• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.18.2021.tde-05082021-081042
Document
Author
Full name
Gabriel Sales Candido Souza
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2021
Supervisor
Committee
Tita, Volnei (President)
Guedes, Rui Jorge Sousa Costa de Miranda
Tonatto, Maikson Luiz Passaia
Title in English
Evaluation of laminated composite plates behavior under shear-after-impatc loading conditions: a methodology proposal
Keywords in English
Finite element analysis
Impact loading
Laminated composites
Post-impact behavior
Shear-after-impact
Abstract in English
Fiber-reinforced polymer (FRP) laminated composite materials represents the greatest revolution since the development of the jet turbine in aeronautical industry. Possessing high stiffness and strength to weight ratio, they encounter increasingly space in high-performance applications, particularly in aircrafts. However, nowadays there are limitations in their usage attached to the complexity of prediction of behavior that these materials presents under impact loadings, which can result in a significant reduction in their mechanical properties. Moreover, due to its heterogeneity and anisotropy, the description of initiation and propagation of damage and failure mechanisms are not fully understood yet. Thus, the application of composite materials in aeronautical structures still follow conservative design philosophies. In this context, it is strategic the study of the mechanical behavior and the failure development and evolution presented by these materials. Following this, the post-failure behavior comprehension, in the sense of prediction of its residual strength, it is of major relevance to use damage tolerant design philosophies when designing one structure. So, this work presents a experimental approach, computationally aided, to evaluate the shear-after (low-velocity) impact behavior of FRP composites with unidirectional (UD) reinforcement since this is a poorly explored theme by the existent literature. Based on Continuum Damage Mechanics (CDM), a material model present in the literature is employed to investigate computationally the failure and post-failure of these materials under impact an shear-after-impact loadings. Thus, experimental tests in [0º]16 specimens are conducted in a 3-rail and drop-weight tests apparatus to obtain the stress-strain curves results for laminates with and without damage. Based in these, a phenomenological damage metric for shear-after-impact is proposed to aid the obtaining of the residual strength of these materials. Computational simulations are realized aiming to obtain, using the finite element method, the tendencies experimentally observed and to evaluate the potentialities and limitations of the material model employed. It is concluded at the end of this work that the proposed methodology is promising to obtain a complementary to the already consolidated approaches of compression- and flexure-after-impact.
Title in Portuguese
Avaliação do comportamento de placas laminadas de material compósito sob cisalhamento após carregamento de impacto
Keywords in Portuguese
Análise de elementos finitos
Carregamento de impacto
Cisalhamento pós-impacto
Comportamento pós-impacto
Compósitos laminados
Abstract in Portuguese
Materiais compósitos laminados de matriz polimérica reforçados por fibras (MPRF) representam, na indústria aeronáutica, a maior revolução desde o advento da turbina a jato. Possuindo alta rigidez e resistência específica, estes encontram cada vez mais espaço em aplicações de alta performance e, especialmente, em aeronaves. Contudo, atualmente existem limitações em seu uso atreladas a complexidade na previsão do comportamento destes materiais sob carregamentos de impacto, o qual pode resultar em redução significativa em suas propriedades mecânicas. Além disso, devido a sua heterogeneidade e anisotropia, os mecanismos de iniciação e progressão de dano e falha não são entendidos plenamente. Desta forma, a aplicação de materiais compósitos em estruturas aeronáuticas ainda seguem filosofias de projeto conservadoras. Neste contexto, é estratégico o estudo do comportamento mecânico e do processo de falha apresentado por estes materiais. Além disso, o comportamento pós-falha, no sentido de prever sua resistência residual, é de grande importância para utilização de filosofias tolerantes ao dano ao se projetar uma dada estrutura. Assim, este trabalho apresenta uma abordagem experimental, auxiliada computacionalmente, para avaliar o comportamento de compósitos do tipo MPRF sob cisalhamento pós-impacto de baixa velocidade com reforço unidirecional tendo em vista que este é um tema pouco explorado pela literatura existente. Com base na Mecânica do Dano Contínuo, emprega-se um modelo de material da literatura afim de se investigar computacionalmente a falha e pós-falha destes materiais sob impacto e cisalhamento pós-impacto. Assim, ensaios experimentais em espécimes [0º]16 são conduzidos em um aparato de rail test (3 trilhos) e drop test a fim de se obter resultados de curvas tensão-deformação para os laminados com e sem dano. Baseado nestes, uma métrica de dano fenomenológica para cisalhamento pós-impacto é proposta para auxiliar na obtenção da resistência residual destes materiais. Simulações computacionais são realizadas afim de se obter via método dos elementos finitos as tendências observadas experimentalmente e para avaliar as potencialidades e limitações do modelo de material utilizado. Conclui-se ao término deste trabalho que a metodologia proposta é promissora para se obter um complementar as abordagens já consolidadas de compressão e flexão pós-impacto.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-08-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.