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RESUMO

MONTENEGRO DOS SANTOS, F. A. Modelos multiobjetivos para otimização do gerenci-
amento da cultura de azeitona visando a produção de azeite de oliva. 2023. 70 p. Disserta-
ção (Mestrado Processos e Gestão de Operações) – Escola de Engenharia de São Carlos, Universi-
dade de São Paulo, São Carlos – SP, 2023.

Este trabalho tem como objetivo desenvolver e aplicar dois modelos matemáticos para o ge-
renciamento otimo da colheita e da irrigação na cultura de azeitona no Chile, considerando
diferentes objetivos e cenários. Os modelos são baseados em técnicas de programação ma-
temática multiobjetivo, que permitem representar a complexidade e a incerteza do problema
agrícola. Os resultados obtidos mostram que os modelos são capazes de gerar soluções efici-
entes e flexíveis que satisfazem os requisitos de produção, qualidade e contrato das culturas,
bem como os critérios econômicos. Os modelos também permitem que o tomador de decisão
escolha a melhor alternativa de acordo com suas preferências e restrições, bem como se adapte a
mudanças e eventos indesejados que possam ocorrer durante o processo. Os modelos propostos
são ferramentas úteis para a tomada de decisões em nível operacional no campo agrícola, pois
facilitam a otimização e o controle das atividades de colheita e irrigação. Além disso, os modelos
são flexíveis e adaptáveis a diferentes contextos e culturas, o que os torna aplicáveis a outras
regiões ou problemas

Palavras-chave: Agro-indústria, Azeite de oliva, Modelo matemático, Irrigação, Programação
Multiobjetivo.





ABSTRACT

MONTENEGRO DOS SANTOS, F. A. Multi-objective models for optimizing olive crop
management for olive oil production. 2023. 70 p. Dissertação (Mestrado Processos e Gestão
de Operações) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos –
SP, 2023.

The objective of this work is to develop and apply two mathematical models for the optimal
management of crop harvesting and irrigation in Chile, considering different objectives and
scenarios. The models are based on multi-objective mathematical programming techniques,
which allow representing the complexity and uncertainty of the agricultural problem. The results
obtained show that the models are capable of generating efficient and flexible solutions that
satisfy the production, quality and contract requirements of the crops, as well as economic
criteria. The models also allow the decision maker to choose the best alternative according to his
preferences and constraints, as well as to adapt to changes and undesired events that may occur
during the process. The proposed models are useful tools for decision making at the operational
level in the agricultural field, as they facilitate the optimization and control of harvesting and
irrigation activities. In addition, the models are flexible and adaptable to different contexts and
crops, which makes them applicable to other regions or problems.

Keywords: Agro-industry, Olive oil, Irrigation, Mathematical model, Multi-objective Program-
ming.





LIST OF FIGURES

Figure 1 – Non-myopic Rolling Horizon Strategy. The pink blocks represent the plan-
ning horizon, and the grey blocks the control horizon. . . . . . . . . . . . . 34

Figure 2 – Harvest planning obtained from day 21 to the end of the horizon (BP). The WT column

indicates the working team with which the olive harvest is to be carried out. Each work team

is assigned a color. The cells indicate the quantity harvested in each lot daily and with the

corresponding work team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3 – Pareto Frontier, Scenario 1 with punctual type contract. . . . . . . . . . . . 40
Figure 4 – Scenario 1. Harvesting plan for point a in Figure. 3 . . . . . . . . . . . . . 41
Figure 5 – Scenario 1. Harvesting plan for point b in Figure 3. . . . . . . . . . . . . . 42
Figure 6 – Pareto Frontier, Scenario 2 with punctual type contract. . . . . . . . . . . . 43
Figure 7 – Scenario 2. Harvesting plan for point a in Figure 6. . . . . . . . . . . . . . 44
Figure 8 – Scenario 2. Harvesting plan for point b in Figure 6. . . . . . . . . . . . . . 45





LIST OF TABLES

Table 1 – Equipment used in harvesting and its capabilities . . . . . . . . . . . . . . . 36
Table 2 – Scenario 1. Harvest quantities for each resource for the different replanning

days. BP is the baseline plan, a and b are the lower and upper endpoints of the
Pareto Frontier presented in Figure 3. . . . . . . . . . . . . . . . . . . . . . 38

Table 3 – Scenario 2. Harvest quantities for each resource for the different replanning
days. BP is the baseline plan, a and b are the lower and upper endpoints of the
Pareto Frontier presented in 6. . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4 – Olive field data for the season 2022. . . . . . . . . . . . . . . . . . . . . . . 53
Table 5 – Values of the objective functions obtained according to the scenario to be

optimized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 6 – Irrigation plan in m3 for the different lots of olives for 28 days. Scenario 1. . 55
Table 7 – Irrigation plan in m3 for the different lots of olives for 28 days. Scenario 2. . 56





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Objetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Research project organization . . . . . . . . . . . . . . . . . . . . . . . 20

2 A ROLLING HORIZON SCHEME FOR RESCHEDULING IN AGRI-
CULTURAL HARVEST . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Supply chain contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Advanced rolling horizon approaches . . . . . . . . . . . . . . . . . . . 27
2.3 Notation and Problem Definition . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Mathematical formulation (RP) . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Non-myopic Rolling Horizon methodology for harvest rescheduling 34
2.5 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Case study and implementation . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Non-myopic Rolling Horizon applied to critical harvesting scenarios 37
2.5.2.1 Extreme weather event (Scenario 1) . . . . . . . . . . . . . . . . . . . . . 37
2.5.2.2 Underestimated harvest yield (Scenario 2) . . . . . . . . . . . . . . . . . . 40
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 MULTI-OBJECTIVE MODEL FOR IRRIGATION. . . . . . . . . . 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 A multi-objective model for irrigation planning . . . . . . . . . . . 51
3.3.1 Sets, Variables and Parameters . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Case study: Cultivation of the Coquimbo region, Chile . . . . . . . . 53
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Implementation and code . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Lexicographic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Planning for one month of operation . . . . . . . . . . . . . . . . . . 54
3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 54

4 CONCLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



17

CHAPTER

1
INTRODUCTION

By 2050, FAO forecasts that the world population will reach almost 9.7 billion people
(FAO, 2017). Based on this, important decisions must be considered to ensure global food
security. These decisions significantly affect the management of the agribusiness sector and its
logistics, where accurate coordination between the different stages of the supply chain must be
ensured. Two of the most important stages of the supply chain are cultivation and harvesting,
which determine the quality and quantity of food.

Crop management and subsequent fruit harvesting is severely affected by variations in
temperatures and adverse weather events, production problems such as productivity losses due to
frost or strong winds; soil damage caused by rainfall, causing harvesting equipment to be unable
to access flooded areas; significant variations in the availability of water resources, which may
compromise crop irrigation. Under these conditions of uncertainty, innovative tools must be used
to help decision making and establish efficient action plans.

In this sense, optimization tools are very useful to face these challenges, and mathematical
programming has been used for a long time in agricultural logistics problems. The first level
of planning is the strategic level, where different works have been developed. Considering
the problem of crop land planning, (SARKER; QUADDUS, 2002) developed a tool based
on multiple criteria decision-making (MCDM) in conjunction with a mathematical model to
maximize benefits. To manage the problems associated with indiscriminate use of water resources
in a semi-arid region in China, they developed a strategic dynamic adaptation tool. In view of the
problems associated with pollution through the intensive supply of carbon to the atmosphere, they
developed a linear programming model that optimizes infrastructure, agriculture, and logistics
costs and also balances carbon emissions within the agri-food ecosystem.

Combining the strategic-tactical levels for a wheat supply chain for biofuel production,
(ZHANG; HU, 2013) they developed a mixed integer linear programming (MILP) methodology
to investigate the location of biofuel supply chain facilities, facility capacity at the strategic
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level, and biofuel production decisions at the operational level. On the other hand, (LI et al.,
2020) they studied the allocation of water resources and agricultural land under uncertainty. To
achieve this, they used a model that combines fuzzy programming techniques with credibility
constraints, mixed-integer nonlinear programming and Multi-objective programming. In view
of the changes in agricultural markets and their distribution and logistics channels,(FLORES
et al., 2019) proposed an integrated supply chain planning tool for fresh vegetables that takes
into consideration the characteristics and resources of three specific states in Mexico. Similarly,
considering market changes and food demand,(HAJIMIRZAJAN et al., 2021) presented a
strategic planning framework from a large-scale crop supply chain perspective for National
Growers Associations (NCAs). The framework helps to manage actions that help to coordinate
the different activities between agricultural producers and the market, taking advantage of
complementary climate and market opportunities to plan.

At a particularly tactical level, different authors have addressed the challenges of an
agricultural supply chain. For the cultivation of tomatoes and peppers, (AHUMADA; VILLALO-
BOS, 2011) and (AHUMADA; Rene Villalobos; Nicholas Mason, 2012) developed mathematical
programming models to address the challenges associated with field management. (AHUMADA;
VILLALOBOS, 2011) proposed a MILP that in addition to taking care of aspects such as price
estimation and resource availability, addresses more dynamic aspects such as product deterio-
ration and inventory costs. Incorporating uncertainty into their study, they developed a model
that seeks to generate crop and distribution plans in response to climate and demand variability.
(ATALLAH; GÓMEZ; BJÖRKMAN, 2014) focused on the study of an expansion of a broccoli
logistics network for the United States, using a production-transportation model. In view of the
challenges posed by new regulations related to sustainability, (GALÁN-MARTÍN et al., 2015)
they developed one tool based on a multistage linear programming model that identifies optimal
decisions on cropping plans. In relation to sustainable systems under water aspects, (DAS et

al., 2015) proposed a linear programming (LP) model for optimal allocation of land and water
resources in eastern India. Through the formulation of a MILP, they sought to design a network
by locating wholesale (hub) facilities to facilitate the efficient movement of food from production
regions to places of consumption.

At a tactical-operational level we have the work of (JENA; POGGI, 2013), which through
the implementation of a MILP addresses harvest planning problems arising in sugar and alcohol
production from sugarcane in Brazil. Focusing on the harvesting and cultivation stage, they
proposed a stochastic optimization framework to be developed for a set of identified regions with
complementary climatic characteristics. (Mardani Najafabadi et al., 2019) developed a structural
multi-objective planning approach (PEMO), for different objectives, such as economic, social
and environmental, separately and jointly, with the aim of providing agricultural solutions in a
sector of Iran exposed to intense drought. Aspects related to quality-related losses at harvest and
post-harvest are addressed by Blackburn, using melons and sweet corn as examples. Focusing on
the harvest stage,(AHUMADA; VILLALOBOS, 2011) they developed an operational model
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that generates short-term planning decisions for the fresh produce industry.

Thus, as can be seen, mathematical models are used to address different challenges in
agriculture at different stages of the production process and with various optimization objectives.
In view of the presence of more than one objective, the multi-objective modeling approach
is very useful. It is important to recognize that crop yields depend on factors such as climate,
irrigation, soil and fertilizers. The right varieties should be chosen and the optimum amount
of fertilizer should be applied to improve growth. Excessive use of fertilizers can damage the
soil and the environment. In this sense, in the work of (JAIN; RAMESH; BHATTACHARYA,
2021), by means of multi-objective modeling they sought to maximize crop profit and minimize
fertilizer use. For the solution of the problem they propose a hybrid algorithm that combines
crow search (CSA) and particle swarming (PSO).

The importance of irrigation to crops is related to the fact that it allows them to obtain
the water they need to develop optimally. Without adequate irrigation, crops can suffer from
water stress, which affects their yield and quality. Water availability generates great uncertainty
to plan crop irrigation and ensure optimality. In (ZHANG et al., 2020) a new mathematical
programming method named multi-objective chance-constrained programming approach for
planning problems with uncertainweights (MCUW) is proposed, using this method to manage
water resources in northern China. In a scenario where not only water resources are scarce,
but also land availability limits field planning. To achieve this, they develop a multi-objective
model to maximize net yield and arable area. In the work of (BOINDALA; OSTFELD, 2022)
they propose a methodology for designing a water distribution system that takes into account
multiple objectives and uncertainties, especially those related to demand. The methodology uses
robust optimization and multi-objective optimization to achieve a design that is cost efficient and
resilient.

In agriculture, harvesting is very important because it is when producers receive the
benefits of their efforts and can provide food for people. However, harvesting also brings with
it several challenges and hazards, such as weather, insects, diseases, post-harvest treatment,
transportation and sale. With the aim of realizing sustainable selective logging management,
they propose a mathematical model that seeks to maximize the diversity of remaining stands,
marketable logs and the inverse of the distance between trees for logging points and log debarking.
To demonstrate its application, they use data from the Brazilian rainforest with 566 trees and an
area of 216 ha. Focusing on sugarcane harvest optimization, (SETHANAN; NEUNGMATCHA,
2016) proposed a multi-objective model that sought to minimize the harvested distance and
maximize sugarcane yield. Focusing on the same crop, (Aliano Filho; A OLIVEIRA; MELO,
2023) sought maximization of total sucrose and fiber yield, minimization of total time spent
harvesting and minimization of total transportation cost of harvesting equipment. Focusing on
wine grape harvesting, (VARAS et al., 2020) proposed a multi-objective mixed-integer model
with focus on minimizing operating costs and maximizing grape quality. In order to satisfy the
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different points of view of the winemaker and the field manager, they are based on the actual
operations of one of the three largest wineries in Chile.

As can be seen, different types of mathematical models are presented to face challenges
in agro-industrial systems at different planning levels and different crops. Specifically, this paper
focuses particularly on the olive oil production industry.

1.1 Objetives

The objective of this research is to study the use of multi-objective mathematical pro-
gramming models applied in the olive oil industry.

To achieve this, the following specific objectives are defined:

∙ Review the scientific literature on multi-objective mathematical programming models and
their application in the olive oil industry.

∙ Develop the most appropriate multi-objective mathematical programming models to
address the harvesting and irrigation optimization problems encountered in the olive oil
industry.

∙ Implement the selected multi-objective mathematical programming models in specialized
software.

∙ Analyze the results obtained with the multi-objective mathematical programming models
and propose recommendations to improve the yield, quality and sustainability of the olive
oil industry based on the results of the multi-objective mathematical programming models.

1.2 Research project organization

This research project is structured in fouth chapters. Chapter 2 presents the study of olive
crop replanning for olive oil production.

In chapter 2 the challenge of harvesting olives for oil production is addressed. A model
is proposed with which to replan and coordinate the activities of different olive harvesting teams,
in consideration with the processing capacity of the mill. The model is bi-objective, the first one
seeks to maximize the olive oil production and the second one controls the deviations of the
harvesting plans with respect to an initial plan, fixed at the beginning of the planning horizon
(t = 0), all this under a novel methodology denominated as Non-Myopic Rolling Horizon. In
chapter 3 the challenge of the adequate allocation of water to different sectors of an olive crop
is addressed. The model is bi-objective wich seeks to prioritize allocation to more productive
sectors, considering the driving costs of water. Lastly, the chapter 4 establishes the conclusions
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of the work carried out. Chapter 3 presents the work carried out for irrigation planning in an
olive crop.
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CHAPTER

2
A ROLLING HORIZON SCHEME FOR
RESCHEDULING IN AGRICULTURAL

HARVEST

2.1 Introduction

Agricultural supply chain planning models have been developed in different areas. Sev-
eral papers have surveyed different models, like (GLEN, 1987) in farm planning, (WEINTRAUB;
ROMERO, 2006) in agriculture and forestry, (AHUMADA; VILLALOBOS, 2009) in the agri-
food supply chain, (SOTO-SILVA et al., 2016) in the fresh fruit supply chain, (FUCHIGAMI
et al., 2018) in the fresh agri-food supply chain, and (TAŞKINER; BILGEN, 2021) in har-
vest and production planning. In the last decades, due to the complexity of the multi-echelon
agriculture supply chains (BARBOSA, 2021; LEZOCHE et al., 2020), various papers include
components of risk and uncertainty existing in their typical stages: primary production (of raw
products by farmers), production of semi-product by plants, and finished products and distribu-
tion (FUCHIGAMI et al., 2018; ZHAO et al., 2020). Uncertainty management in agriculture has
been highlighted intensively in the last decade, (BORODIN et al., 2016) and (BEHZADI et al.,
2018) provide excellent reviews, including most of the papers which handle the components of
risk and uncertainty.

Harvest scheduling is a key activity in the agriculture supply chain’s first stage of
primary production. It is complex due to some characteristics shared by-products, like wine
and olive oil. Harvesting is constrained to strict time windows where weather conditions, like
rain and frost, can affect the ripening process of the crops and the ability to perform harvesting
operations, like machine operations and manual labor (FERRER et al., 2008; KUSUMASTUTI;
DONK; TEUNTER, 2016; PINO et al., 2022). Therefore, in this context, it is important to
consider uncertainty a critical factor in operative plans. Thus, decision-makers must consider
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this component in the planning either within optimization models or in high-level policies.

Two approaches can be applied to deal with this underlying uncertainty; we can use
proactive or reactive approaches. A proactive approach is considered a mitigation strategy
and focuses on identifying and minimizing the impacts of the expected risks. Therefore, it
requires predictive tools to identify risks, calculate their probabilities, and implement mitigation
mechanisms. According to (BEHZADI et al., 2018), such predictions could be difficult to achieve
due to their nature-based uncertainty. Two of the most used proactive methods in agriculture
supply chains are Stochastic Programming, in which probability distributions are assigned to
uncertain parameters, and Robust Optimization, where uncertain parameters are modeled by
interval or ellipsoidal uncertainty sets (BORODIN et al., 2016; BEHZADI et al., 2018).

Reactive approaches do not waste time simulating or modeling possible scenarios; they
are focused on providing efficient solutions once the planning environment is modified. Rolling
Horizon is a classic strategy to manage uncertainty reactively. Despite its intensive use in several
industries, this approach has some problems when other decision-makers are involved, and the
reactive plan changes previous commitments (SAHIN; NARAYANAN; ROBINSON, 2013).

Rescheduling in agricultural harvest is crucial because a baseline plan is usually chal-
lenging to maintain in actual operations. Several factors, like, for example, climatic events or
disagreements in contracts with service providers or external suppliers, could create complicated
scenarios in the context of harvesting operations. However, most proposed optimization models
focus on generating an initial tactical plan. Reactive responses have some advantages since
they can avoid assumptions about parameters, and the optimization model does not need to
be converted into a more sophisticated and complex variant. Moreover, new technologies can
be used efficiently to collect and update data during the harvest (JAYARAMAN et al., 2016;
KULBACKI et al., 2018; EITZINGER et al., 2019; DAUM et al., 2018; PEREIRA et al., 2018a).

In the context of harvest rescheduling, when a new harvest plan is generated, decision-
makers must coordinate with several actors, such as service providers, which include both
humans and machines. As a result, there are various reasons for avoiding high variability in the
harvest plan and maintaining a stable schedule. First, since mills are often shared with a set of
farmers when the initial harvest plan is generated, or a modification is made, other farms are also
affected. Second, because automatic machines and human teams often come from outsourced
suppliers, they define their commitments through contracts embodied in the baseline operative
plan. Considering this, changes in the schedule require interfacing with the people responsible
for these outsourced services, which can result in a complex negotiation process.

In this context, we focus on developing a procedure for reducing variability in the
rescheduling process to avoid significant changes in the baseline plan and to minimize the
nervousness consequently. Nervousness is a traditional concept in production planning under
uncertainty defined as “the difficulty encountered in shifting of previously scheduled production
setups because of new information obtained in a rolling horizon" according to (CARLSON;
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JUCKER; KROPP, 1979) and (KAZAN; NAGI; RUMP, 2000).

Our main contributions can be summarized as follows.

(i) A non-myopic rolling horizon scheme is developed to reduce the variability in agriculture
harvest plans. The method considers certain conditions of harvesting operations, e.g.,
commitments with suppliers and a mid-term planning horizon.

(ii) To reschedule within the rolling horizon scheme, a harvest replanning optimization model
is formulated. The model is bi-objective. On the one hand, it is concerned with managing
contracts and their fulfillment, while on the other hand, it seeks to maximize the amount
of olive oil to be produced.

(iii) Two common sources of uncertainty in agricultural harvesting are analyzed, to which the
proposed non-myopic rolling horizon scheme is applied. These scenarios are an extreme
weather event and an underestimated yield.

This section is organized as follows. Section 2.2 presents related work of RH methods,
highlighting papers that allow the management of contracts with suppliers and use variants
of Rolling Horizon (RH) strategies. An optimization model for managing the variability in
agricultural harvest plans within a non-myopic RH scheme is developed in Section 2.3. Section
2.4 provides a high-level methodology for running the non-myopic RH algorithm in smart farm
environments. Experiments and an in-depth analysis of results are presented in Section 2.5.
Lastly, conclusions and future work are discussed in Section 2.6.

2.2 Background
Over the last decades, RH schemes have been applied in several industrial contexts to

solve optimization models which involve uncertainty. Some good examples of these applications
are the distribution of cut flowers (NGUYEN; DESSOUKY; TORIELLO, 2014), container
planning in harbors (ZHANG et al., 2003; YANG et al., 2018), wildland fire planning (CHOW;
REGAN, 2011), health systems (ADDIS et al., 2014), warehouse management (REVILLOT-
NARVÁEZ; PÉREZ-GALARCE; ÁLVAREZ-MIRANDA, 2019), sawmill (HUKA; GRONALT,
2017), emissions trading (QUEMIN; TROTIGNON, 2021), and facility location (MARUFUZ-
ZAMAN; GEDIK; RONI, 2016). From an algorithmic perspective, RH can be understood as a
time-based decomposition (BASSETT; PEKNY; REKLAITIS, 1996). Given this, we can use this
methodology to solve intractable models, dividing a long-term (e.g., a year) planning problem
into a sequence of short-term (e.g., a week) decision problems with smaller temporal windows.

Even though the RH strategy has been applied in several contexts, its application in
harvesting has been limited (RACHMAWATI et al., 2014; KOSTIN et al., 2011), and crucial
characteristics of modern harvesting operations have not been considered. (RACHMAWATI
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et al., 2014) applied a linear programming model for optimizing crop planning. This model
used agronomic characteristics of the crops (e.g., accumulated heat) and temperature forecasts
to update them. At the beginning of each period, a standard RH was applied. In (KOSTIN et

al., 2011), a customized RH algorithm was designed to optimize an integrated sugar/ethanol
supply chain. The algorithm considers long-term and three-echelon decisions; a relaxed model is
solved due to the high computational complexity in each RH iteration. The relaxed optimization
model contains a set of integer decision variables associated with the control horizon, and
the relaxed variables represent decisions after the control horizon. A significant reduction in
running times of computational experiments was presented. Although several articles have
recommended applying harvest scheduling models by using standard RH schemes (KARLSSON;
RÖNNQVIST; BERGSTRÖM, 2003; FERRER et al., 2008; RISYAHADI, 2015; LAMSAL;
JONES; THOMAS, 2017), they did not propose ad-hoc implementation to agriculture (e.g.,
seasonal production and multiple decision-makers), nor they have modeled contracts with service
providers.

Given the scarce literature on ad-hoc RH frames in agriculture, we divide our literature
review into two parts. Firstly, in section 2.2.1, we present an overview of traditional strategies
to define contracts along a supply chain; this section gives a conceptual frame to constrain the
variability in reactive rescheduling. Next, in section 2.2.2, we select relevant boosted applications
of RH, focusing on methodological aspects and managerial insights. These improved approaches
influenced the design of our non-myopic and ad-hoc scheme of RH harvest scheduling.

2.2.1 Supply chain contracts

The harvest process in agriculture represents the first stage in the supply chain (SC).
This stage involves several factors: external producers, external work teams, harvest machine
suppliers, decision-makers in the field, and decision-makers in the mill. Agricultural planners
typically mitigate these uncertain environments by signing contracts. Agricultural contracts have
many different applications, from a way to protect from market price fluctuations (HONG et al.,
2023) to a way to protect from weather conditions variability impacting harvest yield through
forward contracts (CHEN; RYAN, 2023).

(TSAY; NAHMIAS; AGRAWAL, 1999) provides a valuable review of contracts in the
SC; for example, to incorporate previous contracts in updated schedules, a significant effort
has been made to adapt RH strategies. In (TSAY; LOVEJOY, 1999), an RH framework for
studying Quantity Flexibility (QF) in supply chain contracts was presented, assessing scenarios
of non-stationarity demand. They concluded that flexibility is considered an added value in
volatile contexts, but it follows a principle of diminishing returns. Moreover, they proposed
managing the variability by utilizing the inventory. Obviously, this insight is not valid for service
providers, so in highly service-based SC (e.g., processing foods or fresh fruit), more accurate
decisions should be made to increase efficiency in volatile contexts. Similarly, in (BASSOK;
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ANUPINDI, 2008), a Rolling Horizon Flexibility (RHF) approach is addressed, where the buyer
must commit the goods or services for each period; this commitment is agreed upon when the
planning horizon is started. They gave valuable managerial insights to planners; for example,
(a) it is unnecessary to provide unlimited flexibility, and (b) the flexibility in responsive plans
follows a diminishing returns law. These insights encourage us to develop a non-myopic rolling
horizon since the traditional rolling horizon is completely flexible in its response; this flexibility
harms the system (wasting time in negotiations) and service providers (nervousness).

(AMRANI-ZOUGGAR; DESCHAMPS; BOURRIÈRES, 2009) studied a Frozen Hori-
zon & Flexibility Rate (FH & FLH) contract; it considered an initial rigid period (FH) followed
by a flexible horizon which allowed modification of the commitments. The authors solved a linear
programming model within an RH scheme to analyze its performance. The results presented an
interesting trade-off between the lengths of FH & FLH, showing that longer FLH generates less
inventory, and longer FH is associated with less impact due to variations. Recently, to mitigate
the nervousness in the planning process, (DEMIREL; ÖZELKAN; LIM, 2018) presented a Flexi-
bility Requirements Profile (FRP) strategy to update aggregate production plans and generate the
production plans by solving a mixed-integer linear programming model. FRP allows changing
plans within lower and upper bounds, which are modeled as constraints (lower and upper limits
for production-decision variables) in an RH approach. (DEMIREL; ÖZELKAN; LIM, 2018)
proposed two measures to evaluate the model performance, a metric based on the cost over
the planning horizon and a metric to assess the plan variability. Experiments on two industries
were conducted (textile and automotive); some advantages of FRP were shown since it reduces
variability and sacrifices smaller costs than the standard aggregate production model. We propose
exploiting these properties in harvest planning by incorporating enriched objective functions (or
constraints) to mitigate the high variability when a rescheduling optimization model is solved.

2.2.2 Advanced rolling horizon approaches

Some literature reviews about RH have been published (CHAND; HSU; SETHI, 2002;
SAHIN; NARAYANAN; ROBINSON, 2013). In (CHAND; HSU; SETHI, 2002), 200 papers
were summarized; the studied papers were classified into the following five categories: horizon,
model, sources of the horizon, method, and subject. Several managerial insights were provided
concerning the horizon length and forecast horizon. The types of problems were: inventory
management, production planning, scheduling/sequencing, plant location, machine replacement,
cash management, capacity expansion, and warehousing. After that, a new review was provided
in (SAHIN; NARAYANAN; ROBINSON, 2013), in which the globalization and outsourcing
strategy were considered crucial. They established a taxonomy wherein the number of actors in
the supply chain is highlighted, coming from the new environment that forces the reduction of
the variability in the schedules and, consequently, the nervousness of decision-makers. Moreover,
they proposed some research directions, like considering extensions of RH with multiple actors,
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multi-layer supply chains, and coordination among actors. We highlight that studies about
agriculture were not mentioned in those reviews. Below we present some highlighted applications
which designed adaptations to reduce the variability in rescheduling.

An RH method was presented in (PEREA-LOPEZ; YDSTIE; GROSSMANN, 2003)
to update decisions and deal with uncertainty within an SC. The uncertainty is related to the
demand, which can be well-estimated within the prediction horizon. The underline model is a
multiperiod mixed-integer linear programming (multiperiod MILP) that includes different actors
such as suppliers, manufacturing, distribution, and clients. Moreover, a model predictive control
(MPC) was proposed to update decisions. The MPC algorithm is composed of two elements.
The first solves a control problem (multiperiod MILP) to get optimal policies, whereas the
second evaluates future system responses to previously found optimal policies. In (GLOMB;
LIERS; RÖSEL, 2022) developed a new RH algorithm that incorporates constraints that seek
to manage the quality of the solutions to be obtained. First, they test the applicability of the
algorithm to batch-sizing problems. Then, they analyze the application of their RH approach with
real-world tail-assignment problem instances in aircraft management, highlighting the efficiency
of the algorithm in finding solutions very close to the optimum. The authors conclude that it
is interesting to investigate how the RH approach can be extended to be able to guard against
uncertainties.

In (ADDIS et al., 2014), an advanced scheduling problem (ASP) was addressed. The
practical problem consisted of matching patients from a waiting list with the available operating
room blocks. The process involved uncertainty from two sources: surgery times and changes
in the waiting list, which gave rise to applying an RH scheme. Note that a weekly update was
considered; however, a more extended horizon was used in each rescheduling process, and a
baseline plan was generated. After that, a new solution is found that does not differ too much from
the baseline plan. They commented that it is a good idea in complex (time-consuming) models
to start from a previous plan, but it can be hard to find a solution when the parameters change
significantly. In the same context, (KAMRAN et al., 2019) proposed an adaptive operating room
planning and scheduling by means of an RH strategy. To face the chaos and conversions during
the planning, they used a reserved slack policy, which considered assigning some rooms like
slack capacity in a stochastic MILP. Some advantages of the reserved slack policy were increased
flexibility and more efficient use of resources.

In (BISCHI et al., 2017), a co-generation energy system was optimized by applying a
MILP within an RH frame weekly. The model includes some uncertain parameters, such as
ambient temperature, electric demand, heat demand, and fuel prices, which are updated in each
RH iteration. The time window between updates is one week; upon making this decision, market
characteristics of prices and model complexity are considered. The proposed iterative algorithm
is composed of two sequential RH loops. In the first one, a typical week’s energy consumption is
assumed, and according to the previous week, this information is updated in the second loop.
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The feasibility (constraints on incentives) is also forced in the second loop; hence, this loop is a
method for repairing solutions.

(LIN; UZSOY, 2016) proposed a set of chance-constrained formulations for production
planning within an RH scheme. They tried to tackle two drawbacks of RH strategies: first, the
well-documented “end of horizon effect”, which generates zero inventory in the last periods
of planning, and second, like this work, the nervousness among supply chain actors due to
changes in schedules. To manage these effects, they focused on improving the service level
(employing a safety stock level), incorporating an uncertain demand into five optimization
models with chance constraints. Experiments were conducted in a single-product and single-stage
production planning system over four scenarios, showing a significant reduction in variability and
maintaining the service level even considering highly uncertain demand. Recently, (TAVAGHOF-
GIGLOO; MINNER, 2020) also used a chance-constrained model for ensuring the service
level in stochastic lot-sizing models (uncertain demand). They compare the performance of
two approaches, a stochastic dynamic program under RH planning and an integrated model.
The integrated model endogenously sets dynamic safety stocks. They concluded that the RH
approach is a better option only if we have great flexibility (capacity). Still, in the case of limited
capacity (lower inventory and same-level service), integrated models outperform the dynamic
alternative.

(HUKA; GRONALT, 2017) studied sawmill production planning under the co-production
of several products. They created a MIP to model the real sawmill production planning problem.
To solve this model, they mainly focus on heuristics to measure how much loss occurs in the
sawmills because the heuristics known in the literature are easy to implement instead of exact
algorithms. Also, they proposed some new variants of the heuristics. A sensitivity analysis in
some parameters was carried out to measure the solutions’ robustness. These parameters were
mainly the storage of raw materials and products and whether there is a minimum demand
percentage for them. They use RH to compare the heuristic behavior in different periods, and a
multi-period approach is compared with a single-period one. Of the five heuristics studied, the
best one, the heuristic E, outperformed the RH method. Also, the proposed MIP multi-period
planning overcame the RH method. They conclude there is a conflict between RH planning
and one-period planning. The decision-makers need to know the planning frequency precisely
to maximize the benefit and profit through the tool. Commitments with third parties were not
considered when replanning.

(ELKAMEL; MOHINDRA, 1999) developed a reactive scheduling model through a
Mixed Integer Non-Linear Programming (MINLP) based heuristic, which uses an RH planning
strategy and penalizes the deviations from the original scheduling. It penalizes the lot length as
the squared difference between the old and new length. They seek to minimize the deviation
due to its adverse effects on the plant, i.e., being disruptive, costly, and highly inefficient in
preserving a smooth operation. The problem is linearized due to the difficulty of solving a non-
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linear problem. The authors give importance to how disturbances are applied to the model. In
particular, they divided the scheduling horizon into different sub-horizons. They view the reactive
scheduling problem as having two stages: pre-processing and maintenance. They concluded that
the longer the sub-horizon is, the improved quality of reactive modifications could be made,
making sense considering more time to react to changes.

(TARHAN et al., 2023) develop a multi-objective model for planning and routing of
disaster response personnel with efficiency, equity, and risk objectives, subject to restrictions
related to work and rest. This model seeks to respond to emergencies based on the needs of
the users, relating the organization to the order of requirements. The resolution of the proposed
model is made lexicographically on an RH sequentially and on a daily basis until the demand for
all services is satisfied.

To sum up, in some contexts, advanced RH methods have been applied to deal with
the variability (and nervousness) in re-planning. However, we did not find methodological
adaptations or applications in harvest operations that considered it. To face this drawback, those
approaches have incorporated longer planning horizons and have limited quality indexes (e.g.,
service level or plan variability) utilizing additional constraints. Considering these ideas, we
propose an ad-hoc RH frame for planners in agriculture, meaning a scheme able to manage
contracts, uncertain parameters, and additional operative constraints. This can be used as a
quantitative tool to negotiate with service suppliers during complex harvest re-scheduling.

2.3 Notation and Problem Definition

This section presents an optimization model in the non-myopic RH context for the
rescheduling problem. In particular, as previously noted, service suppliers play an essential role
in modern monoculture farming. This relationship is typically managed by contracts, which
ideally should be fixed, but sometimes the uncertain conditions force a renegotiation. The
optimization model presented below considers a strategy to manage this situation.

Our rescheduling problem is modeled as a bi-objective model. Let RP be a mathematical
programming model in which f is a vector of objective functions, X is the set of feasible harvest
plans and t is a time-dependent parameter denoting periods from the time horizon discretization
τ , where rescheduling is necessary. When solving this model in the period t, an optimal solution
x*t is obtained. Each optimal solution x*t contains a set of decision variables x jtk, representing
the quantity of fruit (in tons) to be harvested in the lot j ∈ J during the period t ∈ τ , with the
work team k ∈ K. Moreover, let r jtk be a parameter that indicates the olives’ quantity (in tons)
harvested according to the baseline plan (and its commitments) in lot j ∈ J during the day t ∈ T

with the work team k ∈ K.
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f (xt
*) = min{ f (xt) : xt ∈ X }. (RP)

The bi-objective model RP considers two objective functions, f (xt) = ( f1(xt), f2(xt)).
The function f1 involves a goal relevant to the particular context (e.g., the amount of olive oil
produced or the cost of harvesting). OC jt is the oil concentration in the olives in lot j ∈ J during
day t ∈ T , as a percentage. Then, f1 is defined as follows:

f1 = ∑
j∈J

∑
t∈T

∑
k∈K

x jtkOC jt (2.1)

The function f2 is used for modeling contracts with the aim of controlling the discrepancy
concerning the tactical plan. Since we seek to assess the trade-off between maintaining a stable
plan and increasing olive oil production, f2, named Punctual Contract, is defined as follows.

f2 = ∑
⟨ j,t,k⟩∈c

|x jtk − r jtk| (2.2)

In this agricultural context, the definition of f2 is appropriate because it measures
the difference between the number of olives harvested in the initial plan and the replanning.
An alternative function representing aggregated contracts allows significant differences in the
utilization of resources like machines, generating inefficiencies in harvesting. Note also that, in
the next bi-objective model RP proposed, f1 is maximized, and f2 is minimized.

2.3.1 Mathematical formulation (RP)

Despite agricultural harvest planning has been widely studied, rescheduling, which is
essential in agriculture, has been less studied. In this section, we define an ad-hoc model for
replanning. It is an adaptation of the proposed tactical model for harvesting olives (HERRERA-
CÁCERES et al., 2017). Below we present sets, variables, and parameters.

Sets

T Set of days in the replanning horizon. T = {0,1,2, .., |T |}. T ′ = T ∖ {0}
where t = 1 is the first day of replanning and t = 0 is the day immediately
prior to replanning and is used for harvest continuity.

M Set of harvesting modes. M has a value of 1 for the harvesting machine
mode, 2 for the mode of shaker A, 3 for the mode of shaker B, and 4 for the
manual harvesting mode.

K Set of work teams.
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Km ⊆ K Subset of work teams that belong to the same harvesting model m ∈ M.
J Set of lots of olives.
C Set of signed contracts. Each contract c ∈ C is defined by sets of triplets

⟨ j, t,k⟩.

Variables

x jtk Quantity of olives (in tons) harvested in lot j ∈ J during day t ∈ T ′ with
work team k ∈ K.

fc Measures the discrepancy as a linear function in the quantity of olives
harvested for the established contracts c ∈C.

o jt Quantity of olives (in tons) in lot j ∈ J not harvested yet at the end of day
t ∈ T .

y jtk Binary variable with a value of 1 if the harvesting in lot j ∈ J is started on
day t ∈ T ′ with work team k ∈ K, and 0 otherwise.

h jtk Binary variable with a value of 1 if lot j ∈ J is harvested during day t ∈ T

with work team k ∈ K, and 0 otherwise.

Parameters

OC jt Oil concentration in the olives in lot j ∈ J during day t ∈ T ′, as a percentage.
OL jt Olives lost (in percentage) in lot j ∈ J in day t ∈ T ′ because of climatic

phenomenon.
PD jk Maximum harvesting productivity for the period (day) of work team k ∈ K,

in the lot j ∈ J.
OS j Quantity of olives in tons at the start of the replanning horizon in lot j ∈ J.
CPt Capacity of the oil mill in tons to process olives on day t ∈ T ′.
Q jk 1, if the last lot j ∈ J is being harvested during day t = 0 with work team

k ∈ K, and 0 otherwise.
r jtk Quantity of olives (in tons) to be harvested according to the baseline plan in

lot j ∈ J during the day t ∈ T ′, with the work team k ∈ K.

Considering that, the rescheduling model (RP) can be formulated as follows:

max ∑
j∈J

∑
t∈T

∑
k∈K

x jtkOC jt ( f1)

min ∑
c∈C

fc ( f2)

In this operative rescheduling model, the objective function ( f1) considers a maximization
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of the olive oil production. The objective function ( f2) is related to the distance (discrepancy)
between the original contracts (r jtk) and the new ones (x jtk) with ⟨ j, t,k⟩ ∈ c and c ∈C.

subject to:

fc ≥ x jtk − r jtk ∀⟨ j, t,k⟩ ∈ c (2.3)

fc ≥ r jtk − x jtk ∀⟨ j, t,k⟩ ∈ c (2.4)

h j0k = Q jk ∀ j ∈ J,∀k ∈ K (2.5)

y jtk +h j(t−1)k ≥ h jtk ∀ j ∈ J,∀t ∈ T ′,∀k ∈ K (2.6)

∑
t∈T

∑
k∈K

y jtk ≤ 1 ∀ j ∈ J (2.7)

∑
j∈J

h jtk ≤ 1 ∀t ∈ T,∀k ∈ K (2.8)

o j0 = OS j ∀ j ∈ J (2.9)

o j(t−1)(1−OL jt)− ∑
k∈K

x jtk = o jt ∀ j ∈ J,∀t ∈ T ′ (2.10)

PD jkh jtk ≥ x jtk ∀ j ∈ J,∀t ∈ T ′,∀k ∈ K (2.11)

∑
j∈J

∑
k∈K

x jtk ≤CPt ∀t ∈ T ′ (2.12)

y jtk ∈ {0,1} ∀ j ∈ J,∀t ∈ T ′, ∀k ∈ K (2.13)

h jtk ∈ {0,1} ∀ j ∈ J,∀t ∈ T, ∀k ∈ K (2.14)

x jtk ≥ 0 ∀ j ∈ J,∀t ∈ T ′,∀k ∈ K (2.15)

o jt ≥ 0 ∀ j ∈ J,∀t ∈ T (2.16)

In (2.3) and (2.4), relationships are established to handle the discrepancy as a linear
function.In (2.5), the operational continuity for those lots being harvested the day before the
rescheduling is stated. Also, those lots are forced to continue their harvest. In (2.6), it is defined
that the harvest must be carried out continuously without interruptions. In (2.7), it is allowed
to start harvesting once per lot within the feasible window. The resources related to capacity
for one lot per day are restricted by (2.8). The remaining olives to be harvested are defined in
(2.9). In contrast, in (2.10), an equation is generated to balance the available olives in each day,
thereafter previous harvest, and losses due to weather events. Reviewing whether this minimum
has been reached since contracts were established is important as the harvest season progresses.
In (2.11), the productive capacity of the resources is respected. In (2.12), it is established that the
quantities harvested must respect the mill’s processing capacity. Finally, in (2.13)-(2.16), the
nature of the variables is defined. The presented model will be used in the following section as a
crop plan generator.
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2.4 Non-myopic Rolling Horizon methodology for harvest
rescheduling

To mitigate the impact of uncertainty during harvest, we illustrate our RH approach
in Figure 1. This considers a parameter update step, limiting the discrepancy between harvest
contracts and service suppliers. Two highlighted differences concerning the classic RH methods
are proposed:

∙ Firstly, at the beginning of the harvest, unlike traditional RH, in our non-myopic strategy,
the harvest horizon (HH) has the same length as the planning horizon (PH). PH represents
the time window optimized by each rescheduling mathematical programming model,
reduced in each replanning. The Control Horizon (CH) length defines the rescheduling
frequency, which is constant (a week). This length is conditioned by the information
certainty related to the model’s key parameters, the values of which are usually updated
weekly.

∙ Secondly, an ad-hoc optimization model (RP) is solved in each CH; this model limits the
discrepancy from the baseline plan. In the first iteration, incorporating information about
the whole harvest window, the baseline plan is generated, and the contracts are signed.
Therefore, despite updating those parameters weekly and rescheduling, our strategy is non-
myopic since medium-term information is considered during the baseline plan generation.

Figure 1 – Non-myopic Rolling Horizon Strategy. The pink blocks represent the planning horizon, and
the grey blocks the control horizon.
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A description of each step of the methodology is presented below.

step 0 Initialization: A standard harvest planning model (SP) is executed, generating the baseline
plan (BP) and signing the contracts with service suppliers. Once the optimal solution x*t is
obtained, the optimal variables values x*jtk define the parameters r jtk as the BP. In this step,
the HH and CH windows are defined. Due to unexpected events (e.g., frost and rain) in
the agricultural harvest, it is suitable to define a CH of seven days (rescheduling weekly).
Lastly, the number of iterations (It) is calculated, where It is estimated by HH

CH . A counter
of iterations is initialized i = 0.

step 1 Update parameters: The uncertain parameters can be updated by using modern devices
in smart farming environments. For example, some essential and uncertain parameters in
harvest are related to the amount of fruit in lots, the processing capacity of the olive mill,
weather conditions, and the productive capacity of the harvesting equipment. Couple of
examples for updating some of these parameters are presented.

Let o ji be a parameter that represents the amount of fruit not harvested yet (available) in
lot j on day i. OS j is a parameter that models the available fruit at the beginning of the
season in lot j, which is updated in each iteration. Lastly, x jtk is the decision variable that
represents the fruit harvested in lot j on day t by the work team k. Let’s suppose that PH

begins on day i = t ′; hence, the amount of fruit available must be updated as follows:

o jt ′ = OS j − ∑
t≤t ′−1

∑
k∈K

x jtk, ∀ j ∈ J. (2.17)

Let Q jtk ∈ {0,1} be a parameter that takes the value 1 if lot j was harvested on day t by
the work team k, 0 otherwise, in the original plan. Let h jtk ∈ {0,1} be a binary decision
variable that takes the value 1 if lot j is harvested on day t with the work team k, and 0
otherwise. Furthermore, y jtk ∈ {0,1} is a binary decision variable that takes the value 1 if
the harvesting in lot j, on day t, is started by work team k, and 0 otherwise.

Constraints (2.18) and (2.19) model the harvest continuity. Specifically, constraint (2.18)
fixes the initial status (i.e., each lot j) for rescheduling of each resource at day t − 1 (1
day prior to rescheduling). Then, through inequation (2.19), the harvest proceeds with the
information obtained from the executed plan. Note that τ represents the set of days within
the PH window to reschedule.

h j(t−1)k = Q j(t−1)k ∀ j ∈ J,∀k ∈ K (2.18)

y jtk +h j(t−1)k ≥ h jtk ∀ j ∈ J,∀t ∈ τ,∀k ∈ K (2.19)
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In the case of a resource failure (e.g., k = 1), we can set a downtime window (dt ⊆ τ) by
adding the set of constraints (2.20), limiting the activity of this resource, as follows:

y jt1 = 0 ∀ j ∈ J,∀t ∈ dt. (2.20)

step 2 Solve RP: To face the rescheduling problem, an RP model is applied. Once the parameters
and some variables are updated, this model is solved.

step 3 Stopping condition: Update the iteration counter: i = i+1. If i ≥ It, the iterative process
has ended. Otherwise, go back to step 1.

We adapt the optimization model presented in (HERRERA-CÁCERES et al., 2017) to
apply and compare the proposed methodology. Since it is also used to define the baseline plan
when replanning, this model is named SP. We aim for this procedure to reduce variability in the
rescheduling process in order to avoid significant changes in the base plan that may result in
greater nervousness for decision-makers.

2.5 Results analysis
In this section, we study the Non-myopic Rolling Horizon performance from different

perspectives. First, in Section 2.5.1, the case study and the implementation environment are
presented. After that, in Section 2.5.2, the variability of harvest plans and olive oil production are
analyzed by using two unfavorable and critical scenarios in olive harvesting operations: climatic
events and error estimation about the amount (tons) of fruit in lots.

2.5.1 Case study and implementation

Case study: The instance considers a planning horizon of 45 days and 63 lots of trees.
The lots belong to seven olive varieties, each with its own oil accumulation curve. Several
working methods are required for carrying out the harvesting operations due to the field’s
diversity. In this sense, some work teams are more suitable for places with difficult access, such
as slopes or hillsides. A summary of relevant parameters in our experiments is presented in Table
1.

Harvest mode Quantity available Harvesting capacity per lot (tons)
Machine 1 180
Shaker A 1 26

Shaker B.1 1 12
Shaker B.2 1 6

Manual 7 10.7
Table 1 – Equipment used in harvesting and its capabilities

Implementation:
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The mathematical model was solved by Gurobi 10 solver, coded in Python 3.6. The
computer used to run the models has a processor AMD Rayzer 5 3450U with Radeon Vega
Mobile Gfx 2.10 GHz and 8 GB of RAM. Optimum values were reached within 7,200 seconds.

2.5.2 Non-myopic Rolling Horizon applied to critical harvesting sce-
narios

We present two experiments based on undesired scenarios that may occur during harvest-
ing to evaluate the impact of the RP approach. The scenarios are related to fruit estimation and
weather conditions. In each scenario, we apply our methodology and compare it to the traditional
SP, evaluating a punctual contract. To solve the RP model, we apply a traditional weighted sum
(blended) approach. Then, the weighted sum objective is:

minZ = α f *1 +(1−α) f *2 ,

0 ≤ α ≤ 1, and f *1 , f *2 are normalized objective functions. Since f *1 is maximizing, it is defined
that f *1 = − f *1 . To normalize the objectives, we use the standard 0-1 min-max scaling that is
defined as follows:

f * =
f − fmin

fmax − fmin
,

where fmin and fmax are obtained from single-objective optimization models1.

2.5.2.1 Extreme weather event (Scenario 1)

Scenario 1 is related to a weather risk during the olive harvesting activities. It means that
the initial assumptions for generating the baseline plan (BP) have changed, forcing adaptation to
the new weather conditions (for example, imminent risk of rain). Our approach tries to maintain
the commitments with the suppliers. To represent this scenario, we bring one that was presented
by (HERRERA-CÁCERES et al., 2017), where it was considered a penalization (reduction) in
the quantity of fruit to be harvested. The model then tries to maximize the olive oil production,
harvesting at the optimal point, comparing the trade-off between loss due to weather risk and
loss for harvesting before the period of the maximum output. The olives losses are manifested
between days 19 and 22 of the planning horizon, losing 70% of those available each day. This
loss only affects some lots with special conditions, i.e., those that are exposed to fruit loss due to
their location.

1 Case min f : Let fmin be the optimal solution in the single-objective problem. Let fmax be the unbounded
constraint value from an optimization model considering the other objective. Case max f . Let fmax be
the optimal solution in the single-objective problem. Let fmin be the unbounded constraint value from
an optimization model considering the other objective.
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This experiment assumes that the new weather conditions are gathered just before the
harvest rescheduling. Under these circumstances, it is necessary to have a method to assist in
the negotiation, especially in a scenario in which available fruit is lost in the field. Scenarios
in which olives are lost for different reasons than climatic conditions, e.g., insect effects, poor
crop management, etc., are analogous to the ones studied in this section. The decision-maker can
reduce the nervousness of collaborators by maintaining the commitments close to the baseline
plan.

Different replannings have been generated with the RP model, considering three days of
analysis; days 7, 14, and 21 for the generation of harvesting plans. Each replanning obtains a
Pareto Frontier with different points of interest for the decision-makers.

For this scenario, the results are presented in Figure 3. It can be seen that as we replan,
looking at the horizontal axis of Figure 3, the value of the objective function f1 is decreasing
when a greater day of replanning is considered. This is due to the fact that as the harvest horizon
advances, more fruit has been harvested, and less is left to be harvested. On the other hand, it
can be seen that the maximum values of f2, in the vertical axis, are decreasing in value. This
is due to the fact that in the first days, there is more flexibility to generate plans that are very
similar to the baseline plan (BP).

To verify the deployment of the harvest plans, as they change as the prioritization of
one of the two objective functions changes, Table 2 is presented. It shows the aggregate harvest
quantities over the entire planning horizon for each work team. Looking at Table 2, we can
identify that both plans, a and b, harvest lower quantities compared to the BP. This is due to the
fact that there was an adverse effect that meant fruit was lost from the field; with this, the initial
conditions have changed. The differences between plans a and b are explained by the fact that
plan a, in the punctual manner, seeks to be more similar to the baseline plan (prioritizing f2),
while plan b seeks to maximize the amount of oil to be obtained.

Day 7 Day 14 Day 21
Harvest Mode BP a b BP a b BP a b

Machine 3,124.4 2,906.4 3,084.6 2,595.9 2,686.4 2,732.5 1,500.0 1,627.9 1,719.1
Shaker A 462.3 476.1 452.4 462.3 428.9 438.0 304.4 286.8 308.5

Shaker B.1 289.6 256.5 256.5 232.6 207.9 207.9 148.6 124.3 149.6
Shaker B.2 69.0 120.8 120.8 69.0 94.6 94.5 41.8 52.6 55.0
Manual 1 171.8 174.2 174.2 171.8 168.4 168.3 103.9 93.6 93.6
Manual 2 247.4 233.6 180.7 202.7 219.2 174.2 134.3 146.4 137.4
Manual 3 162.8 216.2 216.2 162.8 196.5 196.5 110.2 122.0 122.6
Manual 4 190.6 173.9 207.3 190.6 169.9 179.0 126.4 95.7 105.5
Manual 5 163.3 200.2 227.1 163.3 190.8 190.8 92.9 123.6 124.2
Manual 6 167.7 186.9 186.9 167.7 172.6 182.4 97.7 97.7 97.7
Manual 7 202.8 185.4 185.4 175.9 169.5 169.3 101.0 94.6 101.2

Total 5,251.6 5,130.2 5,292.1 4,594.5 4,704.7 4,733.4 2,761.2 2,865.2 3,014.4
Table 2 – Scenario 1. Harvest quantities for each resource for the different replanning days. BP is the

baseline plan, a and b are the lower and upper endpoints of the Pareto Frontier presented in
Figure 3.
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Figure 2 – Harvest planning obtained from day 21 to the end of the horizon (BP). The WT column indicates the
working team with which the olive harvest is to be carried out. Each work team is assigned a color. The
cells indicate the quantity harvested in each lot daily and with the corresponding work team.
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Figure 3 – Pareto Frontier, Scenario 1 with punctual type contract.

A more detailed look at what the harvest plans look like is shown in Figure 2. The WT
column indicates the working team with which the olive harvest is to be carried out. Each work
team is assigned a color. The cells indicate the quantity harvested in each lot daily and with the
corresponding work team. It shows a part of the baseline plan from day 21 to the end of the
harvest season. We can verify that the harvest is carried out continuously in a lot as long as there
is availability in the mill. This plan can be compared with the plans shown in Figure 4 and 5.
Regarding the plan shown in Figure 4, we can understand that it is a plan that seeks to be as
similar as possible to the baseline plan; therefore, it can be seen that the allocation of lots and
work teams is the same between the new plan Figure 4 and the baseline plan Figure 2. However,
a rigid allocation in view of an adverse scenario can lead to inefficiency in the use of resources
since the harvesting quantities are no longer the same as in the baseline plan. For this, the plan
presented in Figure 5 presents a different allocation of lots, with seven changes of resources and
lots with respect to the baseline plan, but with higher amounts of olive harvesting.

2.5.2.2 Underestimated harvest yield (Scenario 2)

Since fruit estimation is a well-known challenge in agriculture (GÓMEZ-LAGOS et

al., 2023), Scenario 2 is presented as an underestimated fruit forecast scenario. The experiment
considers a higher amount (20%) of olives in lots when rescheduling is generated. This scenario
has the opposite effect to the one presented in the previous section. In this case, there is a
greater amount of fruit available in the field. While it may be a beneficial scenario in terms of
higher productivity, resources committed under the baseline plan may already be committed to
delivering services in other fields in parallel.

An expected effect of this event is related to the fact that if we try to be as close as
possible to the baseline plan, that is, to look for small discrepancy values (low values for f2),
we will be losing olive oil production (low values of f1). This is explained by the fact that the
baseline plan is generated with less fruit.
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Figure 4 – Scenario 1. Harvesting plan for point a in Figure. 3
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Figure 5 – Scenario 1. Harvesting plan for point b in Figure 3.
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Day 7 Day 14 Day 21
Harvest Mode BP a b BP a b BP a b

Machine 3,124.4 3,012.0 3,530.8 2,595.9 2,672.6 3,303.6 1,500.0 1,769.5 1,972.5
Shaker A 462.3 507.8 610.4 462.3 460.6 498.8 304.4 328.9 372.3

Shaker B.1 289.6 256.5 307.3 232.6 215.1 241.7 148.6 135.5 153.2
Shaker B.2 69.0 120.8 134.8 69.0 100.5 106.9 41.8 57.3 62.0
Manual 1 171.8 174.2 233.2 171.8 174.2 224.5 103.9 102.1 129.6
Manual 2 247.4 233.6 252.0 202.7 219.2 241.0 134.3 156.7 175.0
Manual 3 162.8 216.2 259.2 162.8 202.9 218.4 110.2 132.3 145.6
Manual 4 190.6 173.9 236.5 190.6 169.9 140.2 126.4 106.0 124.5
Manual 5 163.3 200.2 274.5 163.3 190.8 228.5 92.9 133.8 147.3
Manual 6 167.7 186.9 266.9 167.7 183.1 193.9 97.7 106.1 156.2
Manual 7 202.8 185.4 219.5 175.9 180.0 204.5 101.0 103.1 137.4

Total 5251.6 5,267.5 6,325.1 4,594.5 4,768.9 5,602.0 2,761.2 3,131.3 3,575.6
Table 3 – Scenario 2. Harvest quantities for each resource for the different replanning days. BP is the

baseline plan, a and b are the lower and upper endpoints of the Pareto Frontier presented in 6. .

Figure 6 – Pareto Frontier, Scenario 2 with punctual type contract.

Indeed, the effect mentioned above can be seen in Figure 6. In it, we can see that for each
of the replanning days (7, 14, and 21), there is an extremely lower point on the Pareto Frontier.
This point represents a plan very similar to the baseline plan; however, we can observe that if we
move away from resembling this baseline plan, i.e., we allow f2 to get worse, we can understand
that we gain higher olive oil production, higher values of f1.
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Figure 7 – Scenario 2. Harvesting plan for point a in Figure 6.
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Figure 8 – Scenario 2. Harvesting plan for point b in Figure 6.

To see how plans can change in terms of quantities harvested, Table 3 is presented. It
shows the harvested quantities by the different work teams for BP and both points a and b. Firstly,
what can be seen is that both plans a and b harvest more fruit than the BP. This is explained
by the effect of the error in the estimation of fruit in the field and the subsequent generation
of the baseline plan under these conditions. Analyzing the new plans, it can be seen that if we
prioritize to resemble the BP (point a), we sacrifice fruit available in the field since we could
place ourselves at point b with higher production. This should be left to the decision makers
and analyze if the cost of respecting labor contracts is higher than the opportunity cost of taking
advantage of a larger harvest. An important comparison is to see how the lots are better harvested
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in the plan presented in Figure 8 (point b) compared to the plan presented in Figure 7 (point
a). It can be seen that one extra day is dedicated to some lots (for example, 1, 4, and 30). On
the other hand, if we seek to resemble the baseline plan, Figure 2, we would be interested in
taking the plan presented in Figure 7. In it, we can see that there are no changes in the allocation
between lots and work teams, and the harvest lots are similar.

2.6 Conclusions
In agricultural harvesting, a Non-myopic Rolling Horizon methodology for rescheduling

was presented. The approach allows coping with the dynamic agricultural environment and its
undesired events by managing the variability between updated and baseline plans. Through this
approach, we incorporate underlying factors of harvest operations, such as contracts with service
providers and adverse scenarios.

BP can find solutions for rescheduling after critical scenarios involving uncertain pa-
rameters. Moreover, using our methodology, it was possible to empirically verify a decrease in
variability. Different Pareto frontiers were generated in the different scenarios studied, and it was
possible to observe the flexibility needed to cope with different field conditions. In summary,
this approach can be useful for agricultural decision-makers at the operational level, allocating
resources following critical harvest scenarios.

Future works could focus on the application of rescheduling to other harvesting models.
Also, different contract-related functions could be studied to identify their impact on variability
plans. Finally, this methodology could be improved with a scenario-based baseline plan that
considers a robust approach to uncertainty and minimizes variability.
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CHAPTER

3
MULTI-OBJECTIVE MODEL FOR

IRRIGATION.

3.1 Introduction

The agricultural sector has suffered a significant increase in its functions and despite
this, it is contrasted with a decrease in the availability of water, which is necessary for crops
to be productive. The trend is that there is less and less availability of water resources and
together with global warming, generate a complex scenario for food security (PEREIRA et al.,
2018b). Due to this, it can be understood that irrigation management is not only important for
the productive factor associated with field performance, but also has a social and environmental
role, recognizing that agriculture is the sector that requires more water to carry out its activities,
consuming about 70% of all water used worldwide. That is why in recent times the influence
of irrigation and the use of fertilizers on fruits, has taken an important relevance by researchers
(ZHOU et al., 2020a).

In view of the above challenges, the activity of irrigation scheduling takes on great
relevance to keep crops productive while maintaining an adequate allocation of a scarce resource.
With respect to the higher productivity required by the increase in the world population and
climate variability, the adaptation of irrigated agriculture includes efforts such as changes in crop-
ping patterns, design of reservoirs with greater catchment capacity and increased groundwater
pumping.

In particular, the northern part of Chile is one of the most arid places in the world,
recognizing that the central-northern part is being exposed to a mega-drought (MESEGUER-
RUIZ et al., 2020). Specifically, the region of Coquimbo (32S-29S), has important variations
regarding annual rainfall and the increase or decrease of them, responds to the presence of the El
Niño phenomenon, concentrating in the winter season (May to September) (MONTECINOS
et al., 2016). In addition to this risk of having rainfall in some years and not in others, the
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region is exposed to competition for water resources promoted by the demographic increase
in the main cities of the region, increased mining and agricultural activity (ALIMENTACIóN,
2010). According to (AGRARIAS, 2018), there is a mismatch between water supply and demand,
where surface water provides 430 million m3 and demand is close to 530 million m3, making it
necessary to fill the shortfall with groundwater.

Due to this scenario of uncertainty, one of the main variables to be defined is the amount
of water needed to carry out irrigation throughout the growing season, from fruit growth to
harvest. Considering that, depending on the amount of water available in the region’s reservoirs,
they will influence the amount of water to be delivered through a fixed number of shares
corresponding to the entities associated with the canal, which transports water from the reservoirs
to the ponds arranged to store the water for the crops. The fact that the rainfall trend in the study
region fluctuates and maintains a downward trend, causes part of the minimum water needed for
the crops to be acquired through purchases from water supply companies. Once the minimum
amount of water to irrigate the crops is established, the planning of the different irrigation sectors
must be carried out, including the amount lost through evapotranspiration, seeking to meet the
minimum required for the crops to be productive.

Regarding these challenges, the application of mathematical programming methods can
make an important contribution. In response to this opportunity, this paper develops a multi-
objective model for irrigation scheduling for a field in the Coquimbo region, Chile. Our model
allows prioritizing certain sectors based on their historical productivity, in order to do the best
possible in scenarios in which uncertainty exists and water availability is low. Our contribution
can be summarized as follows.

(i) A bi-objective mathematical model to plan the irrigation season in an olive crop, seeking
to maximize the productivity of the quarters and minimizing the costs of water extraction
and expulsion.

(ii) The mathematical model is applied to an olive crop in the region of Coquimbo, Chile.

This article is organized as follows. In Section 3.2, work related to irrigation scheduling
using mathematical models is presented. A multi-objective model for crop irrigation is presented
in section 3.3. Section 3.4 provides information related to the study region. Experiments and
in-depth analysis of the results are presented in Section 3.5. Lastly, the conclusions and future
work are discussed in Section 3.6.

3.2 Background

Different authors have studied the challenge of irrigation scheduling in crops, which
are exposed to water availability problems, where water is often insufficient to ensure that the
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plantations are irrigated with their minimum requirement. In view of this complex scenario,
(KHAN; JAIN, 2015) developed a model that allows optimal irrigation scheduling, allocating
water to various crops (wheat, barley, mustard and gram) seeking to reduce the water stress to
which they are exposed, trying to maximize the net benefits. The solution to this problem is
through the adaptation of the dynamic programming technique, the seasonal water allocation
is done through combinations of canal and groundwater. In addition to the water difficulties
presented by some areas of the planet, it must consider the increase in population and its
relationship with food security. In the presence of these challenges, (WARD; CRAWFORD, 2016)
develop an integrated empirical optimization model using positive mathematical programming
(PMP), which helps to forecast cropping patterns and farm incomes under two scenarios; one
maintaining the status quo without considering water storage capacity and another in which
capacity is added.

For the optimal irrigation planning of a river basin in southern Iran, they generate a
tool that considers water, technical, agronomic and economic aspects, where two mixed integer
nonlinear programming models (MINLP) are used. The solution of these models is through
a simulation-optimization approach, coupling a modular simulation model and an optimiza-
tion model based on evolutionary algorithms. For optimal irrigation and fertilizer scheduling
(NGUYEN et al., 2017) propose simulation-optimization framework which is optimized using
the ant colony algorithm (ACO). When water availability is very limited, farmers must select
which crop from the available ones to irrigate, to help this decision (BOU-FAKHREDDINE et

al., 2016) develop a nonlinear optimization model for multiple crop planning (MCP) and water
allocation, seeking to maximize the net benefit of crops. The solution of this model in a first
instance is by linear relaxation to then use two metaheuristic algorithms, Simulated Annealing
(SA) and Particle Swarm Optimization (PSO). Addressing the multi-crop problem, they develop
two models for water and field management. The first model focuses on generating key parame-
ters to help farmers’ decision making along with an irrigation plan and the second one, allows
adding rainwater to irrigation plans.

Often the water resources available in a given area are shared with the resident community
and are not used exclusively for agricultural crops. In this sense, planning takes a role not only
of production but also social. For this challenge (JIANG et al., 2019) present regulatory model
for optimal water management, seeking to maximize agricultural benefits while ensuring the
fulfillment of rural demand. Coordinating resources for economy, society and ecology, (ZHAO
et al., 2017) establish a linear fractional programming model to maximize water productivity in
the presence of water resources allocation for agriculture. A correct demand estimation allows
minimizing water misuse and even, helps to maintain crop productivity (ZHOU et al., 2020b).
In view of this, (ZHOU et al., 2020b) develops a channel scheduling model where the greatest
amount of water is supplied to each channel, minimizing soil detour and salinity. Regarding the
estimation of water demand (ELBAKIDZE; SCHILLER; TAYLOR, 2017) develop a function,
which is generated through a mathematical model that considers the flexibility of farmers in the
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application of water on their crops. Water pricing policies along with the generation of efficient
irrigation schemes is studied by (OHAB-YAZDI; AHMADI, 2016). For the generation of these
policies with a fair price for the farmer, the authors perform a mathematical programming model
with the objective of maximizing the net benefit of water allocation.

(CHEN et al., 2016) address the optimal scheduling of multiple crop irrigation in coordi-
nation with the operation of reservoirs and ponds. They achieve this by using two models: one
that is responsible for generating reservoir and pond operational plans and another, is responsible
for optimizing the allocation of water to crops. The solution of these models is through an
adaptation of the artificial bee colony algorithm. In the same sense, (RUBIO-CASTRO et al.,
2016) address the planning of a water management network defined as a multiperiod optimiza-
tion problem and formulated as a MINLP, where the design of an irrigation network is studied
considering water use, reuse and regeneration in a field constituted by several croplands. Both
the coordination of plowing and irrigation tasks are addressed by (KHEYBARI; SALEHPOUR,
2015), for which two mathematical models are proposed, the first one focuses on minimizing
the time required to perform the plowing tasks and the second one is in charge of defining the
optimal instants of the opening of the irrigation valves.

When pursuing more than one objective related to crop production and its relationship
to water use, multi-objective models are useful. (LALEHZARI et al., 2016) uses this approach
to maximize both (1) net benefit and (2) relative water use efficiency. A non-dominated sorting
genetic algorithm (NSGAII) is employed to solve this problem. Bearing in mind the cost of
water pumping, they develop a multi-objective model trying to minimize the pumping costs
while maximizing the water pressure at critical moments, considering the minimum volumes
requested by the crops. (GUO et al., 2020) develop a framework based on the AquaCrop model to
optimize the winter wheat irrigation schedule for different hydrological scenarios. The presented
framework includes the use of a model that targets crop yield, water use efficiency (WUE)
and economic benefit of irrigation. In the presence of the risk of water shortage (LI et al.,
2019), they develop a stochastic multi-objective nonlinear programming (SMONLP) model for
the generation of irrigation water allocation plans, balancing the interactions between societal,
economic and resource sectors. Mismanagement in water use have motivated (ZHANG et al.,
2019) to develop an entropy-based multi-objective interval stochastic interval programming
(EMISP) approach. The benefits of this approach relate to balancing multiple production and
ecological objectives while considering uncertainty conditions.

Aspects related to power supply flexibility are addressed by (GOLMOHAMADI; ASADI,
2020). In their work, they first propose a model that allows generating an irrigation plan,
considering water supply and booster pumps. Along with this, a stochastic approach is generated
in order to provide a response to the water demand to meet the requirements in long, medium
and short term periods. In view of a water shortage scenario, they seek to maximize the benefits
of irrigation schemes, where this is done by using a two-stage stochastic quadratic programming
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model with fuzzy intervals. Under the same water shortage scenario, under constraints such
as agricultural land availability and crop water requirement, (ZHANG et al., 2020) propose
an entropy-based multi-objective interval stochastic programming model (EMISP). Studying
the design of an irrigation system including a reservoir and the downstream irrigation network,
they propose a stochastic mathematical programming model, which includes uncertain factors
such as reservoir inflow, water demands, crop yields, product selling price, and production costs.
(ZHANG; LI; GUO, 2017) seek to respond to the management uncertainties and complexities
of irrigation systems through an interval-based fuzzy interval-based fuzzy credal constraint
programming (IIFCCP) model. Seeking to keep crops in good condition, they develop a model
that minimizes mismanaged water and due to changing climatic conditions, they propose a
rescheduling strategy.

As a conclusion of this section, several works have been proposed to address the irrigation
problem through the use of optimization models, together with the application of mathematical
programming. From this, we seek to contribute to the problem of generating irrigation schedules,
considering extraction costs and water supply to the olive crop, in addition to maximizing
productivity.

3.3 A multi-objective model for irrigation planning
The model can be formulated as follows:

3.3.1 Sets, Variables and Parameters
Sets

T Total period in days of the planning horizon.
J Set of lots of olives.
K Set of wells.

Variables

x jt Quantity of water (in m3) to be irrigated in the lot j ∈ J during the period t ∈ T .
At Quantity in m3 of water stored in the dam in period t ∈ T .
wkt Water pumped from wells k ∈ K during period t ∈ T , measured in m3.
I jt Hours of irrigation of the j ∈ J quarters for the day t ∈ T .
U jt Maximum water requirement in lot j ∈ J, during the period t ∈ T .

Parameters

Q j Cost of water supply to lots j ∈ J.
Ck Cost of drawing water from the well k ∈ K.
Dk Water availability of well k ∈ K in m3.
Pj Productivity of the lot j ∈ J, measured in (Kg

m3 ).
R j Flow rate delivered by the drippers ( m3

hour ) in lot j ∈ J.
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ρ j Number of drippers per hectare of lot j ∈ J.
S j Area in hectare of lot j ∈ J.
T max Maximum hours for an irrigation shift.
et Percentage of water loss associated with transportation.
B j Hydric requirement for one season (m3) for lot j ∈ J.

3.3.2 Mathematical modeling

max ∑
j∈J

∑
t∈T

Pj · x jt ( f1)

min ∑
k∈K

∑
t∈T

Ck ·wkt + ∑
j∈J

∑
t∈T

Q j · x jt ( f2)

subject to:

U jt ≥ x jt ∀ j ∈ J,∀t ∈ T (3.1)

At+1 =At · (1− et)+ ∑
k∈K

wkt − ∑
j∈J

x jt ∀t ∈ T (3.2)

∑
j∈J

∑
t∈T

x jt ≤ ∑
t∈T

At (3.3)

∑
t∈T

x jt ≥ B j ∀ j ∈ J (3.4)

∑
t∈T

wkt ≤ Dk ∀k ∈ K (3.5)

U jt =I jt ·R j ·ρ j ·S j ∀ j ∈ J,∀t ∈ T (3.6)

I jt ≤ T max ∀ j ∈ J,∀t ∈ T (3.7)

At ≥ 0 ∀t ∈ T (3.8)

wkt ≥ 0 ∀k ∈ K,∀t ∈ T (3.9)

x jt ,U jt , I jt ≥ 0 ∀ j ∈ J,∀t ∈ T (3.10)

Regarding the objective functions, f1 seeks to maximize crop productivity. Note that Pj

represents the crop productivity associated with the amount of water added. f2 seeks to minimize
the electricity costs associated with extraction and subsequent boosting. Equation (3.1) defines
that the amount of water to be irrigated must be between a minimum range required by the sector
and an associated maximum. The water balance is given in equation (3.2), where the losses
associated with transport and evapotranspiration are included. In (3.3) it is established that what
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can be irrigated can be at most what is available.For each lot, the minimum water requirement
must be met (3.4). In (3.5) the amount of water that can be extracted is limited to the maximum
available. Finally, in (3.6) the nature of the variables is established.

3.4 Case study: Cultivation of the Coquimbo region, Chile

The objective of this case study is to present the usefulness of the proposed model for
decision makers, based on a crop located in the region of Coquimbo, Chile. The water availability
of the area is given by the accumulated amount of water in the reservoirs and the extraction
capacity of the respective wells. The northern zone of Chile is being affected by a prolonged
drought, which has repercussions on the amount of water that can be maintained in the reservoirs.
Therefore, at present, the water available comes from the wells located within the crop field.
There are two wells with capacities of 1,146 and 103,437 m3 per month. The farm has a total
of 207.9 hectares of olive trees. Table 4 presents the data for the field under study for the 2022
season. The area of each quarter, the water irrigated for the growing season, the olive production
obtained and the corresponding productivity are presented. The irrigation system used is drip
irrigation, so it is estimated that around 10% is lost through water transport (et). The drippers
have a capacity to irrigate 4 m3 per hour.

Lot Irrigation per month (m3) Olives (kg) Surface (hectares) Yield (kg/m3) dippers/ha
1 1,263.78 8,817.00 17.20 0.58 3,331
2 1,764.02 1,866.00 23.00 0.09 3,331
3 1,198.06 2,230.00 18.00 0.16 3,331
4 1,840.79 4,884.00 5.20 0.22 3,331
5 1,903.31 16,291.00 19.16 0.71 3,331
6 7,427.62 29,998.00 26.25 0.34 3,239
7 6,249.29 9,134.00 21.44 0.12 3,239
8 3,244.17 3,869.00 12.70 0.10 3,239
9 1,322.73 8,247.00 3.94 0.52 3,239

10 4,218.67 35,544.00 8.84 0.70 3,239
11 4,256.85 17,527.00 8.92 0.34 3,285
12 3,378.75 20,057.00 7.08 0.49 3,285
13 3,388.30 17,174.00 7.10 0.42 3,285
14 3,034.98 20,586.00 5.10 0.57 3,285
15 2,981.73 49,258.00 5.20 1.38 3,285
16 2,600.20 28,939.00 4.70 0.93 3,285
17 2,323.59 43,027.00 4.20 1.54 3,285
18 2,295.71 37,555.00 4.30 1.36 3,285
19 1,975.38 34,570.00 3.70 1.46 3,285
20 1,014.38 7,411.00 1.90 0.61 3,285

Table 4 – Olive field data for the season 2022.
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3.5 Results

3.5.1 Implementation and code

The mathematical model was solved by Gurobi 10 solver, coded in Python 3.6. The
computer used to run the models has a processor AMD Rayzer 5 3450U with Radeon Vega
Mobile Gfx 2.10 GHz. and 8 GB of RAM. Optimum values were reached under 3,600 seconds.

3.5.2 Lexicographic approach

Due to the origin of the case study, an approach to reduce costs and maximize the
productivity of the olive orchards, this approach has been chosen. A hierarchical or lexicographic
approach assigns a priority to each objective, and optimizes for the objectives in decreasing
priority order. At each step, it finds the best solution for the current objective, but only from
among those that would not degrade the solution quality for higher-priority objectives.

3.5.3 Planning for one month of operation

In this section, the application of the mathematical model presented above to irrigation
scheduling in an olive grove crop is studied together with the data of the case study. One month
of work is considered, with daily scheduling. In accordance with the lexicographic solution
approach of the model, two scenarios are presented. In the first one, the aim is to do the best
possible with respect to the productivity of the field; on the other hand, the second scenario seeks
to minimize extraction and irrigation costs. Table 5 shows the values of the objective functions.
Note that in the case of scenario 1, higher crop productivity is obtained at a higher cost. For
the case of scenario 2, costs are optimized but crop productivity is sacrificed. The details of the
irrigation schedules for each scenario are presented in Table 6 and 7. The main considerations
that can be drawn are that depending on the scenario in which the company finds itself, it can
opt for one strategy or another with the objective of doing the best possible in view of scarce
resources.

f1 f2
Scenario 1 124,131 5,689,035
Scenario 2 13,566 1,310,371

Table 5 – Values of the objective functions obtained according to the scenario to be optimized.

3.6 Conclusions and Future Work

In this work, a multi-objective mathematical model has been developed to plan crop
irrigation, considering two objectives: maximizing productivity and minimizing extraction and
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Table 6 – Irrigation plan in m3 for the different lots of olives for 28 days. Scenario 1.
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Table 7 – Irrigation plan in m3 for the different lots of olives for 28 days. Scenario 2.
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irrigation costs. The model has been applied to a case study in the region of Coquimbo, Chile,
where the behavior of the system has been analyzed under two scenarios: one with budget
flexibility and the other with economic restrictions.

The results obtained show that the model is capable of generating two different irrigation
schedules, depending on the scenario in which the decision-maker finds themselves. For the
scenario with budget flexibility, an irrigation plan is proposed that seeks to optimize field
productivity, using more water and energy to meet crop needs. For the scenario with economic
constraints, an irrigation plan is proposed that minimizes costs but meets the minimum crop
requirements, using less water and energy but sacrificing part of the production.

The proposed model is a useful tool for efficient water resource management in agricul-
ture, as it allows evaluating the impact of different irrigation alternatives in terms of productivity
and costs. In addition, the model is flexible and adaptable to different climatic, hydrological and
agronomic conditions, which makes it applicable to other regions or crops. As future works, it is
suggested to incorporate other environmental or social criteria in the multi-objective model, as
well as to consider uncertainty in the input and output data.
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CHAPTER

4
CONCLUTIONS

In this work, two mathematical models have been developed for crop harvesting and
irrigation scheduling and rescheduling, considering different objectives and scenarios. The
models have been applied to case studies in Chile, where the performance of the agricultural
system under dynamic and uncertain conditions has been evaluated.

The results obtained show that the models are capable of generating efficient and flexible
solutions for the management of resources and operations in the agricultural sector, taking into
account economic, productive and contractual aspects. The models allow the decision-maker to
choose the best alternative according to his preferences and constraints, as well as to adapt to
changes and undesired events that may occur during the process.

The proposed models are useful tools for decision making at the operational level in
the agricultural field, as they facilitate the optimization and control of harvesting and irrigation
activities. In addition, the models are flexible and adaptable to different contexts and crops,
which makes them applicable to other regions or problems.

The importance of mathematical models in agricultural management is understood and
their usefulness lies in the fact that they provide basic criteria and tools to better manage and
interpret agricultural activity, meet the demands of new technologies to produce in highly
competitive global markets while safeguarding natural resources, and make medium- and long-
term decisions under similar experimental conditions. Mathematical models also make it possible
to represent each stage of the agricultural production process and seek to optimize both the
maximization of production volumes and the minimization of costs associated with cultivation
and harvesting. Mathematical models also help to evaluate the impact of different climatic,
hydrological and agronomic variables on agricultural yields and to reduce the uncertainty and
risk involved in agricultural production.
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