Aniello; GAMBARO, Andrea; LEPRI, Luciano. Natural and anthropogenic hydrocarbons in the

water column of the Ross Sea (Antarctica). Journal of Marine Systems, [S. l.], v. 73, n. 1–2, p. 208–220, 2008. DOI: 10.1016/j.jmarsys.2007.10.010.

- CIPRO, C. V. Z.; BUSTAMANTE, P.; TANIGUCHI, S.; SILVA, J.; PETRY, M. V.; MONTONE, R. C. Seabird colonies as relevant sources of pollutants in Antarctic ecosystems: Part 2 - Persistent Organic Pollutants. Chemosphere, [S. l.], v. 214, p. 866– 876, 2019. DOI: 10.1016/J.CHEMOSPHERE.2018.09.030.
- COLABUONO, Fernanda Imperatrice; TANIGUCHI, Satie; CIPRO, Caio Vinícius Zecchin;
 DA SILVA, Josilene; BÍCEGO, Márcia Caruso; MONTONE, Rosalinda Carmela.
 Persistent organic pollutants and polycyclic aromatic hydrocarbons in mosses after fire at the Brazilian Antarctic Station. Marine Pollution Bulletin, [S. l.], v. 93, n. 1–2, p. 266–269, 2015. DOI: 10.1016/J.MARPOLBUL.2015.01.018.
- COMBI, Tatiane; MARTINS, César C.; TANIGUCHI, Satie; LEONEL, Juliana; LOURENÇO, Rafael André; MONTONE, Rosalinda Carmela. Depositional history and inventories of polychlorinated biphenyls (PCBs) in sediment cores from an Antarctic Specially Managed Area (Admiralty Bay, King George Island). Marine Pollution Bulletin, [S. l.], v. 118, n. 1–2, p. 447–451, 2017. DOI: 10.1016/j.marpolbul.2017.03.031.
- COMBI, Tatiane; TANIGUCHI, Satie; DE LIMA FERREIRA, Paulo Alves; MANSUR, Andressa Vianna; FIGUEIRA, Rubens Cesar Lopes; DE MAHIQUES, Michel Michaelovitch; MONTONE, Rosalinda Carmela; MARTINS, César C. Sources and Temporal Patterns of Polychlorinated Biphenyls Around a Large South American Grain-Shipping Port (Paranaguá Estuarine System, Brazil). Archives of Environmental Contamination and Toxicology, [S. 1.], v. 64, n. 4, p. 573–582, 2013. DOI: 10.1007/s00244-012-9872-2.
- COMNAP (Council of Managers of National Antarctic Programs). Main Antarctic facilities operated by National Programs in the Antarctic Treaty area (South of 60°S). 2016.
- COMNAP (Council of Managers of National Antarctic Programs). Main Antarctic facilities operated by National Programs in the Antarctic Treaty area (South of 60°S). 2019.
- CRIPPS, G. C. Natural and anthropogenic hydrocarbons in the Antarctic marine environment. Marine Pollution Bulletin, [S. l.], v. 25, n. 9–12, p. 266–273, 1992. DOI: 10.1016/0025-326X(92)90681-U.
- CRIPPS, G. C.; SHEARS, J. The fate in the marine environment of a minor diesel fuel spill from an Antarctic research station. Environmental Monitoring and Assessment, [S. l.], v. 46, n. 3, p. 221–232, 1997. DOI: 10.1023/A:1005766302869/METRICS.

- CURTOSI, Antonio; PELLETIER, Emilien; VODOPIVEZ, Cristian L.; MAC CORMACK, Walter P. Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica. Antarctic Science, [S. l.], v. 21, n. 04, p. 329, 2009. DOI: 10.1017/S0954102009002004.
- DAUNER, Ana Lúcia L.; HERNÁNDEZ, Edgardo A.; MACCORMACK, Walter P.; MARTINS, César C. Molecular characterisation of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Science of The Total Environment, [S. l.], v. 502, p. 408–416, 2015. DOI: 10.1016/J.SCITOTENV.2014.09.043.
- DEELAMAN, Woranuch; PONGPIACHAN, Siwatt; TIPMANEE, Danai; SUTTINUN, Oramas; CHOOCHUAY, Chomsri; IADTEM, Natthapong; CHAROENKALUNYUTA, Teetat; PROMDEE, Kittiphop. Source apportionment of polycyclic aromatic hydrocarbons in the terrestrial soils of King George Island, Antarctica. **Journal of South American Earth Sciences**, *[S. 1.]*, v. 104, p. 102832, 2020. DOI: 10.1016/j.jsames.2020.102832.
- DENG, Zhaochao; HAN, Xibin; CHEN, Chunlei; WANG, Heng; MA, Bingbing; ZHANG, Dongdong; ZHANG, Zhichao; ZHANG, Chunfang. The distribution characteristics of polychlorinated biphenyls (PCBs) in the surface sediments of Ross Sea and Drake Passage, Antarctica: A 192 congeners analysis. Marine Pollution Bulletin, [S. l.], v. 154, p. 111043, 2020. DOI: 10.1016/j.marpolbul.2020.111043.
- FERRON, Francisco A.; SIMÕES, Jefferson C.; AQUINO, Francisco E.; SETZER, Alberto W. Air temperature time series for King George Island, Antarctica. [S. l.], v. 4, p. 155–169, 2004.
- FROESE, K.L., D.A.VERBRUGGE, G.T.ANKLEY, G.J.NIEMI, C.P.LARSEN, AND J.P.GIESY. Bioaccumulation of polychlorinated biphenyls from sediments to aquatic insects and tree swallow eggs and nestlings in Saginaw Bay, Michigan, USA. Environ. Toxicol. Chem. 17(3):484–492. 1998
- FRYIRS, Kirstie A.; HAFSTEINSDÓTTIR, Erla G.; STARK, Scott C.; GORE, Damian B. Metal and petroleum hydrocarbon contamination at Wilkes Station, East Antarctica.
 Antarctic Science, [S. l.], v. 27, n. 2, p. 118–133, 2015. DOI: 10.1017/S0954102014000443.
- FUOCO, R.; COLOMBINI, M. P.; ABETE, C. Determination of Polychlorobiphenyls in Environmental Samples from Antarctica. International Journal of Environmental Analytical Chemistry, [S. l.], v. 55, n. 1–4, p. 15–25, 1994. DOI: 10.1080/03067319408026205.

- FUOCO, R.; COLOMBINI, M. P.; ABETE, C.; CARIGNANI, S. Polychlorobiphenyls in Sediment, Soil and Sea Water Samples From Antarctica. International Journal of Environmental Analytical Chemistry, [S. 1.], v. 61, n. 4, p. 309–318, 1995. DOI: 10.1080/03067319508027246.
- FUOCO, Roger; COLOMBINI, M. Perla; CECCARINI, Alessio; ABETE, Carlo. Polychlorobiphenyls in Antarctica. Microchemical Journal, [S. 1.], v. 54, n. 4, p. 384– 390, 1996. DOI: 10.1006/mchj.1996.0115.
- GREEN, Graham; SKERRATT, Jennifer H.; LEEMING, Rhys; NICHOLS, Peter D. Hydrocarbon and coprostanol levels in seawater, sea-ice algae and sediments near Davis station in eastern Antarctica: A regional survey and preliminary results for a field fuel spill experiment. Marine Pollution Bulletin, [S. l.], v. 25, n. 9–12, p. 293–302, 1992. DOI: 10.1016/0025-326X(92)90685-Y.
- GUERRA, Marcelo Braga Bueno; NETO, Elias Lima; PRIANTI, Marcelo Tesser Antunes;
 PEREIRA-FILHO, Edenir Rodrigues; SCHAEFER, Carlos Ernesto Gonçalves Reynaud.
 Post-fire study of the Brazilian Scientific Antarctic Station: Toxic element contamination and potential mobility on the surrounding environment. Microchemical Journal, [S. l.],
 v. 110, p. 21–27, 2013. DOI: 10.1016/j.microc.2013.01.007.
- GUZZELLA, L.; ROSCIOLI, C.; VIGANÒ, L.; SAHA, M.; SARKAR, S. K.; BHATTACHARYA, A. Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environment International, [S. l.], v. 31, n. 4, p. 523–534, 2005. DOI: 10.1016/j.envint.2004.10.014.
- HAO, Yanfen et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011–2017: Concentrations, temporal trends and potential sources. Environmental Pollution, [S. l.], v. 249, p. 381–389, 2019. DOI: 10.1016/j.envpol.2019.03.039.
- HEADLAND, R. K.; KEAGE, P. L. Activities on the King George Island group, South Shetland Islands, Antarctica. **Polar Record**, *[S. l.]*, v. 22, n. 140, p. 475–484, 1985. DOI: 10.1017/S0032247400005921.
- IAATO: International Association of Antarctica Tour Operators. IAATO Antarctic visitor figures 2019–2020. 2020.
- KASIOTIS, Konstantinos M.; EMMANOUIL, Christina. Advanced PAH pollution monitoring by bivalves. Environmental Chemistry Letters, [S. l.], v. 13, n. 4, p. 395–411, 2015. DOI: 10.1007/S10311-015-0525-3/TABLES/3.

- KENNICUTT, II, Mahlon C. et al. Human Contamination of the Marine Environment-Arthur Harbor and McMurdo Sound, Antarctica. Environmental Science & Technology, [S. l.], v. 29, n. 5, p. 1279–1287, 1995. DOI: 10.1021/es00005a600.
- KENNICUTT, M. C.; MCDONALD, T. J.; DENOUX, G. J.; MCDONALD, S. J. Hydrocarbon contamination on the Antarctic Peninsula. Marine Pollution Bulletin, [S. l.], v. 24, n. 10, p. 506–511, 1992. DOI: 10.1016/0025-326X(92)90475-L.
- KENNICUTT, Mahlon C.; SWEET, Stephen T.; FRASER, William R.; STOCKTON, William L.; CULVER, Mary. Grounding of the Bahia Paraiso at Arthur Harbor, Antarctica. 1. Distribution and fate of oil spill related hydrocarbons. Environmental Science & Technology, *[S. l.]*, v. 25, n. 3, p. 509–518, 1991. DOI: 10.1021/es00015a020.
- KHAIRY, Mohammed A.; KOLB, Marit; MOSTAFA, Alaa R.; EL-FIKY, Anwar; BAHADIR, Müfit. Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semienclosed basin affected by human activities (Abu Qir Bay, Egypt). Journal of Hazardous Materials, [S. l.], v. 170, n. 1, p. 389–397, 2009. DOI: 10.1016/J.JHAZMAT.2009.04.084.
- KIM, Moonkoo; KENNICUTT, Mahlon C.; QIAN, Yaorong. Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica. Marine Pollution Bulletin, [S. l.], v. 52, n. 12, p. 1585–1590, 2006. DOI: 10.1016/j.marpolbul.2006.03.024.
- KLÁNOVÁ, Jana; MATYKIEWICZOVÁ, Nina; MÁČKA, Zdeněk; PROŠEK, Pavel; LÁSKA, Kamil; KLÁN, Petr. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution, [S. l.], v. 152, n. 2, p. 416–423, 2008. DOI: 10.1016/j.envpol.2007.06.026.
- KLEIN, Andrew G.; SWEET, Stephen T.; WADE, Terry L.; SERICANO, José L.; KENNICUTT, Mahlon C. Spatial patterns of total petroleum hydrocarbons in the terrestrial environment at McMurdo Station, Antarctica. Antarctic Science, [S. l.], v. 24, n. 5, p. 450–466, 2012. DOI: 10.1017/S0954102012000429.
- LENIHAN, Hunter S. Benthic marine pollution around McMurdo Station, Antarctica: A summary of findings. Marine Pollution Bulletin, [S. l.], v. 25, n. 9–12, p. 318–323, 1992. DOI: 10.1016/0025-326X(92)90689-4.
- MARTINS, C. C.; BÍCEGO, M. C.; TANIGUCHI, S.; MONTONE, R. C. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Science, [S. l.], v. 16, n. 2, p. 117–122, 2004. DOI: 10.1017/S0954102004001932.

- MARTINS, César C.; BÍCEGO, Márcia C.; ROSE, Neil L.; TANIGUCHI, Satie; LOURENÇO, Rafael A.; FIGUEIRA, Rubens C. L.; MAHIQUES, Michel M.; MONTONE, Rosalinda C. Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environmental Pollution, [S. l.], v. 158, n. 1, p. 192–200, 2010. DOI: 10.1016/j.envpol.2009.07.025.
- MAZZERA, David; HAYES, Terry; LOWENTHAL, Douglas; ZIELINSKA, Barbara. Quantification of polycyclic aromatic hydrocarbons in soil at McMurdo Station, Antarctica. The Science of the total environment, [S. l.], v. 229, n. 1–2, p. 65–71, 1999. DOI: 10.1016/S0048-9697(99)00065-0.
- MONTONE, Rosalinda C. et al. Environmental Assessment of Admiralty Bay, King George Island, Antarctica. *Em*: Adaptation and Evolution in Marine Environments. Berlin: Springer-Verlag, 2013. v. Volume 2p. 157–175. DOI: 10.1007/978-3-642-27349-0 9.
- MONTONE, Rosalinda C.; TANIGUCHI, Satie; COLABUONO, Fernanda I.; MARTINS, César C.; CIPRO, Caio Vinícius Z.; BARROSO, Hileia S.; DA SILVA, Josilene; BÍCEGO, Márcia C.; WEBER, Rolf R. Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay An Antarctic specially managed area. Marine Pollution Bulletin, [S. l.], v. 106, n. 1–2, p. 377–382, 2016. DOI: 10.1016/j.marpolbul.2016.02.047.
- MONTONE, Rosalinda C.; TANIGUCHI, Satie; WEBER, Rolf R. Polychlorinated Biphenyls in Marine Sediments of Admiralty Bay, King George Island, Antarctica. **Marine Pollution Bulletin**, *[S. l.]*, v. 42, n. 7, p. 611–614, 2001. DOI: 10.1016/S0025-326X(01)00092-3.
- NA, Guangshui; GAO, Yunze; LI, Ruijing; GAO, Hui; HOU, Chao; YE, Jiandong; JIN, Shuaichen; ZHANG, Zhifeng. Occurrence and sources of polycyclic aromatic hydrocarbons in atmosphere and soil from 2013 to 2019 in the Fildes Peninsula, Antarctica.
 Marine Pollution Bulletin, [S. l.], v. 156, p. 111173, 2020. DOI: 10.1016/j.marpolbul.2020.111173.
- NAFFRECHOUX, Emmanuel; COTTIN, Nathalie; PIGNOL, Cécile; ARNAUD, Fabien; JENNY, Jean Philippe; PERGA, Marie Elodie. Historical profiles of PCB in dated sediment cores suggest recent lake contamination through the "halo effect". Environmental Science and Technology, [S. l.], v. 49, n. 3, p. 1303–1310, 2015. DOI: 10.1021/ES5043996/SUPPL FILE/ES5043996 SI 001.PDF.

- NEFF, Jerry M. Polycyclic aromatic hydrocarbons in the ocean. *Em*: Bioaccumulation in Marine Organisms. Effect of Contaminants from Oil Well Produced Water. Amsterdam: Elsevier Science Publishers, 2002. p. 241–319.
- NEGOITA, Teodor G.; COVACI, Adrian; GHEORGHE, Adriana; SCHEPENS, P. Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. Journal of Environmental Monitoring, [S. l.], v. 5, n. 2, p. 281–286, 2003. DOI: 10.1039/b300555k.
- OLIVEIRA, Letúzia M. De; MENDONÇA, Eduardo de S.; JHAM, Gulab; SCHAEFER, Carlos E. G. R.; SILVA, Ivo R. Da; ALBUQUERQUE, Miriam Abreu. Hidrocarbonetos em solos e sedimentos do entorno da Estação Antártica Brasileira Comandante Ferraz. Oecologia Australis, [S. l.], v. 11, n. 1, p. 144–156, 2007.
- PAPALE, Maria; GIUDICE, Angelina Lo; RAPPAZZO, Alessandro Ciro; AZZARO, Maurizio; RIZZO, Carmen. A First Glimpse on Cold-Adapted PCB-Oxidizing Bacteria in Edmonson Point Lakes (Northern Victoria Land, Antarctica). Water 2022, Vol. 14, Page 109, *[S. l.]*, v. 14, n. 1, p. 109, 2022. DOI: 10.3390/W14010109.
- PARK, Hyun; LEE, Sang Hwan; KIM, Minkyun; KIM, Jeong Hoon; LIM, Hyoun Soo. Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica. Antarctic Science, [S. l.], v. 22, n. 1, p. 31–38, 2010. DOI: 10.1017/S0954102009990472.
- PENTEADO, José Carlos Pires; VAZ, Jorge Moreira. O legado das bifenilas policloradas (PCBs). Química Nova, [S. l.], v. 24, n. 3, p. 390–398, 2001. DOI: 10.1590/S0100-40422001000300016.
- POLAND, John S.; RIDDLE, Martin J.; ZEEB, Barbara A. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record, [S. 1.], v. 39, n. 4, p. 369–383, 2003. DOI: 10.1017/S0032247403002985.
- PRÉNDEZ, Margarita; BARRA, Carolina; TOLEDO, Carla; RICHTER, Pablo. Alkanes and polycyclic aromatic hydrocarbons in marine surficial sediment near Antarctic stations at Fildes Peninsula, King George Island. Antarctic Science, [S. l.], v. 23, n. 6, p. 578–588, 2011. DOI: 10.1017/S0954102011000563.
- PRUS, Wojciech; FABIAŃSKA, Monika J.; ŁABNO, Radosław. Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). Science of The Total Environment, [S. 1.], v. 518–519, p. 266–279, 2015. DOI: 10.1016/j.scitotenv.2015.02.096.

- PU, Jiabin; LI, Zongping; SHANG, Longshen; LI, Hong. Organic contamination in the Great Wall bay, Antarctica in austral summer. Journal of Environmental Sciences, [S. l.], v. 8, n. 4, p. 397–401, 1996.
- RAKUZA-SUSZCZEWSKI, S.; MIETUS, M.; PIASECKI, J. Weather and climate. *Em*: RAKUZA-SUSZCZEWSKI, S. (org.). The maritime Antarctic coastal ecosystem of Admiralty Bay. Varsóvia: Polskiej Akademii Nauk, 1993. p. 19–25.
- RAYMOND, T.; KING, C. K.; RAYMOND, B.; STARK, J. S.; SNAPE, I. Oil Pollution in Antarctica. Oil Spill Science and Technology: Second Edition, [S. 1.], p. 759–803, 2017. DOI: 10.1016/B978-0-12-809413-6.00014-X.
- RIBANI, Marcelo; GRESPAN BOTTOLI, Carla Beatriz; COLLINS, Carol H.; FONTES JARDIM, Isabel Cristina Sales; COSTA MELO, Lúcio Flávio. Validation for chromatographic and electrophoretic methods. Química Nova, [S. l.], v. 27, n. 5, p. 771– 780, 2004. DOI: 10.1590/S0100-40422004000500017.
- RISEBROUGH, R. W.; RIECHE, P.; PEAKALL, D. B.; HERMAN, S. G.; KIRVEN, M. N.
 Polychlorinated Biphenyls in the Global Ecosystem. Nature 1968 220:5172, [S. l.], v. 220,
 n. 5172, p. 1098–1102, 1968. DOI: 10.1038/2201098a0.
- RISEBROUGH, R. W.; WALKER, W.; SCHMIDT, T. T.; DE LAPPE, B. W.; CONNORS, C.
 W. Transfer of chlorinated biphenyls to Antarctica. Nature, [S. l.], v. 264, n. 5588, p. 738–739, 1976. DOI: 10.1038/264738A0.
- RISEBROUGH, Robert W.; DE LAPPE, Brock W.; YOUNGHANS-HAUG, Christopher. PCB and PCT contamination in Winter Quarters Bay, Antarctica. Marine Pollution Bulletin, *[S. l.]*, v. 21, n. 11, p. 523–529, 1990. DOI: 10.1016/0025-326X(90)90300-W.
- RODRÍGUEZ, Carolina; IGLESIAS, Karen; BÍCEGO, Márcia C.; TANIGUCHI, Satie;
 SASAKI, Silvio Tarou; KANDRATAVICIUS, Noelia; BUENO, Carolina; BRUGNOLI,
 Ernesto; VENTURINI, Natalia. Hydrocarbons in soil and meltwater stream sediments near
 Artigas Antarctic Research Station: origin, sources and levels. Antarctic Science, [S. l.],
 v. 30, n. 3, p. 170–182, 2018. DOI: 10.1017/S0954102018000019.
- RUOPPOLO, Valeria; WOEHLER, Eric J.; MORGAN, Kerri; CLUMPNER, Curtiss J.
 Wildlife and oil in the Antarctic: a recipe for cold disaster. Polar Record, [S. l.], v. 49, n.
 2, p. 97–109, 2013. DOI: 10.1017/S0032247411000763.
- SANTOS, T.D. MORLIGHEM, M. SIMÕES, JC, DEVLOO, PRB. Sensitivity analysis of a King George Island outlet glacier, South Shetlands, Antarctica. Geociences An. Acad. Bras. Ciênc. 95 (suppl 3) 2023. https://doi.org/10.1590/0001-3765202320210560

- SANTOS, Isaac R.; SILVA-FILHO, Emmanoel V.; SCHAEFER, Carlos E. G. R.;
 ALBUQUERQUE-FILHO, Manoel R.; CAMPOS, Lúcia S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island.
 Marine Pollution Bulletin, [S. l.], v. 50, n. 2, p. 185–194, 2005. DOI: 10.1016/j.marpolbul.2004.10.009.
- SECRETARIAT OF THE ANTARCTIC TREATY, 2021. Compilation of key documents of the Antarctic Treaty system. Fifth edition. 196 P.
- SETZER, AW; HUNGRIA, CS. Meteorologia na Península Antártica Alguns Aspectos Práticos. São José dos Campos: INPE, 1994.
- SILVA, JRM; BERGAMI, E; GOMES, V. CORSI,I. Occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: Sources, distribution and impact on marine biodiversity. Marine Pollution Bulletin. Volume 186, 114353.2023. <u>https://doi.org/10.1016/j.marpolbul.2022.114353</u>
- SMEDES, F.; DE BOER, J. Chlorobiphenyls in marine sediments: Guidelines for determination. ICES Techniques in Marine Environmental Sciences, [S. l.], n. 21, 1998. DOI: http://dx.doi.org/10.25607/OBP-270.
- TANABE, Shinsuke. PCB problems in the future: Foresight from current knowledge. Environmental Pollution, [S. l.], v. 50, n. 1–2, p. 5–28, 1988. DOI: 10.1016/0269-7491(88)90183-2.
- TIN, T.; FLEMING, Z. L.; HUGHES, K. A.; AINLEY, D. G.; CONVEY, P.; MORENO, C. A.; PFEIFFER, S.; SCOTT, J.; SNAPE, I. Impacts of local human activities on the Antarctic environment. Antarctic Science, [S. l.], v. 21, n. 1, p. 3–33, 2009. DOI: 10.1017/S0954102009001722.
- TRANSPORTATION RESEARCH BOARD AND NATIONAL RESEARCH COUNCIL. **Oil in the Sea III**. Washington, D.C.: National Academies Press, 2003. DOI: 10.17226/10388.
- UNEP. Determination of Petroleum Hydrocarbons in Sediments. 1992. Reference Methods for Marine Pollution Studies, vol. 20. UNEP, Nairobi, Kenya, 97 pp.
- UNEP. Regionally based assessment of persistent toxic substances: Antarctica regional report /: United Nations Environment Programme, Chemicals; Global Environment Facility. UNEP, 2002.
- UNEP. Regionally Based Assessment of Persistent Toxic Substances Global Report. Geneva: Global Report, 2003.

- UNEP. Stockholm convention on persistent organic pollutants (POPs). Em: 2009, Geneva. Anais [...]. Geneva: Secretariat of the Stockholm Convention on Persistent Organic Pollutants, 2009.
- VODOPIVEZ, C.; CURTOSI, A.; PELLETIER, E.; SAINT-LOUIS, R.; SPAIRANI, L. U.; HERNÁNDEZ, E. A.; ZAKRAJSEK, A.; GENEZ, A.; MAC CORMACK, W. P. Low levels of PAHs and organotin compounds in surface sediment samples from a broad marine area of 25 de Mayo (King George) Island, South Shetland Islands. The Science of the total environment, [S. 1.], v. 785, 2021. DOI: 10.1016/J.SCITOTENV.2021.147206.
- VON STACKELBERG, K. PCBs. Encyclopedia of Environmental Health, [S. l.], p. 346–356, 2011. DOI: 10.1016/B978-0-444-52272-6.00580-8.
- WADE, T.; CANTILLO, A. Use of standards and reference materials in the measurement of chlorinated hydrocarbon residues: Chemistry workbook. Technical memo. *[S. l.]*, 1994.
- WANG, Danhe; MA, Hongmei; CHEN, Zhenlou; SHI, Guitao. Occurrences and possible sources of persistent organic pollutants (POPs) in ice-free area soils in East Antarctica. CATENA, [S. l.], v. 212, p. 106083, 2022. DOI: 10.1016/J.CATENA.2022.106083.
- WANG, Pu et al. Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication. Atmospheric Environment, [S. l.], v. 150, p. 407–416, 2017. DOI: 10.1016/J.ATMOSENV.2016.11.036.
- WANG, Pu; ZHANG, Qing Hua; WANG, Thanh; CHEN, Wei Hai; REN, Dai Wei; LI, Ying Ming; JIANG, Gui Bin. PCBs and PBDEs in environmental samples from King George Island and Ardley Island, Antarctica. RSC Advances, [S. l.], v. 2, n. 4, p. 1350–1355, 2012. DOI: 10.1039/C1RA00462J/.
- WANG, Qiang; SHI, Ye Hong; HU, Jian Xin; YAO, Zi Wei; FANG, Xue Kun; DONG, Yi An.
 Determination of dioxin-like polychlorinated biphenyls in soil and moss from Fildes
 Peninsula, Antarctica. Chinese Science Bulletin, [S. l.], v. 57, n. 9, p. 992–996, 2012.
 DOI: 10.1007/S11434-011-4969-Y/METRICS.
- WANG, Xiaoping; WANG, Chuanfei; ZHU, Tingting; GONG, Ping; FU, Jianjie; CONG, Zhiyuan. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environmental Pollution, [S. l.], v. 248, p. 191–208, 2019. DOI: 10.1016/j.envpol.2019.01.093.
- WANIA, Frank. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. **Environmental Science and Technology**, [S. l.], v.

 37,
 n.
 7,
 p.
 1344–1351,
 2003.
 DOI:

 10.1021/ES026019E/SUPPL
 FILE/ES026019ESI20030102
 111640.PDF.

- WEBSTER, Lynda; ROOSE, Patrick; BERSUDER, Philippe; KOTTERMAN MICHAEL HAARICH, Michiel; VORKAMP, Katrin; ANDERSENS, H. C. Determination of polychlorinated biphenyls (PCBs) in sediment and biota. ICES Techniques in Marine Environmental Sciences, *[S. l.]*, n. 53, 2013. DOI: 10.25607/OBP-237.
- YU, Y.; WADE, T. L.; FANG, J.; MCDONALD, S.; BROOKS, J. M. Gas chromatographicmass spectrometric analysis of polycyclic aromatic hydrocarbon metabolites in Antarctic fish (Notothenia gibberifrons) injected with Diesel Fuel Arctic. Archives of Environmental Contamination and Toxicology, [S. 1.], v. 29, n. 2, p. 241–246, 1995. DOI: 10.1007/BF00212975/METRICS.
- YUNKER, M. B.; BACKUS, S. M.; GRAF PANNATIER, E.; JEFFRIES, D. S.; MACDONALD, R. W. Sources and Significance of Alkane and PAH Hydrocarbons in Canadian Arctic Rivers. Estuarine, Coastal and Shelf Science, [S. l.], v. 55, n. 1, p. 1– 31, 2002. DOI: 10.1006/ECSS.2001.0880.
- ZHANG, Lin; DICKHUT, Rebecca; DEMASTER, Dave; POHL, Kari; LOHMANN, Rainer. Organochlorine Pollutants in Western Antarctic Peninsula Sediments and Benthic Deposit Feeders. Environmental Science & Technology, [S. l.], v. 47, n. 11, p. 5643–5651, 2013. DOI: 10.1021/es303553h.

Composto	fórmul a	número de C	CAS No.	Massa Molar	Pressão de Vapor (mmHg)	Ponto de fusão (°C)	log Kow (-)	Solubilidade (mg/L)	Fonte
Naftaleno	$C_{10}H_8$	10	91-20-3	128.18	8.50 E-2	80.2	3.30	31	а
Metilnaftaleno	$C_{11}H_{10}$	11	90-12-0	142.2	6.70 E-2	30.4	3.87	25.8	а
Bifenil	$C_{12}H_{10}$	12	92-52-4	154.21	8.93 E-3	69	4.01	7.48	а
2-Etilnaftaleno	$C_{12}H_{12}$	12	939-27-5	156.22	3.00 E-2	18.7	4.40	12.94	b, c
Dimetilnaftaleno	$C_{12}H_{12}$	12	571-58-4	156.22	8.40 E-3	-	4.40	11.4	b, c
Acenaftileno	$C_{12}H_8$	12	208-96-8	152.19	4.80 E-3	89.4	3.93	3.93	b
Acenafteno	$C_{12}H_{10}$	12	83-32-9	154.21	2.15 E-3	93.4	3.92	3.9	а
Trimetilnaftaleno	$C_{13}H_{14}$	13	829-26-5	170.25	2.52 E-3		4.70	5.6	b
Fluoreno	$C_{13}H_{10}$	13	86-73-7	166.22	6.00 E-4	114.8	4.18	1.69	а
Metilfluoreno	$C_{14}H_{12}$	14	1730-37-6	180.24	3.98 E-4	47	5.00	0.2428	b,c
Dibenzotiofeno	$C_{12}H_8S$	12	132-65-0	184.26	2.05 E-4	99.5	4.38	1.47	b
Fenantreno	$C_{14}H_{10}$	14	85-01-8	178.23	1.21 E-4	99	4.46	1.1	b
Antraceno	$C_{14}H_{10}$	14	120-12-7	178.24	6.53 E-6	215	4.45	0.0434	а
Dimetilfluoreno	$C_{15}H_{14}$	15	4569-45-3	194.27	3.28 E-4	82	4.40	0.4254	b,c
Metildibenzotiofeno	$C_{13}H_{10}S$	13	7372-88-5	198.29	7.00 E-5	66.5	4.70	0.256	b,c
Metilfenantreno	$C_{15}H_{12}$	15	832-69-9	192.25	5.01 E-5	123	5.10	0.1706	b,c
Dimetildibenzotiofeno	$C_{14}H_{12}S$	14	1207-12-1	212.31	2.75 E-5	155	5.00	2.75E-05	b,c
Dimetilfenantreno	$C_{16}H_{14}$	16	1576-67-6	206.28	1.82 E-5	-	5.50	0.07133	b,c
Fluoranteno	$C_{16}H_{10}$	16	206-44-0	202.26	9.22 E-6	107.8	5.16	0.26	а
Pireno	$C_{16}H_{10}$	16	129-00-0	202.26	4.50 E-6	151.2	4.88	0.135	а
Metilfluoranteno	$C_{17}H_{12}$	17	33543-31-6	216.28	1.75 E-6	-	5.50	0.05838	b,c
Reteno	$C_{18}H_{18}$	18	483-65-8	234.3	2.64 E-6	98	6.50	0.00848	b,c
Metilpireno	$C_{17}H_{12}$	17	2381-21-7	216.28	1.75 E-6	74	5.40	0.43	b
Benzo(c)fenantreno	$C_{18}H_{12}$	18	195-19-7	228.3	6.70 E-7	-	5.70	0.02635	b,c
Benzo(a)antraceno	C18H12	18	56-55-3	228.3	2.10 E-7	84	5.76	0.0094	а
Criseno	C18H12	18	218-01-9	228.3	6.23 E-9	258.2	5.81	0.002	а
Metilcriseno	C19H14	19	3697-24-3	242.3	2.50 E-7	117.5	6.07	0.062	b,c
Dimetilcriseno	C20H16	20	14207-78-4	256.3	1.14 E-7	-	6.40	0.003792	b,c
Benzo[b]fluoranteno	C20H12	20	205-99-2	252.32	5.00 E-7	168	5.78	0.0015	а
Benzo[j]fluoranteno	C20H12	20	205-82-3	252.32	2.62 E-8	166	6.11	0.0025	а
Benzo[k]fluoranteno	$C_{20}H_{12}$	20	207-08-9	252.32	9.65 E-10	217	6.11	0.0008	а
Benzo[e]pireno	$C_{20}H_{12}$	20	192-97-2	252.32	5.70 E-9	177.5	6.44	0.0063	а
Benzo[a]pireno	$C_{20}H_{12}$	20	50-32-8	252.32	5.49 E-9	176.5	6.13	0.00162	а
Perileno	$C_{20}H_{12}$	20	198-55-0	252.32	5.25 E-9	274	6.25	0.0004	а
Indeno[1,2,3- c,d]pireno	C22H12	22	193-39-5	276.34	1.25 E-10	163.6	6.70	0.00019	а
Dibenzo[a,h]antracen o	C22H14	22	53-70-3	278.36	9.55 E-10	269.5	6.75	0.00249	а
Benzo[b]criseno	$C_{22}H_{14}$	22	214-17-5	278.3	9.55 E-10	-	6.50	0.00249	b,c
Benzo[g,h,i]perileno	$C_{22}H_{12}$	20	191-24-2	276.3	1.00 E-10	278	6.63	2.60E-04	b
Coroneno	$C_{24}H_{12}$	24	191-07-1	300.4	4.40 E-10	-	7.20	0.002704	b,c

APÊNDICE A – Propriedades físico-químicas dos compostos dos HPAs analisados

Fontes: ^aUSEPA, 2023. Regional Screening Level (RSL) Chemical-specific Parameters Supporting Table. May 2023. https://semspub.epa.gov/work/HQ/404089.pdf;

^bPubChem - National Institutes of Health (NIH). https://pubchem.ncbi.nlm.nih.gov/;

°ChemSpider - http://www.chemspider.com/

2012	EACF 4	EACF 5	EACF 6	EACF 7	Base G	Baleia	Quimica	P. Plaza
PCB 8	nd	nd						
PCB 18	nd	nd						
PCB 28 e 31	nd	nd						
PCB 33	nd	nd						
PCB 44	0,035	0,022	0,013	0,020	0,005	0,007	0,009	0,005
PCB 49	0,019	0,011	0,008	0,012	0,020	0,003	0,005	nd
PCB 52	0,055	0,061	0,019	0,033	0,052	0,007	0,017	0,006
PCB 56 e 60	0,006	nd	nd	nd	nd	nd	nd	nd
PCB 66	0,023	0,016	0,015	0,018	0,014	0,005	0,008	0,004
PCB 70	0,015	0,009	nd	nd	nd	nd	nd	nd
PCB 74	nd	nd	nd	nd	0,009	nd	nd	nd
PCB 77	nd	nd						
PCB 81	nd	0,004	0,014	0,003	0,021	nd	nd	nd
PCB 87	0,014	0,076	0,003	0,004	nd	nd	0,016	nd
PCB 95	0,052	0,177	0,043	0,036	0,013	0,012	0,053	0,009
PCB 97	0,008	0,035	0,004	nd	nd	nd	0,004	nd
PCB 99	0,025	0,063	0,013	0,016	0,067	nd	0,023	nd
PCB 101	0,053	0,188	0,041	0,050	0,127	0,015	0,047	0,013
PCB 105	0,011	0,067	0,014	0,012	nd	nd	0,021	nd
PCB 110	0,051	0,196	0,054	0,042	0,018	0,016	0,054	0,012
PCB 114	nd	0,005	nd	nd	nd	nd	nd	nd
PCB 118	0,022	0,116	0,021	0,016	0,052	nd	0,032	nd
PCB 123	nd	nd						
PCB 126	nd	nd	0,005	nd	nd	nd	0,004	nd
PCB 128 e 167	0,006	0,084	0,022	0,009	0,024	0,004	0,026	0,003
PCB 132	0,012	0,131	0,034	0,015	nd	0,003	0,035	0,003
PCB 138	0,015	0,363	0,075	0,024	0,090	0,003	0,105	0,003
PCB 141	0,006	0,088	0,021	0,009	0,046	nd	0,024	nd
PCB 149	0,014	0,230	0,051	0,017	0,040	nd	0,057	nd
PCB 151	0,005	0,073	0,021	0,009	0,037	nd	0,022	nd
PCB 153	0,017	0,270	0,056	0,023	0,211	0,004	0,073	nd
PCB 156	0,003	0,039	0,008	0,005	nd	nd	0,012	nd
PCB 157	nd	0,014	0,004	nd	nd	nd	0,004	nd
PCB 158	0,003	0,033	0,009	0,004	0,022	nd	0,009	nd
PCB 169	nd	nd						
PCB 170	0,005	0,154	0,042	0,018	nd	0,006	0,038	nd
PCB 174	nd	0,134	0,031	0,010	nd	nd	0,032	nd
PCB 177	nd	0,064	0,013	0,005	nd	nd	0,017	nd
PCB 180	0,007	0,303	0,057	0,023	0,133	0,009	0,083	0,005
PCB 183	nd	0,072	0,016	0,006	0,063	nd	0,018	nd
PCB 187	nd	0,072	0,016	0,006	0,063	nd	0,018	nd
PCB 189	nd	0,008	0,004	nd	0,011	nd	0,003	nd
PCB 194	nd	0,115	0,022	0,008	0,058	nd	0,027	nd
PCB 195	nd	0,039	nd	nd	nd	nd	0,009	nd
PCB 199	nd	nd						
PCB 203	nd	0,120	0,022	0,009	0,083	nd	0,026	nd
PCB 206	nd	0,049	0,009	nd	0,059	nd	0,012	0,003
PCB 209	nd	nd						
PCBs totais nd < 0,0025 ng g ⁻¹	0,482	3,501	0,798	0,460	1,339	0,095	0,941	0,065

APÊNDICE B – PCBs em solos da Baía do Almirantado (ng g-1 peso seco)

2012-2013	EACF 4	EACF 5	EACF 6	EACF 7	EACF 9	EACF 10	EACF_G1
PCB 8	nd	0,01	0,07	0,07	nd	0,03	0,01
PCB 18	nd	nd	nd	0,07	nd	nd	nd
PCB 28 e 31	nd	nd	nd	0,07	nd	nd	nd
PCB 33	nd	nd	0,05	0,04	nd	0,02	nd
PCB 44	0,05	0,04	0,10	0,10	0,03	0,05	0,02
PCB 49	0,02	0,02	0,06	0,06	0,02	0,04	0,02
PCB 52	0,08	0,08	0,19	0,17	0,04	0,10	0,04
PCB 56 e 60	0,01	0,02	0,04	0,06	nd	0,02	0,01
PCB 66	0,04	0,03	0,07	0,07	0,01	0,03	0,02
PCB 70	0,04	0,03	0,10	0,10	nd	0,02	0,01
PCB 74	0,01	0,01	0,04	0,04	nd	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	0,02	nd	nd	0,03	0,02
PCB 87	0,06	0,05	0,12	0,06	nd	0,04	nd
PCB 95	0,17	0,12	0,30	0,11	0,02	0,09	0,04
PCB 97	0,04	0,03	0,07	0,04	nd	0,02	0,003
PCB 99	0,06	0,04	0,09	0,06	nd	0,03	0,02
PCB 101	0,17	0,16	0,34	0,15	0,03	0,11	0,04
PCB 105	0,04	0,04	0,10	0,04	nd	0,04	0,02
PCB 110	0,18	0,15	0,32	0,14	0,02	0,10	0,05
PCB 114	nd	nd	nd	nd	nd	nd	nd
PCB 118	0,07	0,07	0,18	0,08	nd	0,05	0,02
PCB 123	nd	nd	nd	nd	nd	nd	0,004
PCB 126	nd	nd	0,03	nd	nd	0,03	nd
PCB 128 e 167	0,07	0,03	0,11	0,02	nd	0,03	0,02
PCB 132	0,11	0,07	0,18	0,03	nd	0,04	0,02
PCB 138	0,34	0,13	0,48	0,08	0,004	0,09	0,05
PCB 141	0,08	0,03	0,11	0,01	nd	0,02	0,01
PCB 149	0,19	0,11	0,34	0,05	nd	0,07	0,03
PCB 151	0,07	0,04	0,11	0,01	nd	0,02	0,01
PCB 153	0,22	0,14	0,32	0,05	nd	0,08	0,03
PCB 156	0,03	0,01	0,05	nd	nd	0,02	0,01
PCB 157	0,01	nd	0,02	nd	nd	0,003	0,01
PCB 158	0,03	0,01	0,04	0,01	nd	0,01	0,01
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	0,15	0,07	0,24	nd	nd	0,05	0,04
PCB 174	0,12	0,04	0,15	0,003	nd	0,03	0,02
PCB 177	0,05	0,02	0,08	nd	nd	nd	0,01
PCB 180	0,29	0,12	0,28	0,03	nd	0,07	0,04
PCB 183	0,06	0,01	0,08	nd	nd	nd	0,01
PCB 187	0,06	0,01	0,08	nd	nd	nd	0,01
PCB 189	nd	nd	0,02	nd	nd	0,01	nd
PCB 194	0,06	0,03	0,09	nd	nd	0,03	0,02
PCB 195	0,02	nd	0,04	nd	nd	nd	0,01
PCB 199	nd	nd	nd	nd	nd	nd	nd
PCB 203	0,07	nd	0,08	nd	nd	0,02	0,01
PCB 206	0,02	nd	0,03	nd	nd	0,02	0,02
PCB 209	nd	nd	nd	nd	nd	0,04	nd
PCBs totais	3.08	1.79	5.25	1.85	0.17	1.49	0.73

2012-2013	Base_G	Quimica	Baleia	P. Plaza	Ullman	Botany	Hennequin	Refúgio 2
PCB 8	0,02	0,003	0,01	nd	nd	nd	nd	nd
PCB 18	nd	nd	0,01	nd	nd	nd	nd	nd
PCB 28 e 31	nd	nd	0,01	nd	nd	nd	nd	nd
PCB 33	0,01	nd	0,08	nd	nd	nd	nd	nd
PCB 44	0,06	0,12	0,13	0,04	0,05	0,03	nd	0,02
PCB 49	0,05	0,05	0,08	0,02	0,03	0,02	nd	0,01
PCB 52	0,12	0,24	0,16	0,06	0,08	0,04	nd	0,04
PCB 56 e 60	0,03	0,03	0,06	0,01	0,01	0,004	nd	nd
PCB 66	0,04	0,06	0,10	0,03	0,04	0,02	nd	0,02
PCB 70	0,06	0,15	0,09	0,02	0,03	0,01	nd	0,003
PCB 74	0,04	0,03	0,05	0,01	0,01	nd	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81	0,01	nd	nd	nd	nd	nd	nd	nd
PCB 87	0,04	0,39	0,03	0,02	0,02	0,01	nd	nd
PCB 95	0,16	0,60	0,08	0,07	0,07	0,04	nd	0,03
PCB 97	0,03	0,22	0,01	0,01	0,02	nd	nd	nd
PCB 99	0,04	0,27	0,04	0,03	0,03	0,01	nd	0,01
PCB 101	0,17	0,78	0,10	0,08	0,08	0,05	nd	0,04
PCB 105	0,05	0,30	0,01	0,02	0,01	nd	nd	nd
PCB 110	0,27	0,76	0,08	0,06	0,06	0,04	nd	0,03
PCB 114	nd	nd	nd	nd	nd	nd	nd	nd
PCB 118	0,08	0,55	0,03	0,04	0,02	0,01	nd	0,004
PCB 123	0,01	0,02	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd	nd
PCB 128 e 167	0,08	0,33	nd	0,01	nd	nd	nd	nd
PCB 132	0,13	0,51	nd	0,01	nd	nd	nd	nd
PCB 138	0,33	1,26	0,02	0,04	0,02	0,01	nd	nd
PCB 141	0,09	0,29	nd	nd	nd	nd	nd	nd
PCB 149	0,25	0,84	0,02	0,02	0,01	nd	nd	nd
PCB 151	0,10	0,26	nd	nd	nd	nd	nd	nd
PCB 153	0,24	1,02	0,01	0,08	0,01	0,01	nd	nd
PCB 156	0,02	0,16	nd	0,01	nd	nd	nd	nd
PCB 157	0,01	0,05	nd	nd	nd	nd	nd	nd
PCB 158	0,03	0,13	nd	nd	nd	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	0,17	0,69	nd	0,03	nd	nd	nd	nd
PCB 174	0,16	0,55	nd	nd	nd	nd	nd	nd
PCB 177	0,08	0,26	nd	nd	nd	nd	nd	nd
PCB 180	0,27	1,41	nd	0,09	nd	nd	nd	nd
PCB 183	0,10	0,28	nd	nd	nd	nd	nd	nd
PCB 187	0,10	0,28	nd	nd	nd	nd	nd	nd
PCB 189	0,01	nd	nd	nd	nd	nd	nd	nd
PCB 194	0,12	0,59	nd	0,02	nd	nd	nd	nd
PCB 195	0,04	0,19	nd	nd	nd	nd	nd	nd
PCB 199	nd	0,66	nd	nd	nd	nd	nd	nd
PCB 203	0,13	0,65	nd	0,02	nd	nd	nd	nd
PCB 206	0,07	0,27	nd	0,01	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	3,82	15,22	1,23	0,88	0,62	0,30	nd	0,20

2013-2014	EACF4	EACF5	EACF6	EACF7	EACF9	EACF10	EACF G1	Base G
PCB 8	nd	nd	0,101	nd	0,072	0,068	0,018	0,011
PCB 18	nd	nd	nd	nd	0,023	nd	nd	nd
PCB 28 e 31	nd	nd	nd	nd	0,023	nd	nd	nd
PCB 33	nd	nd	0,042	nd	0,161	0,013	0,009	0,022
PCB 44	0,011	0,031	0,089	0,028	0,042	0,065	0,068	0,065
PCB 49	0,003	0,024	0,058	0,025	0,079	0,047	0,028	0,061
PCB 52	0,025	0,043	0,192	0,060	0,095	0,155	0,184	0,180
PCB 56 e 60	nd	nd	0,034	0,005	0,087	0,016	0,020	0,024
PCB 66	0,006	0,019	0,054	0,014	0,026	0,037	0,052	0,082
PCB 70	nd	nd	0,082	nd	0,024	0,039	0,058	0,116
PCB 74	nd	nd	0,030	nd	0,017	0,005	0,007	0,005
PCB 77	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	0,013	nd	0,038
PCB 87	nd	nd	0,089	nd	nd	0,110	0,139	0,160
PCB 95	0,016	0,034	0,216	0,036	0,064	0,255	0,378	0,455
PCB 97	nd	nd	0,052	nd	nd	0,057	0,079	0,100
PCB 99	0,005	0,007	0,069	0,010	nd	0,078	0,094	0,125
PCB 101	0,026	0,042	0,258	0,048	0,088	0,247	0,365	0,404
PCB 105	0,006	nd	0,068	0,004	0,035	0,081	0,101	0,111
PCB 110	0,025	0,032	0,230	0,040	0,069	0,278	0,395	0,493
PCB 114	nd	nd	nd	nd	nd	0,005	nd	nd
PCB 118	0,005	0,009	0,133	0,013	nd	0,147	0,212	0,198
PCB 123	nd	nd	nd	nd	nd	0,011	nd	0,004
PCB 126	nd	nd	nd	nd	nd	0,024	nd	nd
PCB 128 e 167	0,005	nd	0,069	0,010	nd	0,092	0,152	0,130
PCB 132	0,010	nd	0,104	nd	nd	0,097	0,282	0,261
PCB 138	0,018	0,042	0,328	0,052	0,104	0,375	0,826	0,647
PCB 141	nd	nd	0,060	nd	nd	0,093	0,186	0,154
PCB 149	0,009	0,022	0,183	0,030	nd	0,308	0,507	0,469
PCB 151	0,006	nd	0,056	nd	nd	0,100	0,175	0,147
PCB 153	0,011	0,025	0,201	0,032	0,060	0,242	0,550	0,457
PCB 156	nd	nd	0,029	nd	nd	0,044	0,067	0,047
PCB 157	nd	nd	nd	nd	nd	0,017	0,020	0,019
PCB 158	nd	nd	0,027	nd	nd	0,034	0,053	0,064
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	0,112	0,019	nd	0,159	0,336	0,207
PCB 174	nd	nd	0,076	0,016	nd	0,133	0,255	0,192
PCB 177	nd	nd	0,035	nd	nd	0,052	0,130	0,074
PCB 180	0,013	0,028	0,212	0,042	nd	0,245	0,555	0,344
PCB 183	nd	nd	0,035	nd	nd	0,067	0,142	0,127
PCB 187	nd	nd	0,035	nd	nd	0,067	0,141	0,125
PCB 189	nd	nd	nd	nd	nd	0,011	0,011	nd
PCB 194	nd	nd	0,037	nd	nd	0,076	0,141	0,093
PCB 195	nd	nd	nd	nd	nd	0,031	0,060	0,046
PCB 199	nd	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	0,031	nd	nd	0,065	0,166	0,117
PCB 206	nd	nd	0,011	nd	nd	0,026	0,068	0,035
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0.200	0.358	3.435	0.484	1.071	4.083	7.029	6.406
2013-2014	Baleia	Quimica	P.Plaza	Ullman	Botany	Hennequin	RefugioII	
---------------	--------	---------	---------	--------	--------	-----------	-----------	
PCB 8	nd	nd	0,003	0,004	nd	nd	0,007	
PCB 18	nd	nd	0,012	0,006	nd	nd	0,007	
PCB 28 e 31	nd	nd	0,012	0,006	nd	nd	0,007	
PCB 33	nd	nd	0,011	nd	nd	nd	0,005	
PCB 44	0,049	0,038	0,063	0,058	0,048	0,033	0,048	
PCB 49	0,029	0,025	0,044	0,042	0,029	0,020	0,034	
PCB 52	0,074	0,066	0,111	0,095	0,076	0,059	0,085	
PCB 56 e 60	0,009	nd	nd	0,003	nd	nd	nd	
PCB 66	0,026	0,017	0,023	0,021	0,019	0,011	0,020	
PCB 70	0,020	nd	0,016	0,014	0,006	nd	nd	
PCB 74	0,006	nd	0,004	nd	nd	nd	nd	
PCB 77	nd	nd	nd	nd	nd	nd	nd	
PCB 81	nd	nd	nd	nd	nd	nd	nd	
PCB 87	0,018	0,014	nd	nd	nd	nd	nd	
PCB 95	0,066	0,059	0,055	0,046	0,043	0,029	0,036	
PCB 97	0,012	0,007	nd	nd	nd	nd	nd	
PCB 99	0,031	0,023	0,014	0,014	0,012	0,005	0,007	
PCB 101	0,076	0,068	0,048	0,053	0,043	0,023	0,034	
PCB 105	0,009	0,015	nd	0,004	nd	nd	nd	
PCB 110	0,056	0,055	0,025	0,031	0,024	0,012	0,016	
PCB 114	nd	nd	nd	nd	nd	nd	nd	
PCB 118	0,019	0,025	nd	0,008	nd	nd	nd	
PCB 123	nd	nd	nd	nd	nd	nd	nd	
PCB 126	nd	nd	nd	nd	nd	nd	nd	
PCB 128 e 167	0,004	0,016	nd	nd	nd	nd	nd	
PCB 132	0,011	0,022	nd	nd	nd	nd	nd	
PCB 138	0,010	0,054	nd	0,007	nd	nd	0,005	
PCB 141	0,004	0,013	nd	nd	nd	nd	nd	
PCB 149	0,012	0,034	nd	0,003	nd	nd	nd	
PCB 151	0,005	0,011	nd	nd	nd	nd	nd	
PCB 153	0,013	0,043	nd	0,003	nd	nd	0,005	
PCB 156	nd	0,007	nd	nd	nd	nd	nd	
PCB 157	nd	nd	nd	nd	nd	nd	nd	
PCB 158	nd	0,006	nd	nd	nd	nd	nd	
PCB 169	nd	nd	nd	nd	nd	nd	nd	
PCB 170	nd	0,031	nd	nd	nd	nd	nd	
PCB 174	nd	0,015	nd	nd	nd	nd	nd	
PCB 177	nd	0,006	nd	nd	nd	nd	nd	
PCB 180	0,005	0,041	nd	nd	nd	nd	nd	
PCB 183	nd	0,008	nd	nd	nd	nd	nd	
PCB 187	nd	0,008	nd	nd	nd	nd	nd	
PCB 189	nd	0,007	nd	nd	nd	nd	nd	
PCB 194	nd	0,013	nd	nd	nd	nd	nd	
PCB 195	nd	nd	nd	nd	nd	nd	nd	
PCB 199	nd	nd	nd	nd	nd	nd	nd	
PCB 203	nd	0,013	nd	nd	nd	nd	nd	
PCB 206	nd	nd	nd	nd	nd	nd	nd	
PCB 209	nd	nd	nd	nd	nd	nd	0,013	
PCBs totais	0,566	0,761	0,441	0,416	0,301	0,192	0,329	

2015 - 2016	EACF4	EACF5	EACF6	EACF7	EACF9	EACF10	EACF_G1	Base_G
PCB 8	0,027	0,006	0,089	nd	0,069	0,034	0,006	0,034
PCB 18	nd	nd	0,003	nd	nd	nd	nd	nd
PCB 28 e 31	nd	nd	0,003	nd	nd	nd	nd	nd
PCB 33	nd	nd	nd	nd	nd	nd	nd	nd
PCB 44	0,086	0,016	0,037	0,019	0,205	0,043	0,055	0,060
PCB 49	0,049	0,013	0,024	0,014	0,093	0,031	0,038	0,038
PCB 52	0,182	0,037	0,099	0,048	0,490	0,122	0,151	0,165
PCB 56 e 60	0,043	nd	0,011	nd	0,058	0,026	0,030	0,021
PCB 66	0,060	0,012	0,026	0,019	0,119	0,064	0,047	0,050
PCB 70	0,113	nd	0,021	nd	0,356	0,051	0,069	0,059
PCB 74	0,052	nd	nd	nd	0,096	0,017	0,025	0,003
PCB 77	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81	0,011	nd	0,022	0,021	0,016	0,057	0,024	0,004
PCB 87	0,137	0.018	0,090	0,020	0,556	0,117	0,145	0,162
PCB 95	0,272	0.083	0,201	0,059	0,991	0,276	0,427	0,453
PCB 97	0,074	0,010	0,052	0,008	0,319	0,064	0,101	0,096
PCB 99	0.112	0.023	0.063	0.022	0,408	0.086	0.110	0.126
PCB 101	0.334	0.097	0.246	0.088	1,085	0.317	0.380	0.403
PCB 105	0.096	0.026	0.076	0.029	0.423	0.083	0.105	0.135
PCB 110	0.285	0.092	0.235	0.083	1.333	0.321	0.484	0.492
PCB 114	0.007	nd	0.003	nd	0.027	nd	nd	nd
PCB 118	0.195	0.041	0.131	0.046	0.939	0.155	0.183	0.244
PCB 123	0.009	nd	0.005	nd	nd	0.009	nd	nd
PCB 126	0.019	nd	nd	nd	nd	nd	0.026	0.020
PCB 128 e 167	0.079	0.036	0.095	0.030	0 443	0.100	0,150	0,020
PCB 132	0,079	0,056	0,055	0.041	0,726	0,176	0,190	0.340
PCB 138	0.338	0.148	0.435	0.097	2 294	0.463	0,290	0,910
PCB 141	0.075	0.036	0.097	0.025	0.539	0,105	0,152	0.214
PCB 149	0.219	0,099	0,057	0.069	1 355	0.337	0,132	0,616
PCB 151	0.072	0.034	0.088	0.024	0.450	0,121	0,178	0,010
PCB 153	0.238	0,100	0.287	0.076	1 578	0.315	0.475	0.642
PCB 156	0.036	0.016	0.046	0.012	0.238	0.039	0.050	0.073
PCB 157	0.011	nd	0.016	nd	0.069	0.019	0,022	0.026
PCB 158	0.032	0.015	0.042	0.009	0.231	0.037	0.045	0.075
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	0.126	0.078	0 204	0.054	1 022	0.170	0 269	0 437
PCB 174	0.081	0.047	0.161	0.032	0.751	0.127	0,231	0.331
PCB 177	0.043	0.024	0.069	0.015	0.358	0.066	0,231	0,551
PCB 180	0.185	0,110	0,009	0.072	1 554	0,000	0,120	0,101
PCB 183	0.047	0.025	0.069	0.013	0 380	0.073	0,134	0,076
PCB 187	0.048	0.025	0.069	0.013	0.382	0.073	0,137	0.186
PCB 189	0,048	0,025 nd	0,009	0,015 nd	0.037	0,075	0,152	0,100
PCR 194	0.048	0.027	0.081	0.028	0.478	0.068	0.132	0.207
PCB 195	0,040	0,027	0.028	0,020 nd	0,476	0,000	0,152	0,207
PCB 100	nd	nd	0,020 nd	nd	0,100	0,027	0,050 nd	0,071 nd
PCR 203	0.045	0.022	0.070	0.019	0,505	0.072	0.157	0.235
PCR 205	0.072	0,025	0.020	0,010	0,500	0.012	0.051	0,235
PCR 200	0,025	0,011	0,050 nd	0,009 nd	0,140 nd	0,018 nd	0,051 nd	0,005 nd
PCBs totais	4 064	1 386	4 072	1 113	21 878	4 553	6 760	8 407

2015 - 2016	Baleia	Quimica	P. Plaza	Ullman	Botany	Hennequin	Refugio2
PCB 8	nd	nd	nd	nd	nd	nd	nd
PCB 18	nd	nd	nd	nd	nd	nd	nd
PCB 28 e 31	nd	nd	nd	nd	nd	nd	nd
PCB 33	nd	nd	nd	nd	nd	nd	nd
PCB 44	0,525	0,124	0,005	0,007	0,003	0,006	0,006
PCB 49	0,171	0,049	0,005	0,003	nd	0,009	0,003
PCB 52	1,173	0,318	0,008	0,008	0,004	0,016	0,009
PCB 56 e 60	0,111	0,031	nd	nd	nd	nd	nd
PCB 66	0,114	0,071	0,010	0,007	0,005	0,026	0,003
PCB 70	0,750	0,178	nd	nd	nd	nd	nd
PCB 74	0,158	0,039	nd	nd	nd	0,006	nd
PCB 77	nd	nd	nd	nd	nd	0,008	nd
PCB 81	0,029	0,004	nd	nd	nd	nd	nd
PCB 87	2,673	0,611	nd	nd	nd	nd	nd
PCB 95	2,133	1,174	0,016	0,004	nd	0,004	nd
PCB 97	1,254	0,269	nd	nd	nd	0,003	nd
PCB 99	1,022	0,281	0,026	0,003	nd	0,093	nd
PCB 101	5,140	1,519	0,031	0,021	0,019	0,079	0,012
PCB 105	2,263	0,323	0,033	nd	nd	0,084	nd
PCB 110	5,746	1,274	0,042	0,023	0,032	0,054	0,008
PCB 114	0,103	0,020	nd	nd	nd	nd	nd
PCB 118	4,513	0,882	0,044	nd	nd	0,225	nd
PCB 123	nd	nd	nd	nd	nd	nd	nd
PCB 126	0,039	0,030	nd	nd	nd	0,009	nd
PCB 128 e 167	2,505	0,542	0,036	nd	nd	0,136	nd
PCB 132	2,996	1,256	0,014	nd	nd	0,026	nd
PCB 138	7,903	3,399	0,099	0,006	0,013	0,658	nd
PCB 141	1,333	0,970	nd	nd	nd	0,024	nd
PCB 149	3,554	2,626	0,013	nd	nd	0,055	nd
PCB 151	0,655	0,870	nd	nd	nd	0,004	nd
PCB 153	4,755	2,899	0,093	nd	0,011	1,049	nd
PCB 156	0,861	0,287	0,012	nd	nd	0,085	nd
PCB 157	0,277	0,059	0,008	nd	nd	0,028	nd
PCB 158	0,512	0,283	0,012	nd	nd	0,029	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	1,319	1,276	0,034	nd	nd	0,478	nd
PCB 174	0,631	0,770	nd	nd	nd	0,022	nd
PCB 177	0,346	0,513	nd	nd	nd	0,043	nd
PCB 180	1,495	1,514	0,081	nd	nd	1,323	nd
PCB 183	0,342	0,534	0,003	nd	nd	0,143	nd
PCB 187	0,343	0,535	0,003	nd	nd	0,143	nd
PCB 189	0,043	0,033	0,098	nd	nd	0,119	nd
PCB 194	0,235	0,208	nd	nd	nd	0,275	nd
PCB 195	0,071	0,111	nd	nd	nd	0,039	nd
PCB 199	0,132	0,235	nd	nd	nd	nd	nd
PCB 203	0,192	0,248	0,010	nd	nd	0,238	nd
PCB 206	0,099	0,046	nd	nd	nd	0,084	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd
PCBs totais	58,517	26,410	0,738	0,084	0,087	5,622	0,041

FCBsndndndndndndndndFCB1ndndndndndndndndndFCB3ndndndndndndndndndndFCB3ndndndndndndndndndndndFCB4ndndndndndndndndndndndndndFCB52nd<	2016-17	EACF 04	EACF 05	EACF 06	EACF 07	EACF 09	EACF 10	EACF G1	Base G
PCB18ndndndndndndndndndPCB 28ndndndndndndndndndndPCB 28ndndndndndndndndndndndPCB 49ndndndndndndndndndndndndndPCB 56ndndndndndndndndndndndndndPCB 56nd </th <th>PCB8</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th>	PCB8	nd	nd	nd	nd	nd	nd	nd	nd
PCB31 nd nd nd nd nd nd nd nd PCB33 nd nd <t< th=""><th>PCB18</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th></t<>	PCB18	nd	nd	nd	nd	nd	nd	nd	nd
PCB 28 nd nd nd nd nd nd nd nd PCB43 nd <	PCB31	nd	nd	nd	nd	nd	nd	nd	nd
PCB33 nd	PCB 28	nd	nd	nd	nd	nd	nd	nd	nd
PCB44ndndndndndndndndPCB52ndndndndndndndndndndPCB56ndndndndndndndndndndndPCB56ndndndndndndndndndndndndPCB70ndndndndndndndndndndndndPCB71ndndndndndndndndndndndndPCB77ndndndndndndndndnd0,68PCB97ndndndndnd0,031,110,11nd0,69PCB10ndndndndnd0,040,41nd0,060,32PCB105ndndndndndndndnd1,380,11nd1,58PCB105ndndndndndndndndndndndndPCB105ndndndndndndndndndndndPCB105ndndndndndndndndndndndPCB105ndndndndndndndndndndndPCB105<	PCB33	nd	nd	nd	nd	nd	nd	nd	nd
PCB99 nd	PCB44	nd	nd	nd	nd	nd	nd	nd	nd
PCB52 nd	PCB49	nd	nd	nd	nd	nd	nd	nd	nd
PCB 56 nd nd nd nd nd nd nd nd PCB66 nd <	PCB52	nd	nd	nd	nd	0,46	nd	nd	0,17
PCB66 nd	PCB 56	nd	nd	nd	nd	nd	nd	nd	nd
PCB70 nd	PCB66	nd	nd	nd	nd	nd	nd	nd	nd
PCB 74 nd nd <th< th=""><th>PCB70</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>0,16</th></th<>	PCB70	nd	nd	nd	nd	nd	nd	nd	0,16
PCB77 nd	PCB 74	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81 nd 0,05 0,04 0,06 0,03 1,11 0,1 nd 0,68 PCB97 nd nd nd nd nd nd 0,06 0,11 0,03 1,2 0,1 nd 0,99 PCB101 nd nd nd nd nd nd 0,04 1,39 0,11 nd 1,98 PCB114 nd nd nd nd nd nd nd nd 1,58 PCB123 nd	PCB77	nd	nd	nd	nd	nd	nd	nd	nd
PCB87 nd nd nd nd nd 0,02 nd 0,05 0,69 PCB95 0,04 0,06 0,13 0,03 1,11 0,1 nd 0,68 PCB97 nd nd nd nd 0,06 0,03 0,11 nd 0,47 PCB10 nd nd 0,05 0,11 0,03 1,2 0,1 nd 0,99 PCB105 nd nd nd nd nd 0,41 nd 0,06 0,82 PCB114 nd nd nd nd nd nd 1,98 PCB123 nd	PCB 81	nd	nd	nd	nd	nd	nd	nd	nd
PCB95 0,04 0,06 0,13 0,03 1,11 0,1 nd 0,68 PCB97 nd nd nd nd nd 0,4 0,41 nd nd 0,4 PCB99 nd nd 0,06 nd 0,45 0,06 0,05 0,17 PCB101 nd 0,05 0,11 0,03 1,2 0,11 nd 0,96 PCB105 nd nd nd nd nd 0,04 1,39 0,11 nd 1,98 PCB114 nd n	PCB87	nd	nd	nd	nd	0,72	nd	0,05	0,69
PCB97 nd nd nd nd 0,41 nd nd 0,4 PCB99 nd nd 0,06 nd 0,45 0,06 0,05 0,47 PCB101 nd 0,05 0,11 0,03 1,22 0,11 nd 0,99 PCB105 nd nd nd 0,04 1,39 0,11 nd 1,98 PCB114 nd nd nd nd nd nd 1,06 nd 0,04 nd 1,98 PCB126 nd	PCB95	0,04	0,06	0,13	0,03	1,11	0,1	nd	0,68
PCB99 nd nd 0,06 nd 0,45 0,06 0,05 0,47 PCB101 nd 0,05 0,11 0,03 1,2 0,1 nd 0,99 PCB105 nd nd nd nd 0,41 nd 0,06 0,82 PCB110 0,03 0,06 0,14 0,04 1,39 0,11 nd 1,98 PCB114 nd nd nd nd nd nd nd 1,58 PCB123 nd 0,49 0,09 0,37 PCB132 nd nd nd 0,01 0,33 0,04 0,09 0,33 PCB151 nd <td< th=""><th>PCB97</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>0,41</th><th>nd</th><th>nd</th><th>0,4</th></td<>	PCB97	nd	nd	nd	nd	0,41	nd	nd	0,4
PCB101 nd 0,05 0,11 0,03 1,2 0,1 nd 0,99 PCB105 nd nd nd nd nd 0,04 1,39 0,11 nd 0,99 PCB114 nd nd nd nd 0,03 nd nd 0,04 1,39 PCB114 nd 0,03 nd nd nd nd 0,04 nd 1,58 PCB123 nd <	PCB99	nd	nd	0,06	nd	0,45	0,06	0,05	0,47
PCB105 nd nd nd nd 0,41 nd 0,06 0,82 PCB 110 0,03 0,06 0,14 0,04 1,39 0,11 nd 1,98 PCB 114 nd	PCB101	nd	0,05	0,11	0,03	1,2	0,1	nd	0,99
PCB 110 0,03 0,06 0,14 0,04 1,39 0,11 nd 1,98 PCB114 nd nd nd nd nd nd nd 0,04 nd PCB123 nd 0,03 0,04 0,09 0,37 PCB132 nd nd nd nd nd 0,33 0,04 0,09 0,37 PCB134 nd nd nd nd nd 0,33 0,14 nd 0,07 0,33 PCB133 0,04 0,08 0,17 0,03 1,33 0,14 nd 0,171 0,25 11 1,99 </th <th>PCB105</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>0,41</th> <th>nd</th> <th>0,06</th> <th>0,82</th>	PCB105	nd	nd	nd	nd	0,41	nd	0,06	0,82
PCB114 nd nd nd nd nd 0,04 nd PCB118 nd 0,03 nd	PCB 110	0,03	0,06	0,14	0,04	1,39	0,11	nd	1,98
PCB118 nd 0,03 nd nd 1,06 nd nd 1,58 PCB123 nd	PCB114	nd	nd	nd	nd	nd	nd	0,04	nd
PCB123 nd nd <th< th=""><th>PCB118</th><th>nd</th><th>0,03</th><th>nd</th><th>nd</th><th>1,06</th><th>nd</th><th>nd</th><th>1,58</th></th<>	PCB118	nd	0,03	nd	nd	1,06	nd	nd	1,58
PCB126 nd nd <th< th=""><th>PCB123</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th></th<>	PCB123	nd	nd	nd	nd	nd	nd	nd	nd
PCB128 nd nd nd nd 0,38 nd nd 0,49 PCB132 nd nd 0,04 nd 0,39 0,04 0,09 0,37 PCB138 0,04 0,08 0,19 nd 1,81 0,15 nd 2,03 PCB141 nd nd nd nd 0,44 nd 0,07 0,3 PCB151 nd 0,03 0,05 nd 0,44 nd 0,07 0,3 PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB156 nd nd nd nd nd 0,15 0,27 nd 0,16 0,27 PCB157 nd nd nd nd nd 0,16 0,17 0,23 nd 0,27 PCB157 nd nd nd nd nd nd 0,27 0,27 PCB167 nd	PCB126	nd	nd	nd	nd	nd	nd	nd	nd
PCB132 nd nd 0,04 nd 0,39 0,04 0,09 0,37 PCB138 0,04 0,08 0,19 nd 1,81 0,15 nd 2,03 PCB141 nd nd nd nd 0,44 nd 0,07 0,3 PCB149 0,04 0,08 0,17 0,03 1,33 0,14 nd 0,91 PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB156 nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd 0,2 nd nd 0,27 PCB167 nd nd nd nd nd nd	PCB128	nd	nd	nd	nd	0,38	nd	nd	0,49
PCB138 0,04 0,08 0,19 nd 1,81 0,15 nd 2,03 PCB141 nd nd nd nd nd 0,04 0,07 0,3 PCB149 0,04 0,08 0,17 0,03 1,33 0,14 nd 0,91 PCB 151 nd 0,03 0,05 nd 0,4 0,05 0,08 0,18 PCB 153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB 156 nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd 0,16 PCB157 nd nd nd nd nd 0,22 nd nd 0,27 PCB167 nd nd nd nd nd nd <th>PCB132</th> <th>nd</th> <th>nd</th> <th>0,04</th> <th>nd</th> <th>0,39</th> <th>0,04</th> <th>0,09</th> <th>0,37</th>	PCB132	nd	nd	0,04	nd	0,39	0,04	0,09	0,37
PCB141 nd nd nd nd 0,04 0,07 0,3 PCB149 0,04 0,08 0,17 0,03 1,33 0,14 nd 0,91 PCB 151 nd 0,03 0,05 nd 0,4 0,05 0,08 0,18 PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB 156 nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd 0,27 nd nd 0,27 PCB169 nd nd nd nd nd 0,21 nd 0,27 PCB170 nd nd nd nd nd 0,18 0,17	PCB138	0,04	0,08	0,19	nd	1,81	0,15	nd	2,03
PCB149 0,04 0,08 0,17 0,03 1,33 0,14 nd 0,91 PCB 151 nd 0,03 0,05 nd 0,4 0,05 0,08 0,18 PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB 156 nd nd nd nd nd nd 0,15 PCB157 nd nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd nd 0,27 PCB167 nd nd nd nd nd 0,27 nd 0,27 PCB169 nd nd nd nd nd nd 0,27 nd 0,27 PCB170 nd nd nd nd nd nd 0,18 0,17 <	PCB141	nd	nd	nd	nd	0,44	nd	0,07	0,3
PCB 151 nd 0,03 0,05 nd 0,4 0,05 0,08 0,18 PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB 156 nd nd nd nd nd nd nd nd 0,15 PCB157 nd nd<	PCB149	0,04	0,08	0,17	0,03	1,33	0,14	nd	0,91
PCB153 0,06 0,1 0,25 0,11 1,99 0,2 nd 1,71 PCB 156 nd nd nd nd nd nd nd nd nd 0,15 PCB 157 nd 0,27 PCB167 nd 0,27 PCB169 nd 0,27 PCB170 nd nd nd nd nd nd 0,18 nd 0,17 <t< th=""><th>PCB 151</th><th>nd</th><th>0,03</th><th>0,05</th><th>nd</th><th>0,4</th><th>0,05</th><th>0,08</th><th>0,18</th></t<>	PCB 151	nd	0,03	0,05	nd	0,4	0,05	0,08	0,18
PCB 156 nd nd <t< th=""><th>PCB153</th><th>0,06</th><th>0,1</th><th>0,25</th><th>0,11</th><th>1,99</th><th>0,2</th><th>nd</th><th>1,71</th></t<>	PCB153	0,06	0,1	0,25	0,11	1,99	0,2	nd	1,71
PCB157 nd nd <th< th=""><th>PCB 156</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>0,15</th></th<>	PCB 156	nd	nd	nd	nd	nd	nd	nd	0,15
PCB 158 nd nd <t< th=""><th>PCB157</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th></t<>	PCB157	nd	nd	nd	nd	nd	nd	nd	nd
PCB167 nd nd <th< th=""><th>PCB 158</th><th>nd</th><th>nd</th><th>nd</th><th>nd</th><th>0,2</th><th>nd</th><th>nd</th><th>0,27</th></th<>	PCB 158	nd	nd	nd	nd	0,2	nd	nd	0,27
PCB169 nd 0,18 PCB174 nd 0,03 0,09 nd 0,68 0,06 nd 0,17 PCB174 nd 0,03 0,05 nd 0,33 0,03 nd 0,17 PCB177 nd 0,03 0,05 nd 0,33 0,03 nd 0,09 PCB180 0,03 0,05 0,15 nd 1,39 0,12 nd 0,4 PCB183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,22 PCB189 nd	PCB167	nd	nd	nd	nd	nd	nd	nd	nd
PCB170 nd nd nd nd nd nd 0,76 nd nd 0,18 PCB174 nd 0,03 0,09 nd 0,68 0,06 nd 0,17 PCB177 nd 0,03 0,05 nd 0,33 0,03 nd 0,09 PCB180 0,03 0,05 0,15 nd 1,39 0,12 nd 0,4 PCB183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB183 nd nd 0,04 0,09 nd 0,91 0,08 nd 0,11 PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB189 nd nd nd nd nd nd nd nd nd PCB195 nd PCB203	PCB169	nd	nd	nd	nd	nd	nd	nd	nd
PCB174 nd 0,03 0,09 nd 0,68 0,06 nd 0,17 PCB 177 nd 0,03 0,05 nd 0,33 0,03 nd 0,09 PCB 180 0,03 0,05 0,15 nd 1,39 0,12 nd 0,4 PCB 183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB 183 nd nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB 187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB 189 nd nd nd nd nd nd nd 0,2 PCB 194 nd nd nd nd nd nd nd nd PCB 195 nd nd nd nd nd nd nd nd PCB201 nd nd nd nd nd <th>PCB170</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>nd</th> <th>0,76</th> <th>nd</th> <th>nd</th> <th>0,18</th>	PCB170	nd	nd	nd	nd	0,76	nd	nd	0,18
PCB 177 nd 0,03 0,05 nd 0,33 0,03 nd 0,09 PCB180 0,03 0,05 0,15 nd 1,39 0,12 nd 0,4 PCB183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB183 nd nd 0,09 nd 0,91 0,08 nd 0,11 PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB189 nd nd nd nd nd nd nd nd PCB194 nd nd nd nd nd nd nd nd PCB195 nd nd nd nd nd nd nd nd PCB201 nd nd nd nd nd nd nd nd nd PCB203 nd nd nd nd nd nd nd nd nd	PCB174	nd	0,03	0,09	nd	0,68	0,06	nd	0,17
PCB180 0,03 0,05 0,15 nd 1,39 0,12 nd 0,4 PCB183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB183 nd nd 0,04 0,09 nd 0,36 0,05 nd 0,11 PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB189 nd nd nd nd nd nd nd nd 0,2 PCB 194 nd nd nd nd nd nd nd nd nd PCB 194 nd	PCB 177	nd	0,03	0,05	nd	0,33	0,03	nd	0,09
PCB183 nd nd 0,05 nd 0,36 0,05 nd 0,11 PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB189 nd nd nd nd nd nd nd nd 0,2 PCB189 nd nd <t< th=""><th>PCB180</th><th>0,03</th><th>0,05</th><th>0,15</th><th>nd</th><th>1,39</th><th>0,12</th><th>nd</th><th>0,4</th></t<>	PCB180	0,03	0,05	0,15	nd	1,39	0,12	nd	0,4
PCB187 nd 0,04 0,09 nd 0,91 0,08 nd 0,2 PCB 189 nd nd <t< th=""><th>PCB183</th><th>nd</th><th>nd</th><th>0,05</th><th>nd</th><th>0,36</th><th>0,05</th><th>nd</th><th>0,11</th></t<>	PCB183	nd	nd	0,05	nd	0,36	0,05	nd	0,11
PCB 189ndndndndndndndndPCB 194ndndndndndndndndndPCB 195ndndndndnd0,2ndndndndPCB201ndndndndndndndndndndPCB203ndndndndndndndndndndPCB204ndndndndndndndndnd	PCB187	nd	0,04	0,09	nd	0,91	0,08	nd	0,2
PCB 194ndndndndndndndndPCB 195ndndndndnd0,2ndndndPCB201ndndndndndndndndndPCB203ndndndndndndndndPCB204ndndndndndndnd	PCB 189	nd	nd	nd	nd	nd	nd	nd	nd
PCB 195ndndndndndndndndPCB201ndndndndndndndndndPCB203ndndndndndndndndndPCB204ndndndndndndndndnd	PCB 194	nd	nd	nd	nd	0,52	nd	nd	nd
PCB201ndndndndndndndPCB203ndndndndndndndndPCB204ndndndndndndnd	PCB 195	nd	nd	nd	nd	0,2	nd	nd	nd
PCB203 nd nd nd nd nd nd PCB204 1 1 0.29 1 1 1	PCB201	nd	nd	nd	nd	nd	nd	nd	nd
	PCB203	nd	nd	nd	nd	0,6	nd	nd	nd
PCB206 nd nd nd nd 0,28 nd nd nd	PCB206	nd	nd	nd	nd	0,28	nd	nd	nd
PCB209 nd nd nd nd nd nd nd PCB2 tatain 0.24 0.64 1.57 0.24 20.2 1.20 0.44 1.57	PCB209	nd	nd	nd	nd	nd	nd 1 30	nd 0.44	nd

2016-17	Baleia	Química	P.Plaza	P. Ullman	Botany	Hennequin	Refúgio II
PCB8	nd	nd	0,10	nd	0,06	nd	nd
PCB18	nd	nd	nd	nd	0,04	nd	nd
PCB31	nd	nd	nd	nd	nd	nd	nd
PCB 28	nd	nd	nd	nd	nd	nd	nd
PCB33	nd	nd	nd	nd	nd	nd	nd
PCB44	nd	nd	nd	nd	nd	nd	nd
PCB49	nd	nd	nd	nd	nd	nd	nd
PCB52	nd	nd	nd	nd	nd	nd	nd
PCB 56	nd	nd	nd	nd	nd	nd	nd
PCB66	nd	nd	nd	nd	nd	nd	nd
PCB70	nd	nd	nd	nd	nd	nd	nd
PCB 74	nd	nd	nd	nd	nd	nd	nd
PCB77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd
PCB87	nd	nd	0,05	nd	nd	nd	nd
PCB95	nd	0,12	0,05	nd	nd	nd	nd
PCB97	nd	nd	0,04	nd	nd	nd	nd
PCB99	nd	nd	0,10	nd	nd	nd	nd
PCB101	nd	0,13	0.08	nd	nd	nd	nd
PCB105	nd	nd	nd	nd	nd	nd	nd
PCB 110	nd	nd	0.10	nd	nd	nd	nd
PCB114	nd	nd	nd	nd	nd	nd	nd
PCB118	nd	nd	0.25	nd	nd	nd	nd
PCB123	nd	nd	nd	nd	nd	nd	nd
PCB126	nd	nd	nd	nd	nd	nd	nd
PCB128	nd	nd	0.08	nd	nd	0.06	nd
PCB132	nd	0.06	0.06	nd	nd	0.06	nd
PCB138	nd	0.21	0.38	nd	nd	0.34	nd
PCB141	nd	nd	nd	nd	nd	nd	nd
PCB149	nd	0.18	0.08	nd	nd	nd	nd
PCB 151	nd	nd	0.03	nd	nd	nd	nd
PCB153	nd	0.41	0.47	nd	nd	0.73	0.03
PCB 156	nd	nd	nd	nd	nd	nd	nd
PCB157	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	0.03	nd	nd	nd	nd
PCB167	nd	nd	nd	nd	nd	0.03	nd
PCB169	nd	nd	nd	nd	nd	nd	nd
PCB170	nd	nd	0.05	nd	nd	0,15	nd
PCB174	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd
PCB180	nd	0,12	0.22	nd	nd	0,44	nd
PCB183	nd	0,03	0.04	nd	nd	0,08	nd
PCB187	nd	0,09	0.05	nd	nd	0.09	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd
PCB201	nd	nd	nd	nd	nd	nd	nd
PCB203	nd	nd	nd	nd	nd	nd	nd
PCB206	nd	nd	nd	nd	nd	nd	nd
PCB209	nd	nd	nd	nd	nd	nd	nd
PCBs totais	nd	1.34	2.25	nd	0.10	1.98	0.03

2017-18	#5	#6	#7	#9	Obras EACF	Saída Esgoto	Base G
PCB 8	nd	nd	nd	nd	0,127	nd	0,111
PCB 18	nd	0,030	nd	nd	0,529	0,037	0,172
PCB 28 e 31	0,038	0,316	0,053	0,081	3,825	0,123	0,459
PCB 33	nd	0,061	nd	nd	0,975	0,041	0,115
PCB 44	nd	0,145	nd	nd	1,908	0,066	0,190
PCB 49	nd	0,112	nd	0,026	1,280	0,048	0,167
PCB 52	nd	0,105	nd	0,032	1,684	0,106	0,217
PCB 56 e 60	nd	0,275	nd	nd	2,252	0,059	0,183
PCB 66	0,025	0,241	0,025	nd	2,479	0,062	0,146
PCB 70	0,032	0,177	nd	nd	2,490	0,092	0,118
PCB 74	nd	0,136	nd	nd	1,305	0,047	0,113
PCB 77	nd	0,051	nd	nd	0,407	nd	0,059
PCB 81	nd	nd	nd	nd	nd	nd	0,028
PCB 87	nd	0,049	nd	0,031	0,343	0,050	0,141
PCB 95	0,025	0,062	nd	0,055	0,331	0,074	0,199
PCB 97	nd	nd	nd	nd	0,288	0,044	0,133
PCB 99	nd	0,036	nd	nd	0,272	0,051	0,092
PCB 101	0,030	0,095	0,032	0,075	0,561	0,101	0,294
PCB 105	nd	0,050	nd	0,026	0,344	0,037	0,116
PCB 110	0,030	0,086	0,033	0,075	0,386	0,060	0,158
PCB 114	nd	nd	nd	nd	nd	nd	0,068
PCB 118	nd	0,081	0,026	0,053	0,500	0,062	0,142
PCB 123	nd	nd	nd	nd	0,036	nd	0,071
PCB 126	nd	nd	nd	nd	nd	0,040	nd
PCB 128	nd	nd	nd	0,034	0,068	0,074	0,241
PCB 132	nd	0,036	nd	0,040	0,092	0,030	0,120
PCB 138	0,043	0,089	0,049	0,110	0,271	0,067	0,385
PCB 141	nd	nd	nd	0,026	0,055	0,032	0,106
PCB 149	0,031	0,061	0,033	0,066	0,145	0,040	0,252
PCB 151	nd	nd	nd	0,026	0,050	nd	0,120
PCB 153	0,035	0,088	0,042	0,105	0,226	0,073	0,386
PCB 156	nd	nd	nd	nd	0,036	0,087	0,171
PCB 157	nd	nd	nd	nd	nd	0,047	0,090
PCB 158	nd	nd	nd	nd	nd	0,025	0,045
PCB 167	nd	nd	nd	0,034	0,068	0,074	0,241
PCB 169	nd	nd	nd	nd	nd	0,067	0,142
PCB 170	nd	0,029	nd	0,041	0,053	0,051	0,229
PCB 174	nd	0,028	nd	0,036	0,042	0,030	0,180
PCB 177	nd	nd	nd	nd	0,025	0,032	0,099
PCB 180	0,032	0,061	0,036	0,082	0,104	0,056	0,408
PCB 183	nd	nd	nd	nd	0,032	0,035	0,135
PCB 187	nd	0,037	nd	0,049	0,052	0,032	0,205
PCB 189	nd	nd	nd	nd	nd	0,068	0,149
PCB 194	nd	nd	nd	0,032	nd	0,061	0,194
PCB 195	nd	nd	nd	nd	nd	0,049	0,120
PCB 201	nd	nd	nd	0,028	nd	0,041	0,158
PCB 203	nd	nd	nd	0,034	nd	0,042	0,138
PCB 206	nd	nd	nd	nd	nd	0,056	0,119
PCB 209	nd	nd	nd	nd	nd	0,046	0,114
PCBs totais	0.32	2.54	0.33	1.2	23.64	2.42	8.04

2017-18	Baleia	Meteoro	Punta Plaza	Ponta Ullman	Botany Point	Ponta Hennequin	Refúgio II
PCB 8	nd	nd	nd	nd	nd	nd	nd
PCB 18	0,039	nd	nd	nd	nd	nd	0,037
PCB 28 e 31	0,108	0,042	0,028	0,054	nd	0,032	0,099
PCB 33	0,037	nd	nd	nd	nd	nd	0,035
PCB 44	0,055	nd	nd	0,026	nd	nd	0,051
PCB 49	0,043	nd	nd	nd	nd	nd	0,039
PCB 52	0,095	0,031	nd	0,041	nd	nd	0,079
PCB 56 e 60	0,043	nd	nd	nd	nd	nd	0,046
PCB 66	0,040	nd	nd	nd	nd	nd	0,040
PCB 70	0,068	nd	nd	0,034	nd	nd	0,066
PCB 74	0,035	nd	nd	nd	nd	nd	0,036
PCB 77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd
PCB 87	0,031	nd	nd	nd	nd	nd	0,031
PCB 95	0,059	nd	nd	nd	nd	nd	0,050
PCB 97	0,026	nd	nd	nd	nd	nd	0,031
PCB 99	0.036	nd	nd	nd	nd	nd	0,036
PCB 101	0.066	0,025	nd	0,029	nd	nd	0,063
PCB 105	nd	nd	nd	nd	nd	nd	nd
PCB 110	0.034	nd	nd	nd	nd	nd	0,036
PCB 114	nd	nd	nd	nd	nd	nd	nd
PCB 118	0.028	nd	0.025	nd	nd	nd	0.027
PCB 123	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd
PCB 128	nd	nd	nd	nd	nd	nd	nd
PCB 132	nd	nd	nd	nd	nd	nd	nd
PCB 138	0.030	nd	0.041	nd	nd	0.049	0.030
PCB 141	nd	nd	nd	nd	nd	nd	nd
PCB 149	nd	nd	nd	nd	nd	nd	0,026
PCB 151	nd	nd	nd	nd	nd	nd	nd
PCB 153	0,043	nd	0,037	nd	nd	0,090	0,037
PCB 156	nd	nd	nd	nd	nd	nd	nd
PCB 157	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	nd	nd	nd	nd	nd
PCB 167	nd	nd	nd	nd	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	nd	nd	nd	nd	nd
PCB 174	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd
PCB 180	nd	nd	nd	nd	nd	0,054	nd
PCB 183	nd	nd	nd	nd	nd	nd	nd
PCB 187	nd	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd
PCB 201	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0,916	0,098	0,132	0,183	nd	0,224	0,896

2018-19	#5	#6	#7	#9	Saída Esgoto	Base G
PCB 18	0,005	0,085	0,018	0,045	0,009	0,002
PCB 28 e 31	0,024	0,432	0,083	0,224	0,026	0,006
PCB 33	0,015	0,228	0,038	0,110	0,013	0,003
PCB 44	0,021	0,207	0,030	0,132	0,019	0,011
PCB 49	nd	0,136	0,030	0,078	0,008	0,180
PCB 52	0,030	0,162	0,031	0,115	0,020	0,033
PCB 56 e 60	0,019	0,327	0,055	0,169	0,017	0,010
PCB 66	0,022	0,291	0,051	0,172	0,013	0,012
PCB 70	0,040	0,268	0,054	0,159	0,009	0,030
PCB 74	0,012	0,173	0,028	0,089	nd	0,008
PCB 77	0,004	0,057	0,013	0,031	0,008	0,011
PCB 81	nd	nd	nd	0,002	nd	0,004
PCB 87	0,031	0,055	0,026	0,041	nd	0,081
PCB 95	0,046	0,056	0,028	0,053	0,021	0,091
PCB 97	0,021	0,025	0,010	0,022	0,008	0,056
PCB 99	0,023	0,039	0,017	0,031	nd	0,030
PCB 101	0,063	0,098	0,052	0,081	0,015	0,199
PCB 105	0,022	0,057	0,023	0,029	0,011	0,121
PCB 110	0,064	0,102	0,055	0,075	0,014	0,366
PCB 114	nd	nd	nd	nd	nd	nd
PCB 118	0,048	0,089	0,043	0,056	nd	0,189
PCB 123	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	0,004	0,002	nd	0,003
PCB 128 e 167	0,016	0,022	0,015	0,015	0,010	0,116
PCB 132	0,024	0,032	0,022	0,023	0,006	0,115
PCB 138	0,066	0,089	0,060	0,062	0,005	0,442
PCB 141	0,013	0,015	0,013	0,010	nd	0,061
PCB 149	0,050	0,060	0,043	0,049	nd	0,225
PCB 151	0,012	0,017	0,011	0,012	nd	0,043
PCB 153	0,042	0,062	0,042	0,040	0,007	0,266
PCB 156	0,006	0,009	0,007	0,006	nd	0,033
PCB 157	0,002	0,003	0,002	0,002	nd	0,015
PCB 158	0,006	0,007	0,004	0,005	nd	0,027
PCB 169	nd	nd	nd	nd	nd	nd
PCB 170	0,017	0,027	0,017	0,017	nd	0,066
PCB 174	0,012	0,021	0,012	0,014	nd	0,044
PCB 177	0,007	0,010	0,006	0,007	nd	0,020
PCB 180	0,032	0,048	0,032	0,032	nd	0,126
PCB 183	0,007	0,012	0,008	0,008	nd	0,029
PCB 187	0,016	0,026	0,017	0,018	nd	0,057
PCB 189	nd	0,002	0,002	0,001	nd	0,005
PCB 194	0,008	0,012	0,011	0,010	nd	0,031
PCB 195	0,003	0,005	0,003	0,003	nd	0,010
PCB 201	nd	nd	nd	nd	nd	nd
PCB 203	0,008	0,013	0,011	0,011	nd	0,031
PCB 206	0,004	0,006	0,009	0,004	nd	0,019
PCB 209	nd	nd	nd	nd	nd	0,018
PCBs totais	0.859	3.388	1.035	2,063	0.238	3.246

2018-19	Baleia	Mod. Química	Meteoro	Punta Plaza	Ponta Ullman	Ponta Hennequin	Refúgio II
PCB 18	0,004	nd	0,001	0,006	0,006	nd	nd
PCB 28 e 31	nd	0,002	0,005	0,006	0,004	0,006	0,004
PCB 33	nd	nd	0,002	nd	0,002	0,004	0,002
PCB 44	nd	0,003	0,003	0,005	0,001	0,008	0,003
PCB 49	0,002	0,002	nd	0,006	0,001	nd	nd
PCB 52	0,002	0,005	0,006	0,008	0,003	0,009	0,004
PCB 56 e 60	0,001	0,003	0,003	0,004	0,002	0,007	0,004
PCB 66	0,002	0,003	0,004	0,006	0,002	0,007	0,004
PCB 70	0,003	0,008	0,007	0,011	0,003	0,013	0,007
PCB 74	nd	0,002	0,002	0,003	nd	0,004	0,002
PCB 77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd
PCB 87	0,003	0,008	0,006	0,010	0,003	0,011	0,007
PCB 95	0,003	0,008	0,006	0,011	0,003	0,013	0,007
PCB 97	0,002	0,005	0,004	0,007	0,002	0,009	0,006
PCB 99	0,002	0,005	0,004	0,008	0,002	0,007	0,004
PCB 101	0,004	0,013	0,010	0,017	0,006	0,019	0,011
PCB 105	0,001	0,006	0,004	0,010	0,002	0,007	0,006
PCB 110	0,005	0,017	0,010	0,019	0,005	0,022	0,014
PCB 114	nd	nd	nd	nd	nd	nd	nd
PCB 118	0,004	0,013	0,008	0,022	0,004	0,014	0,010
PCB 123	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd
PCB 128 e 167	nd	0,004	0,002	0,008	nd	0,004	0,003
PCB 132	0,001	0,005	0,003	0,006	nd	0,006	0,005
PCB 138	0,005	0,017	0,010	0,038	0,005	0,017	0,014
PCB 141	nd	0,003	0,002	0,003	nd	0,002	0,002
PCB 149	0,003	0,011	0,006	0,011	0,004	0,013	0,008
PCB 151	nd	0,002	nd	0,002	nd	0,001	nd
PCB 153	0,004	0,010	0,006	0,023	0,002	0,009	0,008
PCB 156	nd	0,002	nd	0,005	nd	0,001	0,001
PCB 157	nd	nd	nd	0,001	nd	nd	nd
PCB 158	nd	0,001	nd	0,003	nd	nd	0,001
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	0,001	nd	nd	0,007	nd	nd	0,002
PCB 174	nd	0,001	nd	0,002	nd	nd	nd
PCB 177	nd	nd	nd	0,002	nd	nd	nd
PCB 180	0,003	0,006	0,004	0,019	nd	0,005	0,004
PCB 183	nd	nd	nd	0,003	nd	nd	nd
PCB 187	nd	0,002	0,001	0,004	nd	nd	nd
PCB 189	nd	nd	nd	0,002	nd	nd	nd
PCB 194	nd	nd	nd	0,004	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd
PCB 201	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	0,002	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	Nd
PCB 209	nd	nd	nd	nd	nd	nd	Nd
PCBs totais	0.057	0 168	0 119	0 303	0.063	0.219	0 146

PCB 8 PCB 18 PCB 28 e 31 PCB 33 PCB 44 PCB 49 PCB 52 PCB 52 PCB 56 e 60 PCB 70 PCB 70 PCB 70 PCB 74 PCB 77 PCB 81 PCB 77 PCB 81 PCB 95 PCB 95 PCB 95 PCB 95 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 105 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 128 e 167 PCB 128 e 167 PCB 138 PCB 138 PCB 141 PCB 149	0,033 0,025 0,042 0,018 0,016	0,029 0,094 0,475 0,141	0,028 0,071 0 294	0,014 0,015	0,032
PCB 18 PCB 28 e 31 PCB 33 PCB 44 PCB 49 PCB 52 PCB 52 PCB 56 e 60 PCB 70 PCB 70 PCB 74 PCB 77 PCB 77 PCB 81 PCB 87 PCB 95 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 105 PCB 114 PCB 118 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0,025 0,042 0,018 0,016	0,094 0,475 0,141	0,071 0 294	0,015	0.000
PCB 28 e 31 PCB 33 PCB 44 PCB 49 PCB 52 PCB 56 e 60 PCB 66 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 87 PCB 95 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,042 0,018 0,016	0,475 0,141	0 294		0,090
PCB 33 PCB 44 PCB 49 PCB 52 PCB 56 e 60 PCB 66 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 87 PCB 95 PCB 95 PCB 99 PCB 101 PCB 105 PCB 105 PCB 105 PCB 114 PCB 118 PCB 123 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,018 0,016	0,141	J,4/T	0,062	0,269
PCB 44 PCB 49 PCB 52 PCB 52 e 60 PCB 56 e 60 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 114 PCB 118 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,016		0,106	0,019	0,076
PCB 49 PCB 52 PCB 56 e 60 PCB 66 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149		0,096	0,080	0,018	0,188
PCB 52 PCB 56 e 60 PCB 66 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 97 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 114 PCB 118 PCB 123 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,011	0,122	0,055	0,015	0,116
PCB 56 e 60 PCB 66 PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,018	0,146	0,060	0,020	0,294
PCB 66 PCB 70 PCB 74 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0,007	0,113	0,056	0,014	0,105
PCB 70 PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0,014	0,353	0,120	0,030	0,148
PCB 74 PCB 77 PCB 81 PCB 87 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 114 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,015	0,227	0,111	0,028	0,382
PCB 77 PCB 81 PCB 87 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0,004	0,105	0,044	0,014	0,099
PCB 81 PCB 87 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141	nd	0,060	nd	nd	nd
PCB 87 PCB 95 PCB 97 PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141	nd	0,003	nd	nd	0,010
PCB 95 PCB 97 PCB 97 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0.010	0.047	0.014	0.012	0.434
PCB 97 PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0.043	0.075	0.019	0.035	0.289
PCB 99 PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0.005	0.039	0.011	0.008	0.235
PCB 101 PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0.009	0.044	0.015	0.012	0.145
PCB 105 PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	0.035	0.091	0.028	0.032	1.060
PCB 110 PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0.010	0.051	0.019	0.011	0.716
PCB 114 PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0.034	0.093	0.029	0.032	1 217
PCB 118 PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	nd	0.004	nd	nd	0.017
PCB 123 PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	0.020	0.068	0.031	0.024	0,623
PCB 126 PCB 128 e 167 PCB 132 PCB 138 PCB 138 PCB 141 PCB 149	nd	nd	nd	nd	nd
PCB 128 e 167 PCB 132 PCB 138 PCB 141 PCB 149	nd	nd	nd	nd	nd
PCB 132 PCB 138 PCB 141 PCB 149	0.021	0.015	0.006	0.013	0.432
PCB 138 PCB 141 PCB 149	0.027	0.018	0,000	0.017	0.477
PCB 141 PCB 149	0.062	0.048	0.017	0.033	1 127
PCB 149	0.014	0.010	0.006	0.009	0.259
	0.053	0.035	0,000	0,039	0,239
PCB 151	0.014	0,009	0.004	0,011	0.119
PCB 153	0.052	0.037	0.018	0.026	1.055
PCB 156	0.007	0.005	nd	0.004	0.085
PCB 157	nd	nd	nd	nd	0.058
PCB 158	0.008	0.004	nd	0.005	0.105
PCB 169	nd	nd	nd	nd	nd
PCB 170	0.030	0.011	0.005	0.012	0.236
PCB 174	0.025	0.012	0.006	0.014	0.209
PCB 177	0.012	0.004	nd	0.007	0.059
PCB 180	0.064	0.029	0.015	0.028	0 499
PCB 183	0.015	0.009	0.004	0,009	0,096
PCB 187	0.032	0.012	0.005	0.013	0.173
PCB 189	nd	nd	0,005 nd	nd	0,009
PCB 194	0.022	0.007	0.004	0.010	0,009
PCB 195	0.007	0,007	0,00 I	0.004	0.051
PCB 199	0,007	0,005	nd	0,004 nd	0,051
PCB 203	0.019	0.005	nd	0.006	0.150
PCR 206	0,010 nd	0,005 nd	nd	0,000 nd	0,130 nd
PCR 200	nd	nd	nd	nd	nd
DCDs totais	0.95	11u	1 21	0.67	12.54

2019-20	Baleia	Meteoro	P. Plaza	P. Ullman	Botany	Hennequin	Refúgio II
PCB 8	0,029	0,057	0,040	0,005	nd	0,034	nd
PCB 18	0,022	0,045	0,035	0,005	0,007	0,026	nd
PCB 28 e 31	0,021	0,050	0,039	0,013	0,014	0,037	0,003
PCB 33	0,007	0,016	0,013	0,005	0,007	0,011	nd
PCB 44	nd	0,003	0,005	nd	nd	0,003	nd
PCB 49	nd	0,004	0,003	nd	nd	0,004	nd
PCB 52	0,005	0,014	0,010	0,004	0,004	0,011	nd
PCB 56 e 60	nd	nd	nd	nd	nd	nd	nd
PCB 66	nd	nd	0,004	nd	nd	nd	nd
PCB 70	nd	nd	0,005	0,003	0,003	nd	nd
PCB 74	nd	nd	0,003	nd	nd	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd
PCB 87	nd	nd	nd	nd	0,003	nd	nd
PCB 95	nd	0,003	0,006	nd	0,003	nd	nd
PCB 97	nd	nd	0,004	nd	nd	nd	nd
PCB 99	nd	nd	0,011	nd	nd	0,003	nd
PCB 101	nd	nd	0,009	nd	nd	nd	nd
PCB 105	nd	nd	0,009	nd	nd	nd	nd
PCB 110	nd	nd	0,008	0,008	nd	nd	nd
PCB 114	nd	nd	nd	nd	nd	nd	nd
PCB 118	nd	nd	0,044	nd	nd	0,014	nd
PCB 123	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd
PCB 128 e 167	nd	nd	0,017	nd	nd	0,008	nd
PCB 132	nd	nd	0,004	nd	nd	nd	nd
PCB 138	nd	nd	0,045	nd	nd	0,023	nd
PCB 141	nd	nd	0,003	nd	nd	nd	nd
PCB 149	nd	nd	0,006	nd	nd	nd	nd
PCB 151	nd	nd	nd	nd	nd	nd	nd
PCB 153	nd	0,004	0,045	nd	0,005	0,058	nd
PCB 156	nd	nd	0,011	nd	nd	0,005	nd
PCB 157	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	0,006	nd	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	0,013	nd	nd	0,012	nd
PCB 174	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd
PCB 180	nd	0,003	0,041	nd	0,009	0,051	nd
PCB 183	nd	nd	0,005	nd	nd	0,008	nd
PCB 187	nd	nd	0,006	nd	nd	0,006	nd
PCB 189	nd	nd	nd	nd	0,007	nd	nd
PCB 194	nd	0,004	0,009	nd	0,009	0,009	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd
PCB 199	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	0,005	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0,08	0,20	0,46	0,04	0,07	0,33	nd

2012	CF_Tanq 30 m	CF_Heli 30 m	P. Ullman 30 m
PCB 8	nd	nd	nd
PCB 18	nd	nd	nd
PCB 28 e 31	nd	nd	nd
PCB 33	nd	nd	nd
PCB 44	0,021	0,02	0,02
PCB 49	0,016	0,01	0,01
PCB 52	0,031	0,03	0,03
PCB 56 e 60	0,013	nd	nd
PCB 66	0,017	0,02	0,01
PCB 70	nd	nd	nd
PCB 74	0,003	nd	nd
PCB 77	0,011	nd	nd
PCB 81	0,009	nd	nd
PCB 87	0.005	0.01	nd
PCB 95	0,026	0.05	0.02
PCB 97	0.005	0.01	nd
PCB 99	0.019	0.03	0.005
PCB 101	0.033	0.07	0.02
PCB 105	0.017	0.03	nd
PCB 110	0.032	0.07	0.01
PCB 114	0.008	nd	nd
PCB 118	0.008	0.05	nd
PCB 123	0,008	0,003	nd
PCB 125	0,008	0,005	nd
PCB 128 o 167	0,012	0.02	nd
PCD 120 C 107	0,023	0,02	nd
DCD 132	0,014	0,03	nd
PCD 130	0,020	0,08	nd
PCD 141	0,010	0,01	nd
PCD 149	0,000	0,03	nd l
PCB 151	0,009	0,01	nd
PCB 155	0,015	0,03	nd
PCB 150	0,021	0,01	nd
PCB 15/	0,010	nd 0.01	nd
PCB 158	0,012	0,01	nd
PCB 169	0,014	nd 0.02	nd
FCD 170 DCD 174	0,015	0,02	na 1
rub 1/4 DCD 177	0,010	0,01	na
rub 1//	0,009	0,01	na 1
PCB 180	0,012	0,02	nd
ГСВ 185 DCD 187	0,007	0,005	nd
PCB 187	0,007	0,005	nd
PCB 189	0,009	nd	nd
PCB 194	0,009	0,003	nd
PCB 195	0,009	nd	nd
PCB 199	nd	nd	nd
PCB 203	0,010	0,005	nd
PCB 206	0,008	nd	nd
PCB 209	nd	nd	nd
PCBs totais	0,55	0,71	0,13

APÊNDICE C - PCBs em sedimentos da Baia do Almirantado (ng g⁻¹ peso seco)

 $nd < 0,0025 ng g^{-1}$

2012/13	Tanques 30,8 m	Heliponto 23.6 m	Botany 29.2 m	P. Ullman 23,3	Refugio 2 28.0 m	Ezcurra 31 7 m
PCB 8	nd	nd	nd	nd	nd	nd
PCB 18	nd	nd	nd	nd	nd	nd
PCB 28 e 31	nd	nd	nd	nd	nd	nd
PCB 33	nd	nd	nd	nd	nd	nd
PCB 44	0.03	0.03	0.03	0.07	0.02	0.03
PCB 49	0.02	0.02	0.01	0.03	0.01	0.01
PCB 52	0.06	0.05	0.02	0.09	0.03	0.07
PCB 56 e 60	nd	0.004	nd	0.01	nd	nd
PCB 66	0.02	0.02	nd	0.04	0.01	0.02
PCB 70	0.02	0.01	0.01	0.06	nd	0.01
PCB 74	nd	nd	0.02	0.01	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	0.04	nd	nd	nd
PCB 87	0.01	nd	0,01	0.04	nd	0.01
PCB 95	0.05	0.04	nd	0.08	0.02	0.06
PCB 97	0,05	nd	nd	0.01	0,02	0,003
PCB 99	0.02	0.01	nd	0.04	0.01	0.02
PCB 101	0,02	0.05	0.03	0.12	0.03	0.07
PCB 105	0,00	0,004	0,05	0,12	0,05	0,07
PCB 110	0.05	0.04	nd	0.11	0.02	0.06
PCB 114	0,05	nd	nd	nd	0,02	nd
PCB 118	0.03	0.01	0.003	0.04	nd	0.02
PCB 123	0,05	nd	0,005	0,04 nd	nd	0,02 nd
PCB 126	nd	nd	nd	nd	nd	nd
PCB 128 e 167	nd	nd	0.003	nd	nd	0.01
PCB 132	nd	nd	nd	nd	nd	0.02
PCB 138	0.03	0.01	0.005	0.02	nd	0.05
PCB 141	nd	nd	nd	nd	nd	nd
PCB 149	0.01	nd	0.01	0.02	nd	0.03
PCB 151	nd	nd	nd	nd	nd	0.01
PCB 153	0.02	0.01	nd	0.02	nd	0.03
PCB 156	nd	nd	nd	nd	nd	0.003
PCB 157	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	nd	nd	nd	0.004
PCB 169	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	nd	nd	nd	nd
PCB 174	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd
PCB 180	nd	nd	nd	nd	nd	0.03
PCB 183	nd	nd	nd	nd	nd	nd
PCB 187	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd
PCB 199	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd
PCBs totais	0,44	0,30	0,21	0,82	0,14	0,57

2013/14	Tanques 30 m	Heliponto 32 m	Heliponto 59,7 m	Botany 30 m	Ullman 30 m	Refugio2 30,4 m	Hennequin 30,6 m
PCB 8	nd	nd	nd	0,004	0,004	nd	nd
PCB 18	nd	nd	nd	0,01	0,01	nd	nd
PCB 28 e 31	nd	nd	nd	0,01	0,01	nd	nd
PCB 33	nd	nd	nd	0,003	nd	nd	nd
PCB 44	0,04	0,04	0,05	0,06	0,06	0,04	0,06
PCB 49	0,02	0,03	0,03	0,04	0,04	0,03	0,03
PCB 52	0,05	0,06	0,08	0,08	0,09	0,11	0,08
PCB 56 e 60	0,01	nd	0,004	0,01	0,003	0,003	nd
PCB 66	0,03	0,01	0,02	0,02	0,02	0,02	0,02
PCB 70	0,03	nd	0,01	0,01	0,01	0,01	0,02
PCB 74	0,01	nd	0,005	0,005	nd	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd
PCB 87	0,02	nd	0,01	0,01	nd	nd	nd
PCB 95	0,06	0,01	0,05	0,05	0,05	0,05	0,06
PCB 97	0,01	nd	0,003	0,004	nd	nd	nd
PCB 99	0,03	0,01	0,02	0,02	0,01	0,01	0,01
PCB 101	0,09	0,03	0,05	0,06	0,05	0,05	0,06
PCB 105	0,02	0,003	0,004	0,004	0,004	nd	nd
PCB 110	0,08	0,02	0,04	0,04	0,03	0,04	0,05
PCB 114	nd	nd	nd	nd	nd	nd	nd
PCB 118	0,04	0,003	0,01	0,01	0,01	0,004	0,01
PCB 123	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd
PCB 128 e 167	nd	nd	nd	nd	nd	nd	nd
PCB 132	0,02	0,004	0,004	nd	nd	nd	nd
PCB 138	0,06	0,01	0,01	0,008	0,01	0,004	0,02
PCB 141	nd	nd	nd	nd	nd	nd	nd
PCB 149	0,03	nd	0,003	0,003	0,003	nd	nd
PCB 151	nd	nd	nd	nd	nd	nd	nd
PCB 153	0,04	0,005	0,003	nd	0,003	nd	0,003
PCB 156	nd	nd	nd	nd	nd	nd	nd
PCB 157	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	nd	nd	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	nd	nd	nd	nd	nd
PCB 174	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd
PCB 180	0,02	nd	nd	nd	nd	nd	nd
PCB 183	nd	nd	nd	nd	nd	nd	nd
PCB 187	nd	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd
PCB 199	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0,72	0,24	0,40	0,44	0,42	0,36	0,43

2015/16	Tanques 34,7 m	Heliponto 28,4 m	Botany 25,0 m	P. Ullman 24,1 m	Hennequin 22,0 m	Ref. II 21,0 m
PCB 8	0,005	0,004	0,006	0,061	0,074	0,038
PCB 18	0,007	0,005	0,009	0,043	0,045	0,024
PCB 28 e 31	0,016	0,014	0,020	0,037	0,035	0,011
PCB 33	0,007	0,007	0,008	0,015	0,015	0,009
PCB 52	0,025	0,024	0,027	0,033	0,036	0,025
PCB 49	0,008	0,008	0,008	0,010	0,011	0,008
PCB 44	0,011	0,011	0,013	0,015	0,017	0,011
PCB 74	0,003	0,004	0,004	0,005	0,007	0,003
PCB 70	0,007	nd	nd	nd	nd	nd
PCB 66	0,006	0,007	0,007	0,008	0,008	0,005
PCB 95	0,013	0,014	0,015	0,017	0,015	0,012
PCB 56 e 60	0,006	0,009	0,008	0,009	0,012	0,007
PCB 101	0,030	0,039	0,033	0,040	0,045	0,026
PCB 99	0,008	0,013	0,011	0,012	0,015	0,007
PCB 97	0,005	0,010	0,008	0,010	0,013	0,006
PCB 87	0,010	0,018	0,013	0,017	0,021	0,010
PCB 81	nd	nd	nd	nd	nd	nd
PCB 110	0,018	0,032	0,024	0,028	0,039	0,017
PCB 77	nd	nd	nd	nd	nd	nd
PCB 151	nd	nd	0,003	nd	0,003	nd
PCB 123	nd	nd	nd	nd	nd	nd
PCB 149	0,010	0,017	0,013	0,014	0,017	0,007
PCB 118	0,013	0,023	0,016	0,019	0,028	0,010
PCB 114	nd	nd	nd	nd	nd	nd
PCB 153	0,009	0,018	0,013	0,013	0,016	0,006
PCB 132	0,005	0,009	0,006	0,009	0,011	0,005
PCB 105	0,005	0,010	0,007	0,008	0,013	0,005
PCB 141	nd	0,004	0,003	0,004	0,005	nd
PCB 138	0,034	0,004	0,042	0,024	0,035	0,025
PCB 158	nd	0,004	nd	nd	0,004	nd
PCB 126	nd	nd	nd	nd	nd	nd
PCB 187	nd	0,005	0,003	nd	nd	nd
PCB 183	nd	0,003	nd	nd	nd	nd
PCB 128 e 167	0,005	0,006	0,006	0,006	0,007	0,003
PCB 174	nd	0,004	nd	nd	0,003	nd
PCB 177	nd	0,003	nd	nd	nd	nd
PCB 156	nd	0,003	nd	nd	0,004	nd
PCB 157	nd	nd	nd	nd	nd	nd
PCB 180	0,004	0,010	0,005	0,006	0,008	nd
PCB 169	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	nd	nd	0,005	nd
PCB 199	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd
PCB 194	0,003	0,004	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd
PCBs totais	0.272	0.344	0.330	0.463	0.569	0.280

2016/17	Tanques 30,0 m	Tanques 47,6 m	Heliponto 32,7 m	Heliponto 48,5 m	Botany 26,0 m	Ullman 34,0 m	Ref. II 35,0 m	Hennequin 25,0 m	Dufayel 30,0 m
PCB 8	nd	0,07	nd	0,07	nd	nd	nd	nd	nd
PCB 18	nd	0,05	nd	0,03	nd	nd	nd	nd	nd
PCB 28/31	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 33	nd	0,05	nd	0,03	0,05	nd	nd	nd	nd
PCB 52	nd	0,03	nd	0,03	nd	nd	nd	nd	nd
PCB 49	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 44	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 74	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 70	nd	nd	nd	nd	0,04	nd	nd	nd	nd
PCB 66	nd	nd	nd	nd	0,04	nd	nd	nd	nd
PCB 95	nd	nd	nd	nd	0,03	nd	nd	nd	nd
PCB 56	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 101	nd	nd	nd	nd	0,04	nd	nd	nd	nd
PCB 99	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 97	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 87	nd	nd	nd	nd	0,03	nd	nd	nd	nd
PCB 77	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 110	nd	nd	nd	nd	0,05	nd	nd	nd	nd
PCB 151	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 123	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 149	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 118	nd	nd	nd	nd	0,03	nd	nd	nd	nd
PCB 114	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 153	nd	nd	nd	nd	0,03	nd	nd	nd	nd
PCB 132	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 105	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 141	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 138	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 187	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 183	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 128	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 167	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 174	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 156	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 157	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 180	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 201	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	nd	0.20	nd	0.16	0.34	nd	nd	nd	nd

2017/18	Tanques	Heliponto	Tanques	Heliponto	Ullman 22.6 m	Botany 25.0 m	Hennequin	Ref. II	Mackellar
	30,0 m	32,4 III	47,0 III	00,8 III	22,0 III	23,9 m	31,0 III	21,0 III	44,0 III
PCB 8	0,031	nd	nd	nd	nd	nd	nd	nd	nd
PCB 18	0,032	na	na	nd	nd	na	nd	na	nd
PCB 28-31	0,092	nd	nd	nd	0,036	0,044	0,090	0,042	0,045
PCB 33	0,027	nd	nd	nd	nd	nd	0,033	nd	nd
PCB 44	0,037	nd	nd	nd	0,036	0,035	0,073	nd	nd
PCB 49	0,032	nd	nd	nd	nd	nd	0,037	nd	nd
PCB 52	0,061	nd	0,025	nd	0,056	0,055	0,104	0,031	0,039
PCB 56-60	nd	nd	nd	nd	nd	nd	0,051	nd	0,028
PCB 66	nd	nd	nd	nd	0,030	0,027	0,059	nd	nd
PCB 70	0,034	nd	nd	nd	nd	0,049	nd	nd	0,036
PCB 74	nd	nd	nd	nd	nd	nd	0,042	nd	nd
РСВ 77	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 81	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 87	nd	nd	0,065	nd	0,038	0,031	0,068	nd	0,026
PCB 95	0,029	0,026	0,063	nd	0,054	0,046	0,096	nd	0,030
PCB 97	nd	nd	0,037	nd	0,026	nd	0,050	nd	nd
PCB 99	nd	nd	0,033	nd	0,029	0,025	0,054	nd	0,025
PCB 101	0,035	0,041	0,104	nd	0,077	0,067	0,135	nd	0,045
PCB 105	nd	nd	0,065	nd	nd	nd	0,027	nd	nd
PCB 110	nd	0,031	0,095	nd	0,050	0,038	0,080	nd	0,033
PCB 114	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 118	0,029	0,038	0,129	nd	0,043	0,031	0,070	nd	0,036
PCB 123	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 128	nd	nd	0,060	nd	nd	nd	nd	nd	0,029
PCB 132	nd	nd	0,069	nd	nd	nd	nd	nd	nd
PCB 138	0,033	0,036	0,242	nd	0,035	nd	0,052	nd	0,040
PCB 141	nd	nd	0,035	nd	nd	nd	nd	nd	nd
PCB 149	nd	nd	0,081	nd	nd	nd	0,039	nd	nd
PCB 151	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 153	0,026	0,031	0,162	nd	0,029	nd	0,047	nd	0,041
PCB 156	nd	nd	0,040	nd	nd	nd	nd	nd	0,028
PCB 157	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 158	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 167	nd	nd	0,060	nd	nd	nd	nd	nd	0,029
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	nd	nd	0,040	nd	nd	nd	nd	nd	nd
PCB 174	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 177	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 180	nd	nd	0,047	nd	nd	nd	nd	nd	nd
PCB 183	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 187	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 201	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0,499	0,203	1,454	nd	0,538	0,450	1,206	0,073	0,510

2018/19	Tanques 32,0 m	Heliponto 30,8 m	Tanques 48,0 m	Heliponto 59,0 m	Ullman 28,4 m	Botany 28,0 m	Refúgio II 30,5 m	Mackellar 32,0 m
PCB 18	0,003	0,005	0,155	0,001	0,008	0,003	0,003	0,003
PCB 28 31	0,009	0,012	0,488	0,003	0,012	0,009	0,011	0,003
PCB 33	0,005	0,006	0,212	0,002	0,004	0,005	0,006	0,001
PCB 52	0,010	0,009	0,503	0,002	0,005	0,006	0,018	0,001
PCB 49	0,006	0,014	0,163	0,004	nd	0,004	0,005	0,002
PCB 44	0,007	0,007	0,291	nd	0,003	0,003	0,009	nd
PCB 74	0,004	0,004	0,113	nd	0,002	0,003	0,008	nd
PCB 70	0,013	0,010	0,344	0,003	0,005	0,006	0,021	0,002
PCB 66	0,007	0,008	0,166	0,002	0,003	0,004	0,011	0,001
PCB 95	0,012	0,008	0,348	0,003	0,004	0,004	0,017	nd
PCB 56 60	0,005	0,006	0,134	0,002	0,003	0,003	0,011	nd
PCB 101	0,020	0,012	0,518	0,005	0,006	0,006	0,040	0,003
PCB 99	0,010	0,005	0,200	0,002	0,003	0,003	0,015	nd
PCB 97	0,007	0,004	0,184	0,002	0,003	0,003	0,013	nd
PCB 87	0,010	0,007	0,286	0,003	0,004	0,004	0,024	0,003
PCB 81	nd	nd	0,005	nd	nd	nd	nd	nd
PCB 110	0,021	0,011	0,525	0,005	0,006	0,006	0,041	0,003
PCB 77	0,002	nd	0,019	nd	nd	nd	0,002	nd
PCB 151	0,002	0,001	0,050	nd	nd	nd	0,004	nd
PCB 123	nd	nd	nd	nd	nd	nd	nd	nd
PCB 149	0,014	0,007	0,331	0,004	0,005	0,004	0,025	0,002
PCB 118	0,020	0,008	0,393	0,005	0,005	0,004	0,034	0,003
PCB 114	nd	nd	0,012	nd	nd	nd	nd	nd
PCB 153	0,012	0,006	0,235	0,003	0,004	0,003	0,018	0,002
PCB 132	0,007	0,003	0,151	0,002	0,002	0,002	0,013	nd
PCB 105	0,010	0,003	0,163	0,002	0,003	0,002	0,015	0,001
PCB 141	0,002	0,001	0,071	nd	nd	nd	0,006	nd
PCB 138	0,021	0,009	0,325	0,006	0,006	0,004	0,035	0,003
PCB 158	0,002	nd	0,020	nd	nd	nd	0,003	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd	nd
PCB 187	0,002	nd	0,022	nd	nd	nd	0,002	nd
PCB 183	nd	nd	0,014	nd	nd	nd	0,001	nd
PCB 128 e 167	0,005	0,001	0,052	0,001	0,001	nd	0,006	nd
PCB 174	nd	nd	0,018	nd	nd	nd	0,002	nd
PCB 177	0,001	nd	0,010	nd	nd	na	0,001	nd
PCB 150 PCB 157	0,002	nd	0,010	nd	nd	na	0,003	nd
PCD 157	nd	na 0.002	0,005	nd 0.001	nd	nd	nu 0.006	nd
PCD 160	nd	0,002	0,020	0,001	nd	nd	0,000	nd
PCD 109	0.002	nd	0.000	nd	nd	nd	nd	nd
PCB 201	0,002 nd	nd	0,009	nd	nd	nd	nd	nd
PCR 203	nd	nd	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd	nd
PCB 105	nd	nd	nd	nd	nd	nd	nd	nd
PCB 194	nd	nd	nd	nd	nd	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	0.253	0.172	6.58	0.063	0.000	0.001	0.427	0.035

2019/20	Tanques 30,0 m	Heliponto 30,0 m	Tanques 58,8 m	Heliponto 62,2 m	Ullman 30,0 m	Botany 28,0 m	Hennequin 42,4 m	Ref. II 40,1 m
PCB 8	0,114	0,099	0,017	0,040	0,108	0,012	0,003	0,012
PCB 18	0,247	0,255	0,015	0,037	0,290	0,011	0,005	0,010
PCB 28 e 31	1,507	1,200	0,023	0,040	1,559	0,016	0,012	0,016
PCB 33	0,629	0,620	0,009	0,014	0,609	0,006	0,005	0,006
PCB 52	1,207	0,928	0,008	0,019	1,204	0,009	0,003	0,005
PCB 49	0,585	0,594	0,003	0,007	0,555	nd	nd	nd
PCB 44	1,057	1,110	0,004	0,010	0,994	nd	nd	nd
PCB 74	0,488	0,448	nd	0,003	0,367	nd	nd	nd
PCB 70	1,005	1,167	nd	0,006	1,413	nd	nd	nd
PCB 66	0,847	0,703	nd	0,006	0,753	nd	nd	0,003
PCB 95	1,545	1,342	nd	0,011	1,370	0,004	nd	nd
PCB 56 e 60	0,313	0,361	nd	0,003	0,274	nd	nd	nd
PCB 101	2,079	2,200	nd	0,009	1,757	nd	nd	nd
PCB 99	0,797	0,790	nd	0,004	0,687	nd	nd	nd
PCB 97	0,621	0,657	nd	nd	0,518	nd	nd	nd
PCB 87	0,784	0,883	nd	0,004	0,802	nd	nd	nd
PCB 81	0,009	0,010	nd	nd	0,010	nd	nd	nd
PCB 110	1,780	2,041	nd	0,010	1,448	nd	nd	nd
PCB 77	0,058	0,078	nd	nd	0,047	nd	nd	nd
PCB 151	0,154	0,168	nd	nd	0,115	nd	nd	nd
PCB 123	nd	nd	0,003	nd	nd	nd	0,006	nd
PCB 149	0,682	0,887	nd	0,004	0,549	nd	nd	nd
PCB 118	1,312	1,824	nd	0,006	1,102	nd	nd	nd
PCB 114	0,034	0,045	nd	nd	0,028	nd	nd	nd
PCB 153	0,585	0,821	0,004	0,006	0,449	nd	nd	nd
PCB 132	0,375	0,545	nd	0,003	0,300	nd	nd	nd
PCB 105	0,519	0,773	nd	nd	0,440	nd	nd	nd
PCB 141	0,163	0,242	nd	nd	0,140	nd	nd	nd
PCB 138	0,805	1,178	nd	nd	0,565	nd	nd	nd
PCB 158	0,085	0,131	nd	nd	nd	nd	nd	nd
PCB 126	nd	nd	nd	nd	nd	nd	nd	nd
PCB 187	0,047	0,071	nd	nd	0,041	nd	nd	nd
PCB 183	0,039	0,065	nd	nd	0,031	nd	nd	nd
PCB 128 e 167	0,170	0,282	nd	nd	0,155	nd	nd	nd
PCB 174	0,052	0,079	nd	nd	0,043	nd	nd	nd
PCB 177	0,026	0,039	nd	nd	0,021	nd	nd	nd
PCB 156	0,059	0,083	nd	nd	0,054	nd	nd	nd
PCB 157	0,010	0,017	nd	nd	0,009	nd	nd	nd
PCB 180	0,086	0,134	nd	nd	0,071	nd	nd	nd
PCB 169	nd	nd	nd	nd	nd	nd	nd	nd
PCB 170	0,036	0,072	nd	nd	0,033	nd	nd	nd
PCB 199	nd	nd	nd	nd	nd	nd	nd	nd
PCB 203	nd	0,009	nd	nd	nd	nd	nd	nd
PCB 189	nd	nd	nd	nd	nd	nd	nd	nd
PCB 195	nd	0,004	nd	nd	nd	nd	nd	nd
PCB 194	nd	0,010	nd	nd	0,003	nd	nd	nd
PCB 206	nd	nd	nd	nd	nd	nd	nd	nd
PCB 209	nd	nd	nd	nd	nd	nd	nd	nd
PCBs totais	20,9	23,0	0,08	0,24	18,9	0,06	0,03	0,05

APÊNDICE D - Hidrocarbonetos policíclicos aromáticos em solos Baia do Almira
--

10/03/2012				EA	CF			
Compostos de HPAs	#1	#2	#3	#4	#5	#6	#7	#8
bifenil	108	41,7	38,0	143	126	117	2264	20,1
naftaleno	756	277	461	924	484	303	2586	391
metilnaftaleno	7595	2946	3294	8949	6079	4773	11251	2270
dimetilnaftaleno	20026	18751	6841	23583	18669	19425	14208	3683
trimetilnaftaleno	3012	29782	1232	5101	4410	5901	6855	662
2-etilnaftaleno	1809	864	646	2105	1626	1434	3002	368
acenaftileno	5,2	7,1	nd	6,9	23,3	41,8	537	nd
acenafteno	13,4	54,5	4,1	28,4	40,5	71,1	157	4,5
fluoreno	58,8	148	20,3	75,2	70,4	160	796	13,2
metilfluoreno	57,1	2147	21,9	92,8	85,9	139	265	17,8
dibenzotiofeno	4,0	367	2,6	6,7	10,9	29,1	630	1,9
fenantreno	17,3	513	12,8	33,6	165	385	6225	10,2
antraceno	nd	29	nd	nd	28,5	80,3	7926	nd
dimetilfluoreno	7,1	3435	2,6	13,1	18,2	36,5	795	4,2
metildibenzotiofeno	2,1	4658	nd	2,5	5,7	19,1	2030	1,8
metilfenantreno	7,4	4324	5,6	15,0	65,3	144	2582	12,5
dimetildibenzotiofeno	nd	6426	nd	nd	2,6	17,0	1123	nd
dimetilfenantreno	nd	4015	nd	3,6	18,2	65,1	707	4,0
fluoranteno	nd	1,9	nd	nd	204	336	1405	nd
pireno	3,8	69,1	6,2	4,9	177	243	1526	4,0
metilfluoranteno	1,6	67,5	2,5	1,8	56,0	116	102	4,6
reteno	nd	49,0	nd	1,9	20,7	19,4	43,0	2,9
metilpireno	nd	125	nd	1,4	24,1	38,5	281	1,9
benzo(c)fenantreno	nd	2,1	nd	nd	13,6	16,4	21,0	nd
benzo(a)antraceno	nd	2,6	2,2	1,7	60,2	115,3	306	2,2
criseno	2,4	18,6	3,7	2,9	91,3	144,1	202	4,1
metilcriseno	nd	23,7	1,5	1,2	22,4	57,9	31,9	2,7
dimetilcriseno	nd	13,2	nd	nd	5,9	15,5	41,1	nd
benzo[b]fluoranteno	nd	nd	nd	nd	1,4	51,2	200	nd
benzo[j]fluoranteno	nd	nd	nd	nd	26,9	34,1	209	1,4
benzo[k]fluoranteno	nd	nd	1,6	nd	36,1	55,0	212	nd
benzo[e]pireno	nd	nd	1,7	1,5	41,9	64,3	134	2,4
benzo[a]pireno	nd	nd	nd	nd	43,9	79,2	136	nd
perileno	nd	nd	nd	nd	7,5	18,0	18,0	nd
indeno[1,2,3-c,d]pireno	1,1	nd	1,5	1,4	49,6	67,4	43,6	1,6
dibenzo[a,h]antraceno	nd	nd	nd	nd	9,5	18,5	20,2	nd
benzo[b]criseno	nd	nd	nd	nd	5,7	13,0	16,1	nd
benzo[g,h,i]perileno	nd	nd	2,1	1,6	48,8	68,3	160	1,5
coroneno	nd	nd	nd	nd	15,4	16,0	69,5	nd
ΣΗΡΑς	33.487	79.158	12.606	41.104	32.891	34.726	69.116	7.492
Σ16 HPAs	858	1120	515	1081	1534	2218	22439	432
HPAs leves/pesados	3732,2	212,3	550,7	2024,8	42,4	26,8	17,3	254,9
(%) Σalquil naftalenos	96,9	66,1	95,3	96,7	93,6	90,8	51,1	93,2
antr/(antr + fen)	nc	0,05	nc	nc	0,15	0,17	0,56	nc
fluor/(fluor + pir)	0,25	0,03	0,17	0,21	0,54	0,58	0,48	0,25
b(a)A/(b(a)A + cri)	nc	0,12	0,37	0,36	0,40	0,44	0,60	0,35
b(a)P/per	nc	nc	nc	nc	0,27	0,21	0,02	nc
b(a)P/fen	nc	nc	nc	nc	5,8	4,4	7,6	nc

 $nd < 0,1 ng g^{-1}$ nc = não calculado

24/03/2012	EAC F							
Compostos de HPAs	#1	#2	#3	#4	#5	#6	#7	#8
Naftaleno	103,4	167,6	167,6	378,7	266,2	99,7	159,7	250,8
C1-Naftaleno	469,8	656,4	669,1	1974	1872	360,9	635	708,2
C2-Naftaleno	404,7	753,4	455,5	1674	1812	658,9	989,9	459
C3-Naftaleno	36,6	83,1	27,1	165,4	183,7	254,7	430,5	42
Etilnaftaleno	48,4	76,3	60,7	206,1	213,9	59,3	95,9	56,4
Bifenil	5,5	6,9	7	20,8	32,7	17,8	13,3	4,8
Acenaftileno	nd	nd	nd	nd	10,9	17,7	6,2	nd
Acenafteno	nd	2,4	nd	3	6,1	7	5,5	1,8
Fluoreno	1,3	2,8	1,8	5,4	14,7	19	11,3	2,7
C1-Fluoreno	nd	5,4	2,5	4,1	12,8	30,8	38,8	1,8
C2-Fluoreno	nd	3,7	nd	nd	11,3	20,1	16	nd
Dibenzotiofeno	1,7	2,3	2,6	2,7	4,9	7,6	7,9	2,1
C1-Dibenzotiofeno	nd	nd	nd	nd	3,1	13,6	17,5	nd
C2-Dibenzotiofeno	nd	9	nd	nd	3,7	22,8	29,9	nd
Fenantreno	4,6	3,8	9,2	11,8	85,6	102,3	41	12,2
C1-Fenantreno	2,6	2,5	3,7	4,2	32,9	55,5	40,7	5,7
C2-Fenantreno	nd	4,1	nd	nd	10,6	31,3	26,1	nd
Antraceno	nd	nd	nd	1,2	14,8	21,2	5,3	1,3
Fluoranteno	3,5	1,8	8,9	9,3	66,1	106,8	30,5	11,2
C1-Fluoranteno	nd	nd	2,4	2,8	18,1	34,8	13,7	4,4
Pireno	2,5	2,3	6,9	6,2	46,2	83	29,6	7,7
C1-Pireno	nd	nd	nd	nd	7,3	19,5	11,1	2
Reteno	nd	1,5	nd	nd	21,9	13,9	9,5	nd
Benzo[c]fenantreno	nd	nd	nd	nd	3,4	6,4	1,7	nd
Benzo[a]anthraceno	nd	nd	2	2,6	16,7	33,5	9,6	3,7
Criseno	2,5	1,4	5,7	4,9	28,5	58,4	22	7,2
C1-Criseno	1,7	nd	1,9	2,3	11,5	26,7	14,1	5,7
C2-Criseno	nd	nd	nd	nd	4,2	15	8,5	2,7
Benzo[b]fluoranteno	nd	nd	2,5	2,3	19,6	44,3	13,9	5,1
Benzo[j]fluoranteno	nd	nd	1,5	1,8	5,7	19,5	6,9	3,4
Benzo[k]fluoranteno	nd	nd	nd	1,4	7	14,1	5,6	2,9
Benzo[e]pireno	nd	nd	2,8	2,5	15,6	31,2	11,3	5,8
Benzo[a]pireno	nd	nd	1,2	nd	15	34,5	10,2	5,5
Perileno	nd	nd	nd	nd	5,8	7,6	3,2	2,3
Indeno[123cd]pireno	7,5	23,5	25,3	nd	43,5	33,9	15,3	18,3
Dibenzo[ah]antraceno	1,8	4,6	4,3	nd	10,3	8,5	3,9	10,3
Benzo[b]criseno	nd	nd	1,8	nd	5,9	5,1	2,2	5,7
Benzo[ghi]perileno	6,3	27,5	27,2	nd	32	24,8	10	16,8
Coroneno	2,11	12,66	9,68	nd	7,26	5,55	1,23	nd
ΣHPAs	1106	1855	1511	4487	4984	2427	2805	1669
Σ16 HPAs	133,2	237,6	262,4	426,7	683,1	708,7	379,5	357,3
HPAs leves/pesados	45	24	15	166	14	4	13	14
(%)Σalquil naftalenos	86,7	84,6	80,2	89,6	81,9	55	76,7	75,8
antr/(antr + fen)	n.c	n.c	n.c	0.09	0.15	0,17	0.11	0.09
fluor/(fluor + pir)	0,58	0,44	0,56	0.6	0,59	0,56	0,51	0,59
b(a)A/(b(a)A + cri)	n.c	n.c	0.26	0.35	0.37	0.36	0.3	0.34
b(a)P/per	n.c	n.c	n.c	n.c	2.6	4.6	3.2	2.4
b(a)P/fen	n.c	n.c	0,13	n.c	0,18	0,34	0,25	_,. 0,46
~("). / 1014	11.0		3,15	11.0	0,10	0,04	5,25	0,10

Março/2012		Gerador	es EACF		A	rredores E.	ACF	Área control
Compostos HPAs	G1	G2	G3	G4	Quím	Baleia	Base G	P. Pla
Naftaleno	206,1	270,1	875,6	418,5	158,1	37,6	2,9	222,0
C1-Naftaleno	970,3	2239	10541	3848	633,6	167,9	27,1	932,0
C2-Naftaleno	5835	9886	29855	9767	568,6	163,3	70,8	709,7
C3-Naftaleno	2405	10023	14881	5243	60,6	24,8	29,8	53,2
Etilnaftaleno	314,4	708,6	2705	874,2	59,1	17,4	6,6	88,3
Bifenil	66,9	133,7	388	77,2	8,9	2,4	nd	8
Acenaftileno	97,3	50,1	129,5	7,3	nd	nd	nd	nd
Acenafteno	30,3	50,2	101,7	33,9	3,3	nd	nd	nd
Fluoreno	116,4	215	346,2	103,5	5,5	nd	nd	1,5
C1-Fluoreno	143,3	675,1	647,4	233,8	8,6	1,6	1,5	1,6
C2-Fluoreno	61	342,7	372,6	103,3	4,9	nd	1,4	nd
Dibenzotiofeno	41,8	153,4	182,6	54,8	4,4	nd	2,1	nd
C1-Dibenzotiofeno	67,7	320,6	401,2	106,5	3,6	nd	nd	nd
C2-Dibenzotiofeno	78,8	559.6	528,6	173,7	3.6	nd	nd	nd
Fenantreno	404.9	406.1	534.8	96.6	37.9	5.5	10.1	nd
C1-Fenantreno	223.2	104.3	823.9	222.8	28.4	7	6.1	nd
C2-Fenantreno	94.3	421.3	493	168.5	9.3	3	nd	nd
Antraceno	52.5	48.4	34.6	4 9	3	nd	nd	nd
Fluoranteno	135.6	168.5	161.7	31.6	437	67	17.4	nd
C1-Fluoranteno	57.5	90.3	85.3	3/1	18.1	4 9	5 /	nd
Pirono	125.3	101.5	150.1	74,1 77,0	27.3	т,) 5 2	0.8	nd
C1 Pirono	37.0	78.8	76	50 5	7.6	3,2	9,0 1 7	nd
Dotono	257	70,0 34 7	56.4	20.3	16.3	3,2 nd	1,7 nd	nd
Rettenu Dongo [o]fon ontrono	23,7	12.7	12.1	29,5	10,5	nd	nd	nd
Denzo[c]renantreno	0,5	12,7	12,1	1,7	2,5	nu 2 1	nu 4.6	nu
Benzolalanturaceno	29,4	48,2	42,0	10,1	13,8	3,1 11.2	4,0	na
Criseno Cl. C. inc.	59,8	87,9	/1,1	45,0	52,5	7.0	8,2	na
CI-Criseno	51,3	66,4	53,7	49,3	18,6	7,8	3,4	na
C2-Criseno	35,9	32,1	29,3	35	6,8	2,2	nd	nd
Benzo[b]fluoranteno	25,3	41,2	23,5	13	16,/	5,9	5,6	nd
Benzo[j]fluoranteno	15,3	25,6	6,2	9,2	10,1	3	2,8	nd
Benzo[k]fluoranteno	13,8	20,8	13,2	5,5	10,5	3,2	2,4	nd
Benzo[e]pireno	24,6	36,1	31,4	17,6	20	7,3	4,2	nd
Benzo[a]pireno	22,3	39,4	31,4	9,2	17,4	4,2	nd	nd
Perileno	4,1	6,8	5,5	2,5	2,9	nd	nd	nd
Indeno[123cd]pireno	20,4	42,7	33	12,1	15,3	5,2	11,8	nd
Dibenzo[ah]antraceno	4,6	7,9	7,2	2,9	5,6	1,5	4	nd
Benzo[b]criseno	nd	6,4	4	1,5	3,1	nd	1,6	nd
Benzo[ghi]perileno	14,6	34,2	21,4	8,6	10,8	3,7	4,2	nd
Coroneno	2,93	8,58	4,75	2,36	1,42	nd	nd	nd
ΣHPAs	11923	27688	64770	21952	1902	510	245	2018
Σ16 HPAs	1359	1722	2587	846,2	401,3	94,3	82,2	224,2
HPAs leves/pesados	20	29	83	56	6	6	3	n.c
(%)Σalquil naftalenos	79,9	82,6	89,5	89,9	69,5	73,2	54,7	88,4
antr/(antr + fen)	0,11	0,11	0,06	0,05	0,07	n.c	n.c	n.c
fluor/(fluor + pir)	0,52	0,47	0,5	0,41	0,62	0,56	0,64	n.c
b(a)A/(b(a)A + cri)	0,33	0,35	0,37	0,19	0,3	0,22	0,36	n.c
b(a)P/per	5,4	5,8	5,8	3.7	6,1	n.c	n.c	n.c
× 7 · F ·	0.05	0.1	0.06	0.1	0.46	0.76	 n o	

Verão 2012/13						EACF					
Compostos HPAs	G1	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Naftaleno	nd	11	77,4	19,8	101,8	126,8	253,6	230,9	2352	154,4	55,1
C1-Naftaleno	2,8	69,2	145,9	27,9	246,6	422,6	500,7	150,2	9691	1545	244,9
C2-Naftaleno	5,7	528,3	317,7	30,6	341,2	1481	948,9	114,4	20716	5110	1056
C3-Naftaleno	6,4	615,6	281,6	18,2	197,6	1341	520	30	9732	3909	619,8
Etilnaftaleno	nd	44,1	29,3	4,4	41,6	151,2	112,4	20,2	3243	512,4	106,6
Bifenil	nd	2,3	9,4	3,8	11,4	34,9	34,7	6,7	386	92,9	16,8
Acenaftileno	nd	nd	4,9	nd	6,1	9,1	11,6	10,7	67	7,1	8
Acenafteno	nd	nd	4,1	7,3	4,1	34	13,6	1,9	144	14,2	5,3
Fluoreno	nd	6	9	10,9	8,7	40	17,9	nd	198	24,7	9,6
C1-Fluoreno	nd	70,7	30,1	7,6	30	110,8	84,2	nd	736	363,2	51,6
C2-Fluoreno	nd	52,2	20,4	5,7	19,7	55,1	56,3	nd	411	186,5	42,2
Dibenzotiofeno	nd	8	4,3	5,5	4,5	18,2	15,9	1,5	140	56,1	10
C1-Dibenzotiofeno	nd	9,5	10,4	2,7	10,4	37	46,7	nd	328	235,8	32,9
C2-Dibenzotiofeno	nd	111,3	17,6	3,4	25,1	55,3	81,5	1,3	442	605,1	54,5
Fenantreno	nd	5,5	35,9	96,2	46,7	192,1	104,2	nd	812	136	59,6
C1-Fenantreno	nd	13,8	26,7	28,2	33,6	137,9	127,4	nd	877	432,1	94,2
C2-Fenantreno	nd	67,4	22,1	9,8	32,2	93,5	117,3	nd	702	561,8	88,9
Antraceno	nd	nd	6,1	17,6	8,8	23,4	17,4	nd	83	5,4	6
Fluoranteno	nd	2,1	41,2	131,4	58,6	260,3	114,9	1,5	547	51	44,1
C1-Fluoranteno	nd	3,2	15	41,99	24,97	96,76	52,29	nd	186	60,42	21,94
Pireno	nd	6,8	36,8	88,6	52,9	221	163,3	1,7	511	78,5	48
C1-Pireno	nd	11,92	9,74	13,8	18,9	75,52	59,86	nd	241	80,99	27,06
Reteno	nd	3,17	9,5	4,61	16,61	74,17	35,24	nd	179	73,11	27,85
Benzo[c]fenantreno	nd	nd	4,19	8,2	6,15	22,79	14,11	nd	55,9	8,1	4,93
Benzo[a]anthraceno	nd	nd	12,96	50,01	25,84	97,54	44,07	nd	139	21,79	12,82
Criseno	nd	4,21	22,29	50,98	26,79	118,6	59,1	1,38	300	57,15	29,59
C1-Criseno	nd	5,59	12,82	26,96	21,66	73,25	48,78	nd	257	68,86	26,31
C2-Criseno	nd	3,51	6,55	7,2	9,77	33,57	22,03	nd	198	42,44	14,47
Benzo[b]fluoranteno	nd	nd	11,38	33,72	13,83	72,66	28,97	nd	146	17,51	12,8
Benzo[j]fluoranteno	nd	nd	7,39	22	9,15	37,84	17,34	nd	72,48	7,67	3,92
Benzo[k]fluoranteno	nd	nd	7,17	23,88	9,15	39,5	18,4	nd	78,76	9,21	4,74
Benzo[e]pireno	nd	nd	11,52	33,39	17,73	68,22	34,29	nd	141,1	21,76	12,62
Benzo[a]pireno	nd	nd	11,95	50,44	18,67	83,74	33,6	nd	135,4	16,12	9,13
Perileno	nd	nd	9,01	20,52	6,23	15,85	6,62	nd	21,45	2,43	1,77
Indeno[123cd]pireno	4,39	6,32	43,75	70,69	30,99	60,98	28,68	3,83	93,33	12,98	9,27
Dibenzo[ah]antraceno	1,1	3,04	10,5	19,52	11,56	16,88	7,05	nd	22,41	4,01	2,3
Benzo[b]criseno	nd	nd	5,1	10,24	5,54	7,48	3,22	nd	9,34	1,28	nd
Benzo[ghi]perileno	6,07	7,96	46,43	66,37	38,27	70,22	40,1	3,78	115,3	15,02	9,17
Coroneno	3,28	5,35	14,24	12,55	7,65	18,72	9,52	2,43	33,07	4,78	nd
ΣΗΡΑs	29,8	1678	1402	1087	1601	5929	3905	582	54542	14607	2885
Σ16 HPAs	11,6	47	372,8	726,4	454	1427	938,4	255,7	5546	600,4	315,9
HPAs leves/pesados	1	26,5	3,5	0,7	3,3	3,5	4,4	43,3	17,6	23,2	9,4
(%) Σalquil naftalenos	50,1	74,9	55,2	7,5	51,6	57,3	53,3	54	79,5	75,8	70,3
antr/(antr + fen)	0,09	n.c	n.c	0,15	0,15	0,16	0,11	0,14	n.c	0,09	0,04
fluor/(fluor + pir)	0,48	n.c	0,23	0,53	0,6	0,53	0,54	0,41	0,47	0,52	0,39
b(a)A/(b(a)A + cri)	0,3	n.c	n.c	0,37	0,5	0,49	0,45	0,43	n.c	0,32	0,28
b(a)P/per	5,2	n.c	n.c	1,3	2,5	3	5,3	5,1	n.c	6,3	6,6
b(a)P/fen	0,15	n.c	n.c	0,33	0,52	0,4	0,44	0,32	n.c	0,17	0,12

Verão 2012/13	Ar	redores E	ACF			Áreas contro	le	
Compostos HPAs	Quím	Baleia	Base G	P. Plaza	Botany	Ullman	Henneq	Ref. II
Naftaleno	106,3	15,4	339,1	30	2,8	nd	nd	nd
C1-Naftaleno	264,9	30,8	187,4	96,6	2	1,9	nd	nd
C2-Naftaleno	125,8	36,4	316,6	158	nd	3,2	nd	nd
C3-Naftaleno	11,9	12,9	155,5	42,8	nd	nd	nd	nd
Etilnaftaleno	22,6	4	28,5	18,8	nd	nd	nd	nd
Bifenil	2,2	3,3	29,8	3,2	4,2	1,5	nd	nd
Acenaftileno	nd	nd	55,8	nd	nd	nd	nd	nd
Acenafteno	nd	nd	66,4	nd	nd	nd	nd	nd
Fluoreno	nd	2,11	93.3	2,3	nd	nd	nd	nd
C1-Fluoreno	1.69	6.17	79.1	5.55	nd	nd	nd	nd
C2-Fluoreno	nd	2,3	48	2,9	nd	nd	nd	nd
Dibenzotiofeno	nd	2.22	118.6	nd	3.4	nd	nd	nd
C1-Dibenzotiofeno	nd	2.1	126.9	2.2	nd	nd	nd	nd
C2-Dibenzotiofeno	nd	1.8	134.2	4.2	nd	nd	nd	nd
Fenantreno	3.9	24.6	907.4	11.9	5	nd	nd	nd
C1-Fenantreno	3.7	27.3	517.7	8.5	2.5	nd	nd	nd
C2-Fenantreno	nd	12.7	251.8	6.2	nd	nd	nd	nd
Antraceno	nd	3.5	190.1	nd	nd	nd	nd	nd
Fluoranteno	8.6	37.1	1288	3.8	nd	nd	nd	nd
C1-Fluoranteno	3 35	20.71	504.0	1 36	nd	nd	nd	nd
Pirono	6.4	33.8	01 <i>1 1</i>	5	nd	nd	nd	nd
C1-Pirono	1 42	16.94	270.4	nd	nd	nd	nd	nd
Dotono	1,42	3 77	270,4	5.05	nd	2.58	nd	nd
Renzo[alfonentrono	1,45	5,77 4.67	105.4	5,05	nd	2,30	nd	nd
Denzo[e]enthreeono	2 52	17.99	105,4	nd	nd	nd	nd	nd
Grisono	5,55	17,00	499,5	1.01	nu 2.54	nd	nd	nd
Criseno C1 Criseno	3,00	26,35	262.4	1,91	2,34	nd	nd	nd
C1-Criseno	5,01	23,14	125.4	1,51	na	nu t	nd l	na 1
C2-Criseno Demociliale e e e e e e e e e e e e e e e e e e		9,5	125,4	na	na	na	na	na
Benzo[b]fluoranteno	3,34	16,96	420,6	na	na	na	nd	na
Benzo[J]nuoranteno	2,25	9,55	223,8	na	na	na	na	na
Benzo[k]fluoranteno	2,32	9,81	214,9	nd	nd	nd	nd	nd
Benzo[e]pireno	4,39	20,85	393,2	na	na	na	nd	na
Benzo[a]pireno	5,46	20,63	483,2	nd	nd	nd	nd	nd
Perlieno	2,41	3,95	130,5	na	na	na	nd	na
Indeno[123cd]pireno	8,75	17,42	576,5	nd	nd	nd	nd	nd
Dibenzo[ah]antraceno	2,23	4,31	155,9	nd	nd	nd	nd	nd
Benzo[b]criseno	nd	1,85	87,69	nd	nd	nd	nd	nd
Benzo[gh1]perileno	9,33	19,23	446,6	nd	2,2	nd	nd	8,19
Coroneno	2,41	4,41	65,2	nd	nd	nd	nd	15,5
ΣHPAs	619	514	11542	412	24,6	9,23	nd	23,7
Σ16 HPAs	165,3	249,1	7159	52,6	12,5	nd	nd	8,2
HPAs leves/pesados	8,2	0,8	0,7	27,1	4,2	2,6	n.c	n.c
(%) Σalquil naftalenos	68,7	16,4	6	76,8	n.c	n.c	n.c	n.c
	,							
antr/(antr + fen)	n.c	0,12	0,17	n.c	n.c	n.c	n.c	n.c
fluor/(fluor + pir)	0,57	0,52	0,58	0,43	n.c	n.c	n.c	n.c
b(a)A/(b(a)A + cri)	0,41	0,39	0,45	n.c	n.c	n.c	n.c	n.c
b(a)P/per	2,3	5,2	3,7	n.c	n.c	n.c	n.c	n.c
b(a)P/fen	1,39	0,84	0,53	n.c	n.c	n.c	n.c	n.c

Verão 2013/14					EA	ACF				
Compostos HPAs	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Naftaleno	2,61	12,6	2,66	86,4	8,9	89,7	116	8,68	307	62,8
Metilnaftaleno	8,02	18,3	8,23	87,1	30,2	122	210	35,3	416	118
Etilnaftaleno	nd	5,11	nd	17,9	4,73	18,9	39,2	10,5	49,0	24,1
Dimetilnaftaleno	18,5	42,9	20,5	150	43,6	169	486	103	429	237
Trimetilnaftaleno	10,0	29,8	12,9	146	28,4	146	444	77,2	304	229
Bifenil	1,52	2,74	1,52	20,0	4,21	15,4	9,29	2,42	32,7	35,7
Acenaftileno	nd	nd	nd	nd	nd	nd	nd	nd	4,69	4,3
Acenafteno	nd	nd	nd	10,0	1,97	8,42	6,25	nd	6,32	5,3
Fluoreno	nd	nd	nd	16,0	3,35	10,5	8,67	nd	9,03	11,2
Metilfluoreno	nd	1.78	nd	29.7	7.22	33.3	38.3	4.02	40.0	43.2
Dibenzotiofeno	nd	1.70	nd	7.85	2.19	6.79	10.7	1.49	6.35	7.8
Fenantreno	3 30	3 44	nd	114.2	20.2	84.0	46.8	4 29	93.0	89.7
Antraceno	nd	nd	nd	11.0	2.58	8.9	2.8	nd	9.60	12.1
Dimetilfluoreno	nd	nd	nd	23.2	4.90	24.0	20.3	1.70	43.2	28.6
Metildibenzotiofeno	nd	1.88	nd	16.0	2.46	17.7	29.7	1.56	56.9	20.3
Metilfenantreno	nd	2.56	nd	54.8	10.5	62.6	47.9	3.73	94.5	59.1
Dimetildibenzotiofeno	nd	4.80	nd	31.1	5.31	29.1	53.3	3.05	121.7	61.8
Dimetilfenantreno	nd	3.03	nd	58.1	12.6	50.4	48.0	6.11	131.6	78.9
Fluoranteno	3.8	1.66	nd	122	23.6	125	36.9	3.23	76.4	86.8
Pireno	2.7	1.95	nd	107	23.0	115	42.0	4.39	89.6	104
Metilfluoranteno	nd	nd	nd	47.5	8.98	44.4	14.6	1.31	35.0	42.5
Reteno	nd	1.80	nd	36.1	6.41	36.6	14.0	1.79	37.7	88.1
Metilpireno	nd	1.36	nd	32.1	6.57	35.1	16.2	2.10	36.9	52.8
Benzo(c)fenantreno	nd	nd	nd	11.5	2.07	10.5	2.97	nd	5.05	15.5
Benzo(a)antraceno	nd	nd	nd	51.0	9.79	49.3	11.8	nd	14.5	41.3
Criseno	3.6	2,11	nd	94,7	20,1	101.9	33,3	3,81	172,6	164,1
Metilcriseno	nd	nd	nd	30,4	6,61	38,6	13,3	1,63	nd	112,6
Dimetilcriseno	nd	nd	nd	17,6	3,29	22,0	8,12	nd	nd	74,6
Benzo(b)fluoranteno	2,1	nd	nd	57,9	13,8	54,0	17,0	1,78	nd	65,9
Benz[(j]fluoranteno	nd	nd	nd	29,1	7,76	35,6	4,80	nd	nd	45,0
Benzo[k]fluoranteno	nd	nd	nd	30,9	8,42	44,5	12,5	nd	nd	51,2
Benzo[])pireno	1,3	nd	nd	39,6	8,53	47,4	12,8	1,35	nd	57,3
Benzo[a]pireno	nd	nd	nd	30,8	7,94	36,6	8,80	nd	nd	24,5
Perileno	nd	nd	nd	13,9	3,84	21,6	4,31	nd	nd	11,2
Indeno[1,2,3-	23	1 22	nd	32.2	7 22	32.0	7.65	1 25	nd	32.5
c,d]pireno	2,5	1,55	nu	52,2	7,55	52,0	7,05	1,23	nu	52,5
Dibenzo[a,h]antraceno	nd	nd	nd	10,7	2,07	10,7	2,12	nd	nd	11,5
Benzo[b]criseno	1,2	nd	nd	23,6	4,51	23,4	4,58	nd	nd	24,7
Benzo[g,h,i]perileno	3,1	2,04	nd	44,8	8,92	45,5	11,1	2,09	nd	48,1
Coroneno	nd	nd	nd	1,66	nd	nd	nd	nd	nd	1,91
HPAs Totais	64,1	142,9	45,8	1745,	377	1825	1896	288	2622	2285
Σ16 HPAs	23,5	25,2	2,7	819,3	161,9	815,7	363,6	29,5	783,0	814,7
HPAs leves/pesados	2,9	12,5	n.c	1,3	1,4	1,3	6,8	12,4	5,7	1,1
(%) Σalquil naftalenos	57,0	67,2	90,9	23,0	28,4	24,9	62,2	78,5	45,7	26,6
antr/(antr + fen)	0,3	0,2	nc	0,1	0,1	0,1	0,1	0,2	0,1	0,1
fluor/(fluor + pir)	0,58	0,46	n.c.	0,53	0,51	0,52	0,47	0,42	0,46	0,46
b(a)A/(b(a)A + cri)	0,25	0,36	nc	0,35	0,33	0,33	0,26	0,24	0,08	0,20
b(a)P/per	nc	nc	nc	2,2	2,1	1,7	2,0	nc	nc	2,2
b(a)P/fen	0,33	0,32	0,42	0,27	0,39	0,44	0,19	0,26	0,01	0,27

Verão 2013/14		Gerador	es EACF	,	Arre	edores EA	CF		Áreas c	ontrole	
Compostos HPAs	G1	G2	G3	G4	Base G	Baleia	Quim	P. Plaza	Henn	Botan	Ullman
Naftaleno	31,6	1,37	86,1	59,0	32,0	nd	1,90	nd	nd	nd	nd
Metilnaftaleno	137	nd	1217	237	61,3	nd	4,14	nd	nd	nd	2,19
Etilnaftaleno	32,9	nd	348	47,3	7,91	nd	nd	nd	nd	nd	nd
Dimetilnaftaleno	319	nd	3630	434	69,9	nd	3,65	nd	nd	nd	nd
Trimetilnaftaleno	353	2,11	2193	388	81,3	nd	2,52	nd	nd	nd	1,57
Bifenil	16,8	nd	29,3	19,2	8,33	nd	nd	nd	nd	1,54	1,45
Acenaftileno	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenafteno	6,1	nd	27,9	51,5	3,90	nd	nd	nd	nd	nd	nd
Fluoreno	7,9	nd	52,6	33,8	4,54	nd	nd	nd	nd	nd	nd
Metilfluoreno	58,4	nd	214,7	53,5	34,1	nd	nd	nd	nd	nd	nd
Dibenzotiofeno	7,2	nd	30,6	42,8	13,1	nd	nd	nd	nd	nd	nd
Fenantreno	48,8	nd	90,7	245,9	54,1	nd	4,64	nd	nd	nd	nd
Antraceno	4,36	nd	5,6	18,7	3,20	1,30	nd	nd	nd	nd	nd
Dimetilfluoreno	31,5	nd	85,9	20,7	24,5	nd	nd	nd	nd	nd	nd
Metildibenzotiofeno	25,9	nd	60,2	21,8	44,2	nd	nd	nd	nd	nd	nd
Metilfenantreno	49,4	nd	122	89,8	59,2	nd	3,14	nd	nd	nd	nd
Dimetildibenzotiofeno	81,7	nd	86,1	27,8	125,4	nd	nd	nd	nd	nd	nd
Dimetilfenantreno	86,1	nd	120	72,9	165,8	nd	2,57	nd	nd	nd	nd
Fluoranteno	59,4	nd	63,2	321	53,9	1,42	5,97	nd	nd	nd	nd
Pireno	79,2	nd	71,2	233	50,1	nd	4,34	nd	nd	nd	nd
Metilfluoranteno	32,0	nd	32,6	99,0	10,3	nd	2,45	nd	nd	nd	nd
Reteno	45,8	nd	31,4	34,3	2,80	nd	nd	nd	nd	nd	nd
Metilpireno	39,9	nd	38,8	47,9	28,1	nd	nd	nd	nd	nd	nd
Benzo(c)fenantreno	9,3	nd	6,4	19,3	nd	nd	nd	nd	nd	nd	nd
Benzo(a)antraceno	24,6	nd	21,4	120,4	16,5	nd	2,04	nd	nd	nd	nd
Criseno	83,4	nd	59,5	191,7	72,8	2,17	5,74	nd	nd	nd	nd
Metilcriseno	43,4	nd	35,6	53,5	40,0	nd	2,10	nd	nd	nd	nd
Dimetilcriseno	32,4	nd	25,2	17,0	25,8	nd	nd	nd	nd	nd	nd
Benzo(b)fluoranteno	35,1	nd	31,3	130,0	32,2	nd	3,81	nd	nd	nd	nd
Benz[(j]fluoranteno	20,2	nd	14,7	84,7	23,4	nd	2,43	nd	nd	nd	nd
Benzo[k]fluoranteno	25,1	nd	19,8	93,1	31,1	nd	3,69	nd	nd	nd	nd
Benzo[])pireno	30,8	nd	23,8	78,5	29,7	nd	2,75	nd	nd	nd	nd
Benzo[a]pireno	14,8	nd	16,1	90,8	18,5	nd	2,20	nd	nd	nd	nd
Perileno	8,3	nd	8,1	56,5	9,9	nd	1,27	nd	nd	nd	nd
Indeno[1,2,3- c,d]pireno	15,5	nd	14,2	72,4	27,2	nd	2,92	nd	nd	nd	nd
Dibenzo[a,h]antraceno	5,7	nd	4,18	18,6	6,90	nd	1,17	nd	nd	nd	nd
Benzo[b]criseno	12,2	nd		43,1	15,1	nd	2,54	nd	nd	nd	nd
Benzo[g,h,i]perileno	22,4	nd	19,2	81,4	26,1	nd	4,10	nd	nd	nd	nd
Coroneno	nd	nd	nd	2,0	nd	nd	nd	nd	nd	nd	nd
HPAs Totais	1937	3,5	8937	3753	1313	4,9	72,1	nd	nd	1,5	5,2
Σ16 HPAs	463,3	1,4	583	1762	432,8	4,9	42,5	nd	nd	nd	nd
HPAs leves/pesados	2,3	n.c	17,9	1,4	1,8	1,3	0,7	n.c	n.c	n.c	n.c
(%) Σalquil naftalenos	43,5	60,6	82,7	29,5	16,8	nd	14,3	nd	nd	nd	72,2
antr/(antr + fen)	0,1	nc	0,06	0,07	0,1	0,3	0,2	nc	nc	nc	nc
fluor/(fluor + pir)	0,43	nc	0,47	0,58	0,52	0,52	0,58	nc	nc	nc	nc
b(a)A/(b(a)A + cri)	0,23	nc	0,26	0,39	0,2	0,4	0,26	nc	nc	nc	nc
b(a)P/per	1,8	nc	2,00	1,61	1,9	nc	1,73	nc	nc	nc	nc
b(a)P/fen	0,30	nc	0,18	0,37	0,34	0,42	0,47	nc	nc	nc	nc

Verão 2014/15					EACF					
Compostos HPAs	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Naftaleno	8,04	100,0	31,79	35,09	39,74	63,49	42,28	15,67	66,26	68,99
C1-Naftaleno	17,51	325,3	43,27	68,54	62,73	144,5	168	18,04	170,6	81,54
C2-Naftaleno	24,11	502,1	60,38	101,5	69,51	230,9	446,9	21,77	293,4	115,0
C3-Naftaleno	6,3	11,5	6,3	199	66,6	184	990	741	139	617
Etilnaftaleno	3,59	112,8	8,2	13,56	10,35	24,62	48,17	3,09	35,69	22,4
Bifenil	1,56	21,61	8,24	10,35	9,9	16,38	9,12	3,68	19,69	16,53
Acenaftileno	nd	11,63	nd	5,08						
Acenafteno	nd	14,16	9,47	4,17	2,71	12,1	3,2	nd	13,68	53,72
Fluoreno	3,84	257,1	21,89	30,73	19,58	56,7	163,1	4,24	78,61	127,3
C1-Fluoreno	nd	26,15	10,39	7,51	3,76	11,58	7,89	nd	11,01	65,44
C2-Fluoreno	nd	141,5	4,54	5,78	4,08	10,26	5,07	1,36	32,51	32,62
Dibenzotiofeno	1,47	nd	4,97	4,88	2,94	9,19	7,36	1,62	8,45	28,75
C1-Dibenzotiofeno	nd	nd	nd	nd	nd	2,37	nd	nd	nd	nd
C2-Dibenzotiofeno	nd	nd	6,67	11,18	6,68	31,09	28,74	7,51	32,53	nd
Fenantreno	nd	91,06	49,87	46,18	26,06	89,33	28,23	4,99	80,12	596,1
C1-Fenantreno	nd									
C2-Fenantreno	nd	nd	5,39	6,6	5,12	12	12,21	4,74	31,71	29,24
Antraceno	nd	4,39	4,56	5,93	2,95	9,96	3,89	nd	8,38	75,08
Fluoranteno	1,56	72,01	48,75	43,22	25,61	112,4	26,4	4,5	79,24	653,9
C1-Fluoranteno	nd	38,24	16,77	14,41	9,33	36,11	9,46	3,23	32,63	194,8
Pireno	nd	114,7	41,56	38,65	27,37	100,3	24,67	4,24	78,12	417,5
C1-Pireno	nd									
Reteno	nd	83,09	15,79	14,16	14,32	35,55	12,35	2,97	38,95	92,87
Benzo[c]fenantreno	nd	9,46	nd	50,72						
Benzo[a]anthraceno	nd	82,22	17,57	16,7	10,38	49,68	9,13	1,45	32,34	311,4
Criseno	1,43	94,13	32,95	34,46	24,67	88,97	24,07	3,97	75,29	371,9
C1-Criseno	nd	67,42	8,71	9,17	6,11	22,66	8,05	nd	29,56	111,2
C2-Criseno	nd	61,18	nd	31,87						
Benzo[b]fluoranteno	nd	64,57	13,6	23,13	11,64	52,5	16,97	2,15	42,47	339,9
Benzo[j]fluoranteno	nd	42,94	23,58	25,67	34,35	64,42	14,98	2,11	45,61	135,9
Benzo[k]fluoranteno	nd	39,6	11,65	12,88	9,75	33,77	8,91	nd	26,01	99,65
Benzo[e]pireno	nd	19,93	12,59	11,79	8,35	37,7	7,11	nd	23,42	101,4
Benzo[a]pireno	nd	4,49	nd	31,29						
Perileno	nd	35,23	4,11	4,34	3,65	16,7	1,93	nd	9,73	53,62
Indeno[123cd]pireno	nd	24,11	14,28	14,51	10,06	36,07	9,19	1,31	27,67	91,4
Dibenzo[ah]antraceno	nd	nd	2,64	2,96	2,02	9,55	1,74	nd	5,84	10,41
Benzo[b]criseno	nd	nd	3,4	3,97	3,03	12,26	2,98	nd	nd	42,46
Benzo[ghi]perileno	nd	36,95	15,56	16,18	11,99	44,58	12,38	1,79	31,23	98,78
ΣHPAs	63,1	2498	560	646	483	1486	1166	116	1470	4559
Σ16 HPAs	14,9	955	309	315,6	217,9	721,3	372,9	42,9	623,9	3107
HPAs leves/pesados	43,1	2,1	1,4	1,7	1,6	1,3	6,1	4	1,9	0,8
(%) Σalquilnafta	77,7	47,9	23,9	33,2	33,5	30,7	70,9	40,5	39,3	7,6
antr/(antr + fen)	n.c	0,05	0,08	0,11	0,1	0,1	0,12	n.c	0,09	0,11
fluor/(fluor + pir)	n.c	0,39	0,54	0,53	0,48	0,53	0,52	0,51	0,5	0,61
b(a)A/(b(a)A + cri)	n.c	0,47	0,35	0,33	0,3	0,36	0,28	0,27	0,3	0,46
b(a)P/per	n.c	0,1	n.c	0,6						
b(a)P/fen	n.c	0,05	n.c	0,05						

Verão 2014/15		Gerador	es EACF		Aı	redores EA	ACF		Áreas	s controle	
Compostos HPAs	G1	G2	G3	G4	Quím	Baleia	Base G	Bot	Ullman	Henneq	Ref. II
Naftaleno	51,23	82,96	51,29	41,3	nd	1,69	30,18	3,15	nd	nd	nd
C1-Naftaleno	136,5	909,1	346,5	676,1	2,47	6,23	20,03	5,29	nd	7,28	nd
C2-Naftaleno	218,2	2487	1314	3047	nd	9,02	9,4	nd	nd	5,88	nd
C3-Naftaleno	536	751	980	2576	9,3	90,3	160	1,7	nd	1,9	5,1
Etilnaftaleno	20,52	263,9	123	237,2	nd	nd	nd	nd	nd	nd	nd
Bifenil	14,71	nd	16,55	nd	nd	nd	2,77	5,52	7,36	nd	nd
Acenaftileno	nd	nd	nd	nd	nd	nd	10,2	nd	nd	nd	nd
Acenafteno	4,55	nd	20,81	nd	nd	nd	7,06	nd	nd	nd	nd
Fluoreno	41,87	2815	553,5	3657	nd	nd	3,02	nd	nd	nd	nd
C1-Fluoreno	4,36	50,32	40,04	3,45	nd	nd	8,3	nd	nd	nd	nd
C2-Fluoreno	15,22	236,7	65,02	nd	nd	nd	2,97	nd	nd	nd	nd
Dibenzotiofeno	3,63	67,66	37,4	84,75	nd	nd	13,18	3,67	9,56	nd	nd
C1-Dibenzotiofeno	nd	121,5	11,74	nd	nd	nd	nd	nd	nd	nd	nd
C2-Dibenzotiofeno	13,87	nd	93,21	17,27	nd	nd	4,5	nd	nd	nd	nd
Fenantreno	30,67	130,1	147,2	110,5	5,05	nd	116,2	12,47	nd	nd	nd
C1-Fenantreno	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
C2-Fenantreno	7,48	nd	29,83	5,62	nd	nd	4,55	nd	nd	nd	nd
Antraceno	4,45	nd	24,67	nd	nd	nd	8,15	nd	nd	nd	nd
Fluoranteno	28,39	28,19	103,9	10,3	8,4	nd	179,4	2,1	nd	nd	nd
C1-Fluoranteno	11,87	23,5	39,53	16,11	3	nd	51,08	1,93	nd	nd	nd
Pireno	31,46	32,88	77,98	12,17	6,41	nd	135,3	2,19	nd	nd	nd
C1-Pireno	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Reteno	26,96	22,42	17,85	12,09	nd	nd	1,41	nd	nd	nd	nd
Benzo[c]fenantreno	nd	3,11	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo[a]anthraceno	12,47	29,32	35,43	10,89	3,35	nd	52,29	1,53	nd	nd	nd
Criseno	32,26	32,49	71,17	12,3	6,31	nd	129,1	6,21	2,9	nd	nd
C1-Criseno	11,84	4,74	18,32	8,5	2,1	nd	28,13	1,36	nd	nd	nd
C2-Criseno	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Benzo[b]fluoranteno	20,19	16,49	33,34	3,77	5,17	nd	nd	2,79	nd	nd	nd
Benzo[j]fluoranteno	17,82	16,07	49,34	6,26	5,82	nd	121,6	nd	2,15	nd	nd
Benzo[k]fluoranteno	11,15	11,29	21,5	3,93	3,38	nd	52,4	nd	nd	nd	nd
Benzo[e]pireno	8,87	4,21	26,45	1,79	3,11	nd	59,13	nd	nd	nd	nd
Benzo[a]pireno	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Perileno	2,39	2,95	15,35	nd	nd	nd	11,74	nd	nd	nd	nd
Indeno[123cd]pireno	10,85	6,32	25,48	2,28	4,05	nd	64,08	nd	nd	nd	nd
Dibenzo[ah]antraceno	2,26	1,43	5,35	nd	1,31	nd	10	nd	nd	nd	nd
Benzo[b]criseno	2,06	nd	11,02	nd	1,86	nd	12,54	nd	nd	nd	nd
Benzo[ghi]perileno	13,39	10,25	28,68	3,88	6,4	nd	57,71	1,35	nd	nd	nd
ΣHPAs	817	7467	3483	7989	68,2	17	1206	49,6	22	13,2	nd
Σ16 HPAs	287,1	3218	1205	3860	46,5	1,7	811,1	30,3	2,9	n.c	n.c
HPAs leves/pesados	2,8	33,3	6,3	84	0,3	n.c	0,5	1,9	3,4	n.c	n.c
(%) Σalquilnaftalenos	51,1	86,7	67,1	95,3	3,6	90	2,7	10,7	n.c	100	n.c
antr/(antr + fen)	0,13	n.c	0,14	n.c	n.c	n.c	0,07	n.c	n.c	n.c	n.c
fluor/(fluor + pir)	0,47	0,46	0,57	0,46	0,57	n.c	0,57	0,49	n.c	n.c	n.c
b(a)A/(b(a)A + cri)	0,28	0,47	0,33	0,47	0,35	n.c	0,29	0,2	n.c	n.c	n.c
b(a)P/per	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c
b(a)P/fen	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c	n.c

Verão 2015/16								EACF						
Compostos HPAs	G1	G2	G3	G4	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Naftaleno	64,9	72,0	46,7	43,2	3,4	5,2	3,4	40,1	21,5	40,1	27,7	14,1	23,0	75,9
C1-Naftaleno	140	165	193	273	8,6	13,6	9,1	125,0	41,0	80,5	136,0	164,2	40,6	179,7
C2-Naftaleno	313	366	620	1257	13,1	22,2	15,0	231,0	63,0	142,9	560	744	86,8	365
C3-Naftaleno	536	751	980	2576	6,3	11,5	6,3	199	66,6	184	990	741	139	617
Etilnaftaleno	34,8	43,1	68,5	121	nd	3,0	nd	30,8	8,6	19,0	62,0	101,7	10,7	46,2
Bifenil	17,9	12,2	8,7	9,8	nd	1,5	nd	13,1	6,1	12,4	9,6	12,7	8,8	19,7
Acenaftileno	6,3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenafteno	14,3	7,9	7,3	14,5	nd	nd	2,1	3,8	3,6	8,9	10,2	1,8	3,5	17,8
Fluoreno	13,2	12,7	10,6	21,7	nd	nd	4,1	10,7	5,3	9,7	11,6	10,8	7,3	23,9
C1-Fluoreno	28,2	34,3	24,2	55,9	nd	nd	nd	19,0	6,1	12,4	35,5	20,8	10,7	34,5
C2-Fluoreno	8,8	26,4	17,2	35,9	nd	nd	nd	12,8	4,4	4,5	27,0	9,8	4,8	25,7
Dibenzotiofeno	16,1	19,2	20,8	58,6	2,5	2,5	3,9	25,1	5,3	8,9	21,1	17,5	7,3	20,1
C1-Dibenzotiofeno	24,9	44,1	36,9	107,9	nd	nd	nd	9,0	4,3	10,7	36,6	19,4	11,1	37,5
C2-Dibenzotiofeno	64,2	95,5	58,7	169,8	nd	nd	nd	19,5	9,4	20,2	78,7	23,9	22,0	80,9
Fenantreno	83,5	57,0	50,1	85,7	4,0	4,1	20,2	51,9	27,9	53,5	39,2	11,8	40,3	105,9
C1-Fenantreno	56,6	63,4	53,1	109,1	nd	nd	3,8	29,7	12,0	24,9	41,7	22,9	22,9	71,8
C2-Fenantreno	77,0	75,3	54,1	103,5	nd	nd	nd	29,2	10,9	31,3	56,4	19,9	22,2	92,2
Antraceno	6,2	5,6	3,0	6,9	nd	nd	2,9	5,0	3,5	5,8	3,6	nd	3,2	13,3
Fluoranteno	77,7	60,3	34,7	56,8	3,9	4,6	20,0	49,1	24,7	79,9	29,5	nd	47,7	99,0
C1-Fluoranteno	16,2	14,5	6,9	16,1	nd	nd	3,6	10,1	5,0	12,5	8,6	nd	8,8	20,7
Pireno	83,9	68,7	34,5	60,7	2,6	3,1	13,8	47,6	25,7	77,9	33,4	nd	46,9	103,6
C1-Pireno	23,1	21,8	10,8	21,9	nd	nd	nd	9,4	5,2	12,8	11,3	nd	10,6	26,6
Benzo[a]anthraceno	24,0	20,9	10,0	22,1	1,2	nd	6,5	18,1	8,5	28,8	10,5	nd	16,0	32,8
Criseno	52,0	38,0	25,1	30,5	2,2	1,5	6,7	24,5	14,4	43,4	18,1	nd	24,9	59,0
C1-Criseno	26,9	21,3	14,7	18,7	nd	nd	1,8	8,7	5,6	14,7	9,8	nd	12,0	29,5
C2-Criseno	18,3	15,8	10,9	10,4	nd	nd	nd	5,3	3,4	7,3	6,1	nd	9,0	21,6
Benzo[b]fluoranteno	24,4	21,1	10,7	13,0	1,8	nd	3,5	18,7	12,7	30,0	12,2	nd	16,3	27,5
Benzo[k]fluoranteno	31,1	17,1	11,0	15,7	1,6	nd	3,2	12,0	8,2	27,7	10,9	nd	14,8	34,7
Benzo[e]pireno	3,3	21,2	14,8	18,0	1,5	nd	4,2	14,7	9,3	3,9	10,6	nd	15,0	35,0
Benzo[a]pireno	35,4	14,6	11,3	15,5	1,6	nd	6,0	14,6	9,3	28,1	8,8	nd	10,0	31,0
Perileno	7,5	5,3	3,3	5,9	1,6	nd	2,8	4,5	3,4	9,1	2,8	nd	3,8	11,3
Indeno[123cd]pireno	20,8	13,3	10,1	13,7	4,6	1,1	7,3	10,9	9,0	23,6	8,3	nd	11,3	25,0
Dibenzo[ah]antrace	4,3	3,0	1,9	3,2	nd	nd	1,2	3,0	2,0	6,8	1,6	nd	2,5	5,5
no Benzolghilperileno	21.2	13.2	9.8	14.9	5.0	1.3	7.1	9.4	7.2	24.6	8.9	nd	12.5	21.5
ΣHPAs	197	222	247	5387	65.5	75.1	158	1116	453	1101	2337	1936	727	2412
	6	0	2				100							
Σ16 HPAs	563	425	277	418	32,0	20,8	108	319	183	489	234	39	280	676
HPAs leves/pesados	4,0	6,2	12,3	18,2	1,8	9,8	1,3	4,3	2,5	2,1	13,4	n.c	2,4	4,0
(%) Salquilnaftat	51,8	59,7	75,3	78,5	42,6	67,0	19,2	52,5	39,6	38,7	74,8	90,4	38,2	50,1
antr/(antr + fen)	0,07	0,09	0,06	0,07	n.c	n.c	0,12	0,09	0,11	0,1	0,08	n.c	0,07	0,11

fluor/(fluor + pir)	0,48	0,47	0,5	0,48	0,6	0,6	0,59	0,51	0,49	0,51	0,47	n.c	0,5	0,49
b(a)A/(b(a)A + cri)	0,32	0,35	0,28	0,42	0,35	n.c	0,49	0,43	0,37	0,4	0,37	n.c	0,39	0,36
b(a)P/ner	4.7	2.7	3.4	2.6	1	n.c	2.2	3.3	2.8	3.1	3.2	n.c	2.7	2.7
b(a)P/fen	0.42	0.26	0.22	0.18	0.39	n.c	0.3	0.28	0.33	0.53	0.22	n.c	0.25	0.29
Verão 2015/16	-,		Arre	edores E/	ACF		•,-	•,•	Áreas c	ontrole	•,		-,	•,=>
Compostos HPA	\s	Ouín	nica	Baleia	Base G	P	. Plaza	Botany	Ullm	an	Hennea	Ref.	п	
Naftaleno		2	.9	76.8	26.6		nd	nd	nd		1.8	nd		
C1-Naftaleno		8	.9	44,7	45,5		6,1	nd	2,0)	5,5	1,5		
C2-Naftaleno		11	1.2	68,4	89,2		5.7	nd	3.3		6,3	nd		
C3-Naftaleno		9	,3	90,3	160		1,7	nd	1,9)	5,1	nd		
Etilnaftaleno		n	id	7,9	11,2		nd	nd	nd		nd	nd		
Bifenil		1	,9	12,1	9,7		nd	3,4	1,8	;	nd	nd		
Acenaftileno		n	ıd	134	nd		nd	nd	nd		nd	nd		
Acenafteno		n	ıd	39,9	7,1		nd	nd	nd		nd	nd		
Fluoreno		n	ıd	50,0	10,8		nd	nd	nd		nd	nd		
C1-Fluoreno		n	ıd	39,9	13,0		nd	nd	nd		nd	nd		
C2-Fluoreno		n	ıd	13,5	4,0		nd	nd	nd		nd	nd		
Dibenzotiofeno		1	,6	122	10,6		nd	3,8	4,1		nd	1,4		
C1-Dibenzotiofeno		n	ıd	64,3	11,5		nd	nd	nd		nd	nd		
C2-Dibenzotiofeno		n	ıd	57,3	32,0		nd	nd	nd		nd	nd		
Fenantreno		5	,9	873	74,0		nd	5,6	nd		nd	nd		
C1-Fenantreno		4	,2	349	33,1		nd	nd	nd		nd	nd		
C2-Fenantreno		2	,3	166	30,6		nd	nd	nd		nd	nd		
Antraceno		n	ıd	126	9,3		nd	nd	nd		nd	nd		
Fluoranteno		7	,2	1401	102		nd	nd	nd		nd	nd		
C1-Fluoranteno		1	,4	236	19,1		nd	nd	nd		nd	nd		
Pireno		5	,1	1079	91,2		nd	nd	nd		nd	nd		
C1-Pireno		n	ıd	173	15,3		nd	nd	nd		nd	nd		
Benzo[a]anthraceno		2	,1	427	36,7		nd	nd	nd		nd	nd		
Criseno		4	,6	493	43,3		nd	1,6	nd		nd	nd		
C1-Criseno		1	,9	196	17,8		nd	nd	nd		nd	nd		
C2-Criseno		n	ıd	56,6	10,4		nd	nd	nd		nd	nd		
Benzo[b]fluoranteno		3	,7	453	32,2		nd	nd	nd		nd	nd		
Benzo[k]fluoranteno		2	,6	446	26,2		nd	nd	nd		nd	nd		
Benzo[e]pireno		3	,I	335	26,2		nd	nd	nd		nd	nd		
Benzo[a]pireno		2	,6	411	25,7		nd	nd	nd		nd	nd		
Perileno		n	a	91,7	9,7		na	na	nd		na	na		
Indeno[125cd]pireno		2	,2 .1	270	23,0		na	na	nd		na	na		
Didenzo[an]antraceno			2	41,0	5,2 10.8		nd	nd	na		na	na		
SUDA:		2	,5 . 7	21/ 9(()	10,0	-	12.6	14.4	12	1	19.7	1u	,	
		41),/ 1	6530	524		15,0	7.2	13,	1	10,7	2,0	,	
LID A glovog/pogodog		4	0	0539	524	_	n.c	7,2	0,0		1,0		;	
(%) Salquil paftalana	1	22	,0 2 Q	2.4	29.5		100.0	/,0	54	0	00.2		<u> </u>	
(76) Zaiquii naitaienos	•	5.	,0	2,4	20,5		100,0	0,0	54,	9	90,5	51,	b	
$ontr/(ontr \pm fon)$			0	0.12	0.11	+	na	na			na			
$\frac{d}{d} = \frac{d}{d} + \frac{d}{d} + \frac{d}{d} = \frac{d}{d} + \frac{d}$.u 50	0,15	0,11		n.c	11.U n.e	11.0 n 4	•	n.c	11.C		
h(a)A/(h(a)A + cri)		0,	31	0.46	0,35		n.c	n.c	n.(•	n.c	n.c		
b(a)P/ner		, U,	.6	45	2.6		n.c	n.c	n.(•	n.c	n.c		
h(a)P/fen		0	 44	- - ,5 0.47	2,0 0 35		n.c	n.t	n.(ne	n.0		
		υ,	77	U,H /	0,00		11.0	11.0	1.0	·	n.t	1.0	,	

Verão 2016/17							E	ACF						
Compostos HPAs	G1	G2	G3	G4	#01	#02	#03	#04	#05	#06	#07	#08	#09	#10
Naftaleno	14,4	23,1	577	38,5	nd	nd	nd	nd	34, 6	64,7	22,5	3,2	54,8	61,9
C1-Naftaleno	153	358	211	149	3,9 4	4,2 4	7,4 8	22, 2	85, 5	205	109	12,9	139	98,9
C2-Naftaleno	1392	5396	883	605,2	6,3	9,5	10, 2	66, 7	113	382	455	18,5	266,9	212,9
C3-Naftaleno	4532	16377	1576	999	3,7 4	13, 7	5,1 5	77, 7	61	309,1	709,8	9,62	252,4	193,9
Etilnaftaleno	106	343	92,3	63,1	nd	nd	nd	7,5 1	16, 3	52,2	49,9	nd	35,9	29,6
Acenaftileno	nd	nd	129,5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Acenafteno	2,41	87,5	1,98	1,6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Fluoreno	nd	93,4	22,9	34,5	nd	nd	nd	2,6 5	4,0 1	9,48	7,76	nd	10,3	26,2
C1-Fluoreno	144	365	66,5	26	nd	nd	nd	6,0 3	6,9 3	17,2	33,1	6,5	16,8	25,3
Dibenzotiofeno	41,6	189,1	27,4	34,8	2,2 2	2,7 6	2,5	2,7 6	4,4	10,8	59,8	2,26	10,2	14,1
C1- Dibenzotiofeno	156	554,7	70,2	49,9	nd	nd	nd	4,3 8	4,7 2	21	28,9	nd	19,1	17
C2- Dibenzotiofeno	201	499	114	59,9	nd	1,5 8	nd	6,3 9	7,3 8	33,3	77,2	nd	32,2	30,9
Fenantreno	115	230	80,9	44,4	nd	nd	nd	4,6 3	11, 9	38,7	45,4	nd	34,7	33,7
C1-Fenantreno	115	230	80,9	44,4	nd	nd	nd	4,6 3	11, 9	38,7	45,4	nd	34,7	33,7
C2-Fenantreno	115	230	80,9	44,4	nd	nd	nd	4,6 3	11, 9	38,7	45,4	nd	34,7	33,7
Antraceno	9,65	nd	29,2	33	3,3	nd	3,1	3,7 1	13, 7	37,4	10,4	1,37	40	35,8
Fluoranteno	2,38	nd	30	35,4	2,7 7	nd	2,7 8	3,1 1	11, 7	34,1	6,78	nd	33,3	26,8
Pireno	nd	nd	nd	9,4	1,6 3	nd	nd	nd	2,8	8,2	2,43	nd	7,76	7,54
Benzo[a] anthraceno	nd	nd	nd	23,5	7,9 6	nd	3,3 5	3,3 3	9,6 8	29	7,56	nd	32,8	27,6
Criseno	nd	nd	nd	5,97	1,4 8	nd	1,0 4	1,1 5	2,1 1	5,52	2,76	nd	7,29	6,35
C1-Criseno	nd	nd	nd	21	7,3 5	nd	4,2 4	3,5 8	10, 2	29,4	8,26	3,39	32,6	26
C2-Criseno	9,65	nd	29,2	33	3,3	nd	3,1	3,7 1	13, 7	37,4	10,4	1,37	40	35,8
Benzo[b+j+k] fluoranteno	2,38	nd	30	35,4	2,7 7	nd	2,7 8	3,1 1	11, 7	34,1	6,78	nd	33,3	26,8
Benzo[e]pireno	nd	nd	nd	9,4	1,6 3	nd	nd	nd	2,8	8,2	2,43	nd	7,76	7,54
Benzo[a]pireno	nd	nd	nd	23,5	7,9 6	nd	3,3 5	3,3 3	9,6 8	29	7,56	nd	32,8	27,6
Perileno	nd	nd	nd	5,97	1,4 8	nd	1,0 4	1,1 5	2,1 1	5,52	2,76	nd	7,29	6,35
Indeno[123cd] pireno	nd	nd	nd	21	7,3 5	nd	4,2 4	3,5 8	10, 2	29,4	8,26	3,39	32,6	26
Dibenzo[ah] antraceno	9,65	nd	29,2	33	3,3	nd	3,1	3,7 1	13, 7	37,4	10,4	1,37	40	35,8
Benzo[ghi] perileno	2,38	nd	30	35,4	2,7 7	nd	2,7 8	3,1 1	11, 7	34,1	6,78	nd	33,3	26,8
ΣHPAs	7133	25210	4524	2939	69, 3	31, 8	70, 1	270	575	1763	1819	71,6	1518	1490
Σ16 HPAs	100,7	404,7	1180	707	46, 4	n.c	38, 8	53, 9	196	519	162	18,8	514,2	627,9

HPAs leves/pesados	106	299	13	5	1	n.c	1	6	3	3	13	5	2	2
(%) Σalquil naftalenos	86,7	89,1	61,1	61,8	20, 2	86, 3	32, 6	64, 5	48, 0	53,8	72,8	57,3	45,7	35,9
antr/ (antr + fen)	n.c	n.c	0,11	0,12	n.c	n.c	n.c	n.c	0,1 1	0,1	n.c	n.c	0,1	0,09
fluor/ (fluor + pir)	0,46	0,44	0,43	0,57	0,6	n.c	0,5 4	0,5 7	0,5 4	0,5	0,49	0,48	0,49	0,51
b(a)A/ (b(a)A + cri)	0,16	0,21	0,31	0,42	0,3 5	n.c	0,3	0,3 2	0,3 7	0,37	0,32	n.c	0,28	0,36
b(a)P/per	n.c	n.c	n.c	3,8	1,7	n.c	n.c	n.c	4,2	4,2	2,8	n.c	4,3	3,6
b(a)P/fen	0,06	n.c	0,22	0,25	0,6 1	n.c	0,5 1	0,3 3	0,5 1	0,68	0,25	0,34	0,57	0,29

Verão 2016/17	Arı	redores EA	CF	Áreas controle						
Compostos HPAs	Química	Baleia	Base G	P. Plaza	Botany	Ullman	Henne quin	Refúgio II		
Naftaleno	26,3	873	56,2	nd	78,4	nd	nd	nd		
C1-Naftaleno	47,2	181	74,4	12,53	36,2	4,97	2,45	4,73		
C2-Naftaleno	53,3	174	99,4	11,33	34,5	7,05	4,39	9,61		
C3-Naftaleno	32,5	158	93,4	6,6	16,8	2,41	2,13	3,77		
Etilnaftaleno	5,94	23,8	12,49	nd	4,38	nd	nd	nd		
Acenaftileno	nd	177	nd	nd	nd	nd	nd	nd		
Acenafteno	1,74	209	7,55	nd	nd	nd	nd	nd		
Fluoreno	4,21	242	10,8	nd	6,43	nd	nd	nd		
C1-Fluoreno	8,72	133	15,7	nd	9,44	nd	nd	nd		
Dibenzotiofeno	6,34	372	17,2	nd	161,4	nd	nd	3,62		
C1-Dibenzotiofeno	5,31	131	18,2	nd	4,48	nd	nd	nd		
C2-Dibenzotiofeno	5,06	101	27,7	nd	nd	nd	nd	nd		
Fenantreno	24,5	427	67,5	nd	8,26	nd	nd	nd		
C1-Fenantreno	24,5	427	67,5	nd	8,26	nd	nd	nd		
C2-Fenantreno	24,5	427	67,5	nd	8,26	nd	nd	nd		
Antraceno	60,5	1848	88	nd	13	nd	nd	nd		
Fluoranteno	49,2	1741	55,8	nd	8,4	nd	nd	nd		
Pireno	12,2	422	18	nd	nd	nd	nd	nd		
Benzo[a] anthraceno	47,1	1853	32,2	nd	1,91	nd	nd	nd		
Criseno	10,4	450	13,23	1,4	3,34	nd	nd	nd		
C1-Criseno	46,8	1370	23,2	nd	5,5	nd	nd	nd		
C2-Criseno	60,5	1848	88	nd	13	nd	nd	nd		
Benzo[b+j+k] fluoranteno	49,2	1741	55,8	nd	8,4	nd	nd	nd		
Benzo[e]pireno	12,2	422	18	nd	nd	nd	nd	nd		
Benzo[a]pireno	47,1	1853	32,2	nd	1,91	nd	nd	nd		
Perileno	10,4	450	13,23	1,4	3,34	nd	nd	nd		
Indeno[123cd]pireno	46,8	1370	23,2	nd	5,5	nd	nd	nd		
Dibenzo[ah] antraceno	60,5	1848	88	nd	13	nd	nd	nd		
Benzo[ghi] perileno	49,2	1741	55,8	nd	8,4	nd	nd	nd		
ΣΗΡΑς	1031	28269	1764	47,5	922	14,43	8,97	24		
Σ16 HPAs	5956	20621	910,1	7,3	440	n.c	n.c	n.c		
HPAs leves/pesados	0,6	0,4	1	6	4	n.c	n.c	n.c		
(%) Σalquil naftalenos	13,5	1,9	15,9	64,1	10,0	100,0	100,0	75,5		
_ · · · _	•			•						
antr/ (antr + fen)	0,11	0,13	0,15	n.c	0,02	n.c	n.c	n.c		
fluor/ (fluor + pir)	0,5	0,55	0,56	n.c	0,37	n.c	n.c	n.c		
b(a)A/ (b(a)A + cri)	0,28	0,32	0,23	n.c	0,26	n.c	n.c	n.c		
b(a)P/per	4,0	4,1	3,1	n.c	n.c	n.c	n.c	n.c		
b(a)P/fen	1,05	0,94	0,46	n.c	0,04	n.c	n.c	n.c		

Verão 2017/18	EACF											
Compostos HPAs	#5	#6	#7	#9	Saída esgoto	Obras EACF						
F		-										
Naftaleno	2,3	3,2	2,2	2,3	8,1	3,6						
C1-Naftaleno	1,3	1,5	1,3	1,6	nd	1,6						
C2-Naftaleno	28,2	21,6	27,7	23,2	27,7	31,8						
C3-Naftaleno	41,8	27,6	43,4	31,1	49,5	40,0						
Acenaftileno	nd	nd	nd	nd	nd	nd						
Acenafteno	nd	2,9	2,6	nd	nd	5,60						
Fluoreno	nd	nd	3,0	nd	nd	5,67						
C1-Fluoreno	6,59	nd	nd	nd	nd	118						
Dibenzotiofeno	3,85	nd	8,0	56,6	nd	6,36						
C1-Dibenzotiofeno	nd	18,1	3,40	24,2	nd	2,16						
C2-Dibenzotiofeno	3,34	127	21,2	109	nd	11,2						
Fenantreno	13,1	47,0	26,8	59,3	nd	25,1						
C1-Fenantreno	3,5	47,1	13,1	76,8	nd	8,04						
C2-Fenantreno	6,59	138	30,2	150	nd	21,6						
Antraceno	1,51	2,10	1,80	2,82	nd	1,86						
Fluoranteno	13,3	53,8	20,6	38,4	1,36	20,5						
C1-Fluoranteno	16,3	53,3	42,5	102	2,22	48,0						
Pireno	10,8	69,1	23,2	82,1	1,35	22,9						
Benz[a]anthraceno	5,61	6,61	6,29	8,57	nd	9,60						
Criseno	7,86	18,7	15,9	30,7	nd	16,7						
C1-Criseno	nd	2,05	2,90	2,30	nd	1,96						
C2-Criseno	1,22	4,63	nd	5,54	nd	4,37						
Benzo[b+j+k]fluoranteno	12,1	16,0	16,1	28,5	nd	20,3						
Benzo[e]pireno	7,50	12,4	17,1	20,0	nd	15,3						
Benzo[a]pireno	4,15	4,20	3,70	7,36	nd	8,39						
Perileno	1,67	1,24	1,91	2,44	nd	3,15						
Indeno[123cd]pireno	3,98	7,98	4,91	11,9	nd	6,15						
Dibenz[ah]antraceno	nd	2,12	1,60	2,95	nd	1,08						
Benzo[ghi]perileno	3,68	9,83	6,28	13,6	nd	7,15						
ΣΗΡΑς	479	1400	1076	1998	33,6	1700						
Σ16 HPAs	87	286	156	333	5	212						
HPAs leves/pesados	7,20	8,14	10,1	8,35	24,0	13,7						
(%) Σalquil naftalenos	71.3	50.7	72,4	55.9	77.2	73.4						
· · · · ·	-,-	7 -	-,-	7*	7-	- , -						
antr/(antr + fen)	0,10	0,04	0,06	0,05	nd	0,07						
fluor/(fluor + pir)	0,55	0,44	0,47	0,32	0,50	0,47						
b(a)A/(b(a)A + cri)	0,42	0,26	0,28	0,22	nd	0,36						
b(a)P/per	0,4	0,1	0,2	0,1	nd	0,4						
h(a)P/fen	0.32	0.09	0.14	0.12	nd	0.33						

Verão 2017/18		Arredore	s EACF		Áreas controle				
Compostos HPAs	Química	Meteoro	Baleia	Base G	P. Plaza	Botany	Ullman	Hennequin	Refúgio II
Naftaleno	3,6	4,6	3,8	1,4	63,0	6,2	7,7	4,3	7,8
C1-Naftaleno	1,0	2,1	1,0	0,2	0,0	2,1	2,3	0,0	0,0
C2-Naftaleno	24,4	41,3	9,8	2,8	0,0	40,3	46,8	39,6	53,3
C3-Naftaleno	38,5	49,1	11,3	3,8	37,0	39,1	39,4	56,1	38,9
Acenaftileno	nd	nd	nd	16,0	nd	nd	nd	nd	nd
Acenafteno	nd	nd	nd	19,2	nd	nd	nd	nd	nd
Fluoreno	nd	nd	nd	22,3	nd	nd	nd	nd	nd
C1-Fluoreno	nd	nd	1,41	6,87	nd	nd	nd	nd	nd
Dibenzotiofeno	1,97	2,07	2,59	37,3	nd	3,58	2,83	nd	nd
C1-Dibenzotiofeno	nd	nd	nd	4,76	nd	nd	nd	nd	nd
C2-Dibenzotiofeno	nd	nd	nd	11,2	nd	nd	nd	nd	nd
Fenantreno	5,19	3,17	13,1	109	nd	5,28	nd	nd	nd
C1-Fenantreno	nd	nd	5,76	46,6	nd	nd	nd	nd	nd
C2-Fenantreno	nd	nd	7,79	38,8	nd	nd	nd	nd	nd
Antraceno	nd	nd	1,21	23,3	nd	nd	nd	nd	nd
Fluoranteno	7,09	1,40	16,2	110	nd	nd	nd	nd	nd
C1-Fluoranteno	9,06	nd	39,8	393	nd	nd	nd	nd	nd
Pireno	5,06	nd	16,4	124,4	nd	nd	nd	nd	nd
Benz[a]anthraceno	4,66	nd	11,2	107	nd	nd	nd	nd	nd
Criseno	5,92	nd	18,7	153	nd	1,96	nd	nd	nd
C1-Criseno	nd	1,33	13,7	1,33	nd	nd	nd	nd	nd
C2-Criseno	nd	nd	1,67	15,4	nd	nd	nd	nd	nd
Benzo[b+j+k]fluoranteno	12,5	1,82	28,3	367	nd	nd	nd	nd	nd
Benzo[e]pireno	6,92	nd	20,4	229	nd	nd	nd	nd	nd
Benzo[a]pireno	5,96	nd	10,8	177	nd	nd	nd	nd	nd
Perileno	1,72	nd	3,06	64,0	nd	nd	nd	nd	nd
Indeno[123cd]pireno	4,59	nd	10,6	230	nd	nd	nd	nd	nd
Dibenz[ah]antraceno	1,22	nd	2,05	51,2	nd	nd	nd	nd	nd
Benzo[ghi]perileno	4,61	nd	12,4	194	nd	nd	nd	nd	nd
ΣΗΡΑς	235	297	303	2794	8,93	88,2	75,5	75,6	33,0
Σ16 HPAs	65	20	153	1744	6	13	6	3	3
HPAs leves/pesados	3,42	162	1,23	0,62	nd	44,0	nd	nd	nd
(%) Σalquil naftalenos	63,9	92,5	22,0	6,8	100,0	81,5	88,6	95,7	92,2
antr/(antr + fen)	nd	nd	0,08	0,18	nd	nd	nd	nd	nd
fluor/(fluor + pir)	0,58	nd	0,50	0,47	nd	nd	nd	nd	nd
b(a)A/(b(a)A + cri)	0,44	nd	0,37	0,41	nd	nd	nd	nd	nd
b(a)P/per	1,2	nd	0,7	1,4	nd	nd	nd	nd	nd
b(a)P/fen	1,15	nd	0,83	1,63	nd	nd	nd	nd	nd

Verão 2018/19								
Compostos HPAs	#5	#6	#7	#9	Saída esgoto			
					Cogoto			
Naftaleno	6.3	22.1	22.9	15.2	1.87			
C1-Naftaleno	47.3	172	306	109	21.16			
C2-Naftaleno	129	269	512	198	2.27			
C3-Naftaleno	316	465	1050	375	16.4			
Acenaftileno	0.70	1.43	2.99	1.11	nd			
Acenafteno	0.97	2.07	11.75	1.42	nd			
Fluoreno	0.95	2.53	17.5	3.03	nd			
C1-Fluoreno	10.4	36.9	125	21.4	2.49			
Dibenzotiofeno	3.58	14.6	71.1	5.87	0.97			
C1-Dibenzotiofeno	1,48	9,74	24,9	1,76	nd			
C2-Dibenzotiofeno	6,36	60,6	95.3	9,51	nd			
Fenantreno	9,88	19,6	89.0	18,5	1,54			
C1-Fenantreno	5,17	28,7	73,5	8,66	nd			
C2-Fenantreno	8,27	67,5	125	16,8	nd			
Antraceno	0,86	1,34	8,00	3,08	nd			
Fluoranteno	7,98	19,7	89,7	21,4	0,81			
Pireno	7,30	27,0	107	20,5	nd			
Benz[a]anthraceno	4,51	6,20	8,97	13,3	nd			
Criseno	6,01	14,7	17,17	21,2	nd			
C1-Criseno	nd	2,27	1,58	4,18	nd			
C2-Criseno	nd	5,27	3,26	13,1	nd			
Benzo[b]fluoranteno	5,65	7,83	11,63	12,7	nd			
Benzo[k]fluoranteno	5,21	7,41	9,96	12,5	nd			
Benzo[e]pireno	7,15	11,8	14,6	20,2	nd			
Benzo[a]pireno	4,89	5,61	9,61	11,7	nd			
Perileno	1,64	2,27	3,69	5,64	nd			
Indeno[123cd]pireno	2,90	4,44	10,1	5,45	nd			
Dibenz[ah]antraceno	0,73	1,58	2,56	2,37	nd			
Benzo[ghi]perileno	4,32	8,96	15,5	9,76	0,66			
ΣHPAs	606	1298	2839	962	48,2			
Σ16 HPAs	69	152	434	173	4,9			
HPAs leves/pesados	11,0	11,3	12,2	5,3	71,5			
(%) Σalquil naftalenos	81,3	69,8	65,8	70,9	82,7			
antr/(antr + fen)	0,08	0,06	0,08	0,14	0,42			
fluor/(fluor + pir)	0,52	0,42	0,46	0,51	0,38			
b(a)A/(b(a)A + cri)	0,43	0,30	0,34	0,39	nd			
b(a)P/per	3,0	2,5	2,6	2,1	nd			
b(a)P/fen	0,49	0,29	0,11	0,64	nd			
Verão 2018/19	Arredores EACF			Áreas controle				
------------------------	----------------	--------	--------	----------------	--------	-----------	------------	--
Compostos HPAs	Química	Baleia	Base G	P. Plaza	Ullman	Hennequin	Refúgio II	
•								
Naftaleno	nd	3,58	32,5	nd	3,46	nd	nd	
C1-Naftaleno	nd	12,5	40,6	1,27	5,13	0,85	2,64	
C2-Naftaleno	nd	13,4	48,3	3,91	5,75	8,95	14,9	
C3-Naftaleno	nd	17,0	63,0	9,27	4,34	15,7	17,8	
				-				
Acenaftileno	nd	nd	27,9	nd	nd	nd	nd	
Acenafteno	nd	nd	31,1	nd	nd	nd	nd	
Fluoreno	nd	nd	29,9	nd	nd	nd	nd	
C1-Fluoreno	nd	0,90	21,9	0,76	nd	nd	0,94	
Dibenzotiofeno	0,63	1,09	55,8	nd	3,83	nd	0,74	
C1-Dibenzotiofeno	nd	nd	7,29	nd	nd	nd	nd	
C2-Dibenzotiofeno	nd	nd	13,4	nd	nd	nd	nd	
Fenantreno	1,86	6,32	68,9	2,63	0,92	0,90	0,75	
C1-Fenantreno	nd	2,67	76,7	nd	nd	nd	nd	
C2-Fenantreno	nd	0,85	18,1	nd	nd	nd	nd	
Antraceno	nd	nd	34,0	nd	nd	nd	nd	
Fluoranteno	1,86	6,79	67,3	0,76	nd	nd	nd	
Pireno	1,29	6,50	243	nd	nd	nd	nd	
Benz[a]anthraceno	1,29	5,37	65,1	nd	nd	nd	nd	
Criseno	1,61	9,11	44,2	nd	1,09	nd	nd	
C1-Criseno	nd	0,79	39,6	nd	nd	nd	nd	
C2-Criseno	nd	0,88	32,1	nd	nd	nd	nd	
Benzo[b]fluoranteno	1,45	6,96	111	nd	nd	nd	nd	
Benzo[k]fluoranteno	1,34	5,24	79,5	nd	nd	nd	nd	
Benzo[e]pireno	1,81	9,91	121	nd	nd	nd	nd	
Benzo[a]pireno	1,40	4,20	101	nd	nd	nd	nd	
Perileno	nd	1,34	91,0	nd	nd	nd	nd	
Indeno[123cd]pireno	0,68	3,33	102	nd	nd	nd	nd	
Dibenz[ah]antraceno	nd	0,94	75,1	nd	nd	nd	nd	
Benzo[ghi]perileno	1,03	5,78	226	nd	nd	nd	nd	
ΣHPAs	16,2	125	1968	18,6	24,5	26,4	37,8	
Σ16 HPAs	13,8	64	1339	3,4	5,5	0,9	0,8	
HPAs leves/pesados	0,4	1,1	0,5	nd	21,5	nd	nd	
(%) Σalquil naftalenos	nd	34,2	7,7	77,7	62,1	96,6	93,6	
antr/(antr + fen)	0,37	0,15	0,33	0,30	0,54	0,55	0,59	
fluor/(fluor + pir)	0,59	0,51	0,22	0,37	nd	nd	nd	
b(a)A/(b(a)A + cri)	0,44	0,37	0,60	nd	0,52	nd	nd	
b(a)P/per	nd	3,1	1,1	nd	nd	nd	nd	
b(a)P/fen	0.75	0.66	1.47	nd	nd	nd	nd	

Verão 2019/20	EACF					
Compostos HPAs	#5	#6	#7	#9		
Naftaleno	21,35	22,59	23,25	19,26		
C1-Naftaleno	20,26	20,48	25,41	37,54		
C2-Naftaleno	142,98	201,77	410,96	219,71		
C3-Naftaleno	118,74	172,39	780,31	142,77		
Acenaftileno	0,74	0,94	3,87	1,26		
Acenafteno	1,00	2,80	1,24	9,90		
Fluoreno	1,80	3,06	6,60	25,12		
C1-Fluoreno	29,35	41,27	391,86	59,13		
C2-Fluoreno	42,39	51,46	467,90	43,82		
Dibenzotiofeno	42,39	51,46	467,90	43,82		
C1-Dibenzotiofeno	4,11	7,55	54,92	25,05		
C2-Dibenzotiofeno	3,44	7,38	167,55	7,22		
Fenantreno	19,80	36,21	795,87	25,31		
C1-Fenantreno	19,42	29,17	51,20	116,92		
C2-Fenantreno	10,63	7,78	46,84	19,21		
Antraceno	24,75	19,45	142,00	21,26		
Fluoranteno	2,16	2,47	1,07	3,54		
Pireno	16,65	35,39	57,18	118,71		
C1-Pireno	27,92	32,35	74,77	33,50		
C2-Pireno	15,62	16,97	45,44	16,72		
Benz[a]anthraceno	29,79	39,64	84,29	91,50		
Criseno	27,92	32,35	74,77	33,50		
C1-Criseno	15,62	16,97	45,44	16,72		
C2-Criseno	5,07	8,11	7,17	6,66		
Benzo[b]fluoranteno	8,43	14,91	19,15	13,62		
Benzo[k]fluoranteno	0,86	1,61	2,55	2,63		
Benzo[e]pireno	2,61	7,35	8,92	10,86		
Benzo[a]pireno	10,39	15,69	16,73	10,89		
Perileno	5,19	8,30	10,24	6,99		
Indeno[123cd]pireno	19,22	25,31	28,15	24,17		
Dibenz[ah]antraceno	6,71	9,47	4,90	8,27		
Benzo[ghi]perileno	2,76	5,23	2,73	4,42		
ΣHPAs	635	875	3762	1148		
Σ16 HPAs	150	220	316	455		
HPAs leves/pesados	3,1	3,1	10,3	3,6		
(%) Σalquil naftalenos	44,4	45,1	32,3	34,8		
antr/(antr + fen)	0,10	0,08	0,02	0,03		
fluor/(fluor + pir)	0,36	0,47	0,40	0,56		
b(a)A/(b(a)A + cri)	0,38	0,35	0,27	0,33		
b(a)P/per	2,4	1,8	1,8	1,9		
b(a)P/fen	0,35	0,32	0,10	0,07		

Verão 2019/20	A	Arredores E	EACF			Áreas con	trole	
Compostos HPAs	Baleia	Base G	Meteoro	P. Plaza	Botany	Ullman	Hennequin	Refúgio II
Naftaleno	9,16	269	5,92	4,08	4,34	4,49	3,72	2,91
C1-Naftaleno	4,78	95	2,80	1,49	2,14	2,28	2,59	1,37
C2-Naftaleno	28,46	532	19,77	9,00	35,21	18,48	22,40	10,39
C3-Naftaleno	20,94	635	14,18	6,61	55,67	10,11	13,51	5,33
Acenaftileno	0,30	123	0,48	0,29	0,15	nd	nd	nd
Acenafteno	0,22	185	0,34	0,26	0,16	nd	0,25	nd
Fluoreno	0,53	200	0,41	0,36	0,30	0,39	0,62	nd
C1-Fluoreno	8,03	697	6,73	5,00	8,10	7,00	6,17	2,22
C2-Fluoreno	6,81	537	3,88	1,99	4,60	1,31	1,03	0,51
Dibenzotiofeno	6,81	537	3,88	1,99	4,60	1,31	1,03	0,51
C1-Dibenzotiofeno	1,74	350	2,49	0,97	4,15	2,94	0,67	1,32
C2-Dibenzotiofeno	1,01	244	0,56	0,34	1,27	nd	nd	nd
Fenantreno	3,72	495	1,63	0,80	5,25	0,19	0,17	0,22
C1-Fenantreno	9,32	301	5,24	4,50	7,12	1,83	1,39	0,75
C2-Fenantreno	4,36	339	0,96	0,83	0,66	0,26	0,19	nd
Antraceno	9,33	623	1,28	1,02	1,60	0,24	0,21	0,15
Fluoranteno	0,78	185	0,39	0,28	0,26	nd	nd	nd
Pireno	15,03	503	8,36	5,39	3,77	0,75	0,34	0,37
C1-Pireno	16,93	1256	4,57	3,65	1,74	0,48	0,23	0,20
C2-Pireno	7,59	863	1,34	1,15	0,77	0,20	nd	nd
Benz[a]anthraceno	15,62	563	6,50	6,22	3,01	0,53	0,27	0,29
Criseno	16,93	1256	4,57	3,65	1,74	0,48	0,23	0,20
C1-Criseno	7,59	863	1,34	1,15	0,77	0,20	nd	nd
C2-Criseno	6,14	617	3,01	1,78	0,93	0,18	nd	nd
Benzo[b]fluoranteno	13,83	540	3,63	3,65	3,14	0,58	0,47	0,25
Benzo[k]fluoranteno	0,84	161	0,24	0,15	nd	nd	nd	nd
Benzo[e]pireno	1,37	268	0,59	0,18	0,40	nd	nd	nd
Benzo[a]pireno	13,99	743	5,69	4,81	2,97	0,55	0,24	0,21
Perileno	7,14	577	3,20	3,53	1,43	0,15	nd	nd
Indeno[123cd]pireno	21,82	1089	8,81	6,88	3,67	9,16	269,00	5,92
Dibenz[ah]antraceno	9,21	816	5,15	3,51	1,27	4,78	95,00	2,80
Benzo[ghi]perileno	3,07	869	1,33	1,18	0,31	28,46	532,00	19,77
ΣHPAs	265	19849	131	87,2	157	0,5	200	0,4
Σ16 HPAs	125	10799	59,8	46	31,9	35,7	22,6	1045
HPAs leves/pesados	0,9	0,5	1,4	1,0	5,9	0,8	0,6	0,03
(%) Σalquil naftalenos	20,4	6,4	28,1	19,6	59,1	26,4	24,4	2,0
antr/(antr + fen)	0,08	0,38	0,07	0,06	0,04	0,21	0,40	0,26
fluor/(fluor + pir)	0,49	0,47	0,56	0,46	0,56	0,59	0,56	0,56
b(a)A/(b(a)A + cri)	0,31	0,53	0,45	0,33	0,23	0,23	nd	nd
b(a)P/per	3,0	0,9	3,9	3,0	4,1	0,2	0,1	0,2
b(a)P/fen	0,99	2,71	0,98	0,78	0,18	2,61	3,72	68,34

		Março/201	2		Fevereiro/2013			
	Base G	Tanque	Heliponto	Ullman	Tanques 33,8m	Heliponto 23,6 m	P. Ullman 23,3m	
bifenil	1,7	4,4	2,9	3,6	1,4	nd	1,4	
naftaleno	10,3	20,2	18,7	15,3	1,8	nd	nd	
metilnaftaleno	45,7	164,1	106,2	108,7	2,6	1,82	nd	
dimetilnaftaleno	103,8	335,7	139,3	228,7	7,0	7,7	2,7	
2-etilnaftaleno	8,6	35,2	15,2	24,1	nd	nd	nd	
trimetilnaftaleno	28,5	57,1	27,1	52,0	5,2	2,9	nd	
acenaftileno	nd	nd	nd	nd	nd	nd	nd	
acenafteno	nd	nd	nd	nd	nd	nd	nd	
fluoreno	nd	1,9	nd	1,7	nd	nd	nd	
metilfluoreno	2,1	2,9	2,4	3,6	1,8	nd	nd	
dibenzotiofeno	1,5	2,0	1,8	2,4	1,8	1,4	2,0	
fenantreno	nd	nd	3,0	nd	nd	nd	nd	
antraceno	nd	nd	nd	nd	nd	nd	nd	
dimetilfluoreno	1,5	nd	1,6	nd	nd	nd	nd	
metildibenzotiofeno	2,4	nd	nd	1,5	nd	nd	nd	
metilfenantreno	3,5	3,2	3,2	3,1	2,55	nd	nd	
dimetildibenzotiofeno	4,3	nd	1,7	2,1	nd	nd	nd	
dimetilfenantreno	nd	nd	nd	nd	nd	nd	nd	
fluoranteno	1,5	nd	3,8	nd	nd	nd	nd	
pireno	nd	nd	3,0	nd	nd	nd	nd	
metilfluoranteno	nd	nd	2,1	nd	nd	nd	nd	
reteno	nd	nd	1,4	nd	nd	nd	nd	
metilpireno	nd	nd	nd	nd	nd	nd	nd	
benzo(c)fenantreno	nd	nd	nd	nd	nd	nd	nd	
benzo(a)antraceno	nd	nd	2,4	nd	nd	nd	nd	
criseno	1,6	1,2	4,4	nd	1,4	1,4	nd	
metilcriseno	1,3	nd	2,6	nd	1,2	1,4	nd	
dimetilcriseno	nd	nd	1,2	nd	nd	nd	nd	
benzo[b]fluoranteno	nd	nd	3,8	nd	nd	nd	nd	
benzo[j]fluoranteno	nd	nd	1,8	nd	nd	nd	nd	
benzo[k]fluoranteno	nd	nd	1,4	nd	nd	nd	nd	
benzo[e]pireno	nd	nd	2,8	nd	nd	nd	nd	
benzo[a]pireno	nd	nd	3,1	nd	nd	nd	nd	
perileno	nd	nd	nd	nd	nd	nd	nd	
indeno[1,2,3-c,d]pireno	nd	nd	2,2	nd	nd	nd	nd	
dibenzo[a,h]antraceno	nd	nd	nd	nd	nd	nd	nd	
benzo[b]criseno	nd	nd	nd	nd	nd	nd	nd	
benzo[g,h,i]perileno	nd	nd	1,7	nd	nd	nd	nd	
coroneno	nd	nd	nd	nd	nd	nd	nd	
HPAs totais	216	628	358	443	26,8	16,5	6,1	

APÊNDICE E - Hidrocarbonetos policíclicos aromáticos em sedimentos Baia do Almirantado (ng g⁻¹ peso seco)

nd < 0,1 ng g⁻¹

nc = não calculado

				Entrema	rés		
2013/2014	Base G	tanques	heliponto	Tanques 30m	Heliponto 30m	Heliponto 60m	P.Ullman 30m
bifenil	nd	nd	nd	11,4	nd	nd	2,2
naftaleno	3,9	10,6	4,6	51,0	nd	nd	1,9
metilnaftaleno	nd	4,5	6,3	17,6	nd	nd	4,5
dimetilnaftaleno	nd	5,8	8,1	nd	nd	nd	5,0
2-etilnaftaleno	nd	nd	nd	72,9	nd	nd	nd
trimetilnaftaleno	1,4	248,9	5,8	nd	2,5	2,5	3,7
acenaftileno	nd	nd	nd	nd	nd	nd	nd
acenafteno	nd	nd	nd	6,9	nd	nd	nd
fluoreno	nd	10,2	nd	4,2	nd	nd	nd
metilfluoreno	nd	118,8	1,4	8,0	1,5	nd	2,0
dibenzotiofeno	nd	21,9	nd	nd	nd	nd	nd
fenantreno	nd	6,6	3,5	nd	nd	nd	nd
antraceno	nd	nd	nd	nd	nd	nd	nd
dimetilfluoreno	nd	2,7	nd	nd	nd	nd	nd
metildibenzotiofeno	nd	2,3	nd	1,6	nd	nd	nd
metilfenantreno	nd	5,1	nd	nd	nd	nd	nd
dimetildibenzotiofeno	nd	5,0	nd	nd	nd	nd	nd
dimetilfenantreno	nd	7,0	nd	nd	nd	nd	nd
fluoranteno	2,5	7,5	4,4	nd	1,6	nd	nd
pireno	1,8	4,6	3,0	nd	1,3	nd	nd
metilfluoranteno	nd	nd	nd	nd	nd	nd	nd
reteno	nd	1,3	1,3	nd	nd	1,5	nd
metilpireno	nd	nd	nd	nd	nd	nd	nd
benzo(c)fenantreno	nd	nd	nd	nd	nd	nd	nd
benzo(a)antraceno	nd	1,5	1,3	nd	nd	nd	nd
criseno	nd	3,6	2,7	nd	1,9	1,9	1,2
metilcriseno	nd	1,2	nd	nd	nd	nd	nd
dimetilcriseno	nd	nd	nd	nd	nd	nd	nd
benzo[b]fluoranteno	nd	1,8	nd	nd	nd	nd	nd
benzo[j]fluoranteno	nd	nd	nd	nd	nd	nd	nd
benzo[k]fluoranteno	nd	nd	nd	nd	nd	nd	nd
benzo[e]pireno	nd	nd	nd	nd	nd	nd	nd
benzo[a]pireno	nd	nd	nd	nd	nd	nd	nd
perileno	nd	nd	nd	nd	1,3	1,7	nd
indeno[1,2,3-c,d]pireno	nd	9,1	nd	nd	nd	nd	nd
dibenzo[a,h]antraceno	nd	2,1	nd	nd	nd	nd	nd
benzo[b]criseno	nd	5,7	nd	nd	nd	nd	nd
benzo[g,h,i]perileno	nd	8,5	nd	nd	nd	nd	nd
coroneno	nd	nd	nd	nd	nd	nd	nd
HPAs totais	9,7	496	43	174	10	8	21

Entremarés									
2014/2015	Base G	EACF Tanques	Heliponto	EACF 30m	Heliponto 30m	Heliponto 60m	Ullman 30 m		
bifenil	nd	1,9	nd	nd	nd	nd	1,6		
naftaleno	4,3	11,7	8,0	nd	nd	nd	1,9		
metilnaftaleno	2,8	31,1	13,9	nd	nd	nd	2,6		
dimetilnaftaleno	nd	62,6	14,3	nd	nd	nd	nd		
2-etilnaftaleno	nd	8,05	nd	nd	nd	nd	nd		
trimetilnaftaleno	nd	36,2	2,8	nd	nd	nd	nd		
acenaftileno	nd	nd	nd	nd	nd	nd	nd		
acenafteno	1,4	6,3	nd	nd	nd	nd	nd		
fluoreno	2,7	7,6	nd	nd	nd	nd	nd		
metilfluoreno	nd	8,6	nd	nd	nd	nd	nd		
dibenzotiofeno	nd	4,6	nd	1,8	1,4	1,5	2,2		
fenantreno	13,3	34,3	3,2	nd	nd	nd	nd		
antraceno	2,6	4,3	nd	nd	nd	nd	nd		
dimetilfluoreno	nd	3,7	1,8	nd	nd	nd	nd		
metildibenzotiofeno	nd	nd	nd	nd	nd	nd	nd		
metilfenantreno	nd	nd	nd	nd	nd	nd	nd		
dimetildibenzotiofeno	nd	11,2	1,7	nd	nd	nd	nd		
dimetilfenantreno	nd	3,4	nd	nd	nd	nd	nd		
fluoranteno	14,7	36,4	5,7	nd	nd	nd	nd		
pireno	9,5	24,5	4,1	nd	nd	nd	nd		
metilfluoranteno	5,1	11,8	1,9	nd	nd	nd	nd		
reteno	nd	2,6	2,0	nd	nd	nd	nd		
metilpireno	nd	nd	nd	nd	nd	nd	nd		
benzo(c)fenantreno	nd	nd	nd	nd	nd	nd	nd		
benzo(a)antraceno	6,3	12,4	1,7	nd	nd	nd	nd		
criseno	7,8	21,3	3,2	nd	1,2	1,6	1,2		
metilcriseno	1,4	3,6	nd	nd	nd	nd	nd		
dimetilcriseno	nd	nd	nd	nd	nd	nd	nd		
benzo[b]fluoranteno	nd	10,5	nd	nd	nd	nd	nd		
benzo[j]fluoranteno	nd	14,0	nd	nd	nd	nd	nd		
benzo[k]fluoranteno	nd	7,0	nd	nd	nd	nd	nd		
benzo[e]pireno	nd	9,4	nd	nd	nd	nd	nd		
benzo[a]pireno	nd	nd	nd	nd	nd	nd	nd		
perileno	nd	5,3	nd	nd	1,3	1,5	nd		
indeno[1,2,3-c,d]pireno	nd	7,9	nd	nd	nd	nd	nd		
dibenzo[a,h]antraceno	nd	1,4	nd	nd	nd	nd	nd		
benzo[b]criseno	nd	2,2	nd	nd	nd	nd	nd		
benzo[g,h,i]perileno	nd	8,4	nd	nd	nd	nd	nd		
HPAs totais	71,8	414	64,5	1,8	3,9	4,6	9,5		

2015/2016	EACF- Tanques	Ferraz Heliponto	Punta Ullman	
bifenil	2,9	nd	nd	
naftaleno	1,8	nd	nd	
metilnaftaleno	4,0	1,6	2,5	
dimetilnaftaleno	12,4	3,1	3,9	
2-etilnaftaleno	nd	nd	nd	
trimetilnaftaleno	3,8	6,9	4,4	
acenaftileno	nd	nd	nd	
acenafteno	nd	nd	nd	
fluoreno	nd	nd	nd	
metilfluoreno	nd	nd	nd	
dibenzotiofeno	2,8	2,7	3,3	
fenantreno	nd	nd	3,3	
antraceno	nd	nd	nd	
dimetilfluoreno	nd	nd	nd	
metildibenzotiofeno	nd	nd	nd	
metilfenantreno	nd	nd	nd	
dimetildibenzotiofeno	nd	nd	nd	
dimetilfenantreno	nd	nd	nd	
fluoranteno	1,7	1,7	2,4	
pireno	1,3	1,3	1,8	
metilfluoranteno	nd	nd	nd	
metilpireno	nd	nd	nd	
benzo(a)antraceno	nd	nd	nd	
criseno	nd	1,4	1,5	
metilcriseno	nd	nd	nd	
dimetilcriseno	nd	nd	nd	
benzo[b]fluoranteno	nd	nd	nd	
benzo[k]fluoranteno	nd	nd	nd	
benzo[e]pireno	nd	nd	nd	
benzo[a]pireno	nd	nd	nd	
perileno	nd	nd	nd	
indeno[1,2,3-c,d]pireno	nd	nd	nd	
dibenzo[a,h]antraceno	nd	nd	nd	
benzo[b]criseno	nd	nd	nd	
benzo[g,h,i]perileno	nd	nd	nd	
HPAs totais	27,9	18,7	23,0	

2016/2017	Tanques 30 m	Heliponto 30 m	Heliponto 50 m	Tanques 50 m	PuntaUllman 30 m
bifenil	nd	nd	3,2	2,1	nd
naftaleno	nd	nd	nd	nd	nd
metilnaftaleno	1,8	2,7	7,0	5,0	1,6
dimetilnaftaleno	6,6	5,0	15,3	10,6	4,3
2-etilnaftaleno	nd	nd	nd	nd	nd
trimetilnaftaleno	8,2	5,0	8,9	7,9	4,7
acenaftileno	nd	nd	nd	nd	nd
acenafteno	nd	nd	nd	nd	nd
fluoreno	nd	3,8	nd	nd	nd
metilfluoreno	nd	1,5	nd	nd	nd
dibenzotiofeno	2,5	3,5	3,0	2,6	5,7
fenantreno	nd	18,8	2,7	3,3	2,9
antraceno	nd	2,8	nd	nd	nd
dimetilfluoreno	nd	nd	nd	nd	nd
metildibenzotiofeno	nd	nd	nd	nd	nd
metilfenantreno	2,3	5,4	3,2	3,4	2,7
dimetildibenzotiofeno	nd	nd	nd	nd	nd
dimetilfenantreno	nd	2,4	2,3	nd	nd
fluoranteno	nd	15,7	nd	nd	nd
pireno	nd	10,8	nd	nd	nd
metilfluoranteno	nd	3,3	nd	nd	nd
reteno	nd	nd	nd	nd	nd
metilpireno	nd	nd	nd	nd	nd
benzo(a)antraceno	1,5	9,1	nd	nd	nd
criseno	1,4	8,9	2,2	2,1	2,1
metilcriseno	1,4	3,4	1,7	1,5	nd
dimetilcriseno	nd	nd	nd	nd	nd
benzo[b]fluoranteno	3,2	14,4	4,3	3,2	2,8
benzo[e]pireno	3,8	8,5	4,4	4,2	4,0
benzo[a]pireno	nd	7,0	nd	nd	nd
perileno	nd	2,8	2,5	2,2	nd
indeno[1,2,3-c,d]pireno	nd	5,2	Nd	1,1	nd
dibenzo[a,h]antraceno	3,0	3,5	3,1	3,1	3,1
benzo[b]criseno	nd	nd	nd	nd	nd
benzo[g,h,i]perileno	nd	4,2	nd	nd	nd
HPAs totais	35,7	147	60,6	50,2	33,7

2017/2018	Heliponto (32,4m)	Tanques (30m)	Heliponto (60,8m)	Tanques (47,6)	Punta Ullman
naftaleno	3,6	9,3	3,3	8,4	nd
metilnaftaleno	nd	nd	nd	nd	nd
dimetilnaftaleno	5,4	7,1	3,3	8,0	nd
trimetilnaftaleno	8,9	12,7	4,0	12,7	2,9
acenaftileno	nd	nd	nd	nd	nd
acenafteno	nd	nd	nd	nd	nd
fluoreno	nd	nd	nd	nd	nd
metilfluoreno	nd	1,4	nd	nd	nd
dibenzotiofeno	1,9	2,2	1,8	3,1	3,4
fenantreno	nd	3,7	nd	7,8	nd
antraceno	nd	nd	nd	nd	nd
metildibenzotiofeno	nd	nd	nd	nd	nd
metilfenantreno	nd	nd	nd	nd	nd
dimetildibenzotiofeno	nd	nd	nd	nd	nd
dimetilfenantreno	nd	nd	nd	nd	nd
fluoranteno	nd	1,3	nd	5,1	nd
pireno	nd	nd	nd	3,6	nd
metilfluoranteno	1,7	3,3	2,0	6,2	nd
benzo(a)antraceno	nd	nd	nd	2,4	nd
criseno	nd	1,4	nd	3,1	nd
metilcriseno	nd	nd	nd	nd	nd
dimetilcriseno	nd	nd	nd	nd	nd
benzo[b]fluoranteno	nd	nd	nd	3,6	nd
benzo[e]pireno	nd	nd	nd	3,0	nd
benzo[a]pireno	nd	nd	nd	1,7	nd
perileno	nd	nd	nd	1,8	nd
indeno[1,2,3-c,d]pireno	nd	nd	nd	1,6	nd
dibenzo[a,h]antraceno	nd	nd	nd	nd	nd
benzo[g,h,i]perileno	nd	nd	nd	1,5	nd
HPAs totais	21,5	42,5	14,4	73,6	6,3

2018/2019	Heliponto (30,8m)	Tanques (30m)	Heliponto 59,0m	Tanques (48,0m)	Punta Ullman
bifenil	123	88,5	33,5	5,34	122
naftaleno	0,9	1,3	nd	0,9	5,5
metilnaftaleno	43,7	25,5	9,1	2,0	42,8
trimetilnaftaleno	208	155	53,7	8,6	186
acenaftileno	nd	nd	nd	nd	0,9
acenafteno	0,8	nd	nd	0,69	nd
fluoreno	0,9	nd	nd	39,3	nd
metilfluoreno	3,0	1,9	1,1	5,0	2,7
dibenzotiofeno	2,6	2,2	2,4	3,8	4,6
fenantreno	3,8	3,0	3,8	15,3	2,7
antraceno	nd	nd	nd	1,7	nd
metildibenzotiofeno	nd	nd	nd	nd	nd
metilfenantreno	1,5	1,1	1,0	1,9	0,8
dimetildibenzotiofeno	1,0	0,7	nd	0,9	nd
dimetilfenantreno	2,3	1,6	1,4	2,8	1,1
fluoranteno	2,0	1,1	2,8	6,7	nd
pireno	1,6	0,9	2,2	5,5	nd
benzo(a)antraceno	0,7	nd	2,2	3,5	nd
criseno	1,3	1,3	2,6	4,0	1,2
metilcriseno	nd	nd	nd	nd	nd
dimetilcriseno	nd	nd	nd	nd	nd
benzo[b]fluoranteno	0,8	0,9	2,0	3,2	nd
benzo[k]fluoranteno	nd	nd	1,3	2,4	nd
benzo[e]pireno	1,1	1,2	2,8	4,1	0,7
benzo[a]pireno	nd	nd	1,7	2,6	nd
perileno	1,0	1,2	1,8	2,5	nd
indeno[1,2,3-c,d]pireno	nd	nd	0,8	1,4	nd
dibenzo[a,h]antraceno	nd	nd	nd	nd	nd
benzo[g,h,i]perileno	0,8	0,8	1,6	2,6	0,8
HPAs totais	278	199	94	121	250

2019/2020	MAE 30m	Tanques 30 m	MAE 62,2 m	Tanques 58,8 m	P. Ullman 30 m
naftaleno	12,8	1,7	5,4	4,6	1,7
metilnaftaleno	11,3	1,5	3,6	2,6	1,3
dimetilnaftaleno	180,6	21,5	46,5	23,3	24,9
trimetilnaftaleno	202,7	26,6	29,3	17,0	35,0
acenaftileno	0,8	nd	nd	nd	nd
acenafteno	2,2	0,3	0,3	0,7	nd
fluoreno	43,8	20,2	0,9	1,4	32,7
metilfluoreno	50,7	26,4	7,2	7,5	29,5
dibenzotiofeno	7,2	4,4	3,4	4,7	5,3
fenantreno	33,9	11,6	3,5	8,0	14,7
antraceno	2,7	0,2	0,2	1,6	0,2
dimetilfluoreno	50,4	20,1	8,4	8,2	21,7
metildibenzotiofeno	7,0	2,7	0,8	0,9	2,8
metilfenantreno	9,4	3,7	1,4	2,1	4,3
dimetildibenzotiofeno	33,7	14,1	3,2	3,3	11,5
dimetilfenantreno	16,3	8,0	2,8	4,8	8,7
fluoranteno	23,2	3,1	1,6	7,9	1,8
pireno	41,4	8,0	1,6	7,2	8,6
C2-pireno	10,2	2,5	2,0	3,2	2,2
metilpireno	21,4	3,8	2,6	5,9	3,3
benzo(c)fenantreno	nd	nd	nd	nd	nd
benzo(a)antraceno	12,9	0,9	0,6	2,9	0,3
criseno	14,2	1,9	1,7	3,4	1,5
metilcriseno	1,3	0,1	0,1	0,2	nd
dimetilcriseno	3,1	0,4	0,4	0,5	0,3
benzo[b]fluoranteno	17,1	1,8	1,3	3,7	1,1
benzo[k]fluoranteno	10,9	0,6	0,5	1,7	0,3
benzo[e]pireno	31,5	2,3	2,3	4,7	1,7
benzo[a]pireno	19,8	0,8	0,7	2,9	nd
perileno	9,4	1,6	3,5	3,7	0,8
indeno[1,2,3-c,d]pireno	13,7	0,8	0,4	2,5	0,4
dibenzo[a,h]antraceno	3,0	0,2	nd	0,5	nd
benzo[g,h,i]perileno	5,2	0,5	0,5	1,9	0,5
HPAs totais	904	192	137	144	217

	Março/2012					Fev/2013			
	entremarés			P Illmon	Ferraz	Ferraz	Р.		
	Base G	Tanque	Heliponto	1. Onman	tanques	Heliponto	Ullman		
HPA 2-3 anéis	213,6	626,6	324,0	443,2	22,7	13,7	4,7		
HPA 4-6 anéis	2,9	1,2	33,8	0,0	2,7	2,8	0,0		
HPA leves/pesados	73,4	509,4	9,6		8,6	5,0			
Σalquilnaft/naftaleno	18,1	29,3	15,4	27,0	8,4				
Fen/ant			2,7						
Fla/pir	1,2		1,3						

2013/2014	Entremarés			Tanques	Heliponto	Heliponto	P.Ullman
	Base G	tanques	helip	30m	30m	60m	30m
HPA 2-3 anéis	7,8	457,0	34,2	12,2	5,6	2,5	17,2
HPA 4-6 anéis	1,8	39,4	8,4	5,9	4,5	5,1	1,2
HPA leves/pesados	4,3	11,6	4,1	2,1	1,2	0,5	14,2
Σalquilnaft/naftaleno	0,3	24,4	4,4				7,0
Fen/ant		6,0	3,2	3,2			
Fla/pir	1,4	1,6	1,5	1,4	1,2		

2014/2015	Entremarés				FACE	Helinonto	Helinonto
	Base G	EACF Tanques	Heliponto	Ullman	30m	30m	60m
HPA 2-3 anéis	41,8	269,9	51,5	6,7	1,8	1,4	1,5
HPA 4-6 anéis	30,0	142,1	13,0	1,2	0,0	2,5	3,1
HPA leves/pesados	1,4	1,9	4,0	5,5		0,6	0,5
Σalquilnaft/naftaleno	0,7	11,8	3,9	1,3			
Fen/ant	5,2	8,0	2,9				
Fla/pir	1,6	1,5	1,4				

2015/2016	EACF- Tanques	Ferraz Heliponto	P. Ullman
HPA 2-3 anéis	26,6	16,0	19,7
HPA 4-6 anéis	1,3	2,7	3,3
HPA leves/pesados	20,0	5,9	5,9
Σalquilnaft/naftaleno	11,0		
Fen/ant			3
Fla/pir	1,3	1,3	1,3

2016/2017	Tanques 30 m	Heliponto 30 m	Heliponto 50 m	Taques 50 m	P. Ullman
HPA 2-3 anéis	21,3	66,6	42,3	32,8	21,7
HPA 4-6 anéis	14,3	80,9	18,3	17,4	12,0
HPA leves/pesados	1,5	0,8	2,3	1,9	1,8
Σalquilnaft/naftaleno	10,3	7,9	19,5	14,8	6,6
Fen/ant		6,7	2,5	3,0	2,6
Fla/pir		1,5			

2017/2018	Heliponto (32,4m)	Tanques (30m)	Heliponto (60,8m)	Tanques (47,6)	P. Ullman
HPA 2-3 anéis	19,8	37,8	12,4	45,2	6,2
HPA 4-6 anéis	1,7	4,7	2,0	28,4	0,0
HPA leves/pesados	11,8	8,1	6,1	1,6	
Σalquilnaftaleno/ naftaleno	4,1	2,1	2,2	2,5	1,8
Fen/ant		3,4		7,1	
Fla/pir		1,0		1,4	

2018/2019	Heliponto (30,8m)	Tanques (30m)	Heliponto (59,0m)	Tanques (48,0m)	P. Ullman
HPA 2-3 anéis	270,3	193,2	75,3	89,7	247,1
HPA 4-6 anéis	7,3	6,2	18,9	31,7	2,7
HPA leves/pesados	37,0	31,2	4,0	2,8	91,8
Σalquilnaft/naftaleno	290,3	137,2	104,6	11,5	41,8
Fen/ant	3,4	2,7	3,5	8,9	2,4
Fla/pir	1,3	1,2	1,3	1,2	

2019/2020	MAE 30m	Tanques 30 m	P. Ullman 30 m	MAE 62,2 m	Tanques 58,8 m
HPA 2-3 anéis	688,8	165,9	196,0	118,3	98,6
HPA 4-6 anéis	215,0	26,2	20,9	18,2	45,1
HPA leves/pesados	3,2	6,3	9,4	6,5	2,2
©alquilnaft/naftaleno	30,7	29,8	36,5	14,6	9,3
Fen/ant	12,4	72,8	86,2	22,9	4,9
Fla/pir	0,6	0,4	0,2	1,0	1,1