• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.18.2021.tde-22062021-173135
Document
Auteur
Nom complet
Myrella Vieira Cabral
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2021
Directeur
Jury
Marques, Flavio Donizeti (Président)
Ferreira, António Joaquim Mendes
Rade, Domingos Alves
Titre en anglais
Nonlinear supersonic flutter analysis of reinforced laminated curved panels
Mots-clés en anglais
Aeroelasticity
Finite element method
Multibay panel flutter
Shallow shells
Resumé en anglais
The self-excited aeroelastic instability of thin plates or shells in the supersonic regime is called panel flutter, which may cause severe structural failure in aircraft and spacecraft. Thus, a reliable modeling of such phenomenon is crucial for safely predicting the lifespan of aircraft skins. Indeed, aeronautical skins are typically composed of large internally reinforced panels. The presence of the stiffening components subdivides the panel into several cells, which may interact structurally. However, the ample majority of published studies concerning the aeroelastic behavior of shells and plates treats each skin panel as an isolated structure. In this context, the present research project aims to investigate the effects of the structural coupling between the multiple curved panels and to assess the inaccuracies of the single-panel model by systematically comparing its results with those from the current multibay model. Moreover, the curvature effects will also be investigated. To do that, the Mindlin shallow shell theory coupled with the nonlinear von Kármán strains was applied. For the aerodynamic model, the first-order piston theory is applied, which is suitable for high-supersonic flows. The energy equations are discretized through the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain by using a Newmark integration method. The final algorithm is verified and validated through comparison with numerical and analytical solutions from the literature and with the commercial finite element software, ABAQUS. Symmetric and asymmetric composite laminated double cylindrical panels with different curvature ratios were analyzed for the streamwise and cross-stream configurations concerning the supersonic flow direction. Therefore, the effect of curvature, flow direction, and lamination scheme in the pre- and post flutter behavior of curved cylindrical panels were investigated.
Titre en portugais
Análise não linear do flutter supersônico de painéis curvos laminados reforçados
Mots-clés en portugais
Flutter de múltiplos painéis
Aeroelasticidade
Cascas rasas
Método dos elementos finitos
Resumé en portugais
A instabilidade aeroelástica autoexcitada de placas ou cascas finas no regime supersônico é denominada flutter de painel e é capaz de causar falhas estruturais graves em aeronaves e veículos espaciais. Desse modo, para a previsão segura da vida em fadiga de revestimentos aeroespaciais, é fundamental que sejam realizadas análises confiáveis deste fenômeno. De fato, revestimentos aeronáuticos são tipicamente compostos por grandes painéis reforçados internamente. A presença desses elementos acaba subdividindo o painel em várias células menores capazes de interagir estruturalmente. No entanto, a grande maioria dos trabalhos publicados a respeito do comportamento aeroelástico de cascas e placas trata cada painel como uma estrutura isolada. Nesse contexto, o presente projeto de pesquisa tem como objetivo investigar os efeitos do acoplamento estrutural entre múltiplos painéis curvos e avaliar as imprecisões do modelo de painel isolado através de uma análise comparativa sistemática dos resultados de painéis isolados com o do presente modelo multicélula. Além disso, os efeitos de curvatura também serão investigados. Para tanto, a teoria de Mindlin para cascas rasas será utilizada em conjunto com as deformações não lineares de von Kármán. Para o modelo aerodinâmico, foi utilizada a teoria de primeira ordem do pistão, adequada para escoamentos supersônicos. As equações de energia são discretizadas através do método dos elementos finitos, obtendo-se, então, as equações aeroelásticas do movimento. Essas equações são resolvidas no domínio do tempo através de um método de integração de Newmark. O código final é verificado e validado por meio da comparação com soluções numéricas e analíticas das literatura e com o software comercial de elementos finitos, ABAQUS. Painéis cilíndricos de compósito com laminação simétrica e assimética com diferentes razões de curvatura foram analisados para as configurações streamwise e cross-stream referentes à direção do escoamento supersônico. Portanto, o efeito da curvatura, da direção do fluido e do esquema de laminação no comportamento anterior e posterior ao flutter de painéis curvos cilíndricos foram investigados.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-06-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.