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Resumo 

Carrasqueira, I.G.F. A monção de verão indiana e a monção de verão sul-americana e 

suas respostas a diferentes forçantes em alguns períodos-chave do Neógeno. 2023. Tese 

Doutorado. Instituto Oceanográfico, Universidade de São Paulo, São Paulo. 

 

Neste trabalho apresentamos dados de experimentos magnéticos e de fluorescência de 

raios X para o registro IODP U1471 localizado no Mar Interior das Maldivas. Além disso, 

apresentamos dados de experimentos magnéticos para o registro NAP63 localizado no 

embaiamento de São Paulo. Experimentos magnéticos forneceram uma visão da 

preservação da magnetita nos sedimentos do Mar Interior das Maldivas durante o início 

da diagênese. Aqui, apresentamos dados de remanência de alta resolução nos 15 

metros superiores do registro sedimentar, e uma caracterização magnética detalhada 

em amostras discretas dos 5,5 metros superiores do registro IODP Site U1471. Pode-se 

demonstrar que a magnetita é rapidamente reduzida a greigita, com uma grande 

diminuição da magnetização remanente natural abaixo dos dois metros superiores do 

registro sedimentar. Os resultados sugerem que a diagênese atual poderia imprimir 

quase 100 mil anos de erro na cronologia baseada na magnetoestratigrafia. Dados de 

elementos obtidos no registro U1471 também forneceram uma visão detalhada das 

mudanças do sistema de monções indiano em escalas de tempo milenar. Com base em 

uma cronologia refinada ao longo dos últimos 550 mil anos, reconstruímos as mudanças 

no Sistema de Monções Indiano em uma escala de anomalias e verificamos suas relações 

com registros estabelecidos do Sistema de Monções do Leste Asiático. Com base nos 

registos de Fe/soma e Fe/Si, pode ser demonstrado que a aridez continental da Ásia 

acompanha as mudanças no nível do mar, enquanto a intensidade dos ventos das 

monções de inverno responde às mudanças na insolação de verão no hemisfério Norte. 

Além disso, as anomalias da aridez continental e a intensidade dos ventos das monções 

de inverno em eventos de escala milenar exibem poder na banda de precessão, quase 

em antifase com a insolação de verão no hemisfério Norte. A boa correspondência entre 

o nosso registo e os registos de anomalias das monções do Leste Asiático sugere a 

ocorrência de eventos áridos anómalos generalizados na Ásia. Neste mesmo registro, 

demonstramos ainda, com base na alta correlação da razão Fe/K com a suscetibilidade 
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magnética, que durante o Mioceno médio ao final, o local U1471 recebeu sua carga de 

sedimentos detríticos principalmente do Ganges-Brahmaputra. Nossos dados sugerem 

que durante o Mioceno médio e tardio, a elevação do Himalaia e do planalto tibetano 

fortaleceu as monções de verão indianas e aumentou a aridez no interior da Ásia, 

iniciando a deposição de argila vermelha no leste do planalto chinês de loess. No registro 

NAP63, coletado na Baía de São Paulo, demonstramos com base no registro do 

componente de alta coercividade da aquisição da Magnetização Remanente Isotérmica, 

que a entrada de sedimentos do Rio da Prata foi restrita devido aos fortes ventos de 

nordeste durante intensificação das monções de verão na América do Sul. Também 

demonstramos que durante eventos frios no hemisfério norte a monção de verão sul-

americana foi intensificada.  

 

Palavras-chave: Mioceno. Himalaia e platô Tibetano. Planalto chinês de loess. Eventos 

áridos generalizados na Asia. Eventos Heinrich. 
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CHAPTER 1. THE INDIAN SUMMER MONSOON 

1 INTRODUCTION 

 

1.1 THE MODERN INDIAN SUMMER MONSOON 

During the Indian Summer Monsoon (ISM), rain falls preferentially on the western 

Indian coast under the topographic influence of the western Ghats, having a strong 

impact on lifestyle of millions of people, who are affected by extremely humid weather 

and depends on seasonal rainfall for agriculture. Today, the Indian subcontinent, is 

heavily affected by the seasonal windward inversion driven by the seasonal cycle of solar 

heating over the Northern Hemisphere related to the Indian monsoon system (IMS). 

While southwesterly winds dominate during the summer, bringing strong rainfall over 

the Indian-Asian land mass, in the winter, a high-pressure cell with anticyclonic 

circulation develops over central India blowing cold and dry northeasterly winds across 

the Indian east coast (Murty, 2021) (fig. 1) (Carrasqueira et al., 2023). 

Actually, strong southwesterly winds dominate the annual mean atmospheric 

circulation in the northern Indian Ocean during boreal summer (Schiller and Godfrey, 

2003), and together with northerly Shamal winds delivery a huge amount of aeolian dust 

sourced in Arabian Peninsula and Nubian desert into northwestern Arabian Sea 

(Ackerman and Cox, 1989; Yu et al., 2015) (fig. 1A).  

Satellite data are useful to assess the flow of dust to the Maldives archipelago. 

Aerosol Optical Thickness and Aerosol Ångström Exponent are important parameters in 

understanding the status of ambient aerosol concentration. Aerosol Optical Thickness 

analyses are based on the fact that the particles change the way the atmosphere reflects 

and absorbs visible and infrared light. An Aerosol Optical Thickness of less than 0.1 

indicates a crystal clear sky with maximum visibility, whereas a value of 1 indicates very 

hazy conditions (“Aerosol Optical Depth,” 2022). The Aerosol Ångström Exponent is 

basically a quantitative indicator and inversely proportional to the size of the aerosol 

particles. When the Aerosol Ångström Exponent is close to 1.0 is considered to be black 

carbon-rich aerosol from fossil fuel burning, and when it is higher than 1, it is often 

considered to be an indication of the presence of dust (Andreae and Gelencsér, 2006; 

Laskin et al., 2015; Moosmüller et al., 2009; Russell et al., 2010)  
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Satellite compiled data (2002-2020) from seasonal distribution of Aerosol Optical 

thickness, show an increase in the flux of aerosol in northwesterly Arabian Sea during 

Summer Monsoon (“L3 Browser - NASA Ocean Color,” n.d.) (fig. 1B). Although the 

greatest flux of aeolian dust occurs in summer, only a small portion of this sediment 

reaches the eastern Arabian Sea where the Maldives Archipelago is located (Kunkelova 

et al., 2018; Lindhorst et al., 2019).  

Summer monsoon winds also promote strong eastward surface ocean currents 

and limits the influence of low salinity surface waters from Bay of Bengal into eastern 

Arabian Sea (Stainbank et al., 2021). Moreover, due to increased precipitation during 

summer monsoon, higher input of organic matter at the northern Indian Ocean, 

promotes a southward expansion of the Arabian Sea oxygen minimum zone (Lachkar et 

al., 2018).  

In the winter, northeasterly winds carry dust from deserts in Indian-Asian land 

mass to the eastern Arabian Sea. Satellite compiled data (2002-2020) from seasonal 

distribution of Aerosol Angstrom Exponent, show an increase in the flux of fine dust 

particles (high values) toward the Maldives Archipelago during winter monsoon 

(OceanColor, fig. 1E), clearly distinct from the input of coarse sediments (low values) 

during the summer (“L3 Browser - NASA Ocean Color,” n.d.) (fig. 1D).  

Changes in the lithogenic fraction of sediments from Maldives Inner Sea was 

previously associated with changes in the amount of aeolian dust transported from the 

Indian-Asian landmass during the winter monsoon (Bunzel et al., 2017; Kunkelova et al., 

2018). This result was explained by the dominance of fine particles in the lithogenic 

fraction (Lindhorst et al., 2019). 
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Figure 1. Indian monsoon scheme. (A) Satellite image of the IMS domain with the monsoon wind 

scheme during the summer (white arrows), and during the winter (black arrows). The figure also 

shows a satellite compiled data (2002-2020) from summer and winter distribution of the (B and 

C) Aerosol optical thickness at 869 nm and (D and E) Aerosol angstrom exponent 443 to 865 nm 

(“L3 Browser - NASA Ocean Color,” n.d.). Black arrow indicates the direction of fine dust 

transport by northeasterly winds (Carrasqueira et al., 2023). 
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1.2 MALDIVES SETTING 

The Maldives archipelago in the central equatorial Indian Ocean is an isolated 

tropical carbonate platform and constitutes most of the central part of the Chagos-

Laccadives Ridge, which is in southwest India (fig. 2). The dual row of atolls oriented 

from north to south includes the Maldives inner sea. The atolls are separated from each 

other by channels between the atolls that go deeper toward the Indian Ocean (Purdy 

and Bertram, 1993). The Inner Sea is an internal basin with a water depth of up to 550 

meters. The carbonate succession of the Maldives is almost 3 kilometers thick and has 

accumulated since the Eocene, far from any contribution of terrigenous sediments 

(Purdy and Bertram, 1993). 

 

 
Figure 2. Location of the site U1471.  Location of the Maldives Archipelago (yellow rectangle) 

along the central part of the Chagos-Laccadives Ridge in the Indian Ocean. The Site U1471 is 

situated in the deepest part of the Inner Sea near the outflow of the southern branch of the 

Kardiva Channel into the Inner Sea (adapted from Betzler et al., 2017a). 

 

Carbonate production was established during the Eocene, when the carbonate 

banks flattened at the top began to form on topographical risings created by the volcanic 



5 
 

basement during the Eocene to the early Oligocene. By the end of the Oligocene, the 

banks had typically high edges separating the interior areas from the open ocean banks.  

During the lower and middle Miocene, including the mid-Miocene Climate Optimum, 

the growth of the bank occurred in silting and progressing pulses controlled by sea level 

fluctuations. The drastic change in the development of the carbonate building from a 

sea-level controlled system to a predominantly current-controlled system as revealed 

by seismic reflection data sets (fig. 3) which show that the carbonate building mainly 

contains sedimentary drift bodies, indicating that currents (e.g., environmental changes) 

were one of the main evolution factors (Betzler et al., 2013a, 2013b, 2009; Lüdmann et 

al., 2013). This drastic changes seems to be directly linked to the evolution of the Indian 

monsoon (Betzler et al., 2016). 

It is proposed that upwelling from monsoon currents has shaped atolls in the past, 

controlling sediment production and reef growth. Thus, the partial drowning time of the 

shelf and the evolution of the monsoon are linked. In monsoon conditions, the upwelling 

injects nutrients into surface waters, affecting carbonate banks (Betzler et al., 2009). 

Even in the short term, seasonal upwelling forces the adaptation of carbonate organisms 

(Reijmer et al., 2012), which controls the biotic association with low growth potential 

and more vulnerability to the effects of sea level changes. This process caused the 

disappearance of the barrier reef, which was replaced by a chain-shaped reef, separated 

by passages that accommodate stream flow (Betzler et al., 2009; Lüdmann et al., 2013). 
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Figure 3. The Maldives carbonate edifice. (A) Seismic units in the Maldives carbonate building: 

N1-N5, PP (Aubert and Droxler, 1996) and E-Mio 1/2, M1-M5, L-Mio 1-LP-P according to 

(Belopolsky and Droxler, 2004). (B) NEOMA-P65 seismic line (vertical magnification = 20 ×) from 

west-east along South Maalhosmadulu and from the interatol channel Goidhoo. (C) General 

interpretation from high resolution seismic data for this study (Betzler et al., 2013a). I = Upper 

Miocene, II = Lower Pliocene, III = Medium Pliocene, IV = Upper Pliocene, V = Pleistocene. 
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The Maldivian archipelago margins toward the ocean usually have a steep slope, 

with dips of 20° to 30° until reaching a depth of 2000 m. On the Inner Seaside, atolls 

have the same diving angles, but reach water depths of about 150 meters, where the 

gradient decreases quickly (Fürstenau et al., 2010). The Inner Sea is characterized by the 

deposition of periplatform oozes (Droxler, 1990; Malone et al., n.d.), accumulated locally 

in drift sediments bodies (Betzler et al., 2009). 

The sediments accumulating in the Maldives Inner Sea are mainly composed of 

pelagic test of foraminifers, pteropods, and coccolithophorids (mostly calcite and some 

aragonite) associated with fine bank-derived neritic carbonate particulates (mostly 

aragonite and some magnesian calcite), their variations through time reflect changes in 

equatorial Indian Ocean currents, upwelling, dust fertilization, and global sea level 

(Betzler et al., 2017a, 2013a, 2013b, 2009).  

Sea-level is the fundamental driving force behind flooding and exposure of the 

shallow-water production areas, and thus fine bank-derived carbonate production and 

export. According to (Boardman et al., 1986; Droxler et al., 1983), during sea-level 

highstands, when carbonate platform flat tops are flooded, the Sr-rich aragonite 

production and export reach their maxima. This production falls during lowstands, when 

platform tops are exposed and karstified, restricting production to terraces. 

In sediments from Maldives Inner Sea, (Paul et al., 2012), reported a very strong 

correlation between the aragonite record and the fine grain-size fraction. According to 

the authors, the sediment redistribution through ocean currents does not seem to 

influence the glacial-interglacial variations in aragonite and the fine grain-size fraction 

significantly. Furthermore, the author suggests that the aragonite content can be used 

to better quantify the timing and extent of changes in the Pleistocene Sea level. 

 

1.3 SITE U1471 

Site U1471 (fig. 2), drilled at 4°45'59''N and 73°08'07''E, in a water depth of 419.3 

meters, is in the middle of the Maldives Inner Sea, on the most distal portion of a 

sediment drift attached to Goidhoo Atoll, one of the several western atoll chain. The Site 

offers the opportunity to access the aridity history in the Indian-Asian land mass and the 

Arabian Peninsula recorded in upper Cenozoic periplatform extended drift sediment 

sequence. Variations through time of bank-derived fine aragonite coupled with pelagic 
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oxygen isotope records have demonstrated, based on the analyses of the Plio-

Quaternary periplatform sequence recovered in Ocean Drilling Program (ODP) Site 716, 

the great paleoclimatic potential of these periplatform sediment accumulations 

(Droxler, 1990).  

According to the preliminary reports produced aboard the Joydes Resolution ship, 

a succession of 889 m of drift deposit was recovered at Site U1471. Seven 

lithostratigraphic units are distinguished in drift deposits that reflect the degree of 

progression controlled by current and diagenic overprinting (fig. 4) (Betzler et al., 2017a, 

p. 147). 

 

 

 

Unit I: unlithified planktonic foraminifer–rich 

packstone to wackestone. 

Unit II: unlithified to partially lithified foraminifer-

rich packstone. 

Unit III: unlithified to partially lithified planktonic 

foraminifer– rich wackestone. 

Unit IV: unlithified to lithified planktonic 

foraminifer–rich packstone. 

Unit V: dominantly lithified planktonic 

foraminifer–rich packstone. 

Unit VI: alternations of planktonic foraminifer–

rich packstone and wackestone. 

Unit VII: alternations of planktonic foraminifer–

rich and bioclastic- rich grainstone. 

Unit VIII: alternations of foraminifer-rich 

packstone to wackestone and wackestone to 

mudstone. 

 

Figure 4. U1471 core log. Core recovery from ~1003 m thick succession of site U1471, core 

photograph and the units identified through lithology  (Betzler et al., 2017a, p. 147). 
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Biostratigraphic and paleoenvironmental analyses conducted at holes U1471A, 

U1471C and U1471E provided a first age model for the Site U1471 (fig. 5) (Betzler et al., 

2017a, p. 147). Interval A contains a succession of well-constrained events that indicate 

an average sedimentation rate of 4.0 cm/kyr. In the Pliocene–Pleistocene interval, 

however, a consistent offset occurs between ages inferred from calcareous nannofossil 

events and those inferred from planktonic foraminifers, with the planktonic foraminifers 

suggesting ages about 0.5 million years (Myr) older than the calcareous nannofossils. 

This pattern was also observed in the Pliocene–Pleistocene sequence of Sites U1465 and 

U1467, which points to a possible problem with the age calibrations of these events for 

this region. In Interval B, sufficient planktonic foraminiferal and nannofossil events were 

recognized, and their ages reasonably agree with each other. The inferred average 

sedimentation rate for this interval is 8.0 cm/kyr (Betzler et al., 2017a, p. 147). 

 

Figure 5. Bioevents from site U1471. Age model obtained based on biostratigraphic events and 

paleoenvironmental analyses combining Holes U1471A, U1471C, and U1471E (Betzler et al., 

2017a, p. 147). 
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The Natural Remnant Magnetization (NRM) data from the U1471 record obtained 

on board the ship (Betzler et al., 2017a) show a peak in intensity at depth of 700 to 600 

meters below sea floor (mbsf), up to a thousand times greater than the current values 

(fig. 6), making it a range of interest for the paleomonsoon study. 

 
Figure 6. NRM of site U1471 between zero and 840 mbsf. From left to right, NRM intensity, 

declination, and inclination from discrete samples without demagnetization, Holes U1471A and 

U1471E  (Betzler et al., 2017a, p. 147). 
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1.4 OBJECTIVES 

This work aims to reconstruct the ISM for some periods of Neogene, through 

recognizing changes in the coupled atmospheric and oceanographic processes that 

control the carbonate production and transport of terrigenous sediments to the 

Maldives inner sea, in response to the main climatic events occurred by that time.  

The objective was made possible through an integrated study of the magnetic 

properties compared to the composition of elemental ratios obtained in the U1471 

record drilled by International Ocean Discovery Program’s (IODP) expedition 359 in 

Maldives Inner Sea. 

 

1.4.1 Specific Goals 

Some challenges in reconstruct the continental rainfall in the ISM domain lie in 

obtaining an accurate chronology and an in-depth understanding of how the different 

environmental processes controls the investigated properties in our record.  

To obtain an accurate chronology, some of previous works on ISM caried in 

sedimentary records from Maldives Inner Sea constructed their age models based on 

the magnetostratigraphy (e.g., Betzler et al., 2017a; Lanci et al., 2019). In marine 

sedimentary records, magnetite is the main magnetic carrier of the paleogeomagnetic 

field, and its preservation is crucial to the chronology reliability. To date, there is no 

detailed study about the magnetite preservation in Maldives Inner Sea sediments during 

early diagenesis. In this topic, this work aims to: 

(1) Carry out a detailed study of the magnetic properties in the first meters 

of the record to deepen knowledge about local diagenetic processes that could affect 

the preservation of the geomagnetic record. 

(2) Accurate the chronology using geomagnetic data.  

 

The sedimentary records drilled in the Maldives Inner Sea suggests that, in the last 

500 kyr, the wind intensity and arid conditions in the dust source areas are related 

mainly to precession and eccentricity cycles (Kunkelova et al., 2018; Lindhorst et al., 

2019). These studies show the enormous potential of the Maldives dust record in the 

ISM research. However, prior to the present work (Carrasqueira et al., 2023), there was 

no publication on IMS anomalies from records in the Maldives. The occurrence of 
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anomalous arid conditions was  observed in a 640 kyr-long stalagmite δ18O record from 

Sanbao cave situated in central China (Cheng et al., 2016). This work aims to: 

(3) Reconstruct the mid-late Pleistocene ISM in high resolution and relate it to the 

orbital forcing. 

(4) Remove the orbital signal from the data to assess ISM anomalies. 

 

Determining the causes to the ISM onset has been a subject of great efforts, but 

there is still no consensus on when this happened. Previous studies reported the ISM 

onset to occur at 8.5 Million years ago (Ma) (Kroon et al., 1991; Prell and Kutzbach, 1992; 

Zhisheng et al., 2001), at 11 Ma (Rea, 1992; Zheng, 2004), and more recently at 12.9 Ma 

(Betzler et al., 2016). In addition, there is also no consensus on the main mechanisms 

that would have triggered the ISM onset. Was suggested that the Himalayan uplift 

boosted the Asian monsoon (Clift et al., 2008; Rea, 1992; Zheng, 2004). In contrast, 

(Betzler et al., 2016) argued that the ISM onset, occurred too fast to be solely explained 

by tectonic processes. These different results, denotes a poorly knowledge about the 

climatic control on the records.  This work aims to: 

(5) Relate our record to previously published works about ISM and the main 

climatic events occurred by that time to expand knowledge about the 

response of Maldives Inner Sea record to environmental processes. 

(6) Reconstruct the ISM rainfall between 12.5 and 9.5 Ma using elemental and 

magnetic data. 

 

1.4.2 Hypothesis 

The lithogenic fraction of sediments from Maldives Inner Sea is widely interpreted 

as wind blow dust, increased during dry periods. To reconstruct the ISM evolution, 

previous works interpreted the iron content and the magnetic susceptibility as changes 

in aridity extension in Indian subcontinent (Betzler et al., 2017a; Kunkelova et al., 2018; 

Lanci et al., 2019). The present work will test the followed hypothesis. 

(1) Maldives Inner Sea receives its load of lithological sediments mainly by the 

aeolian dust blow.  

(2) Changes in continental aridity controls the supply of lithological sediments to 

the Maldives Inner Sea. 
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(3) Magnetic susceptibility increased in response to expansion of the arid zones.  

(4) The long-term continental rainfall at ISM domain was affected by tectonic 

events related to Himalaya and Tibetan Plateau uplift. 

(5) After the mid-late Pleistocene, ISM was controlled mainly by NHSI. 

CHAPTER 2. THE SOUTH AMERICA SUMMER MONSOON 

2 INTRODUCTION 

2.1 SUMMARY OF LAST 40 KYR PALEOCLIMATE 

2.1.1 The Last glacial termination 

Quaternary glacial-interglacial cycles spanned roughly 100 kyr, during which the 

ice sheets slowly expanded over 80–90 kyr, whereas glaciation usually ended within 10 

kyr. The last glacial termination, between about 20 to 8 kyr ago, underwent several 

abrupt climatic and marine oscillations that punctuated a period of generally rising 

temperature and sea level. 

At the end of the Last Glacial Maximum (LGM), NHSI started increasing at ~21 ka 

reaching a peak at ~11 Ka. Between 20 and 15 kyr, atmospheric levels of CO2 increased, 

and Antarctic temperatures climbed while sea level slowly ascended from its low stand 

during the LGM of about 120 m below present (Gornitz, 2021). Sea level rise accelerated 

during the mild Bölling/Allerød Interstadial at ~14.6 to 13 kyr, at a time of decreased 

Antarctic temperatures. The Bölling/Allerød warming ended with an abrupt transition 

to a 1 kyr cold phase, the Younger Dryas interval (12.8–11.7 kyr), while Antarctic 

temperatures warmed (Gornitz, 2021). The rapid termination of the Younger Dryas 

cooling occurred within just a few decades (Steffensen et al., 2008). This climatic 

reversal effectively ended the last glaciation and ushered in the Holocene Epoch. A 

bipolar-seesaw mechanism may have been responsible for the late phases of 

hemispheric asymmetric climate, similar to the climatic pattern described for Heinrich 

events (Gornitz, 2021). 

 

2.1.2 Heinrich events 

Heinrich events are defined as cold periods in the Northern Hemisphere, lasting 

an average of 500 years. It is characterized by layers of ice rafted debris (IRD) dropped 

into the North Atlantic from melting icebergs (Hemming, 2004). IRDs were deposited 
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when Greenland temperatures had dropped 3–5 °C. Heinrich events occurred on an 

average of every 5 to 6 kyr. One hypothesis holds that as a growing ice sheet reaches a 

critical mass, it becomes increasingly unstable (Gornitz, 2021). The accumulated weight 

of the ice causes the basal ice sheet to melt by pressure, separating large chunks of ice 

from the glacier and allowing it to advance on a lubricated base. 

The cold phase of Heinrich events occurred at a time of warming in the Southern 

Hemisphere. The bipolar-seesaw hypothesis proposes episodic reversals in deep ocean 

circulation  (Gornitz, 2021). Massive iceberg influxes or freshwater outbursts from 

subglacial lakes reduce northern Ocean salinity, slow down the Gulf Stream-North 

Atlantic current, and weaken North Atlantic Deepwater formation. A diminished 

thermohaline circulation drives heat build-up farther South, enhancing ice growth. Once 

Northern Hemisphere temperatures recover and North Atlantic Deepwater formation 

resumes, ocean heat transport moves northward while the Southern Hemisphere cools. 

During the last 40 Kyr, four Heinrich events have been identified. The event H4 

occurred at 38 Ka, event H3 occurred at 32.7-31 Ka, event H2 occurred at 26.5-24 Ka and 

event H1 occurred at 16.9-15.4 Ka (Harrison and Sanchez Goñi, 2010; Hemming, 2004; 

Weldeab et al., 2006). 

 

2.2 THE MODERN SOUTH AMERICA SUMMER MONSOON 

The South American Monsoon System is part of the monsoon system of the 

Americas and develops over a large extension of the South American continent in a 

region that compasses from the Amazon Forest crossed by the Equator to the La Plata 

Basin, passing through the high and sharp Andes mountains that rise along the Pacific 

coast on the west and across the driest desert (Atacama), as well as a high desert in the 

Brazilian highlands. 

The seasonal pattern of rainfall over South America is mainly related to land–sea 

thermal contrast that causes changes in low- and high-level atmospheric circulation 

(Vera et al., 2002; Zhou and Lau, 1998). During the austral summer, South American 

rainfall develop as a result of intense convection over the interior of the Amazon basin 

(Zhou and Lau, 1998). The equatorial winds that carry moisture westward from the 

tropical Atlantic through the Amazon basin to the Andes, are blocked by the high 
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mountains and forced to the southeast by a northwesterly low-level flow know as South 

American low-level jets that transports the moisture from Amazon basin to the centre 

and southeastern Brazil (Gan et al., 2004) (fig. 42). This moisture carried by low-level jets 

forms a band with instability clouds called the South Atlantic Convergence Zone (SACZ; 

fig. 42). The SACZ reaches maximum intensity in austral summer in phase with Amazon 

basin convection (Cruz et al., 2005), and despite it is far from their centre of convective 

activity, summer rainfall in southeastern Brazil is strongly influenced by the southward 

progression of convection across the Amazon basin (Cruz et al., 2005). In Southeastern 

Brazil, rainfall is composed of a mixture between the source of Amazon basin and the 

nearby Atlantic source (fig. 42). The SACZ region is of particularly importance due to the 

hydroelectricity generation and the agricultural base of local economies. The moisture 

flux across the Amazon Forest is important for maintenance of the SACZ, it is believed 

that the deforestation of the Amazonian intertropical forest can cause dry conditions in 

southeastern Brazil (Nobre et al., 2016). 

During the austral winter and early spring, equatorward incursions of southern 

fronts (fig. 42) result in cyclonic storms that carry moisture inland from the nearby 

Atlantic Ocean (Vera et al., 2002). The southern westerly wind belt has also played an 

important role in the climatic conditions over S and SE South America blowing moisture 

from the Pacific at the tropospheric level to the Andes (Razik et al., 2013) and bringing 

dust from the west to the Atlantic Ocean (Gaiero et al., 2003; Garreaud et al., 2009). 

During glacial periods the dry climate contributed to a deeper erosion of the Andean 

Cordillera and propelled the formation of the Pampean loess deposits (Gaiero et al., 

2007, 2003; Iriondo et al., 2009; Maher et al., 2010; Prospero et al., 2002; Terminiello et 

al., 2001; Zárate and Blasi, 1993). 
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Figure 7. South America monsoon scheme. Map of South America, showing the long-term mean 

annual precipitation from 1981 to 2010 using the data from the Global Precipitation Climatology 

Project (Adler et al., 2003). The SASM (black arrows), and the position of the ITCZ and SACZ (blue 

dashed lines) during the austral summer in South America (DJF). Blue arrows show the 

northernmost position of the year-round southern fronts (adapted from Rodríguez-Zorro et al., 

2020). 

 

2.2.1 The insolation drives the SASM 

Periods of high SHSI resulted in increased convection over Amazon interior and in 

maximum movement of the SASM/SACZ to the south (Cruz et al., 2005). In addition to 

the movement of the monsoon a general intensification of the mean zonal Hadley 

circulation and tropical convective activity may have accompanied these shifts. This 
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mechanism is also valid for the short-term trend during the Younger Dryas period, which 

is consistent with rapid southward movement of the South American monsoon (Cruz et 

al., 2005). During SHSI minima, the mean location of the SASM and the SACZ shift 

northward, and less moisture from Amazon basin is transported towards the southeast, 

decreasing the relative contribution of summer monsoonal rainfall to the southeast 

Brazil (Cruz et al., 2005). 

 

2.3 SÃO PAULO BIGHT SETTING 

The São Paulo Bight is the arc-shaped part of the eastern Brazilian margin 

extending from 23°S to 28°S (Zembruscki, 1979). Its bottom shows a complex 

morphology involving channels, canyons, and considerable variations in slope 

morphology (Furtado et al., 1996). The shelf break is in a water depth of approximately 

140 meters, with the upper slope showing an average gradient of approximately 1:55. 

The slope is generally smooth and has a slightly concave profile, characteristic of 

depositional margins (Zembruscki, 1979). 

Due to the absence of significant discharges of rivers, the sedimentation in the 

Brazilian southeastern margin is strongly dominated by a dynamic of oceanic water 

masses and circulation on the platform, these processes control the primary production 

and sediment redistribution in the area, moreover in the south of São Sebastião, the 

depositional processes are associated with seasonal influence of the plume of River de 

la Plata (Mahiques et al., 2004) carried by the coastal water in the internal platform. 

The hydrodynamic conditions in the internal platform are strongly dominated by 

the wind, where the waves generated direct the currents ( Mahiques et al., 2002). In the 

middle and outer shelves as well as in the upper slope sedimentary processes seem to 

be influenced by the Brazil Current (BC) flow along the south-western Atlantic 

continental margin (Campos et al., 1995, 2000; Müller et al., 1998; Stramma and 

England, 1999). Nearby of São Sebastião Island the dominant offshore flow of BC 

meandering added to the offshore flow of coastal water intensifies the transport of 

suspended sediments into the regions of outer shelf and upper slope ( Mahiques et al., 

1999; 2002). 

The sediments between the inner and outer platform exhibit characteristics which vary 

from the siliciclastic to carbonate, respectively, while the slope is characterized by the 
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deposition of hemipelagic sediments and turbidites (Mahiques et al., 2002). 

 

2.3.1 Sediment delivery to São Paulo Bight 

The main sediment sources that contribute for the terrigenous fraction in São 

Paulo Bight are the suspended material carried with RdlP plume and the aeolian dust 

originated in Andean Mountains. 

The sediments delivered with RdlP plume strong depends on the coastal 

circulation. The seasonal variability of the RdlP plume in the last decades is mainly 

identified by salinity fluctuations along the coast, with a northward penetration to 28°S 

during austral winter and a retraction to 32°S during austral summer (Piola et al., 2008, 

2005, 2000), meantime, different lines of evidence suggest that the weathering products 

of the Paraná basalts delivered to the ocean by the RdlP can reach the SE Brazilian 

continental shelf as far north as 25°S (Mahiques et al., 2008). It is important to point out 

that during El Niño years despite the higher runoff of RdlP, the influence of RdlP plume 

retracts to the south due to the strengthening of northeast winds (Piola et al., 2008). 

The rainfall over the RdlP drainage basin is directly affected by the SASM (Chiessi 

et al., 2009; Cruz et al., 2005). The RdlP drainage basin comprises a catchment area 

which encompasses a large surface of the Paraná flood basalts and the subordinated 

acidic volcanics. Basalts from Paraná Magmatic Province have a magnetic mineralogy 

mainly dominated by magnetite and titanomagnetite, both fine (SD) and coarse (MD) 

and their oxidation products, such as maghemite and hematite (Tamrat and Ernesto, 

1999). Most of the suspended material transported into the RdlP derives from the 

erosion of Paraná volcanics (e.g., Depetris et al., 2003; Garming et al., 2007; Laprida et 

al., 2007).  

A second main source of sediments to the SE Brazilian shelf is the Andean dust 

transported eastward by the westerlies (Gaiero et al., 2003) and deposited on the 

Argentinean Pampas in an extensive loess sequence (Maher et al., 2010). These 

sediments comprise the main source of fine-grained particles that reach the 

Southwestern Atlantic and the Southeastern America. The dust from southern South 

America, is characterized by the presence of fine-grained magnetite (Orgeira et al., 

2008) and detrital (titano-)magnetite (Orgeira et al., 2009; OrgeIra et al., 1998). 
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Changes in magnetic mineralogic related to changes in sediment delivery to the 

São Paulo Bight from low coercive phases (e.g., magnetite) present in the Pampean loess 

(Orgeira et al., 2009) to high coercive phases (e.g., hematite) that originated from the 

flood basalts of the Paraná Basin (de Oliveira et al., 2002) allow to reconstruct the SASM. 

2.4 SITE NAP 63 

The site NAP63 was located at 24°50’26’’S, 44°19’00’’W to a depth of 840 meters 

(fig. 43). The site is in the area of the Intermediate Western Boundary Current (IWBC), 

which is located between 800 and 1100m water depth (Schmid et al., 2000). The IWBC 

flow northward, in opposition to BC, as well as the Deep Western Boundary Current, 

both flowing southwards. The region has muddy bottom, ideal for the study of high-

resolution records. The NAP63 record was acquired with a gravity corer providing a 

continuous record of 2.25 m length. 

 

 
Figure 8.. Location of the site NAP63. Map of São Paulo Bight with the NAP 63 site identified on 

the middle slope. The gradient in blue color indicates the bathymetric variation from the lightest, 

from 0-20 m deep, to the darkest, up to 4000 m deep. 

 

2.5 OBJECTIVES 

This work aims to reconstruct the South American Summer Monsoon (SASM) for 

the last 40 Kyr on the scale of millennial events. The objective was made possible 
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through the magnetic studies of changes in the relative concentrations of low and high 

coercivity minerals obtained from the NAP63 record drilled on the slope of São Paulo 

Bight.   

The supply of detrital material to the São Paulo Bight is mainly composed of 

magnetite-rich aeolian dust (low coercivity) originated by the erosion of the Andes and 

by a hematite-rich fluvial fraction (high coercivity) from the Paraná basin which flows 

into the Rio de la Plata (RdlP) (de Oliveira et al., 2002; Mathias et al., 2014; Orgeira et 

al., 2009).  

 

2.5.1 Specific Goals 

Most of the records used for the SASM study were obtained from speleothems 

(e.g., Cruz et al., 2005), they suggest that precipitation tracks the Southern Hemisphere 

summer insolation (SHSI) in phase with the February insolation at 30°S. In this topic, this 

work aims to provide a marine record on SASM in which we can: 

(1) Identify the orbital component of SASM and determine its phase relationship 

with the astronomical solutions. 

(2) Recognize millennial-scale events such as Heinrich Stadials.  

 

2.5.2 Hypothesis 

The magnetic mineralogic obtained from a core drilled in São Paulo Bight mid-shelf 

(Mathias et al., 2014) describe changes in sediment delivery to the SE Brazilian shelf 

from fine-grained low coercive phases (e.g., magnetite) present in the Pampean loess 

(Orgeira et al., 2009) to coarse-grained low coercive phases plus high coercive phases 

(e.g., hematite) that originated from the flood basalts of the Paraná Basin (de Oliveira et 

al., 2002). The present work will test the followed hypothesis. 

(1) The content of high coercivity minerals (e.g., hematite) increased during high 

SHSI. 

(2) Millennial-scale events such as Heinrich Stadials, characterized by cold 

anomalies in the Northern Hemisphere, presented an opposite response in the 

Southern Hemisphere, in the form of strong SASM. 
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3 CONCLUSIONS  

In this work we discussed the records IODP U1471 located in the Maldives Inner 

Sea and NAP63 in the São Paulo Bight, deepening de knowledge about the ISM and 

SASM, and in how the different environmental processes control the investigated 

properties in our records.  

In the upper 5.5 mbsf of record U1471, we studied in detail the changes in 

magnetic characteristics and demonstrate that local diagenetic processes affect the 

preservation of the geomagnetic record. We demonstrate that currently, the reduction 

of magnetite and the subsequent authigenic formation of greigite in the upper meters 

of the record destroyed the ChRM, imprinting a secondary NRM with a delay of ~100 

kyr.  

We reconstructed the mid-late Pleistocene ISM in high resolution and relate it with 

the main climatic forcings. We show that during the last 550 kyr the IWMW responds 

directly to changes in NHSI, while the ISM rainfall tracks sea-level changes, and therefore 

incorporates the delay associated with changes in global ice volume. We also show that 

although ISM rainfall is primarily driven by global ice volume, arid conditions persisted 

in the Indian-Asian landmass during sea level rise in the MIS 8/7 transition, a period that 

was also characterized by WEAMI. The occurrence of extended aridity in our record 

concomitant with WEAMI indicates that the T-III was characterized by anomalous 

widespread arid conditions in Asia. We accessed the anomalies in the ISM by removing 

the effect of NHSI on the IWMW record and the effect of global ice volume from the 

continental arid record. Records showed that anomalous arid events on the Indian-Asian 

landmass and stronger IWMW were driven by increasing NHSI. Our results indicate that 

the ISM anomaly is dampening the direct effect of insolation, which could have led to 

greater control of changes in ice volume at high latitudes over the monsoon system at 

low latitudes. 

During the mid to late Miocene, contrary to what has been widely held, we show 

that the detrital sediment delivered to Maldives Inner Sea was mainly represented by 

sediments from the Ganges-Brahmaputra. We identified that from 12.3 to 11.2 Ma the 

ISM rainfall strengthened in opposition to the general trend of global 

cooling/atmospheric pCO2, possibly in response to the HTP uplift, leading to an 

intensification of aridity in the interior of Asia, which would have triggered the onset of 
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red clay formation in the eastern CLP. We also show that after 11.2 Ma the ISM rainfall 

weakened, possibly in response to the onset of upwelling in Oman margin, which would 

have led to the cooling of the SST in the northwestern Arabian Sea impacting the 

moisture advection in the region. Furthermore, we show that productivity in Maldives 

carbonate factory remained low up to 10 Ma, forced by the low nutrient content in the 

Indian Ocean surface waters during the carbonate crash. 

In record NAP63, we show that, contrary to what was expected, the content of 

high coercivity minerals (e.g., hematite) decreased during high SHSI. We identified that 

the influence of the RdlP plume retracted to the south, due to strong northeasterly 

winds during periods of SASM intensification. Furthermore, we show that the SASM 

intensified during the Heinrich events, suggesting that ice growth in the Northern 

Hemisphere would have increased the thermal gradient between the hemispheres and 

forced the ITCZ southward. 

The Indian and South American summer monsoons both develop due to the 

thermal gradient generated between the ocean and the continent, which causes strong 

moisture convection. These two monsoon systems, although forced by their 

characteristic boundary conditions, which make each of these systems unique, they are 

also driven by some global forcings such as atmospheric pCO2, global ice volume and 

insolation. The Indian and South American monsoons may have different phase 

relationships between them depending on the type of forcing. For changes in 

atmospheric pCO2 and global ice volume, an in-phase response is expected between the 

two climate systems. However, the lack of records covering SASM in at least some glacial 

cycles remains the biggest challenge to confirm this relationship. For changes in 

insolation or ice volume distribution between the two hemispheres, the Indian and 

South American monsoons present an anti-phase relationship with each other. The 

different responses of these two monsoon systems to different climatic forcings can be 

used to determine the nature of the forcing that has been acting, and thus, the study of 

these different monsoon systems in an integrated way of a global monsoon would 

provide a great advance in knowledge. Furthermore, the Indian and South American 

monsoons are such intense weather systems and cover such a huge area that they can 

change the global climate and thus must be considered as a driver of climate change.  
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