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ABSTRACT

Najafi, M. Aeroelastic analysis of a lightweight topology-optimized sandwich
panel. 2023. 80p. PhD Dissertation (Doutorate) , São Carlos School of Engineering,
University of São Paulo, São Carlos, 2023.

Sandwich structures with lattice cores are novel, lightweight composite structures and
are widely used in the aerospace industry. Besides, the aeroelastic behavior of sandwich
panels in a supersonic flow regime still needs to be thoroughly studied. This work is
devoted to investigating the flutter properties of a sandwich panel whose core is inspired
by the topology optimization method in supersonic airflow. In addition, an analytical
model of the topology-optimized core sandwich panel employing layerwise theory and the
homogenization approach is given for modal analysis. A three-layer continuum is applied
to the entire sandwich panel, with the topology-optimized core being homogenized as an
equivalent orthotropic layer based on an energy method. The first-order shear deformation
theory in each layer is assumed, and displacement continuity is imposed at the layer
interfaces. These assumptions constitute the foundation of the layerwise theory provided
in this study. The supersonic Piston theory evaluates aerodynamic pressure. For the panel,
a four-node Lagrangian quadrilateral element with nine degrees of freedom per node is
employed. By comparing natural frequencies and mode shapes with those produced from
commercial software and previous results in the literature, the accuracy and dependability
of the new method are confirmed. On critical dynamic pressure, the effects of geometric
parameters and material characteristics are explored. The results show that the proposed
metastructure has the ability to use as a lightweight core sandwich panel in comparison
to an isotropic panel and isotropic core sandwich panel in aircraft design, which leads
to improving the efficiency of flight and is useful in the research of lightweight sandwich
materials.

Keywords: Sandwich structures, lattice core, aeroelastic analysis, supersonic flutter,
topology optimization method, layerwise finite element theory, homogenization approach,
modal analysis, lightweight material.





RESUMO

Najafi, M. Análise aeroelástica de um painel sanduíche leve com topologia
otimizada. 2023. 80p. PhD Dissertação (Doutorado) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2023.

Estruturas sanduíche com núcleos treliçados são novas estruturas compostas e têm sido
amplamente utilizadas nas áreas aeroespacial e aeronáutica devido ao seu excelente
desempenho, mas seus comportamentos aeroelásticos não foram totalmente estudados.
Este trabalho é dedicado a investigar as propriedades de flutter de um painel sanduíche
cujo núcleo é inspirado no método de otimização topológica em fluxo de ar supersônico.
Além disso, um modelo analítico do painel sanduíche de núcleo otimizado para topologia
empregando a teoria em camadas e a abordagem de homogeneização é fornecido para
análise modal. Um contínuo de três camadas é aplicado a todo o painel sanduíche, com
o núcleo otimizado de topologia sendo homogeneizado como uma camada ortotrópica
equivalente com base em um método de energia. A teoria da deformação por cisalhamento
de primeira ordem em cada camada é assumida e a continuidade do deslocamento é imposta
nas interfaces das camadas. Essas suposições constituem a base da teoria de camadas
fornecida neste estudo. A teoria do pistão supersônico avalia a pressão aerodinâmica. Para
o painel, é empregado um elemento quadrilátero Lagrangeano de quatro nós com nove
graus de liberdade por nó. Ao comparar frequências naturais e formas de modo com aquelas
produzidas a partir de software comercial e resultados anteriores na literatura, a precisão
e confiabilidade do novo método são confirmadas. Na pressão dinâmica crítica, os efeitos
de parâmetros geométricos e características do material são explorados. Os resultados
mostram que a metaestrutura proposta tem a capacidade de ser usada como um painel
sanduíche de núcleo leve em comparação com um painel sanduíche de núcleo isotrópico e
um painel sanduíche de núcleo isotrópico no projeto de aeronaves, o que leva a melhorar a
eficiência de voo e é útil na pesquisa de painéis sanduíche leves materiais.

Palavras-chave: Estruturas sanduíche, núcleo treliçado, análise aeroelástica, flutter
supersônico, método de otimização topológica, teoria dos elementos finitos em camadas,
abordagem de homogeneização, análise modal, material leve.
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1 INTRODUCTION

Panel flutter is an increasingly serious problem that threatens aerospace vehicles’
operational safety, flight performance, and energy efficiency. Its avoidance is always of
vital importance before an episode occurs (NJUGUNA, 2007), and is a big challenge
during the design stage. This phenomenon is a self-excited dynamic instability that arises
in high airflow velocity passing on aircraft external skin structural elements (DOWELL,
1974; FUNG, 2008; BISPLINGHOFF; ASHLEY, 2013). This aeroelastic problem happens
due to the interaction between aerodynamic, elastic, and inertia forces. The transverse
vibrations of panels under the effect of supersonic aerodynamic pressure can increase
in amplitude, which may lead to structural failure. This instability can happen in a
catastrophic way leading to limit cycle oscillations and chaotic motions. Therefore, the
panel flutter phenomenon prediction, prevention, and suppression are essential factors in
the design of a new supersonic flight vehicle’s skin.

This chapter starts by answering this question “with appearing metastructure in
the industrial application as a new generation of composites, how can the core’s geometry
of a sandwich panel be designed to perform better in the aeroelastic application?”. In the
following, a review of the aeroelasticity of sandwich panels and the world of metastructures
is done. In the next section, the topology optimization method is presented as the method
to find the core of the sandwich panel. Also, to find the mechanical properties of the
metastructure core the works related to the homogenization method are expressed.

1.1 Motivation

Modern aircraft requiring high speed with lightweight arrangement makes the
aeroelastic panel flutter analysis a necessity in the design stage. As one of the significant
requirements during the design stage of aerospace systems is choosing the optimum
composite panels concerning lightweight and flutter behavior against aeroelastic problems,
researchers and engineers are studying and using different types of composite structures
in their designs to achieve the optimal performance and criterion to avoid skewing and
cracking panels (WEI; YAM; CHENG, 2004; PIDAPARTI; CHANG, 1998; STRGANAC;
KIM, 1996). Therefore, the motivation of this work is finding a sandwich panel to have a
better performance in aeroelastic applications.
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1.2 Literature review

1.2.1 Flutter in sandwich panels in supersonic regime

For the supersonic panel flutter problem, the possibility of accomplishing improve-
ments ensures the potential of the sandwich panels. Although many investigations have
focused on the mechanical behaviors of the sandwich panels with optimized cores, to the
best of the author’s knowledge, only a few studies have been done on their aeroelastic
behavior. Castanié, Bouvet and Ginot (2020) conducts a review of composite sandwich
structures used in aerospace applications. Song and Li (2016) studied the aerothermoe-
lastic properties of sandwich composite panels with pyramidal truss and triangular grid
cores in supersonic flow. An active flutter and buckling control theoretical analysis of
a sandwich panel with a triangular lattice core was investigated under supersonic flow
(SONG; LI, 2017). Moreover, Chai, Song and Li (2017) presented an investigation on
the aerothermoelastic flutter analysis and thermal buckling control of sandwich panels
with the pyramidal lattice core resting on elastic foundations in supersonic airflow. They
analyzed the influences of the elastic foundation, aspect ratio, core-to-face sheet thickness
ratio, and inclination angle of the core truss on the aerothermoelastic characteristics of
the lattice sandwich panel numerically. Also, the only aeroelastic analysis of foam-filled
composite corrugated sandwich plates was done recently (ZHUANG; YANG; WU, 2021).
Furthermore, Zhang, Yan and Xia (2021) investigated the vibrations and flutter of a
honeycomb sandwich plate with zero Poisson ratio under supersonic airflow. Therefore,
developing innovative ways to improve the aeroelastic properties of aerospace high-speed
vehicle panels is essential. These may base on in-depth physical insights into the panel
flutter behavior of metastructure panels.

1.2.2 Metastructures

In recent years, a new generation of materials known as metamaterials and their
possible arrangements as metastructures have been proposed continuously in aerospace
applications. The prominent concept of metamaterials was introduced by Yu et al. (2018).
Metastructures are human-made structures that consist of identical substructures or cells
that have been implemented identically. These artificial materials enable engineers to
design cell shapes for specific applications. Due to the periodic structural patterns, a
metastructure exhibits advanced mechanical and physical properties such as negative
Poisson ratio (auxetics meta structures), negative coefficient of thermal expansion, high
energy absorption, vibration attenuation, and negative mass inertia, which are not accessible
in natural materials. Compared to composites, their unique mechanical properties are based
on spatial geometry instead of material composition (SHAMONINA; SOLYMAR, 2007;
FINDEISEN et al., 2017; WU et al., 2019). Classification of mechanical metamaterials
based on the Young modulus (E), shear modulus (G), bulk modulus (K), and the Poisson
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ratio (ν) have been established to choose the structural topology based on stiffness, rigidity,
and compressibility (YU et al., 2018). In selecting cellular materials such as honeycombs,
foams, and lattices, designers have been using the traditional engineering approaches, a
biomimetic method, or a coupled of these two schemes (BHATE et al., 2019).

Recently, metamaterials in industrial applications and investigations can be seen
in re-configurable structures, morphing airfoil with chiral core configuration, chiral flexible
electronics, and chiral sandwich panels (WU et al., 2019). For the panel flutter problem,
the possibilities of accomplishing improvements ensure the potential of the metastructure
concept.

Some research contributions have been devoted to changing mechanical metama-
terial properties to apply them for different purposes like elastic wave absorption with
vibration suppression (HE; XIAO; LI, 2017; PENG; PAI; DENG, 2015), wave propagation
(NOUH; ALDRAIHEM; BAZ, 2015), and vibration isolation and energy harvesting (LI
et al., 2017). These studies may provide some clues for the development of innovative
metamaterial panels in high-speed aeroelastic applications.

1.2.3 Topology optimization

Aeroelastic optimization is a consolidated field in many aerospace research and
industrial applications. Structural plates can be optimized based on some flutter require-
ments by computationally different strategies that introduce various forms of objective
functions. In the design of plate structures, optimization (maximization) of flutter speed
is a fundamental concept. Nevertheless, the formulation of the problem can be carried out
in various ways. Muc and Flis (2019) applied the direct formulation of the aeroelasticity
problem. Moreover, the implicit formulation with a bound was used for aeroelasticity
optimization by Song et al. (2018) and Guo (2007). Li and Narita (2014) carried the
maximization of the weighted sum of the critical aerodynamic pressures under different
probability density functions of flow orientations. Moreover, the maximization of natural
frequencies related to the vibration modes involved in the flutter phenomenon, called as
aeroelastic optimization method by finite difference, was done by Leon et al. (2012) and
Katsikadelis and Babouskos (2018). Maximization of a function of the panel stiffness,
damping, and dynamic pressure values of the free stream was used by researchers (VIJAY;
DURVASULA, 1998).

The sandwich panel with lattice core, in aerospace applications, was optimized with
respect to the divergence or flutter behavior. The additional design variables introduced by
the structure of sandwich constructions are directly connected with the form of mechanical
properties of the core. As in metastructure sandwich panels, the core is a metamaterial, so
the optimization algorithms can be used in defining grading functions. In this case, the
topology optimization methods should be adopted for this class of problems (MUC; FLIS,
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2019).

Topology optimization, as a mathematical approach, is a numerically iterative
procedure to optimize the distribution of materials in a given design domain, subject to a
specified objective function and constraint(s) to maximize the performance of the system
(BENDSOE; SIGMUND, 2013), which often used in manufacturing industries. In the last
decade, this method has made extraordinary development in architecting materials with
novel properties (OSANOV; GUEST, 2016).

Bendsoe and Kikuchi (1988) proposed the basic theory of topology optimization,
which replaces an optimization problem with a material distribution problem within a
fixed design domain.

The number of articles on topology optimization in the aeroelastic application
is rare. By considering aerodynamic loads, the topological design of internal wing ribs
was studied by Krog et al. (2004). Moreover, Stanford and Beran (2011) and Leon et al.
(2012) investigated the aeroelastic instability (i.e., flutter) in the topology optimization of
cantilevered wing structures. Stanford and Beran (2013) optimized the aerothermoelastic
panels for flutter and buckling matrices by topology optimization method. Moreover, the
effect of various constraint boundaries, temperature gradients, and thermal load magnitude
was analyzed.

The general form of a topology optimization problem is written as (SIGMUND;
MAUTE, 2013),

minimize : F = F (u(ρ), ρ) =
∫

Ω
f(u(ρ), ρ)dV , (1.1)

subject to G0(ρ) =
∫

Ω
ρ(x)dV − V0 ≤ 0 , (1.2)

Gj(u(ρ), ρ) ≤ 0 with j = 1, ..., m , (1.3)

ρ(x) = 0 or 1, ∀x ∈ Ω (1.4)

which its aim is finding the material distribution that minimizes an objective function
F (u(ρ), ρ), subject to a volume constraint G0 and perhaps a number of additional con-
straints Gj and m is the number of constraints. u(ρ) is the design space and ρ(x) is the
main design variable or material distribution, which can have a value of 0 (void) or 1 (solid
material) at any point in the design domain.

Each problem possesses different objective functions. Commonly, the most used one
is minimizing compliance, or in other words, maximizing the stiffness of the structure. There
exist several classifications of topology optimization methods, such as the homogenization
method (BENDSOE; KIKUCHI, 1988), the solid isotropic material with penalization
(SIMP) method, the evolutionary structural optimization (ESO) method and the level set
method (LSM) (GAO et al., 2019). A combination of the topology optimization method
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Figure 1 – Topology optimization flowchart (SUTRADHAR et al., 2016).

with the homogenization method to optimize the microstructure was proposed (GUEDES;
KIKUCHI, 1990; SIGMUND, 1994; CLAUSEN et al., 2015).

There were several works for the optimization of metamaterials. An optimization
approach of material concerning nonlinear properties (CLAUSEN et al., 2015; WANG;
SIGMUND; JENSEN, 2014) with the programmable Poisson ratio and subsequent shape
optimization to attain any given Poisson ratio was studied in 3D auxetic microstructures
(WANG, 2018). Another method to optimize auxetic microstructures implies the parametric
level set approach (WANG et al., 2014).

The finite element method (FEM) has been applied dominantly to perform nu-
merical analysis in topology optimization problems. Several reasons demonstrate that in
the design of auxetic microstructures, the FEM is one factor to affect the effectiveness
of the topology optimization. Firstly, the finite element mesh is just an approximation
of the initial configuration of the design domain, which lessens the numerical accuracy.
Further, the lower-order continuity of the responses between the nearby finite elements,
although the higher-order finite elements are employed. Furthermore, the lower efficiency
in accomplishing a finite element mesh with high quality (GAO et al., 2019).

An effective and efficient topology optimization method for designing metamaterials
in aeroelasticity applications is still in demand. One part of this proposal is motivated to
develop an optimization method with topology analysis (SIGMUND, 2001) for supersonic
panel flutter metastructure in flutter point to find the internal geometry of the panel.
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1.2.4 Homogenization methods

In recent years, with the advancement of technology, composite materials have been
increasing in industrial applications such as mechanical, aerospace, civil, transportation,
marine engineering, medicine, sports, recreational goods, and others. Composite materials
may be defined as man-made materials with specific unit cell geometry. The mechanical
and physical properties of a composite are different from their individual constituents. One
way of finding the properties of such composites is by carrying out experimental tests. As
the cost of tests of this media with a large heterogeneity is high, a natural way to overcome
this difficulty is to replace the composite with a kind of equivalent material model. This
procedure is usually called homogenization, which is an efficient way to determine the
effective material properties of composite materials. Figure 2 shows a schematic of the
homogenization method of a metastructure cantilever beam.

Figure 2 – Schematics of the homogenization method.

As the core geometry strongly affects the mechanical properties and thus those of
the equivalent material, the micromechanical analysis of composite materials has been
investigated for many years. Cheng, Lee and Lu (2006) estimated elastic constants of
sandwich structures with various cores by an analytical formula. Furthermore, Wang
and Chung (2011) studied the properties of triangular corrugation. The critical loads
for different failure mechanisms on the structural performance of triangular panels and
also the diamond corrugation shapes were studied in two investigations (VALDEVIT;
HUTCHINSON; EVANS, 2004; VALDEVIT et al., 2006).

Several authors studied the mechanical properties of trapezoidal geometries (LI-
BOVE; HUBKA, 1951; SAMANTA; MUKHOPADHYAY, 1999). Bartolozzi, Baldanzini
and Pierini (2014) developed a general analytical formulation to calculate the equivalent
properties of corrugated cores of sandwich structures, which is mainly based on an ener-
getic approach, starting from Castigliano’s second theorem. In this research, this method,
with some modifications, is used to calculate the equivalent mechanical properties of the
suggested structure.

1.3 Objectives

Sandwich structures with lattice cores are innovative composite structures that
have found extensive usage in the aerospace and aviation industries because of their
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great performance. However, their aeroelastic behaviors have not yet been thoroughly
investigated. The original contribution of my work to the state of the art includes the
analysis of a new sandwich panel whose core is inspired by the topology optimization
method that significantly improves the flutter boundary in supersonic airflow applications.
The entire sandwich panel is modeled as a three-layer continuum, with the energy-based
homogenization of the topology-optimized core as an analogous orthotropic layer. It is
assumed that each layer follows the first-order shear deformation theory, and the layer
interfaces are forced to follow displacement continuity. Unsteady aerodynamic pressure is
assessed using the supersonic piston theory. A Lagrangian quadrilateral element with four
nodes and nine degrees of freedom per node is used for the panel.

To verify the precision and reliability of the novel technique, natural frequencies,
and mode shapes are compared to those generated by commercial software and earlier
findings in the literature. The influence of geometrical variables and material properties is
examined on critical dynamic pressure. The aeroelastic characteristics of the lightweight
core sandwich panel with an isotropic panel and the isotropic core sandwich panel are
compared, thereby contributing to understanding the efficacy of this structure in enhancing
flight efficiency.

1.4 Thesis statement

The aeroelastic analysis of topology-optimized sandwich panels is divided into four
other chapters in addition to this introduction. The theories behind the homogenization
approach and topology optimization are presented in Chapter 2. The structural model,
aerodynamic model, finite element discretization, final aeroelastic equation of motion,
flutter analysis, and solution methods are all presented in Chapter 3. Homogenization
technique validation and layerwise theory validation are included in the model validation
presented and discussed in Chapter 4. The accuracy of the 3D model is verified by comparing
the dimensionless frequency in the references and the first six natural frequencies (vibration
modes) between 3D-FEM and 3D-ABAQUS models under simple-supported boundary
conditions. Linear flutter analysis of the topology-optimized core sandwich panel, panel
modes, and flutter modes is also investigated in this chapter.

Additionally, the impacts of face-to-thickness ratio, flow angle, TOP metastructure
angle, and core metastructure thickness are examined. A comparison of isotropic panels,
isotropic sandwich panels, and TOP sandwich panels is completed at the end of this
section. In addition to summarizing this study’s key results and findings, Chapter 5 offers
recommendations for further research. The workflow of the aeroelastic analysis of the
TOP sandwich panel is shown in Figure 3. To some up, it is shown that the advantage of
the proposed sandwich panel with topology optimized core is the ability to be used as
a lightweight core sandwich panel in aircraft designing, which leads to improved flight
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efficiency. Moreover, its critical flutter boundary and density show the superior aeroelastic
properties of the sandwich panel.

Figure 3 – The flowchart of the aeroelastic analysis of the TOP core sandwich panel.
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2 TOPOLOGY OPTIMIZATION AND HOMOGENIZATION METHOD

In the field of high-speed aeroelasticity applications, it is challenging to propose
a metamaterial structure as a core of the panels to enhance the panel flutter behavior,
such as critical flutter speed, critical dynamic pressure, maximum limit cycle oscillation
amplitude, and the post-flutter regime. From an engineering point of view, the four elastic
constants of common mechanical metamaterials are Young’s modulus (E), shear modulus
(G), bulk modulus (K) and the Poisson’s ratio (ν). The first three measure the stiffness,
strength, and compressibility of structural material.

In this study, it is proposed a compliance Topology Optimization (TO) in order to
find the metastructure geometry of the panel.

An essential characteristic of an aeroelastic system is its flutter boundary, or
stability boundary, which is the critical condition for limit cycle oscillations that start to
occur from this point. In the following, the flutter boundary is calculated for an isotropic
panel with bellow characteristics in the simply supported boundary condition.

Figure 4 – Illustration of the supersonic panel flutter problem setup.

Consider a plate (L × b) with thickness h, in which the length-to-thickness ratio
is L/h = 10. The edges are aligned with the x and y-directions, respectively, as depicted
in Figure 4. Moreover, the air flows over the panel’s upper surface at supersonic speed
(M = 2) and along the positive y direction. The flow generates an aerodynamic pressure
∆P that acts normally to the panel surface, thus causing it to deform and can be calculated
within good accuracy through first-order piston theory (BISMARCK-NASR, 1976) as:

∆P (w(x, y, t)) = − 2q∞√
M2

∞ − 1
[∂w

∂y
+ (M2

∞ − 2
M2

∞ − 1) 1
U∞

∂w

∂t
] , (2.1)

where w is the transverse displacement field of the plate, q∞ is the free-stream dynamic
pressure, M∞ is the Mach number, and U∞ is the velocity.
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Equation (2.1) can be rewritten as:

∆P = −λ( D

L3 )∂w

∂y
− ga(ρhw0)

∂w

∂t
, (2.2)

where ρ, h and L are the panel’s density, thickness, and length, respectively, and:

D = Eh3

12(1−ν2)

w0 =
√

D
ρhL4

λ = 2q∞L3

D
√

M2
∞−1

ga =
√

λµ√
M2

∞−1
(M2

∞−2
M2

∞−1) ≃
√

µλ
M∞

µ = Lρ∞
hρ

, (2.3)

where E and ν are the Young modulus and Poisson ratio of the panel, ω0 is the reference
frequency, λ is dynamic pressure, and ga is the damping factor.

The Mindlin plate theory is used for the plate. Moreover, the equations of motion
are derived through the Principle of Virtual Work (PVW), which yields the aeroelastic
equations of motion. For more details, the reader is referred to the work by Pacheco,
Ferreira and Marques (2018), and by dropping the nonlinear stiffness, the value of λf can
be obtained by solving the linear problem:

MÜ + G(λ)U̇ + K(λ)U = 0 , (2.4)

where M is the mass matrix, G(λ) is the global damping matrix, K is the stiffness matrix,
and U is the vector of the global degrees of freedom.

For dimensionless dynamic pressure (λ) below the flutter boundary (λf ), the system
after some vibrations, gradually returns to its static equilibrium. So, the behavior of the
panel in λ < λf can be considered a linear problem.

As illustrated in Table 1, the analysis of flutter boundary results have been generated
for an isotropic panel, within simply supported boundary condition, and the geometric
and material parameters are: L = b, L

h
= 10, E = 110GPa, ν = 0.34 and ρ = 4.3 g

cm3 ,
which are the properties of Ti6A14V alloy.

Table 1 – Flutter boundary for the isotropic panel in the simply supported boundary
condition.

Boundary condition λf

Simply-Supported 483

The aerodynamic force at flutter condition based on the critical dimensionless
dynamic pressure, λf , is calculated. Since for λ < λf the panel is expected to display
damped motion, and after some perturbations, it gradually returns to static condition, so
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by omitting the aerodynamic damping term the Equation (2.1) can be reduced to steady
piston theory formulation:

∆P (w(x, y)) = − 2q∞√
M2

∞ − 1

(
∂w

∂y

)
. (2.5)

By estimating the equation of displacement of the panel, the aerodynamic pressure
and as a result, the aerodynamic force on the panel in the critical flutter point are found.
The Figure 5 indicates the fluttering shape at λf = 483 for the simply supported isotropic
panel.

Figure 5 – Mid-section transverse displacement in y-direction for the simply supported
isotropic panel.

The fitting equation to estimate the non-dimensional displacement is:

w/h(y/L) = p1(y/L)7 + p2(y/L)6 + p3(y/L)5 +
+p4(y/L)4 + p5(y/L)3 + p6(y/L)2 + p7(y/L) + p8 , (2.6)

where: p1 = 47.911, p2 = −88.733, p3 = 28.965, p4 = 16.77, p5 = −4.6626, p6 = −0.13258,
p7 = −0.11605, p8 = 0.0010925.

The net aerodynamic force can be estimated to insert in the topology optimization
method:

fA = ∆P (w(x, y))S , (2.7)

where S is the panel area.

In the design stage of any structural component in aerodynamic applications, a
panel’s weight should be as low as possible so that the system’s physical response is
acceptable. In order to reach this goal, there are two ways:
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1. the minimum mass of a thin panel under a flutter constraint;

2. the maximum flutter speed under a mass constraint.

In this research, our purpose is to minimize the weight of the panel in the flutter
boundary, which leads to an increase in the efficiency of aerospace vehicles. This sec-
tion analyses topology optimization of a two-dimensional isotropic panel based on the
SIMP (solid isotropic material with penalization) method (BENDSØE, 2003) subjected to
aerodynamic, inertial, and elastic loads statically.

The topology optimization is applied to the aeroelastic model of the isotropic
panel structure. The panel comprises a two-dimension plate with length L and thickness
h = L/10, which is required to study the internal topology of the structure, with support
in both ends, where an external side is under the supersonic flow field’s effects, Figure 6.
The structure is assumed to be infinitely long in the third dimension.

Figure 6 – Illustration of the supersonic panel flutter problem setup and design domain

The design domain is discretized into finite square elements, and the vector of
design variables is the density of each element xe, which smoothly varies between 0 (void)
and 1 (solid). The upper surface, which is subjected to high-speed supersonic flow, and
the lower surface are fixed as solid. The remainder constitutes the design domain. In the
topology optimization method, the linear steady finite element solution is used on the
panel (FERRARI; SIGMUND, 2020). In this study, the mathematical formulation of the
optimization problem is based on a modified SIMP approach (ANDREASSEN et al., 2011),
where the objective is to minimize the compliance under flutter conditions which can be
written as:

min(x) : c(x) = UT KU = ∑N
e=1 Ee(xe)uT

e k0ue

subject to: V (x)/V0 = f

KU = fA

0 ≤ x ≤ 1

, (2.8)

where c is the compliance, U is the global displacement, fA is the aerodynamic force vector,
K, k0, and ue are the global stiffness matrix, the element stiffness matrix for an element
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with unit Young’s modulus and the element displacement vector, respectively, x as the
element densities is the vector of design variables, N is the number of elements used to
discretize the design domain, V (x) and V0 are the material volume and design domain
volume, respectively, and f is the prescribed volume fraction. Each element e is assigned a
density xe that determines its Young’s modulus Ee. The parameter Ee is defined as,

Ee(xe) = Emin + xp
e(E0 − Emin), 0 ≤ xe ≤ 1 , (2.9)

where E0 is the stiffness of the material, Emin is a very small stiffness assigned to void
regions in order to prevent the stiffness matrix from becoming singular, and p is a
penalization factor introduced to ensure black-and-white solutions.

Figure 7 shows the topology optimization of the two dimensions simply supported
panel at both ends on the flutter boundary. It displays that at the three-quarter of the
panel, the topology is thicker and the density of the internal topology of the panel is higher
than other parts.

Figure 7 – Topology optimization of the simply supported panel in flutter boundary

In the following, the lightweight metastructure panel is designed based on the
microstructure of the topology-optimized panel in flutter condition, as shown in Figure 8.
Equivalent parameters need to be computed for the structure. The general analytical
method is applied to calculate the equivalent mechanical properties of the core (BAR-
TOLOZZI; BALDANZINI; PIERINI, 2014). However, to represent geometries that are
symmetrical about the horizontal axis, such as x cores, this method is inadequate and is
only useful for homogenizing corrugated cores like triangular, circular, or sinusoidal shapes
as the middle layer of the CSP. Modifications need to be made to such a homogenization
method when applying it to the TOP core sandwich panel considering the upper part and
lower part of the unit cell behave like two parallel springs.

The unit cell of the metastructure panel, the reference system, and geometrical
parameters are displayed in Figure 8. The y-axis denotes the array direction of the unit cell,
while the z-axis is parallel to the direction of core height and the x-axis is perpendicular
to the yz-plane.

The mechanical properties of the core are calculated with regard to the homoge-
nization method based on the analytical approach are:
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1) Transverse shear modulus in yz-plane (Gyz)
2) Elastic modulus in y-direction (Ey)
3) Elastic modulus in x-direction (Ex)
4) Transverse shear modulus in xz-plane (Gxz)
5) In-plane shear modulus (Gxy)
6) Poisson’s ratio in the yx-plane (νyx)
7) The equivalent density (ρc)

Figure 8 – The geometry of the unit cell

The first parameter of the equivalent material is the transverse shear modulus
in the yz plane. The origin of the local coordinate system is set in point A, and the
plate is entirely clamped at this point. In pure shear condition, the horizontal force H, a
vertical force V , and moment M0 are applied simultaneously at point B, Figure 9 . The
horizontal displacement for shear deformation is calculated while the rotation and vertical
displacement at this point are equal to zero, i.e: δV = 0, δM0 = 0.

The inner forces (N , T ) and moment (M) at an arbitrary point along the segment
AB are expressed as:


M = H(H0 − y tan θ) + V (Pi − y) − M0

N = H cos θ − V sin θ

T = H sin θ + V cos θ

. (2.10)

Applying the Castigliano’s theorem (BARTOLOZZI; BALDANZINI; PIERINI,
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Figure 9 – (a) Pure shear deformation conditions to calculate the Gyz parameter (b) The
forces analysis diagram on AB segment.

2014) allows obtaining,
∂M
∂H

= H0 − y tan θ ∂M
∂V

= Pi − y ∂M
∂M0

= −1
∂N
∂H

= cos θ ∂N
∂V

= − sin θ ∂N
∂M0

= 0
∂T
∂H

= sin θ ∂T
∂V

= cos θ ∂T
∂M0

= 0
, (2.11)


δHi

=
∫ Pi

0 (M ∂M
∂H

EI
+ N ∂N

∂H

EA
+ T ∂T

∂H

kGA′ ) dy
cosθ

δVi
=
∫ Pi

0 (M ∂M
∂V

EI
+ N ∂N

∂V

EA
+ T ∂T

∂V

kGA′ ) dy
cosθ

δM0i
=
∫ Pi

0 (
M ∂M

∂M0
EI

+
N ∂N

∂M0
EA

+
T ∂T

∂M0
kGA′ ) dy

cosθ

, (2.12)

where E and G are the Young modulus and shear modulus of the constituent material,
respectively, I is the second moment of area, and A is the cross-sectional area and k = 5/6
is the shear factor. By substituting Equation (2.11) in (2.12), it results:


δHi

δVi

δM0i

 = 1
EA


C11 C12 C13

C22 C23

sym. C33




H

V

M0

 , (2.13)

where,

C11 = 12
t2 (H2

o Pi

cos θ
+ P 3

i

3
tan2 θ
cos θ

− H0P 2
i tan θ

cos θ
) + Pi cos θ + 2(1+ν)

k
(Pi tan θ sin θ) ,

C12 = 12
t2 ( H0P 2

i

2 cos θ
− P 3

i tan θ

6 cos θ
) + (−Pi sin θ) + 2(1+ν)

k
(Pi sin θ) ,

C13 = 12
t2 (P 2

i

2
tan θ
cos θ

− H0Pi

cos θ
) ,

C22 = 12
t2 ( P 3

i

3 cos θ
) + (Pi

sin2 θ
cos θ

) + 2(1+ν)
k

(Pi cos θ) ,

C23 = C32 = 12
t2 ( −P 2

i

2 cos θ
) ,

C33 = 12
t2 ( Pi

cos θ
)

(2.14)
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Therefore, by applying the BCs, the horizontal displacement δH for the ith segment
can be found as:

δHi
= 1 − ν2

EA

det(C)
det(Cred) , (2.15)

which index i denotes the segments AB, BC, AD, and DC, respectively, which are shown
in Figure 8, and Cred matrix is defined as:

Cred =
C22 C23

C32 C33

 . (2.16)

Since segments one and two have the same displacement at the free end under a
common force H, they act like two parallel springs. Similarly, segments three and four are
two springs in parallel. Considering that keq12 and keq34 can be handled as two springs in
parallel, namely:

keq12 = k1 + k2 = 1
δH1

+ 1
δH2

= 1
δHeq12

, (2.17)

keq34 = k3 + k4 = 1
δH3

+ 1
δH4

= 1
δHeq34

, (2.18)

keq = keq12 + keq34 = 1
δHeq12

+ 1
δHeq34

= 1
δH

, (2.19)

Gyzcore = τyz

γyz

= Fy/Ayx

δy/lz
= H0

P0

1
δH

, (2.20)

where keq12 is the equivalent spring constant of segments one and two, and keq34 is the
equivalent spring constant of segments three and four. Moreover, Equation (2.19) shows
that the total displacement δH is obtained as the inverse of the total spring constant Keq.

The second equivalent material parameter is the modulus of elasticity in the
longitudinal direction. Following the same procedure seen for Gyz, for the computation of
Ey the two segments one and two of the core are subjected to a unit horizontal force H

and the related horizontal displacements δHi
are derived for both the segments, namely:

M = H(H0 − y tan θ) − M0

N = H cos θ

T = H sin θ

, (2.21)


∂M
∂H

= H0 − y tan θ ∂M
∂M0

= −1
∂N
∂H

= cos θ ∂N
∂M0

= 0
∂T
∂H

= sin θ ∂T
∂M0

= 0
, (2.22)

 δHi

δM0i

 = 1
EA

C11 C13

C31 C33

H

M0

 , (2.23)

δHi
= 1 − ν2

EA
(C11 − c2

13
c33

) (2.24)
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Considering segments one and two acting like two springs in a series. Similarly,
segments three and four are two springs in a series, too. However, keq12 and keq34 can be
handled as two springs in parallel, which results,

δHeq12 = δH1 + δH2 , (2.25)

δHeq34 = δH3 + δH4 , (2.26)
1

δH

= 1
δHeq12

+ 1
δHeq34

, (2.27)

Eycore = σy

ϵy

= Fy/Axz

σy/ly
= P0

H0

1
δH

. (2.28)

Figure 10 – The equivalent structures area section and section area of plates schematic
diagram.

The modulus of elasticity in the lateral direction (x-direction) can be computed
as the Young modulus of constituent material E multiplied by the ratio of actual section
area of plates and equivalent structures, as shown in Figure 10:

Excore = E
Ax

Aeqx

= E
2tc(l1 + l2)

2H0P0
= E

tc(l1 + l2)
H0P0

, (2.29)

with
l1 = P1

cos(θ1)
, l2 = P2

cos(θ2)
(2.30)

where Ax and Aeqx are the actual section area of the corrugated core sheet and the section
area of the equivalent material, and l1 and l2 are the length of segments one and two,
respectively.
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The transverse shear modulus in the xz-plane Gxz can be derived for each of the
four segments based on considerations done by Bartolozzi, Baldanzini and Pierini (2014).
Since both middle ends are supposed to be clamped, the investigated cell can also be part
of a periodic structure. Considering again separately the segments one, two, three, and
four the formula given by Bartolozzi, Baldanzini and Pierini (2014) can be written for
each of them as:

Gxzi
= G

H0tc

Pili
. (2.31)

As already assumed for the Gyz parameter, also in this case the segments one and
two and also segments three and four are supposed to work as two springs in parallel
since they must have the same displacement of the upper end. Furthermore, the upper
equivalent part and the lower equivalent part act like two parallel springs. Skipping the
step to obtain the spring stiffness values, it can directly write the equivalent shear modulus
as:

Gxz = Gxz1V1 + Gxz2V2 + Gxz3V3 + Gxz4V4 , (2.32)

where
Vi = Pi

P1 + P2 + P3 + P4
. (2.33)

Substituting Equations (2.31) and (2.33) in Equation (2.32), gives:

Gxzcore = G
2H0tc

P0
( 1
l1

+ 1
l2

+ 1
l3

+ 1
l4

) . (2.34)

Figure 11 – The scheme of the Gxy parameter.

This section involves the calculation of the Gxy parameter. In order to estimate
this parameter, the left end of the unit cell is clamped and a force H is applied in the
x-direction at another end as shown in Figure 11. The displacement of the free end in the
x-direction can then be calculated, in pure shear conditions:

δxy12 = H(l1 + l2)
5
6Gtcb

, (2.35)

δxy34 = H(l1 + l2)
5
6Gtcb

, (2.36)
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1
δxyeq

= 1
δxy12

+ 1
δxy34

, (2.37)

δxyeq = 1
2

H(l1 + l2)
5
6Gtcb

. (2.38)

Moreover, the shear deformation of the volume occupied by the equivalent material
in the period P0, can be determined as:

δxyeq = HP0
5
6Gxy2H0b

. (2.39)

By putting these two expressions equal, the value of the Gxy can be found as:

Gxycore = G
tc

H0

P0

(l1 + l2)
. (2.40)

Assuming the Poisson’s ratio in the xy-plane (νxy) to be equal to that of the
constituent material, as typically done by Bartolozzi, Baldanzini and Pierini (2014) and
νyx are:

νxycore = ν , (2.41)

and
νyxcore = ν

Ey

Ex

. (2.42)

The mass density of the core is calculated as follows:

ρcore = ρ
Ltc

P02H0
, (2.43)

where
L = l1 + l2 + l3 + l4 . (2.44)
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3 AEROELASTIC MODEL AND FLUTTER ANALYSIS

A simply supported rectangular topology optimized core sandwich panel, that the
external side is in supersonic airflow, is displayed in Figure 12, with length b, width L

which (L = b) and height h. The thicknesses of the core, upper and lower face sheets are
h2, h3, and h1 respectively. The thickness of the topology-optimized core is tc. Due to the
periodicity and symmetry, the core can be divided into multiple units with the same shape.
The x-axis of the reference frame is defined along the corrugation direction and the y-axis
denotes the transverse direction where the supersonic airflow comes, while z-direction is
perpendicular to the xy-plane.

Figure 12 – Supersonic panel flutter problem.

3.1 Structure model

After the homogenization process of topology optimized core, a higher order
layerwise theory (FERREIRA, 2005) is used for the displacement field of the equivalent
three-layer sandwich panel, as diagrammatically displayed in Figure 13. A higher-order
layerwise theory, is utilized for modeling the displacement field of an equivalent three-layer
sandwich panel because it offers a more accurate representation of the structural response
and behavior of the panel. This type of theory takes into account higher-order deformations,
allowing for a more precise prediction of how the layers within the sandwich panel interact
and deform under various loading conditions. The use of a higher-order layerwise theory
provides better insights into phenomena such as shear and interlaminar stresses, which may
not be adequately captured by simpler models. This increased accuracy is especially crucial
in applications where structural integrity and performance are paramount, ensuring that
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the design and analysis of the sandwich panel are more reliable and closer to real-world
behavior (FERREIRA, 2005).

Figure 13 – Depiction of the layerwise kinematics in one dimension (FERREIRA, 2005)

The displacement field in the middle layer (the core in the sandwich plate) is
defined as, 

u(2)(x, y, z, t) = u0(x, y, t) + z(2)ϕ(2)
x (x, y, t)

υ(2)(x, y, z, t) = υ0(x, y, t) + z(2)ϕ(2)
y (x, y, t)

ω(2)(x, y, z, t) = ω0(x, y, t)
, (3.1)

being u and υ the inplane displacements at any point (x, y, z), u0 and υ0 the in-plane
displacement of the point (x, y, 0) on the midplane of the core, ω is the deflection, ϕ(2)

x ,
and ϕ(2)

y are the rotations. The strain and displacement relation for the middle layer is
derived as,

ε(2) =



ε(2)
x

ε(2)
y

γ(2)
xy

γ(2)
xz

γ(2)
yz


=



∂u0
∂x
∂υ0
∂y

∂u0
∂y

+ ∂υ0
∂x

∂ω0
∂x

+ ϕ(2)
x

∂ω0
∂y

+ ϕ(2)
y


+ z(2)



∂ϕ
(2)
x

∂x

∂ϕ
(2)
y

∂y

∂ϕ
(2)
x

∂y
+ ∂ϕ

(2)
y

∂x

0
0


, (3.2)

The plate strain separates into in-plane strain, εp, and transverse shear strain, εs

and can be expressed as,
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ε(2)
p =


ε(2)

x

ε(2)
y

γ(2)
xy

 = εm(2) + z(2)εf(2) , (3.3)

and

ε(2)
s =

γ(2)
xz

γ(2)
yz

 , (3.4)

in which εm(2) and εf(2) are the membrane and bending components of the middle layer.

The corresponding displacement fields, strain, and displacement relations for the
(skins) upper-layer (index 3) and lower-layer (index 1) are given, respectively, as,


u(3)(x, y, z, t) = u0(x, y, t) + h2

2 ϕ(2)
x + h3

2 ϕ(3)
x + z(3)ϕ(3)

x

υ(3)(x, y, z, t) = υ0(x, y, t) + h2
2 ϕ(2)

y + h3
2 ϕ(3)

y + z(3)ϕ(3)
y

ω(3)(x, y, z, t) = ω0(x, y, t)
, (3.5)

ε(3)
p = εm(3) + z(3)εf(3) + εmf(3) , (3.6)


u(1)(x, y, z, t) = u0(x, y, t) − h2

2 ϕ(2)
x − h1

2 ϕ(1)
x + z(1)ϕ(1)

x

υ(1)(x, y, z, t) = υ0(x, y, t) − h2
2 ϕ(2)

y − h1
2 ϕ(1)

y + z(1)ϕ(1)
y

ω(1)(x, y, z, t) = ω0(x, y, t)
, (3.7)

ε(1)
p = εm(1) + z(1)εf(1) + εmf(1) , (3.8)

and the membrane-bending coupling components for layers 3 and 1 are εmf(3) and εmf(1)

respectively.

The equation is discretized using the Classical Finite Element formulation. Here,
the four-node Lagrangian quadrilateral element for the panel with 9 degrees of freedom per
node u0, υ0, ω0, ϕ(1)

x , ϕ(1)
y , ϕ(2)

x , ϕ(2)
y , ϕ(3)

x , ϕ(3)
y , that are grouped into membrane DOFs u0, υ0,

transfer DOF ω0, rotation DOFs of the normals to the midplane about the y and x axes
ϕ(2)

x , ϕ(2)
y , to the upper layer about the y and x axes ϕ(3)

x , ϕ(3)
y and to the bottom layer

about the y and x axes ϕ(1)
x , ϕ(1)

y . Hence, the elemental DOF vector can be written as

um =
[
u1 υ1 u2 υ2 u3 υ3 u4 υ4

]T
,

uω =
[
ω1 ω2 ω3 ω4

]T
,

uϕ(1) =
[
ϕ

(1)
x1 ϕ

(1)
y1 ϕ

(1)
x2 ϕ

(1)
y2 ϕ

(1)
x3 ϕ

(1)
y3 ϕ

(1)
x4 ϕ

(1)
y4

]T
,

uϕ(2) =
[
ϕ

(2)
x1 ϕ

(2)
y1 ϕ

(2)
x2 ϕ

(2)
y2 ϕ

(2)
x3 ϕ

(2)
y3 ϕ

(2)
x4 ϕ

(2)
y4

]T
,

uϕ(3) =
[
ϕ

(3)
x1 ϕ

(3)
y1 ϕ

(3)
x2 ϕ

(3)
y2 ϕ

(3)
x3 ϕ

(3)
y3 ϕ

(3)
x4 ϕ

(3)
y4

]T
,

(3.9)

in which indices 1 through 4 refer to the elemental nodes.
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Using the nodal shape functions the DOFs are interpolated as

ω = NT
ω uω = ∑n

i=1 Ni(ζ, η)ωi

u = NT
u um = ∑n

i=1 Ni(ζ, η)ui

υ = NT
υ um = ∑n

i=1 Ni(ζ, η)υi

ϕ(1)
x = NT

u uϕ(1) = ∑n
i=1 Ni(ζ, η)ϕ(1)

xi

ϕ(1)
y = NT

υ uϕ(1) = ∑n
i=1 Ni(ζ, η)ϕ(1)

yi

ϕ(2)
x = NT

u uϕ(2) = ∑n
i=1 Ni(ζ, η)ϕ(2)

xi

ϕ(2)
y = NT

υ uϕ(2) = ∑n
i=1 Ni(ζ, η)ϕ(2)

yi

ϕ(3)
x = NT

u uϕ(3) = ∑n
i=1 Ni(ζ, η)ϕ(3)

xi

ϕ(3)
y = NT

υ uϕ(3) = ∑n
i=1 Ni(ζ, η)ϕ(3)

yi

, (3.10)

where, Ni(ζ, η) are the shape functions of a bilinear four-noded Q4 element, namely,

Nω =
{
N1 N2 N3 N4

}T
,

Nu =
{
N1 0 N2 0 N3 0 N4 0

}T
,

Nυ =
{
0 N1 0 N2 0 N3 0 N4

}T
.

The bending strain for the three layers can be defined as:

ε(1)
p = B(1)

m de + Z(1)B
(1)
f de + B

(1)
mfde

ε(2)
p = B(2)

m de + Z(2)B
(2)
f de

ε(3)
p = B(3)

m de + Z(3)B
(3)
f de + B

(3)
mfde

. (3.11)

The shear strain for the first, second, and third layers can be defined as:

ε
(k)
(s) = B(k)

s de , (3.12)

where k = 1, 2, 3 is the numbering of the layers and,

dT
e =

 u1 υ1 ω1 ϕ
(1)
x1 ϕ

(1)
y1 ϕ

(2)
x1 ϕ

(2)
y1 ϕ

(3)
x1 ϕ

(3)
y1 . . .

ϕ
(3)
x4 ϕ

(3)
y4

 . (3.13)

The membrane, bending, membrane-bending coupling, and shear strain matrices
of three layers are obtained by derivation of the shape functions as,

B(2)
m =


∂N
∂x

0 0 0 0 0 0 0 0
0 ∂N

∂y
0 0 0 0 0 0 0

∂N
∂y

∂N
∂x

0 0 0 0 0 0 0

 , (3.14)

B
(2)
f =


0 0 0 0 0 ∂N

∂x
0 0 0

0 0 0 0 0 0 ∂N
∂y

0 0
0 0 0 0 0 ∂N

∂y
∂N
∂x

0 0

 , (3.15)
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B(2)
s =

0 0 ∂N
∂x

0 0 N 0 0 0
0 0 ∂N

∂y
0 0 0 N 0 0

 , (3.16)

B(1)
m = B(3)

m = B(2)
m , (3.17)

B
(1)
f =


0 0 0 ∂N

∂x
0 0 0 0 0

0 0 0 0 ∂N
∂y

0 0 0 0
0 0 0 ∂N

∂y
∂N
∂x

0 0 0 0

 , (3.18)

B
(1)
mf =


0 0 0 −h1

2
∂N
∂x

0 −h2
2

∂N
∂x

0 0 0
0 0 0 0 −h1

2
∂N
∂y

0 −h2
2

∂N
∂x

0 0
0 0 0 −h1

2
∂N
∂y

h1
2

∂N
∂x

−h2
2

∂N
∂y

h2
2

∂N
∂x

0 0

 , (3.19)

B(1)
s =

0 0 ∂N
∂x

N 0 0 0 0 0
0 0 ∂N

∂y
0 N 0 0 0 0

 , (3.20)

B
(3)
f =


0 0 0 0 0 0 0 ∂N

∂x
0

0 0 0 0 0 0 0 0 ∂N
∂y

0 0 0 0 0 0 0 ∂N
∂y

∂N
∂x

 , (3.21)

B
(3)
mf =


0 0 0 0 0 h2

2
∂N
∂x

0 h3
2

∂N
∂x

0
0 0 0 0 0 0 h2

2
∂N
∂y

0 h3
2

∂N
∂y

0 0 0 0 0 h2
2

∂N
∂y

h2
2

∂N
∂x

h3
2

∂N
∂y

h3
2

∂N
∂x

 , (3.22)

B(3)
s =

0 0 ∂N
∂x

0 0 0 0 N 0
0 0 ∂N

∂y
0 0 0 0 0 N

 . (3.23)

Then, the strain energy function U of the plate is obtained by:

U = 1
2

∫
V

(εT σ + γT τ)dV , (3.24)

resulting

U(δ) = 1
2

∫
Ωlayer1

(ε(1)T
m A1ε

(1)
m + ε(1)T

m B1ε
(1)
f + ε(1)T

m A1ε
(1)
mf + ε

(1)T
f B1ε

(1)
m + ε

(1)T
f D1ε

(1)
f +

ε
(1)T
f B1ε

(1)
mf + ε

(1)T
mf A1ε

(1)
m + ε

(1)T
mf B1ε

(1)
f + ε

(1)T
mf A1ε

(1)
mf + ε(1)T

s Ds1ε
(1)
s )dΩlayer1+

1
2

∫
Ωlayer2

(ε(2)T
m A2ε

(2)
m + ε(2)T

m B2ε
(2)
f + ε

(2)T
f B2ε

(2)
m + ε

(2)T
f D2ε

(2)
f + ε(2)T

s Ds2ε
(2)
s )dΩlayer2+

1
2

∫
Ωlayer3

(ε(3)T
m A3ε

(3)
m + ε(3)T

m B3ε
(3)
f + ε(3)T

m A3ε
(3)
mf + ε

(3)T
f B3ε

(3)
m +

ε
(3)T
f D3ε

(3)
f +ε

(3)T
f B3ε

(3)
mf +ε

(3)T
mf A3ε

(3)
m +ε

(3)T
mf B3ε

(3)
f +ε

(3)T
mf A3ε

(3)
mf +ε(3)T

s Ds3ε
(3)
s )dΩlayer3 ,
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where δ is the vector of degrees of freedom associated to the displacement field in a
finite element discretization. The extensional, bending-extensional, and bending stiffness
coefficients of three layers (k = 1, 2, 3) are defined as,

{Ak, Bk, Dk} =
∫ zk+1

zk

[Q̄(k)
p ]

{
1, Z, Z2

}
dz , (3.25)

and the transverse shear stiffness coefficient is,

{Dsk} =
∫ zk+1

zk

[Q̄(k)
s ]υiυjdz , (3.26)

where (i, j = 4, 5), υi and υj are the transverse shear correction factors for non-uniform
shear strain distribution through the plate thickness, and Q(k)

p and Q(k)
s are the constitutive

matrices for the k(th) layer, and (k = 1, 2, 3) is the index for the bottom, middle, and
upper layers, respectively,

Q(k)
p =


Q

(k)
11 Q

(k)
12 0

Q
(k)
12 Q

(k)
22 0

0 0 Q
(k)
66

 , (3.27)

Q(k)
s =

Q
(k)
44 0
0 Q

(k)
55

 . (3.28)

For the middle layer (k = 2), the topology-optimized core is homogenized as an
orthotropic plate and the angle between the x-axis of the global coordinate system and
the 1-axis of the material coordinate system is zero. The coefficients of the core stiffness
matrix are given by:

Q
(2)
11 = Ec

x

1 − νc
xyνc

yx

,

Q
(2)
22 =

Ec
y

1 − νc
xyνc

yx

,

Q
(2)
12 =

νc
xyEc

y

1 − νc
xyνc

yx

,

Q
(2)
66 = Gc

xy ,

Q
(2)
44 = Gc

yz ,

Q
(2)
55 = Gc

xz .

(3.29)

For the bottom and top layers (k = 1, 3), the coefficients of the stiffness matrix are
given by:
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Q
(k)
11 = Q

(k)
22 = Ef

1 − νfνf
,

Q
(k)
12 = νfEf

1 − νfνf
,

Q
(k)
66 = Q

(k)
44 = Q

(k)
55 = Gf = Ef

2(1 + νf ) ,

(3.30)

where Ef is the Young modulus and νf is the Poisson ratio of the constituent material of
the face sheet.

The kinetic energy of the plate is given by:

T (δ) = 1
2

∫ {
p̄
[
u̇2

0 + υ̇2
0 + ω̇2

0 + I
(
θ̇2

x1 + θ̇2
y1 + θ̇2

x2 + θ̇2
y2 + θ̇2

x3 + θ̇2
y3

)]}
dΩ , (3.31)

where p̄ =
∫ zk+1

zk
ρ(z)dz and I =

∫ zk+1
zk

z2ρ(z)dz, ρ(z) is the mass density of the plate, and
the work done by the externally applied non-conservative load is:

W (δ) =
∫

Ω
∆PωdΩ , (3.32)

where ∆P is the aerodynamic pressure.

3.2 Aerodynamic model

The supersonic aerodynamic loading over the topology optimized sandwich panel is
modeled by the aerodynamic pressure based on first-order, high Mach number approxima-
tion to linear potential flow is given by the Ackeret equation (MARQUES; NATARAJAN;
FERREIRA, 2017):

∆P = ρaU2
a√

M2
∞ − 1

(
∂ω

∂x
cosΨ + ∂ω

∂y
sinΨ

)
, (3.33)

where ρa, Ua, M∞, and Ψ are the free stream air density, velocity of air, Mach number,
and flow angle, respectively.

3.3 Aeroelastic equation of motion and flutter analysis

The governing equations of modal and aeroelastic analysis of the TOP core sandwich
panel are obtained by writing the Lagrange equations of motion given by:

∂

∂t

[
∂ (T + W − U)

∂δ̇i

]
−
[

∂ (T + W − U)
∂δi

]
= 0, for i = 1, 2, ..., n , (3.34)

where T is the kinetic energy (cf. Equation (3.31)), U is the potential (or strain) energy
(cf. Equation (3.24)), W is work done by the externally applied non-conservative load (cf.
Equation (3.32)), and δi is the generalized coordinate.
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In this research, eigenvalue analysis of the state-space model was accomplished
to analyze the panel flutter. The governing equations thus obtained are solved using
the standard Galerkin procedure (MARQUES; NATARAJAN; FERREIRA, 2017). The
dynamical finite element equations of the system are written in matrix form:

Mδ̈ +
(
K + λĀ

)
δ = 0 . (3.35)

After substituting the characteristic of the time function, δ̈ = −ω2δ, the following
algebraic equation is obtained:[(

K + λĀ
)

− ω2M
]

δ = 0 , (3.36)

where λ = ρaU2
a√

M2
∞−1

, M is the consistent mass matrix, K is the stiffness matrix, Ā is the
aerodynamic force matrix, and ω is the natural frequency.

When λ = 0, the eigenvalue of ω is real and positive, since the stiffness matrix and
the mass matrix are symmetric and positive definite. However, the aerodynamic matrix Ā
is asymmetric. The addition of the aerodynamic matrix to the stiffness matrix, makes the
system asymmetric and complex eigenvalues are thus expected for λ > 0. As λ increases
monotonically from zero, for a particular pressure, two of the eigenvalues will approach
each other and become complex conjugates. This is referred to as coalescence of modes. In
this study, λcritical is considered to be value at which the first coalescence occurs. Beyond
this point, the system is deemed unstable.
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4 RESULTS AND DISCUSSION

In order to accomplish the following analysis, the computer program is developed
by MATLAB codes. Firstly, the validation of homogenization modification is analyzed.
Then, a study on the validation example is done to show the computational ability of the
layerwise finite element method. Afterward, the natural frequencies and mode shapes of
the topology-optimized (TOP) sandwich panel compare with those from the ABAQUS
simulation of a detailed 3D finite element model.

Finally, the aeroelastic properties of the TOP sandwich panel are investigated.

4.1 Model Validation

4.1.1 Homogenization method validation

To validate the results of the theoretical analysis of homogenization, the results
are expanded to find the mechanical properties of the core with two face sheets and
then compared with FE models in two dimensions which are built and analyzed in an
ABAQUS plugin tool for periodic homogenization (OMAIREY; DUNNING; SRIRAMULA,
2019). It was made to calculate the homogenized effective elastic properties of a periodic
representative volume element that the user has created (RVE). The plugin determines the
homogenized properties of the periodic RVE. It automatically implements the principles of
the periodic RVE homogenization method in the software’s user interface by categorizing,
creating, and linking sets required for achieving deformable periodic boundary surfaces,
which can distort and no longer remain plane.

Calculation of the mechanical properties of the whole sandwich panel
for homogenization validation:

The elastic constants for the whole sandwich panel are given in the sections below.
They are based on the classical lamination theory to combine the contribution of the
core and the faces for the in-plane properties (BARTOLOZZI; BALDANZINI; PIERINI,
2014). Here the principal material directions (1, 2, 3) coincide with the (x, y, z) coordinate
system. The stiffness matrix quantities of the total panel have the following forms:

Ctotal = C1t1 + CcH + C2t2

t1 + t2 + H
, (4.1)

where C1 and C2 are the stiffness matrices of the bottom and top faces with thickness t1

and t2 respectively, and Cc is the equivalent stiffness of the core with thickness H.
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Therefore,

Ctotal =


C11 C12 0
C21 C22 0
0 0 C66

 , (4.2)

where
C11 = E11

1−ν12ν21
,

C22 = E22
1−ν12ν21

,

C12 = C21 = ν21E11
1−ν12ν21

= ν12E22
1−ν12ν21

,

C66 = G12 .

(4.3)

From the research conducted by (LIBOVE; HUBKA, 1951):

Gyxtotal
= Gct

2
c

Ac

+ 2Gf tf , (4.4)

where Gc and Gf are the shear modulus of elasticity of core material and shear modulus of
elasticity of face sheet material, respectively, and tc and tf are the thickness of corrugated-
core sheet and thickness of each face sheet, respectively. Ac is the area, per unit width, of
the corrugation cross section perpendicular to the corrugation axis.

For the out-of-plane properties, a series behavior of the layers is supposed, and the
total shear modulus can be found as (BARTOLOZZI; BALDANZINI; PIERINI, 2014):

Gxztotal
= t1 + t2 + 2H0

t1+t2
Gf

+ 2H0
Gxzc

, (4.5)

and
Gyztotal

= t1 + t2 + 2H0
t1+t2

Gf
+ 2H0

Gyzc

, (4.6)

where t1 and t2 are the lower and upper face sheet thickness, respectively, and Gf is the
shear modulus of the face sheet material.

The Poisson’s ratio νyx in an orthotropic material is:

νyxtotal
= νxytotal

Eytotal

Extotal

, (4.7)

where νxytotal
is equal the νxycore .

The density of the whole panel is:

ρtotal = ρ[tc(l1 + l2) + (H0tf )]
P0H0

, (4.8)

where ρ is the density of the material and other parameters are dimensions of the unit cell
shown in Figure 8.

The results of the ABAQUS plugin are compared with the analytical method. The
dimensions and material properties of the Figure 8 are set as follows: θ1 = π/3, θ2 = π/6,
P1 = 2mm, P2 = 6mm, tcore = 0.5mm, t1 = t2 = 1mm, k = 5/6, ν = 0.34, E = 110GPa.
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Figure 14 – Model subjected displacements to estimate Young’s modulus and Poisson’s
ratio in x direction

The FEM model of the elastic modulus in x-direction (Ex) and Poisson’s ratio
(νxy), is shown in Figure 14.

Figure 15 shows the FEM calculation model of the elastic modulus in y-direction,
Ey and Poisson’s ratio in y direction νyx. The FEM model of the transverse shear modulus
in xy-plane, Gxy, is shown in Figure 16. The FEM model for the transverse shear modulus
in xz-plane, Gxz, is shown in Figure 17.

The analytical formulation and FE simulation obtain the equivalent beam parame-
ters, and the results of the FE simulation are used to verify the accuracy of analytical
formulations. In this section, the mechanical parameters are calculated by these two
techniques.

The equivalent properties of the beam are estimated in both analytical and finite
element ABAQUS software in Table 2. The results show that the analytical method aligns
with the FE simulation, indicating that the analytical approach is suitable for evaluating
material parameters in similar structures. However, there are small differences between
the analytical approach and the FE models: this is mainly due to the approximation of
the analytical method, which considers the center line of the geometry for approximation.
Hence, to obtain equivalent parameters for the topology optimized panel, it is sufficient
to substitute Young’s modulus of the constituent material E with its panel modulus
E/(1 − ν2) in Gxz and Ex formulation (BARTOLOZZI; BALDANZINI; PIERINI, 2014).
The properties of the isotropic panel and the equivalent properties of the core are estimated
in Table 3.
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Figure 15 – Model subjected displacements to estimate Young’s modulus and Poisson’s
ratios in y direction

Figure 16 – Model subjected displacements to estimate shear modulus Gxy

4.1.2 Layerwise theory validation

In order to study the convergence and accuracy of the present layerwise finite element
method, the free vibration problem is performed, and the non-dimensional fundamental
frequency, Λ = 100ω

√
ρcoreh2

E1core
, given with different mesh sizes of a simply supported

square plate is considered in Table 4. The length-to-thickness ratio (a/h) = 10, face sheet
thicknesses 0.1h, and core thickness 0.8h. The material properties for the core and face
sheets are as follows:
Core: E2/E1 = 0.543, G12/E1 = 0.2629, G13/E1 = 0.1599, G23/E1 = 0.2668, ν = 0.3.
Facesheets: the material properties of the face sheet are given in terms of the ratio R of
those of the core, and R varies from 1 to 10, where the elastic moduli of the face layers
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Figure 17 – Model subjected displacements to estimate shear modulus Gxz

Table 2 – Comparing equivalent properties of the beam in analytical approach and the
FE model.

Mechanical properties Whole beam Whole beam Relative difference
(Analytical) (FEM) (%)

Ex[GPa] 26.1653 27.0741 -3.36
Ey[GPa] 41.4712 41.0656 0.99
Gyz[GPa] 16.4425 16.1451 1.80
Gxy[GPa] 15.4743 15.2334 1.55
Gxz[GPa] 10.0758 10.0152 0.60

νyx 0.3400 0.3399 0.03
νxy 0.2145 0.2241 -4.28

ρ[ g
cm3 ] 1.3853 1.4601 -5.39

Table 3 – The properties of the isotropic panel and the equivalent properties of core.

Mechanical properties Isotropic panel Core of the panel
Ex[GPa] 110 0.5261
Ey[GPa] 110 21.6886
Gyx[GPa] 41.04 4.3369
Gyz[GPa] 41.04 14.0171
Gxy[GPa] 41.04 8.0927
Gxz[GPa] 41.04 9.3558

νyx 0.34 0.34
νxy 0.34 0.0082

ρ[ g
cm3 ] 4.3 0.847

are obtained by multiplying R with those of the core.

A mesh convergence analysis is performed on the present model and demonstrates
that the 20 × 20 mesh produces results with satisfactory accuracy. Moreover, the results
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obtained by the present method agreed well with the finite element solutions of Chakrabarti
and Sheikh (2004).

Table 4 – Convergence study of non-dimensional frequency parameter Λ = 100ω
√

ρcoreh2

E1core

of the present LW model with different mesh sizes.

R
Mesh 1 2 5 10
10×10 4.814 6.036 7.860 9.259
12×12 4.834 6.011 7.829 9.223
16×16 4.815 5.988 7.801 9.189
20×20 4.807 5.978 7.788 9.174
25×25 4.802 5.972 7.780 9.165

Chakrabarti and Sheikh (2004) 4.738 5.695 7.695 9.771
Relative errors (%) 1.35 4.86 1.10 -6.20

4.2 Modal analysis of topology optimized core sandwich panel

The TOP sandwich panel, all made of Ti6Al4V alloy, is taken into consideration.
The dimensions and material properties of the core and face sheets are set as follows:
L = b, h = 0.01m, L/h = 100, 2H0 = 0.8h, θ1 = π/3, θ2 = π/6, tcore = 0.18h, ts =
0.1h, k = 5/6 , E = 110GPa, ν = 0.3, ρ = 4.3g/cm3.

Free vibration analysis of the TOP sandwich panel is performed under simply supported at
all sides (SSSS). The homogenized TOP sandwich panel is simulated in ABAQUS software
by quadratic elements with a total of 2800 elements. The mesh size of the layerwise method
is 20 × 20. The natural frequencies of the first six modes are compared in Table 5. The
results calculated by the present method are in good agreement with the solutions of
ABAQUS. This comparison reveals the frequencies of low-order modes have good accuracy
and validity, and the maximum error of 6.50 percent appears in the sixth mode in modal
analysis of the TOP sandwich panel, which indicates that the formulae in this thesis are
correct.

Table 5 – Comparison of the present natural frequencies (rad/s) of TOP core sandwich
panel under the simple-supported boundary condition (SSSS) with those obtained
by the ABAQUS.

Number Mode shape Present method ABAQUS Relative errors(%)
1 (1,1) 45.59 44.95 1.42
2 (1,2) 104.63 106.76 1.99
3 (2,1) 122.35 118.93 2.87
4 (2,2) 177.76 179.67 -1.06
5 (1,3) 214.47 210.19 2.03
6 (3,1) 258.27 242.49 6.50
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The first six mode shapes of the simply supported TOP sandwich panel of the present
method and ABAQUS output are displayed in Figure 18 and Figure 19, respectively. The
mode shapes from the present method are as same as those from the ABAQUS simulation.

Figure 18 – Mode shapes of the first six order of the simply supported the TOP sandwich
panel in the present method.

Figure 19 – Mode shapes of the first six order of the simply supported the TOP sandwich
panel in ABAQUS.

4.3 Linear flutter analysis of the topology optimized core sandwich panel

Aeroelastic analysis of the TOP sandwich plate listed in Section 4.2 is studied at
sea level with air density ρair = 1kg/m3 and reference Mach number Ma = 2.0. The first
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four modes of interest are investigated.

The critical flutter λ-Frequency and real to imaginary curves for the simply sup-
ported boundary condition are indicated in Figure 20. The flutter, which is widely known to
happen when the real part of the eigenvalue shifts from a negative to a positive value, may
typically be approximated by the coalescence of two successive natural frequencies. The
critical flutter aerodynamic pressure λc is the corresponding non-dimensional aerodynamic
pressure. From Figure 20, it can be shown that at λc=2983, two frequencies coalesce. At
λ=2525, the second and third natural frequencies display a veering phenomenon. However,
this won’t have an impact on the structure’s flutter analysis.
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Figure 20 – Critical flutter λ-frequency curve of a TOP sandwich panel with all simply
supported sides

The first three orders of mode shapes for various aerodynamic pressures are shown
in Figures 21 to 23. Figure 21 shows that the first three orders of mode at λ= 2500 (before
the veering point at λ= 2550) are (1, 1), (2, 1), and (1, 2). The first three mode shapes,
however, transform after the veering point, at λc= 2600, into (1, 1), (1, 2), and (2, 1),
Figure 22. The change between modes (2, 1) and (1, 2) shows that the aerodynamic
pressure decreases the sandwich panel’s rigidity in the y-direction. Additionally, it can
be shown in Figure 23 that after the flutter bound, the first two orders of mode shapes
become the same.
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Figure 21 – First three mode shapes under λ= 2500.
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Figure 22 – First three mode shapes under λ= 2600.
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Figure 23 – First three mode shapes under λ= 2990.

4.3.1 Effects of core metastructure thickness

Figure 24 shows the schematic diagram of the TOP unit cell of the core with different
thicknesses tcore. Except for the core thickness, the geometric and material parameters
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of the TOP sandwich panel are the same. Figure 25 displays changes in non-dimensional
critical dynamic pressure of the TOP sandwich plates with different thicknesses of the
core metastructure. The density of the core rises as metastructure thickness does as well,
Figure 26, resulting in higher structural weight and lower critical dynamic pressure.

Figure 24 – Schematic diagram of TOP unit cell with different core thickness ratios.
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Figure 25 – Effects of core metastructure thickness on nondimensional critical dynamic
pressure of a simply supported TOP sandwich panel.

4.3.2 Effects of TOP metastructure angle and face-to-thickness ratio

Figure 28 shows the effects of metastructure angle of the TOP sandwich panel on
the non-dimensional critical dynamic pressure λc with various θ2 and θ1, Figure 27. It
is clearly shown that λc improves with decreasing the differences between metastructure
angles, θ2 and θ1. Also, Figure 29 indicates the critical dynamic pressure increases first
and then decreases when the thickness of the wall increases. The maximum amount of
critical flutter will be in the thickness ratio ts/h = 0.15 with the angles θ1 = θ2 = 45,
which shows that the use of geometry inspired by the topology optimization method is an
optimum geometry as the core of sandwich panels in aerospace application. In fact, using
the topology optimization method in order to minimize compliance and maximize stiffness
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Figure 26 – Effects of core metastructure density on nondimensional critical dynamic
pressure of a simply supported TOP sandwich panel.

has a positive effect on the aeroelasticity properties of sandwich panels. Not only does
TOP core boost flutter speed, but it also reduces panel weight by 29 percent, improving
flight efficiency for the aerospace industry.

Figure 27 – Schematic diagram of TOP unit cell with different cell angles.

4.3.3 Effects of flow angle

For a TOP sandwich plate with a given side-to-thickness ratio a/h, there are
different possible flow angles which is shown in Figure 12, Ψ , with respect to the plane
reference system: 0◦, 30◦, 45◦, 60◦, and 90◦. Figure 30 presents the effects of flow angle
on the non-dimensional critical dynamic pressure λc and flutter frequency. It is shown
that the critical flutter aerodynamic pressure decreases as the flow angle rises. The airflow
will be oriented in the x-direction when the flow angle equals 90 degrees. The flutter
boundaries of the sandwich panel under 0° and 90° flow angles should be equivalent if the
panel’s dimensions in the x and y axes are equal since the sandwich panel is transversely
isotropic. The sandwich panel under study is a square one with an orthotropic core whose



66

10 15 20 25 30 35 40 45

2

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

t
s
/h=0.075

t
s
/h=0.1

t
s
/h=0.125

t
s
/h=0.15

t
s
/h=0.175

t
s
/h=0.2

Figure 28 – Effect of cell angle on nondimensional critical dynamic pressure of a simply
supported TOP sandwich panel.
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Figure 29 – Effect of ace-to-thickness ratio on nondimensional critical dynamic pressure
of a simply supported TOP sandwich panel.

mechanical properties are unique and independent in three overlapping directions. It is the
primary reason for the differential results for 0° and 90° flow angles displayed in Figure 30.
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Figure 31 displays the sandwich panel’s fluttering mode shapes at various flow
angles. It is demonstrated how the fluttering mode gradually shifts from (1, 2) to (2, 1).
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Figure 30 – Effects of flow angle on nondimensional critical dynamic pressure of a simply
supported TOP sandwich panel.
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Figure 31 – TOP sandwich panel fluttering modes at different flow angles.

4.3.4 Comparing isotropic panel, isotropic sandwich panel, and TOP sandwich panel

The flutter characteristics of an isotropic panel with the same mass, width, and
length as the TOP sandwich panel and a sandwich panel with an isotropic core are
examined in order to compare the flutter characteristics of TOP sandwich panels with
regular isotropic and sandwich isotropic panels. The formula hiso = 2hf + (ρchc)

ρ
can be

used to get the isotropic panel’s thickness.
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The natural frequencies of the isotropic panel, isotropic core sandwich panel, and
TOP sandwich panel are shown in Figure 32. The results show that in the lower frequencies,
the differences between the natural frequencies are less than the ones in the higher ones.
While the natural frequencies of the isotropic sandwich panel and isotropic panel are close,
the natural frequencies of the TOP sandwich panel are higher with a significant difference.
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Figure 32 – Comparing natural frequencies of the isotropic panel, Isotropic core sandwich
panel, and TOP sandwich panel.

Also, the relationship between natural frequencies and aerodynamic pressure is
depicted in Figure 33. The critical flutter aerodynamic pressure of the isotropic panel is
λc = 520, which is significantly less than that of the TOP sandwich panel (λc = 2983 as
shown in Table 6) while the critical flutter aerodynamic pressure of the sandwich panel
with isotropic core is λc = 460 nearly the critical flutter aerodynamic pressure of the
isotropic panel with the same density.

Table 6 – Flutter boundaries, thickness, and density of the isotropic, isotropic sandwich,
and TOP sandwich panels in the simply supported boundary condition.

isotropic panel isotropic core sandwich panel TOP sandwich panel
λc 520 460 2983

ρ(g/cm3) 4.3 4.3 3.0522
h(mm) 2hf + (ρchc)

ρ
= 7.7 2hf + hc = 10 2hf + hc = 10

The first six shape modes of the panels compared in this section are displayed in
Figure 34 through Figure 36.
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Figure 33 – Comparing variation of aerodynamic pressure of isotropic panel, isotropic core
sandwich panel, and TOP sandwich panel.
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Figure 34 – First six mode shapes of the isotropic panel in flutter condition.
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Figure 35 – First six mode shapes of the sandwich panel with the isotropic core in flutter
condition.
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Figure 36 – First six mode shapes of the TOP sandwich panel in flutter condition.
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5 CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this research, aeroelastic analysis of a sandwich plate with an inspired topology
optimized core is investigated. Firstly, the TOP core is considered a homogeneous continuum
with equivalent material properties. A layerwise shear deformation theory with independent
rotations in each layer is then applied. Meanwhile, the first-order Piston theory is used
to evaluate the aerodynamic load in supersonic flow. Finally, a finite element solution is
formulated by adopting a four-noded with 9 degrees of freedom per node.

The variable parameter analysis includes the effects of flow angle, core metastructure
thickness and the TOP metastructure angle and face-to-thickness ratio which all affect the
critical dynamic pressure of TOP sandwich plates. The main conclusions can be drawn as
follows:

1. The topology optimization of the simply supported panel, Figure 7, shows that at
the three-quarters of the panel, the topology is thicker and the density of the internal
topology of the panel is higher than other parts. It shows the critical point position
of the panel in flutter condition that fatigue is happened.

2. In validation of the modified homogenization method, the result in Table 2 shows
that the analytical formulation are consistent with those of the FE simulation,
which declares that the analytical formulation can be used to analyze the material
parameters of equivalent structures better. However, small differences between the
analytical approach and the FE models is mainly due to the approximation of the
analytical method, which considers the center line of the geometry for approximation.

3. The results indicate corrugation orientates parallel to streamwise lead to better
aeroelastic performance.

4. Calculations are made to determine the TOP sandwich plate’s critical dynamic
pressure of flutter. When the core thickness ratio rises, the critical dynamic pressures
fall. When the face sheet thickness increases, the critical dynamic pressure initially
rises and then falls. Additionally, λc gets better with less of a difference between
the angles of the structure. It demonstrates that the aeroelasticity characteristics of
sandwich panels are improved by applying the topology optimization approach to
minimize compliance and maximize stiffness.

5. The TOP sandwich plate’s natural frequencies are contrasted with isotropic panels
of equal mass, width, and length as well as with isotropic core sandwich panels of
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equal thickness, width, and length, all other plate parameters remaining constant.
The natural frequencies of the TOP sandwich panel are higher with a noticeable
difference, despite the fact that the natural frequencies of the isotropic sandwich
panel and isotropic panel are similar.

6. The critical dynamic pressure of flutter of the TOP sandwich panel, isotropic panel
and isotropic core sandwich panel is calculated. The critical flutter aerodynamic
pressure of the TOP sandwich panel is significantly higher than that of the isotropic
panel, whereas the critical flutter aerodynamic pressure of the sandwich panel with
an isotropic core is almost the same as the critical flutter aerodynamic pressure of
the isotropic panel with the same density.

7. With comparison the density of isotropic panel, isotropic core sandwich panel and the
TOP sandwich panel, the weight of the panel with the new geometry is 29 percent
less than the two other ones, which is more lightweight and leads to a decrease in
the consumption of fuel and as a results increase the efficiency of the flight.

The present work suggested an efficient metastructure geometry from the topology
optimization method as a core of sandwich panels in the aeroelastic application. It is
shown that the proposed metastructure has the ability to be used as a lightweight core
in aircraft design considering the more critical dimensionless dynamic pressure, which is
useful in the research of lightweight sandwich materials applications. Also, the research
presented a layer-wise theory approach for sandwich plates with metastructure core for
aeroelastic analysis, which can be further developed to considering thermal effect of this
type of sandwich panels.

5.2 Future works

This work has investigated the aeroelastic analysis of a sandwich panel that its
core is found from 2D topology optimization method.

It would be interesting to investigate the following subjects:

• Studying the aeroelastic behavior of a 3D topology optimized core in flutter condition.

• Studying the aeroelastic analysis of TOP sandwich panel under thermal effects.

• Studying the aeroelastic behavior of multi-bay topology optimized core sandwich
panel in flutter condition.

• Studying the nonlinear aeroelasticity of the TOP core Sandwich panel. The unit
cell’s geometry is expected to influence several properties of the aeroelastic behavior,
such as flutter onset condition, LCO amplitude levels, vibration patterns.
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• Analyzing the dynamic topology optimization of aeroelasticity problems to maximize
the fundamental eigenfrequency.
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