• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.18.2021.tde-23082022-162615
Documento
Autor
Nome completo
Janaina Lima Borges
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2021
Orientador
Banca examinadora
Bernardi, Maria Ines Basso (Presidente)
Avansi Junior, Waldir
Mesquita, Alexandre
Título em português
Síntese de nanoestruturas de WO3: caracterização e investigação das propriedades sensoras
Palavras-chave em português
método dos precursores poliméricos
método hidrotermal assistido por micro-ondas
sensor de gases
trióxido de tungstênio
Resumo em português
O composto trióxido de tungstênio (WO3) tem sido estudado devido suas excelentes propriedades multifuncionais, sendo aplicado em dispositivos e óticos, (foto)catalisadores, sensores resistivos de gás, entre outros. Na última década, os pesquisadores têm realizado esforços para o desenvolvimento racional de nanoestruturas de WO3 exibindo propriedades superiores. Este trabalho reporta a preparação de filmes finos e espessos do composto puro de WO3, pela técnica de spin-coating, visando sua aplicação como sensor resistivo de gás. As amostras foram preparadas por pelo método dos precursores polimérico (MPP), e método hidrotermal assistido por micro-ondas (MHAM). As propriedades estruturais e morfológicas das amostras de WO3 foram investigadas pelas técnicas de análise termogravimétrica (TGA), difração de raios X (DRX), espectroscopia Raman, medidas de área superficial BET, espectroscopia ultravioleta-visível (UV-Vis) e microscopia eletrônica de varredura (FE-MEV). Medidas de DRX e de espectroscopia Raman indicaram a formação de fase única cristalina de WO3 com simetria monoclínica P21/n. Imagens obtidas por FE-MEV revelaram que os diferentes métodos de síntese (MPP e MHAM) produziram diferentes partículas de WO3 exibindo distintas morfologias, esferas não-homogêneas (MPP) e cuboides (MHAM). Adicionalmente, verificamos que a temperatura de tratamento, para as amostras MPP, e o tempo de tratamento, para as amostras MHAM, afetaram somente o tamanho das partículas de WO3. No que tange os experimentos de detecção de gás, todas as amostras preparadas neste trabalho foram sensíveis aos gases ozônio (O3) e hidrogênio (H2), para uma temperatura de trabalho entre 250°C e 300°C. Os resultados obtidos mostraram que a amostra de WO3 obtida pelo método MHAM, isto é, MHAM20, exibiu a melhor resposta sensora ao gás, detectando níveis de O3 a partir de 50 ppb, além de exibir total recuperação a cada ciclo de exposição. Estes resultados revelaram o potencial do composto WO3 nanoestruturado para aplicações práticas como sensor de gás O3.
Título em inglês
Synthesis of WO3 nanostructures: characterization and gas-sensing properties
Palavras-chave em inglês
gas sensor
microwave-assisted hydrothermal method
polymeric precursor method
tungsten trioxide
Resumo em inglês
The tungsten trioxide (WO3) has been studied due to its excellent multifunctional properties, being applied in optical devices, (photo)catalysts, chemical gas sensors, etc. In the past decade, researchers have made efforts towards the rational development of WO3 nanostructures which exhibit superior properties. Herein, we report the preparation of pristine WO3 films, using the spin-coating technique, to apply as a resistive gas sensor. The samples were prepared via the polymeric precursor method (MPP), and microwave-assisted hydrothermal method (MHAM). The structural and morphological properties of the WO3 samples were investigated by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, BET surface area, ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (FE-SEM). XRD and Raman spectroscopy measurements indicated the formation of a single crystalline phase of WO3, indexed to monoclinic structure (P21/n space group). FE-SEM images revealed that the different synthesis methods (MPP and MHAM) provided distinct WO3 particles exhibiting different morphologies: non-homogeneous spheres (MPP), and cuboid (MHAM). Additionally, we observed that the treatment temperature, for the MPP samples, and the treatment time, for the MHAM samples, affected only the size of the WO3 particles. Regarding the gas-sensing experiments, all samples were sensitive towards ozone (O3) and hydrogen (H2) gas, for a working temperature ranging between 250°C and 300°C. The results obtained showed that the WO3 sample obtained by the MHAM method, specifically, MHAM20, exhibited the best gas sensing performance, it detected O3 levels from 50 ppb, also exhibiting a total recovery at each exposure cycle. These results revealed the potential of the nanostructured WO3 compound for practical applications as an O3 gas sensor.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-08-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.