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Abstract
Cruz Neto, H.J. Active Control of Stick-Slip Oscillations in Oil-well Drilling Systems.
Doctoral Thesis - São Carlos School of Engineering, University of São Paulo, São Carlos,
2022.

Rotary drilling systems are subjected to harmful interactions between the drilling struc-
ture, borehole and rock formation, leading to torsional stick-slip vibrations that can de-
crease drilling efficiency and cause drill string component failures. A proper way to reduce
these detrimental failures is to design an active controller that efficiently mitigates vibra-
tions with the constraint of using the limited amount of real-time data available in field
operations. In this context, this thesis proposes two novel control techniques relying only
on simple linear combinations of measured signals to mitigate drill string torsional vi-
brations and improve drilling performance. Since the measured signals are of paramount
importance for the effectiveness of the proposed techniques, this work also investigates
which signals are relevant for feedback with the aim of ensuring asymptotic stability.
The first proposed control technique relies on a work developed by the author during
his master’s degree, and consists of determining the control gain of an output feedback
controller (OSOF) such that its performance is as close as possible to that of a full state
feedback controller (LQR). The second proposed control technique derives from the neg-
ative damping coefficient concept developed in this thesis, and aims to enlarge the limits
of drill string safe operation by minimizing the value of the negative damping coefficient
for which the operating point is asymptotically stable. The proposed controllers are ap-
plied to a representative drill string torsional dynamics model, modeled using the finite
element method with non-regularized dry friction. The model developed contemplates
the particular aspects regarding the application of the proposed controllers, such as the
reformulation of the equations of motion as a stabilization problem and the addition of
an integral action. Simulations reveal that the proposed controllers perform better than
an optimized PI controller both in the case of known parameters and in the presence of
uncertainties. Furthermore, sensitivity analyses indicate a seeming global stability of the
closed-loop system equipped with one of the proposed controllers, in addition to very low
sensitivity of performance with respect to parameter variations. Results motivate further
investigations of the apparent global stability provided by the proposed controller and
practical implementation of the developed strategies.

Keywords: Stick-slip. Drill string. Negative damping coefficient. Optimal static output
feedback. Negative damping control. Global stability.





Resumo
Cruz Neto, H.J. Controle Ativo de Oscilações de Stick-Slip em Sistemas de Perfuração de
Poços de Petróleo. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade
de São Paulo, São Carlos, 2022.

Sistemas de perfuração rotativa estão sujeitos a interações nocivas entre a estrutura de
perfuração, o poço e a formação rochosa, levando a vibrações torcionais que podem dimi-
nuir a eficiência da perfuração e causar falhas nos componentes da coluna de perfuração.
Uma maneira adequada de reduzir essas falhas prejudiciais é projetar um controlador
ativo que mitiga as vibrações, com a restrição de usar somente a quantidade limitada de
dados em tempo real disponíveis nas operações de campo. Neste contexto, esta tese propõe
duas novas técnicas de controle, as quais são baseadas apenas em simples combinações
lineares de sinais medidos, com o objetivo de mitigar as vibrações torcionais da coluna de
perfuração e melhorar o desempenho da perfuração. Visto que os sinais medidos são de
suma importância para a eficácia das técnicas propostas, este trabalho também investiga
quais sinais são relevantes para realimentação com o objetivo de garantir estabilidade
assintótica. A primeira técnica de controle proposta baseia-se no trabalho desenvolvido
pelo autor durante seu mestrado e consiste em determinar o ganho de controle de um con-
trolador com realimentação de saída (OSOF) de modo que seu desempenho seja o mais
próximo possível de um controlador com realimentação de estado completo (LQR). A
segunda técnica de controle proposta deriva do conceito de coeficiente de amortecimento
negativo desenvolvido nesta tese e visa ampliar os limites de operação segura da coluna
de perfuração através da minimização do valor do coeficiente de amortecimento negativo
para o qual o ponto de operação é assintoticamente estável. Os controladores propostos são
aplicados a um modelo representativo da dinâmica torsional da coluna de perfuração, mo-
delado através do método dos elementos finitos com atrito seco não regularizado. O modelo
desenvolvido contempla aspectos particulares da aplicação dos controladores propostos,
como a reformulação das equações de movimento como um problema de estabilização e a
adição de uma ação integral. Simulações revelam que os controladores propostos desem-
penham melhor que um controlador PI otimizado tanto no caso de parâmetros conhecidos
quanto na presença de incertezas. Adicionalmente, análises de sensibilidade indicam uma
aparente estabilidade global do sistema equipado com um dos controladores propostos,
além de baixa sensibilidade do desempenho com relação a variações de parâmetros. Os
resultados motivam investigações futuras sobre a aparente estabilidade global fornecida
pelo controlador proposto e a implementação prática das estrágias desenvolvidas.

Palavras-chave: Stick-slip. Coluna de perfuração. Coeficiente de amortecimento nega-
tivo. Realimentação ótima estática de saída. Controle de amortecimento negativo. Esta-



bilidade global.
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1 Introduction

This chapter contextualizes the problems of vibrations in rotary drilling systems,
presents an overview of drill string models and active control techniques implemented for
this problem, and states the objectives and motivations of this thesis.

1.1 Oil exploration and the drill string problem

Oil has a wide range of applications, such as the manufacture of agricultural fer-
tilizers, plastics, pharmaceuticals, fuels, among others. Despite the recent trend for the
development and use of renewable energies, the growing demand in all of the aforemen-
tioned areas incited an increase in world crude oil and lease condensate production to
around 82 million barrels a day in 2019, as depicted in Figure 1. Although the COVID-19
outbreak caused an economic crisis that led to a drop in oil consumption and produc-
tion in 2020 (International Energy Agency, 2020), recent data indicate a resumption of
production after a reduction in the pandemic severity in 2022 (U. S. Energy Information
Administration, 2022). The overall expansion in production is also observed at the na-
tional level. Since the announcement of oil traces in the pre-salt layer in 2006 and the
beginning of its exploration in 2008 to the present day, Brazil has moved from the fifteenth
to the eighth position in the rank of world largest crude oil and lease condensate producers
(U. S. Energy Information Administration, 2022). In 2021, Brazil had an average produc-
tion of 2.90 million barrels per day and, according to the public company Empresa de
Pesquisa Energética, oil production is expected to increase to 4 million barrels per day
in 2024 (Brasil, Ministério de Minas e Energia, Empresa de Pesquisa Energética, 2017).
This increase in production and demand has been reflected in research and development,
so that oil and gas companies have increased investments in this area in order to increase
efficiency at all stages of oil exploration (TAUHATA, 2018). The entire process of oil ex-
ploration can be divided in several stages (THOMAS, 2001), which can be summarized
as:

1. Prospecting: the process of identifying a geological structure that could be a poten-
tial hydrocarbon reservoir. The most common techniques used to identify oil and gas
reservoirs are: a) seismic prospecting, which generates seismic waves and uses their
reflection to create a map of the geologic structure; b) gravity prospecting, which
measures spatial variations in the Earth’s gravitational field to identify low density
rocks that may indicate the presence of oil and gas; c) magnetic prospecting, which
identifies sedimentary basins and their thickness; and d) geochemical prospecting,
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Figure 1 – World annual production of crude oil and lease condensate since 1973.

which analyzes the chemical composition of underground water and the content of
dissolved gases and organic matters within it (GACI; HACHAY, 2017).

2. Drilling: Upon identification of a potential reservoir, a drilling rig is constructed in
a suitable region. A drilling system is used to create a borehole that connects the
drilling rig and the oil reservoir.

3. Cementing and testing: upon reaching a certain depth, the drill pipe is removed and
a steel pipe is pushed to the bottom of the well to inject cement up along the sides
of the well to protect the integrity of the hole and the surrounding area. The drilling
and cementing processes are alternated until the oil reservoir is reached. Tests are
performed in order to ensure well impermeability.

4. Well completion: encompasses the operations to get the well ready for production
after the drilling process. Well completion should be performed to optimize pro-
duction and minimize future maintenance. At this stage, components such as the
Christmas Tree, production tube and subsurface safety valves are installed (BEL-
LARBY, 2009).

5. Fracking: a technique of well stimulation in which the rock formation is fractured
by means of a pressurized liquid. Fracking is not strictly necessary for oil and gas
extraction, however, it considerably increases well-reservoir exchanges and generates
adequate flow rates, especially for gas extraction (CHARLEZ, 1997). In 2010, it was
estimated that 60% of the wells practiced hydraulic fracturing (MONTGOMERY;
SMITH, 2010).

6. Production: After all the steps mentioned, oil and gas production begins. In the
introductory phase, the reservoir pressure is sufficient to push the oil to the surface,
whilst in the following phases, some mechanisms such as water and gas injection,
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oil heating and carbon dioxide flooding are used to increase reservoir pressure and
decrease fluid viscosity, making oil and gas recovery feasible (TZIMAS et al., 2005).

These steps constitute a part of the oil and gas industry known as upstream,
which deals with exploration and production. There are still midstream and downstream
sectors, which deal with transportation, refinement, marketing and distribution of oil and
gas derivatives. This work is dedicated to analyze the drilling process, focusing on the
dynamic behavior of the drilling structure. A schematic representation of a drilling rig is
shown in Figure 2.

Figure 2 – Basic components of a rotary drilling system. Adapted from: (LIU, 2015)

The conventional technique in oil and gas industry for opening a borehole in a
rock formation is the rotary drilling. From a dynamics perspective, the rotary drilling
mechanism can be described as a composition of the hoisting and rotating systems. In
the rotating motion, a motor applies torque to the rotary table, which has a large rotary
inertia to prevent sudden changes in drilling angular velocity. The torque is transmitted
to the cutting device, called drill bit, through the drill string, which is a slender and long
structure composed of several drill pipes. At the bottom of the drill string, there are the
drill collars, which are thick-walled, high-density pipes designed to apply weight-on-bit
(WOB) and prevent buckling, and also the stabilizers, which help to keep the assembly
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centered in the hole. In conjunction with the drill bit, these elements constitute the lower
part of the drill string called bottom-hole-assembly (BHA), as shown in Figure 2.

The vertical motion of the drill string is controlled by a block-and-tackle hoisting
system. Powered by an electric or diesel engine, the winch pulls the drill lines that are
attached to the traveling block. Below the traveling block, there are the hook and the
swivel, which cushion the impacts caused by moving loads and separate the rotary and
stationary elements. The swivel is linked to the kelly, a hexagonal or square steel bar
that is connected to the drill string and slides freely vertically through the interior of the
rotary table. The element that allows the kelly to free-slide in the vertical direction and
makes its connection to the rotary table is the kelly bushing. As the drilling progresses,
drill pipes are added below the kelly, increasing the drill string size. The downward speed
and WOB are controlled by a winch braking system.

Another important component of a drilling rig is the hydraulic system. Using a
hydraulic pump, the drilling fluid is injected into the drill string through the swivel. The
role of the drilling fluid, which basically consists of water with viscosifiers and weighting
materials, is to cool and lubricate the bit and transport the cuttings from the bottom to
the surface. Upon reaching the surface, the fluid is treated by eliminating solids and gases
and by adding chemicals to adjust its properties, after which it is again injected into the
drill string (JANSEN, 1993; THOMAS, 2001).

The numerous factors involved in the drilling process enrich the drill string dynam-
ics, which may manifest multiple vibration modes. Due to the slender and flexible nature
of the drill string structure, the vertical and rotational movements associated with the
drilling process, and mass imbalance, the drill string may exhibit three primary types of
vibration: torsional, axial and lateral. Other key components in the drill string dynamics
are its interaction with the environment, e.g., the contact with the borehole and the cut-
ting process between the drill bit and the rock formation. These interactions can intensify
vibrations, giving rise to phenomena such as bit-bouncing, stick-slip and whirling, which
are extreme examples of coupled vibrations dominated by axial, torsional and lateral
motions, respectively (GHASEMLOONIA; RIDEOUT; BUTT, 2015). As a model that
integrates all different phenomena involved in the drill string dynamics makes the analysis
and design of techniques to mitigate vibration cumbersome or even unfeasible, the focus
of this work is the modeling and control of drill string torsional (stick-slip) vibrations.

The stick-slip phenomenon is a persistent oscillation that alternates between the
stick phase, in which the drill bit reaches a complete standstill, and the slip phase, in which
the drill bit angular velocity may reach a value much higher than the nominal speed. Since
vibrations are one of the main factors for drill string failure, and consequently delays and
increased costs in oil production (DONG; CHEN, 2016; JARDINE; MALONE; SHEP-
PARD, 1994), it is of great interest for the oil and gas industry to mitigate them. Several
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approaches have been proposed to model and control drill string torsional vibrations,
most relying on active and passive vibration control techniques. The following sections
attempt to present an overview of the research in modeling and active control of torsional
vibrations in rotary drilling systems. Axial vibrations are also covered to some degree
since they can also influence the torsional behavior of the drill string. Whirling motion
is prevalent at higher angular speeds and generally does not occur simultaneously with
stick-slip (LEINE; CAMPEN; KEULTJES, 2002), therefore, it is not analyzed. For other
approaches to the vibration control of these systems, the reader may consult the reviews
in (DONG; CHEN, 2016; ZHU; TANG; YANG, 2014).

1.2 Research on drill string torsional vibrations

The aspects regarding experiments and modeling of the drill string torsional dy-
namics are presented in subsection 1.2.1, while the main active control techniques pro-
posed to mitigate vibrations are analyzed in subsection 1.2.2.

1.2.1 Modeling

Initially, the efforts employed to address the problems of drill string failures were
directed toward material strength rather than evaluating the dynamic behavior of the
structure (GRANT; TEXTER, 1941; SAYE; RICHARDSON, 1954). One of the first stud-
ies to investigate the dynamic causes of drill string failures was carried out by (FINNIE;
BAILEY, 1960), who presented measurements indicating the occurrence of axial and tor-
sional vibrations. In an accompanying paper (BAILEY; FINNIE, 1960), the authors also
presented an analytical model to predict the real system behavior and correlate it with the
measured data. The behavior of the drill string was represented by the dynamic equations
of a rod in torsion and a bar in extension, with models in both directions uncoupled. Con-
tact, friction and damping were neglected. The authors tried to correlate the measured
frequencies with the natural frequencies of the model for typical boundary conditions,
such as clamped and free ends. The attempt to establish this relationship was unsatisfac-
tory, and the authors alluded that the measured frequencies might not be related to the
system’s natural frequencies and that possible factors not represented in the model could
affect the results.

A slight improvement in the study of axial and torsional dynamics was done by
(DAREING; LIVESAY, 1968). The authors considered the same model as Bailey and
Finnie, but with the addition of viscous damping and a harmonic displacement at the
drill bit as a boundary condition. Experimental tests indicated that the occurrence of
vibrations depended almost completely on the formation being drilled and simulations
have shown that shock subs placed above the bit with softer spring constants were more
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effective in reducing vibration amplitudes.

The models proposed so far considered systems with constant parameters and
boundary conditions that could only describe natural and forced vibrations in linear
systems. Another type of periodic response that is present only in nonlinear systems
is the self-excited vibration (ANDRONOV; VITT; KHAIKIN, 1966). These vibrations
occur in the absence of any outside periodic source and their amplitude and frequency are
independent of initial conditions. From a nonlinear dynamics perspective, these vibrations
can be understood as limit cycles occurring in autonomous systems.

One type of self-excited vibration present in mechanical systems is the stick-slip.
Studies on stick-slip vibrations date back to the late thirties, when (BOWDEN; LEBEN,
1939) identified friction-induced oscillations in a block and belt system. A decade later,
(DUDLEY; SWIFT, 1949) proposed a model considering friction with a velocity weaken-
ing dependence (the force is a function of the velocity with negative slope) that was able
to predict stick-slip oscillations for the same system. However, the comprehension that
torsional vibrations observed in drill strings could be the result of a similar mechanism
came only in the 1980s, with the article by (BELOKOBYL’SKII; PROKOPOV, 1982).
Indeed, this was the first article to recognize the periodic response observed in drilling
operations as stick-slip vibrations. The authors considered a one degree of freedom (DOF)
torsional pendulum to represent the inertia and stiffness properties of the drill string, and
friction with a velocity weakening dependence to model the bit-rock interaction. Given
these hypotheses, the equations of motion of the drill string were the same as those for
the conveyor belt system. These considerations were used to predict the occurrence of
stick-slip oscillations, calculate the periods of these oscillations, and evaluate how the
friction parameters could affect the properties of the oscillations. After the publication
by Belokobyl’skii and Prokopov, several other studies adopted the friction law with a ve-
locity weakening component to model the bit-rock interaction (SALDIVAR et al., 2016).
This velocity weakening dependence of the torque on bit was confirmed later in numerous
laboratory and field measurements (BRETT, 1992; PAVONE; DESPLANS, 1994; ERTAS
et al., 2013; KAPITANIAK et al., 2015; RITTO; AGUIAR; HBAIEB, 2017).

Another approach to model the bit-rock interaction (RICHARD; GERMAY; DE-
TOURNAY, 2007; GERMAY; DENOËL; DETOURNAY, 2009) consists of a model with-
out a velocity weakening torque on bit, that exhibits stick-slip oscillations via a regener-
ative effect caused by the cutting process and coupling between the axial and torsional
modes. Although this approach suggests that the velocity weakening effect is not an in-
trinsic property of the bit-rock interaction but rather a consequence of mode coupling and
the cutting process, the conclusion that the combination of these factors still produces a
torque on bit with a velocity weakening effect justifies its inclusion in a model considering
only the torsional mode.
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Despite the differences in the models for predicting stick-slip vibrations, both ap-
proaches mentioned previously considered the bit-rock interaction as their primary source.
Other important factors for a proper assessment of the impacts of vibrations on the drill
string and its components are the models for the drill string itself and its other interactions
with the environment. Regarding the drill string, some studies that focused on vibration
or deformation analyses considered large deformations or non-linear stress-strain relation-
ships (TUCKER; WANG, 1999a; TRINDADE; WOLTER; SAMPAIO, 2005), while those
concerned also with the controller synthesis generally adopt the simplifying hypotheses
of small deformations and linear stress-strain relationships. The latter can be divided
into the ones that maintain the continuum description (distributed parameter models) of
the drill string and those that consider spatial discretization methods, which are further
divided into lumped parameter methods and series discretization methods (mostly the
finite element (FE) method) (MEIROVITCH, 1997).

The majority of the models for the drill string rely on lumped parameter meth-
ods (GHASEMLOONIA; RIDEOUT; BUTT, 2015). Similar to the pioneering article by
Belokobyl’skii and Prokopov, some researchers (KYLLINGSTAD; HALSEY, 1988; LIN;
WANG, 1991; RUDAT; DASHEVSKIY, 2011) examined the one DOF torsional pendu-
lum with a constant velocity at the top to identify safe operating values for some drilling
parameters, such as the WOB and rotary table angular speed. Although this model can
predict the influence of some parameters on the drill string dynamics, it cannot be used for
controller synthesis (in the case in which torque is the control input) due to the absence
of a top rotary inertia to which an input torque can be applied. Therefore, several stud-
ies on active vibration control (JANSEN; VANDENSTEEN, 1995; SERRARENS et al.,
1998; ABDULGALIL; SIGUERDIDJANE, 2004; NAVARRO-LOPEZ; SUAREZ, 2004;
CANUDAS-DE-WIT et al., 2005; RITTO; GHANDCHI-TEHRANI, 2019) consider the
two DOF torsional pendulum. In most of these models, a motor variable (torque, voltage)
is designed using active control techniques to actuate on the top rotary inertia and influ-
ence the drill string dynamics. Other studies (NAVARRO-LOPEZ; LICEAGA-CASTRO,
2009; KREUZER; STEIDL, 2012; WASILEWSKI et al., 2019; LOBO et al., 2022) con-
sidered lumped parameter models with more degrees of freedom to represent better the
influence of higher-order modes.

In the case of models based on series discretization methods, the most frequent
example (perhaps the only one) is the finite element method. Many studies (KHULIEF;
AL-NASER, 2005; KHULIEF; AL-SULAIMAN; BASHMAL, 2007; SAMPAIO; PIOVAN;
LOZANO, 2007; RITTO; SOIZE; SAMPAIO, 2009; LIU et al., 2020) consider FE models
to analyze the influence of parameters or uncertainties in the drilling process, whereas
only a few use these models for controller synthesis (MONTEIRO; TRINDADE, 2017;
TRINDADE, 2020). FE models are suitable for complex geometries and boundary condi-
tions, and their potential to aggregate these features in automated computational algo-
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rithms allows a feasible development of a representative model. Moreover, some important
factors in drill string dynamics, such as wave propagation time and the stick phase dura-
tion are represented better using infinite-dimensional or multimodal models (TUCKER;
WANG, 1999a), and field observations indicate the influence of higher-order modes in
drill string vibrations (RUNIA; DWARS; STULEMEIJER, 2013). The combination of
these factors with the possibility of obtaining a suitable model (described by ordinary
differential equations (ODE)) for the design of several standard control techniques favors
representations using the FE method.

Other researchers consider distributed parameter models (described by partial dif-
ferential equations (PDE)) to design controllers. Although this representation eliminates
the problems related to the limited frequency bandwidth of discretized models, the con-
trol techniques for these systems are restricted, and their limitations generally require
other simplifications or assumptions. For instance, some models simplify the bit-rock in-
teraction using periodic or linear functions (BRESCH-PIETRI; KRSTIC, 2014; WANG;
TANG; KRSTIC, 2020), some neglect the inertia of the BHA (SAGERT et al., 2013),
and several consider measurements of variables at the drill-bit for controller feedback,
such as the torque on bit or the bit angular velocity or displacement (SALDIVAR et al.,
2013; SAGERT et al., 2013; BRESCH-PIETRI; KRSTIC, 2014; SALDIVAR; MONDIÉ;
VILCHIS, 2016; WANG; TANG; KRSTIC, 2020). These assumptions may oversimplify
the model, not reproducing some important phenomena observed in practice, and reduce
the applicability of controllers. Further discussions on the types of sensors and actuators
used in the controller design are presented in the next section.

The last aspects of drill string modeling involve other sources of energy dissipation,
such as internal damping and interactions with the drilling fluid and the borehole. The
majority of the models (YIGIT; CHRISTOFOROU, 2006; LIU et al., 2014; GHASEMI;
SONG, 2018; VAZIRI; KAPITANIAK; WIERCIGROCH, 2018; TRINDADE, 2020) con-
cerned with controller synthesis adopt a simplified representation of energy dissipation
sources, given by a constant viscous damping matrix. Although a simple equivalent viscous
damping may not accurately reproduce the structural damping and the fluid-structure in-
teraction, it provides a reasonable method to introduce damping effects in the model and
allows a suitable drill string representation for controller design. Other articles propose
more detailed models for the fluid-structure interaction (PAÏDOUSSIS; LUU; PRAB-
HAKAR, 2008; RITTO; SOIZE; SAMPAIO, 2009) and friction torque between the drill
string and the borehole (AARSNES; SHOR, 2018; VROMEN et al., 2019).

1.2.2 Active control

A widely employed method for mitigating vibrations in drill strings is active con-
trol. An active feedback control system is characterized by the presence of sensors, which
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measure the variables of interest of the structure, a controller, which processes and com-
bines the measured signals, and actuators, which act on the structure, according to the
rules prescribed by the controller, to modify its dynamics and achieve a specified degree
of performance and robustness. The function that describes how the measured signals are
combined to generate the control action is often called a control law, which can be de-
signed using several different control techniques. For some of these techniques, the control
action is a simple linear combination of measured signals specified a priori (static output
feedback) and for others, it requires measurements of all dynamic variables that describe
the behavior of the system (state feedback). Some alternatives to the latter use state
observers to feed back unmeasured states, which implies a dynamic control action, i.e.,
the control action is a solution of a differential equation involving the measured signals
and inputs. All these techniques have been applied to the drill string problem. Instead
of listing all the control techniques employed for this problem, this section describes and
gives a few examples of control techniques that can be implemented using certain sensors,
starting with the elementary ones and progressing as the number of sensors and controller
complexity increase.

The first and most basic control technique to be employed in the rotary drilling
process is the proportional-integral (PI) (LOBO et al., 2022; TRINDADE, 2020) control.
In the PI control, the output variable (measured signal) is the angular velocity of the
rotary table, which is compared with a reference value yielding an error. Then, the control
action is defined as a sum of a term proportional to the error and another proportional to
the integral of the error. The proportionality constants are the control gains and must be
carefully designed to yield an effective control action. An important distinction between
the PI control and other control techniques is that the former only specifies the signals used
in the control action, but not how they are combined (the control gain values). Standard
methods for the PI control gains design for general systems are Ziegler-Nichols tuning
rules, pole placement, fuzzy logic, and so forth (JOHNSON; MORADI, 2005). Specifically
for the drilling problem, some researchers propose to determine the PI control gains to
achieve good performance according to a meaningful criterion for the drilling process.
For instance, (KYLLINGSTAD; NESSJØEN, 2009) proposes a technique for finding PI
control gains that reduce torsional wave reflections, and (MONTEIRO; TRINDADE,
2017) suggests to find PI control gains that minimize the average deviation from the drill
bit target angular velocity.

Although the PI control effectively uses two signals for feedback: one directly mea-
sured (velocity) and another obtained via integration (displacement), it only needs one
sensor that measures the rotary table velocity. The first alternatives for the PI control
suggested monitoring another quantity on the rotary table and using only this new com-
ponent for feedback or combining it with a PI controller. (HALSEY; KYLLINGSTAD;
KYLLING, 1988) proposes to control the top velocity using the torque at the rotary table
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for feedback, and select the new control parameters to reduce torsional wave reflection.
Recognizing that the electric current of the rotary drive motor is proportional to the
torque at the rotary table, (JAVANMARDI; GASPARD, 1992) made a slight change in
the previous work by measuring the electric current instead of the torque. This modifi-
cation was patented by Shell as soft-torque in the early nineties. Using also the electric
current for feedback, (JANSEN; VANDENSTEEN, 1995) proposes to design the control
gains to increase the damping along the drill string, instead of minimizing reflections of
torsional waves. Afterwards, (TUCKER; WANG, 1999b) analyzed the effects of measur-
ing the shear strain at the top of the drill string and using it for feedback together with
the PI controller. The authors showed that using this new quantity for feedback improved
the torsional waves absorption when compared to the soft-torque.

The control techniques discussed so far use only measurements at the rotary ta-
ble and simple linear combinations of these signals for feedback. Subsequently, some re-
searchers studied the application of general control techniques, involving either measure-
ments along the drill string or surface measurements combined with state observers. Exam-
ples of works using linear controllers with static state feedback are (CHRISTOFOROU;
YIGIT, 2003), which uses the linear quadratic regulator (LQR), and (CANUDAS-DE-
WIT et al., 2005; YIGIT; CHRISTOFOROU, 2006), which use pole placement for the ve-
locity controllers. All these works use the bit angular velocity for feedback, and (CHRISTO-
FOROU; YIGIT, 2003; YIGIT; CHRISTOFOROU, 2006) additionally consider measur-
ing the difference between the bit and rotary table angular displacements. Despite using
quantities that may not be accessible, the mentioned techniques have the benefit of guar-
anteeing asymptotic stability and stability margins. Examples of works also using state
feedback but applying nonlinear control techniques are (ABDULGALIL; SIGUERDID-
JANE, 2004), which uses feedback linearization, and (LIU, 2015; NAVARRO-LOPEZ;
LICEAGA-CASTRO, 2009), which develop sliding mode controllers. All state variables
are incorporated in the controller on feedback linearization, including even the torque
on bit. Moreover, controllers based on feedback linearization may wastefully cancel non-
linearities that contribute to stability and have poor robustness properties (FREEMAN;
KOKOTOVIC, 1996). Although the sliding mode controller ensures a larger stability re-
gion than the linear controllers and uses fewer state variables than the feedback lineariza-
tion controller, it still assumes knowledge of the drill bit angular velocity for feedback.

An alternative for the state feedback controllers is the adoption of state observers
to estimate unmeasured variables. Most of the studies cited previously mentioned this
possibility, yet none analyzed the effects of the observer on performance and stability.
Design and analyses of output-based controllers were carried out by (BESSELINK et al.,
2016; VROMEN et al., 2017). Although these controllers only use surface measurements,
their complex structure requires the solution of differential equations for the control action
and a model for the observer, which may produce time delay, lower stability margins, and
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spillover (PREUMONT, 2011).

The final aspects addressed for the control system are the number and types
of actuators. Most of the works mentioned above considered a single actuator repre-
sented by some motor variable, usually torque or voltage. In a few other studies (SAL-
DIVAR; MONDIÉ; VILCHIS, 2016; TOUMI et al., 2017; MLAYEH; TOUMI; BEJI,
2018), the control variable was the angular speed provided by the motor, and there
was a mismatch between this velocity and the angular velocity at the top of the drill
string. Other researchers (YIGIT; CHRISTOFOROU, 2006; CANUDAS-DE-WIT; RU-
BIO; CORCHERO, 2008; MONTEIRO; TRINDADE, 2017) proposed to combine the
control torque with manipulation of the hook load, using effectively two actuators. While
adding this new control action may indeed improve performance, it is necessary to evalu-
ate the hook response speed and the influence of axial dynamics on the WOB. To assess
the performance of a collocated actuator, (TUCKER; WANG, 2003) analyzed the effects
of an actuator at the drill bit on the rate of penetration and robustness of the closed-loop
system. In general, one might expect that adding sensors or actuators should improve
system performance given an efficient controller design. However, it is important to em-
phasize the feasibility and complexity of the proposed approaches, as well as an adequate
evaluation of the controller’s performance using a representative model.

1.3 Motivations and objectives

The concise research review conducted previously identified fundamental aspects
in the areas of modeling and control of torsional vibrations in drill strings: 1) important
factors in drill string dynamics, such as wave speed of propagation and the stick phase
duration are better represented using infinite-dimensional or multimodal models, and field
observations indicate the influence of higher-order modes in drill string vibrations; 2)
the variables that characterize the bit-rock interaction are rarely known and are subject
to changes according to the rock formation lithology, therefore, uncertainties must be
considered either in the controller design or in a sensitivity analysis; 3) although some
complex control strategies involving the measurement of all system states or the estimation
of unmeasured states using dynamic observers may provide a better performance, they rely
on assumptions that are not feasible for typical drilling rigs. The design of an effective
controller with a wide range of applications in a variety of oil wells must consider not
only performance but constraints such as limited information and a restricted ability for
transmitting real-time data over long distances.

Given these observations, the primary objective of this thesis is to propose novel
control techniques to mitigate torsional vibrations of drill strings with the constraint of
employing only simple linear combinations of measured signals. Considering that the mea-
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sured signals are of paramount importance for the effectiveness of the proposed techniques,
another objective of the present work is to investigate which signals might be relevant for
feedback with the aim of ensuring asymptotic stability and good performance. To properly
evaluate the control techniques developed, the last objective of this thesis is to compare
them with each other and with a PI controller by performing numerical simulations of a
model that considers the fundamental aspects identified previously: the continuum nature
of the drill string and the uncertainties in the bit-rock interaction. This comparison en-
compasses stability, performance and applied torque in cases where the system parameters
are known and in the presence of uncertainties.

1.4 Outline
Chapter 2 presents a mathematical model to represent the drill string torsional

dynamics. Initially, a distributed parameter model obtained from the linear theory of thin
rods is spatially discretized using the FE method. To reduce computational effort, a modal
reduction is performed, retaining only the modes within a relevant frequency bandwidth.
Then, the equations of motion are transformed to a state space representation and further
reformulated for controller design.

Chapter 3 describes the typical behavior of the drill string in the open- and closed-
loop configurations. First, the open-loop equilibria are determined, and a linear stability
analysis of the operating point is performed, identifying the key factors that cause insta-
bility. Then, stick-slip oscillations are illustrated for the closed-loop system using different
types of controllers.

Chapter 4 deals with the controller design. The beginning of this chapter is de-
voted to the analysis of which signals are relevant for measurement (output matrix design)
presuming that the control action is a simple linear combination of the measured signals.
Once the output matrix structure is established, two novel control techniques are pro-
posed, the first focusing on nominal performance and the second on robustness.

Chapter 5 and Chapter 6 analyze the performance of the proposed control tech-
niques through numerical simulations. The former presents results considering nominal
operating conditions, in which the model parameters are known, while the latter in-
vestigates the effects of initial conditions and parameter variations on performance and
stability of the proposed controllers.

Chapter 7 summarizes the main results and give recommendations for future re-
search.
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2 Drill string model

This chapter presents a mathematical model to represent the drill string torsional
dynamics. Initially, a distributed parameter model obtained from the linear theory of
thin rods is spatially discretized using the FE method. To reduce computational effort,
a modal reduction is performed, retaining only the modes within a relevant frequency
bandwidth. Then, the equations of motion are transformed to a state space representation,
and reformulated by shifting the operating point to the origin and adding the error integral
as a state. This reformulation is used in the following chapters for dynamic analysis and
design of control laws.

2.1 Model
The torsional dynamics of the drilling system is represented in a simplified way

considering three main components: the rotary table, the bottom hole assembly (BHA)
and the drill string, which are schematically represented in Figure 3. The stabilizers, drill
collars and drill bit are represented compactly by the BHA, which is modeled as a rigid
body with rotary inertia 𝐽𝑏. The rigid body hypothesis is also assumed for the rotary
table, which has a rotary inertia 𝐽𝑡. The drill string is modeled as a thin rod using the
fundamental torsional-deformation assumptions (CRAIG; KURDILA, 2006):

Bottom Hole
Assembly (BHA)
(Mb, Jb)

Rotary table
(Mt, Jt)

Drillstring
(ρ, G, L, Ri, Ro)

Tt

Tb

ωt

ωb

Nb

Figure 3 – Basic components of a rotary drilling system. Source: (MONTEIRO;
TRINDADE, 2017).

• The longitudinal axis remains straight and inextensible;
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• Every cross section remains plane and perpendicular to the longitudinal axis;

• Radial lines remains straight and radial as the cross section rotates about the lon-
gitudinal axis.

Additionally, the material is considered linear elastic – there is a linear relationship
between shear stress and shear strain – with constant properties. Presuming these hypoth-
esis and applying Newton’s Laws or the extended Hamilton’s principle, the equations of
motion are derived as

𝐺
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑥2 = 𝜌
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2 , (2.1)

in which 𝐺 is the shear modulus of elasticity, 𝜌 is the mass density, 𝜃(𝑥, 𝑡) denotes the
angular displacement of the cross section at position 𝑥 and time 𝑡, and 𝑥 is measured from
the top end. For convenience, the rotary table and drill bit speeds are defined (Figure 3)
as 𝜔𝑡 = 𝜃 (0, 𝑡) and 𝜔𝑏 = 𝜃 (𝐿, 𝑡). As Eq. (2.1) is defined by a homogeneous differential
operator of order two, there must be one boundary condition to be satisfied at each end
of the drill string. Using the diagram shown in Figure 3, the boundary conditions are
written as:

𝐺𝐼
𝜕𝜃(𝑥, 𝑡)

𝜕𝑥
− 𝐽𝑡𝜃(𝑥, 𝑡) + 𝑇𝑡 = 0, 𝑎𝑡 𝑥 = 0, (2.2a)

𝐺𝐼
𝜕𝜃(𝑥, 𝑡)

𝜕𝑥
+ 𝐽𝑏𝜃(𝑥, 𝑡) + 𝑇𝑏 = 0, 𝑎𝑡 𝑥 = 𝐿, (2.2b)

in which 𝐼 is the second moment of area, 𝑇𝑡 denotes the torque applied by the motor to the
rotary table and 𝑇𝑏 is the reaction torque applied by the rock formation to the drill bit.
The torque applied by the motor will be considered as a control input variable, which will
be determined later in the controller design. The reaction torque is modeled as frictional
force using the Karnopp’s model with an exponential decaying friction term, which was
initially proposed by (NAVARRO-LOPEZ; SUAREZ, 2004). The torque expression is
given in Eq. (2.3) and illustrated in Figure 4.

𝑇𝑏 =

⎧⎪⎨⎪⎩
𝑇, for |𝜔𝑏| ≤ 𝛿 and |𝑇 | ≤ 𝑎2𝑁𝑏,

𝑎2𝑁𝑏𝑠𝑔𝑛(𝑇 ), for |𝜔𝑏| ≤ 𝛿 and |𝑇 | > 𝑎2𝑁𝑏,[︀
𝑎1 + (𝑎2 − 𝑎1)𝑒−𝛽|𝜔𝑏|]︀𝑁𝑏𝑠𝑔𝑛(𝜔𝑏), for |𝜔𝑏| > 𝛿.

(2.3)

The values 𝑎1 and 𝑎2 are called dynamic and static frictions coefficients, respec-
tively, 𝛽 is a positive exponential friction coefficient, 𝑇 is the torque transmitted by the
drill string to the bit, 𝑁𝑏 is the normal force applied to the bit, 𝜔𝑏 is the bit angular speed
and 𝛿 = 10−4 (MONTEIRO; TRINDADE, 2017) is the width of the stick phase region,
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Figure 4 – Karnopp’s model with an exponential decaying friction term.

introduced for numerical integration purposes. Assuming a quasi-static movement in axial
direction, the normal force 𝑁𝑏 can be approximated by the difference between the weight
of the complete drilling assembly and the vertical force in the top cable. The difference
between these forces is called Weight-on-Bit (WOB) and is assumed constant.

Although there are methods for dynamic analysis and control design for systems
described by partial differential equations (KRSTIC; SMYSHLYAEV, 2008; TRÖLTZSCH,
2010), these methods are limited and require assumptions that may misrepresent some
physical phenomena and restrict or make unfeasible the controller’s implementation, as
discussed in subsection 1.2.1. Therefore, to apply conventional numerical integration al-
gorithms and, in some sense, more flexible methods for dynamic analysis, the dependence
on the spatial variable in Eqs. (2.1)-(2.2) is eliminated, such that the model described
by Eqs. (2.1)-(2.3) is transformed into a system of ODEs. Three different methods are
usually employed to eliminate the space dependence: the method of d’Alembert, using the
general solution of the wave equation, lumping parameter methods and series discretiza-
tion methods. The first method adopts the general solution of the wave equation, given
by an “up-moving wave” and a “down-moving wave”, and replaces it in the boundary
conditions. Although this method has the advantage of providing an input-output model
that has a one-to-one correspondence with the solution of the former PDE, it results in
a delayed differential equation, which has similar problems for the dynamic analysis and
controller design as the methods for PDEs. The second and third methods are tradition-
ally employed in structural problems and transform the boundary value problem into a
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system possessing a finite number of ODEs. Although some components of the solution
are lost in this transformation, these components are associated with higher frequencies,
which are rarely excited for torsional dynamics in drilling processes. The advantages of
series discretization methods over lumped parameters methods are the convergence prop-
erties and automated implementation of computational models. Detailed analysis of series
discretization methods is outside the scope of this document, here we only describe the
conditions used to apply the FE method to the drill string problem.

The numerical values of general properties of the considered drilling system were
taken from (TUCKER; WANG, 2003). In order to analyze this system for other WOB
operating conditions, (MONTEIRO; TRINDADE, 2017) determined additional values for
the friction coefficients that still approximate the phenomenological model proposed by
(TUCKER; WANG, 2003). All these parameters are indicated in Table 1 and Table 2.

Table 1 – Numerical values of the drilling system general parameters.

Drill string mass density (𝑘𝑔/𝑚3) 8010
Drill string shear modulus (𝐺𝑃𝑎) 79.6
Drill string length (𝑚) 3000
Drill string inner radius - 𝑅𝑖 (𝑚) 0.0543
Drill string outer radius - 𝑅𝑜 (𝑚) 0.0635
BHA effective rotary inertia (𝑘𝑔.𝑚2) 394
Driving table effective rotary inertia (𝑘𝑔.𝑚2) 500

Table 2 – Dry friction parameters for different values of WOB.

WOB (𝑘𝑁) 80 100 120 140 160
𝑎1 (𝑚) 0.037 0.032 0.029 0.026 0.025
𝑎2 (𝑚) 0.057 0.070 0.079 0.085 0.089

𝛽 (𝑠.𝑟𝑎𝑑−1) 0.082 0.093 0.097 0.098 0.099

To represent this system using a FE model, a regular mesh was constructed and
refined until there was a negligible variation in the natural frequencies up until 6 Hz,
which, by rounding up, implied in the use of 30 elements. This frequency bandwidth was
set based on (DONG; CHEN, 2016), which indicates that the frequency range of torsional
vibrations is 0.1∼5 Hz. Hermite cubics were used as interpolation functions to improve
convergence. A modal reduction was performed (assuming a free-free boundary condition)
to reduce computational effort (for some simulations, modal reduction reduces simulation
time by 200 times), retaining only the thirteen modes that were within the range of 6 Hz
(including a rigid body mode). The approximate eigenfunctions were determined to allow
sensors positioning along the drill string in the controller design. These functions were
calculated as in the Rayleigh-Ritz method since, except for convergence and embedding
properties of mass and stiffness matrices, the FE method can be treated as a Rayleigh-Ritz
method (MEIROVITCH, 1997). The mode shapes and corresponding natural frequencies
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of the flexible modes are depicted in Figure 5. Finally, to represent general dissipation
sources, a modal damping factor of 1% was added for each mode. One should note that
this type of damping does not provide energy dissipation for the rigid body mode, since
its corresponding natural frequency is null. An alternative to add damping for the rigid
body mode is to use Rayleigh damping with a positive proportionality constant for the
mass matrix. Adding more damping to the system actually increases the regions of safe
operation (the reasons for this claim will become apparent in chapter 3) and, the model
adopted in this thesis, where only modal damping is considered, can be regarded as a
critical case (harder to control). The system equations in modal coordinates are
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Figure 5 – Flexible modes shapes and natural frequencies.

𝜂 + D�̇� + Λ𝜂 = 𝜑(0)𝑇𝑡 − 𝜑(𝐿)𝑇𝑏, (2.4)

in which 𝜂 ∈ R𝑛 is the vector of modal displacements, Λ ∈ R𝑛×𝑛 is a diagonal matrix
of system eigenvalues or natural frequencies squared, D ∈ R𝑛×𝑛 is a diagonal matrix of
damping, whose elements of the diagonal are 2𝜁𝑖𝜔𝑛𝑖, in which 𝜁𝑖 = 0.01 is the damping
factor and 𝜔𝑛𝑖 is the natural frequency of the i-th mode, and 𝜑 : R → R𝑛 represents the
approximated eigenfunctions. Note that since the natural frequency associated with the
rigid body mode is null, neither the rigid body displacement nor its derivative appears
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in Eq. (2.4). Thus, when transforming Eq. (2.4) to differential equations of first order –
for controller design, dynamic analysis and numerical integration – it is not necessary to
define the rigid body displacement as a state. Indeed, adding the rigid body displacement
as a state makes the state space representation of the desired operating configuration a
function of time, precluding the design of the control techniques proposed in chapter 4.
These observations motivate the definition of a state without the rigid body displacement:

x =
[︁

𝜂2 . . . 𝜂𝑛 �̇�1 . . . �̇�𝑛

]︁⊺
=

[︁
𝜂⊺ �̇�⊺

]︁⊺
. (2.5)

This definition leads to the following equations of motion using a state space representa-
tion:

ẋ = Ax + B𝑡𝑇𝑡 + B𝑏𝑇𝑏 (x) = f (x, 𝑇𝑡)

A =
[︃

0 Ī
−Λ̄ −D

]︃
, B𝑡 =

[︃
0

𝜑(0)

]︃
, B𝑏 =

[︃
0

−𝜑(𝐿)

]︃
.

(2.6)

In Eqs. (2.5) and (2.6), a bar over a letter is used to distinguish between variables
with and without components associated with the rigid body mode, i.e., Λ̄ is the matrix
Λ without the first column, 𝐼 is the identity matrix without the first row and 𝜂 is the
vector 𝜂 without the first element.

Although the system with only the first two terms on the right-hand side of
Eq. (2.6) is linear, the frictional force 𝑇𝑏 described by Eq. (2.3) makes Eq. (2.6) non-
linear and nonsmooth. Moreover, since the frictional force used in the model is set-valued
(AUBIN; CELLINA, 2012), i.e., ∀ 𝜔0 ∈ [−𝛿, 𝛿], 𝑇𝑏(𝜔0) ∈ [−𝑎2𝑁𝑏, 𝑎2𝑁𝑏] ⊂ R, the system
(2.6) can be regarded as a differential inclusion. This fact may raise questions that are
not usually dealt with in engineering problems, such as the existence and uniqueness of
solutions. As demonstrated in some nonsmooth mechanics references, there are mechan-
ical problems described by differential inclusions that are not well-posed (solutions do
not exist or are not unique), see for example the Painlevé paradox (LEINE; NIJMEIJER,
2013; BROGLIATO, 2016). Fortunately, the frictional force (2.3) satisfies all conditions
(LEINE; NIJMEIJER, 2013) to guarantee the existence and uniqueness of solutions (a
different conclusion would be reached if the stiction friction model was adopted (LEINE;
NIJMEIJER, 2013)). Since existence and uniqueness are ensured, the other question for
the problem (2.6) is about the numerical integration methods to approximate its solution.
Despite not being the most recommended, usual ODE integrators can provide reasonable
approximations for the exact solutions of nonsmooth problems, especially if the algorithm
is equipped with a variable step size. The Karnopp’s friction model also provides a numer-
ical advantage, because it introduces an interval for the static friction, which makes the
differential equations non-stiff within the stick mode (LEINE; NIJMEIJER, 2013). Based
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on these arguments, we chose to apply the explicit Runge-Kutta (4,5) formula, available
in Matlab ode45 function.

Other important questions about the model developed are related to the series
discretization method and modal reduction or, more precisely, how the number of finite
elements and modes considered affects the system response. To investigate these questions,
simulations of some typical drilling conditions were performed and the system response
was compared for different numbers of modes and elements. Three cases were evaluated: a
modal reduction considering two modes (corresponding to the frequently employed 2 DOF
model), thirteen modes (the model adopted in this thesis, with a frequency bandwidth of
6 Hz) and thirty modes (a reference model, with frequency bandwidth of 15 Hz). In each
case, the number of elements was selected to obtain convergence for the natural frequency
of every mode in the frequency range considered, which resulted in one element, thirty
elements and eighty elements, with obvious correspondence with the number of modes.
The selected WOB was 120 kN and the initial condition was given by the entire drill string
rotating undeformed with an angular velocity of 70 rpm. Since the open-loop system is
unstable, the feedback torque

𝑇𝑡 = 𝑘𝑝 (𝜔𝑟 − 𝜔𝑡) + 𝑘𝑖

∫︁ 𝑡

0
(𝜔𝑟 − 𝜔𝑡) d𝜏 (2.7)

was considered for a better comparison between the given scenarios, in which 𝜔𝑟 = 100
rpm is the target angular velocity, and 𝑘𝑝 and 𝑘𝑖 are control gains. Chapters 3 and 4
present a deeper discussion on feedback control laws, at this point it is only necessary to
understand that the applied torque 𝑇𝑡 in Eq. (2.6) was replaced by the expression given
in Eq. (2.7).

Figure 6 – Bit and rotary table velocities for the case with 2 modes, (𝑘𝑝, 𝑘𝑖) = (650,90).



40 Chapter 2. Drill string model

Figure 7 – Bit and rotary table velocities for the case with 13 modes, (𝑘𝑝, 𝑘𝑖) = (650,90).

Figure 8 – Bit and rotary table velocities for the case with 30 modes, (𝑘𝑝, 𝑘𝑖) = (650,90).

Figures (6)-(8) illustrate the system response for the control gains (𝑘𝑝, 𝑘𝑖) =(650,90).
For these control gains, the curve shapes are similar in all cases, and the system with only
two modes could be employed for a general assessment of the response. Still, oscillations
with higher frequency and small amplitudes do not appear for the case with two modes,
for which the stick phase is also misrepresented, since the drill bit reaches a speed of up
to 10 rpm while for the other cases the drill bit is effectively at rest. To highlight the
difference between the responses, the errors between the cases with the least number of
modes and the reference model (thirty modes) were depicted in Figure 9. In this figure,
𝑒2 is given by the absolute value of the difference between the bit angular velocity for the
cases with two and thirty modes, and 𝑒13 is defined similarly. While the maximum error
𝑒2 = 11.27 rpm shows that the model with only two modes may not be enough for an
accurate evaluation of the response, the maximum error 𝑒13 = 0.09 rpm indicates that, for
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Figure 9 – Error between the cases with the least number of modes and the reference
model, (𝑘𝑝, 𝑘𝑖) = (650,90).

the simulated operating condition, it is not necessary to use more than thirteen modes.

Figure 10 – Bit and rotary table velocities for the case with 2 modes, (𝑘𝑝, 𝑘𝑖) = (296,70).

A critical scenario can be observed when using control gains that lead to stick-
slip oscillations. This scenario is depicted in Figures (10)-(12), that show the system
response for the control gains (𝑘𝑝, 𝑘𝑖) = (296,70). These results show that the model with
two modes was not sufficient even to obtain qualitative information about the response,
since in Figure 10 the response converges to the operating point, whereas in the other
two cases the system exhibits stick-slip oscillations. Hence, higher frequency modes can
influence system instability and should be considered in the response analysis, especially
in cases where information on stability margins is desired. Furthermore, an analysis of
the error shows that even in the presence of stick-slip, the system with thirteen modes
was sufficient to obtain an accurate response, with yet a maximum error of 𝑒13 = 0.09
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Figure 11 – Bit and rotary table velocities for the case with 13 modes, (𝑘𝑝, 𝑘𝑖) = (296,70).

Figure 12 – Bit and rotary table velocities for the case with 30 modes, (𝑘𝑝, 𝑘𝑖) = (296,70).

rpm, as shown in Figure 13. Therefore, the comparison between models with thirteen and
thirty modes reveals that the former reliably represents the system behavior in different
operating conditions.

2.2 Model reformulation

Some of the analyses developed in sections 3 and 4 are more conveniently done if
the operating point is at the origin of the coordinate system. Since the desired operating
configuration is characterized by the entire drill string rotating deformed with a constant
velocity, its representation using the state defined in Eq. (2.5) is already constant, but
not zero (with the rigid body displacement, the desired state would be a function of time,
and a further step would be necessary to remove it). Thus, the first steps in reformulating
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Figure 13 – Error between the cases with the least number of modes and the reference
model, (𝑘𝑝, 𝑘𝑖) = (296,70).

the system equations aim to shift the operating point to the origin of a new coordinate
system. For that, let the configuration corresponding to the drill string rotating at the
desired angular velocity (𝜔𝑟) in terms of system states be

x𝑒𝑞 =
[︃

𝜂𝑒𝑞

�̇�𝑒𝑞

]︃
. (2.8)

Then, the applied control torque 𝑇𝑡 is decomposed into a feedback component 𝑢, to
suppress vibrations, and a constant feedforward component �̃�, inducing x𝑒𝑞, such that

𝑇𝑡 = �̃� + 𝑢. (2.9)

The constant parameters x𝑒𝑞 and �̃� are given by the relation 𝜔𝑟 = 𝜑⊺(𝐿)�̇�𝑒𝑞 combined
with the equilibrium condition of Eq. (2.6), f(x𝑒𝑞, �̃�) = 0:

Ax𝑒𝑞 + B𝑡�̃� + B𝑏𝑇𝑏(𝜔𝑟) = 0. (2.10)

Next, define the new coordinate system 𝜉 by the translation:

𝜉 =
[︃

𝜉𝑑

𝜉𝑣

]︃
=

[︃
𝜂 − 𝜂𝑒𝑞

�̇� − �̇�𝑒𝑞

]︃
= x − x𝑒𝑞. (2.11)

Finally, the substitution of Eqs. (2.9) and (2.11) into Eq. (2.6) leads to the equations of
motion in coordinate 𝜉

𝜉 = A𝜉 + B𝑡𝑢 + B𝑏𝑞(𝜔𝑑) = g (𝜉, 𝑢) , (2.12)
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in which the desired operating point has been shifted to the origin. In Eq. (2.12), 𝑞(𝜔𝑑)
is a translated reaction torque

𝑞 (𝜔𝑑) = 𝑇𝑏 (𝜔𝑑 + 𝜔𝑟) − 𝑇𝑏 (𝜔𝑟) = 𝑇𝑏 (𝜑⊺(𝐿)𝜉𝑣 + 𝜔𝑟) − 𝑇𝑏 (𝜔𝑟) , (2.13)

such that 𝑞(0) = 0, and 𝜔𝑑 is the difference between the drill bit and target velocities

𝜔𝑑 = 𝜔𝑏 − 𝜔𝑟 = 𝜑⊺(𝐿)𝜉𝑣. (2.14)

Equation (2.12) was obtained on the assumption that Eq. (2.10) holds, and con-
sequently, �̃� = 𝑇𝑏(𝜔𝑟). However, as the bit-rock interaction variables are rarely know and
subject to changes according to the drill bit condition and the rock formation lithology,
there is the possibility that �̃� ̸= 𝑇𝑏(𝜔𝑟), and the feedforward torque �̃� may yield a steady-
state error. To ensure that at the equilibrium the drill string rotates with the desired
angular velocity, Eq. (2.12) is augmented with the error integral

�̇� = 𝑒 = 𝜔𝑡 − 𝜔𝑟 = 𝜑⊺(0)𝜉𝑣 (2.15)

yielding the augmented system

𝜁 =
[︃

�̇�

𝜉

]︃
=

[︃
𝜑⊺(0)𝜉𝑣

A𝜉 + B𝑡𝑢 + B𝑏𝑞(𝜔𝑑)

]︃
= A𝑛𝜁 + B𝑡𝑛𝑢 + B𝑏𝑛𝑞(𝜔𝑑) = h (𝜁, 𝑢) . (2.16)

At first, it may seem artificial to augment the system with the error integral since
the dynamics of 𝜉 do not depend on 𝜎. However, the idea of adding 𝜎 as a state is to
measure this variable and use it for feedback, such that 𝑢, and consequently 𝜉, become
a function of 𝜎. This is a standard procedure in control theory known as integral action
that guarantees regulation in the presence of uncertainties if the closed-loop system is
structurally stable (KHALIL, 2002).
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3 Dynamic analysis

This chapter aims to describe the behavior of the drill string in open- and closed-
loop configurations. The determination of the limit sets and equilibrium points, as well as
a stability analysis of the desired operating point, are carried out to obtain some insight
into the drill string dynamics. The knowledge acquired from these analyses is used in
chapter 4 for the controller design.

3.1 Open-loop
Although the drill string model adopts the hypotheses of small deformations and

linear stress-strain relationships, Karnopp’s friction model with an exponential decaying
term makes the whole system nonlinear and nonsmooth. The interaction between these
components provides interesting nonlinear behavior for the system, one of which is the
existence of multiple equilibrium points. The standard procedure of evaluating the zeros of
the vector field gives these equilibria, albeit they can also be determined using a physically
oriented approach, by analyzing the diagram shown in Figure 3. For a given constant
value of the applied torque 𝑇𝑡 = �̃� and considering the balance between the external
torques applied to the system (𝑇𝑡 = 𝑇𝑏), by Newton’s first law, we conclude that the drill
string is either stationary or moving as a rigid body with constant speed. Without loss
of generality, let 𝛿 = 0 in Eq. (2.3) in order to associate the stationary condition with
a single equilibrium point. The angular velocities 𝜔 corresponding to each equilibrium
can be determined by Eq. (2.3), and are illustrated in Figure 14 for a given value of the
applied torque 𝑇𝑡 = �̃�, with �̃� ∈ (𝑎1𝑁𝑏, 𝑎2𝑁𝑏). In terms of the states x and 𝜉, defined in
Eqs. (2.5) and (2.11), respectively, the equilibrium points are

x𝑒𝑞 =

⎡⎢⎣ 𝜂𝑒𝑞

𝜔𝑟/𝜑1(0)
0𝑛−1

⎤⎥⎦ , x𝑒𝑞2 =

⎡⎢⎣ 𝜂𝑒𝑞

0
0𝑛−1

⎤⎥⎦ , (3.1a)

𝜉𝑒𝑞 =

⎡⎢⎣ 0𝑛−1

0
0𝑛−1

⎤⎥⎦ , 𝜉𝑒𝑞2 =

⎡⎢⎣ 0𝑛−1

−𝜔𝑟/𝜑1(0)
0𝑛−1

⎤⎥⎦ , (3.1b)

in which 𝜔𝑟 is the angular velocity corresponding to desired operating configuration, 𝜂𝑒𝑞 is
the drill string deformation due to the balance between applied torques, 𝜑1 (the function
𝜑1 was evaluated at zero, but it could have been evaluated at any other point since it is
associated with the rigid body mode and, therefore, is constant) is the first component of
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Figure 14 – Angular velocities 𝜔 corresponding to each equilibrium point for an applied
torque 𝑇𝑡 = �̃�.

the vector of eigenfunctions and the subscript 𝑛 − 1 is the dimension of the zero vector.
The equilibria x𝑒𝑞 and 𝜉𝑒𝑞 correspond to the desired operating configuration, while x𝑒𝑞2

and 𝜉𝑒𝑞2 are associated with a stuck drill bit. Note that the only difference between these
configurations is the value of the rigid body velocity. In the sequence, the stability of the
operating point is investigated considering the open-loop system described by Eq. (2.12).

For a target angular velocity 𝜔𝑟 sufficiently greater than zero, 𝑞 is a smooth function
of 𝜔𝑑, and the qualitative behavior of the solutions of equation (2.12) in a neighborhood
of the origin can be determined by a linear approximation at this point (assuming 𝜉𝑒𝑞 is
hyperbolic). Linearization of Eq. (2.12) at the origin leads to the associated linear system

𝜉 = A𝑙𝜉, (3.2)

in which, by abuse of notation, 𝜉 is also used to represent the dynamics of the linearized
system and A𝑙 is the matrix of first order partial derivatives of g with respect to 𝜉,
evaluated at the origin

A𝑙 = 𝜕g
𝜕𝜉

⃒⃒⃒⃒
𝜉=0

=
[︃

0 Ī
−Λ̄ − [D + 𝑛𝑑𝜑(𝐿)𝜑⊺(𝐿)]

]︃
, (3.3)

where 𝑛𝑑 is the derivative of 𝑞 (Eq. (2.13)) at zero
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𝑛𝑑 = d𝑞

d𝜔𝑑

⃒⃒⃒⃒
𝜔𝑑=0

= −𝛽(𝑎2 − 𝑎1)𝑒−𝛽𝜔𝑟𝑊𝑂𝐵. (3.4)

Matrix A𝑙, which represents the linearized system dynamics, is a combination
of matrix A, which characterizes the dynamics of the drill string itself, and matrix
𝑛𝑑𝜑(𝐿)𝜑⊺(𝐿), which is the local contribution of the bit-rock interaction. This contribu-
tion appears in matrix A𝑙 together with the term D, which represents system dissipation
factors. However, as the matrix 𝜑(𝐿)𝜑⊺(𝐿) is positive semi-definite and the coefficient
𝑛𝑑 is negative, this contribution produces the opposite effect of the energy dissipation
term D. Thus, the reaction torque applied to the bit is locally equivalent to a viscous
damper with a negative damping coefficient 𝑛𝑑, yielding the observed instability in field
operations.

The apparent negative damping effect has already been described in classical non-
linear oscillations texts and is regarded as a source of instability of equilibrium points
and the existence of limit cycles, see for example the Van der Pol oscillator and Froude’s
pendulum (ANDRONOV; VITT; KHAIKIN, 1966; GUCKENHEIMER; HOLMES, 1983).
Several works (BRETT, 1992; MIHAJLOVIĆ et al., 2004; SALDIVAR et al., 2013) also
mention negative damping as one of the causes of instability and occurrence of stick-
slip oscillations for the drilling problem in oil wells. The expression derived in Eq. (3.4)
based on the friction model adopted in Eq. (2.3) not only corroborates these statements,
but introduces the concept of the negative damping coefficient based on the linear ap-
proximation and indicates how the drilling parameters affect its magnitude. Therefore,
field observations (BRETT, 1992) indicating that increasing the WOB or decreasing the
angular velocity may lead to unstable drilling operations can be explained using the neg-
ative damping coefficient, since both of the described operations increase its magnitude.
Likewise, higher values of the difference between static and dynamic friction coefficients
produce the same effect on 𝑛𝑑 and can also induce instability. Such direct relationships
cannot be drawn for the decay rate 𝛽, as 𝑛𝑑 is not a monotonic function of 𝛽; neverthe-
less, simple calculations show that the magnitude of 𝑛𝑑 increases for 𝛽 ∈ (0, 1/𝜔𝑟) and
decreases otherwise.

To validate the previous discussion, we proceed with a numerical stability analysis
of the linearized system (3.2). For that, consider first the following definitions: let x* ∈
R𝑛 be an equilibrium of an autonomous system represented by the differential equation
ẋ = f(x), and M be the linear approximation of f at x*:

M = 𝜕f
𝜕x

⃒⃒⃒⃒
x=x*

. (3.5)

Let also 𝜐(M) denote the spectral abscissa of M, i.e., 𝜐(M) is the real part of the rightmost
eigenvalue of matrix M. Then, the point x* is:



48 Chapter 3. Dynamic analysis

• stable, if for any neighborhood 𝑈 of x*, there exists a neighborhood 𝑉 ⊂ 𝑈 such
that any trajectory x(𝑡) starting in 𝑉 (x(0) ∈ 𝑉 ) remains in 𝑈 for all 𝑡 ≥ 0;

• asymptotically stable, if in addition to being stable, there exists a neighborhood 𝑊

of x*, such that x(𝑡) → x* as 𝑡 → ∞ for every x(0) ∈ 𝑊 . x* is said to be globally
asymptotically stable if 𝑊 = R𝑛;

• spectrally stable, if 𝜐(M) < 0;

• unstable, if it is not stable.

Another important result, known as Lyapunov’s indirect method (KHALIL, 2002), is
that spectral stability implies asymptotic stability and 𝜐(M) > 0 implies instability of
the equilibrium point.

Hence, the effects of the negative damping coefficient on the stability of 𝜉𝑒𝑞 can
be assessed by evaluating 𝜐(A𝑙) for different values of 𝑛𝑑. The results of this analysis
are illustrated in Figure 15, which shows that 𝜐(A𝑙) is always positive for 𝑛𝑑 < 0 and
moves further away from the imaginary axis as 𝑛𝑑 decreases. These results attest the
previous discussion, as they show an unstable operating point for negative values of the
negative damping coefficient. As discussed in chapter 2, the absence of damping for the
rigid body mode implies a null eigenvalue for 𝑛𝑑 = 0. If damping were added to the rigid
body mode, the effects of the negative damping coefficient would be countervailed, and
𝜉𝑒𝑞 would be asymptotically stable for small values of |𝑛𝑑|. Since an accurate model for the
dissipation sources may be hard to derive and requires update according to the drilling
operating conditions, it was preferred to keep the system without damping for the rigid
body mode, and deal with a critical case for controller design, where the operating point
of the open-loop system is unstable for any value of 𝑛𝑑 < 0.

Figure 15 – Spectral abscissa of the matrix A𝑙 as a function of 𝑛𝑑.



3.2. Closed-loop 49

The stability of the operating point 𝜉𝑒𝑞 is further analyzed by simulating the
nonlinear system given in Eq. (2.12). The WOB of 120 kN and the target velocity 𝜔𝑟 =
100 rpm were once more selected for demonstration of the results. Figures 16 and 17
depict the system response for initial conditions given by small perturbations around the
equilibrium point. The scenario in which the system response goes from the vicinity of the
unstable equilibrium 𝜉𝑒𝑞 to the stable equilibrium 𝜉𝑒𝑞2 is shown in Figure 16. When the
drill bit initial velocity is slightly less than 𝜔𝑟, expression (2.3) indicates that the initial
reaction torque is greater than the applied torque �̃� (see Figure 14). Since the torque on
bit increases for decreasing angular velocities and the applied torque �̃� is constant, the
drill bit angular speed undergoes a progressive reduction until it gets stuck. The opposite
behavior occurs for an initial drill bit velocity slightly above 𝜔𝑟, as shown in Figure 17.
In this circumstance, the initial reaction torque is lower than the applied torque, and due
to the negative slope relationship between the drill bit velocity and the reaction torque,
the drill bit velocity progressively increases, and the system response diverges.

Figure 16 – Bit and rotary table velocities for an initial condition given by a negative
perturbation in the rigid body velocity of the equilibrium 𝜉𝑒𝑞.

Other types of dynamic behavior, such as stick-slip oscillations, can be observed
for initial conditions that are not in the neighborhood of the equilibrium point or when
a control action is applied. These types of responses are investigated in the next section,
which shows the typical behavior of the closed-loop system for a given class of control
laws.

3.2 Closed-loop
The previous section showed that the open-loop drilling system has two equilibria

and that the point of interest is unstable due to the apparent negative damping effect.
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Figure 17 – Bit and rotary table velocities for an initial condition given by a positive
perturbation in the rigid body velocity of the equilibrium 𝜉𝑒𝑞.

The primary goal of employing a controller for this system is to reverse this situation,
i.e., rendering the operating point asymptotically stable. As discussed in subsection 1.2.2,
several control techniques can be employed for this purpose, the main differences between
them being which signals are used for feedback and how they are manipulated to yield
an effective control action. To illustrate the types of responses that the closed-loop sys-
tem may exhibit, we initially consider the elementary PI controller. The PI control law
is defined as a sum of a term proportional to the error and another proportional to the
integral of the error. Since the desired configuration is characterized by the whole drill
string rotating with a constant speed, and surface measurements are generally more ac-
cessible, the error is usually defined as the difference between the rotary table and target
velocities, 𝑒 = 𝜔𝑡 −𝜔𝑟. This definition leads to the control action given in Eq. (2.7), which,
in terms of the states defined in Eq. (2.16), can be rewritten as

𝑢 = −𝑘𝑝𝜑⊺(0)𝜉𝑣 − 𝑘𝑖𝜎. (3.6)

This control law couples equations (2.12) and (2.15), making the state 𝜉 a function
of 𝜎. Due to this coupling, the equilibrium condition (ℎ (𝜁, 𝑢) = 0) of the closed-loop
system represented by Eq. (2.16) implies 𝜔𝑡 = 𝜔𝑟. Therefore, unlike the open-loop system,
the closed-loop system with PI control has a single equilibrium point, which corresponds
to the desired operating configuration (the whole drill string rotating with the angular
velocity 𝜔𝑟), and the permanent stuck bit situation illustrated in Figure 16, which is
related to the equilibrium 𝜉𝑒𝑞2, is eliminated. Since the frictional force (2.13) is bounded
and the control action is opposite to the error and its derivative, the case in which the
operating point is unstable does not yield an unbounded response, and the situation where
the system response diverges (Figure 17) is also eliminated.
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Figure 18 – Bit and rotary table velocities for a small perturbation at the equilibrium
using control gains (𝑘𝑝, 𝑘𝑖) = (500, 250).

To illustrate the above statements, simulations are performed for the WOB of 120
kN and a target velocity of 100 rpm using distinct PI control gains. In the first scenario,
a pair of control gains (𝑘𝑝, 𝑘𝑖) = (500, 250) is selected to render the operating point of
the closed-loop system asymptotically stable. Figure 18 depicts the closed-loop system
response using these control gains for an initial condition in the neighborhood of the
operating point, 𝜁(0) =

[︀
0 0.1x⊺

𝑒𝑞

]︀⊺. Since the control gains were selected to guarantee
asymptotic stability, the system response converges to the operating point, as expected.
However, a different behavior is observed for initial conditions that are not in the vicinity
of the operating point. Figure 19 shows the system response using the same control gains
when the drill string starts undeformed with an angular velocity of 70 rpm. In this case,
instead of converging to the operating point, the system response approaches and stays
in a limit cycle. Focusing on the drill bit response, Figure 19 shows, at the beginning of
the simulation, the drill bit speed decreasing until reaching a complete standstill (stick
phase). At this stage, the positive error increases the applied torque due to the integral
action and, when the applied torque overcomes the reaction frictional torque, the drill bit
starts rotating again (slip phase). As the drill string may be twisted several times during
the stick phase, after the drill bit is released its angular velocity reaches a value much
higher than the target velocity, sharply reducing the applied torque due the integration
of the negative error. In this circumstance, the applied torque is considerably less than
the necessary to keep the bit rotating at the target speed, and the bit speed is reduced
until it re-enters the stick phase. This phenomenon occurs in a periodic fashion, producing
the so-called drill bit stick-slip oscillations. The control effort and the necessary constant
torque �̃� to maintain the drill bit rotating at the target velocity are displayed in Figure 20.

The limit behavior discussed previously is also observed when the operating point
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Figure 19 – Bit and rotary table velocities when the drill string starts undeformed with
an angular velocity of 70 rpm using control gains (𝑘𝑝, 𝑘𝑖) = (500, 250).

Figure 20 – Applied torque when the drill string starts undeformed with an angular ve-
locity of 70 rpm using control gains (𝑘𝑝, 𝑘𝑖) = (500, 250).

is not asymptotically stable. For instance, Figure 21 shows the system response for a pair
of control gains (𝑘𝑝, 𝑘𝑖) = (100, 600) that leads to an unstable operating point. Despite
the operating point being unstable as in the open-loop system, the response of the closed-
loop system does not diverge or tend to the second equilibrium point (𝜉𝑒𝑞2), but rather
reaches again the limit cycle. The initial condition for this simulation is a random small
perturbation at the equilibrium.

These results identify the two basic stable limit sets that the closed-loop system
possesses using a PI-type controller: an equilibrium and a limit cycle. As shown in the
case where the operating point is asymptotically stable, care must be taken because the
region of attraction may be limited, and some perturbations in the equilibrium may lead
to the appearance of stable and persistent stick-slip oscillations. Therefore, if the designed
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Figure 21 – Bit and rotary table velocities for a random small perturbation at the equi-
librium using control gains (𝑘𝑝, 𝑘𝑖) = (100, 600).

controller guarantees only asymptotic stability, it is important to carry out simulations
with the occurrence of at least one stick phase to guarantee that the operating point has
a large region of attraction, minimizing the chances of stick-slip occurrence. The two limit
sets determined previously are the same for the linear controllers designed in chapter 4,
and will serve as a guide for evaluating the performance of the designed controllers in
sections 5 and 6.
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4 Controller design

This chapter proposes two distinct linear control techniques relying exclusively on
sensors measurements for mitigating drill string torsional vibrations. The chapter starts
with an investigation of which signals might be relevant for feedback and proceeds to
establish the structure of the output matrix. The next two sections deal with the controller
gain design. The first technique presented was developed and applied to the vibration
control of linear systems in a previous work (CRUZ NETO; TRINDADE, 2019), and
consists of determining the control gain of an output feedback controller (OSOF) such
that its performance is as close as possible to that of a full state feedback controller (LQR).
The second technique is based on the negative damping coefficient concept introduced in
section 3.1, and aims to enlarge the limits of drill string safe operation by finding the
control gains that maximize the value of the negative damping coefficient for which the
operating point is asymptotically stable. These techniques are tested in chapters 5 and 6
via numerical simulations of the model developed in chapter 2.

4.1 Output matrix

In control theory, and particularly in vibration control of flexible structures, the
types and locations of sensors are as meaningful as the control gains. For the control
of drill string torsional vibrations, a variety of measurements have been considered for
feedback: the angular velocity and displacement of the rotary table (TRINDADE, 2020),
the WOB (MONTEIRO; TRINDADE, 2017), the torque at the rotary table (HALSEY;
KYLLINGSTAD; KYLLING, 1988), the torque on bit (ABDULGALIL; SIGUERDID-
JANE, 2004), the shear strain at the top of the drill string (TUCKER; WANG, 2003),
the drill bit velocity (NAVARRO-LOPEZ; LICEAGA-CASTRO, 2009) and the difference
between the drill bit and rotary table displacements (YIGIT; CHRISTOFOROU, 2006).
Since the goal of the control techniques developed in the following sections is to guarantee
asymptotic stability, this work considers that the signals used for feedback are related to
the system’s states defined in Eq. (2.16). Furthermore, these signals must be either di-
rectly measured or obtained via a simple manipulation, such as integration. Rather than
limiting the signals used for feedback to just measurements on the rotary table, a broader
scenario is analyzed, where measurements can be obtained along the drill string. How-
ever, since sensors placement in field operations is restricted and real-time large distance
data transmission is not available at the majority of oil wells, the focus of the analyzes
are on cases where the additional sensors are close to the rotary table, with a maximum
placement range of 10% of the total drill string length. As this is a narrow set, a large
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number of sensors may give redundant information, so it was decided to use only two
sensors. Indeed, it was found in simulations that increasing the number of sensors while
maintaining the placement restriction did not improve performance. Although emphasis
is placed on the scenario with restricted positioning, few simulations in chapter 5 study
the effects of placing the additional sensor along the entire drill string to assess how much
it is possible to improve the controller performance.

The effects of the measured signals on the closed-loop system are analyzed ac-
cording to their influence on the entries of the linearized closed-loop state matrix. To
this end, it is initially necessary to establish the control law. The general expression of a
single-input controller with linear static output feedback is

𝑢 = −Ky, (4.1)

in which K ∈ R1×𝑠, with 𝑠 representing the number of sensors, is a constant control gain
and y represents the measured signals, which can be written as a function of system’s
states:

y = C𝜁. (4.2)

in which C ∈ R𝑠×2𝑛 is the output matrix. The substitution of Eqs. (4.1) and (4.2) in Eq.
(2.16) gives

𝜁 = (A𝑛 − B𝑡𝑛KC) 𝜁 + B𝑏𝑛𝑞(𝜔𝑑), (4.3)

such that the linearized closed-loop state matrix is

A𝑐𝑙 = A𝑙 − B𝑡𝑛KC, (4.4)

in which A𝑙 is the linear approximation of the augmented open-loop system (2.16) at the
operating point (A𝑙 is also used for the linear approximation of the augmented system,
an admitted abuse of notation):

A𝑙 = 𝜕h
𝜕𝜁

⃒⃒⃒⃒
𝜁=0

=

⎡⎢⎣0 0 𝜑⊺(0)
0 0 Ī
0 −Λ̄ − [D + 𝑛𝑑𝜑(𝐿)𝜑⊺(𝐿)]

⎤⎥⎦ . (4.5)

To analyze the effects of feedback on A𝑐𝑙, start with the scenario of a single sensor
at the rotary table using the PI control law, which considers velocity and displacement
for feedback. The output matrix for the PI controller is
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C =
[︃

1 0 0
0 0 𝜑⊺(0)

]︃
(4.6)

which leads to the following linearized closed-loop state matrix

A𝑐𝑙 =

⎡⎢⎣ 0 0 𝜑⊺(0)
0 0 Ī

−𝑘𝑖𝜑(0) −Λ̄ − [D + 𝑛𝑑𝜑(𝐿)𝜑⊺(𝐿) + 𝑘𝑝𝜑(0)𝜑⊺(0)]

⎤⎥⎦ . (4.7)

In this case, the proportional gain acts on the damping term, while the integral
gain is mainly a component that guarantees regulation. Note that, due to the rigid body
mode, feeding back the displacement does not affect the entries corresponding to the
natural frequencies (differently from systems without a rigid body mode). An alternative
to acting on the natural frequencies would be to feed back the displacement without the
component associated with the rigid body mode. This approach is studied in a paper that
was published recently (CRUZ NETO; TRINDADE, 2023). However, as a straightforward
method to obtain this signal has not yet been determined, this work proposes another
approach to modify the natural frequencies, which consists in using a second sensor and
feeding back the difference between the measured displacements of both sensors. The
output matrix for this approach is

C =

⎡⎢⎣1 0 0 0
0 𝜑(𝛼1) − 𝜑(𝛼2) 0 0
0 0 𝜑(𝛼1) 𝜑(𝛼2)

⎤⎥⎦
⊺

(4.8)

in which 𝛼1 and 𝛼2 are the locations of the first and second sensors, respectively. Due to
the need for an integrator at the rotary table, because the error derivative was defined
as the difference between the rotary table and target velocities, the first sensor location
is 𝛼1 = 0. Different locations for the second sensor are examined in chapter 5. The first
column of matrix C⊺ corresponds to the error integral, the second is associated with
the difference between the measured displacements, the third corresponds to the velocity
measured at the rotary table and the fourth to the velocity measured at 𝛼2. The first
element of the vector 𝜑(𝛼1) − 𝜑(𝛼2) was removed to make the dimensions of C and 𝜁

compatible. This elimination can be done without loss of generality, since the presence of
the rigid body mode implies

[𝜑(𝛼1) − 𝜑(𝛼2)]⊺ 𝜂 =
[︀
𝜑(𝛼1) − 𝜑(𝛼2)

]︀⊺
𝜂. (4.9)

Feeding back the signals specified in Eq. (4.8) yields the following closed-loop state
matrix
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A𝑐𝑙 =

⎡⎢⎣ 0 0 −𝐾1𝜑
⊺(0)

0 0 −
[︀
Λ̄ + 𝐾2𝜑(0)

(︀
𝜑

⊺(𝛼1) − 𝜑
⊺(𝛼2)

)︀]︀⊺
𝜑(0) Ī⊺ − [D + 𝑛𝑑𝜑(𝐿)𝜑⊺(𝐿) + 𝜑(0) (𝐾3𝜑

⊺(𝛼1) + 𝐾4𝜑
⊺(𝛼2))]⊺

⎤⎥⎦
⊺

. (4.10)

The addition of the second sensor makes the controller more versatile, making it
capable of modifying the flexible components of the drill string and increasing its ability
to act on the damping terms. Chapter 5 will show that the addition of the second sensor
considerably extends the limits of safe drilling operation. Another interesting remark de-
rived from Eq. (4.10) is that feeding back the displacement measured by the first sensor is
useful for output regulation, but there is no point in feeding back uniquely the displace-
ment measured by the second sensor, since it does not affect any element of A𝑐𝑙. Indeed,
adding a new state to represent the displacement of another point on the drill string
would yield a null eigenvalue for the closed-loop linearized matrix, which could preclude
the design of some control techniques. Therefore, the output matrix general structure is
given in Eq. (4.8) and the effects of varying the position of the second sensor are analyzed
in chapter 5. Two distinct methods for determination of the control gains are developed
in the following sections. Since the OSOF formulation was originally developed to also
design the sensors locations, it was decided to keep this framework in the subsequent
presentation. As the results obtained with the OSOF give a clear indication of what is the
optimal positioning of the second sensor, this information is used in the development of
the negative damping based controller, so that it only considers the controller gain design.

4.2 Optimal static output feedback (OSOF) controller
This section presents the general formulation of the optimal static output feedback

(OSOF) controller for a linear system, which derives from the linear quadratic regulator
(LQR). An obstacle in applying the LQR control to practical problems is the require-
ment of measuring all states for feedback. Although the linear quadratic gaussian (LQG)
control solves this issue by using an observer to estimate unmeasured states, it does
not possess some important structural properties of the LQR, such as low sensitivity to
uncertainties and high frequency margins. Indeed, LQG control does not ensure the ex-
istence of stability margins (DOYLE, 1978), and the loop transfer recovery techniques
are restricted to minimum phase plants and tends to generate high gains (SKOGESTAD;
POSTLETHWAITE, 2005). The optimal static output feedback control, initially pro-
posed in (LEVINE; ATHANS, 1970), suggests a simple alternative to the LQR and LQG
controllers, using the same quadratic cost function of the LQR but with the constraint
of using only the signals specified by the output matrix for feedback. Briefly, the OSOF
formulation can be described as follows.
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Given a linear dynamical system

ẋ = Ax + Bu (4.11a)
y = Cx (4.11b)

u = −Ky (4.11c)

in which y describes the measured states, a control law of the type (4.11c) is sought such
that the system (4.11a) is stable and the following quadratic cost function is minimized

𝐽𝑄 =
∫︁ ∞

0
x⊺Qx + u⊺Ru d𝑡 (4.12)

The cost function (4.12) describes a trade-off between performance and control
effort, which should be balanced according to controlled system specifications by choosing
the weighting matrices Q and R. For the well-posedness of the problem, Q must be
at least positive semi-definite and R must be positive definite. Assuming that (4.11a)
is stabilizable using output feedback, the problem of minimizing (4.12) subject to the
constraints (4.11) can be rewritten in a more convenient form (CRUZ NETO, 2018) as

min
K

tr{Px0x⊺
0} (4.13a)

subject to A⊺
𝑐P + PA𝑐 + Q + (KC)⊺RKC = 0, (4.13b)

in which x0 is the vector of system initial conditions, tr is the trace operator and A𝑐 is the
closed loop state matrix (A𝑐 = A − BKC). The constraint given in equation (4.13b) is a
Lyapunov equation that has a unique solution P for every A𝑐 that is Hurwitz. Therefore,
for every control gain K that makes the closed-loop system stable, equation (4.13b) can
be solved to determine a matrix P that will be used to evaluate the cost function (4.13a)
for a given initial condition.

To determine the first order necessary conditions for optimality, we first convert
this constrained problem into an unconstrained problem using a matrix S of Lagrange
multipliers, such that the Lagrangian is

𝐿 = tr{Px0x⊺
0} + tr{S(A⊺

𝑐P + PA𝑐 + Q + (KC)⊺RKC)} (4.14)

then, the necessary conditions to obtain a stationary point for this cost function are given
by
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𝜕𝐿

𝜕S
= A⊺

𝑐P + PA𝑐 + Q + (KC)⊺RKC = 0 (4.15a)
𝜕𝐿

𝜕P
= A𝑐S + SA⊺

𝑐 + x0x⊺
0 = 0 (4.15b)

1
2

𝜕𝐿

𝜕K
= RKCSC⊺ − B⊺PSC⊺ = 0 (4.15c)

Methods for solving equations (4.15) are given by (CRUZ NETO, 2018). Hence-
forth, the focus is placed on the dependence of the solution on initial conditions. Since
there is no way to decouple equations (4.15) and equation (4.15b) has a dependence on
system initial condition, so do the optimal output control gain K. The first approach to
deal with this dependence was proposed by (LEVINE; ATHANS, 1970). Their suggestion
consisted in optimizing the expected value of the cost function (4.13a) given a linearly in-
dependent set of initial states, which was equivalent to assuming that the initial condition
x0 is a random variable uniformly distributed on the surface of a unit hyper-sphere. This
approach was intended to provide a mathematical simplification, so it was only necessary
to replace matrix x0x⊺

0 by the identity matrix in the optimization problem (4.13).

Recently, some contributions to the OSOF control have been proposed in (CRUZ
NETO; TRINDADE, 2019). Initially, aiming to apply the OSOF control to distributed
parameter systems, sensors locations were included as optimization variables in order to
improve the performance of the output feedback controller. Moreover, a new approach to
deal with the dependence on system initial conditions was suggested. Since any output
controller has a performance criterion below that of the full state feedback controller, it
would be desirable that the values of the cost functions for both controllers would be
as close as possible for any initial condition. Based on this statement, the optimization
problem (4.13) was replaced by

min
(K,𝛼)

max
x0

x⊺
0P𝑜(K, 𝛼)x0

x⊺
0P𝑙x0

(4.16a)

subject to A⊺
𝑐P𝑜 + P𝑜A𝑐 + Q + (KC(𝛼))⊺ RKC(𝛼) = 0, (4.16b)

in which x⊺
0P𝑜(K, 𝛼)x0 is the cost function of the output feedback controller, x⊺

0P𝑙x0 is the
cost function of the LQR controller and 𝛼 represents sensors locations. Simply put, this
optimization attempts to find an output feedback controller whose performance is as close
as possible to the LQR controller for any initial condition. Given the weighting matrices
(Q, R), the matrix P𝑙 is a constant, and can be calculated by solving the corresponding
algebraic Riccati equation (ARE).

The proposed criterion is a ratio of the OSOF and LQR cost functions, and has
the advantage of being independent of excitation and measurement locations. Moreover,
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this ratio is always greater than or equal to one, since the cost function of the LQR is
minimal for any initial condition, and it also can be interpreted as a metric that measures
how close the performance of output feedback controller is to that of the state feedback
controller.

The problem given in equation (4.16) requires more elaborated algorithms, since, a
priori, it is necessary to solve two optimization problems. However, it was proved (CRUZ
NETO, 2018) that the problem of determining the initial condition that maximizes the
ratio given in (4.16a) has an analytical solution. The proof is similar to that of showing
that natural frequencies are stationary points in Rayleigh’s quotient (a reader familiar
with Rayleigh’s quotient will notice that both this quotient and the one given in equation
(4.16a) are characterized by the ratio of two quadratic forms). The initial condition that
maximizes this ratio is given by the largest eigenvalue (𝜆𝑚) of the following generalized
eigenvalue problem:

P𝑜v = 𝜆P𝑙v. (4.17)

Using this result, the optimization (4.16) can be finally rewritten as

min
(K,𝛼)

𝜆𝑚 (P𝑜(K, 𝛼), P𝑙) (4.18a)

subject to A⊺
𝑐P𝑜 + P𝑜A𝑐 + Q + (KC(𝛼))⊺ RKC(𝛼) = 0, (4.18b)

A schematic representation of OSOF controller design using a generic optimization
algorithm is depicted in Figure 22.

Some last remarks regarding the application of the OSOF formulation for the
drill string problem are in order. Since the OSOF formulation is developed for linear
systems, the linear closed-loop state matrix (4.10) and the output matrix (4.8) are used in
optimization (4.18). As the linearized closed-loop matrix depends on the negative damping
coefficient, the OSOF control design depends on the specified operating conditions (WOB
and target velocity) and the properties of the bit-rock interaction. Therefore, due to
the uncertainties involved in the process, a sensitivity analysis, which is carried out in
chapter 6, is mandatory. Another important aspect to emphasize is that the system output
matrix depends entirely on which sensors are available, so it is possible to use another
matrix C while maintaining the OSOF formulation to design the control gains and sensors
locations. For example, to design a PI controller based on the OSOF formulation, one
should use the output matrix (4.6) and apply optimization (4.18) to determine only the
control gains.
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Figure 22 – Flowchart of the OSOF controller design.

4.3 Negative damping based controller (NDBC)

This section proposes a controller that aims to maximize the robustness of the
closed-loop system. The underlying principle of the proposed control technique is the
negative damping coefficient and its influence on the local stability of the drilling system.
As discussed in section 3.1, the apparent negative damping effect resulting from the bit-
rock interaction is the main factor causing instability of the operating point. Due to the
dependence of the negative damping coefficient on the drilling parameters indicated in
Eq. (3.4), a controller that guarantees stability for a wide range of values of this coefficient
will consequently allow stable drilling for a wide range of operating conditions (WOB and
target angular velocity) and uncertainties in the friction parameters. To enlarge the region
of safe drilling as much as possible, the proposed control technique aims to maximize
the range of values of the negative damping coefficient for which the operating point is
asymptotically stable. This idea can be formalized in the following manner.

Suppose the parameters of the friction function (2.3) are unknown and let 𝑛𝑑 ∈ R−

represent a possible value that the negative damping coefficient may assume. Thus, the
linearized closed-loop state matrix (4.4) can be written as a function of the control gain
K and 𝑛𝑑 as
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A𝑐𝑙(K, 𝑛𝑑) = A𝑙(𝑛𝑑) − B𝑡𝑛KC. (4.19)

Next, for a given K, define 𝑍 as the set of values of 𝑛𝑑 for which the spectral abscissa is
positive

𝑍 = {𝑛𝑑 ∈ R− | 𝜈 (A𝑐𝑙(K, 𝑛𝑑)) > 0} (4.20)

and 𝛾 as the supremum of this set

𝛾 = sup 𝑍. (4.21)

Then, the control gain is given by the optimization

min
K

𝛾, (4.22)

which aims to find the controller that guarantees asymptotic stability for the largest
possible connected set of values of the negative damping coefficient. To understand the
motivation behind the optimization formulation and some nuances on the evaluation of
the cost function, a few examples are examined.

Figure 23 depicts 𝜈 (A𝑐𝑙(K, 𝑛𝑑)) as a function of 𝑛𝑑 for three distinct control gains:
K1 = [15 180 − 280 520], K2 = [45 70 1670 − 1180] and K3 = [68 0 549 0]. For
the first control gain, 𝜈 (A𝑐𝑙(K1, 𝑛𝑑)) is positive for any value of the negative damping
coefficient. Therefore, the set 𝑍 for the control gain K1 is simply R−, and its supremum
assumes the largest possible value 𝛾 = 0, reflecting the worst scenario in which the
operating point is unstable for any value of the negative damping coefficient. For the
second control gain, 𝜈 (A𝑐𝑙(K2, 𝑛𝑑)) has a single zero at approximately 𝑛𝑑 = −407.1,
such that 𝑍 is the interval (−∞, −407.1) and its supremum is 𝛾 = −407.1. A different
situation is observed for the third control gain, for which 𝜈 (A𝑐𝑙(K3, 𝑛𝑑)) has three zeros.
For this control gain, 𝑍 is the union of intervals (−∞, −447.5) ∪ (−436.7, −378.7), and
its supremum is 𝛾 = −378.7. In this case, even though 𝑛𝑑 = −447.5 is the lowest value
for which the operating point is asymptotically stable, there are larger values of the
negative damping coefficient – 𝑛𝑑 ∈ (−436.7, −378.7) – corresponding to an unstable
operating point. This last example reveals the motivation of minimizing the supremum of
𝑍, as the optimization goal is to find a controller that ensures asymptotic stability for all
negative damping coefficient values in a specified range or, using the terms defined in the
optimization, for all 𝑛𝑑 > 𝛾. Although situations where 𝜈 (A𝑐𝑙(K, 𝑛𝑑)) has more than one
zero were rarely observed for most of the control gains analyzed, they represent a scenario
that may occur during the optimization, and highlight the importance of optimizing 𝛾.

The examples discussed above also suggest a simple way of computing the cost
function 𝛾. Initially, to determine whether the control gain lies in a similar situation as K1,
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Figure 23 – Spectral abscissa of the linearized closed-loop state matrix as a function of
the negative damping coefficient for three different control gains.

one only needs to check if 𝜈 (A𝑐𝑙(K, 0)) > 0. If this inequality holds, then 𝛾 = 0, otherwise
𝛾 is the largest value of 𝑛𝑑 for which 𝜈 (A𝑐𝑙(K, 𝑛𝑑)) = 0, which can be determined using
several different numerical methods for finding zeros of functions (STOER; BULIRSCH,
2002).

Another interesting remark about the proposed optimization concerns the rela-
tionship between the negative damping coefficient and the drilling parameters. Since the
negative damping coefficient is a monotonic function of several drilling parameters (WOB,
𝜔𝑟, 𝑎2, 𝑎1), optimization (4.22) together with Eq. (3.4) can be used to establish drilling
parameters ranges for which the operating point is asymptotically stable. For example,
assuming the other parameters are constant, the operating point is asymptotically stable
for any target angular velocity greater than

𝜔𝑟 = ln
(︂

𝛽(𝑎1 − 𝑎2)𝑊𝑂𝐵

𝛾

)︂ 1
𝛽

, (4.23)

provided 𝜔𝑟 > 𝛿. Further relationships can be derived similarly for the other drilling
parameters that are monotonic functions of the negative damping coefficient: WOB, 𝑎2

and 𝑎1.

Since some friction parameters may have an interdependence, another useful way to
assess system robustness is through the highest combined admissible variation in drilling
parameters relative to a nominal operating condition. For prescribed target angular ve-
locity and WOB values, the latter associated with the friction parameters identified in
Table 2, it is possible to compute a nominal value of the negative damping coefficient 𝑛𝑑0 .
Given 𝑛𝑑0 and 𝛾 corresponding to a control gain K, the largest admissible variation in
the drilling parameters relative to a nominal operating condition can be expressed by the
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ratio

𝜖 = 𝛾

𝑛𝑑0

. (4.24)

As as example, consider the control gain K2 studied previously. Assume the se-
lected operating condition consists of an WOB of 140 kN and a target angular velocity 𝜔𝑟

of 100 rpm. Using the corresponding friction parameters in Table 2, the negative damp-
ing coefficient associated with this condition is 𝑛𝑑0 = −290.1 Nms. Therefore, given that
𝛾 = −407.1 for K2, the substitution of both values in Eq. (4.24) gives 𝜖 = 1.40. Thus, the
closed-loop system with the control gain K2 tolerates changes in the drilling parameters
that combined would allow a variation of 40% in the negative damping coefficient relative
to the prescribed operating condition.

Another interpretation for optimization (4.22) is that it may be employed to es-
tablish limits for the robustness of a given controller. For example, suppose the controller
selected for the drilling system is a PI-type. Then, if one succeeds in finding the global
optimum (or at least a good approximation of it) of optimization (4.22) using the out-
put matrix (4.6) of the PI controller, the result obtained for the cost function 𝛾 will
establish the upper bound of the negative damping coefficient (maximum WOB values,
minimum angular speed values, and so forth) for any PI-type controller. Therefore, the
operating limits obtained using other control design strategies, for example SoftSpeed, or
Stiff PI (KYLLINGSTAD, 2017), must always be lower than the limits obtained using
optimization (4.22). It is important to emphasize that optimization (4.22) ensures only
local asymptotic stability, such that the operating limits obtained refer to local robustness
properties of the closed-loop system. Simulations performed in chapters 5 and 6 investi-
gate to what extent the results obtained for the linear system can be expanded to the
nonlinear system.
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5 Numerical simulations for the controlled
drill string - Deterministic model

In this chapter, the control techniques developed in chapter 4 are applied to the
drill string model presented in chapter 2. The chapter starts by establishing the conditions
considered in the simulations and the criteria for evaluating the controller’s performance.
The next two sections presents and discusses the numerical results for the NDBC and
OSOF controllers, respectively.

5.1 Simulation conditions and performance criteria

Initially, it is important to restate some of the model properties to clarify the
conditions considered in simulations. All geometric and physical properties of the drill
string are constant, according to Table 1. Although the WOB value is considered constant
throughout a simulation, different WOB values are analyzed to investigate the effective-
ness of the controllers for distinct operating conditions. The values chosen for the WOB
are 120 and 140 kN, which imply the use of the corresponding friction coefficients given
in Table 2. The case with higher WOB (140 kN) presents a harsher environment (more
prone to stick-slip oscillations), and was selected to examine the proposed methodology
for a more challenging condition from a vibration control perspective. The target angular
velocity, established as 𝜔𝑟 = 100 rpm, corresponds to the operating condition identified
in (TUCKER; WANG, 2003) and belongs to the typical range 85 ≤ 𝜔𝑟 ≤ 135 rpm of
angular velocities for drilling systems (NAVARRO-LOPEZ; LICEAGA-CASTRO, 2009).
Other operating conditions and variations in the drilling parameters are analyzed in chap-
ter 6. Lastly, unless otherwise stated, it was considered as an initial condition the entire
system rotating undeformed at a constant speed of 70 rpm, which is henceforth referred
to as the standard initial condition. This initial condition emulates a severe drilling en-
vironment, and the purposes of adopting this condition are to obtain information about
the stability of the operating point when the system response undergoes the stick phase
and to assess the controller’s performance in a harsh situation. The differential equations
were integrated using the MATLAB® built-in integrator ode45.

The criteria adopted for assessing the controller’s effectiveness comprise two fac-
tors: the time response (drill bit and rotary table velocities) and control effort. One of the
metrics for evaluating the closed-loop response is the average deviation from the drill bit
target angular velocity
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𝐽 = 1
Δ𝑡

∫︁ Δ𝑡

0

|𝜔𝑏 − 𝜔𝑟|
𝜔𝑟

d𝑡, (5.1)

in which the timespan was set to Δ𝑡 = 100 s. As this metric combines several character-
istics of the system response, other specific criteria are also evaluated: the duration of the
stick phase, and the drill bit angular velocity maximum overshoot and settling time (5%
of the steady-state value) . The criterion adopted for evaluating the closed-loop system
performance in terms of the control effort is the highest applied torque.

5.2 OSOF controller
The first step in designing the OSOF controller, heeding Figure 22, is to select

weighting matrices (Q, R) that produce a LQR controller with reasonable compromise
between performance and control effort. The matrix Q is chosen such that weighted inner
product of the system state represents the system total energy augmented with a factor
𝑞𝑖 that multiplies the error integral:

Q =

⎡⎢⎣𝑞𝑖 0 0
0 Λ̄ 0
0 0 I

⎤⎥⎦ . (5.2)

The constant 𝑞𝑖 affects the magnitude of the integral gain (gain associated with the
error integral). For 𝑞𝑖 ≈ 0 (for 𝑞𝑖 = 0 the ARE has no solution), the closed-loop system has
no integral gain and the time response is benefited by the absence of overshoot. However,
without integral gain there is a steady-state error in the presence of uncertainties, so the
𝑞𝑖 value must be chosen to guarantee a compromise between performance and robustness.
The value of R (which is a scalar for this problem) needs to be adjusted according to the
actuator’s limitation. In the present case, to make a comparison with a PI controller, the
value of R was tuned to guarantee similar levels of control effort between the OSOF and
PI controllers.

Having determined the weighting matrices, we proceed to the optimization defined
in equation (4.18). This optimization is nonconvex and, although heuristic optimization
methods are generally preferred in this occasion, the sequential quadratic programming
(SQP) method was successfully applied in a previous work (CRUZ NETO; TRINDADE,
2019). For the problem at study in this thesis, the SQP algorithm with random initial
guesses still provided good results with low computational effort. Therefore, the optimal
gains and sensors locations were determined using the SQP algorithm with several initial
guesses, and the best local optima were selected. The values of the parameters 𝑞𝑖, R, the
optimal control gains and the optimal second sensor location are summarized in Table 3.
The units of each component of the control gain vector are Nm for 𝐾1 and 𝐾2, and Nms for
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𝐾3 and 𝐾4. The largest ratio between the cost functions of the OSOF and LQR controllers
is also indicated in Table 3, and is expressed in percentage by 𝜆*

𝑚 = (𝜆𝑚 − 1) × 100.

Table 3 – OSOF control parameters.

WOB Gain Position R 𝑞𝑖 𝜆*
𝑚

120 kN K = [54.5 − 2113.4 829.7 − 44.1] 𝛼2 = 0.1𝐿 0.0042 29 42.29%
140 kN K = [32.6 − 1600.8 674.6 0.3] 𝛼2 = 0.1𝐿 0.0131 41 86.80%

Some remarks can already be derived from the results presented in Table 3. Ini-
tially, it is noted that the second sensor optimal location was at the limit of the specified
range for both WOB values. Since for small distances between the sensors the difference
in velocities and displacements signals is reduced, the optimization attempts to keep the
sensors as far apart as possible. This observation is also reflected in the magnitude of
the control gains. As the difference between the displacements at the rotary table and at
position 𝛼2 = 0.1𝐿 is small, the optimization increases the magnitude of the control gain
corresponding to this measurement (the second element of K) to increase its influence on
the system response, yielding the large control gains obtained for both WOB values. Fig-
ure 24 and Figure 25 illustrate this claim by comparing the feedback signal corresponding
to the second control gain and the one corresponding to the third control gain. Note that
the amplitude of the signal corresponding to the third control gain is around five times
greater than that of the signal corresponding to the second control gain. The operating
condition for these simulations is a WOB of 120 kN and a target angular velocity of 100
rpm, and the starting scenario is given by the standard initial condition.

Figure 24 – Feedback signal associated with the second control gain.

Another aspect indicated in Table 3 is the difference in performance between the
OSOF and the LQR in terms of the quadratic cost function (4.12), which is character-
ized by the variable 𝜆*

𝑚. For instance, the 𝜆*
𝑚 value obtained for the OSOF controller
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Figure 25 – Feedback signal associated with the third control gain.

corresponding to the WOB of 120 kN indicates that the difference between the cost func-
tions of the OSOF and LQR considering a linear approximation at the operating point
is 42.3% in the worst scenario (for the initial condition that maximizes the ratio between
the cost functions of both controllers). The performance indexes obtained for both WOB
values are well above the 𝜆*

𝑚 =4.05% obtained by (CRUZ NETO; TRINDADE, 2019),
who also designed an OSOF with two sensors, but for a linear system without sensor
placement constraints. An investigation at the end of this section without the placement
restriction indicates that this is indeed the major factor explaining the higher difference
in the cost functions of both controllers. Still, despite the higher 𝜆𝑚 value, an evaluation
of the nonlinear system response shows a remarkable performance of the output feedback
controller.

Figures 26-28 compare OSOF and LQR considering the drill bit and rotary ta-
ble angular velocities and the applied control effort for the WOB of 120 kN. The first
interesting aspect to be highlighted is the ability of both controllers, whose design relies
on a linear approximation, to keep the operating point asymptotically stable despite the
system’s trajectory going far from the linearization point, even when the drill bit passes
through the stick phase. In addition to providing stability, both controllers also achieved
remarkable results in terms of performance, which will become apparent afterwards in a
comparison with an optimized PI controller. In general, the LQR excelled in every crite-
rion concerning the drill bit velocity, although the control effort to achieve this level of
performance was much higher than that applied by the OSOF controller. Considering all
performance criteria, the highest relative difference in favor of LQR was the stick time,
which was 52% higher for the OSOF controller, while the maximum control effort applied
by the LQR controller was 74% higher than that required by the OSOF. The perfor-
mance metrics corresponding to these results are compiled in Table 4, together with the
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other main results of this section. Overall, in view of the resembling shapes of the response
curves with significantly less required torque, the OSOF formulation provided a controller
with good trade-off between performance and control effort.

Figure 26 – Bit and rotary table velocities using OSOF controller with WOB = 120 kN.

Figure 27 – Bit and rotary table velocities using LQR controller with WOB = 120 kN.

The time responses and control efforts for the WOB of 140 kN are depicted in fig-
ures 29-31. Results of the simulations and the performance metrics presented in Table 4
corroborate the experimental observations (BRETT, 1992) indicating that a higher WOB
represents a more critical environment, and consequently more challenging from the vi-
bration control standpoint. These results are also in agreement with the negative damping
coefficient concept, since the coefficient associated with the 120 kN WOB, 𝑛𝑑 = −210.75
Nms, is higher than that associated with the 140 kN WOB, 𝑛𝑑 = −290.08 Nms. Similarly
to the results obtained for the WOB of 120 kN, all results associated with the drill bit
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Figure 28 – Applied torque using OSOF and LQR controllers with WOB = 120 kN.

velocity response favored the LQR, while the difference in control effort for the 140 kN
WOB was even higher than that obtained for the lower WOB. The highest relative differ-
ence in favor of LQR was once more the stick time, which was 64% higher for the OSOF
controller, while the maximum control effort for the LQR controller was 93% higher than
that applied by the OSOF controller. Therefore, although the OSOF controller was not
able to reproduce the LQR, it still achieved a good trade-off between control effort and
performance.

Figure 29 – Bit and rotary table velocities using OSOF controller with WOB = 140 kN.

Since the large number of sensors required by the LQR control makes its imple-
mentation unfeasible, the main objective of simulating the drill string with this controller
is to provide a performance reference. To obtain more information on the effectiveness
of the proposed control strategy, the OSOF control is compared to the PI control, a
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Figure 30 – Bit and rotary table velocities using LQR controller with WOB = 140 kN.

Figure 31 – Applied torque using OSOF and LQR controllers with WOB = 140 kN.

technique employed in several drilling rigs. A successful application of the PI control
depends primarily on how the proportional (𝑘𝑝) and integral (𝑘𝑖) gains are determined.
Many approaches can be used to determine the gains of a PI controller, such as tuning
techniques based on time and frequency responses, fuzzy logic, subspace identification,
and so forth (JOHNSON; MORADI, 2005). In this thesis, similar to the approach sug-
gest by (MONTEIRO; TRINDADE, 2017), the PI control gains are taken as optimization
variables that minimize the average deviation from the drill bit target angular velocity
(5.1). Although the shape of this cost function apparently indicates a smooth behavior,
a local analysis reveals several irregularities. Figure 32 shows the performance index as a
function of 𝑘𝑖 for a constant value of 𝑘𝑝 = 500. The second graph is just a zoom-in of the
first one to highlight the irregularities. Due to these discontinuities, classical optimization
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algorithms struggled to find the optimal control gains, such that our choice was turned
towards heuristic algorithms. An optimization using the particle swarm method yielded
the control gains (𝑘𝑝, 𝑘𝑖) = (633.4,166.7) for the 120 kN WOB and (𝑘𝑝, 𝑘𝑖) = (640.7,158.7)
for the 140 kN WOB.

Figure 32 – Angular velocity average deviation J as a function of 𝑘𝑖 for 𝑘𝑝 = 500.

Figure 33 – Bit and rotary table velocities using PI controller with WOB = 120 kN.

Simulation results using the PI control gains found in the optimization are pre-
sented in Figures 33-36. The control effort displayed by the OSOF control was again
superimposed on Figures 34 and 36 to elucidate the comparison. Analyses of the time
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Figure 34 – Applied torque using OSOF and PI controllers with WOB = 120 kN.

Figure 35 – Bit and rotary table velocities using PI controller with WOB = 140 kN.

responses with the OSOF and PI controls show an advantage in favor of the former for
every aspect related to the drill bit response, especially the overshoot reduction. Consid-
ering the WOB of 120 kN, the PI controller overshoot was 152% higher, while for the 140
kN WOB the overshoot was 220% higher than the obtained for the OSOF. These results
indicate a critical advantage for OSOF control, as higher variations in the angular velocity
can favor fatigue and damage to drill string components. Another relevant aspect is that
these favorable results were achieved without increasing the applied control effort, as the
difference in the maximum applied torque between both controllers was always less than
9% (the OSOF maximum applied torque was even lower for the WOB of 140 kN). Lastly,
the OSOF formulation provides another advantage in terms of computational effort. While
the evaluation of the index 𝐽 requires a simulation of the nonlinear and nonsmooth sys-
tem, the determination of 𝜆𝑚 only requires the solution of an eigenvalue problem. To put
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Figure 36 – Applied torque using OSOF and PI controllers with WOB = 140 kN.

into perspective, the entire process of finding an initial guess such that A𝑐 is Hurwitz and
optimizing for this guess takes in average half a second. Under the same hardware and
software configurations, for some cases where stick-slip oscillations were observed, only
the evaluation of 𝐽 took around 15 seconds. If we take into account statistical analyses or
optimizations, in which several simulations are required, these values may become major
issues.

To summarize, the main results of this section are compiled in Table 4. To provide
a better comparison of the results, the time responses considering only the drill bit angular
velocity for each controller and for each WOB configuration are also depicted in Figures
37 and 38.

Table 4 – Main results for OSOF, LQR and PI controllers considering the standard initial
condition.

WOB 120 kN 140 kN
Controller OSOF LQR PI OSOF LQR PI

J (%) 5.58 4.11 7.16 8.06 5.74 9.49
Stick Time (s) 1.75 1.15 1.83 2.81 1.71 3.49

Settling Time (s) 19.96 16.39 22.17 26.79 24.71 32.17
Overshoot (%) 34.95 24.56 87.99 34.39 22.14 109.91

Max. Applied Torque (kNm) 11.91 20.82 11.19 12.36 23.87 13.43

As a final analysis for the nominal system, we removed the sensor placement con-
straint in the optimization to assess how much is possible to improve the controller per-
formance. Additionally, instead of keeping the second sensor location as an optimization
variable, its position was fixed at some locations along the drill string, and only the control
gains were optimized. This analysis provides an overview of the approximation between
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Figure 37 – Bit velocity for OSOF, LQR and PI controllers with WOB = 120 kN.

Figure 38 – Bit velocity for OSOF, LQR and PI controllers with WOB = 140 kN.

OSOF and LQR controllers as the position of the second sensor gradually increases. Since
the performance improvement of the OSOF controller was negligible when limiting the
control effort to comparable values as those employed using the PI controller, the weight-
ing factors R and 𝑞𝑖 were adjusted to allow higher limits for the applied torque. It is worth
mentioning that as the 𝐽 optimization did not consider any restriction on the control ef-
fort, it is not possible to improve the performance of the PI controllers obtained earlier,
even when applying higher torque values. The optimal control gains corresponding to each
location of the second sensor are given in Table 5 for the 120 kN WOB. Although the
𝜆𝑚 values obtained for the 140 kN WOB were higher, they displayed the same tendency
observed in Table 5.

Table 5 already reveals some patterns in the variation of control gains. As the
second sensor moves towards the drill bit, the magnitude of the signal related to the
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Table 5 – Control gains and 𝜆*
𝑚 as a function of the second sensor location for the 120

kN WOB and weighting parameters 𝑅 = 0.0049 and 𝑞𝑖 = 51.

Position (m) Gain 𝜆*
𝑚 (%)

200 K = [64.9 − 2731.2 776.5 − 19.8] 47.88
400 K = [63.0 − 1597.5 833.6 − 39.8] 40.58
600 K = [62.2 − 1233.3 881.4 − 48.2] 35.11
800 K = [62.9 − 1079.4 919.1 − 34.0] 30.94
1000 K = [63.5 − 942.7 937.5 − 19.6] 28.55
1200 K = [63.6 − 818.5 937.5 − 4.8] 26.84
1400 K = [64.1 − 734.3 940.4 10.4] 25.14
1600 K = [64.8 − 676.0 946.7 26.5] 23.37
1800 K = [65.9 − 635.2 956.3 44.2] 21.54
2000 K = [67.1 − 595.1 959.5 63.3] 19.73
2200 K = [66.4 − 513.8 924.0 71.8] 18.41
2400 K = [66.2 − 474.6 919.0 78.2] 17.14
2600 K = [65.9 − 441.6 918.0 78.7] 16.54
2800 K = [66.0 − 418.2 926.5 76.6] 16.66
2900 K = [69.4 − 432.9 955.6 89.4] 16.09
2925 K = [73.3 − 450.8 969.5 107.9] 15.30
2950 K = [85.4 − 444.9 942.0 149.9] 14.02
2975 K = [96.0 − 410.0 846.3 265.1] 10.51
3000 K = [112.2 − 413.9 886.9 312.0] 10.13

angular displacement difference increases, consequently reducing the need to have a high
control gain associated with this measure. The control gains corresponding to the integral
action and the angular speed measured by the second sensor also increase when the second
sensor moves away from the rotary table, predominantly in the 100 meters nearby the
drill bit. Still, all integral gain values for the OSOF control are below those obtained for
the PI controllers, explaining why the overshoots observed with the latter were higher.

Figures 39 and 40 compare the OSOF controller with the second sensor at the
drill bit and the LQR. Note that, although 𝜆*

𝑚 = 10.13 represents an approximation
involving the linearized system, simulations of the nonlinear system show very similar
response curves for both controllers. Considering the performance metrics related to the
drill bit response, the highest relative difference between both controllers was the stick
phase duration, which was 29% higher for the OSOF controller, while the difference for
all other criteria was below 12%. The average deviation from the drill bit target angular
velocity bit was also very similar for both controllers: 4.06% for the LQR and 4.25%
for the OSOF. These results corroborate the findings in (CRUZ NETO; TRINDADE,
2019) for linear systems that it is possible to reproduce an LQR controller with a very
reduced number of sensors using OSOF formulation, especially when there are no sensor
placement constraints. When this limitation is present, the proximity between the OSOF
and LQR controls decreases, but it is still possible to obtain a controller with good trade-
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off between performance and control effort. An investigation into the robustness of the
OSOF controllers is conducted in chapter 6.

Figure 39 – Bit and rotary table velocities using OSOF with the second sensor at the drill
bit.

Figure 40 – Bit and rotary table velocities using LQR with 𝑅 = 0.0049 and 𝑞𝑖 = 51.

5.3 NDBC
The effectiveness of the NDBC strategy proposed in section 4.3 is examined in

this section by applying it to the model developed in chapter 2. As thi methodology
focuses on assuring asymptotic stability for the widest range of operating conditions, it is
not necessary to specify the WOB or the target angular velocity, but only a linear state
space model of the drill string itself and eventual dissipation sources that are not related
to the negative damping coefficient (e.g., viscous damping). Using the results obtained
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in section 5.2, the position of the second sensor was fixed at the limit of the specified
range, 𝛼2 = 0.1L. Although the optimization for the determination of the control gain
(4.22) is nonconvex and heuristic optimization methods are generally preferred in this
occasion, the sequential quadratic programming (SQP) yielded satisfactory results. This
method was applied for several initial guesses, and the best local optimum found was
K = [0 − 1976.3 978.0 − 92.4], corresponding to the cost function 𝛾 = −544.25 Nms.
To understand what this 𝛾 value represents in terms of the closed-loop system robustness,
the values of 𝜖 (4.24) were computed for each WOB considering the target velocity of 100
rpm. The negative damping coefficient associated with the lower WOB value (120 kN)
is 𝑛𝑑0 = −210.75 Nms, which gives the ratio 𝜖 = 2.58. Similarly, the negative damping
coefficient corresponding to the 140 kN WOB is 𝑛𝑑0 = −290.07 Nms, which replacing in
equation (4.24) gives 𝜖 = 1.88. Therefore, the largest combined variation in the drilling
parameters that the closed-loop system tolerates while still ensuring asymptotic stability
is 158% for the lower WOB and 88% for the higher WOB.

Another important aspect of the optimal control gain is that its first component is
null, meaning that the controller that ensures asymptotic stability for the widest possible
range of values of 𝑛𝑑 has no integral action. However, due to the uncertainties involved in
the drilling process, a controller without integral gain would definitely generate a steady-
state error. Thus, to understand the effects of the integral gain on stability and aiming to
implement a controller with non-zero integral action, the influence of the integral gain on
𝛾 was analyzed by varying the first component of K while keeping the remaining control
gains constant. The result of this analysis is indicated in Figure 41. These results attests
that 𝛾 assumes the lowest possible value for 𝑘𝑖 = 0, and indicates that the closed-loop
system robustness decreases monotonically as 𝑘𝑖 increases. Therefore, considering only
the steady-state error and robustness, a sensible decision would be to select the smallest
possible value of 𝑘𝑖 > 0. However, the integral gain also plays a role in settling time,
overshoot and stick phase duration.

To illustrate the influence of the integral gain on these aspects, simulations were
performed using two values of this control gain: 𝑘𝑖 = 10 and 𝑘𝑖 = 50. The selected
operating condition was a WOB of 160 kN and a target velocity of 100 rpm, and the
starting scenario was represented by the standard initial condition. Figures 42 and 43
depict the bit and rotary table velocities for the two distinct values of the integral gain.
The stick time duration corresponding to 𝑘𝑖 = 50 is 8.62 s, whereas for 𝑘𝑖 = 10 this interval
is 19.75 s, more than twice that obtained for the higher control gain. The settling time
also indicates a remarkable advantage for the higher integral gain: 30.24 s for 𝑘𝑖 = 50 and
109.36 s for 𝑘𝑖 = 10. The only aspect in favor of the lower integral gain is the overshoot,
which reached 93.37% for 𝑘𝑖 = 10 and 118.71% for 𝑘𝑖 = 50. These general characteristics
of the response are reflected by the 𝐽 index, which is 18.15% for the higher integral gain
and 40.36% for the lower integral gain. Therefore, to achieve a trade-off between these
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Figure 41 – Influence of the integral gain on 𝛾.

Figure 42 – Bit and rotary table velocities for 𝑘𝑖 = 10 and WOB = 160 kN.

aspects, the integral gain for each WOB (120 and 140 kN) was determined in order to
optimize the average deviation from the drill bit target angular velocity. The integral
gains obtained via this optimization were 𝑘𝑖 = 75.8 for the 120 kN WOB and 𝑘𝑖 = 48.7
for the 140 kN WOB.

Although the control strategy developed provides maximum robustness for the
closed-loop system regarding the negative damping coefficient, it gives no information
about the nominal performance and applied control effort. To investigate how the pro-
posed controller would perform in a nominal operating condition, its response is compared
to that of the PI controllers obtained in section 5.2. Figures 44-47 depict the drill bit and
rotary table velocities, in addition to the control effort applied by the NDBC and PI con-
trollers for both WOB values. The main results concerning the performance metrics are
grouped in Table 6. Despite not taking into account any aspect related to performance
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Figure 43 – Bit and rotary table velocities for 𝑘𝑖 = 50 and WOB = 160 kN.

Figure 44 – Bit and rotary table velocities using NDBC with WOB = 120 kN.

or control effort (apart from 𝑘𝑖 whose value is determined through an optimization of 𝐽),
the NDBC had better results for every aspect related to the drill bit response, especially
the overshoot reduction. Considering the WOB of 120 kN, the PI controller overshoot
was 65.71% higher, while for the 140 kN WOB the overshoot was 78.74% higher than
that obtained for the NDBC. These favorable results were achieved without significantly
increasing the applied control effort, as the difference in the maximum applied torque
between both controllers was always less than 8%. In addition to the satisfactory nominal
results, the NDBC guarantees remarkably larger stability margins. The 𝛾 values corre-
sponding to the PI controllers are 𝛾 = −325.98 Nms for the 120 kN WOB and 𝛾 = −330.23
Nms for the 140 kN WOB, whereas the values for the NDBC controllers are 𝛾 = −409.56
Nms and 𝛾 = −439.02 Nms for the lower and higher WOBs, respectively.

These results reveal a surprising feature of the proposed control strategy, since
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Figure 45 – Applied torque using NDBC and PI controllers with WOB = 120 kN.

Figure 46 – Bit and rotary table velocities using NDBC with WOB = 140 kN.

the controller that guarantees maximum robustness in relation to the negative damping
coefficient also provides a good trade-off between control effort and performance. As there
are no performance specifications in the controller design, there is no theoretical assurance
that equivalent results can be obtained for drill strings with different parameters or bit-
rock interactions with distinct properties. Nonetheless, the good results obtained for both
WOB configurations (different WOB, 𝑎1, 𝑎2 and 𝛽 values) show potential for replicability,
and motivate further investigations of the proposed control strategy for drilling systems
with different parameters.

To access how much it is possible to improve the robustness of the controller and
what is the influence of the position of the second sensor in this regard, the placement
constraint was removed, and optimization (4.22) was carried out for fixed positions of the
second sensor at some locations along the drill string. The optimal control gains associated
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Figure 47 – Applied torque using NDBC and PI controllers with WOB = 140 kN.

Table 6 – Main results for NDBC and PI controllers considering the standard initial con-
dition.

WOB 120 kN 140 kN
Controller NDBC PI NDBC PI

J (%) 5.86 7.16 8.22 9.49
Stick Time (s) 1.78 1.83 3.15 3.49

Settling Time (s) 15.52 22.17 24.22 32.17
Overshoot (%) 53.10 87.99 61.49 109.91

Max. Applied Torque (kNm) 11.98 11.19 13.52 13.43

with each location of the second sensor and the corresponding 𝛾 values are presented in
Table 7. To provide an idea of the relationship between the 𝛾 values obtained and the
nominal operating conditions, the 𝜖 values associated with the 120 and 140 WOBs are
also given in Table 7.

Unlike the results obtained for 𝜆𝑚 with the OSOF controller, 𝛾 does not show a
monotonic dependence on the position of the second sensor. Although this dependence
may indeed be non-monotonic, it may also be a consequence of the several local optima
encountered during the optimization and the inability of the optimization algorithm to find
the global optimum (results obtained with SQP were better than those obtained with the
MATLAB built-in functions for the genetic algorithm, particle swarm and pattern search
methods using default parameters). Nevertheless, the optimization conditions for each
position of the second sensor were the same (SQP algorithm with random initial guesses),
and they reveal an interesting pattern for 𝛾. In the first 100 meters near the rotary table,
there is a significant improvement in robustness in moving the second sensor from 50 to
100 meters, which is approximately 30% taking the 120 kN WOB as a reference (𝜖120). In
the next 300 meters (up to 400 m from the rotary table), there is still a small robustness
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Table 7 – Control gains, 𝛾 and 𝜖 as a function of the second sensor location.

Position (m) Gain 𝛾 (Nms) 𝜖120 𝜖140
50 K = [0 − 2274.6 2818.0 − 2295.7] -466.56 2.21 1.61
100 K = [0 − 2760.4 2183.6 − 1499.4] -530.01 2.51 1.83
200 K = [0 − 1563.1 1895.2 − 1182.5] -535.60 2.54 1.85
300 K = [0 − 1976.3 978.0 − 92.4] -544.25 2.58 1.88
400 K = [0 − 1834.1 673.8 292.2] -543.99 2.58 1.88
600 K = [0 − 1142.0 719.6 229.2] -550.29 2.61 1.90
800 K = [0 − 1086.3 823.1 237.4] -552.66 2.62 1.91
1000 K = [0 − 767.4 875.8 117.4] -548.35 2.60 1.89
1200 K = [0 − 716.1 884.3 167.9] -551.37 2.62 1.90
1400 K = [0 − 481.4 848.5 94.1] -550.42 2.61 1.90
1600 K = [0 − 604.5 928.7 190.4] -549.26 2.61 1.89
1800 K = [0 − 613.6 982.4 211.4] -550.72 2.61 1.90
2000 K = [0 − 565.2 1000.7 217.1] -554.78 2.63 1.91
2200 K = [0 − 406.0 900.0 178.3] -554.64 2.63 1.91
2400 K = [0 − 585.0 1036.5 355.6] -560.33 2.66 1.93
2600 K = [0 − 580.4 999.1 540.8] -593.37 2.82 2.05
2800 K = [0 − 777.3 1132.3 886.6] -611.61 2.90 2.11
2900 K = [0 − 1356.5 1453.7 2071.1] -683.22 3.24 2.36
3000 K = [0 − 1457.1 1553.2 2585.6] -736.28 3.49 2.54

improvement of nearly 7% considering 𝜖120. However, from 600 to 2400 meters there is a
gain of only 5% considering 𝜖120. Depending on the drilling rig, this small improvement
may not be enough to justify the technology required to position the second sensor this
far from the rotary table and transmit data in real time. On the other hand, in the 400
meters close to the drill bit, there is again a pronounced improved in robustness, with
the closed-loop system tolerating a variation of the drilling parameters of 182% when the
second sensor is at 𝛼2 = 2600 m and 249% when it is placed at the drill bit (taking the
120 kN WOB as a reference). Even when considering the largest WOB value in Table 2
as a reference (160 kN), the closed-loop system still ensures asymptotic stability for a
variation of 104% in the drilling parameters. Therefore, taking into account only the
robustness aspect, placing a sensor at the drill bit drastically improves drilling safety.
However, the high values of the control gains suggest that the control effort in this case
can be much higher and, as the integral gain in this case is null, the 𝛾 value for a controller
with integral action should be smaller.

To illustrate the above statements, the closed-loop system using the controller with
the second sensor at the drill bit was simulated for the WOB of 140 kN using an integral
gain 𝑘𝑖 = 100 Nm, which has a corresponding 𝛾 value of -663.64 Nms. Figures 48 and 49
show the time response and control effort for this controller. There are some remarkable
results regarding the drill bit response: the stick phase duration is 0.82 seconds and the
drill bit target velocity average deviation is 4.97% (even better than those obtained with
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the LQR controller). However, the maximum applied control effort is the highest obtained
so far, 50.10 kN, and the rotary table speed becomes negative and reaches almost -90 rpm.
These observed phenomena represent a potentially hazardous situation, and may lead to
damage to the motor and drill string components. Thus, although the model predicts
asymptotic stability for large variations of parameters, simulations indicate the occurrence
of some events that are perhaps not feasible in real drilling rigs, consequently reducing
the estimates provided by the model. If there is the possibility of placing a sensor at the
drill bit, an alternative for employing the NDBC could be to impose limits on the possible
values of the control gains. Although this approach may reduce the required control effort,
it will also reduce the stability margins, so further analyses are required to weigh the real
benefits and costs of this scheme. Therefore, considering all results shown in this section,
positioning the second sensor at 10% of the total drill string length seems to be a great
practical solution.

Figure 48 – Bit and rotary table velocities using NDBC with the second sensor at the
drill bit for WOB = 140 kN.

A final comparison between NDBC, OSOF and PI controllers is presented in Fig-
ures 50 and 51, which contrast the drill bit velocity for all three controllers considering
the 120 and 140 kN WOBs.
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Figure 49 – Applied torque using NDBC with the second sensor at the drill bit for WOB
= 140 kN.

Figure 50 – Bit velocity for NDBC, OSOF and PI controllers with WOB = 120 kN.
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Figure 51 – Bit velocity for NDBC, OSOF and PI controllers with WOB = 140 kN.
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6 Numerical simulations for the controlled
drill string - Sensitivity Analysis

In the previous chapter, controllers were designed for the model developed in chap-
ter 2 based on the strategies proposed in chapter 4, and their performances were evaluated
assuming all system parameters were known. The current chapter intends to make a sen-
sitivity analysis of the controllers determined in the previous chapter, verifying how the
performance and stability of the system behave for variations in the system parameters
and initial conditions. The first section investigates the stability of the operating point
while the last one deals with performance.

6.1 Stability
As discussed in section 3.1, the main factor causing instability of the drilling sys-

tem is the apparent negative damping effect. Using the concept of the negative damping
coefficient introduced in the same section, it is possible to evaluate in a combined way
how variations of several parameters locally affect the stability of the operating point.
This concept serves as a starting point for the stability analyses in this section, which
initially examine the limits of the negative damping coefficient for which the operating
point is asymptotically stable for each controller determined in the previous chapter. As
the results obtained for both WOB values show similar trends, we decided to focus on the
more critical configuration of the 140 kN WOB. To clarify the properties of the controllers
analyzed, the control gains for each controller are presented in Table 8, as well as some
robustness results derived using the negative damping coefficient. Figure 52 also indicates
the spectral abscissa of the linearized closed-loop system using each controller given in
Table 8 as a function of 𝑛𝑑.

Table 8 – Main robustness results for NDBC, OSOF and PI controllers using the linear
approximation.

Controller Gain 𝛾 (Nms) WOB* (kN) 𝜔*
𝑟 (rpm) 𝛿𝑎* (%)

PI K = [158.7 640.7] -330.23 159.38 87.37 7.36
OSOF K = [32.6 − 1600.8 674.6 0.3] -411.64 198.67 65.89 22.28
NDBC K = [48.7 − 1976.3 978.0 − 92.4] -439.02 211.89 59.62 27.29

According to the results shown in Table 8 and Figure 52, the NDBC obtained
larger stability margins (lower 𝛾 value) than the OSOF and PI controllers, as it could be
expected from the NDBC formulation. Even using a non-zero integral gain, which does
not correspond to the optimal solution of (4.22), the magnitude of 𝛾 associated with
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Figure 52 – Spectral abscissa as a function of 𝑛𝑑 for the closed-loop system with NDBC,
OSOF and PI controllers.

the NDBC was 32.94% and 6.65% higher than those obtained for the PI and OSOF con-
trollers, respectively. Due to the one-to-one correspondence between the negative damping
coefficient and several drilling parameters, the 𝛾 values can be used to provide bounds for
the operating conditions (WOB and target velocity) and friction coefficients, which have
a more concrete physical meaning. Using the 𝛾 values in Table 8 and Eq. (3.4), the limits
for the angular velocity (𝜔*

𝑟), weight-on-bit (WOB*), and friction coefficients (WOB*)
were determined, and are summarized in Table 8. Although some drilling parameters may
have a correlation, for simplicity, each one of these limits was determined assuming con-
stant all other parameters. In Table 8, 𝛿𝑎 is a positive value that represents a variation
in percentage in both friction coefficients, such that the modified friction coefficients are
𝑐1 = 𝑎1(1−𝛿𝑎) and 𝑐2 = 𝑎2(1+𝛿𝑎). In addition to conveniently representing the variation
in friction coefficients, this definition has the benefit of yielding a monotonic dependence
between 𝑛𝑑 and 𝛿𝑎. It is important to emphasize that the calculated bounds rely on the
linear approximation of the drilling system, so that these results hold, a priori, only for
initial conditions in a neighborhood of the operating point. To illustrate these local sta-
bility properties, figures 53-55 depict the system response for small perturbations around
the operating point. The convergence to the equilibrium is extremely slow because the
eigenvalues are very close to the imaginary axis. Due to the slow convergence and only
local stability properties, one should avoid operating the drilling system in these extreme
conditions.

Since the 𝛾 value relies on the linear approximation at the operating point, it only
provides local information on stability margins. Therefore, to obtain information about the
global stability of the operating point it is important to investigate the system response to
initial conditions far from the operating point. As discussed in section 3.2, the basic stable
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Figure 53 – Bit and rotary table velocities using PI controller with 𝛿𝑎 = 7.22%.

Figure 54 – Bit and rotary table velocities using OSOF controller with 𝜔𝑟 = 66.1 rpm.

limit sets for the drilling system using a static output feedback controller with integral
action are a limit cycle and an equilibrium. Additionally, the integral action also prevents
the system response from diverging. Thus, a reasonable procedure to verify whether the
system response converges to stick-slip oscillations is to simulate an initial condition for
which the drill bit undergoes the stick phase. Although this type of simulation does not
guarantee global stability, because the drill bit can enter the stick phase through many
different initial conditions, it checks the critical scenario where the bit gets stuck and
tests stability for regions far from the linearization point. Based on the results obtained in
chapter 5, which show the drill bit always passing through the stick phase, the closed-loop
system is simulated using the standard initial condition. Assuming this initial condition,
the drilling parameters limits (𝜔*

𝑟 , WOB* and WOB*) were determined as the extreme
values for which the system response converged to the operating point. These results are
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Figure 55 – Bit and rotary table velocities using NDBC with WOB = 211.7 kN.

presented in Table 9.

Table 9 – Robustness results for NDBC, OSOF and PI controllers using the standard
initial condition.

Controller Gain WOB* (kN) 𝜔*
𝑟 (rpm) 𝛿𝑎* (%)

PI K = [158.7 640.7] 157.71 88.42 6.72
OSOF K = [32.6 − 1600.8 674.6 0.3] 183.75 72.74 16.59
NDBC K = [48.7 − 1976.3 978.0 − 92.4] 211.89 60.86 27.29

A comparison between the bounds obtained using the linear approximation (Ta-
ble 8) and the standard initial condition (Table 9) indicate some interesting differences.
First, examining the OSOF controller results, the bounds derived from the standard ini-
tial condition are much tighter than those using the negative damping coefficient, showing
a considerable difference between the nonlinear system and its approximation at the op-
erating point. On the other hand, the limits obtained for the PI control in both scenarios
are very similar, where the bounds for the case with initial conditions far from the equi-
librium point are slightly more severe than those using the linear approximation. Despite
the different results between the linear approximation and the standard initial condition
for both controllers, the OSOF control still has larger stability margins in any scenario.
Figures 56 and 57 illustrate the closed-loop system responses with PI and OSOF con-
trollers using the corresponding 𝛿𝑎* values for each controller, while Figures 58 and 59
show the response for values just above 𝛿𝑎*.

Different stability margins for the nonlinear system and its linear approximation
are somewhat expected since the linear approximation gives only partial information about
the system behavior in the neighborhood of the operating point. However, the results
obtained for the NDBC overcome this expectation, and show an impressive result in which
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Figure 56 – Bit and rotary table velocities for the standard initial condition using PI
controller with 𝛿𝑎 = 6.72%.

Figure 57 – Bit and rotary table velocities for the standard initial condition using OSOF
controller with 𝛿𝑎 = 16.59%.

the bounds (apart from the target velocity) for the nonlinear system and its approximation
at the operating point are coincident. Of all drilling parameters, the target angular velocity
is the one that concerns the least, as it is only reduced to avoid lateral vibrations in cases
where its value is very high, which does not represent the case under study. Moreover, the
bounds for the friction coefficients and WOB using the NDBC were the same not only
for the standard initial condition, but for every initial condition simulated. For initial
conditions where the drill string is undeformed, it was found that increasing the initial
velocity yields larger periods of the stick phase in the critical scenarios (e.g., WOB =
WOB*) and, for some controllers, this ends up reducing even more the stability bounds.
For instance, considering an initial speed of 200 rpm, the PI controller bounds are reduced
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Figure 58 – Bit and rotary table velocities for the standard initial condition using PI
controller with 𝛿𝑎 = 6.73%.

Figure 59 – Bit and rotary table velocities for the standard initial condition using OSOF
controller with 𝛿𝑎 = 16.60%.

to WOB* = 156.94 kN and 𝛿𝑎* = 6.44%, whereas the corresponding bounds of the NDBC
remain the same. To illustrate these results, Figures 60 and 61 show the closed-loop
system response using NDBC and PI controllers for 𝛿𝑎 slightly below 𝛿𝑎* and considering
the higher initial angular speed. These results indicate a remarkable feature of the NDBC
because, not only the stability margins obtained by the linear approximation are higher,
but they hold even for initial conditions that are not in the neighborhood of the operating
point.

As indicated in Figure 41, the stability margins derived using the linear approx-
imation increase as the integral gain 𝑘𝑖 decreases. According to this result, one way to
reduce the probability of stick-slip oscillations is to decrease the integral gain. Similar
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Figure 60 – Bit and rotary table velocities using PI controller with 𝛿𝑎 = 6.43% for an
initial speed of 200 rpm.

Figure 61 – Bit and rotary table velocities using NDBC with 𝛿𝑎 = 27.23% for an initial
speed of 200 rpm.

to the analyses done previously, it was verified whether these conclusions were still valid
for initial conditions far from the operating point. For each value of 𝑘𝑖, the closed-loop
system was simulated in critical cases where the negative damping coefficient was equal
to 𝛾. The friction curves whose derivative corresponded to the 𝛾 value were selected by
varying either the WOB or 𝛿𝑎. The results of these simulations suggest that there is a
continuous range of integral gain values 0 < 𝑘𝑖 < 𝑘𝑖, with 𝑘𝑖 = 70.2 Nm, for which the
operating point remains globally asymptotically stable. The region of the apparent global
asymptotic stability of the operating point is highlighted in Figure 62. Thus, a difference
between the nonlinear system and its approximation appears only for high values of 𝑘𝑖,
and the apparent global stability of the closed-loop system with the NDBC is preserved
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when the integral gain value is reduced.

Figure 62 – Region of global stability of the operating point.

A last remarkable result of the NDBC happens in the region where the negative
damping coefficient is lower than 𝛾 (𝜈 (A𝑐𝑙) > 0), for which the operating point is not
asymptotically stable. Observing the simulation results shown in Figures 56-59 for the
PI and OSOF controllers, we verify that for a tiny parameter variation, the system re-
sponse ceases to converge to the operating point and exhibits large amplitude oscillations.
Although these simulations refer to initial conditions far from the operating point, a sim-
ilar behavior occurs when the equilibrium is not asymptotically stable, in which even
small perturbations lead to the appearance of stick-slip oscillations. Figure 63 illustrates
this statement by showing a simulation with the OSOF controller for a 𝛿𝑎 value slightly
above that presented in Table 8, and considering a small perturbation at the equilibrium.
This situation does not happen for the NDBC. Instead, when the negative damping co-
efficient crosses the region delimited by 𝛾 (by varying parameters like WOB or 𝛿𝑎), a
small-amplitude stable limit cycle branches from the equilibrium. This type of behavior is
described in dynamical system theory as a supercritical Hopf bifurcation (KUZNETSOV,
2004). Figure 64 depicts this type of response for the NDBC with 𝑘𝑖 = 48.7 by simulating a
𝛿𝑎 value slightly higher than 𝛿𝑎*. For 𝛿𝑎 closer to 𝛿𝑎*, the oscillation amplitude is smaller,
but the convergence to the limit cycle is even slower. For 𝑘𝑖 smaller than 𝑘𝑖, simulations
using other initial conditions suggest that the response converges to the limit cycle regard-
less of the initial condition, indicating a potential global stability of the small-amplitude
limit cycle as well. Therefore, even when the operating point is not asymptotically stable,
the closed-loop system with the NDBC still tolerates small parameter variations without
exhibiting stick-slip oscillations, further increasing the safe operating region.
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Figure 63 – Bit and rotary table velocities using OSOF controller with 𝛿𝑎 = 22.29% for
a small perturbation at the equilibrium.

Figure 64 – Bit and rotary table velocities using NDBC with 𝛿𝑎 = 27.35% for a small
perturbation at the equilibrium.

6.2 Performance

The previous section focused on investigating for which parameter variations the
system response converged to the equilibrium point or exhibited stick-slip oscillations.
As seen in some simulations, even in cases where the response converges to the equilib-
rium point, the system performance may not be acceptable. Thus, the objective of the
present section is to evaluate the sensitivity of the system’s performance and control ef-
fort with respect to parameter variations. Several metrics were employed to assess specific
performance characteristics in chapter 5, such as stick phase duration, settling time and
maximum overshoot. Considering that all these factors are compactly represented by the
average deviation from drill bit target angular velocity (𝐽), this metric is used in this
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section as the main criterion for evaluating performance. For better comparison with the
results of the previous section and chapter 5, the target speed is kept as 100 rpm and the
standard initial condition is also used for the calculation of 𝐽 . Similar to the last section,
the cost function 𝐽 is evaluated for the NDBC, OSOF and PI controllers determined for
the WOB 140 kN configuration in chapter 5.

Figures 65 and 66 show 𝐽 as a function of 𝛿𝑎 and WOB. In each case, only the
parameter of interest is variable, while the others are kept constant according to the val-
ues given in Table 2 for the 140 kN WOB. A first aspect that stands out is the similarity
between the graphs for each controller, which apart from a scale factor look almost iden-
tical. Another interesting aspect is that several instances of discontinuity in both graphs
correspond to points that have equivalent values of the negative damping coefficient, high-
lighting the importance of this concept. For example, the highlighted points in the graphs,
which indicate the critical value of the parameter of interest where persistent stick-slip
oscillations are first observed, have very close negative damping coefficient values for each
controller (values are equal by rounding to an integer). These values are -327, -381 and
-441 Nms for the NDBC, OSOF and PI controllers, respectively. Note that these nega-
tive damping coefficient values for PI and OSOF are greater than the corresponding 𝛾

values given in Table 8, whereas the NDBC value is the only one that is smaller. These
discrepancies are explained by the difference between the nonlinear system and its linear
approximation for the PI and OSOF controllers and the supercritical Hopf bifurcation for
the NDBC, which are both discussed in the previous section.

Figure 65 – Average deviation from the drill bit target angular velocity as a function of
𝛿𝑎 for the closed-loop system with NDBC, OSOF and PI controllers.

Figures 65 and 66 also emphasize the different performance sensitivities between
the three controllers. Although the OSOF control has the best nominal performance, it
also has the highest sensitivity for small values of 𝛿𝑎 and WOB. Indeed, for 𝛿𝑎 > 0.7%, the
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Figure 66 – Average deviation from the drill bit target angular velocity as a function of
WOB for the closed-loop system with NDBC, OSOF and PI controllers.

cost function of the OSOF control is always greater than that of the NDBC, and in the
interval 4.2% < 𝛿𝑎 < 6.1% the 𝐽 value associated with the OSOF becomes even greater
than that associated with the PI. At 𝛿𝑎 = 4.8%, the OSOF controller passes through the
stick phase twice, which justifies the first discontinuity in its curve and the consequent
increase in the cost function value. To illustrate this result, the time responses with the
OSOF control for 𝛿𝑎 values of 4.7% and 4.8% are depicted in Figures 67 and 68. Note
that in addition to the increase in the stick phase duration, the drill bit velocity has a
considerable increase in overshoot. As 𝛿𝑎 increases, the two separate stick regions collapse
into a single large stick phase.

Figure 67 – Bit and rotary table velocities using OSOF controller with 𝛿𝑎 = 4.7% for the
standard initial condition.

Figures 65 and 66 also show an apparently smoother transition between the con-
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Figure 68 – Bit and rotary table velocities using OSOF controller with 𝛿𝑎 = 4.8% for the
standard initial condition.

vergence to the operating point and the appearance of stick-slip oscillations using the
PI controller. This fact happens because the PI control already displays large amplitude
oscillations before the appearance of stick-slip oscillations, as illustrated previously in
Figures 56 and 58. Due to the premature appearance of stick-slip oscillations, the PI
controller displays the highest 𝐽 values for the widest range of 𝛿𝑎 and WOB values. On
the other hand, the NDBC presents the lowest values of 𝐽 for virtually the entire range
of parameters analyzed. Furthermore, when the derivatives of 𝐽 with respect to 𝛿𝑎 are
numerically approximated for each one of the controllers, it is verified that the NDBC
obtains the smallest values for small parameter variations (0% < 𝛿𝑎 < 5.3%), in addition
to having the widest range of parameter variations with the smallest derivatives. These
observations reveal a remarkable result of the NDBC because, besides having the highest
stability margins, this controller also has the lowest performance sensitivity, as qualified
by the metric 𝐽 .

As one of the strategies to avoid the occurrence of stick-slip oscillations using the
NDBC is the reduction of the integral gain, it was also evaluated how this practice affected
the system performance in terms of 𝐽 . For comparison, the variation of 𝐽 in relation to
the integral gain was also evaluated for the other controllers, and the results are shown
in Figure 69. Again, note that the NDBC has low sensitivity of 𝐽 with respect to 𝑘𝑖, with
values below 10% over the entire range 0 < 𝑘𝑖 < 124.5. Therefore, for the 140 kN WOB, it
is verified that the reduction of 𝑘𝑖 has negligible impact on the performance of the NDBC.

Finally, it was evaluated the impact of parameter variations on the maximum
applied torque. Due to the similarities between WOB and 𝛿𝑎, only the results for the
latter are depicted in Figure 70. In this case, the OSOF controller had the better results
for the entire parameter range considered. A similarity between the OSOF and NDBC is
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Figure 69 – Average deviation from the drill bit target angular velocity as a function of
𝑘𝑖 for the closed-loop system with NDBC, OSOF and PI controllers.

that the maximum applied torque occurs immediately after the first stick phase, therefore
independent of the occurrence of persistent stick-slip oscillations. Thus, unlike the metric
𝐽 , the parameter values for which stick-slip oscillations occur for the OSOF and NDBC
are not so clear from Figure 70. A different behavior is observed for the PI controller,
for which the highest applied torques occur in the subsequent stick phases, justifying the
discontinuity perceived at 𝛿𝑎 = 6.8%. In addition to the maximum applied torque, the
combination of high torque values with high angular speeds of the rotary table during
stick-slip oscillations may result in high power demand, which may play a role in favor of
the NDBC. Overall, combining all aspects concerning sensitivity analyzed in this chapter,
it is considered that NDBC had the best results among all proposed control techniques.

Figure 70 – Maximum applied torque as a function of 𝛿𝑎 for the closed-loop system with
NDBC, OSOF and PI controllers.
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7 Conclusions, future works and publications

This section summarizes the main steps taken in the development of this work, in
addition to presenting the main contributions of this thesis and publications during the
doctoral program.

7.1 Conclusions and future works
This thesis studied the problem of attenuation and suppression of torsional (stick-

slip) vibrations in drill strings using active control. This study was organized into the
following general steps: 1) Finite element modeling with non-regularized dry friction, re-
formulation of the equations of motion as a stabilization problem with addition of integral
action; 2) Dynamic analysis of the drilling system in open- and closed-loop configurations;
3) Output matrix design to ensure asymptotic stability of the operating point and propo-
sition of two control techniques based on the OSOF formulation and the negative damping
coefficient; 4) Numerical simulations of the closed-loop system in the case of known pa-
rameters and in the presence of uncertainties, both scenarios considering comparisons
with other control techniques. A detailed analysis of each one of these steps led to a series
of original results and contributions:

• Development of a state-space model in translated modal coordinates that allowed a
standard stability analysis of the operating point and a suitable design of the output
matrix;

• Dynamic analysis identifying the primary limit sets of the drilling system in open-
and closed-loop configurations;

• Definition of the concept of negative damping coefficient, which allowed a straight-
forward identification of the role of each drilling parameter in the stability of the
operating point. This concept was also instrumental in the development of an ex-
tremely efficient control technique for the drilling system;

• Determination of which signals are relevant for feedback given the objective of en-
suring asymptotic stability and assuming the constraint of static output feedback;

• Proposition of two novel control techniques for the drilling problem: one based on
the OSOF control formulation developed in (CRUZ NETO; TRINDADE, 2019)
focusing on nominal performance, and another based on the concept of negative
damping coefficient focusing on robustness;
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• Showing through numerical simulations that the proposed control techniques out-
perform an optimized PI controller with an equivalent control effort;

• Evaluation of the effects of varying the positioning of the second sensor on the
performance and robustness of the proposed control strategies. It was found for
the OSOF control that performance improves monotonically as the second sensor
approaches the drill bit, while the stability margins of the NDBC increase drastically
close to the rotary table, remain nearly constant for an intermediate length of the
drill string and increase considerably close to the drill bit.

• Showing through a sensitivity analysis that the proposed controllers (especially the
NDBC) tolerate much greater parameters variations while still ensuring stability
than the optimized PI controller;

• Determination through simulations using several different initial conditions of an
integral gain range for which the NDBC appears to provide global stability for the
operating point;

• Identification of a supercritical Hopf bifurcation for the closed-loop system equipped
with the NDBC, further increasing the safe operating region;

• Showing that the proposed controllers (especially the NDBC) are less sensitive to
parameters variations in terms of performance and applied torque than the opti-
mized PI controller.

Results obtained in this thesis motivate further research in the investigation of the
apparent global stability provided by the NDBC, the application of the NDBC formulation
for similar systems (Lure’s problem) and the practical implementation of the proposed
control strategies in laboratory setups or full-scale drilling rigs. Other aspects for further
investigation are related to the drill string model, such as the inclusion of model dynamics
in other directions and the study of other modal reduction techniques.

7.2 Publications
The following works were published during the doctoral program, some derived

directly from the research developed in this thesis and others derived from the work
developed during the author’s master’s degree.

1. CRUZ NETO, H. J.; TRINDADE, M. A. Reduction of Negative Damping Effects
in the Drilling Process Using Active Control. DINAME 2023 - XIX International
Symposium on Dynamic Problems of Mechanics. Accepted
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2. CRUZ NETO, H. J.; TRINDADE, M. A. Control of drill string torsional vibra-
tions using optimal static output feedback. Control Engineering Practice, v. 130, p.
105366, 2023.

3. CRUZ NETO, H. J.; TRINDADE, M. A. Output Feedback Control for Mitigation
of Negative Damping Effects in the Drilling Process. In: Simpósio do Programa de
Pós-Graduação em Engenharia Mecânica da EESC-USP (SiPGEM/EESC-USP), 6.,
2022, São Carlos.

4. CRUZ NETO, H. J.; TRINDADE, M. A. A Novel Methodology for Controlling
Stick-Slip Vibrations in Drill Strings. In: LACARBONARA, Walter; BALACHAN-
DRAN, Balakumar; LEAMY, Michael J.; MA, Jun; TENREIRO MACHADO J.
A.; STEPAN, Gabor (org.). Advances in Nonlinear Dynamics - Proceedings of the
Second International Nonlinear Dynamics Conference (NODYCON 2021). Rome:
Springer, 2022. p. 125-134.

5. CRUZ NETO, H. J.; TRINDADE, M. A. Comparison of controllers for stick-slip
suppression in rotary drilling systems. In: ISMA conference on Noise and Vibration
Engineering, 29., 2020, Leuven. Proceedings [...] Leuven: KU Leuven, 2020. p. 1419-
1431.

6. CRUZ NETO, H. J.; TRINDADE, M. A. On the noncollocated control of structures
with optimal static output feedback: Initial conditions dependence, sensors place-
ment, and sensitivity analysis. Structural Control and Health Monitoring, v. 26, n.
10, p. e2407, 2019.

7. CRUZ NETO, H. J.; TRINDADE, M. A. Design and analysis of active control tech-
niques for stick-slip suppression in rotary drilling systems. In: ABCM International
Congress of Mechanical Engineering Proceedings (COBEM), 25., 2019, Uberlândia.
Proceedings [...] Uberlândia: ABCM, 2019.

8. CRUZ NETO, H. J.; TRINDADE, M. A. Otimização do ganho e posicionamento
de sensores para o controle de vibrações em estruturas. In: Congresso Nacional
de Matemática Aplicada e Computacional, 38., 2018, Campinas. Proceedings [...]
Campinas: SBMAC, 2018. p 010175.
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