• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.18.2021.tde-22062021-173135
Documento
Autor
Nombre completo
Myrella Vieira Cabral
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2021
Director
Tribunal
Marques, Flavio Donizeti (Presidente)
Ferreira, António Joaquim Mendes
Rade, Domingos Alves
 
Título en inglés
Nonlinear supersonic flutter analysis of reinforced laminated curved panels
Palabras clave en inglés
Aeroelasticity
Finite element method
Multibay panel flutter
Shallow shells
Resumen en inglés
The self-excited aeroelastic instability of thin plates or shells in the supersonic regime is called panel flutter, which may cause severe structural failure in aircraft and spacecraft. Thus, a reliable modeling of such phenomenon is crucial for safely predicting the lifespan of aircraft skins. Indeed, aeronautical skins are typically composed of large internally reinforced panels. The presence of the stiffening components subdivides the panel into several cells, which may interact structurally. However, the ample majority of published studies concerning the aeroelastic behavior of shells and plates treats each skin panel as an isolated structure. In this context, the present research project aims to investigate the effects of the structural coupling between the multiple curved panels and to assess the inaccuracies of the single-panel model by systematically comparing its results with those from the current multibay model. Moreover, the curvature effects will also be investigated. To do that, the Mindlin shallow shell theory coupled with the nonlinear von Kármán strains was applied. For the aerodynamic model, the first-order piston theory is applied, which is suitable for high-supersonic flows. The energy equations are discretized through the Finite Element Method, and the resulting aeroelastic equations of motion are solved in the time domain by using a Newmark integration method. The final algorithm is verified and validated through comparison with numerical and analytical solutions from the literature and with the commercial finite element software, ABAQUS. Symmetric and asymmetric composite laminated double cylindrical panels with different curvature ratios were analyzed for the streamwise and cross-stream configurations concerning the supersonic flow direction. Therefore, the effect of curvature, flow direction, and lamination scheme in the pre- and post flutter behavior of curved cylindrical panels were investigated.
 
Título en portugués
Análise não linear do flutter supersônico de painéis curvos laminados reforçados
Palabras clave en portugués
Flutter de múltiplos painéis
Aeroelasticidade
Cascas rasas
Método dos elementos finitos
Resumen en portugués
A instabilidade aeroelástica autoexcitada de placas ou cascas finas no regime supersônico é denominada flutter de painel e é capaz de causar falhas estruturais graves em aeronaves e veículos espaciais. Desse modo, para a previsão segura da vida em fadiga de revestimentos aeroespaciais, é fundamental que sejam realizadas análises confiáveis deste fenômeno. De fato, revestimentos aeronáuticos são tipicamente compostos por grandes painéis reforçados internamente. A presença desses elementos acaba subdividindo o painel em várias células menores capazes de interagir estruturalmente. No entanto, a grande maioria dos trabalhos publicados a respeito do comportamento aeroelástico de cascas e placas trata cada painel como uma estrutura isolada. Nesse contexto, o presente projeto de pesquisa tem como objetivo investigar os efeitos do acoplamento estrutural entre múltiplos painéis curvos e avaliar as imprecisões do modelo de painel isolado através de uma análise comparativa sistemática dos resultados de painéis isolados com o do presente modelo multicélula. Além disso, os efeitos de curvatura também serão investigados. Para tanto, a teoria de Mindlin para cascas rasas será utilizada em conjunto com as deformações não lineares de von Kármán. Para o modelo aerodinâmico, foi utilizada a teoria de primeira ordem do pistão, adequada para escoamentos supersônicos. As equações de energia são discretizadas através do método dos elementos finitos, obtendo-se, então, as equações aeroelásticas do movimento. Essas equações são resolvidas no domínio do tempo através de um método de integração de Newmark. O código final é verificado e validado por meio da comparação com soluções numéricas e analíticas das literatura e com o software comercial de elementos finitos, ABAQUS. Painéis cilíndricos de compósito com laminação simétrica e assimética com diferentes razões de curvatura foram analisados para as configurações streamwise e cross-stream referentes à direção do escoamento supersônico. Portanto, o efeito da curvatura, da direção do fluido e do esquema de laminação no comportamento anterior e posterior ao flutter de painéis curvos cilíndricos foram investigados.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-06-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.