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RESUMO

GORENSTEIN, Iuri. Investigation of the Multidecadal Variability of the South Atlantic
Region Hydroclimate since the Mid-Holocene Using a Non-Supervised Neural Network..
2023. 219 f. Dissertação (Mestrado) – Instituto Oceanográfico, Universidade de São Paulo,
São Paulo, 2023.

Anomalias de precipitação (PPT) na escala decadal interferem nos níveis de reservatórios, na

fauna e na vegetação, além disso, elas podem influenciar eventos de alta frequência, como

secas e alagamentos. A chuva nos trópicos é associada à Zona de convergência Intertropical

(ZCIT), que por sua vez tem suas anomalias decadais controladas pelos modos oceânicos de

variabilidade. As populações do Nordeste do Brasil (NE) e da África Ocidental (AO), duas

regiões adjacentes ao Oceano Atlântico, tem economias agrárias altamente dependentes de

mudanças na posição da ZCIT e, portanto, do ciclo de variabilidade decadal do Oceano

Atlântico. Usando as redes neurais não supervisionadas Self Organizing Maps (SOM), o

clima da região do Atlântico tropical foi analisada; e a variabilidade decadal de suas

anomalias de temperatura de superfície de oceano (TSO) e PPT foi estudada usando: dados

observacionais de satélite de 1979-2015; dados da reanálise HadISST de 1870-2019; e,

finalmente, os modelos climáticos do EC-Earth, CESM e GISS com rodadas Pré-industriais e

diferentes tipos de cenários com parâmetros de insolação do Holoceno-médio (HM) e de

vegetação representado o período do Green-Sahara (GS).

O SOM foi bem sucedido na redução dimensional dos dados climáticos. As anomalias de

TSO, pressão e ventos são intrinsecamente conectadas em escalas decadais. Juntas, elas

controlam a anticorrelação decadal de precipitação entre o NE e a AO, encontradas nas séries

de Standard Precipitation Index decadais dessas regiões de 1979-2015. O HadISST dataset de

1870-2019 mostrou uma periodicidade de 40 a 50 anos na qual a TSO do oceano Atlântico

oscilou durante o século vinte. Ao usar a mesma metodologia com as simulações dos modelos

numéricos dos períodos do PI, HM e GS, emergiram padrões de TSO em escalas decadais que

se assemelham aos ciclos encontrados nos dados observacionais. Usando a entropia de

Shannon como medida de variabilidade das rodadas dos modelos, a variabilidade de PPT no

modelo EC-Earth apresentou dependência apenas na forçante de emissão de partículas

(rodada de GS com redução de poeira teve a menor entropia dentre os cenários), enquanto a

variabilidade de TSO nesse modelo parece ter sido mais influenciada pela presença de

vegetação no Sahara (rodadas do GS e GS com redução de poeira tiveram menor entropia). O



modelo GISS mostrou a menor mudança de variabilidade de TSO entre diferentes cenários e

os modelos CESM indicaram grande variabilidade interna de PPT com cenários iguais

apresentando valores divergentes de entropia (GS com full vegetation, rodadas 1 e 2).

Portanto, a utilização de large ensembles se vê necessária para atribuir incertezas da

variabilidade interna dos modelos à entropia e aumentar a robustez dos achados.

Palavras-chave: Nordeste Brazil, Africa Ocidental, anti-correlação de chuva, precipitação

decadal, Self Organizing Maps, EC-Earth, GISS, CESM.
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Region Hydroclimate since the Mid-Holocene Using a Non-Supervised Neural Network..
2023. 219 f. Dissertação (Mestrado) – Instituto Oceanográfico, Universidade de São Paulo,
São Paulo, 2023.

Decadal precipitation (PPT) anomalies are related to water reservoirs, affect biota, and may

interfere with higher frequency events such as floods and drought. Rainfall in the tropics is

mostly associated with the Intertropical Convergence Zone (ITCZ), which in turn has its

decadal displacements and anomalies controlled by Oceanic modes of variability. Populations

from Northeast Brazil (NE) and West Africa (WAF), two regions adjacent to the Atlantic

Ocean, have mainly agricultural economies dependent on ITCZ shifts and, consequently, on

the Atlantic decadal variability cycle. Using Self Organizing Maps (SOM) non supervised

neural networks, the tropical Atlantic region climate was analyzed and its sea surface

temperature (SST) and PPT decadal variability was studied using: satellite observational data

from 1979-2015; Reanalysis HadISST product from 1870-2019; and, finally, EC-Earth,

CESM and GISS numerical climate models from Pre-industrial (PI) runs and different

scenarios with mid-Holocene (MH) insolation and vegetation representing the Green-Sahara

(GS) period. The SOM has successfully reduced the dimensionality of climate data. The

Atlantic Ocean SST, pressure and wind anomalies are entangled at decadal scales. Together,

they control the decadal PPT anomaly anti-correlation between NE and WAF regions,

depicted by the standard precipitation index series from 1979 to 2015. The 1870-2019

HadISST reanalysis dataset has shown a 40 to 50 years periodicity, representing the full

Atlantic decadal SST anomaly cycle in the 20th century. With the numerical model

simulations from PI, MH and GS, SST anomaly structures that closely resemble the

observational data cycles appeared at decadal scales. Using Shannon's Entropy as an analogue

of the model runs' decadal variability, the EC-Earth PPT variability showed a dependency in

dust emission (GS with dust reduction had the lowest entropy of all), while the SST

variability in this model seems to be affected more by the presence of vegetation in the Sahara

(GS and GS with dust reduction shown lower entropy than the PI and the MH runs). The

GISS model presented the lowest SST variability change between different scenarios and the

CESM model point to a large PPT internal variability, with identical scenarios showing



divergent entropies (GS full vegetation runs 1 and 2). Therefore, large ensembles are

necessary if we want to attribute the uncertainties of internal variability from the models'

entropies and achieve more robust results.

Keywords: Northeast Brazil, West Africa, precipitation anti-correlation, decadal precipitation,

Self Organizing Maps, EC-Earth, GISS, CESM.
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Chapter 1

Introduction

1.1 The tropical Atlantic variability at decadal scales.

“The fight against climate change is inseparable from the fight against poverty and

inequality” (da Silva, 2022). Studying climate’s natural variability is crucial to fully com-

prehend its equilibrium. Both West Africa and Northeast Brazil (WAF and NE - Figure

1.1) have an agricultural-based economy, making them highly dependent of rainfall (Nobre

e Shukla, 1996; Polo et al., 2008; Guenang e Kamga, 2014; Cunha et al., 2019; IPCC,

2020; Arias et al., 2021b). These are sensitive regions to climatic changes and presented

large decadal precipitation variability in recent history (Nash et al., 2016; Cunha et al.,

2019; Arias et al., 2021b). The Failed State Index for 2018, which is a social, political

and economic index shows that West African countries are either in the alert or high alert

category. In its most recent report (AR6), the Intergovernmental Panel on Climate Change

(IPCC) concluded that drought is expected to double over North Africa, the western Sahel

and Southern Africa (Arias et al., 2021b). In WAF, Urban populations exposed to severe

droughts are projected to increase 65.3±34.1 million by 2050. Furthermore, considering

an expected 1.7°C global warming, 17–40 million people could migrate internally in sub-

Saharan Africa (>60% in WAF). This region exhibits severe droughts caused by irregular

decadal rain anomalies, where the understanding of what is causing climate variability and

its effects are still subject of investigation (Rice e Patrick, 2008; Guenang e Kamga, 2014;

Arias et al., 2021b). Also according to the IPCC fifth and sixth Assessment Report, NE

appears as one of the most vulnerable region with respect to droughts, fires, agricultural

losses, climatic-related migrations and displacements (Jimenez-Muñoz et al., 2016; Cunha

et al., 2019; Ajjur e Al-Ghamdi, 2021; Torres et al., 2021; Arias et al., 2021a). 70,000 km2
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have reached a point at which agriculture is no longer possible. Intense droughts have

triggered migration to urban centers in and outside NE. More than 10 million people have

been impacted by the drought of 2012/14 in the region, which was responsible for water

shortage and contamination (Government of Brazil, 2020). On the other hand, a 1.5°C

increase in global projection would result in an increase of 100–200 % of the population

affected by floods in Brazil (Arias et al., 2021a).

Rainfall in the tropical Atlantic and adjacent continents is mostly related to the band of

intense convection and surface wind convergence known as the Intertropical Convergence

Zone (ITCZ) (Dhrubajyoti et al., 2019). The meridional displacements of the ITCZ is

the main driver of rainy and dry seasons for NE and WAF regions. Bringing the rainy

season in WAF from June to September and to the South Hemisphere in late November

(Hagos e Cook, 2005). Wind, pressure and sea surface temperature gradients are able to

move this convergence zone across the equator into the warmer hemisphere (Deser et al.,

2010; Hounsou-Gbo et al., 2019). All regions dependent on the ITCZ are affected by these

anomalies and consequently, the Atlantic decadal variability cycle (Nobre e Shukla, 1996;

Hounsou-Gbo et al., 2019; Cunha et al., 2019).

The entanglement of ocean and atmosphere interactions arise from non-linear dyna-

mical processes with large scale climate phenomena and its influences (Deser et al., 2010,

2012). These processes are also understood as modes of variability that can have large

impacts in local economies, associated with changes in regional and global rainfall (San-

tos, 2006; Nnamchi e Li, 2011; Ham et al., 2013; Rojas et al., 2014). The sea surface

temperature (SST) structure of the Tropical Atlantic affects the meridional position of

the ITCZ, influencing the decadal rainfall distribution from the adjacent regions (Wai-

ner e Soares, 1997; Villamayor, 2020). Therefore, at decadal time scales we may have

an anti-correlation between NE and WAF precipitation (PPT) anomalies, similar to the

interannual anti-correlation from the wet and dry seasons of these regions, but with slight

deviations due to the Pacific and Indian Oceans, which have also been partially associated

with the PPT in these regions (Villamayor, 2020; Cai et al., 2020).

Using observational data, the Atlantic modes of climate variability and its relations

to changes in rainfall at decadal time-scales in both sides of the tropical Atlantic are

explored. Based on the 1870-2019 SST anomaly, the Atlantic Ocean decadal cycles for the

last century are also depicted.
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Figure 1.1: NE (50W-35W and 15S-0N) and WAF (20W-25E and 11.4S-15N) box regions highlighted

according to the IPCC criteria in South America and Africa map (IPCC Assessment Report 5, 2020).

1.2 Neural Networks and the problem of dimensionality reduction.

The Big Data era can be defined as the recent revolution in measurement technologies

which enhanced the quality and quantity of available data. These advances are based

on the recent improvement of sensors, hardware (for high-performance computing and

storage) and processing algorithms (Hey et al., 2009). This era is the stage where statistical

learning and machine learning continue to develop (Breiman, 2001; Brunton et al., 2021).

The former one focuses on the development of interpretable models of data, while the

latter one finds its objective either in classifying or making attributions to the system,

maximizing accuracy via supervised or unsupervised learning.

Although many refer to machine learning algorithms functioning as black boxes, artifi-

cial intelligence have already produced ground breaking performance metrics in areas such

of computer vision, speech process, image recognition and clustering (Howard et al., 2017;

Vaswani et al., 2017; Tozadore et al., 2018; Azencot et al., 2020).

In most problems, the minimum number of parameters needed to account for the ob-

served properties of the data is unknown (Samarasinghe, 2016). Dimensionality reduction

is the transformation of high-dimensional data into a lower dimensional meaningful re-

presentation of it (Burges, 2005; Van Der Maaten et al., 2009). There are many modern

algorithms using neural networks that promote dimensionality reduction, some of them use

encoder networks to transfer data from the input space into a lower dimensional feature
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space. In this feature space the problem can be solved with lower computational cost and

recovered via a decoder network back to the input space (Azencot et al., 2020; Brunton

et al., 2021; Chadebec et al., 2022a).

The reduced representation of a system should have dimensions that correspond to

the minimum number of parameters needed to account for the observed properties of the

data. The ocean and atmosphere are an entangled nonlinear system, ideal for applying

dimensionality reduction since its data usually has high dimensionality and complexity.

1.2.1 The Self Organizing Maps

Ocean modes can be identified using linear methods (e.g., EOF), in this case, they do

not account for the nonlinearity of intrinsic internal variability (Liu et al., 2006; Hounsou-

Gbo et al., 2009; Costa et al., 2021). Self Organizing Maps (SOM), on the other hand, are

useful tools as they capture nonlinear aspects associated with climate modes. SOM is a

machine learning technique where an unsupervised neural network is created from a given

amount of data and a predefined architecture (Liu et al., 2015). The SOM algorithm is able

to identify connections between the data points and recreate underlying patterns present

within the data set. The patterns obtained from the SOM are subsequently used to un-

derstand the original data links, in our case, with respect to climate-related variables such

as the spatial distribution of temperature, wind and pressure anomalies (Samarasinghe,

2016; Gibson et al., 2017).

In this study, we used the SOM to understand the physics controlling the decadal PPT

and variability in the NE and WAF regions. After training the SOM, the monthly climate

data was projected into its non-linear feature space, where the dimensionality reduction

was applied via clusterization.

1.3 The mid-Holocene

The mid-Holocene (MH, period between 5000-7000 years Before Present) was cha-

racterized by lower summer insolation in the Southern Hemisphere and higher summer

insolation in the Northern Hemisphere, resulting in the so-called ”Holocene Thermal Ma-

ximum” (Berger, 1988; Liu et al., 2002; Bova et al., 2021). While it may be seen as a

conceivable geological analog for the future (Burkea et al., 2018; Kaufman et al., 2020),
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the warming associated with these changes was neither global nor year-round, with large

differences across the hemispheres and seasons (Berger, 1978; Zhao e Harrison, 2012; Huo

et al., 2021).

Climate changes during the MH vary across the globe. While the direct effects of the

MH insolation pattern produced an enhancement in the Northern Hemisphere monsoon,

the Southern Hemisphere PPT experienced a reduction when compared to present day (Liu

et al., 2004; Wanner et al., 2008; Smith e Mayle, 2017). Other MH climate forcings, such

as the presence of vegetation on contemporary deserted locations in North Africa and Asia,

have been associated to changes in global-mean surface temperature, global precipitation

and to an increase of the Atlantic Meridional Overturning Circulation (Harrison e Bartlein,

2012; Pausata et al., 2017; Griffiths et al., 2020; Ding et al., 2021; Huo et al., 2021; Zhang

et al., 2021). MH climate conditions have been linked to vegetation changes in southwest

Amazonia, southeast Brazil and NE, regions reliant on South American summer monsoon

derived precipitation (Smith & Mayle, 2017; Gorenstein et al., 2022a).

Paleorecord studies show that the NE semi-arid region frontier with the Amazon was

drier than present, while its coast had higher than present precipitation during the MH

(Gorenstein et al., 2022a). The WAF region was highly influenced by precipitation in

the Sahel region, where the presence of shrub vegetation during the MH motivated the

definition of this period as the Green-Sahara (GS). The presence of past vegetation in

present deserted regions is a great opportunity to study the variability of Earth’s climate

and test different forcing attributions with the use of numerical climate simulations.

1.3.1 Numerical Models

Climate models are a numerical parameterization able to simulate past, present and

future climate from a set of initial conditions and constraints. They are used to study in-

ternal atmospheric and oceanic variability in different scenarios (Deser et al., 2006, 2012).

However, different numerical models carry uncertainties in their internal variability repre-

sentation due to structural differences (Lehner et al., 2020). To study multiple climate

models with different scenarios and make plausible attributions, we need a large ensem-

ble of simulation runs from each model to systematically characterize their uncertainties

(Ferrero et al., 2021). Even when looking at a single model, a large ensemble is needed

to characterize its internal variability and underlying uncertainties before making different
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scenario attributions.

Even though a large ensemble of model runs is not present in this study to determine the

uncertainties of the models, numerical simulations were used to test the SOM’s efficiency

in representing climate data variability and making attributions. Using different forcings

from EC-Earth, CESM and GISS numerical models, the dimensionality reduction using

the SOM was aplied to SST and PPT decadal anomalies in the Pre-industrial (PI), MH

and different GS simulations.
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Data and Methods

2.1 Data

2.1.1 Observational Data

Precipitation data

The Global Precipitation Climatology Center (GPCC) uses the global data collections

of the Climate Research Unit (CRU) (NCAR, 2020), Food and Agriculture Organization

(FAO), and GHCN (NOAA/OAR/ESRL, 2020), as well as other precipitation data collec-

tions from international regional projects, while the CPC Merged Analysis of Precipitation

(CMAP) (Arkin et al., 2020) and GPCP are the most widely recognized and used merged

data sets. The GPCP is based on the sequential combination of microwave, infrared, and

gauge data. From 1979 to 2020 and offer globally complete satellite only precipitation

estimates (Sun et al., 2017).

Since we are interested in showing both continental and ocean precipitation and iden-

tifying its patterns during different climate regimes over the Atlantic we used the GPCP

Version 2.3 Combined Precipitation dataset (Adler et al., 2003), in a monthly, 2,5°x2,5°

grid for the 1979-2015 climate patterns recognition and NE/WAF decadal SPI (described

below).

Pressure and Wind data

The Pressure and wind stress (tauu and tauv) observational data used in this study are

both from NCEP-NCAR Reanalysis 1, a 1,875°x1,875° monthly dataset (Kalnay, 1996).

The time period used to create the Atlantic patterns was the same as for the precipitation
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limits, from 1979 to 2015. A decadal filter was applied.

Sea surface temperature data

The temperature observational data comes from HadISST1. A monthly 1°x1° dataset

(Rayner et al., 2003). The time interval examined is from 1870 to 2019. The sea surface

temperature anomaly was calculated with respect to the 1979-2015 period. To separate

the Atlantic SST anomaly pattern of variability from any global warming signal the mean

global temperature anomaly was also calculated and subtracted from each pixel’s SST

anomaly time series (Zhang et al., 1997; Mantua et al., 1997; Bonfils e Santer, 2011).

2.1.2 Model Data

The numerical model outputs used in this study are all monthly data. They have all

been regridded to a 1x1 grid and had decadal filters applied.

EC-Earth

The European Consortium Earth System Model Version-3 (ECE3) scenarios analyzed

in this study were: PI (100 years run B405 and 200 years run B400), MH (100 years run

Z6KA and 200 years run B6KA), GS (100 years run G105 and 50 years run G100 ) and

GS with dust reduction (100 year run 506 and 200 year run G501).

ECE3 standard configuration consists of the atmosphere model IFS including the land

surface module HTESSEL and the ocean model NEMO3.6 with the sea ice module LIM3.

Coupling variables are communicated between the different component models via the

OASIS3-MCT coupler (Döscher et al., 2021). The ECE3 model is used to contribute to

CMIP6 in several configurations, for example, the EC-Earth3-Veg configuration which

couples the LPJ-Guess dynamic vegetation model (Smith et al., 2014) to the atmosphere

and ocean model; however, the performance of EC-Earth3 and EC-Earth3-Veg is very

similar (Wyser et al., 2020).

CESM

The Community Earth System Model (CESM) outputs from different scenarios used

were from CESM-Toronto: PI, MH, GS and GS with soil and lake input (100 years run

each); and iCESM: PI, MH, GS (100 years run each).
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The CESM models used here are from the Cmip6 multi-model ensemble. The CESM-

Toronto simulations is a PMIP experiment for the mid-Holocene with Green Sahara and

mid-Holocene with soil and lake inputs made by the University of Toronto (UofT), Ca-

nada. The model configuration was made by UofT-CCSM4 (2014), atmosphere from CAM4

(finite-volume dynamical core; 288 x 192 longitude/latitude; 26 levels; top level 2 hPa);

ocean: POP2; seaIce: CICE4; land: CLM4. The iCESM runs used in this study were

intended for PMIP oxygen isotope tracer experiments, also from Cmip6 multi model en-

semble.

GISS

The scenarios from the Goddard Institute for Space Studies Model E2 coupled with

the Russel ocean model (GISS-E2-R) were: PI, MH and GS with North Africa vegetation

only, GS with Extra-Tropical vegetation only and two runs of GS with Full vegetation (100

years run each).

All runs except GS Full Vegetation run 1 are updated aerosol/ozone input runs for non

anthropogenic simulations using Nancy Kiang’s regressions (GISS’s veg modeler). GS Full

Vegetation run 1 uses Koepen Gieger regression scripts. Several experiments have been set

up for the last millennium with GISS due to uncertainties in past forcings and their effects,

with different combinations of solar, volcanic, and land use/vegetation (Colose et al., 2016;

LeGrande et al., 2015; Bühler et al., 2022).
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Table 2.1 - Data used in this study

Source Variable Time interval Reference

HadISST1 Sea Surface Temperature 1870-2019 Rayner et al. (2003)

GPCP Version 2.3 Precipitation 1979-2015 Adler et al. (2003)

NCEP-NCAR Pressure and Wind 1979-2015 Kalnay (1996)

Model Scenarios Rounds size (years) Reference

EC-Earth PI,MH,GS,GS dust reduction 50, 100 and 200 Döscher et al. (2021)

CESM PI,MH,GS and GS soil and lake 100 Kay et al. (2015)

GISS PI,MH,GS, GS North Africa, GS Extra-Tropical, GS Full vegetation 100 Schmidt et al. (2014)

2.2 Methods

2.2.1 The Standardized Precipitation Index (SPI)

The SPI was designed to quantify the precipitation deficit for multiple timescales (Mc-

Kee, 1995). It is an easy to calculate index that uses only one variable (precipitation). It

measures both positive (flood) and negative (drought) precipitation anomalies periods and

it has been used in several studies to quantify the precipitation rate in different regions

of the world (Guttman, 2007; Xie et al., 2013; Ionita et al., 2016; Saada e Abu-Romman,

2017).

Different time scales can be inferred for the SPI calculation. To study the low frequency

fluctuations on precipitation we used a decadal filter (Figure 3.1). SPIs of this timescale are

usually tied to streamflows, reservoir levels and even groundwater levels (Svoboda et al.,

2012).

The SPI is a normalized time series (Figure 3.1), it can be calculated using a pre-

developed algorithm (Adams, 2017) and has a simple numerical interpretation: SPI values

between -1 and 1 indicate a near normal precipitation regime, from 1 to 1.49 (-1 to -1.49)

moderately wet (dry), 1.49 to 1.99 (-1.49 to -1.99) indicates very wet (dry) and above 2

(below -2) extremely wet (dry).
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2.2.2 Self Organizing Maps

A Neural Network is a machine learning technique where a collection of interconnected

neurons incrementally learn from their environment (data) to capture essential linear and

nonlinear patterns and trends in complex data. Used in many areas of study, the neural

networks help represent information and characteristics from a main problem (Haykin,

2009; Samarasinghe, 2016).

The SOM is a non-supervised neural network. Its goal is to map a high dimensional

space of data into a lower dimensional space, without disrupting the original data topology,

creating a function that projects the input data in the SOM map and back to the input

space. The SOM algorithm was created during the 80s by Teuvo Kohonen, at that time

professor in the university of Helsinki, Finland (Kohonen, 1982, 1995), inspired in Willshaw

& Malsburg (1976) work. The conception of his algorithm is an abstract form of data

manipulation and it has been used to resolve a range of different problems, from Satellite

Imagery Patterns used to predict interannual and decadal climate variability (Richardson

et al., 2003; Chang et al., 2020; Gu e Gervais, 2021) to analyzing the spatial and temporal

spread of COVID-19 (Melin et al., 2020; Galvan et al., 2021).

The SOM analysis for this work was implemented in both single variable and multiva-

riable forms, with two different time intervals for the observational datasets and another

time with the numerical models simulation outputs. In the first analyses, precipitation,

SST, wind and pressure monthly anomalies of the Tropical Atlantic region (65W-25E, 29N-

59S) from 1979 to 2015 were given as the input data to the multivariable SOM algorithm

to generate a eight hundred neuron grid. In Figure A.1 this input data appears as the

x’s. Random values starting weights were used to initialize the eight hundred neuron grid

representing the Atlantic region climate variables from 1979 to 2015. The arcs from x’s in

Figure A.1 represent those weights, the sum between products of weights and input data

creates the neuron grid points (y’s from Figure A.1). The SOM algorithm will then use

the input data in a loop to compare and improve its representations of the data in the

neuron grid (presented after the training process in Figure A.2).

To classify the number of hidden classes from an input data we can separate the neuron

grid into different clusters. In many practical situations the number of clusters from the

data set is unknown. There are various k-means methods to define how many hidden
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groups there are in a neuron grid (MacQueen et al., 1967). In this first step of the study,

we used the Silhouette methods to find the optimal number (Wang et al., 2017). This

method consists of making a comparison between the average distance between each point

and the points inside his cluster and the average distance between each point and the

points outside of his cluster, normalized by the largest distance between all points. This

creates a Silhouette metric that goes from -1 to 1. Where the closer the Silhouette value

is to 1, the closer you are to the optimal number of clusters.

With a fixed number of clusters, the hidden patterns from the neuron grid can be

expressed as in Figure 3.2, with the Atlantic region cluster patterns evolving in time.

After defining the number of clusters in the SOM that best represents our data, the vari-

ance explained by each SOM pattern and its evolution time is calculated. When comparing

two images, pixel by pixel, a value of R-squared between them indicates the percentage

of variance explained from an observational monthly Atlantic map by an Atlantic map

from the neuron grid. This way the variance from each one of the Atlantic patterns was

calculated (Figure 3.3). The evolution maps from the Tropical Atlantic (Figures 3.2 and

3.3) are used to elucidate some of the ocean and atmospheric physics behind the rainfall

regime in NE and WAF regions for the last four decades (Figure 3.1).

Following the exact same SOM methodology the 1870-2019 SST anomalies from the

south tropical Atlantic region were used to create an eight hundred neuron SOM (Figure

B.1) and the pattern evolution of the SST anomaly cycles (Figure 3.4).

With the combined data from numerical climate models able to simulate past scenarios

with different vegetation inputs shown in section 2.1.2 (Table 2.1), two single variable

neural-networks were trained using the SOM algorithm. These two networks have 20.000

neurons each (rectangular grid of 200x100) and they were trained separately with the

decadal PPT anomaly and decadal SST anomaly model data from the Atlantic ocean.

These two model data SOM were used to project the decadal SST and PPT anomalies

from the different runs of all models into a common clusterized feature space. Used in the

training process, the model data had a combined time dimension of 28.000 monthly SST

anomaly and 28.000 monthly PPT anomaly. Its clustering is discussed next.
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2.2.3 Entropy as an analogue for climate variability

Shannon’s Entropy (equation 2.1) is used in this study to measure the variability from

each model’s scenario by attributing its time series with an entropy value.

H = −
N∑
k=1

P (xk)ln(P (xk)) (2.1)

P (xk) is the probability that our system x is found in the k state. Therefore, the

entropy is the sum from the probability times its logarithm over all possible states. The

essence being, the probability distribution from microstates (the Atlantic SST or PPT

pattern, a.k.a SOM cluster) can be used to determine macro properties of a system (the

Atlantic ocean SST and PPT variability).

2.2.4 Proposed approach for measuring uncertainty

There are a few sources of uncertainty in calculating the entropy from a numerical

climate model output.

First, numerical models carry three types of uncertainty by themselves: the models

internal variability; the different numerical discretizations responsible for the physical re-

presentation of the model’s dynamics; and, the different scenarios uncertainty (Lehner

et al., 2020). Since we do not have a large ensemble, the conclusions led by this study are

to be considered only for the model runs referenced in section 2.1.2 Model Data. With

this in mind, the uncertainty that emerges from the models’ entropies are coming from the

clusterization of the feature space.

Clustering of the model data SOM

The Techniques for calculating the correct number of clusters in data sets are many:

the K-means, Silhouette, Calinski Harabasz, Dunn, Davies Bouldin and more (Desgraupes,

2013; Roushangar et al., 2020). After defining a metric from the feature space, most

methods consist of measuring which clustering minimizes the distance from members inside

the same cluster (compact clustering), while also maximizing the distance between clusters

(separation of different classes).

For the model data SOM clustering, two methods were applied: the Silhouette and the

Davies Bouldin Index (DBI) (Davies e Bouldin, 1979; Wang et al., 2017). Their results can
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be seen in Figure C.1, where the curves represent the index value for each SOM clustering.

The Silhouette curve in Figure C.1 is actually the negative value for the Silhouette index,

therefore, by the indexes definition, the minimum value for the indexes indicate the ideal

number of clusters in the feature space. However, highly dimensional climate data is not

simple to clusterize and the curves show no clear minimum. In these cases, we look for a

point where improving the number of clusters is not in fact generating useful new classes.

The elbow method is usually applied in K-means’ Sum Squares Error, but its concept

is useful for other indexes as well. In this approach we get to a point where elevating

the number of clusters is no longer worth it (the clusterization improvement we get from

raising the number of clusters gives us hardly any advantage from the previous number of

clusters), this value sometimes can be visually interpreted as an elbow in the graph due to

the sharp decay from the 1st derivative of the index per number of clusters. Therefore, the

ideal number of clusters in the model data SOM was defined as the Silhouette and DBI

curves’ elbow region.

Entropy’s Mean and Standard Deviation

From the 20.000 neurons model data SOM clustering arose the entropy’s main uncer-

tainty. Changing the number of clusters, even by one, can generate large entropy differences

for the same time series (Figure 3.7). As discussed before, the entropy value is dependent

on the number of possible states from the system (a.k.a its clusters).

In each scenario run for each model, an interval of ideal numbers of clusters near

the Silhouette and DBI elbows were applied to the SOM. The number of clusters used

were from 150 to 200 for the SST SOM, and from 300 to 350 for the PPT SOM (Figure

C.1). The entropy value attributed to each time series was calculated by the mean of the

entropies from the different clusterizations, while its standard deviation was used to define

its uncertainty for the 95% confidence interval (Table 3.1).
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Results

3.1 Observational data Analysis

Using precipitation data from NE and WAF regions (Figure 1.1), the SPI evolution from

1970 to 2015 was calculated (Figure 3.1). Then, a multivariable SOM with 800 neurons

using decadal SST, PPT, pressure and winds anomalies for the Tropical Atlantic Ocean

was implemented (Figure A.2). Its clusterization yielded seven cluster patterns which

summarizes the 432 months of the multivariable time series (Figure 3.2). An analysis of

the variance evolution from each variable was used to discuss their entanglement in the

Atlantic decadal variability (Figure 3.3). Finally, searching for the decadal variability cycle

of the Atlantic ocean, the 20th century decadal SST anomaly was used to create a 800

neuron single variable SOM. The clustering yielded nine clusters that show the variability

envelope the Atlantic Ocean decadal SST oscillated from 19870 to 2019 (Figure3.4).

3.1.1 1979-2015 SOM Patterns and SPI series

The decadal SPI series for NE and WAF (Figure 3.1) starts at 1989 (the first SPI value

for January 1989 is computed with the precipitation mean from 1979 to 1989). In this

decadal time scale the anti-correlation between NE and WAF precipitation emerges. From

1989 to 1995 the SPI index of NE is above 1 (indicating very wet conditions) while WAF

shows lower than -1 SPI. From 1995 to 2005 NE and WAF precipitation anomalies swap

places, while holding their anti-correlation. With NE SPI reaching its most negative value

in 2000, overtaking -2 (severe drought), and WAF reaching its most wet period not far

after (2004). From 2005 to 2015 the WAF SPI series stays inside the [-1, 1] interval and

negative from 2010 on, while the NE reaches a new precipitation high around 2010.
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Figure 3.1: The Standardized Precipitation Index series with a decadal filter from 1989 to 2015, with the

GPCP data set (Adler et al., 2003). NE region on the top and WAF region on the bottom. The dashed

line indicates the +1 and -1 SPI limit for wet and dry conditions.

To identify the SST patterns and Atlantic modes associated with the out-of-phase deca-

dal rainfall distribution for the Tropical Atlantic adjacent regions, a neuron-network using

the SOM algorithm with hexagonal geometry, Gaussian neighboring, PCA initialization

and eight hundred (20x40) neuron-grid points was created (Figure A.2). The SOM was

then trained using the 1979-2015 observed anomalies of precipitation, sea surface tempera-

ture, winds and sea level pressure anomalies for the Atlantic region (65W-25E, 29N-59S).

When retrieving their projection on the SOM’s feature space, the K-means and Silhouette

algorithm yielded seven clusters (Figure 3.2).

Figure 3.2: SOM cluster patterns evolution from 1979 to 2015. The top row: precipitation anomaly

cluster patterns. The bottom row: SST (shading), wind (vectors) and pressure anomalies (contours) each

cluster patterns. The patterns are organized by their evolution in time.
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After the network has converged, the observational data used in the training was com-

pared with the SOM neurons once again, creating a curve of the percentage of variance

explained by each SOM pattern in the time series (Figure 3.3). For example, the SST

anomalies from SOM Cluster pattern 0 (Figure 3.2 - bottom left) show positive correlation

with the SST anomalies from the observational data from 1979 to 1985, reaching its peak

in 1983, when it represented nearly 90% of its variance (top left curve from Figure 3.3).

Figure 3.3: SOM patterns variance evolution in time. Each column represents one of the variables

used to calculate the SOM: SST, pressure, winds and precipitation anomalies from left to right. Each row

represents the variance evolution for the SOM pattern: pattern number zero, one, two, three, four, five and

six from top to bottom. The curve from a specific pattern and variable represents when the observational

data from this variable had its variance explained by this pattern.
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From the 80’s to the early 90’s the SPI indicates positive/negative precipitation ano-

malies in NE/WAF, which can be explained by the SOM patterns transition from number

0 to 1 (Figure 3.2). Positive SST followed by a low pressure anomaly in the Tropical-South

Atlantic starts moving towards the 20S latitude line, this pattern weakens the South Atlan-

tic Subtropical High and creates a southward wind anomaly. As we can see in the SOM

precipitation pattern 1 (Figure 3.2) a southward displacement of the decadal ITCZ brings

positive precipitation anomalies to the South American coast. In the WAF coast near

the Benguela region (10S-30S, 10E) a SST dipole shapes the eastern Atlantic part of this

pattern. The negative SST anomaly north of the Benguela region prevents precipitation in

the WAF region and creates the anti-correlation of highly positive/negative precipitation

anomalies in NE/WAF.

The SST and pressure anomalies in the south Atlantic change from pattern 2 to 3 to

4. From 1995 to 2000 a fast development of positive pressure anomaly together with a

negative SST anomaly forming in the South Atlantic was responsible for an intensification

of the South Atlantic Subtropical High, shifting the direction of the previous wind anomaly.

This brings negative precipitation anomalies in NE Brazil, reaching its highest intensity

right before the year 2000. The south Atlantic WAF dipole (near the Benguela coast) also

shifts from pattern 1 to 2 to 3, creating a negative pressure anomaly on the south west

African coast, inducing and intensifying northward wind anomalies, flooding the WAF

region (Figure 3.2 and 3.3 - transition between patterns 2, 3 and 4). The precipitation

anti-correlation from these two regions is then maintained and it is illustrated by the SPI

phase inversion with the NE drought reaching its lowest value in 1999, while WAF reaches

its highest precipitation peak in 2004 (Figure 3.1).

From 2005 to 2015 the SPI and the SOM patterns evolve from positive to negative NE

precipitation anomaly, while WAF SPI stabilizes (stays between the -1 and 1 interval).

A positive southwest wind anomaly near the Equator induces a northerly displacement

of the decadal ITCZ, flooding Northwest Africa. However, in the Benguela region the

negative/positive pressure/SST anomaly from pattern 4 weakens, inducing drought along

the WAF coast (Figure 3.2 - patterns 5 and 6). At that time, an entire sector in the

South Atlantic (from 50W to 10E) is developing a positive pressure anomaly followed by a

negative precipitation anomaly belt, dominating the South Atlantic reaching the NE coast

from 2010 to 2015 and intensifying the positive pressure anomaly in the subtropical south
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Atlantic (Figure 3.2 - patterns 3 to 4 to 5 to 6).

It should be noted that although the time period with respect to the SOM patterns

evolution 4 to 5 to 6 show a positive precipitation anomaly in NE (peaking in 2009, Figure

3.1), a long term transition to a drier climate is seen in the final PPT pattern in Figure

3.2. In her study using an Integrated Drought Index (IDI), Cunha et al., (2019) found

this, especially from 2011 to 2017, when droughts affected most parts of Brazil, which

confirms the precipitation pattern 6 from Figure 3.2. By evaluating the frequency of

drought occurrence, Cunha et al., (2019) identified 2014/2015 as an atypical year due to

the higher occurrence of severe and moderate droughts from north to south Brazil.

3.1.2 1870-2019 Atlantic SST anomaly cycles.

Detrended tropical Atlantic SST anomalies from 1870 to 2019 were used to create

another 800 grid neural network (Figure B.1). In the form of a directed graph, Figure

3.4 represents all the Atlantic SST anomaly decadal variability from 1870 to 2019. Figure

3.4 shows a 30 to 50 year periodicity. The beginning of each cycle is defined by positive

SST anomalies in the north Atlantic and mainly negative SST anomalies in the south

and subtropical south Atlantic (Central panel in Figure 3.4). These patterns evolve to a

positive SST anomaly in the Subtropical South Atlantic (SSA - from 30°S to 60°S) and

South Atlantic (SA - from 0° to 30°S), sometimes also developing a negative SST anomaly

in the North Atlantic (NA - from 0° to 30°N). This Atlantic pattern evolution repeats itself

with small changes during the studied interval (from 1870 to 2019) depicting a cyclicity

from those decadal SST patterns in this 30 to 50 year scale.

Cycle 1 (1870-1940)

The SST anomaly begins in 1870 with the main pattern, central square in Figure 3.4. A

latitudinal dipole with a positive SST anomaly in NA and mainly negative SST anomalies

in SA and SSA. This pattern seems to appear from time to time, being considered the

centerpiece of the SOM graph. The evolution of this cycle is a transition from the positive

anomaly in the NA to the SSA in a seesaw movement (shown by the α arc in Figure 3.4).

Two small variations take place: one in the beginning of the 20th century when the

positive SST anomaly migrates to the SA (from 0° to 30°S) and returns to the central

pattern (from 1900 to 1905 shown by the β arc in Figure 3.4); and another one where a
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Figure 3.4: SST anomaly cycles identified by the SOM algorithm. Cycle number 1 (left) was identified as

the evolution of SST anomaly from 1870 to 1940; cycle number 2 (top) was identified from 1940 to 1970;

cycle number 3 (right) represents the SST anomaly in the 1970-2019 period. This Figure is a directed

graph representation of the video contained in the Supplementary Materials.

small intensification from the NA SST positive anomaly takes place during a positive SST

anomaly in SSA (happens twice, in 1910-1912 and 1920-1924 shown by the γ arc in Figure

3.4), soon returning to the main pattern.

Cycle 2 (1940-1970)

Cycle number 2 closely resembles cycle one, with one difference: this time the SSA

develops a positive SST anomaly while the NA SST anomaly remains positive. The SSA

positive anomaly is closer to Africa’s coast (especially near the Benguela region - from the

tip of West Africa coast to 12°S). The positive anomaly transitions north to the South

Atlantic (peaking in 1960), returning to the main pattern in 1970.

Cycle 3 (1970-2019)

Cycle number 3 is the same pattern evolution seen in Figure 3.2, this time captured in

the full SST anomaly time series. The pattern begins with a positive SST anomaly in SSA,
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with a small negative SST anomaly in the Equator line. From 1980 to 2018 the positive

SST anomaly slowly migrates into the NA while the regions around it assume a mainly

negative SST anomaly, returning to the main pattern once again. As analyzed in section

3.1, this cycle was the main driver of the decadal anti-correlation seen between NE and

WAF precipitation anomalies from 1979-2015 (Figure 3.1).

3.2 Model data Analysis

The Model data SST and PPT anomalies from the 21 different model runs were used

to create two 20.000 neuron SOM (one for each variable). Using the DBI and Silhouette

indexes for obtaining the optimal number of clusters, the feature space contains 300 SST

clusters and 150 PPT clusters, representing all the possible system states of the tropical

Atlantic region system in those runs, shown in Figures C.2 and C.3, respectively. Each

model run time series evolution in the SOM feature space is depicted with the use of

directed graphs. Each model run’s variability was calculated using Shannon’s Entropy.

3.2.1 Directed Graphs

The SOM is a feature space that captures the input data non linear patterns. The

cluster patterns represent the possible states from the data (Figures C.2 and C.3). At each

time step, the numerical model simulation is measured at one state. The full time series of

each numerical model simulation is represented as a directed graph, red for the SST series

and blue for the PPT model simulation (Figure 3.5 and 3.6). Each node represents a SOM

cluster (a.k.a possible state of the system), which can be seen in Figures C.3 and C.2. The

size of each node resembles the number of time steps the system was identified with that

SOM cluster. Higher degree nodes are darker, in other words, if the system is found in a

state, evolves and cycles back to that state its color gets darker.

To exemplify the model SOM directed graphs, Figure 3.5 shows in detail the evolution

in time of the ECE PI run, projected in the possible states of the feature space. This

figure is similar to the 20th century observations directed graph (Figure 3.4). They both

depict the Atlantic ocean decadal SST cycles surrounding a main pattern (central panel

from Figure 3.4 and model SOM cluster 66 in Figure 3.5). From these structures we can

define and calculate macro-properties such as the entropy from the system in each time
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Figure 3.5: Directed graph from ECE - PI. The red graphs are for the SST system evolution and the blue

graphs are for the PPT evolution. Each node represents a specific SOM Cluster, depicted in Figure C.2

and C.3

series.
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Figure 3.6: Directed graphs from: ECE - PI, MH, GS and GS with dust reduction runs (GSdr); GISS

- PI, MH, GS with North Africa (NA), Extra-Tropical (EX) and full vegetation (ALL1 and ALL2) runs;

iCESM - PI, MH and GS runs; and CESM Toronto - PI, MH, GS and GS with soil and lake input runs.

The red graphs are for the SST system evolution and the blue graphs are for the PPT evolution. Each

node represents a specific SOM Cluster, depicted in Figures C.2 and C.3
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3.2.2 Shannon’s Entropy

Many names can be used in reference to the randomness in a dataset. With climate

data, variability can be seen as the lack of uniformity over multi-scales (Sang, 2013). En-

tropy measures a system’s organization given its observable states. A variety of techniques

can be used to apply entropy in climate studies (Mishra et al., 2009; Roushangar et al.,

2020). In this study, Shannon’s Entropy is used to measure randomness in a time series

(Equation 2.1).

At any time step, the probability of our system (the simulated Atlantic Ocean variables)

being found in each possible state (Pxk) can be calculated empirically from its model run’s

time series. If a specific model run has been in only one state during its whole time series,

that system has probability equals one to be found in that specific state and zero on the

others. Considering that
∑N

k=1 P (xk) = 1, the entropy from that time series is the lowest

possible, zero. Using the clusterized feature space of the SOM as the possible states of our

system (xk), at each time step our system is identified with a cluster in the feature space.

Therefore, the entropy from each time series will reflect its variability in the feature space.

Since we are using the same space for all the models and scenarios, we can compare their

variability.

Figure 3.7 is the Entropy from each time series using different feature space clustering.

The interval of clusters (’x’ axis) was defined by the elbow location of the Silhouette and

DBI indexes (Figure C.1).

Model variability analysis

The model runs’ entropies were calculated from a set of clusterings to obtain a con-

fidence interval that accounts for the uncertainty of the ideal number of clusters from

the feature space. Table 3.1 shows the entropy mean and 95% confidence interval (two

standard deviations) from Figure 3.7 for each model and scenario.

Table 3.1 - Entropy mean and Standard Deviation from the model runs.

Model Scenario Hsst Hppt

ECE PI 3.32± 0.06 2.92± 0.09

ECE MH 3.20± 0.06 2.94± 0.12

Continues in the next page. . .
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ECE GS 3.06± 0.09 2.91± 0.10

ECE GSdr 3.10± 0.06 2.64± 0.13

GISS PI 3.48± 0.06 2.84± 0.11

GISS MH 3.56± 0.07 2.92± 0.08

GISS GSALL1 3.47± 0.07 2.99± 0.08

GISS GSALL2 3.42± 0.05 2.79± 0.08

GISS GSEX 3.44± 0.09 3.06± 0.08

GISS GSNA 3.61± 0.05 2.89± 0.07

iCESM PI 3.30± 0.06 3.06± 0.11

iCESM MH 3.67± 0.07 2.87± 0.17

iCESM GS 3.58± 0.06 3.08± 0.10

CESM Toronto PI 3.80± 0.04 3.06± 0.09

CESM Toronto MH 3.40± 0.07 2.80± 0.10

CESM Toronto GS 3.42± 0.09 2.97± 0.16

CESM Toronto GSsl 3.38± 0.07 2.92± 0.08

ECE

The top row of Figure 3.7 shows the entropy values for the ECE model runs. ECE

model runs presented the lowest SST variability and the lowest PPT variability from all

model scenarios in the GSdr run. Lower variability implies a more organized system. Its

decadal SST variability is larger in PI (3.32±0.06, red curve), followed by MH (3.20±0.06,

blue curve) and lower in GS and GSdr (3.06±0.09 and 3.10±0.06, green and black curves

respectively). This points to a dependency of the Atlantic Ocean decadal SST variability

in both the mid-Holocene radiation parameters and the presence of vegetation in North

Africa. For the decadal PPT all the different scenarios except the GSdr show similar

variability (2.9 ± 0.1). The dust reduction from GSdr directly affects the simulation’s

cloud formation, which gets translated to a lower decadal PPT variability (2.64±0.13, the

lowest variability from all different models and scenarios).

GISS

The second row of Figure 3.7 shows the entropy values for the iCESM model runs.

GISS presented the lowest SST variability amplitude between different scenarios. The

entropies from different runs are all contained inside the uncertainties limits from one

another. The decadal SST variability is larger in the MH and the GSNA runs (3.56± 0.07

and 3.61 pm0.05, blue and black curves). However, the uncertainties from the PI, GSEX,
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GSALL1 and 2 upper limits overlap their variabilities (3.48± 0.06, 3.44± 0.09, 3.47± 0.07

and 3.42 ± 0.05, red, cyan, green and yellow curves respectively). The decadal PPT

variability was higer in the GSEX run (3.06±0.08), although comparable to the remaining

runs due to their high standard deviations (PI - 2.84 ± 0.11, red curve; MH - 2.92 ± 0.08,

blue curve; GSALL1 - 2.99 ± 0.08 green curve; and GSNA 2.89 ± 0.07, black curve). The

lowest decadal PPT variability was GSALL2 run ( 2.79 ± 0.08), eventhough this run only

differs of GSALL1 by their initial conditions their differences point to an internal variability

issue, once again emphasizing the importance of a large ensemble for properly attributing

model simulation uncertainties to different scenarios.

iCESM

The third row of Figure 3.7 shows the entropy values for the iCESM model runs. The

decadal SST variability of the MH and the GS runs were similar within their uncertainties

(3.67±0.07 and 3.58±0.06, blue and green curves respectively), while the PI run presented

lower decadal SST variability (3.30 ± 0.06, red curve). While the decadal PPT variability

is nearly the same for the GS and PI scenarios (3.08 ± 0.010 and 3.06 ± 0.11) and slightly

lower in the MH run (2.87 ± 0.17), although its large standard deviation makes their 95%

confidence interval overlap.

CESM Toronto

The bottom row of Figure 3.7 shows the entropy values for the CESM Toronto mo-

del runs. The decadal SST variability of the MH, GS and GSsl runs were equal inside

their uncertainties (3.40 ± 0.07, 3.42 ± 0.09 and 3.38 ± 0.07, blue, green and black cur-

ves, respectively), while the PI scenario showed larger decadal SST variability with lower

standard deviation (3.80 ± 0.04, red curve). The decadal PPT, on the other hand, shown

similar variability in the PI, GS and GSsl runs (3.06 ± 0.09, 2.97 ± 0.16 and 2.92 ± 0.08,

respectively), while the MH run appears with lower variability (2.80 ± 0.10), although its

upper uncertainty boundary is comparable to the bottom uncertainty boundary of GSsl’s

variability (2.92 ± 0.08).
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Figure 3.7: Entropy values for each model scenario with different feature space clusterings. The y axis

is the Entropy value, calculated from equation 2.1. The x axis is the number of clusters (a.k.a possible

states) inside the feature space. The Left Column are the Entropies from the SST patterns and the right

column from the PPT patterns. From top to bottom the model runs are: EC-Earth - Pre-Industrial (PI,

red), mid-Holocene (MH, blue), Green Sahara (GS, green) and Grenn Sahara with dust reduction (GSrd,

black); GISS - Full vegetation (GSALL1, green; GSALL2 yellow), Extra-tropical vegetation (GSEX, cyan),

North Africa vegetation only (GSNA, black), MH (blue) and PI (red); iCESM - GS (green), MH (blue)

and PI (red); CESM Toronto - GS (green), GS with soil and lake inputs (GSsl, black), MH (blue) and PI

(red)
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Scenario variability analysis

Different models may have different parameterizations and physics. However, the En-

tropies were computed in a common feature space and all the model runs were simulated

for 100 years, therefore, a comparison between different models is possible. Figure 3.8

shows the different models comparison within the similar scenarios.

Figure 3.8: Entropy mean values and 95% confidence interval for each model scenario.

The largest entropy in the PI runs is seen in the CESM Toronto model (3.80 ± 0.04).

This happens because the system evolved to a higher number of states in a shorter time.

Larger entropy values implies a more chaotic system with larger variability. The different

scenarios did not maintain the initial biases seen in the PI runs. There was no consensus

over the growth or shrinkage of variability in any specific scenario among the different

models. Also, some models showed a very entangled SST and PPT variability system.

The CESM Toronto model, for example, showed changes in the decadal SST variability

along with the PPT variability. On the other hand, ECE-Earth presented an almost

constant PPT variability in all scenarios but GSdr (over 0.3 lower than the rest of the

scenarios entropies, Table 3.1), but presented equivalent SST variabilities in the GS and

GSdr scenarios. Also, the CESM models have shown diverging results. CESM-Toronto

had its larger SST variability in the PI run, while iCESM had its lowest.
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Discussion

4.1 The tropical Atlantic modes

The SOM neuron grid does not form an orthonormal base. However, they can be seen

as a set of vectors in which the input data is being projected. The SOM cluster maps

are a projection from the data into a representative feature space, preserving the datasets’

nonlinearity (Liu et al., 2015). However, it is no coincidence that the SOM patterns

closely resemble modes of variability obtained with the definition of climate indices and

the Principal Component Analysis (PCA) of the Atlantic decadal SST. When using the

PCA, the linear modes obtained maximize the variance projected into an orthonormal

base of the data (Preisendorfer e Mobley, 1988; Jolliffe, 2002; Haykin, 2009). In Oja’s

work (1982), it was proved that a single layer perceptron with a simple Hebbian updating

rule, similar to the SOM algorithm (using cooperation and competition from the neurons

weights in a non-supervised learning algorithm), naturally converges to the input data’s

first component (Oja, 1982; Haykin, 2009).

The SOM algorithm is able to extract the linear Atlantic modes. Instead of forcing

orthonormality between the patterns, they force the patterns to closely correlate the input

data features. Nevertheless, there are differences and similarities between the main Atlantic

modes obtained via PCA and the ones shown here that are in our interest to discuss. The

climate indices and principal components are useful in investigating high correlated events

and local climate features, but it can be challenging to link multiple climate indices to

larger scale phenomena (Deser et al., 2010). On a global scale, climate data is highly

nonlinear and affected by a number of different ocean and atmosphere interactions and

feedback, making a nonlinear approach such as the SOM methodology a more efficient
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tool for research.

4.1.1 Atlantic Meridional Mode (AMM)

The AMM is the Atlantic ocean’s SST first component in the PCA, it represents vari-

ations in the north–south gradient of the Atlantic (Tozuka et al., 2009; Deser et al., 2010;

Brierley e Wainer, 2018). It can be defined and calculated as the difference of SST ano-

malies in two boxes, one in the North: 15–5N/50–20W , and the other one in the South:

5S–15S/20W–10E.

As we can see in Figures 3.2 and 3.4, most SST SOM patterns show a non neutral AMM,

characterized by a dipole involving positive/negative SSTs in NA/SA (seen, for example,

in Figure 3.2 - SOM pattern 1 and inverted in SOM pattern 6). These temperature

gradients across the equator are correlated to the ITCZ decadal displacement into the

warmer hemisphere and mainly to precipitation anomalies in the NE region (Deser et al.,

2010).

4.1.2 Atlantic Niño

The Atlantic Niño can be defined as an equatorial Atlantic cold tongue which develops

from the middle of SA all the way to the WAF coast region (3N − 3S, 20 − 0W ). It is

known to intensify atmospheric convection near the equator and keep the summer rain

band from advancing into the WAF region, while increasing precipitation in interdecadal

timescales at the Gulf of Guinea coast (Giannini et al., 2003; Deser et al., 2010; Wainer e

Soares, 1997).

In the SOM patterns this mode appears as part of the dipole in the Benguela region

(Figure 3.2), previously discussed in section 3.1.

4.1.3 South Atlantic Subtropical Dipole (SASD)

The SASD is a SST dipole in the SA (Northeast: 30–40S/10–30W , Southwest: 15–25S/0–20W )

oriented in the northeast-southwest direction (Wainer et al., 2014). SST anomalies in this

region have been linked to changes in the South Atlantic Subtropical High and the South

Atlantic Convergence Zone (Garreaud et al., 2009; Marengo et al., 2012).

The SOM Patterns from Figures 3.2 and 3.4 can also be identified with the SASD

behavior in the SSA region.
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4.2 Methodology notes

There are a few relevant points that may be of interest to any future work using SOM.

4.2.1 Comparing observational with model data

The SOM methodology presented here could be used for detecting model biases. In

theory, it is possible to compare observational data to numerical model outputs. However in

practice, there are too many biases in numerical models output among themselves and when

comparing historical simulation runs to the observational data. For example, observed SST

trends have characterized recent warming in Indo-Pacific Warm Pool and slight cooling in

the eastern Pacific, consistent with the strengthening of the Walker circulation cell (Coats

e Karnauskas, 2017), while the Southern Ocean SST trends show different signs due to

regional sea ice extent decrease or increase (Gorenstein et al., 2022b). In contrast, state-of-

the-art coupled climate models generally project warming in the eastern equatorial Pacific,

Walker circulation weakening, and Southern Ocean warming (Wills et al., 2022).

Also, timescales play an important role in the numerical climate model dynamics and

the statistical bias correction of their outputs (Haerter et al., 2011; Döös et al., 2020).

In this study, we did not compare the observational data SOM patterns to the model

outputs SOM patterns, but, in theory, we could create a feature space trained with the

decadal anomaly patterns of the Atlantic ocean climate variables in historical model runs

and observational data together. In this scope, the observational data variability and the

different model scenarios variability could be compared as their systems would be analyzed

in the same feature space. However, instead of creating an homogeneous feature space, this

approach would most likely result in a clear separation from model and observational data

in the feature space, emphasizing the biases between observations and numerical models

variability found in multi-decadal timescale (McGregor et al., 2018; Wills et al., 2022).

4.2.2 SOM neural grid dimension

As mentioned before, the multivariable SOM using observational data had a rectangu-

lar grid of 800 neurons (20x40, Figure A.2), while the full time dimension of the data was

1728 (4 variables with 432 monthly data each). The single variable SOM using 1870-2019

SST anomalies had also a 800 neuron grid (40x20, Figure B.1)), the time dimension had
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1788 monthly SST anomalies. Also, both model data SOMs (PPT and SST) had 20 thou-

sand neurons grids (200x100, not shown), the model data had a total of approximately 28

thousand months for each variable (counting all the models in all the different scenarios).

Those dimensions were chosen after extensive research, trial and error. They were a con-

sequence from the chosen metric, used in the neural network’s learning and the posterior

analysis (R-squared differences from images). Since we want our feature space to be able

to capture and project the nuances and evolution of the data, the grid’s dimension must

be comparable to the input data’s dimension we wish to reduce, otherwise the R-squared

difference wont be positive when calculating the variance and correlation of each SOM

neuron at each time step from the time series (Figure A.2). Therefore, the SOM neural

grid should not apply a drastic dimensionality reduction by itself. It is the clustering of

that grid (clusterization of the feature space) that will provide the ultimate dimensionality

reduction for our problem.



Chapter 5

Summary and Conclusion

Dimensionality reduction

Using SOM as a non-linear pattern extraction tool to project the data into a feature

space produced results which led to easier data interpretation. The 1979-2015 data had

originally a time dimension of 432 months for each variable (SST, PPT, pressure and

wind anomalies), which was reduced to 7 cluster patterns (Figure 3.2). In the 1870-2019

Atlantic decadal SST anomalies data the dimensionality reduction was even greater, from

1788 months to 9 patterns (Figure 3.4). In the model data SOM, the 28.000 months of SST

and PPT anomalies were reduced to 300 and 150 cluster patterns (a.k.a system possible

states), respectively.

1980-2015 Atlantic multi-variable Cycle

The 1979-2015 multivariable SOM (Figure 3.2) describe how SST, wind and pres-

sure anomalies from the Atlantic Ocean control the anti-correlated precipitation between

NE/WAF regions at decadal scale (Figure 3.1). The combined AMM, Benguela niño and

SASD were responsible for the decadal precipitation in the tropical Atlantic region and

its variability. The variance evolution of the variables (Figure 3.3) show that the SST

anomaly from pattern 0, which peaked in 1980, seems to be responsible for the following

peak in the pressure and wind patterns 1 in the SA, bringing rain to the NE coast in the

80’s. The inversion from this pattern for positive/negative SST/pressure anomalies in SA

seems to be responsible for the drought pattern in NE during the 90’s. Patterns 1, 2 and

3 also show an interesting evolution on the WAF coast, in the Benguela region (from 10S

to 30S, 10E). The positive/negative SST anomaly dipole reverses in the Benguela region

from pattern 1 to 3, negative pressure anomalies develop high latitudinal wind anomalies
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to the Equator, which persisted until 2005 (pattern 4), culminating in a highly positive

precipitation pattern from 1995 to 2005 in WAF (over 2 SPI, Figure 3.1). Forming the

anti-correlation from the NE and WAF SPI from 1980 to 2000’s.

In the subsequent pattern evolution from 4 to 5 to 6: a SST positive anomaly forms

north of the Equator. With a negative SST anomaly in SA and SSA. Simultaneously,

the SST and pressure dipole in the Benguela region weakens, creating a positive pressure

anomaly centered in the SSA, which dominates the whole basin. This increased the South

Atlantic Subtropical High, shifting the decadal ITCZ belt position to the north and gene-

rating the drought scenario seen in Brazil during the 2011-2019 time period (Cunha et al.,

2019).

The SST, pressure, wind and precipitation anomalies coupling was not forced. The

SOM algorithms were calculated together as a multivariable neural network and indivi-

dually, both approaches yielded the exact same results. Resulting in the same number

of clusters, same patterns and variance evolution in time. Also, these 1979-2015 SOM

patterns show a high level of anti-symmetry. SOM Cluster patterns 0 and 1 (Tropical

Atlantic in 1980s) are almost completely anti-symmetrical to the SOM Cluster patterns 5

and 6 (Tropical Atlantic in 2010s). This points to a possible decadal variability envelope

the Atlantic ocean oscillated in.

1870-2019 Atlantic SST anomaly cycles

Cycles 1, 2 and 3 from the 1870-2019 Atlantic decadal SST anomalies are very alike,

they all contain the same evolution of positive SST anomaly, beginning in the north (0°-

30N), passing to the subtropical south (30°S-60°S) and ending in SA region (0°-30°S). This

suggests a repetition with small variations of this 30 to 40 year cycle. Although Atlantic

decadal SST variability may not be fully represented by cycles 1,2 and 3 it is all the

observational information at scientific disposal for now.

Each cycle may contain different precipitation patterns, as they are evolving from sligh-

tly different initial conditions. Climate signals from SST anomalies can differ in position

and magnitude of their amplitude maximum, generating each time an unique climate res-

ponse (Cai et al., 2020). Cycle 2 exhibits a positive SST anomaly in the West African

coast, resembling patterns 0 and 1 in Figure 3.2, where the NE and WAF precipitation

were highly anti-correlated (from 1980 to 1995 with positive SPI in NE and negative in
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WAF). Although the α transition in cycle 1 does not show a positive SST anomaly pattern

in WAF’s coast. In other words, there may be other precipitation, wind and pressure ano-

maly patterns emerging from the Atlantic SST cycles that are not present in the 1979-2015

satellite data available.

Numerical models variability

The model data SOM has shown the methodology’s true potential for data processing.

Using 28 thousand montlhy tropical Atlantic SST and PPT anomalies, the SOM’s feature

space was able to discretize 17 climate simulations from 4 different numerical models (ECE,

GISS, iCESM and CESM-Toronto) in eight different scenarios (PI, MH, GS, GSdr, GSNA,

GSEX, GSALL and GSsl) into simple directed graphs (Figure 3.5 and 3.6. The directed

graphs entropy was able to attribute the effect of different insolation, vegetation and dust

emission scenarios to the tropical Atlantic’s decadal variability (Figure 3.7). ECE GSdr

scenario was the simulation run with the lowest variability, while the remaining ECE

scenarios had equivalent PPT entropies (Table 3.1). This shows that the dust reduction

was directly responsible for the model’s PPT variability. While the vegetation inputs (GS

and GSdr) had a more noticeable effect on the SST variability. The GISS model shown

the lowest SST entropy amplitude between different scenarios. iCESM and CESM-Toronto

have shown divergences in the SST entropies, indicating that the internal variability from

the CESM models may provoke variability differences larger than the ones seen between

different scenarios. Therefore, large ensembles are needed for more robust findings and

uncertainty attributions for the numerical models’ internal variability.

Next steps

The possible next steps for this study are: 1 - Improving the feature space clustering.

Many of the Cluster patterns from the model SOM are alike (Figures C.2 and C.3), re-

ducing the number of possible states in feature space will help elucidate and depict the

tropical Atlantic cycles, specially in the model data SOM. 2 - Use a feature space from a

SOM trained with observational data only to classify the possible states of a model run

simulation. This approach can be used to find and shed light upon model and observation

biases, as well as their causes. 2 - The development of a Recurrent Neural Network (RNN)

or Koopman Neural network (Azencot et al., 2020). Designed to evolve dynamical systems,
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these networks could be trained with observational and/or model data to make predictions

about future states of the Atlantic Ocean influence region. Or even, reconstruct the preci-

pitation patterns from before precipitation data started being collected. 3 - Assessment of

other influences such as the Pacific Ocean tropical and extratropical teleconnections in NE

and WAF regions. The Pacific ocean variability modes are a known source of influence in

South American climate and the Atlantic Ocean (Cai et al., 2020). They may help explain

the dynamic evolution of the Tropical Atlantic SOM patterns. 4 - Study and compare

the usage of the SOM algorithm with a Deep clustering auto-encoder network, since the

clustering of data is a highly desirable capability in a range of disciplines and sciences (Guo

et al., 2017; Shah e Koltun, 2018; Bo et al., 2020; Chadebec et al., 2022b).

The codes developed by this study to create SOM feature spaces using climate data are

available in a GitHub repository through the following link: https://github.com/IuriGorenstein/SOM.

https://github.com/IuriGorenstein/SOM
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Wanner H., Beer J., Bütikofer J., Crowley T. J., Cubasch U., Flückiger J., Goosse H.,
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Apêndice A

SOM

A.1 Neuro Net Example

Networks acquire knowledge from the data in a process called learning. The SOM

algorithm works with two different steps. The first one is a competition between neurons.

To measure how connected two images are, the SOM calculates the correlation/distance

between those images. At each training round, the correlation between every input data

and each neuron from the grid is calculated. The best matching unit (bmu) from the grid

and the input data has its weight increased, making that neuron grid point more similar to

that monthly map (data input) (Kohonen, 1982, 1995; Haykin, 2009). The second step of

the SOM algorithm is the cooperation step. All the neighbors from the first step winning

neuron (bmu) also have their weight connections to that input data increased. This way

the neural network is widely influenced by that input data with a gradual decrease of their

weight connection with the input data as their distance to the bmu increases, creating a

topologically separated space (Kohonen, 1997; Haykin, 2009). In the initial ordering phase

all neurons are considered neighbors. After a minimum distance from the neurons are

detected, a fine tune that considers only neurons close to each other as neighbors finishes

the learning process.
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Figure A.1: Hexagonal Neuron Grid representation. For i in range of the input data time series, xi are

the input data. For j in range of the neuron grid size, yj are each neuron from the grid. The arcs are the

connection from the input data to the neuron with weight wi,j .

A.2 Multivariable observational data SOM feature space encode and

decode process

Figure A.2: To the left, hexagonal Neuron Grid being exposed to climate data from the Atlantic ocean on

the right. The Feature map function Φ exemplifies that the data is being represented and transformed to

the feature space and back to the input space. The Neuron Grid shadow is showing the positive correlated

neurons.



Apêndice B

Observational data SOM
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B.1 800 neuron grid (trained with 1870-2019 SST reanalysis data)

Figure B.1: 800 neural network grid from the Atlantic SST anomalies. Each neuron is represented by a

SOM pattern. The feature space represents various features from the Atlantic SST anomalies.



Apêndice C

Model data SOM

C.1 Silhouette and DBI curves for model data SOM clusterization

Figure C.1: Silhouette (top row) and Davies–Bouldin (bottom row) indexes for the Sea Surface tempe-

rature SOM (left column, red curves) and precipitation SOM (right column, blue curves) feature space

clusterings. The ’x’ axis indicates the number of clusters in which the feature space was separated.
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C.2 SST anomaly model data SOM clusterization Patterns



Section C.2. SST anomaly model data SOM clusterization Patterns 79

Figure C.2: SST model data SOM cluster patterns. From cluster 0 to cluster 299. Colorbar in Celsius:

Blue indicating negative SST anomalies and red for positive.
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C.3 PPT anomaly model data SOM clusterization Patterns

Figure C.3: Precipitation model data SOM cluster patterns. From cluster 0 to cluster 149. Colorbar in

mm/month: Orange indicating negative precipitation anomalies and green for positive.
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