
UNIVERSITY OF SÃO PAULO
SÃO CARLOS SCHOOL OF ENGINEERING

Larissa Cassador Casteluci

Artificial data generation pipeline for visual grasping deep
learning

São Carlos

2023

Larissa Cassador Casteluci

Artificial data generation pipeline for visual grasping deep
learning

Thesis presented to Sao Carlos School of En-
gineering, for obtaining the Academic Title
of Master in Sciences - Graduate Program in
Mechanical Engineering.

Research Area: Dynamic and Mecatronics

Supervisor: Prof. Dr. Daniel Varela Magal-
hães

CORRECTED VERSION

São Carlos
2023

I AUTHORIZE THE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK,
THROUGH ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR STUDY AND
RESEARCH PURPOSES, SINCE THE SOURCE IS CITED.

 Catalog card prepared by Patron Service at “Prof. Dr. Sergio
Rodrigues Fontes” Library at EESC/USP

 Casteluci, Larissa Cassador

C349a Artificial data generation pipeline for visual

grasping deep learning / Larissa Cassador Casteluci;

Thesis directed by Daniel Varela Magalhães. -- São

Carlos, 2023.

 Master (Thesis) - Graduate Program in Mechanical

Engineering and Research Area in Dynamic and Mechatronics

-– São Carlos School of Engineering of the University of

São Paulo, 2023.

1. Visual grasp detection. 2. Deep learning.

3. Synthetic Data. 4. Computer vision. I. Title.

Elena Luzia Palloni Gonçalves – CRB 8/4464

ABSTRACT

CASTELUCI, L. C. Artificial data generation pipeline for visual grasping
deep learning. 2023. 81p. Master Thesis - São Carlos School of Engineering, University
of São Paulo, São Carlos, 2023.

The rise of deep learning algorithms in academia has changed the area of robotic grasping.
Before, methods involving analytical analysis and grasping modelling were the most com-
mon strategies. However, deep learning strategies have become recently more prevalent.
They have presented incredible results in the last decade. However, they present disadvan-
tages of their own. A major drawback is that they require large amounts of representative
data to be trained on. For specific applications, a specific dataset with custom targets is
required. But generating data for robotic grasping is not an easy task. It is more challenging
than creating datasets for classification or object detection problems, since it requires lab
experiments. Manual acquisition of this data can be time-consuming. In this context, the
generation of synthetic data using rendering and simulation tools can be a viable solution.
This strategy, on the other hand, also has its own set of problems. The most relevant
is the reality gap, i.e. the intrinsic difference between reality and simulated data. There
are a few techniques developed to mitigate this problem, such as domain randomization
and photorealistic data. We provide a tool that allows the creation of datasets for robotic
grasping for a configurable set of targets. We compare in a real life scenario a neural
network trained on this custom dataset and compare results with the same network trained
on a state-of-the-art dataset and show that our tool creates viable datasets that neural
networks can be trained on and produce suitable results.

Keywords: Visual Grasp Detection, Deep Learning, Synthetic Data, Computer Vision.

RESUMO

CASTELUCI, L. C. Pipeline para geração de dados artificiais para
treinamento de Redes de Preensão Robótica. 2023. 81p. Dissertação (Mestrado) -
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2023.

O advento de algoritmos de aprendizagem profunda mudou o panorama da área de preensão
robótica. Se antes a área se focava em métodos analíticos e modelagem de preensão para
planejar e analisar a qualidade de preensão de objetos, hoje esse encargo recaí sobre os
algoritmos de inteligência artificial. Embora esses algoritmos tenham apresentado resultados
surpreendentes na última década, eles também possuem desvantagens se comparados a
técnicas de modelagem de preensão. A principal desvantagem é a necessidade de treinamento
da rede em um conjunto de dados amplo e representativo do problema. Para aplicações
especializadas, pode ser necessário um dataset customizado com objetos específicos. Mas a
criação desses datasets não é uma tarefa fácil. Para a área de preensão robótica, a geração
desses dados é mais complexa que a geração de conjuntos de dados para classificação
e detecção de objetos, uma vez que requer experimentos em laboratórios. A obtenção
desses dados de forma manual pode ser demorada e ser suscetível a erros. Nesse contexto,
a geração de dados de forma artificial, por renderização de dados e simulação, se torna
uma alternativa viável para geração de dados para treinamento de redes. Por sua vez,
essa estratégia também apresenta os seus problemas. A principal entre elas é denominada
de reality gap. Ou seja, é a diferença que existe em dados simulados e dados obtidos na
realidade. Tentando mitigar esse efeito, foram elaboradas técnicas para compensar essa
diferença. Abordagens relevantes nesse sentido são a geração de dados foto realísticos
e a domain randomization. Nesse trabalho, é disponibilizada uma ferramenta para a
criação de datasets de preensão robótica com a configuração de objetos. Foram realizados
experimentos que comparam os resultados de uma rede neural treinada nesse dataset
customizado com a mesma rede treinada em um dataset estado da arte em ambiente de
laboratório. Os resultados demostram que a ferramenta é capaz de gerar datasets viáveis
para o treinamento de redes neurais, e que elas produzem resultados viáveis.

Palavras-chave: Detecção de Preensão com Visão. Aprendizagem Profunda. Dados
Sintéticos. Visão Computacional.

LIST OF FIGURES

Figure 1 – Results with the keywords "Visual Grasp Detection" 25
Figure 2 – Distortions in an image obtained by a camera 26
Figure 3 – Convolution Operation . 29
Figure 4 – Basic Grasp Pipeline . 31
Figure 5 – GG-CNN Architecture . 37
Figure 6 – Metric used by Xiang et al. (2017) e Tremblay et al. (2018b) 39
Figure 7 – Pipeline proposed by the Jacquard Dataset 41
Figure 8 – Pipeline proposed by the Dex-Net . 42
Figure 9 – Pipeline proposed by the EGAD! Dataset 42
Figure 10 – EGAD! comparison to other datasets 43
Figure 11 – Graph relating quality metric to an object’s relative size to the gripper’s

width . 44
Figure 12 – Projection on image - Left and right cameras 48
Figure 13 – Results improvement using active stereo 48
Figure 14 – KUKA LBR IIWA 14 R820 Robot . 49
Figure 15 – In-house Gripper . 50
Figure 16 – 3D printed dataset . 51
Figure 17 – Object A5 . 51
Figure 18 – Object A1 different sizes . 51
Figure 19 – Object E5 . 52
Figure 20 – Object B1 . 52
Figure 21 – Objects transformations . 57
Figure 22 – Cartesian Robot used in simulations 58
Figure 23 – Lab Setup for Tests . 59
Figure 24 – Calibration Stage UML Sequence Diagram 59
Figure 25 – Grasp Stage UML Sequence Diagram 60
Figure 26 – Depth Noise . 60
Figure 27 – GG-CNN trained on Jacquard Dataset - Example 1 62
Figure 28 – GG-CNN trained on Jacquard Dataset - Example 2 62
Figure 29 – RGB Generated Image . 63
Figure 30 – Segmentation Data . 63
Figure 31 – Perfect Depth . 63
Figure 32 – Stereo Depth . 63
Figure 33 – Customized Dataset - Grasp 1 . 64
Figure 34 – Customized Dataset - Grasp 2 . 64
Figure 35 – Bias towards depth 1 . 64

Figure 36 – Bias towards depth 2 . 65
Figure 37 – Grasp Example 1 . 66
Figure 38 – Grasp Example 2 . 66
Figure 39 – Grasp Example 3 . 67
Figure 40 – Grasp Example 4 . 67
Figure 41 – Grasp Example - False grasp proposition 68
Figure 42 – Grasp Example 5 . 69
Figure 43 – Grasp Example 6 . 70
Figure 44 – Grasp Example 7 . 70
Figure 45 – Grasp Example 8 . 71

LIST OF TABLES

Table 1 – Datasets Comparison . 45
Table 2 – Rate of Success - GG-CNN trained on jacquard dataset 65
Table 3 – Rate of Success - GG-CNN trained on customized dataset 68

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

API Application Programming Interface

BOP Benchmark for 6D Object Pose Estimation

CNN Convolutional Neural Network

DOF Degrees of Freedom

GAN Generative Adversarial Network

GG-CNN Generative Grasping Convolutional Neural Network

EGAD Evolved Grasping Analysis Dataset

IoU Intersection over Union

OpenCV Open-Source Computer Vision

PnP Perspective-n-Point

PPF Point-Pair Features

PTP Point To Point

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

ROS Robot Operating System

TCP Transmission Control Protocol

SDK Software Development Kit

URDF Unified Robotics Description Format

V-HACD Volumetric Hierarchical Approximate Convex Decomposition

VSD Visual Surface Discrepancy

YCB Yale-CMU-Berkeley

LIST OF SYMBOLS

Pinhole Camera Model

fx Focal distance in axis x

fy Focal distance in axis y

cx Camera’s center position in axis x

cy Camera’s center position in axis y

γ Inclination between camera’s axes

R Camera’s orientation matrix

t Camera’s translation matrix

w scale coefficient

GG-CNN Theory

g grasp

q quality measure

p gripper’s center position

φ gripper’s rotation around z-axis

w gripper’s width

g̃ grasp in image coordinates

s̃ gripper’s center position in image coordinates

φ gripper’s rotation in the camera’s reference frame

tRC conversion between the world frame and camera frame

tCI conversion from Image Space to the Cartesian Space

G̃ Grasp Map

Q̃ Quality Measure Map

Φ̃ Gripper’s rotation Map

W̃ gripper’s width map

g̃∗ optimal grasp in image coordinates

M Function that is the optimal solution

I Image

MΘ Approximated Function

G̃Θ Approximated Grasp Map

Θ Weights

LINEMOD Precision Metric

m Precision metric

M Set of points belonging to the model

R̄ Real Rotation

T̄ Real Translation

R̂ Estimated Rotation

T̂ Estimated Translation

km Arbitrary Coefficient

d Model’s Diameter

BOP Challenge Precision Metric

P̂ Estimated Pose

P̄ Real Pose

M Set of points belonging to the model

Ŝ Estimated Pose Distance Map

S̄ Real Pose Distance Map

V̂ Estimated Pose visibility mask

V̄ Real Pose visibility mask

ρ Pixel

xρ Point in the world coordinates system that projects ρ

τ Threshold

eV SD Calculated Error VSD

CONTENTS

1 INTRODUCTION . 21
1.1 Motivation . 21
1.1.1 Machine Vision . 21
1.1.2 Artificial Data . 22
1.1.3 Robotic Grasping . 22
1.2 Goals . 23
1.2.1 Main Goals . 23

2 LITERATURE REVIEW . 25
2.1 Bibliometrics . 25
2.2 Camera Modelling . 25
2.2.1 Camera Models . 25
2.2.2 Depth Stereo Camera . 27
2.3 Convolutional Neural Networks . 27
2.3.1 Neural Networks . 27
2.3.2 Neural Networks Key Concepts . 27
2.3.3 Specializations of the Convolutional Neural Networks 28
2.4 Biases in Deep Learning . 29
2.5 Task Definition . 30
2.5.1 Task Modelling . 30
2.5.2 Model-free and Model-based approaches 30
2.5.3 Object Grasping Task . 30
2.6 Object Detection, Pose detection, Grasping Detection and Rein-

forcement Learning Strategies . 31
2.6.1 Object Detection . 31
2.6.2 Pose Detection . 32
2.6.3 Grasping Detection . 32
2.6.4 Reinforcement Learning . 33
2.7 Further strategies to robotic grasping 33
2.7.1 Closed-Loop Grasping and Active Perception 33
2.7.2 Pre-Grasp Strategies . 34
2.7.3 Artificial Data Generation . 34
2.7.3.1 Domain Adaptation . 35
2.7.4 Simulation . 35
2.8 Neural Networks for Robotic Grasping 35
2.8.1 GG-CNN Network . 35

2.9 Benchmarking for Pose Detection . 37
2.9.1 LINEMOD . 37
2.9.2 T-LESS . 38
2.9.3 YCB Object and Model Set . 38
2.9.4 BOP Challenge . 38
2.10 Benchmarking for Grasp Detection 39
2.10.1 Cornell Dataset . 39
2.10.2 Jacquard Dataset . 40
2.10.3 Dex-Net Family Dataset . 41
2.10.4 EGAD! . 42
2.10.5 Precision Metrics . 43
2.10.6 Gripper Shape and Size Effect on Results 43
2.11 Datasets Comparison . 44
2.12 Frameworks for Data Generation . 44
2.12.1 BlenderProc . 44
2.12.2 Kubric . 46

3 MATERIALS . 47
3.1 Kubric Framework . 47
3.2 Machine Learning Libraries and Tools 47
3.3 OpenCV . 47
3.4 Real Sense Camera . 47
3.4.1 Real Sense SDK and API . 48
3.5 KUKA LBR IIWA 14 R820 . 48
3.5.1 KUKA ROS API . 49
3.5.2 Security Concerns . 49
3.6 Parallel Gripper . 50
3.7 Datasets . 50

4 METHODS . 53
4.1 Artificial Data Generation . 53
4.1.1 Pipeline . 53
4.1.2 Code Architecture and Components . 54
4.1.3 Simulation Considerations . 54
4.1.3.1 Correcting Meshes Geometry for Simulation 55
4.1.3.2 Robot for Simulation . 56
4.2 Laboratory Tests Setup . 57
4.2.1 KUKA Communication . 57
4.2.2 GG-CNN . 57
4.2.3 Camera Data Processing . 58

5 RESULTS . 61
5.1 Baseline for GG-CNN . 61
5.2 Data Generation Pipeline Results . 61
5.3 Simulation Results . 62
5.3.1 GG-CNN trained on Customized Dataset 62
5.4 Lab Experiments . 62
5.4.1 Baseline for Lab Experiments . 62
5.4.2 GG-CNN trained on Jacquard . 65
5.4.3 GG-CNN trained on Customized Dataset 68
5.4.4 Comparison between both networks . 69

6 CONCLUSIONS . 73

BIBLIOGRAPHY . 75

21

1 INTRODUCTION

1.1 Motivation

Robotics has always been dependent on human explicit trajectory programming.
A representative example is the car industry, where repetitive and high-precision jobs
are performed by robotic manipulators, mounted along an assembly line. Every move
needs to be programmed, and the robots do not have any sort of intelligence on their own.
Even with decades of continuous development in this area (HVILSHøJ, 2012), the way
robotics is used outside of research has not changed much. This can be seen on the security
standards that are commonplace for using this technology in industry (ASSOCIAÇÃO
BRASILEIRA DE NORMAS TÉCNICAS, 2018). Which means that robust and reliable
algorithms are necessary to change this landscape.

The ability of comprehension and to act according to the environment, specially
when humans are involved, is one of the greatest challenges for current robotics (SÜNDER-
HAUF et al., 2018). To do this reliably, in systems where robots will not cause accidents
due to an algorithm or a malfunction, is a vital milestone that has been in the spotlight
of robotic’s research for a long time. For this to be possible, a robotic system needs the
ability to obtain data and extract information about its environment as quickly as possible,
so it can adjust accordingly in a reliable manner.

RGB and RGB-D cameras are among the most important sensors in this aspect,
obtaining a large amount of data about the environment quickly. However, this technology
cannot be used to its full potential if we do not have algorithms that extract the useful
information at a fast pace. The area that addresses these questions is called Machine
Vision.

1.1.1 Machine Vision

Humans can easily distinguish and recognize objects through vision, with such
a precision in object detail and depth information that we can easily stretch our arms
and grasp an object with just vision alone. Although this may seem a simple process, it
is, in fact, one that developed through millions of years through evolution (RENSINK,
2000). The only way computers can hope to achieve this is to process this data through
algorithms that can extract useful information (or features) from this data and use them to
make conclusions about what the image is representing. In the last decade, deep learning
algorithms have become the most prominent type of algorithm in visual data processing
(Zhao et al., 2019).

RGB cameras are perhaps the most common sensor in the world currently. Almost

22

every laptop and cellphone has one, and development on how to improve the data’s quality
and extract information has been going strong in the last decade. Data processed from a
single camera, however, does not provide information about depth. To circumvent this,
more cameras can be employed in the same system, allowing for rich depth information.
These systems are called stereo cameras.

Given these sensors, several problems in robotics can be addressed, i.e. the mapping
of an environment (DURRANT-WHYTE; BAILEY, 2006; BAILEY; DURRANT-WHYTE,
2006), obstacle avoidance (MATTHIES et al., 2014), and, the area that is relevant for this
project, object grasping.

1.1.2 Artificial Data

As data-driven models become more common in different areas, strategies to
facilitate training and improve results start to become commonplace. For the creation of
the COCO dataset (LIN et al., 2014), even if the dataset was immense, it was still feasible
to hand-label the data, since humans can easily locate objects in images and label them.
In other areas, labelling things is not as simple. For example, the task to determine a pose
of a given object. To create a representative label, a human observer should be able to
provide this information with such a precision that an algorithm can learn how to guess
poses for this given object. The task of creating such datasets is challenging. In this case,
an alternative solution would be to use a 3D renderer software, that has all the data about
an object (in this case, a model) at all times. That is, use artificial data to train a deep
learning algorithm.

This solution, however, also has its downsides, such as the reality gap. That is, a
network that has only been trained in artificial data does not perform well in real-world
scenarios. Several works have tried to address this problem. Among them are the use
of photorealistic data (MCCORMAC et al., 2016; GAIDON et al., 2016), and Domain
Randomization (TOBIN et al., 2017; TREMBLAY et al., 2018a)

1.1.3 Robotic Grasping

Traditionally, the area of robotic grasping was dominated by analytical methods.
They focus on modelling the contact behavior between the object and the gripper, usually
defining a number of key contact points, where forces and moments are applied. A grasp
can be modelled in a number of ways (i.e. frictionless with normal force, frictionless with
tangential forces, not frictionless, etc.). For a grasp to be successful, it must in equilibrium,
that is, the sum of the forces must be zero. A number of strategies were developed
to solve this constraint problem (SAHBANI; EL-KHOURY; BIDAUD, 2012). However,
these methods tend not to perform well in real-world scenarios (WEISZ; ALLEN, 2012;
MORRISON, 2021). Some of the problems that affect the performance of analytical methods

23

are: assumption that there is perfect knowledge about the objects and the manipulators,
simplifications to models that introduce errors and computationally expensive calculations
for real-world applications.

Furthermore, if we want robotic systems that can extract information from the
world and act accordingly, we cannot expect that we have precise knowledge about models
and contact points, so analytical methods fall short in the context of generalization and
unstructured environments. The alternative that has risen strongly in the last decade are
data-driven methods.

Data-driven models have become the norm in many research areas. From speech
recognition, object recognition, data quality enhancement, and many other areas. The rise
of deep learning algorithms has changed the landscape in research. A drawback is that
these models require massive amounts of data to converge. In Reinforcement Learning
approaches, this means many hours in real-world setups or simulations so that the algorithm
can converge to a specific behavior. In Supervised Learning algorithms, this will imply
in large amounts of labelled data and many hours to train the network. Hand-labelling
this data, or creating a lab setup to train a neural network, can be a very time-consuming
endeavor. Besides, it is not a scalable strategy. A solution for this problem that has been
gaining traction is the use of artificial data to simulate real-world conditions or try to
replicate data (and create labels) where neural networks can be trained on.

Robotics is, due to its very nature, a complex part of engineering. By adding
black-box models such as deep learning algorithms to the mix, it becomes increasingly
more significant to have reliable methods to train and evaluate the performance of these
systems, in a reproducible manner, but still customizable for different applications.

1.2 Goals

1.2.1 Main Goals

Provide an open and customizable pipeline for rendering artificial data for neural
networks focused on top-down grasps of a set of objects.

25

2 LITERATURE REVIEW

2.1 Bibliometrics

We first analyze how relevant the area of robotic grasping has been by measuring
its growth in the last years. For this search, we use the databases from Scopus and Web of
Science.

We search for the keywords "Visual Grasp Detection" in the fields title, keywords
and abstract. All three words must be present to be relevant to this search. The results
can be seen in figure 1.

Figure 1 – Results with the keywords "Visual Grasp Detection"

Source: Author

It is noticeable the increase in the number of publications related to this area. A
possible reason for this expansion is the use of deep learning techniques that have improved
the results involving vision-related problems.

2.2 Camera Modelling

In this section, we provide a brief explanation of both RGB camera and depth
(stereo) cameras.

2.2.1 Camera Models

The Pinhole Camera Model is the simplest and most specialized among the
finite camera models (HARTLEY; ZISSERMAN, 2003). This model assumes that images
are formed based on the projection of 3D points in the images’ plane. This model assumes a

26

simple projection from the object to the image’s plane. This model takes into consideration
intrinsic camera properties (focal distances < fx, fy >, camera’s center position < cx, cy >

and the inclination between axis γ) as well as external properties, such as translation
(matrix t), orientation (matrix R) and the scale w. This is shown in Equation 2.1, where
X, Y, Z represent the real coordinates of an object, and x, y, z represent the projection in
the image’s plane. It is relevant to highlight that this model does not take into consideration
the camera’s distortions (positive radial, negative radial and tangential distortions).

w


x

y

1

 =


fx γ cx

0 fy cy

0 0 1

 [R3x3|t3x1]


X

Y

Z

1

 (2.1)

A more faithful representation of a real captured image can be represented by
the Brown-Conrady Camera Model (DUANE, 1971). It is the model that OpenCV
(OPENCV, 2020) accepts as the default. It consists of a polynomial model to define the
radial distortions. In this work, we follow the same convention as in OpenCV (2023), that
it is based on Louhichi et al. (2007). Figure 2 shows the kind of distortion that this camera
model takes into consideration.

Figure 2 – Distortions in an image obtained by a camera

Source: OpenCV (2023)

27

2.2.2 Depth Stereo Camera

Depth Estimation using a single RGB camera is not feasible. Stereo Vision is a
technique used to estimate the depth of an image by using more than one camera. This is
achieved by using epipolar geometry. There are two types of epipolar geometry for stereo
vision: the general case and parallel case. The latter being is a specific case of the first.
The information is then calculated by triangulation (that is, the depth is calculated given
the disparity of the image). A thorough explanation of how the model works and how it is
capable of obtaining depth data is clarified in Loop e Zhang (1999).

2.3 Convolutional Neural Networks

2.3.1 Neural Networks

The concept of neural networks dates back to the 50s. The idea was to use the
same mathematical model to what was believed to be the behavior of human neurons.
The idea, of course, was performing complex computations for the time. Concepts such as
the Perceptron (ROSENBLATT, 1957) and Adaline (WIDROW, 1960) were developed in
this time-frame.

A resurgence of neural networks happened after a few decades, where the idea
of backpropagation was developed (RUMELHART; HINTON; WILLIAMS, 1985). This
allowed a huge improvement in the performance of neural networks, allowing for even
recognition of handwritten digits (LECUN et al., 1989). But the computational power did
not allow for more complex tasks, and that became a handicap for further developments.

The current age of neural network’s development starts at the beginning of the
2010s, with works such as Krizhevsky, Sutskever e Hinton (2012) and Simonyan e Zisserman
(2014). It starts attached to the development of convolution neural networks and image
classification, showing much better performance than other algorithms at the time. Since
then, several types of new deep learning algorithms in image recognition, reinforcement
learning, unsupervised classification, data generation and many other areas have been
published and have changed on how we work with data.

2.3.2 Neural Networks Key Concepts

In this section, we enumerate the main steps that all neural networks have in
common.

Forward Step

The forward step consists of computing the output given an input, doing so
according to internal weights and biases. After the network is trained, it is expected
that the output of the forward step is the correct answer for the problem the network

28

was trained for (At this point, the forward step will be called inference). It is critical to
choose a correct activation function for this, since it will add non-linearity to the system
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Error Estimation and Loss Function

Given the output that the network gives after the Forward Step, it is necessary
to compute its error compared to the Ground-Truth or some other kind of criteria, and
compute the error between from what was expected to what the network has answered.
Common Loss functions to compute the error (or loss) of neural networks are L1 distance,
L2 distance and Softmax.

Error Propagation

The error propagation step happens after the error estimation. Given the com-
puted Loss function, we propagate the error through the network. The backpropagation
(RUMELHART; HINTON; WILLIAMS, 1985) algorithm is widely used, but there are
several different ways to propagate errors. In Recurrent Neural Networks (HOCHREITER;
SCHMIDHUBER, 1997), a recursive strategy is implemented, and in very large neural
networks (HE et al., 2016), an error propagation strategy is necessary to avoid gradient
vanishing.

Optimization Algorithm

To update the weights and biases of the neural network, given the computed error
for a specific neuron, an optimization function is employed. This function dictates how
the computed error will be used to update the parameter’s values. Common choices can
be the Stochastic Gradient Descent, Stochastic Gradient Descent with momentum, Adam
(KINGMA; BA, 2014), and many others.

2.3.3 Specializations of the Convolutional Neural Networks

Convolutional Neural Networks are a special variation of neural networks, and it is
the most common type of network used to work with image data. This is no coincidence,
since the convolution operation has a few advantages for processing images.

The convolution in terms of deep learning refers to an operation of scalar product
between the input values and the weight matrix (also called a kernel) of the given layer.
This means the evaluation of the inputs is heavily biased to local patterns. Typically, the
weight matrix is much smaller than the input tensor, in such a manner that the kernel
"runs" the input, so it can cover all of its dimensions. This property that the kernel runs
the entire input without changing any parameters is called parameter sharing. Figure 3
demonstrates how a convolutional operation works.

ReLU activation function

29

A usual choice for activation function, specially for images, is the ReLU activation
function (NAIR; HINTON, 2010) and its variations (XU et al., 2015). This class of
activation functions require little computation and in practice present good results with
complex data.

Figure 3 – Convolution Operation

Source: Goodfellow, Bengio e Courville (2016)

2.4 Biases in Deep Learning

Traditionally, it was believed that convolutional neural networks learn about
geometry of the objects, starting with the first layers learning with simple geometry such
as lines and curves, while the latter layers would learn and recognize complex shapes such
as tires, eyes and faces. However, more recent studies have indicated that there is a bias
towards textures over shapes. Geirhos et al. (2018) used a stylized dataset to analyze how
CNNs trained on the ImageNet (DENG et al., 2009) are biased towards texture information.
They generated the dataset using style transfer techniques to ImageNet images, and passed
these images into networks trained on ImageNet to perform classification tasks. This
experiment shows how a CNN can be biased towards texture.

30

The desire and, perhaps more accurately, the need to understand how a network
converges and what is happening in its weights and biases have sparkled a series of
areas that try to better understand deep leaning. One such area is Explainable Artificial
Intelligence (DOŠILOVIĆ; BRČIĆ; HLUPIĆ, 2018), that confronts the black-box model
that most deep learning is based on, and tries to develop a deep learning model where
humans are able to explain how the algorithm has arrived to its conclusion. Still, most of
the deep learning methods are still black-box, and thus only ensuring the quality of the
dataset and by varying the hyperparameters we can attempt to obtain better results.

2.5 Task Definition

2.5.1 Task Modelling

There are several questions that must be answered to limit the scope of the task of
grasping: Are we employing an analytic or data-driven (Deep Learning) approach? Are
we dealing only with rigid bodies or deformable bodies as well? Are we dealing with only
a single object, or is the object in a cluttered environment? How is our gripper (is it a
two-finger parallel gripper or a suction gripper? Or something else?). These questions
must be answered to define the scope of the project. We use as base the work of Du,
Wang e Lian (2019) and Morrison (2021) to define these terminologies and to define how a
grasping can be decomposed in a series of minor tasks.

2.5.2 Model-free and Model-based approaches

An important distinction between models is their dependency in relation to the
object’s models. Model-free approaches try to generalize the grasp proposal to any model,
be it known or not. Model-based approaches require knowledge about the object’s shape,
and use this data to infer the pose or grasp information.

2.5.3 Object Grasping Task

Following the division of described in Du, Wang e Lian (2019), we can enumerate
a step by step process for the task of robotic grasping:

1. Object Detection
2. Object Distance and Pose Calculation
3. Calculate Best Grasp
4. Calculate Inverse Kinematics to Perform grasp
5. Attempt Grasping
6. Finish Grasp and Move Object to Other Position

How different projects approach these steps can vary greatly, e.g.: skipping steps,
performing two steps at the same time, or implementing feedbacks on pipeline. Overall, we
can split the work in this area into two groups: The first group attempts to calculate the

31

object’s pose before trying to calculate the best grasp. The second group tries to calculate
the grasp, without explicitly trying to calculate the object’s pose first. After this step,
depending on whether artificial data was used to train the neural network, there might an
additional step so the network can be deployed in real applications. The figure 4 shows
the pipeline for both these strategies. Here we mainly focus on the second group. However,
we also bring information and relevant research about the first group, specially when it
brings important discussion topics to be addressed.

In the next sections, we briefly talk about a few works that use these strategies
to perform robot grasping, citing relevant information about the different characteristics
between them.

Figure 4 – Basic Grasp Pipeline

Source: Based on Kleeberger et al. (2020)

2.6 Object Detection, Pose detection, Grasping Detection and Reinforcement
Learning Strategies

In this section, we give a brief overview of object detection, pose detection and
grasp detection techniques.

2.6.1 Object Detection

Classification and Object Detection problems are among the first problems that
CNNs were employed to solve. Classification is a task that, given the image, the network
will try to classify it into a given category. Object Detection not only classifies the object,
but it also identifies where in the image the object is, usually the answer of the network is
a bounding box. It is very similar to image segmentation, but in this case, the answer of

32

the network is the group of pixels the object belongs to. A throughout review of these
algorithms was done by Zhao et al. (2019).

2.6.2 Pose Detection

For this section, we use as a basis the works of Sahin et al. (2020) and Kleeberger
et al. (2020).

In pose detection, not only we try to identify which class an object belongs to, but
also position and orientation of the object not only in image coordinates, but in world
coordinates as well. Usually, only RGB data from the camera is used.

We will briefly explain the most common strategies and how they attempt to predict
the pose of an object. InTemplate Matching, from a given 3D model, a series of templates
in different poses are generated. These templates consist of robust feature descriptors, such
as available shape, geometry and appearance. The information received from the sensor is
then compared to the known templates to estimate the pose. Hinterstoisser et al. (2012) is
an example of this class of methods.

Point-Pair feature matching, on the other hand, make a global representation
of the object by extracting point-pair features (PPF) and storing they in a hash table.
After this, it extracts the point-pair features of the scene and compares to what it has
stored, generating a series of potential matches for pose candidates. Hinterstoisser et al.
(2016) is a good example of this type of strategy.

Regression methods concentrate most of the work based on deep learning. They
usually attempt to classify the object and it’s estimated 6D pose. They can be further
divided into two groups: The first group’s objective is to estimate the 6D pose directly,
while the second group first attempt to extract features and then finds the correspondence
from image coordinates to world coordinates, usually with PnP algorithms. Xiang et al.
(2017) and Do et al. (2018) belong to the first group, while Tremblay et al. (2018b) and
Hu et al. (2019) belong to the second.

In the cases where the objective of the algorithm is to find a series of feature
points, it is still necessary to find the translation between image coordinates and world
coordinates. This problem is known as the Perspective-n-Point (PnP). Popular algorithms
that solve and are employed to solve object’s coordinates are Li, Xu e Xie (2012) and
Lepetit, Moreno-Noguer e Fua (2009).

2.6.3 Grasping Detection

For this section, we use mostly the work of Kleeberger et al. (2020) and Newbury
et al. (2022).

33

Grasp detection attempts to determine the best grasp for an object directly from
the input data, without an explicit step to find an object’s pose estimation. Unlike the
methods cited previously, the most important input data here is a depth image (usually
obtained from a stereo camera).

This strategy can be further subdivided in two classes of techniques: Discriminative
Approaches and Generative Approaches.

In Discriminative Approaches, the neural network typically does not create a
proposal for a grasp. Instead, a series of grasps are produced by an algorithm, and the
neural network will rank which grasps it believes that will have the highest probability
of a successful score. The work of Mahler et al. (2017) and Mahler et al. (2018) can be
classified as a discriminative method.

In Generative Approaches, on the other hand, attempt to generate a grasp
proposal directly. Usually, this type of method can be seen somewhat as an extension
from the classification and object detection methods, discussed in 2.6.1. This class of
methods usually attempt to output the center of the grasp, the width of the gripper, and
it’s opening size (if looked through the image coordinate system, the output will be similar
to a rectangle). Projects that can be labeled as generative are Morrison, Corke e Leitner
(2020b).

2.6.4 Reinforcement Learning

Reinforcement Learning strategies are also largely employed to train neural networks
for grasping. Here, the neural network will be given a score for each grasp attempt, and the
network will try to maximize the score for that particular task. Choosing the appropriate
scores for desired and undesired behaviors is essential for this type of strategy. Kalashnikov
et al. (2018) is a great example of this class of algorithms.

2.7 Further strategies to robotic grasping

2.7.1 Closed-Loop Grasping and Active Perception

A variation of the pipeline presented in 2.5.1 is the implementation of feedback loops
involving the camera, so the sensor can be used more efficiently. The application of closed-
loop solutions is important, specially in unstable or unstructured environments, where
changes in the environment can happen between the step from data acquisition to grasping
(e.g. an object rolling to another position). The concept of using a continuous stream
of data to adjust the grasping as necessary is called closed-loop grasping (MORRISON,
2021). A related concept, but not quite the same thing, is what is called active perception.
In Active perception, the robot actively chooses the best viewpoint to observe the object,
the one where the algorithm will provide the best grasp suggestions to a given object.

34

(MORRISON, 2021)

2.7.2 Pre-Grasp Strategies

Certain object placement configurations can make a robotic system job difficult.
The object may be in a cluttered environment, and it may be difficult to access it on a
single movement, or maybe if the object was in another pose it would be easier to be
grasped. A robotic system can be taught to realize certain actions that change an object’s
pose before a grasp, so the chance’s of success can improve. Usually, the approaches are
trained in a reinforcement learning fashion, such as the work of Zeng et al. (2018).

2.7.3 Artificial Data Generation

Neural Networks that belong to Supervised Learning class are data-hungry algo-
rithms. Since they are good interpolators of data, the more diverse and representative the
dataset is, the more reliable the answer of the given network is. However, gathering such a
dataset is no easy job. It is still commonplace the manual gathering and labeling of data.
The Lin et al. (2014) and Deng et al. (2009) datasets, two of the most relevant datasets
in object detection and classification problems, rely heavily on manual labor to correctly
identify the classes and where they are presented in the image.

For Pose Estimation and Grasp Annotation Datasets, an additional challenge is
presented. How will a human correct label the vertices coordinates of an object in a given
image? Or will a human correctly discern which grasp in image coordinate systems will
result in a successful grasp? Since it is complex for human labelling to create robust data
for training for these tasks, other strategies were developed.

Artificially generating the data has a number of advantages. Given that all coordi-
nates are known inside a rendering scene, you have the exact location of an object and
all of its vertices. And with pipeline rendering, it is possible to produce a large quantity
of custom-made data to a specific application relatively fast. However, this strategy also
has its downsides. Major among them is the reality gap. That is, the gap in the quality
of data that is inherited from the method it was generated. There are a few ways in the
literature that people have tried to deal with this problem, the most common methods are
Photorealistic data and Domain Randomization.

In thePhotorealistic Data strategy, the objective is to reproduce data appearance
as faithful to the real world as possible. Illumination and light reflectance in materials
are specially important here. It is usually employed in scenes simulation, both indoors
(MCCORMAC et al., 2016) and outdoors (ROS et al., 2016; GAIDON et al., 2016;
TSIRIKOGLOU et al., 2017).

In Domain Randomization, the objective can be seen as the opposite from
Photorealistic Data. Here, we aim to change the scene in various unrealistic ways, so that

35

when the network is presented to real-world data, it will only be seen as another variation
from this trend (TOBIN et al., 2017). This approach, however, may prove to be insufficient
on its own, requiring fine-tuning from real-world data (TREMBLAY et al., 2018a).

Both strategies can be used together in a blended strategy to create a more
robust dataset, as can be seen with the works of Tremblay et al. (2018b) and Loing, Marlet
e Aubry (2018).

2.7.3.1 Domain Adaptation

Just as Domain Randomization, in Domain Adaptation we aim to variate the
parameters so that the reality will only appear as another variation to the neural network.
We usually have a source domain (simulation) and aim to transfer to it characteristics
from the target domain (real-world). It is commonplace to use GANs (BOUSMALIS et al.,
2018) as to transfer unlabeled data from the real-world, reducing the fine-tuning necessary
with real-world data.

2.7.4 Simulation

There are works that have been trained solely on a laboratory setup. Kalashnikov
et al. (2018) had trained his network for a total of 800 hours across 7 robots to complete
his research. Not only it is time-consuming, but it also relies on expensive equipment
and additional manual labor from the research team. An alternative to this is computer
simulation using a suitable simulation engine for robotics (KÖRBER et al., 2021). This
can be used in a number of ways, to directly train scenes that use reinforcement learning,
but also in addition to generate data from supervised learning techniques. (MAHLER et
al., 2017; DEPIERRE; DELLANDRÉA; CHEN, 2018).

2.8 Neural Networks for Robotic Grasping

2.8.1 GG-CNN Network

Morrison, Corke e Leitner (2020b) presented a network that can be classified as
a generative approach, has low computation demands and can be used in a closed-loop
fashion (see 2.7.1). In this section, we explain the modelling behind the algorithm.

Grasp Modelling

A grasp is defined in 3D space by Equation 2.2.

g = (q,p, φ, w) (2.2)

36

Where q is a quality measure representing the chances of grasp success, p is the
gripper’s center position p = (x, y, z), Φ is the gripper’s rotation around the z-axis and w
is the gripper’s width

The same grasp is defined in image space by Equation 2.3, being differentiated by
the tilde operator.

g̃ = (q, s̃, φ̃, w̃) (2.3)

Where s̃ is the gripper’s center position in image coordinates s̃ = (u, v), Φ̃ is the
gripper’s rotation in the camera’s reference frame and w is the gripper’s width in image
space.

The conversion between a grasp in Image Space (g̃) and 3D space (g) is given by
the Equation 2.4.

g = tRC(tCI(g̃)) (2.4)

tCI is the conversion from Image Space to the Cartesian Space and tRC is the
conversion between the world frame and camera frame, following the Pinhole’s camera
model (described in subsection 2.2.1) and robot-camera calibration

Grasp Map and Finding the Best Grasp

The Set of possible grasps in the Image Space is denoted as Grasp Map and is
given by Equation 2.5.

G̃ = (Q̃, Φ̃, W̃) (2.5)

We wish to find the function M , so that, given the Input Image I (RGB Image,
Depth, or both), we obtain M(I) = G̃ and find the optimal grasp g̃∗ = maxQ̃G̃

Finding M

We use a solution MΘ that converges to the desired solution M . MΘ is the trained
neural network with weights Θ. MΘ takes the I and outputs the approximate grasp
map G̃Θ.The network is parameterized by its weights Θ and computes the function
MΘ(I) = (Q̃, Φ̃, W̃) ≈M(I).

GG-CNN Architecture

37

Morrison, Corke e Leitner (2020b) proposed a fully convolutional architecture as a
solution to the problem. The detection pipelines consists of four stages: image processing,
generation of pixel-wise grasp quality through the network, filtering and computation of
the best grasp pose.

Figure 5 shows the architecture of the network. The image is cropped to the size of
300x300 pixels. The final network contains 66,000 parameters, has an average inference
time of 3 ms.

Figure 5 – GG-CNN Architecture

Source: Morrison, Corke e Leitner (2020b)

2.9 Benchmarking for Pose Detection

From this point, we start to evaluate datasets, precision metrics and how these
projects that aim to generate data and measure the quality of the algorithms they are
trained on. All these datasets in this section evaluate only the Pose Detection step that is
shown in 4, and do not take into consideration how the grasp proposal that the algorithm
must employ to a successful grasp.

2.9.1 LINEMOD

A very popular dataset is the one created by Hinterstoisser Stefan Holzer (2011)
and Hinterstoisser et al. (2012). They proposed a dataset with objects without texture in
cluttered environments, with illumination under control and minimizing occlusion.

Several works, such as Brachmann et al. (2016), Rad e Lepetit (2017), Kehl et al.
(2017) and Tekin, Sinha e Fua (2018) use this dataset.

The precision metric m is a comparison between the real rotation R̄ and translation
T̄ with the estimated rotation R̂ and translation T̂ , for a series of points in the model.
This is shown in equation 2.6, where M represents the set points belonging to the model

38

and x represents a specific point belonging to M .

m = avgx∈M ‖ (R̄x+ T̄)− (R̂x+ T̂) ‖ (2.6)

It is considered that the model has been correctly identified if kmd ≥ m, where km
is an arbitrary coefficient and d is the model’s diameter. If there is symmetry involved,
the precision is computed as shown in equation 2.7.

m = avgx1∈M minx2∈M ‖ (R̄x1 + T̄)− (R̂x2 + T̂) ‖ (2.7)

2.9.2 T-LESS

Hodan et al. (2017) is a dataset that was developed thinking in industrial applica-
tions. It contains little texture information, and the objects tend to have many symmetries.
It uses the same metric as shown in section 2.9.1, with the coefficient determined to be 0.1.

2.9.3 YCB Object and Model Set

Calli et al. (2015) proposed a set of common household items with a large range
in size, colors, textures, materials and geometric shapes. Many projects (XIANG et al.,
2017; TREMBLAY et al., 2018b) use this dataset, and it does not propose a precision
metric. The quality metric used in these works is based on the metric presented in section
2.9.1. However, instead of defining an arbitrary value for a threshold, several threshold
values are considered, creating a graph of threshold vs recall. The quality metric taken
into consideration is the area under the curve. The figure 6 shows an example of curves
for different objects.

2.9.4 BOP Challenge

Hodaň, Matas e Obdržálek (2016) proposed a unified framework to test pose
estimation algorithms. They gather 15 of the most relevant datasets and unify the format
they are provided on, while proposing a different precision metric, called Visual Surface
Discrepancy (VSD). This metric aims to deal better with occlusion, be it self-occlusion or
by other objects or environment.

Given an estimated pose P̂ and a real pose P̄ from the object M , two distance
maps are calculated, Ŝ e S̄. For each pixel ρ, the map computes the euclidean distance
between the camera’s center and the point xρ (both represented in world coordinates),
where xρ is the point in the world coordinate system that is projected to the point ρ in the

39

Figure 6 – Metric used by Xiang et al. (2017) e Tremblay et al. (2018b)

Source: Tremblay et al. (2018b)

image. V̂ and V̄ are the poses’ visibility masks, in other words, they are the pixels that are
visible in the image. Given a threshold τ , the error is computed according to equation 2.8.

eV SD(S̄, Ŝ, V̄ , V̂ , τ) = avgρ∈V̄ ∪V̂

0 se ρ ∈ V̄ ∩ V̂ ∧ |S̄(ρ)− Ŝ(ρ)| < τ

1 otherwise
(2.8)

2.10 Benchmarking for Grasp Detection

2.10.1 Cornell Dataset

The Cornell dataset (JIANG; MOSESON; SAXENA, 2011; LENZ; LEE; SAXENA,
2015) was one of the first datasets consisting of real objects and grasps annotation data. It
contains the RGB-D information from the images, with additional annotation of possible
successful grips. The annotations are in the image coordinate system, it consists of the
center of the grasp, the orientation of the grasp, and the size and opening of the gripper.
This data can also be seen as a rectangle in the image.

In this setup, a successful grasp is considered when two conditions are met: first,
the IoU (Intersection over Union) between the ground-truth annotation and the proposed
grasp must be over 25%. The second condition is that the proposed grasp must be with
30◦ of the ground-truth label.

40

2.10.2 Jacquard Dataset

The Jacquard Dataset (DEPIERRE; DELLANDRÉA; CHEN, 2018) was created
to tackle problems that were present in the Cornell dataset (described in section 2.10.1).
It improved not only the size of the dataset, but also the variety of the objects. Since
manually creating the dataset would be labor-intensive, they decided to create the data
artificially. To accomplish this, the authors decided to create the dataset using both
artificial image rendering and simulation to rank the best grasps. Rendering is done using
Blender and the Cycles renderer, while the simulation is done using PyBullet (COUMANS;
BAI, 2016–2022).

The data generated for this dataset were based on the cad models originally present
in the ShapeNetSem Dataset (CHANG et al., 2015). The cad sizes vary widely in the
original dataset, so they were all resized so that the longest size of the objects is between
8-90cm. Also, weight for the objects were inferred by their size (80 g for an 8 cm object
and 900 g for a 90 cm one).

The pipeline for Dataset creation was organized as it follows:

1. The camera is positioned in a fixed altitude from a top-down perspective over a
white floor

2. The Model is loaded into a scene and the simulation runs until the object is stable
3. Several random grasps proposals are calculated for the object
4. Texture is loaded, and the image is rendered (Gaussian noise is applied to the image)
5. Simulation is performed in the random grasps using a grasp of size 2 cm and max

opening of 10 cm, the grasp is considered successful if the object is completely lifted,
moved away and dropped at a specific point

6. The simulation is then repeated with jaw grippers with sizes: 1, 3, 4 and 6 cm.
7. After all successful grasps are saved, a clean-up is performed so that only one grasp

is saved in case that grasps are too similar one to another

The pipeline is also described in figure 7.

The Jacquard Dataset has several strengths compared to the Cornell, it has a much
wider variety of objects. Not only it generates RGB-D data, but also creates the object
mask.

However, the dataset also has its downsides. First, the models were loaded from
the ShapeNetSem dataset. Which means that the acquisition of physical objects that are
equivalent to the models is not an easy task. Another weakness of this dataset is that the
pipeline is not available for other researchers, and evaluation of networks is performed by
a closed server.

The Dataset follows the following annotation pattern for each grasp proposal:

41

Figure 7 – Pipeline proposed by the Jacquard Dataset

Source: Depierre, Dellandréa e Chen (2018)

• center of grasp : (x, y) coordinates in the image
• orientation of the grasp: theta angle in degrees
• jaw opening size
• jaw size

2.10.3 Dex-Net Family Dataset

The Dex-Net (MAHLER et al., 2017) dataset was created using a different approach
from the Jacquard Dataset (see 2.10.2). By taking a series of objects (MAHLER et al.,
2016), and simulating them in randomized poses on a table. Each object is labeled with up
to 100 parallel-jaw grasps, that was proposed using a robust grasping policy and labeled
with force closure and the expected epsilon quality metric (POKORNY; KRAGIC, 2013).
The provided data consists of a depth image for each stable pose, a random noise is added
during the image during the network training. Figure 8 demonstrates how the pipeline is
structured.

A relevant addition to this dataset was the inclusion of a group of adversarial
3D-printed objects. This is particularly relevant because many datasets do not include
objects that can be easily obtained for physical experiments. By adding the models of
objects that can be easily 3D printed, the reproducibility of a work greatly increases.

Subsequent projects focused on creating grasp annotations for different gripper
formats, such as suction grippers (MAHLER et al., 2018) and ambidextrous robots
(MAHLER et al., 2019).

42

Figure 8 – Pipeline proposed by the Dex-Net

Source: Mahler et al. (2017)

2.10.4 EGAD!

Morrison, Corke e Leitner (2020a) saw a few problems with previous works. The
first problem was that most of the previous datasets were not easily reproducible in
real life scenarios. Many of these datasets were composed of common household objects.
And obtaining the real objects for experiments is not trivial in this case. Following the
work of Mahler et al. (2017), Morrison, Corke e Leitner (2020a) decided to expand the
concept of using 3D printing to create easily reproducible physical datasets. In his work,
an evolutionary algorithm is used to balance between two characteristics of the objects.
The first characteristic is shape complexity, that is measured by morphological complexity.
The second characteristic is an object’s grasp difficulty, defined by the difficulty that is for
a parallel gripper to grasp the object, this is measured by using an analytical grasp planner
and computing a grasp quality metric. The grasp difficulty feature is then obtained by
taking the 75th percentile grasp quality of all sampled grasps. Figure 9 demonstrates how
the pipeline is structured.

Figure 9 – Pipeline proposed by the EGAD! Dataset

Source: Morrison, Corke e Leitner (2020a)

Since the evolutionary algorithm was configured to generate several object proposals
that cover different measures of shape complexity and grasp difficulty, the dataset presents
a much more balanced representation in this space, as can be seen in the figure 11.

43

Figure 10 – EGAD! comparison to other datasets

Source: Morrison, Corke e Leitner (2020a)

This approach has a series of advantages compared to previous datasets. Since the
datasets can be easily printed, real-world tests can easily be performed, and since the
objects were not randomly selected, but created using metrics of shape complexity and
grasp difficulty in mind, it is much more representative of the types of objects it needs
to learn how to grasp. Furthermore, the authors selected a group of 49 objects that are
representative of the space so that it can be used for evaluation.

Another relevant contribution of the work is the analysis comparing the ratio
between the gripper width and the object’s size. Figure 11 shows the non-linear relation
between relative size and grasp quality. For fair comparison, in this work they set that the
relation between object’s size and gripper width would be no more than 80%.

2.10.5 Precision Metrics

Datasets in the Direct Grasp Detection Family tend to measure grasp quality in
one of two ways. A first approach is to use a grasp quality metric that is well established
in the literature, and usually has an origin together with analytic methods. A common
metric is the robust Ferrary-Canny metric (FERRARI; CANNY, 1992), used by Mahler
et al. (2017). The other approach is to, either in simulation or in real-world experiments,
attempt a certain grasping task. For example, the Jacquard (see 2.10.2), attempts to grab
the object, move it to a specific location and drop it. The grasping is considered successful
only if the robot is capable to perform this entire process.

2.10.6 Gripper Shape and Size Effect on Results

Another important aspect for robotic grasping is the gripper’s type (parallel gripper,
suction gripper, etc.) and size’s in relation to the object that is about to be grasped.

44

Figure 11 – Graph relating quality metric to an object’s relative size to the gripper’s width

Source: Morrison, Corke e Leitner (2020a)

Datasets cannot easily translate a gripper’s characteristics, so the data is highly correlated
to a gripper format and size.

Most of the datasets focus on parallel grippers (LENZ; LEE; SAXENA, 2015;
DEPIERRE; DELLANDRÉA; CHEN, 2018; MAHLER et al., 2017), with a few datasets
focusing on suction grippers (MAHLER et al., 2018) and ambidextrous robots (MAHLER
et al., 2019).

For parallel grippers, the ratio of object size to gripper’s width in also significant,
as grasp successes tend to decrease when this ratio is over the 80% threshold (see section
2.10.4).

2.11 Datasets Comparison

In this section, we compare and evaluate the characteristics of each dataset, the
result can be seen in Table 1.

2.12 Frameworks for Data Generation

2.12.1 BlenderProc

After a few preliminary works that attempted to generate artificial data to train
networks, more robust tools were developed to generate data and labels for training
artificial intelligence algorithms.

Denninger et al. (2019) created a framework that uses the blender API to generate
high-quality images suitable for training deep neural networks. Since blender is an open-

45

Ta
bl
e
1
–
D
at
as
et
s
C
om

pa
ris

on

D
at
as
et

A
pp

lic
at
io
n

D
at
a
Pa

tt
er
n

R
ea
lo

r
Sy

nt
he
tic

Pr
ec
isi
on

M
et
ric

LI
N
EM

O
D

(H
IN

T
ER

ST
O
IS
SE

R
ST

EF
A
N

H
O
LZ

ER
,2

01
1)

Po
se

D
et
ec
tio

n
RG

B
D
at
a

R
ea
lD

at
a

Av
er
ag
e
D
iff
er
en
ce

in
Ve

ct
or
s

T
-L
ES

S
(H

O
D
A
N

et
al
.,
20
17
)

Po
se

D
et
ec
tio

n
RG

B
D
at
a

R
ea
lD

at
a

Av
er
ag
e
D
iff
er
en
ce

in
Ve

ct
or
s

Y
C
B

(C
A
LL

Ie
t
al
.,
20
15
)

Po
se

D
et
ec
tio

n
RG

B
D
at
a

R
ea
lD

at
a

A
re
a
un

de
r
th
e
cu
rv
e

fo
r
Av

er
ag
e
D
iff
er
en
ce

in
Ve

ct
or
s

B
O
P

C
ha

lle
ng

e
(H

O
D
A
Ň
;M

AT
A
S;

O
BD

R
ŽÁ

LE
K
,2

01
6)

Po
se

D
et
ec
tio

n
RG

B
D
at
a

R
ea
l

an
d

Sy
nt
he
tic

D
at
a

V
isu

al
Su

rfa
ce

D
is-

cr
ep
an

cy
(V

SD
)

C
or
ne
ll

(L
EN

Z;
LE

E;
SA

X
EN

A
,

20
15
)

D
ire

ct
G
ra
sp
in
g

RG
B

D
at
a

R
ea
l

Su
cc
es
sfu

lG
ra
sp

R
at
e

Ja
cq
ua

rd
(D

EP
IE

R
R
E;

D
EL

LA
N
-

D
R
ÉA

;C
H
EN

,2
01
8)

D
ire

ct
G
ra
sp
in
g

RG
B

D
at
a
an

d
D
ep

th
D
at
a

Sy
nt
he
tic

D
at
a

Su
cc
es
sfu

lG
ra
sp

R
at
e

D
ex
ne
t
(M

A
H
LE

R
et

al
.,
20
17
)

D
ire

ct
G
ra
sp
in
g

D
ep
th

D
at
a

Sy
nt
he
tic

Su
cc
es
sfu

lG
ra
sp

R
at
e

EG
A
D

(M
O
R
R
IS
O
N
;

C
O
R
K
E;

LE
IT

N
ER

,2
02
0a
)

D
ire

ct
G
ra
sp
in
g

D
ep
th

D
at
a

Sy
nt
he
tic

Su
cc
es
sfu

lG
ra
sp

R
at
e

46

source program, it is a great choice for this type of application. The framework uses the
Cycles renderer, that is suitable for realistic renderings.

The framework is set to be able to render a series of relevant types of image
data that can be used for a vast range of simulated scenarios, such as enabling an
object’s physics positioning, material randomization, semantic segmentation, stereo vision
simulation, apply coco annotations, among other features. It is also highly integrated with
the BOP Challenge (HODAŇ; MATAS; OBDRŽÁLEK, 2016), providing the interface to
the challenge’s metrics.

Although the framework is powerful for providing realistic artificial image data in
several formats, a drawback is that it is not integrated with a simulation engine, limiting
its usage when believable physics simulations are necessary to generate data.

2.12.2 Kubric

The work of Greff et al. (2022) can be seen as an extension of the work performed
by Denninger et al. (2019). It offers a framework where a common scene configuration can
be provided to both a renderer and a physics simulation engine. Providing a necessary tool
for developments in robotics. It realizes the difficult task of integrating robotics simulation
and data generation.

While the renderer is automatically configured to generate RGB, depth and seg-
mentation data (among others), the integration with the engine allows for a more realistic
behavior of object’s interaction. By default, it is built on top of Blender (for rendering)
and PyBullet (for simulation), but the code is kept modular, and it is possible to swap
the back engines.

47

3 MATERIALS

3.1 Kubric Framework

We use as a base the Kubric Framework to generate our dataset. The reason this
particular framework was chosen is that it is a state-of-the-art tool that is able to create a
unified scene for both rendering and simulation.

3.2 Machine Learning Libraries and Tools

Machine Learning libraries and tools have become widely available in several
programming languages. In this group, two libraries are largely used: TensorFlow (TEN-
SORFLOW, 2020) and PyTorch (PYTORCH, 2020). This work uses PyTorch since the
language syntax has been more stable along the library different versions, making it more
cohesive.

3.3 OpenCV

The OpenCV library (Open-Source Computer Vision Library) (OPENCV, 2020)
was developed with the intention to make it easier to developer to access computer vision
algorithms for many areas and applications. It is implemented in C++, but has a wrapper
available in python.

3.4 Real Sense Camera

The Real Sense Camera (KESELMAN et al., 2017) family was developed by Intel,
and consists of a set of depth cameras developed for both indoor and outdoor use cases.

The Real Sense is a stereo camera, meaning that it calculates the depth data by
using two rgb cameras, that identify the same interest points in the two images and allow
for calculation of the third dimension. An overview of the general principle of how stereo
cameras work can be seen in section 2.2.2. It is relevant to highlight that traditionally,
stereo cameras have been known to not perform well with low-texture images, since the
stereo algorithm cannot detect enough interest points to give trustworthy depth data.
The Real Sense tries to address this by projecting several infrared light rays, not visible
to the human eye, but detectable to the camera sensors, and thus "forcing" a texture
in an otherwise low-texture image. This can be seen in the figure 12, and 13 shows the
improvement in data acquisition. This technique is also called Active Stereo. Further
specifications and descriptions about the camera can be seen in Keselman et al. (2017).

In this work, we use an Intel Real Sense D535.

48

Figure 12 – Projection on image - Left and right cameras

Source: Intel (2023)

Figure 13 – Results improvement using active stereo

Source: Intel (2023)

3.4.1 Real Sense SDK and API

The Real Sense API offers a series of useful algorithms and tools for applications
with the real sense. The API was developed in C++ but also offers wrappers to another
languages, such as python.

Among the many relevant tools that the API provides are algorithms for image
coordinates to world coordinates (See sections ?? and 2.2.1), calibration procedures, rgb
and depth image alignment, filters, among other features.

3.5 KUKA LBR IIWA 14 R820

The KUKA LBR IIWA 14 R820 (illustrated in figure 14) is a 7-DOF redundant
robotic manipulator with serial kinematic chain designed with several key features to be
able to allow it to be used in proximity to humans, and even in human-machine interaction
applications. It has position and force-torque feedback sensors that allow its usage from
basic robotic control to critical human interaction control.

49

Figure 14 – KUKA LBR IIWA 14 R820 Robot

Source: KUKA (2016)

3.5.1 KUKA ROS API

Mokaram et al. (2017) has developed an API that allows controlling the robot from
another computer, using ROS and TCP communication. It encapsulates most of the most
common commands for the robot, such as PTP movement and Linear movement, and can
easily be expanded if necessary.

3.5.2 Security Concerns

Even if the robot has features that allow for safe use, these features must be
correctly implemented to allow safe usage not only for the people but to avoid damaging
the robot as well. In the first configuration, we implemented a zone that no part of the
robot can go to. This was configured to avoid collision between the robot and the rest of
the equipment. A second configuration was implemented so that the robot’s TCP cannot
exit a certain area. This was configured so that possible ill-configured movements would
not result in damage to the robot or a possible collision with the operator.

50

3.6 Parallel Gripper

For the experimental setup, we used a parallel gripper made in-house. The gripper
was mostly 3D printed. Except for the base, that is made from aluminum and the guides
that are made from steel. An additional stand for the camera was also 3D printed as well.
Figure 15 demonstrates the gripper assembly for real-world experiments.

Figure 15 – In-house Gripper

Source: Author

We work with a jaw opening of 7 cm.

The relative distance between the gripper’s center and the camera are: 4 cm in the
x axis and 11 cm in the y axis. These offsets are taken into consideration when calculating
the position that the robot must move to attempt to grasp the objects.

The communication is done with a Toradex vf-50 that hosts a TCP server and
awaits commands to calibrate, open or close the gripper.

3.7 Datasets

We use the objects in the EGAD! dataset (described in section 2.10.4) as baselines
for experiments. First, there is a study associated with the shapes of particular objects,
meaning that they represent a more diverse range of difficulties that impact not only the
visual data processing but in the grasps tests as well. The second reason this dataset was
chosen is that it is easily 3-Printable, allowing for reproducibility in lab tests (figure 16).

51

Figure 16 – 3D printed dataset

Source: Author

For lab tests, we limit ourselves to the A5, A1, E5 and B1 objects (figures 17, 18,
19 and 20).

Figure 17 – Object A5

Source: Author

Figure 18 – Object A1 different sizes

Source: Author

52

Figure 19 – Object E5

Source: Author

Figure 20 – Object B1

Source: Author

53

4 METHODS

4.1 Artificial Data Generation

Based on the work developed by Depierre, Dellandréa e Chen (2018), we propose a
pipeline for generating artificial data for training neural networks, by using Greff et al.
(2022) framework. We allow for personalization for output format, grasp proposal methods,
end-effector types and robot models.

The original pipeline was described in detail in section 2.10.2. Our pipeline presents
key differences to the original, notably, while the paper’s original authors did not make
the source code of the pipeline available, all the source code for this project can be found
online. The main reasons the jacquard dataset was chosen as a reference are that the
pipeline provides both RGB and depth data, allowing for rich visual information. Another
reason is that grasps are obtained through simulation, instead of hand-labelled. As a base
for the development, we use Kubric framework, since it provides the possibility to describe
Blender and PyBullet environments in a unified fashion.

Since the Jacquard dataset is widely used, we follow the same output data format
for an easier comparison. Just as in the original paper, we limit ourselves to a fixed-camera,
top-down view intended for top-down grasps. However, a key difference is that we use
Morrison, Corke e Leitner (2020a) generated objects.

4.1.1 Pipeline

In this section, we explain the overall pipeline for data generation. The pipeline
has a main function, that needs the path to where the .URDF files are located in the local
system, and how many instances of each object will be generated. When the entry point
of the pipeline is called, the main function will call a number of subprocesses to render
the data, the following steps are what each subprocess computes.

1. A Scene is generated, with a floor, a camera and walls that will limit the space the
object will be allowed to be in

2. The grasp object will be loaded in a random position and pose
3. The simulation runs until the object is in a stable pose
4. The scene is rendered
5. The camera is deleted, and a new camera is loaded 10 cm to the right
6. The scene is rendered again
7. By using the images rendered in both scenes, we calculate the stereo disparity and

create a stereo depth image
8. We save the visual data: RGB image, true depth and image segmentation from the

54

first camera’s viewpoint, and the generated stereo depth
9. A grasp proposal method runs, and generates grasp proposals in image coordinates

that will be used in the simulation
10. At this point, we have generated all visual data for the scene, and we can start the

grasping simulations. The following steps happen for each grasp proposal.
a) The grasp’s proposal coordinates are converted to world coordinates
b) The robot goes to the coordinates and attempts to grasp the object. A grasp is

considered successful if the robot is able to grasp the object and move it to a
drop point

c) If the grasp is successful, the grasp coordinates (in image coordinates), are
saved

4.1.2 Code Architecture and Components

As already mentioned, an important premise when developing the Code for the
Artificial Data Generation pipeline was the ability to customize simulation, so it would be
better suited for many use cases.

We encapsulate four elements of the pipeline: The Data Exporter Component,
The Grasp Proposal Algorithm, The Stereo Matching Algorithm and The Robot Control
Component.

We provide a default behavior for each component: The Data Exporter Component
is set to export data in the same format as the Jacquard Dataset, the Grasp Proposal
Algorithm is set to a Gaussian grasp proposal strategy, The Stereo Matching Algorithm uses
the OpenCV’s implementation of Hirschmuller (2007) and The Robot Control Component
implements the Control for a Cartesian Robot.

4.1.3 Simulation Considerations

Collision Considerations

Since the original 3D objects are not designed for physics simulation, it was necessary
to design each object counterpart to be able to obtain a reliable grasp simulation for
generating ground-truths. These new generated objects are referred to as collision objects
in this document. How this was achieved is explained in section 4.1.3.1. For simulating the
grasping, a simple cartesian robot was used, and this is described in section 4.1.3.2.

Size Considerations

The Bullet engine historically has a problem with small-sized objects. Although
most discussions about this topic are already quite old (TASORA, 2011; EJTTTJE, 2011),
in this work we took a safe approach and scaled up the system to ensure collision stability
between the elements in simulation. The collision object is scaled, so its largest dimension

55

is scaled to 1 m. The robot gripper has an opening width of 2 m, and the plane where the
object can be in is limited to an area of 6 m x 6 m.

4.1.3.1 Correcting Meshes Geometry for Simulation

A pipeline was designed to format the original objects to have a reliable behaviour
in simulation. The pipeline can be described as follows:

1. Resize object so the biggest size of the object is equal to 1 meter
2. Voxelize object
3. Calculate center of mass
4. Normalize points coordinates around center of mass
5. Calculate moment Of inertia matrix
6. Use v-hacd algorithm to simplify collision surface
7. Generate .URDF file for each object

Resizing

First, we scale the object, so the biggest dimension is equal to 1 m.

Voxelization

The next step in the pipeline is the voxelization of the mesh. This is necessary to
be able to discretize the mesh volumetrically, and calculate it’s physical properties. The
result can be seen in Figure 21.

Calculate Center of Mass

In the next step we calculate the center of mass of the object, using the voxelized
object. For that, we use the definition of center of mass (equation 4.1). We consider that
density is uniform foe the entire object, and this the mass for each voxel will be the same.

cm =
∑
mi ∗ ri∑
mi

(4.1)

Normalize Coordinates Points around center of mass

After calculating the center of mass coordinates, we centralize all the vertices so
that the origin of the mesh will be the center of mass.

Calculate Moment Of Inertia Matrix

We also calculate the moment of inertia matrix around the center of mass. For this,
we follow the definition as defined by equations in 4.2. The .URDF file format follows a

56

negative convention for the matrix (ROS, 2023).

I =


Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (4.2)

Ixx =
N∑
k=1

mk(y2
k + z2

k) Ixy
def=

N∑
k=1

mkxkyk

Iyy =
N∑
k=1

mk(x2
k + z2

k) Ixz
def=

N∑
k=1

mkykzk

Izz =
N∑
k=1

mk(x2
k + y2

k) Iyz
def=

N∑
k=1

mkykzk

Use v-hacd algorithm to simplify collision surface

The morphological complexity of the collision objects must be taken into consider-
ation so that we obtain believable simulation results.

As a rule of thumb, the simpler a collision object is, the more reliable the dynamic
data will be obtained for the simulation. That is because the probability of false force
vectors appearing is higher in complex geometries. This is also done to speed up the time to
calculate the collision. A throughout explanation of how the collision detection algorithm
works can be found in Weller (2013). We use the V-HACD algorithm (LENGYEL, 2016)
to obtain objects with these desired characteristics. The result can be seen in figure 21.

Generate .URDF file for each object

At the end of the pipeline, we generate the .URDF file that references both visual
and collision objects, contains the inertia matrix and object’s mass.

4.1.3.2 Robot for Simulation

For performing simulation grasping, a simple cartesian robot was created in the
.URDF format file. Since for simulation purposes the area where the objects can be is
limited, and our simulations are limited to top-down grasps, a cartesian robot is enough
to suffice the requirements for the simulation (figure 22 shows the model of the robot used
in simulation).

The motors were controlled in Velocity Control mode, and grasping logic was
developed so that the robot is continuously in one state until the next state. The gripper
size was chosen so it would be the double of the size of the objects.

57

Figure 21 – Objects transformations

Source: Author. From left to right: (a) Original Object Shape. (b) Voxelized Object. (c)
Collision object after the v-hacd algorithm

4.2 Laboratory Tests Setup

4.2.1 KUKA Communication

This robotic system is dependent on several agents that must work together to
complete the grasping task. The Camera, the Neural Network, the Gripper and the Robot
must act in a synchronized manner. We explain how the communication is implemented
in a UML sequence diagram. The camera is directly connected to the computer, and
the visual data is processed in the computer as well. The Gripper has its own embedded
system that controls the motor, and the robot is controlled by its own computer. Figure
23 shows the complete setup for lab experiments.

There are two stages for a grasp: the calibration stage and grasp stage. In the
calibration stage (Figure 24), the robot goes to an initial known position and the gripper
performs a calibration procedure, so that the grasp stage can start. In the grasp stage
(Figure 25), the camera obtains an image that is sent to the neural network to process,
the network computes and returns a grasp proposal, and the robot attempts to perform
the grasp. The grasp is considered successful if the robot grasps the object and drops it at
a specific drop point.

4.2.2 GG-CNN

To make possible the comparison between previous datasets and the generated
dataset, we use the GG-CNN network without modifications. The main reasons this
network was chosen are:

1. It is a Generative Neural Network. That means that it does not depend on additional
algorithms to generate grasps

58

Figure 22 – Cartesian Robot used in simulations

Source: Author

2. The network can take as an input RGB data, depth data or both
3. The network outputs a probability map for the entire image, allowing for more

complete analysis of how it is processing the data

4.2.3 Camera Data Processing

Before the camera is ready for use, it is necessary to calibrate the camera so that
the depth sensor can properly calculate depth data. In figure 26 it can be seen how a
calibration camera can be prone to depth noise.

In the Real Sense camera, the depth data has a slightly larger field of view than
the RGB camera. Since we need the same image coordinates for both channels so that
the neural network can be properly trained, it is necessary to align the data from both
channels. This feature is available in the Real Sense SDK.

59

Figure 23 – Lab Setup for Tests

Source: Author

Figure 24 – Calibration Stage UML Sequence Diagram

Source: Author

60

Figure 25 – Grasp Stage UML Sequence Diagram

Source: Author

Figure 26 – Depth Noise

Source: Author

61

5 RESULTS

5.1 Baseline for GG-CNN

First, it is necessary to measure the performance of the GG-CNN network, we
calculated the number of successful grasps that the network was able to identify. For this
computer evaluation, we used a metric similar to the one defined in the Cornell dataset (see
2.10.1), while training in the Jacquard dataset (see 2.10.2). Here, we evaluate a grasp as
successful if the IoU metric between the proposed grasp and the ground-truth label is over
0.25 and if the angle of the grasp is within a difference of 30 degrees of the ground-truth
label.

We performed three experiments to evaluate how much each input channel is
relevant to the output of the network. For the first experiment, we trained the network
with both RGB and Depth data. The second experiment was trained only on depth data
and the last one only on RGB data. For each experiment, we trained the network for 30
epochs. We rank only the grasp that the network considers most successful.

For evaluation, we tested on 465 samples. When using both data, we obtained a
success rate of 86%, using only depth data, we also obtain a rate of 86% and when using
only RGB data, the success rate is 77%. A few examples of generated grasp information
can be seen in Figures 27 and 28.

These results indicate that the network is biased towards depth data, having more
impact on the end-result. This behavior could also be seen in Lab Experiments. For
example, when the camera was not calibrated, or when there was a mismatch between the
camera and the plane where the objects were, the networked tended to use data from the
depth channel, even when there was a clear vision of the object in the RGB channel. This
behavior can be seen in figures 35 and 36.

5.2 Data Generation Pipeline Results

The pipeline was used to generate the 5 instances of each object (49 objects in
total). Not all generated data had a valid configuration for testing the network, so this
data was manually excluded from the dataset. The Figures 29, 30, 31 and 32 show a
sample result from the pipeline. All images were generated to have the resolution of 1024
x 1024 pixels. From this point forward, the text will refer to the generated dataset as
customized dataset.

62

Figure 27 – GG-CNN trained on Jacquard
Dataset - Example 1

Source: Author

Figure 28 – GG-CNN trained on Jacquard
Dataset - Example 2

Source: Author

5.3 Simulation Results

5.3.1 GG-CNN trained on Customized Dataset

We trained the network on the customized dataset using both rgb and depth
channels. We obtain a rate of success of 90%. We use a fixed grasp annotation size of
340x170 pixels, which is approximately the size of the gripper (2x1 meters) in relation to
the workspace size (6x6 meters). Examples of generated grasps can be seen in figures 33
and 34.

It is noticeable, if compared to figures 27 and 28, that the network cannot determine
the object as easily as it could when trained with the jacquard dataset. Most likely this is
because, unlike the jacquard dataset pipeline, we did not change the gripper size and test
the grasp for different sizes. The result is that the network cannot as easily determine the
borders of the object. Still, for the define gripper size, the network presented a high rate
of success.

5.4 Lab Experiments

5.4.1 Baseline for Lab Experiments

For the laboratory experiments, we test both the network trained on jacquard data
and the one trained on customized data. Before the data can be obtained, we have to
make sure that the camera (specially the depth channel) is correctly calibrated.

Just as indicated in section 5.1, we confirm that the network is heavily based on
depth data. In the figures 35 and 36 we can see the in the upper row input data that

63

Figure 29 – RGB Generated Image

Source: Author

Figure 30 – Segmentation Data

Source: Author

Figure 31 – Perfect Depth

Source: Author

Figure 32 – Stereo Depth

Source: Author

the camera has acquired (RGB and depth channels), as well as the grasp that the neural
network has decided on. In the second row we can see the Q measure (a pixel-wise measure
of confidence that the network has about the grasp) and the respective angle measure in
radians (for each pixel, the respective grasp’s angle).

In Figure 35, we can see how with a clear RGB data but an unclear depth channel,
the network was unable to correctly predict a good grasp. The Q measure, is highly
correlated to the depth channel information. In Figure 36 we can notice a similar pattern.

64

Figure 33 – Customized Dataset - Grasp 1

Source: Author

Figure 34 – Customized Dataset - Grasp 2

Source: Author

Figure 35 – Bias towards depth 1

Source: Author

65

Figure 36 – Bias towards depth 2

Source: Author

5.4.2 GG-CNN trained on Jacquard

We first tested the four objects trained on the jacquard dataset. For each object,
we attempted to perform the grasp 10 times. The results can be shown in table 2. The
rate of success is only slightly lower than the overall value of 86% defined in section 5.1

A few grasp propositions can be seen in Figures 42, 43, 44 and 45. The network’s
sensibility to noise is noticeable in the images. During the experiments, a few grasp
proposals were off-track because of the noise error, as can be seen in Figure 41.

Table 2 – Rate of Success - GG-CNN trained on jacquard dataset

Object Rate of success
A5 90%
A1 80%
E5 70%
B1 70%

66

Figure 37 – Grasp Example 1

Source: Author

Figure 38 – Grasp Example 2

Source: Author

67

Figure 39 – Grasp Example 3

Source: Author

Figure 40 – Grasp Example 4

Source: Author

68

Figure 41 – Grasp Example - False grasp proposition

Source: Author

Table 3 – Rate of Success - GG-CNN trained on customized dataset

Object Rate of success Previous Rate of sucess
A5 30% 90%
A1 90% 80%
E5 90% 70%
B1 70% 70%

5.4.3 GG-CNN trained on Customized Dataset

The network trained on the customized dataset performed not as well as the one
trained on the jacquard. This is specially visible in the results regarding the A5 object,
that presented a drop from 90% to 30%. The other objects presented a similar rate of
success. The network was not able to provide a precise grasp, and there was collision with
the object, making the grasp attempt fail.

69

Another notable difference is that the network was not as sensible to depth noise.
This can be seen in Figures 42, 43, 44 and 45. Also, no false grasps such as the one shown
in Figure 41 did not happen in experiments.

Figure 42 – Grasp Example 5

Source: Author

5.4.4 Comparison between both networks

Overall, the network trained on the customized dataset did not present a perfor-
mance as good as the one trained on the jacquard dataset. This can be seen specially in
the results related to the A5 object. Between the four objects, it is the one that has the
most complex geometry. This may be related to the reason why the network failed more in
attempting this grasp, however, more tests are required to understand this phenomenon
better.

Overall, the network trained on the customized dataset was more robust to noise,
albeit less precise than the network trained on the jacquard dataset. Not being able to
identify the object as clearly as the first network. This behavior can be clearly seen by
comparing the Q maps between the two networks. The first network is able to locate the
object more precisely, but presents more susceptibility to the depth information. Because
this network has learned that even very small objects can have a viable grasp, it’s Q map
is highly "fragmented".

The second network was trained on a dataset where the grasp size was not changed.

70

Figure 43 – Grasp Example 6

Source: Author

Figure 44 – Grasp Example 7

Source: Author

71

Figure 45 – Grasp Example 8

Source: Author

That made the network to not be able to define as precisely the position of the object,
but it also made the network to only consider as viable grasps certain types of noise data,
making it more robust to depth noise. It is valid to highlight that the ratio between gripper
opening and object size was very high (gripper opening: 7 cm / object size: 4 cm), and the
network might have had worse results if the gripper opening was smaller.

These results show that a trade-off between precision and robustness can be achieved
by adjusting for gripper size.

73

6 CONCLUSIONS

In this work, we present a pipeline for generating customized dataset for robotic
grasping. We compare it to state-of-art works by using a state-of-art generative network in
both simulation and lab experiments, proving that the current pipeline is able to generate
data for real-world applications.

This pipeline is limited to the same scope as the original paper, with the difference
that it allows the creation of a dataset customized for a set of objects. This approach allows
for datasets customized for the application, where classification and object detection can
be generated together with grasps ground-truths. It also allows for variation in parameters,
so there can be a trade-off between precision and robustness. Furthermore, there are a
number of improvements that can still be applied to improve the results of networks trained
in this dataset. More features can be added to the pipeline, such as allowing for loading
of different textures, data randomization strategies, improving stereo vision data quality,
generating data for other gripper’s shapes and implementing active vision strategies.

Finally, it shows the potentials that artificial data, rendering and simulation have
for training neural networks for robotics.

75

BIBLIOGRAPHY

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBRISO10218-1: Robôs e
dispositivos robóticos - Requisitos de segurança para robôs industriais Parte
1: Robôs. 2018. Rio de Janeiro.

BAILEY, T.; DURRANT-WHYTE, H. Simultaneous localization and mapping (slam):
Part ii. IEEE Robotics & Automation Magazine, IEEE, v. 13, n. 3, p. 108–117,
2006.

BOUSMALIS, K.; IRPAN, A.; WOHLHART, P.; BAI, Y.; KELCEY, M.;
KALAKRISHNAN, M.; DOWNS, L.; IBARZ, J.; PASTOR, P.; KONOLIGE, K. et al.
Using simulation and domain adaptation to improve efficiency of deep robotic grasping.
In: IEEE. 2018 IEEE international conference on robotics and automation
(ICRA). [S.l.], 2018. p. 4243–4250.

BRACHMANN, E.; MICHEL, F.; KRULL, A.; YANG, M. Y.; GUMHOLD, S. et al.
Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2016. p. 3364–3372.

CALLI, B.; SINGH, A.; WALSMAN, A.; SRINIVASA, S.; ABBEEL, P.; DOLLAR, A. M.
The ycb object and model set: Towards common benchmarks for manipulation research.
In: IEEE. 2015 international conference on advanced robotics (ICAR). [S.l.],
2015. p. 510–517.

CHANG, A. X.; FUNKHOUSER, T.; GUIBAS, L.; HANRAHAN, P.; HUANG, Q.; LI, Z.;
SAVARESE, S.; SAVVA, M.; SONG, S.; SU, H. et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

COUMANS, E.; BAI, Y. PyBullet, a Python module for physics simulation for
games, robotics and machine learning. 2016–2022. <http://pybullet.org>.

DENG, J.; DONG, W.; SOCHER, R.; LI, L.; LI, K.; FEI-FEI, L. Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2009. p. 248–255. ISSN 1063-6919.

DENNINGER, M.; SUNDERMEYER, M.; WINKELBAUER, D.; ZIDAN, Y.; OLEFIR,
D.; ELBADRAWY, M.; LODHI, A.; KATAM, H. Blenderproc. arXiv preprint
arXiv:1911.01911, 2019.

DEPIERRE, A.; DELLANDRÉA, E.; CHEN, L. Jacquard: A large scale dataset for
robotic grasp detection. In: IEEE. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). [S.l.], 2018. p. 3511–3516.

DO, T.-T.; CAI, M.; PHAM, T.; REID, I. Deep-6dpose: Recovering 6d object pose from a
single rgb image. arXiv preprint arXiv:1802.10367, 2018.

DOŠILOVIĆ, F. K.; BRČIĆ, M.; HLUPIĆ, N. Explainable artificial intelligence:
A survey. In: IEEE. 2018 41st International convention on information and

http://pybullet.org

76

communication technology, electronics and microelectronics (MIPRO). [S.l.],
2018. p. 0210–0215.

DU, G.; WANG, K.; LIAN, S. Vision-based robotic grasping from object localization,
pose estimation, grasp detection to motion planning: A review. arXiv preprint
arXiv:1905.06658, 2019.

DUANE, C. B. Close-range camera calibration. Photogramm. Eng, v. 37, n. 8, p.
855–866, 1971.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part i.
IEEE robotics & automation magazine, IEEE, v. 13, n. 2, p. 99–110, 2006.

EJTTTJE. Small object jitter: approaches summary? 2011. Disponível em:
<https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=7402>. Acesso em: 21-03-2023.

FERRARI, C.; CANNY, J. F. Planning optimal grasps. In: ICRA. [S.l.: s.n.], 1992. v. 3,
n. 4, p. 6.

GAIDON, A.; WANG, Q.; CABON, Y.; VIG, E. Virtual worlds as proxy for multi-object
tracking analysis. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. [S.l.: s.n.], 2016. p. 4340–4349.

GEIRHOS, R.; RUBISCH, P.; MICHAELIS, C.; BETHGE, M.; WICHMANN, F. A.;
BRENDEL, W. Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

GREFF, K.; BELLETTI, F.; BEYER, L.; DOERSCH, C.; DU, Y.; DUCKWORTH,
D.; FLEET, D. J.; GNANAPRAGASAM, D.; GOLEMO, F.; HERRMANN, C.; KIPF,
T.; KUNDU, A.; LAGUN, D.; LARADJI, I.; LIU, H.-T. D.; MEYER, H.; MIAO, Y.;
NOWROUZEZAHRAI, D.; OZTIRELI, C.; POT, E.; RADWAN, N.; REBAIN, D.;
SABOUR, S.; SAJJADI, M. S. M.; SELA, M.; SITZMANN, V.; STONE, A.; SUN, D.;
VORA, S.; WANG, Z.; WU, T.; YI, K. M.; ZHONG, F.; TAGLIASACCHI, A. Kubric: a
scalable dataset generator. 2022.

HARTLEY, R.; ZISSERMAN, A. Multiple view geometry in computer vision.
[S.l.]: Cambridge university press, 2003.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2016. p. 770–778.

HINTERSTOISSER, S.; LEPETIT, V.; ILIC, S.; HOLZER, S.; BRADSKI, G.;
KONOLIGE, K.; NAVAB, N. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In: SPRINGER. Asian conference
on computer vision. [S.l.], 2012. p. 548–562.

HINTERSTOISSER, S.; LEPETIT, V.; RAJKUMAR, N.; KONOLIGE, K. Going further
with point pair features. In: SPRINGER. European conference on computer vision.
[S.l.], 2016. p. 834–848.

https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=7402
http://www.deeplearningbook.org

77

HINTERSTOISSER STEFAN HOLZER, C. C. S. I. K. K. N. N. V. L. S. Multimodal
templates for real-time detection of texture-less objects in heavily cluttered scenes. In:
2011 international conference on computer vision. IEEE. [S.l.: s.n.], 2011.

HIRSCHMULLER, H. Stereo processing by semiglobal matching and mutual information.
IEEE Transactions on pattern analysis and machine intelligence, IEEE, v. 30,
n. 2, p. 328–341, 2007.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, MIT Press, v. 9, n. 8, p. 1735–1780, 1997.

HODAN, T.; HALUZA, P.; OBDRŽÁLEK, Š.; MATAS, J.; LOURAKIS, M.; ZABULIS,
X. T-less: An rgb-d dataset for 6d pose estimation of texture-less objects. In: IEEE. 2017
IEEE Winter Conference on Applications of Computer Vision (WACV). [S.l.],
2017. p. 880–888.

HODAŇ, T.; MATAS, J.; OBDRŽÁLEK, Š. On evaluation of 6d object pose estimation.
In: SPRINGER. European Conference on Computer Vision. [S.l.], 2016. p. 606–619.

HU, Y.; HUGONOT, J.; FUA, P.; SALZMANN, M. Segmentation-driven 6d object pose
estimation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2019. p. 3385–3394.

HVILSHøJ, M. et al;. Autonomous industrial mobile manipulation (aimm): past, present
and future. Industrial Robot: An International Journal, v. 39, n. 2, p. 120–135,
2012.

Intel. Intel Realsense SDK Github page . 2023. Disponível em: <https:
//github.com/IntelRealSense/librealsense>. Acesso em: 11-01-2023.

JIANG, Y.; MOSESON, S.; SAXENA, A. Efficient grasping from rgbd images: Learning
using a new rectangle representation. In: IEEE. 2011 IEEE International conference
on robotics and automation. [S.l.], 2011. p. 3304–3311.

KALASHNIKOV, D.; IRPAN, A.; PASTOR, P.; IBARZ, J.; HERZOG, A.; JANG,
E.; QUILLEN, D.; HOLLY, E.; KALAKRISHNAN, M.; VANHOUCKE, V. et al.
Scalable deep reinforcement learning for vision-based robotic manipulation. In: PMLR.
Conference on Robot Learning. [S.l.], 2018. p. 651–673.

KEHL, W.; MANHARDT, F.; TOMBARI, F.; ILIC, S.; NAVAB, N. Ssd-6d: Making
rgb-based 3d detection and 6d pose estimation great again. In: Proceedings of
the IEEE International Conference on Computer Vision. [S.l.: s.n.], 2017. p.
1521–1529.

KESELMAN, L.; WOODFILL, J. I.; GRUNNET-JEPSEN, A.; BHOWMIK, A. Intel
realsense stereoscopic depth cameras. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops. [S.l.: s.n.], 2017. p. 1–10.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. CoRR
abs/1412.6980. 2014.

KLEEBERGER, K.; BORMANN, R.; KRAUS, W.; HUBER, M. F. A survey on
learning-based robotic grasping. Current Robotics Reports, Springer, v. 1, n. 4, p.
239–249, 2020.

https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense

78

KÖRBER, M.; LANGE, J.; REDISKE, S.; STEINMANN, S.; GLÜCK, R. Comparing
popular simulation environments in the scope of robotics and reinforcement learning.
arXiv preprint arXiv:2103.04616, 2021.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with
deep convolutional neural networks. In: Advances in neural information processing
systems. [S.l.: s.n.], 2012. p. 1097–1105.

KUKA. Spez LBR iiwa V7. 2016.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.;
HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code
recognition. Neural computation, MIT Press, v. 1, n. 4, p. 541–551, 1989.

LENGYEL, E. Game engine gems 3. [S.l.]: CRC Press, 2016.

LENZ, I.; LEE, H.; SAXENA, A. Deep learning for detecting robotic grasps. The
International Journal of Robotics Research, SAGE Publications Sage UK: London,
England, v. 34, n. 4-5, p. 705–724, 2015.

LEPETIT, V.; MORENO-NOGUER, F.; FUA, P. Epnp: An accurate o (n) solution to
the pnp problem. International journal of computer vision, Springer, v. 81, n. 2,
p. 155, 2009.

LI, S.; XU, C.; XIE, M. A robust o (n) solution to the perspective-n-point problem. IEEE
transactions on pattern analysis and machine intelligence, IEEE, v. 34, n. 7, p.
1444–1450, 2012.

LIN, T.-Y.; MAIRE, M.; BELONGIE, S.; HAYS, J.; PERONA, P.; RAMANAN,
D.; DOLLÁR, P.; ZITNICK, C. L. Microsoft coco: Common objects in context. In:
SPRINGER. European conference on computer vision. [S.l.], 2014. p. 740–755.

LOING, V.; MARLET, R.; AUBRY, M. Virtual training for a real application: Accurate
object-robot relative localization without calibration. International Journal of
Computer Vision, Springer, v. 126, n. 9, p. 1045–1060, 2018.

LOOP, C.; ZHANG, Z. Computing rectifying homographies for stereo vision. In: IEEE.
Proceedings. 1999 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (Cat. No PR00149). [S.l.], 1999. v. 1, p. 125–131.

LOUHICHI, H.; FOURNEL, T.; LAVEST, J.; AISSIA, H. B. Self-calibration of
scheimpflug cameras: an easy protocol. Measurement Science and Technology, IOP
Publishing, v. 18, n. 8, p. 2616, 2007.

MAHLER, J.; LIANG, J.; NIYAZ, S.; LASKEY, M.; DOAN, R.; LIU, X.; OJEA, J. A.;
GOLDBERG, K. Dex-net 2.0: Deep learning to plan robust grasps with synthetic point
clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

MAHLER, J.; MATL, M.; LIU, X.; LI, A.; GEALY, D.; GOLDBERG, K. Dex-net 3.0:
Computing robust vacuum suction grasp targets in point clouds using a new analytic
model and deep learning. In: IEEE. 2018 IEEE International Conference on
robotics and automation (ICRA). [S.l.], 2018. p. 5620–5627.

79

MAHLER, J.; MATL, M.; SATISH, V.; DANIELCZUK, M.; DEROSE, B.; MCKINLEY,
S.; GOLDBERG, K. Learning ambidextrous robot grasping policies. Science Robotics,
American Association for the Advancement of Science, v. 4, n. 26, p. eaau4984, 2019.

MAHLER, J.; POKORNY, F. T.; HOU, B.; RODERICK, M.; LASKEY, M.; AUBRY,
M.; KOHLHOFF, K.; KRÖGER, T.; KUFFNER, J.; GOLDBERG, K. Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit
model with correlated rewards. In: IEEE. 2016 IEEE international conference on
robotics and automation (ICRA). [S.l.], 2016. p. 1957–1964.

MATTHIES, L.; BROCKERS, R.; KUWATA, Y.; WEISS, S. Stereo vision-based
obstacle avoidance for micro air vehicles using disparity space. In: IEEE. 2014 IEEE
international conference on robotics and automation (ICRA). [S.l.], 2014. p.
3242–3249.

MCCORMAC, J.; HANDA, A.; LEUTENEGGER, S.; DAVISON, A. J. Scenenet rgb-d:
5m photorealistic images of synthetic indoor trajectories with ground truth. arXiv
preprint arXiv:1612.05079, 2016.

MOKARAM, S.; AITKEN, J. M.; MARTINEZ-HERNANDEZ, U.; EIMONTAITE, I.;
CAMERON, D.; ROLPH, J.; GWILT, I.; MCAREE, O.; LAW, J. A ros-integrated api for
the kuka lbr iiwa collaborative robot. IFAC-PapersOnLine, Elsevier, v. 50, n. 1, p.
15859–15864, 2017.

MORRISON, D. Robotic grasping in unstructured and dynamic environments.
2021. Tese (Doutorado) — Queensland University of Technology, 2021.

MORRISON, D.; CORKE, P.; LEITNER, J. Egad! an evolved grasping analysis
dataset for diversity and reproducibility in robotic manipulation. IEEE Robotics and
Automation Letters, IEEE, v. 5, n. 3, p. 4368–4375, 2020.

. Learning robust, real-time, reactive robotic grasping. The International journal
of robotics research, SAGE Publications Sage UK: London, England, v. 39, n. 2-3, p.
183–201, 2020.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th international conference on machine learning
(ICML-10). [S.l.: s.n.], 2010. p. 807–814.

NEWBURY, R.; GU, M.; CHUMBLEY, L.; MOUSAVIAN, A.; EPPNER, C.; LEITNER,
J.; BOHG, J.; MORALES, A.; ASFOUR, T.; KRAGIC, D. et al. Deep learning approaches
to grasp synthesis: A review. arXiv preprint arXiv:2207.02556, 2022.

OPENCV. 2020. Disponível em: <https://opencv.org>. Acesso em: 14 mar. 2020.

OpenCV. Camera Calibration and 3D reconstruction . 2023. Disponível em:
<https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html>. Acesso em: 03-01-2023.

POKORNY, F. T.; KRAGIC, D. Classical grasp quality evaluation: New algorithms
and theory. In: IEEE. 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. [S.l.], 2013. p. 3493–3500.

PYTORCH. 2020. Disponível em: <https://pytorch.org>. Acesso em: 14 mar. 2020.

https://opencv.org
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://pytorch.org

80

RAD, M.; LEPETIT, V. Bb8: A scalable, accurate, robust to partial occlusion method for
predicting the 3d poses of challenging objects without using depth. In: Proceedings
of the IEEE International Conference on Computer Vision. [S.l.: s.n.], 2017. p.
3828–3836.

RENSINK, R. A. The dynamic representation of scenes. Visual cognition, Taylor &
Francis, v. 7, n. 1-3, p. 17–42, 2000.

ROS. URDF documentation. 2023. Disponível em: <http://wiki.ros.org/urdf/XML/
link>. Acesso em: 14-01-2023.

ROS, G.; SELLART, L.; MATERZYNSKA, J.; VAZQUEZ, D.; LOPEZ, A. M. The
synthia dataset: A large collection of synthetic images for semantic segmentation of
urban scenes. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2016. p. 3234–3243.

ROSENBLATT, F. The perceptron, a perceiving and recognizing automaton
Project Para. [S.l.]: Cornell Aeronautical Laboratory, 1957.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning internal
representations by error propagation. [S.l.], 1985.

SAHBANI, A.; EL-KHOURY, S.; BIDAUD, P. An overview of 3d object grasp synthesis
algorithms. Robotics and Autonomous Systems, Elsevier, v. 60, n. 3, p. 326–336,
2012.

SAHIN, C.; GARCIA-HERNANDO, G.; SOCK, J.; KIM, T.-K. A review on object pose
recovery: From 3d bounding box detectors to full 6d pose estimators. Image and Vision
Computing, Elsevier, p. 103898, 2020.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

SÜNDERHAUF, N.; BROCK, O.; SCHEIRER, W.; HADSELL, R.; FOX, D.; LEITNER,
J.; UPCROFT, B.; ABBEEL, P.; BURGARD, W.; MILFORD, M. et al. The limits
and potentials of deep learning for robotics. The International Journal of Robotics
Research, SAGE Publications Sage UK: London, England, v. 37, n. 4-5, p. 405–420,
2018.

TASORA. Very small objects. 2011. Disponível em: <https://pybullet.org/Bullet/
phpBB3/viewtopic.php?t=5037>. Acesso em: 21-03-2023.

TEKIN, B.; SINHA, S. N.; FUA, P. Real-time seamless single shot 6d object pose
prediction. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. [S.l.: s.n.], 2018. p. 292–301.

TENSORFLOW. 2020. Disponível em: <https://www.tensorflow.org>. Acesso em: 14
mar. 2020.

TOBIN, J.; FONG, R.; RAY, A.; SCHNEIDER, J.; ZAREMBA, W.; ABBEEL, P.
Domain randomization for transferring deep neural networks from simulation to the
real world. In: IEEE. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). [S.l.], 2017. p. 23–30.

http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/link
https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=5037
https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=5037
https://www.tensorflow.org

81

TREMBLAY, J.; PRAKASH, A.; ACUNA, D.; BROPHY, M.; JAMPANI, V.; ANIL,
C.; TO, T.; CAMERACCI, E.; BOOCHOON, S.; BIRCHFIELD, S. Training deep
networks with synthetic data: Bridging the reality gap by domain randomization.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. [S.l.: s.n.], 2018. p. 969–977.

TREMBLAY, J.; TO, T.; SUNDARALINGAM, B.; XIANG, Y.; FOX, D.; BIRCHFIELD,
S. Deep object pose estimation for semantic robotic grasping of household objects. arXiv
preprint arXiv:1809.10790, 2018.

TSIRIKOGLOU, A.; KRONANDER, J.; WRENNINGE, M.; UNGER, J. Procedural
modeling and physically based rendering for synthetic data generation in automotive
applications. arXiv preprint arXiv:1710.06270, 2017.

WEISZ, J.; ALLEN, P. K. Pose error robust grasping from contact wrench space metrics.
In: IEEE. 2012 IEEE international conference on robotics and automation.
[S.l.], 2012. p. 557–562.

WELLER, R. A brief overview of collision detection. New Geometric Data Structures
for Collision Detection and Haptics, Springer, p. 9–46, 2013.

WIDROW, B. An adaptive’adaline’neuron using chemical’memistors’,
1553-1552. [S.l.]: Stanford Electronics Laboratories, 1960.

XIANG, Y.; SCHMIDT, T.; NARAYANAN, V.; FOX, D. Posecnn: A convolutional
neural network for 6d object pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199, 2017.

XU, B.; WANG, N.; CHEN, T.; LI, M. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

ZENG, A.; SONG, S.; WELKER, S.; LEE, J.; RODRIGUEZ, A.; FUNKHOUSER, T.
Learning synergies between pushing and grasping with self-supervised deep reinforcement
learning. In: IEEE. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). [S.l.], 2018. p. 4238–4245.

Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE
Transactions on Neural Networks and Learning Systems, p. 1–21, 2019. ISSN
2162-237X.

	Title page
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Motivation
	Machine Vision
	Artificial Data
	Robotic Grasping

	Goals
	Main Goals

	Literature Review
	Bibliometrics
	Camera Modelling
	Camera Models
	Depth Stereo Camera

	Convolutional Neural Networks
	Neural Networks
	Neural Networks Key Concepts
	Specializations of the Convolutional Neural Networks

	Biases in Deep Learning
	Task Definition
	Task Modelling
	Model-free and Model-based approaches
	Object Grasping Task

	Object Detection, Pose detection, Grasping Detection and Reinforcement Learning Strategies
	Object Detection
	Pose Detection
	Grasping Detection
	Reinforcement Learning

	Further strategies to robotic grasping
	Closed-Loop Grasping and Active Perception
	Pre-Grasp Strategies
	Artificial Data Generation
	Domain Adaptation

	Simulation

	Neural Networks for Robotic Grasping
	GG-CNN Network

	Benchmarking for Pose Detection
	LINEMOD
	T-LESS
	YCB Object and Model Set
	BOP Challenge

	Benchmarking for Grasp Detection
	Cornell Dataset
	Jacquard Dataset
	Dex-Net Family Dataset
	EGAD!
	Precision Metrics
	Gripper Shape and Size Effect on Results

	Datasets Comparison
	Frameworks for Data Generation
	BlenderProc
	Kubric

	Materials
	Kubric Framework
	Machine Learning Libraries and Tools
	OpenCV
	Real Sense Camera
	Real Sense SDK and API

	KUKA LBR IIWA 14 R820
	KUKA ROS API
	Security Concerns

	Parallel Gripper
	Datasets

	Methods
	Artificial Data Generation
	Pipeline
	Code Architecture and Components
	Simulation Considerations
	Correcting Meshes Geometry for Simulation
	Robot for Simulation

	Laboratory Tests Setup
	KUKA Communication
	GG-CNN
	Camera Data Processing

	Results
	Baseline for GG-CNN
	Data Generation Pipeline Results
	Simulation Results
	GG-CNN trained on Customized Dataset

	Lab Experiments
	Baseline for Lab Experiments
	GG-CNN trained on Jacquard
	GG-CNN trained on Customized Dataset
	Comparison between both networks

	Conclusions
	Bibliography

