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ABSTRACT

Charaja, J. Motor rehabilitation of human elbow flexion and extension
movements using electrical stimuli. 2022. Dissertation - São Carlos School of
Engineering, University of São Paulo, São Carlos, 2022.

Clinical studies indicate that by performing repetitive exercises, patients
gradually recover motor control of the upper limb. For this reason, diverse robotic
rehabilitation systems have been developed to automatize the rehabilitation exer-
cises, compensate for the lack of muscle strength and assist in the recovery of motor
control. However, exoskeletons generate passive movements when the patients can-
not coordinate their muscle contractions. Given this drawback, novel rehabilitation
procedures use electrical pulses to generate muscle contraction and perform the
exercise. The general objective of this work is to train an intelligent agent that
determines the amplitude of electrical stimuli to generate controlled elbow flexion
and extension movements. On the one hand, the intelligent agent will use deep rein-
forcement learning and soft actor-critic algorithm to determine the amplitude of the
electrical pulses for the biceps and triceps. On the other hand, the reinforcement
learning environment will use the OpenSim libraries to simulate how the biceps and
triceps activation change the elbow’s angular position. Finally, the performance of
the intelligent agent to generate controlled elbow movements is evaluated in healthy
volunteers with different arm characteristics.

Keywords: Deep Reinforcement Learning. Functional Electrical Stimulation. El-
bow Flexion and Extension Movements.
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RESUMO

Charaja, J. Reabilitação motora de movimentos de flexão e extensão do
cotovelo humano utilizando estímulos elétricos. 2022. Dissertação - Escola
de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Estudos clínicos indicam que, ao realizar exercícios repetitivos, os pacientes
recuperam gradualmente o controle motor do membro superior. Por essa razão,
foram desenvolvidos diversos sistemas de reabilitação robótica para automatizar os
exercícios de reabilitação, compensar a falta de força muscular, e ajudar na recu-
peração do controle motor. Exoesqueletos, no entanto, geram movimentos passivos
quando os pacientes não conseguem coordenar as suas contrações musculares. Dado
esse inconveniente, novos procedimentos de reabilitação utilizam impulsos elétri-
cos para gerar contrações musculares e realizar o exercício. O objetivo geral deste
trabalho é treinar um agente inteligente que determina a amplitude dos estímulos
elétricos para gerar movimentos controlados de flexão e extensão do cotovelo. Por
um lado, o agente inteligente utilizará uma profunda aprendizagem de reforço e um
algoritmo ator-crítico suave para determinar a amplitude dos impulsos elétricos para
os bíceps e tríceps. Por outro lado, o ambiente de aprendizagem do reforço utilizará
as bibliotecas OpenSim para simular como a ativação do bíceps e tríceps altera a
posição angular do cotovelo. E por fim, o desempenho do agente inteligente para
gerar movimentos controlados do cotovelo é avaliado em voluntários saudáveis com
diferentes características de braço.

Palavras Chaves: Aprendizagem por Reforço Profundo. Estimulação elétrica fun-
cional. Movimentos de Flexão e Extensão do Cotovelo.
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Chapter 1

INTRODUCTION

1.1 Motivation

A stroke occurs when blood flow to the brain stops suddenly or gradually until pa-
tient’s death (COUPLAND et al., 2017). The interruption in blood flow could be
caused by blockage or rupture of a blood vessel (COUPLAND et al., 2017). The pro-
longed suspension of blood flow in the brain damages the nervous system through the
death of neurons due to lack of oxygen (JOHNSON et al., 2016). This catastrophic
event degenerates the nervous system and the generation of neural commands that
lead to problems coordinating muscle contraction and controlling the body move-
ments (CANNING; ADA; O’DWYER, 2000).

The Global Burden of Disease and Injury study, conducted in 2015, mentions
that stroke is the second most common cause of death for people worldwide, with
more than six million deaths in that year (WANG et al., 2016) and the second most
common cause of permanent disability with more than one-hundred million people
affected by stroke sequelae worldwide in that year (KASSEBAUM et al., 2016). In
Brazil, stroke is the third cause of death, with more than thirty in-hospital deaths
yearly (DANTAS et al., 2019). Likewise, from 2019 to 2016, more than one million
stroke hospitalizations were registered in health centers in Brazil (DANTAS et al.,
2019).

Patients with sequelae after a stroke usually cannot coordinate their muscles
contraction to generates functional movements (DEWALD et al., 1995; CANNING;

ADA; O’DWYER, 1999). This condition encourages sedentary behaviors that gradu-
ally reduce the life quality of the patients (FITZSIMONS et al., 2022). Reduced elbow
range of motion drastically reduces upper limb performance for eating, dressing, and
personal care activities (GROOT et al., 2011). For this reason, in occupational ther-
apy, patients perform repetitive exercises that involve flexion and extension of the



elbow (LÓPEZ; AYUSO, 2010). An exercise in the feeding category is based on plac-
ing a spoon in the patient’s hand and making elbow movements to move the spoon
closer to and away from the patient’s mouth. In this exercise, the elbow flexion
movement brings the spoon closer and the elbow extension movement moves the
spoon away from the patient’s mouth.

Clinical studies indicate that by performing repetitive exercises, patients
gradually recover motor control of the upper limb (FRENCH et al., 2016). For this
reason, diverse robotic rehabilitation systems have been developed to automatize
the rehabilitation exercises, compensate for the lack of muscle strength and assist
in the recovery of motor control (SHEN; FERGUSON; ROSEN, 2020). However,
the exoskeleton will generate passive movements when the patients cannot coordi-
nate their muscle contractions (LOOZE et al., 2016; GORGEY, 2018). Given this
drawback, other rehabilitation procedures use electrical pulses to generate muscle
contraction and perform the exercise (PECKHAM; KNUTSON et al., 2005). At the
end of this innovative rehabilitation therapy, patients increased motor control of the
upper limb to perform activities of daily living (HOWLETT et al., 2015).

1.2 State of the Art

Functional electrical stimulation is a promising rehabilitation technique that uses
skin-surface electrodes and electrical stimuli to generate muscle contractions (PECK-

HAM; KNUTSON et al., 2005). However, the upper limb muscles excited by electrical
stimulation generate a dynamic system with challenging characteristics for motion
control algorithms. On the one hand, the muscles present a nonlinear relationship
between contraction force and electrical stimulus (MILLARD et al., 2013). On the
other hand, the electrical pulses are applied to the surface of the skin and not di-
rectly to the muscle, so there are unmodeled dynamics that change with the physical
characteristics of each patient (MAFFIULETTI, 2010). Finally, throughout the re-
habilitation sessions, the response of the patient’s muscles changes, and with it, the
value of the muscle parameters (MAFFIULETTI, 2010).

The control methods should address the muscle complex behavior to achieve
a good performance generating controlled elbow movements. Most of the reviewed
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works stimulate the biceps and triceps to generate elbow extension and flexion mo-
tions. Kitamura, Sakaino e Tsuji (2015) used the Proportional-Integral-Derivative
(PID) control method to computes the amplitude of the electrical pulses. The re-
sults showed a regular tracking performance due to slow response and no adaptation
from the control method.

Since model accuracy limits the performance of linear control methods, re-
searchers used nonlinear control approaches to improve the results. Barbouch et
al. (2017) compared the Sliding Mode (SM) with the Proportional-Derivative (PD)
control method to perform elbow movements. Authors used a Hill-based muscle
model to describe the muscle forces during elbow movements; more details of Hill
muscle model in (WINTERS, 1990). Likewise, authors used those muscle equations
to design both control methods. The performance of the control methods was eval-
uated in a MATLAB simulation that did not cover uncertainties and time-varying
parameters. The results indicated that SM is lightly better than PD in generating
controlled elbow flexion and extension movements.

Despite the good results in simulation environments, successful implemen-
tation in the real world should overcome the variation of the dynamic model be-
tween each patient. For this reason, some authors use machine learning methods
to estimate the muscle model and its parameters. On the one hand, Wolf, Hall e
Schearer (2020) used a Gaussian process regression to estimate joint torques when
muscles are exited with electrical pulses. The controller uses the muscle model and
a proportional-integral formulation to compute the muscle stimulation commands
to achieve the desired position. The experimental setup considers a robotic device
to support the patient arm and to guarantee elbow motions in the transversal plane.
The experimental results (95 volunteers) indicate a maximum error of 6 cm with
low frequency oscillations; which were acceptable metrics to perform daily living
activities. On the other hand, Koushki et al. (2021) uses deep neural networks and
reinforcement learning method to control the elbow position without a mathemati-
cal model. Moreover, the authors used Deep Deterministic Policy Gradient (DDPG)
to compute the optimal neural network parameters. Deep reinforcement learning
(DRL) method learned the muscle behavior through interaction with a simulation
environment that considers a nonlinear model with time-varying parameters. The
trained model achieved a position root-squared-error of 2◦ for trajectory tracking
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task in the simulator. Similarly, Febbo et al. (2018) used DRL with Proximal Policy
Optimization (PPO) to generate controlled elbow movements. The experimental re-
sults (10 volunteers) indicates that DRL with PPO outperforms PID for trajectory
tracking tasks and adaptation to system dynamics. Finally, Haarnoja et al. (2018)
developed a novel reinforcement learning algorithm called Soft Actor-Critic that
combines the best of DDPG and PPO. Wannawas, Shafti e Faisal (2022) uses SAC
to generate elbow flexion and extension movements using only the biceps muscle.
The authors used inertial units of measurement to estimate the elbow’s angle and
the Rehamove1 electrical stimulator. The experimental results indicate that DRL
with SAC is an excellent method to generate controlled elbow flexion and extension
movements.

1.3 Objective

The general objective of this work is to train an intelligent agent that determines
the amplitude of electrical stimuli to generate controlled elbow flexion and extension
movements. As a result, rehabilitation exercises will be performed by the patient’s
muscular contractions rather than an external mechanical system. The proposed re-
habilitation system consists of three elements. First, a RehaMove3 brand electrical
stimulator safely generates electrical stimuli. This device uses two adhesive elec-
trodes to send electrical stimuli to each target muscle. Second, a mechanical system
with an incremental encoder that is placed on the patient’s elbow to measure the
angle of flexion. Third, an intelligent agent that computes the amplitude of each
electrical pulses to generate the desired movement. In addition, the rehabilitation
system has been designed for patients with muscle weakness and motor coordination
problems. Consequently, the rehabilitation system is not recommended in patients
with muscle spasms or pain during elbow joint movement. Finally, some specific
objectives are listed

• Define the reward system to indicate the ideal behavior of the intelligent agent.

• Create a reinforcement learning environment that simulate the muscle behavior
under electrical stimuli and return the necessary observations to train the
intelligent agent.
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• Implement the soft actor-critic algorithm to compute the optimal neural net-
work parameters.

• Build a mechanical system to place an encoder that will measure the angular
position of the elbow.

• Implement a Kalman filter to estimate the angular position and velocity of the
elbow.

• Carry out experimental tests on volunteers to evaluate the performance of the
intelligent agent generating controlled elbow flexion and extension movements

1.4 Structure of the Work

This work comprises five chapters. The first chapter describes the problem to be
addressed, presents the previous works that have focused on generating controlled
elbow movements with electrical stimulation and the objective of the work. The
second chapter shows biomechanics concepts and machine learning theory that are
used in the development of this work. The third chapter presents the methods that
will be used for the development of this work. The fourth chapter presents results
of the intelligent agent to generate controlled movements of the elbow. Finally,
conclusions and future work is presented.
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Chapter 2

BACKGROUND

This chapter presents the concepts of biomechanics, electronic devices and machine
learning theory that will be used for the development of this work. First, the main
tools to describe the movement of a part of the body are described. Following this,
the muscles involved in the generation of flexion and extension movements of the
elbow joint are described. Second, technical details of the RehaMove3 electrical
stimulation are described. Finally, the mathematical foundations of the reinforce-
ment learning method are described, as well as its variant with deep learning and
soft actor-critic algorithm.

2.1 Basic Concepts of Biomechanics

Biomechanics studies the dynamics of biological systems; how the musculoskeletal
model generates movements by applying excitation signals (e.g. external forces and
electrical stimuli) (KNUDSON; KNUDSON, 2007). Biomechanics knowledge can be
used to improve an athlete’s performance and rehabilitate a physical injury (KNUD-

SON; KNUDSON, 2007). Anatomical planes and anatomical position are used to
describe the position and axis of motion of a body part (HAMILL; KNUTZEN, 2006).

2.1.1 Anatomical Planes

Anatomical planes are imaginary two-dimensional sections used to separate parts
of the human body (HAMILL; KNUTZEN, 2006; JARMEY, 2008). These two-
dimensional planes establish spatial references that facilitate the description, loca-
tion and study of the parts of the human body. The anatomical planes are sagittal,
frontal and transverse (HAMILL; KNUTZEN, 2006; JARMEY, 2008). On the one
hand, the sagittal plane is a vertical plane that divides the human body into the
right half and left half. On the other hand, the frontal plane is a vertical plane that



divides the human body into the front and back. Finally, the transversal plane is a
horizontal plane that divides the human body into the upper part and the lower part
(HAMILL; KNUTZEN, 2006; JARMEY, 2008). Figure 2.1 shows the three anatomical
planes of the human body.

(a) frontal (b) sagittal (c) transversal

Figure 2.1: Anatomical planes of the human body.

2.1.2 Anatomical Position

Anatomical position is the reference body configuration to describe the relative
position of human body parts (HAMILL; KNUTZEN, 2006; JARMEY, 2008). This
reference position is defined as a standing human body with limbs hanging along
the trunk and open hands directed forward (HAMILL; KNUTZEN, 2006; JARMEY,
2008). The body position described is illustrated in Figure 2.2.
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(a) frontal (b) profile

Figure 2.2: Anatomical position of the human body.

2.1.3 Anatomical Movements

Anatomical movements are the group of activities performed by each joint in the
body. These movements can be: flexion and extension, abduction and adduction,
pronation and supination, etc. (HAMILL; KNUTZEN, 2006; JARMEY, 2008). Like-
wise, each anatomical movement activates a sequence of muscles around the joint.

2.2 Anatomical Movements of the Elbow

The human elbow connects the humerus with the proximal ends of the ulna and
radius. This joint has one degree of freedom and can perform the anatomical move-
ment of flexion and extension (STAUGAARD-JONES, 2014). On the one hand, the
elbow flexion movement decreases the angle between the bones connecting to the
elbow joint. On the other hand, the elbow extension movement increases the angle
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between the bones that connect to the elbow joint. Figure 2.3, shows the flexion
and extension movement of the elbow.

(a) flexion (b) extension

Figure 2.3: Anatomical movements of the elbow joint.

The biomechanics of a human arm indicate that three muscles are activated
to flex the arm and one muscle to extend it (STAUGAARD-JONES, 2014). On the
one hand, the brachialis and biceps brachii are activated to perform the elbow flexion
movement. On the other hand, the triceps brachii muscle is activated to perform the
elbow extension movement. Figure 2.4 shows the muscles that are activated during
elbow flexion and extension movements (STAUGAARD-JONES, 2014).

Biceps
braquial

Triceps
braquial

Figure 2.4: Arm muscles responsible for generating elbow flexion and exten-
sion movements.
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2.3 RehaMove3

The Hasomed GmbH company developed the RehaMove3 electrical stimulator to
assist in electrical stimulation therapies for patients with problems controlling their
body movements (HASOMED GmbH, 2022). RehaMove3 generates electrical pulses
considering the safety protocols for a person; likewise, the device requires placing
two electrodes on the surface of the skin to send electrical pulses to each muscle. The
user manual indicates that RehaMove3 can generates electrical pulses with frequency
from 1 Hz to 500 Hz, duration from 10 us to 4000 us and maximum amplitude of 130
mA (HASOMED GmbH, 2022). Finally, the electrical stimulator with its skin-surface
electrodes are shown in Figure 2.5.

Figure 2.5: RehaMove3 electrical stimulator with electrodes.

2.4 Reinforcement Learning

The reinforcement learning method trains an agent to take the optimal sequence of
decisions (SUTTON; BARTO, 2018). The learning process uses positive and negative
reinforcement to increase or decrease the probability of choosing an specific action
for a given state. In this sense, the agent learns, through an iterative process, to
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make the sequence of decisions that maximizes the amount of positive reinforcement
that he will receive (SUTTON; BARTO, 2018).

: fail (-10)

: goal (+10)

: transition (-1)

Agent Environment

Observation & Reward

Actions

Figure 2.6: Reinforcing learning framework for the navigation control appli-
cation of a mobile robot. The available actions are go up, down, right and
left. Finally, the green and red blocks represent the goal and fail condition.

2.4.1 Framework

The framework of reinforcement learning comprises four elements: (i) agent, (ii) ac-
tions, (iii) environment, and (iv) observation and reward (SUTTON; BARTO, 2018).
Figure 2.6 describes the reinforcement learning framework for the navigation control
application of a mobile robot. First, an agent who makes decisions based on the
reward and punishment that he will receive. Second, action space are all the avail-
able actions that the agent could use to interact with the environment and generate
changes. Third, the environment where the agent lives and interact. Fourth, obser-
vations that describe the new state of the agent and its environment after applying
an action; as well as the reward associated with the transition of states. Finally, this
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process will be repeated several times until the agent learns a successful strategy to
interact with the environment and maximize the reward.

2.4.2 Policy

The agent’s strategy is called policy (π(a|s)) and indicates which action (a) the agent
should choose in the current state (s) (SUTTON; BARTO, 2018). Policies have four
fundamental characteristics, which are assigned according to the efficient use of the
data collected and the probabilistic behavior of the decision-making process. On
the one hand, the policy is offline if the method reuses much of the data collected;
otherwise, the policy is online. On the other hand, the policy is stochastic if the
method considers probabilistic processes during decision-making; otherwise, it is
deterministic (SUTTON; BARTO, 2018).

In general, each type of policy has advantages and disadvantages. On the one
hand, online policies present high rates of convergence but require the generation of
new training data for each update (SINGH et al., 2000). These characteristics limit
its implementation in systems that allow constant interaction with the environment.
On the other hand, offline policies use a memory buffer that allows the reuse of col-
lected data; however, it usually shows many oscillations during training (THOMAS;

BRUNSKILL, 2016). Finally, the objective of reinforcement learning algorithms is
to find the optimal policy that maximizes the cumulative sum of rewards.

2.4.3 Value Function

The reward indicates how good or bad the agent’s decision was for a given state (st).
However, just considering the immediate reward (rt) does not guarantee that the
agent will maintain a good performance until the episode ends. For this reason, the
standard way considers the discounted sum of all the rewards that will be obtained
starting in state st and then following the policy until the episode ends (SUTTON;

BARTO, 2018). Besides, the cumulative sum of rewards can have two meanings for
the agent training: (i) state value function and (ii) state-action value function.
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State Value Function

The state value function indicates how good or bad it is to be in the state st and
then follow the policy π. This can be computed as

V π(st) = Eπ

[
rt + γrt+1 + γ2rt+2 + γ3rt+3 + ...|st = s

]
where rt represents the immediate reward at time t, γ ∈ [0, 1] is an hyperparameter
that indicates how important future rewards are going to be for the agent training,
and st denotes the initial agent’s state. Likewise, the state value function can
be computed for iterative processes as V π(st) = Eπ [rt + γV π(st+1)|st = s]; in this
formulation, the state value function is separated in the immediate reward and the
state value function of the next state.

State-Action Value Function

The state-action value function indicates how good or bad it was to take action at

for state st and then follow the policy π. This can be computed as

Qπ(st, at) = Eπ

[
rat + γrt+1 + γ2rt+2 + γ3rt+3 + γ4rt+4 + ...|st = s, at = a

]
,

where rat represents the immediate reward after choosing action at at time t, γ ∈ [0, 1]

is an hyperparameter that indicates how important future rewards are going to
be for the agent training, and st denotes the initial agent’s state. Likewise, the
state-action value function can be computed for iterative processes as Qπ(st, at) =

Eπ [rt + γQπ(st+1, at+1)|st = s, at = a]; in this formulation, the state-action value
function is separated in the immediate reward and the state-action value function
of the next state and action.

2.5 Deep Reinforcement Learning

The main disadvantage of reinforcement learning is the exponential increase in com-
putational resources due to the number of possible states. This characteristic makes
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its application impossible in continuous systems that have infinite possible states.
This problem encourages the use of approximation functions (e.g deep neural net-
works) to generalize the information in a system with a large number of possible
states. The combination of reinforcement learning with deep learning is known as
deep reinforcement learning (DRL) (FRANÇOIS-LAVET et al., 2018).

DRL represents the value functions and policy with deep neural networks, and
use the environment observations as input to estimate value of an state, state-action
and predict the best action. Figure 2.7 describes the policy and value functions
parameterized with a deep neural networks. DRL techniques optimize the neural
network parameters with two objectives: (i) find the optimal policy that maximizes
the cumulative sum of rewards and (ii) reduce the approximation error of the state-
action value function and then choose the action that guarantees the maximum
reward.
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(a) policy
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(c) state-action value function

Figure 2.7: Reinforcement learning elements parameterized with deep neu-
ronal networks. The quantify of actions and observations are represented
with m and n, respectively.
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2.5.1 Policy Gradient

Policy gradient algorithms optimize the parameters of the policy neural network
to maximize the cumulative sum of rewards (SUTTON; BARTO, 2018). In a gen-
eral way, policy gradient algorithms formulate an objective function based on an
expression of the reward accumulated along the trajectory; then, they estimate the
gradient’s value and use the gradient ascent method to modify the parameters of
the policy neural network. The objective functions can be defined as (SUTTON;

BARTO, 2018)

L(θ) = Eτ∼πθ

[
T−1∑
t=0

rt

]
,

where θ represent the parameters of the policy neural network, πθ denotes the pol-
icy parameterized as a function of θ, τ = (s0, a0, r0, s1, a2, · · · , sT ) represents the
trajectory generated by following the policy πθ, sT is a general terminal state and
rt is the immediate reward at time t.

The gradient function can be computed as (SUTTON; BARTO, 2018)

∇θL(θ) = Eτ∼πθ

[
T−1∑
t=0

rt

T−1∑
t=0

∇θlnπθ(at|st)

]
,

where ∇θ denotes the gradient operator with respect to θ and ln(·) denotes the
natural logarithm.

2.5.2 Soft Actor-Critic

The soft actor-critic (SAC) is a policy gradient algorithm that uses the maximum
entropy framework to maximize the accumulative sum of rewards while encouraging
high exploration (HAARNOJA et al., 2018). For this purpose, SAC considers the
entropy of the policy distribution in the objective function; high entropy implies
almost the same probability for each action and random behavior that encourages
exploration. SAC formulates the objective function as (HAARNOJA et al., 2018)

L(πθ) =
T∑
t=0

E(st,at)∼ρπθ
[r(st, at) + αH(π(·|st))] ,
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where r(st, at) represents the reward for being in state st and choosing the ac-
tion at, α indicates the influence of entropy in agent training and H(πθ(·|st)) =

Ea∼πθ(·|st) [−logπθ(a|st)] represent entropy of the policy distribution.

SAC algorithm comprises three mean mechanism with specific objectives.
First, the actor element takes decisions; so it represents the policy and indicates
which action at the agent should take in the state st. Second, the critic element
evaluates the agent decision; so it represents the state-action value function and
indicates how good or bad the action at was for the state st. Finally, the soft
transfer learning between state-action neural networks.

The actor element uses a deep neural network to computes the mean (µθ)
and standard deviation (σθ) that will be use to compute the policy distribution
π(a|s, µθ, σθ). Thus, the action is computed as

a = tanh(µθ + ησθ),

where tanh(·) denotes the hyperbolic tangent function and η is random sample from
a Gaussian distribution with µ = 0 and σ = I. Finally, loss function of the policy
network is computed as

Jπ(θ) = Es∼D

[
Ea∼πθ(·|s)

[
αlogπθ(a|s)− min

i=1,2
Qϕ,i(s, a)

]]
, (2.1)

where D denotes the collected state transitions (st, at, rt, st+1) and Qϕ represents the
a neural network that predicts the state-action value function.

The critic element uses four deep neural networks to evaluate how good or
bad was the the action at for the state st. On the one hand, two deep neural
networks are used to predict the state-action value function and are called predict
networks, Qpredict,ϕ. On the other hand, other two deep neural networks are used to
estimate the real state-action value function and are called target networks, Qtarget,ϕ.
Likewise, every certain number of trajectories, the parameters of target networks will
be updated using the following equation

ϕtarget,i := ρϕtarget,i + (1− ρ)ϕpredict,i,
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where i = 1, 2 represent the number of predict and target deep neural network, ρ
is a hyperparameter that set the transfer learning from the networks. Finally, loss
function of the predict networks is computed as

JQ(θi) = E(st,at,st+1)∼D
[
(Qθ,i(s, a)− y)2

]
, with (2.2)

y =

r if st is terminal state

r + γ (minQtarget,i(st+1, at+1)− αlogπθ(at+1|st+1)) for other cases

2.6 OpenSim

OpenSim is an open-source software to simulate the dynamic behavior of muscu-
loskeletal models (DELP et al., 2007). Hence, users can analyze muscle activation
throughout the desired movement or the position and velocity of the links when
the muscles are activated. Opensim’s musculoskeletal models are very accurate and
there are libraries for C++, MATLAB and Python (SimTK, 2023, January 31.).
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Chapter 3

METHODOLOGY

This chapter presents the methods that will be used for the development of this
work. First, considerations to adequately stimulate the biceps and triceps muscles,
location of the electrodes, and configuration of the electrical stimulator. Second, the
reinforcement learning framework for the application of generating controlled elbow
flexion and extension movements using electrical stimuli. Third, considerations for
implementing the system on the arm of a volunteer.

3.1 Setup of the Rehamove3 electrical stimulator

The RehaMove3 electrical stimulator will generate elbow flexion and extension move-
ments in the sagittal plane. For this purpose, two electrodes will be placed on the
biceps and triceps; each electrode will be placed at the beginning and end of the
targeted muscle, as shown in Figure 3.1.

(a) extension (b) flexion

Figure 3.1: Configuration of the experimental setup to generate the elbow
flexion and extension movements with the Rehamove3 electrical stimulator.



The device uses electrical pulses to generate the contraction of the muscles.
The electrical pulses are defined with three parameters: (i) frequency, (ii) width,
and (iii) amplitude; Figure 3.2 graphically shows the three parameters of the elec-
trical pulses. These three parameters set the muscle contraction level, movement
consistency, and user comfort.

period (20 ms)

width (0.2 ms)

am
pl

itu
de
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A

)

Figure 3.2: Main parameters of the electrical pulses generated by Re-
hamove3. Likewise, the period and width are the recommended values from
the user manual of Rehamove3. Image adapted from (HASOMED GmbH,
2022).

The frequency of the electrical pulses is related to the oscillations of the
generated force and nervous contractions (i.e., twitch) (UCHIDA; DELP, 2021). An
electrical pulse generates a peak force that decays over time until it reaches 0. The
goal of using a sequence of pulses is for the peak forces to accumulate and generate a
constant signal (UCHIDA; DELP, 2021). Figure 3.3 shows muscle force generated for
different stimulation frequencies. So, for low frequency (5 Hz - 10 Hz), the generated
force presents high amplitude oscillations, for medium frequency (20 Hz - 40 Hz)
the generated force presents low amplitude oscillations and for high frequency (50
Hz - 500 Hz) the generated force presents oscillations that can be negligible.

The above suggests that applying high-frequency pulses to generate smooth
and consistent movements would be ideal. However, the level of user discomfort
(i.e., pain) increases with the frequency; the same happens with the electrical pulse
width. For this reason, in this work, the frequency and width of each electric pulse
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Figure 3.3: Muscle force behavior with respect to stimulation frequency.
Image adapted from (UCHIDA; DELP, 2021) and (WAKELING et al., 2012).

will be chosen based on the recommendations of previous works in the area. Finally,
the Rehamove3 user manual recommends using a frequency of 50 Hz, and a pulse
width of 200 us was selected based on the user’s discomfort level; the level of muscle
contraction will be controlled by the amplitude of the electrical pulse (HASOMED

GmbH, 2022). Hence, the objective of the reinforcement learning agent is to deter-
mine the amplitude of the electrical pulses to generate the controlled movements of
elbow flexion and extension.

3.2 Reinforcement learning framework

Reinforcement learning algorithms do not need a detailed description of the en-
vironment (i.e., a mathematical model) or the task to be solved. In general, the
intelligent agent learns iteratively how the environment around it works and what
skills it needs to solve the assigned task. To do this, the agent interacts in a sim-
ulation environment where they can make decisions and observe the effect of their
decisions. Similarly, a reward system encourages the sequence of decisions that best
solves the assigned task.

Figure 2.6 describes the reinforcement learning framework for the applica-
tion of generating controlled elbow flexion and extension movements with electrical
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pulses. First, the intelligent agent will use the SAC algorithm to learn to make
decisions because it is a start-of-art reinforcement learning algorithm. Second, Re-
hamove3 electrical stimulator has two outputs, and the agent will determine the
normalized muscle activation (from 0 to 1) for the biceps and triceps. Third, Open-
Sim software will be used to create a reinforcement learning environment that allows
the agent to learn how the level of muscle contraction of the biceps and triceps affects
the position of the elbow angle.

Agent

Actions

Environment

Observation & Reward

Figure 3.4: The reinforcement learning framework for the application of
generating controlled elbow flexion and extension movements by electrical
pulses. The agent’s actions are the amplitude of each electrical stimulus for
the biceps (red) and triceps (blue) muscles. Finally, green and yellow circles
represent the desired and measured position.

3.2.1 Reinforcement learning environment

OpenSim has available musculoskeletal models of different parts of the human body
(e.g., wrist, leg, arm). The arm26.osim is a musculoskeletal model which describes
the upper right human arm with the shoulder and elbow joints and biceps and triceps
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muscles (SimTK, 2023, January 31.). Figure 3.5 shows a front and back view of the
arm26.osim musculoskeletal model.

(a) front
view

(b) back
view

Figure 3.5: Human upper right limb model in OpenSim.

OpenSim and the arm26.osim model is used to create a reinforcement en-
vironment that allows the agent to understand how the activation of each muscle
affects the elbow’s angular position. First, the shoulder joint is fixed to concentrate
all the movement in the elbow; and avoid weird arm configurations, as shown in
Figure 3.6. Second, configure the model to activate all the biceps with one signal
and all the triceps with another signal because Rehamove3 has two outputs (channel
red and blue). Third, add human joint limits to the musculoskeletal model. Finally,
the most relevant information for the agent to learn to perform controlled elbow
flexion and extension movements are (i) elbow position, (ii) elbow angular veloc-
ity and (iii) muscle activation. Therefore, these measurements are considered the
agent’s observations during his training; likewise, these measurements will be used
to calculate the reward after each action.

3.2.2 Reward system

The reward system guides the intelligent agent’s learning and establishes the most
important skills to solve the assigned task. The formulation of the reward system
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(a) free (b) fixed

Figure 3.6: The shoulder joint’s effect on the arm’s final configuration; in
both cases, the same muscle activation is used.

should be general to avoid limiting the agent’s curiosity; similarly, the reward system
should contain a performance metric based on the assigned task. For the application
of generating controlled elbow flexion and extension movements, the agent must
reduce the angle between the desired and measured position; while performing safe
movements for the user’s arm. For this reason, an element of the reward system
must be a function of angular position error, β. Hence, an exponential function is
used to avoid positive and negative reward values without a defined range; in this
way, the reward system will generate values between 1 and 0. Likewise, the second
element of the reward system penalizes elbow speed to avoid high speeds and the
third element penalize high muscle activation to encourage low-energy movements.

The desired behavior is defined with the following reward system

R(β, θ̇) = α1exp

(
−
(

β√
2σ

)2
)

− α2θ̇ − α3u, (3.1)

where α1, α2, α3 are weighting coefficients, β is the angular position error, θ̇ is the
elbow’s angular velocity, u =

∑2
i=1 ai represent the total muscle activation and σ

represent the dispersion of data.
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The parameter σ is related to the reward (R) and the angular position error
(β). When β = 3σ, the reward is approximately 0.1; which represents 10% of the
maximum reward. Hence, the value of σ is defined as max error

3
. Figure 3.7 describes

the reward system and the objective of the reinforcement learning agent for the
application of performing controlled elbow movements.

3

0.1

1

Figure 3.7: Graphical representation of the activity of reducing the angle
between the desired (green) and measured position (yellow).

3.3 Real world implementation

An essential stage in all research work is to evaluate the system’s performance (e.g.,
algorithm, mechanical structure) in a real environment, where working conditions
differ from those in a simulation environment. The experimental tests allow ob-
serving the system’s limitations to the noise of the measurements and the difference
between the modeled and the real dynamics. In the same way, generally, it implies
the development of additional mechanisms to obtain all the relevant data for the
correct system functioning.
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3.3.1 Estimation of elbow’s position and velocity

The intelligent agent needs the position and angular velocity of the elbow to deter-
mine the amplitude of each electrical pulse. In the simulation environment, it is easy
to access these measurements; however, devices capable of measuring these values
are necessary for real-world implementation. For this reason, a mechanical system
capable of measuring the angular position of the elbow concerning the anatomical
position of the arm was designed; the anatomical position was described in Figure
2.2. On the one hand, the angular displacement is measured using an incremental
encoder with a precision of 2048 counts per revolution. On the other hand, a me-
chanical structure is designed that allows the encoder to be secured to the user’s
arm. The mechanical system to measure the elbow’s angle is shown in Figure 3.8.

belts
mechanical

structure encoder

(a) sketch (b) physical pro-
totype

Figure 3.8: Mechanical system to measure elbow’s angle; The mechanical
system consists of a mechanical structure to place the encoder and belts to
secure it to the user’s arm.

A widely used method to estimate speed is through a finite difference between
the current measurement and a previous time instant, θ̇ ≈ θt−θt−1

∆t
. However, the

finite difference method is susceptible to environmental noise, and the estimated
velocity usually presents undesired oscillations. Therefore, a Kalman filter will be
used to estimate the velocity. Figure 3.9 shows a comparison of velocity estimation
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between the finite element method and the Kalman filter (R = 0.001I2×2 and Q =

0.1).

Figure 3.9: Velocity estimation comparison between finite element method
and Kalman filter.

3.3.2 Testing protocol

In the simulation environment, the calculated electrical pulse generates muscle con-
traction with no change in the amplitude or shape of the electrical stimulus. How-
ever, in a real-world implementation, the electrical pulse must penetrate the layers
of the skin to generate muscle contraction; this process involves changes in the
amplitude and shape of the electrical signal. For this reason, it is necessary to con-
dition the user’s arm to improve electrical transmission and reduce signal loss. The
procedure begins with estimating the start and end position of the target muscles
(biceps and triceps). Afterward, the patient’s arm is cleaned with isopropyl alcohol,
and conductive fluid is placed on the electrodes. Finally, the user’s current range
calibration begins manually.

The last step before generating the controlled elbow flexion and extension
movements is to relate the muscle activation (from 0 to 1) with the electrical am-
plitude range of the user’s arm. For this purpose, two methods are proposed to
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recognize the minimum and maximum electrical amplitude. On the one hand, the
first method is based on gradually increasing the amplitude of the electrical pulse;
consider as a minimum the amplitude of current that begins to raise the hand and
as a maximum the amplitude that raises the hand 130 degrees. On the other hand,
the second method is based on applying a random amplitude of the electrical pulse
and iteratively finding the muscle activation that generates approximately the same
angular position.
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Chapter 4

RESULTS AND DISCUSSIONS

This chapter presents the results of the work with the methodology described in
chapter 3. The first section describes the architecture of the neural networks and
the hyperparameters of the optimization algorithm for deep neural networks, rein-
forcement learning and soft actor critic algorithms. The second section presents the
performance of the intelligent agent to generate controlled elbow movements in the
simulation environment and the real world.

4.1 Training setup

The intelligent agent’s decision-making process involves deep learning and reinforce-
ment learning algorithms. Both methods require tuning parameters that influence
the speed and success of the training. On the one hand, the performance of neural
networks depends on the number of hidden layers, the number of neurons per each,
and the learning rate. On the other hand, reinforcement learning uses the discount
factor (γ) to establish the influence of immediate or future rewards on the agent’s
training. Finally, SAC uses parameter ρ to establish the transfer of learning between
predict and target neural networks.

4.1.1 Training parameters of deep neural networks

Deep reinforcement learning uses deep neural networks to estimate the value function
and predict the best action. The architecture of these networks consists of three fully
connected hidden layers. Likewise, the number of neurons per layer is halved with
each level of depth in the neural network. The number of input, output and hidden
layer neurons for each reinforcement learning element is shown in Table 4.1.



Table 4.1: Parameters of the deep neural networks to estimate the value
function and predict the best action.

Element Parameter Value

Policy
number of inputs 5
number of outputs 4

hidden layers architecture (64, 32, 16)

Value function
number of inputs 7
number of outputs 1

hidden layers architecture (64, 32, 16)

The learning process of neural networks consists of transmitting the input
data throughout the neural network and generating output data (e.g., estimation,
prediction, classification). From there, compute the gradient (output relative to the
neural network parameters) and use an optimization algorithm to update the neural
network parameters. Most optimization algorithms modify the gradient descent
method to increase the convergence speed and obtain optimal solutions (CHOI et

al., 2019).

Adam is an optimization algorithm that uses the first and second moments of
the gradient to adapt the learning rate; in this way, Adam overcomes local minima
and increases convergence speed (KINGMA; BA, 2014). The optimizer requires tun-
ing three parameters: the default learning rate and the gains of the two moments of
the gradient. Tabla 4.2 shows the values used for training deep neural networks.

Table 4.2: Parameters of Adam optimization algorithm.

Parameter Definition Value

α default learning rate 1e-4
β1 exponential decay rate for first momentum 0.9
β2 exponential decay rate for second momentum 0.99
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4.1.2 Training parameters of deep reinforcement learning

Reinforcement learning uses a reward mechanism to guide the training of the in-
telligent agent; at each iteration, the agent receives a reward based on how much
its decision contributed to solving the task. The reward system to encourage the
learning of controlled elbow flexion and extension movements was described in (3.1)
and the parameters used during training are described in Table 4.3. However, get-
ting a high reward in the t iteration does not guarantee the highest cumulative
sum of rewards at the end of the episode; in some cases, it can generate unfavor-
able conditions for the following iterations. For this reason, reinforcement learning
regulates the influence of immediate and future rewards with the parameter γ; in
general, γ = 0.99 gives good results for control tasks (DUAN et al., 2016). From
there, the SAC cost functions, described in (2.1) and (2.2), can be used to modify
the parameters of the neural networks.

Table 4.3: Parameters of the reward system.

Parameter Definition Value

α1 influence of position error 1

α2 influence of velocity penalty 0.01

α3 influence of high activation penalty 0.01

max_error position error for 10% of the maximum reward 20◦

σ standard deviation 6.3

The soft actor-critic requires adjusting two parameters. The first parameter is
ρ and represents the learning transfer between the neural networks for the prediction
and the target. In order to avoid instability during training, ρ = 0.1 was used; this
implies that the parameters of the prediction networks (Qprediction) influence 10% of
the new parameters of the target networks (Qtarget). The second parameter is the
entropy coefficient and is automating computed as (HAARNOJA et al., 2018)

J(α) = Eat∼πt

[
−αlogπt(at|st)− αH̄

]
,

where α represent the entropy coefficient and H̄ is the expected minimum entropy
of the policy; during training was consider H̄ = −2.
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4.2 Performance of the intelligent agent

The performance of the intelligent agent to generate controlled elbow movements
was evaluated with two angular position steps; each step lasted 10 seconds. In this
way, the intelligent agent demonstrated his ability to reach and maintain a desired
angular position. The angular position of the steps was chosen based on the physical
limitations of the mechanical system to measure the elbow angle. The biceps muscle
grows with the elbow flexion angle; hence the belts of the mechanical system detach
the skin-surface electrodes when the flexion angle is higher than 70◦. Therefore,
angles of 30◦ and 60◦ were chosen to compare results in a simulation environment
and the real world.

Both in the simulation and experimental tests, the right arm starts out ex-
tended (i.e., elbow angle ≈ 0) and without obstacles around it. From there, the
intelligent agent must calculate the muscle activations that move the arm to the
angular position of each step and maintain the position for 10 seconds. Finally, the
exercise of reaching and maintaining the position of the steps is repeated 6 times to
validate the repeatability of the results. In the case of experimental tests, 5 minutes
are waited between each repetition to relax the volunteer muscles; the experiment
considers 5 volunteers.

4.2.1 Results in the simulation environment

Figure 4.1 shows the performance of the intelligent agent to reach and maintain
the two desired angular positions in the simulation environment. In this figure,
the agent reaches 98% of the first step with 0.48 seconds, 97% of the second step
with 0.55 seconds, and the root mean squared error is 4.96◦. However, despite the
rapid reduction of the error in angular position, the agent maintains an average
steady-state error of 1.4◦ and low-frequency oscillations with an amplitude of 1◦.

Figure 4.2 shows the electrical stimuli calculated by the intelligent agent
to perform the exercise of reaching and maintaining the desired angular positions;
results are analyzed in four stages. In the first 0.3 seconds of both step (yellow wall),
the agent started with high biceps activation (≈ 80%) to reduce the high angular
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position error and low triceps activation (≈ 25%) to moderate elbow’s velocity. In
the second 0.3 seconds of both steps (green wall), the agent reduces biceps activation
(≈ 30%) and increases triceps activation (≈ 70%) to reduce elbow’s velocity and
avoid overshoot. During middle of both steps, muscle activation of biceps and triceps
have oscillations with amplitude of 5%. Likewise, unexpected behavior occurred on
the second step. After the first second, the agent decides to reduce the biceps
activation from 60% to 47%. Consequently, the root mean squared error during
the second step is 0.8◦ greater than first step. Finally, the agent’s behavior results
from training using the reward system described in (3.1); therefore, analyzing the
reward system is essential for a more detailed examination of the agent’s abilities
and limitations.

Figure 4.1: Performance of the intelligent agent to generate controlled elbow
movements in a simulation environment. The reference trajectory comprises
two angular position steps; each step lasts 10 seconds.

The reward system, described in (3.1), encourages the reduction of angular
position error while maintaining low speed and energy consumption. Therefore, at
some point, the agent must decide between increasing muscle activation to reduce
the error or maintaining the position to avoid consuming more energy. Consequently,
the agent has a nonzero steady-state error (≈ 1.4◦) and reduces the bicep activation
in the second step.
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(a) biceps

(b) triceps

Figure 4.2: Electrical stimuli to reach and maintain the desired angular
position. The reference trajectory consists of two angular position steps;
each step lasts 10 seconds.

4.2.2 Results in the real world

Figure 4.3 shows the performance of the intelligent agent to reach and maintain the
two desired angular positions in the real world. In this figure, the agent reaches
98% of the first step with 1.44 seconds and 97% of the second step with 5 seconds.
Likewise, the angular position of the elbow presents oscillations of 5◦ after reaching
the desired position, overshoot of 8%, and root mean squared error of 8.6◦. The
intelligent agent obtained better performance metrics (e.g., settling time, overshoot)
in the simulation environment than in the real world. The performance reduction
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can be due to external factors that were not considered during the training of the
intelligent agent.

Figure 4.3: Performance of the intelligent agent to generate controlled elbow
movements in a simulation environment. The reference trajectory comprises
two angular position steps; each step lasts 10 seconds.

During the experimental tests, the volunteers had to relax their muscles and
let the electrical stimulator apply electrical pulses to generate the elbow movements.
However, most of the volunteers showed surprise every time the experiment started;
due to the increase in amplitude from 0 mA to 8 mA. Hence, the users’ involuntary
contractions affected the intelligent agent’s performance. In addition, the latency of
the sensors and the electrical stimulator exceeded the established 20 ms to obtain
sustainable muscle activations. Figure 4.4 shows the time delays generated by the
electrical stimulator.

Figure 4.4: Device latency during experimental tests.
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After the calibration process, 15 mA corresponds to the maximum activation
while 5 mA corresponds to the minimum activation; all experimental tests used this
range of electrical amplitude. Figure 4.5 shows the electrical stimuli calculated by
the intelligent agent to reach and maintain the two desired positions. In Figure
4.5a, the agent rapidly increased (≈ 0.5 seconds) biceps amplitude to 8 mA (≈ 0.32

muscle activation) to reduce the error in angular position. Hence, it maintains that
amplitude value with low amplitude oscillations (≈ 2.3 mA). In Figure 4.5b, the
agent slowly (≈ 1.1 seconds) increased triceps amplitude to 10 mA (≈ 0.5 muscle
activation) to reduce velocity and overdrive. Hence, it maintains that amplitude
value with low-amplitude oscillations (≈ 2.2 mA).

(a) biceps

(b) triceps

Figure 4.5: Electrical stimuli to reach and maintain the desired angular
position. The exercise consists of two angular position steps; each step lasts
10 seconds.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this work, an intelligent agent was trained to generate controlled elbow flexion
and extension movements. The OpenSim program was used to create a reinforce-
ment learning environment that allows the agent to understand how the activation
of each muscle (i.e., biceps and triceps) affects the angular position of the elbow.
Besides, the intelligent agent uses the soft actor-critic algorithm to learn to make
the best sequence of decisions (i.e., muscle activation level). Finally, a reward sys-
tem was formulated that incentivizes the reduction of angular position error while
maintaining low speeds and low energy movements.

The performance of the intelligent agent to generate controlled movements
of the elbow was evaluated with two steps of angular position; each step lasted 10

seconds. In this way, the intelligent agent demonstrated its ability to reach and
maintain a desired angular position. The exercise was performed 6 times to validate
the repeatability of the results. In the case of the experimental tests, 5 minutes
were waited between each repetition to relax the volunteer’s muscles; the experi-
ment considers 5 volunteers. Likewise, the agent determines muscle activation, and
the Rehamove electrical stimulator sends electrical pulses to generate muscle con-
tractions. The relationship between muscle activation and the electrical amplitude
range of the arm muscles was determined experimentally.

The agent showed better performance metrics (e.g., settling time and over-
shoot) in the simulation environment than in the real world; settling time of 1.44
seconds, overshoot of 8% and root mean squared error of 8.6◦. The main reasons
are: (i) the latency of the angular position sensor and the electrical stimulator and
(ii) involuntary muscle contractions of the user. On the one hand, the atmega328p
microcontroller took ≈ 7 ms to send each measurement, and Rehamove took ≈ 25

ms to generate each electrical pulse; hence, the total latency time was ≈ 32 ms
which exceeded the ideal condition of 20 ms. On the other hand, users are not used
to receiving electrical pulses and often experience involuntary contractions when



the agent rapidly increases the amplitude of the electrical pulse. Both factors con-
tributed to reduced agent performance in the real world.

As for future work, it would be good to estimate the most important pa-
rameters of the user’s muscles to improve the performance of the intelligent agent.
Likewise, use inertial measurement sensors to estimate the angular position of the
elbow; the current mechanical system is awkward and tends to slide off the arm
slowly. Finally, consider external forces (e.g., involuntary contractions) during agent
training.
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