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ABSTRACT

ABREU, L. R. Contributions to new variants of the open shop scheduling
problem: modeling and solution methods. 2023. 253p. Thesis (Dissertation) - São
Carlos School of Engineering, University of São Paulo, São Carlos, 2023.

Several studies have been carried out regarding optimizing production scheduling in
industrial environments. As a result, new variants related to several problems have been
incorporated into this study area to cover the most diverse cases presented in productive
environments. In this sense, this dissertation aimed to study a production scheduling
problem little stressed in the literature, the production scheduling problem in an open shop
environment with many applications in the industrial and services areas. In this study, we
observed essential constraints for the described environment, which became new variants
for the problem: the sequence-dependent setup times; the study of blocking machines in
the processing of operations; the study of reprocessing or repetition of operations in the
production process and the delivery of products through the vehicle routing. The objective
of these problems was to minimize the total duration of the schedule (makespan). We
proposed heuristic methods for modeling and solving these problems, such as priority rules,
constructive techniques, bio-inspired meta-heuristics, and mathematical programming
methods such as integer linear programming and constraint programming models and
matheuristics. For the computational tests, we ran the methods with robust data from
classical literature instances adapted to the constraints of the problems under consideration
and new instances proposed during the study. The results showed that the proposed exact
and approximate methods provided quality solutions with computational efficiency and
were competitive compared to the literature methods.

Keywords: Mathematical modeling. Approximation algorithms. Population algorithms.
Open shop.





RESUMO

ABREU, L. R. Contribuições para novas variantes do problema de
programação da produção open shop: modelagem e métodos de solução. 2023.
253p.Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2023.

Nos últimos anos, diferentes estudos têm sido realizados no que tange à otimização da
programação de tarefas em ambientes produtivos. Novas variantes, relacionadas a diferentes
problemas, têm sido incorporadas a essa área de estudo a fim de se adequar ao maior
número possível de ambientes reais de produção. Dentro desse contexto, a tese visou
o estudo do problema de programação da produção em ambiente open shop. O open
shop é um ambiente de produção pouco destacado na literatura, quando comparado
aos ambientes clássicos de produção como o flow shop e o job shop, e possui diversas
aplicações nos setores industriais e de serviços. Nesse estudo, foram observadas importantes
características para o ambiente retratado, as quais se transformaram nas seguintes novas
variantes para o problema: a consideração de tempos de preparação (setups) explícitos,
dependente da sequência das operações e das máquinas; a existência de bloqueio de
máquinas no processamento das operações; a existência de reprocessamento ou repetição
de operações no processo produtivo; e a entrega dos produtos por meio da roteirização de
veículos. O objetivo desses problemas foi encontrar soluções que minimizem algum indicador
sobre o nível de serviço da operação, como a duração total da programação (makespan).
Para a modelagem e a resolução desses problemas, foram utilizados métodos heurísticos:
regras de prioridades; técnicas construtivas e meta-heurísticas bioinspiradas; e métodos de
programação matemática, como modelos de programação linear inteira e de programação
por restrições e mateurísticas. Para os testes computacionais, os métodos foram executados
com dados robustos, advindos de clássicas instâncias da literatura adaptadas para as
restrições dos problemas em consideração ou instâncias novas propostas durante o trabalho.
Os resultados mostraram que os métodos exatos e aproximados forneceram soluções de
alta qualidade e com eficiência computacional, sendo competitivos quando comparados
com os atuais métodos da literatura.

Palavras-chave: Modelagem matemática. Algoritmos de aproximação. Algoritmos popu-
lacionais. Open shop.
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1 INTRODUCTION

The industrial environment is developing at a fast rate. Such changes are represented
by the increasing levels of production provided by the constant technological advancement
of methods and processes related to operations management. The production processes
are becoming more specific and detailed, which allows them to operate on a large scale
with personalized demands or demands with more flexibility (FRAMINAN; LEISTEN;
GARCÍA, 2014).

In order to maintain the required production level in the industry, quantitative
methods should be created and applied to support decision-making processes to achieve
greater effectiveness of production systems, hence ensuring that the demands required of
industry are delivered in the best possible way.

One of the study areas of industrial engineering where optimization methods for
production systems are more applicable and with evident results is production scheduling.
Production scheduling can be defined as determining where and when the necessary
operations for a product will be allocated and carried out, defining dates to start and
complete the necessary operations (PINEDO, 2016; FRAMINAN; LEISTEN; GARCÍA,
2014).

This area is dedicated to optimizing the allocation of tasks to available resources
in a production system during a scheduling horizon. In this way, it is possible to make
better decisions to improve classic problems in the industrial environment, whether large,
medium, or small size, such as reduction of lead time, reduction of setup times, and better
utilization of bottleneck resources (PINEDO, 2016).

With more detailed knowledge about the industrial environment, it becomes possible
to realize the most different approaches to the problems already studied in production
scheduling. For more complex production environments, such as the open shop, there is
the opportunity for improvement in several approaches already presented in literature
and even the development of new approaches for new variants of the problem in the face
of the characteristics and needs present in the real world. Therefore, studying different
production environments and their computational modeling is necessary, aiming to consider
constraints that model the real systems to develop efficient resolution strategies. The
present project proposes solution methods for the open shop scheduling problem. The
problem is not so addressed in the literature when compared to other classical problems of
the area (ANAND; PANNEERSELVAM, 2016).

This doctoral dissertation aims at proposing models and solution approaches for
new emergent variants of the open shop scheduling problem. The problem is not so
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covered in the literature of scheduling when compared to other classical problems in the
area (AHMADIAN et al., 2021a). The objective is to minimize the scheduling duration
(makespan), using for solving the problem: exact methods, such as mathematical and
constraint programming models, and approximate methods, such as constructive heuristics,
metaheuristics, and matheuristics.

The next sections 1.1 and 1.2 illustrate the motivation behind this research and
the general and specific objectives. The remainder of this project dissertation is organized
as follows: Chapter 2 explains the production scheduling problems and the notations for
representing of these problems. Chapter 3 illustrates the main solution methods used for
solving the open shop and their proposed variants, building up the theoretical foundations
of the research. Chapter 4 shows the integrative summary of the new variants of the open
shop described throughout the doctoral dissertation. Chapters 5, 6, 7, 8 and 9 illustrate the
main contributions for each variant studied in the research, with each chapter representing
a complete article about one variant. Finally, chapter 10 maps out the overall conclusions
of each study and illustrates future research directions.

1.1 Motivation

Production scheduling problems are widely studied as optimization problems due
to several industrial applications. The classic open shop production scheduling problem
(OSSP) consists in scheduling a set of jobs on a set of machines, where each operation
is associated with a processing time, not existing any predefined sequence of operations
execution. The problem has practical and theoretical importance and has received less
attention compared to the other classical production scheduling problems (ANAND;
PANNEERSELVAM, 2016; ADAK; AKAN; BULKAN, 2020; AHMADIAN et al., 2021a).

Since in the problem there is no predefined sequence of operations, the number of
feasible solutions is more significant than classical production scheduling problems such
as flow shop and job shop (AHMADIAN et al., 2021a). The OSSP has many industrial
applications, such as plastic injection, chemical processes, oil industries, food production,
and pharmaceuticals. In the service sector, this problem can be modeled to schedule
medical services, vehicle maintenance, museum visits, and telecommunications services
(GONZALEZ; SAHNI, 1976; LIN; LEE; PAN, 2008; VINCENT; LIN; CHOU, 2010;
NADERI; ZANDIEH, 2014; NADERI; NAJAFI; YAZDANI, 2012; CANKAYA; WARI;
TOKGOZ, 2019; SHAREH et al., 2021).

In classical production scheduling research in the open shop environment, more
complex constraints on job flows/inventory are not considered or are considered part of
the processing time in the case of setup times. However, this simplification may increase
the scheduling duration when the obtained solution is implemented in the industrial
environment due to not considering these fundamental properties (ALLAHVERDI, 2015;
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ANAND; PANNEERSELVAM, 2016).

Hence, when these emergent constraints are considered a parameter of the problem,
it is possible to develop more assertive schedules. Therefore, by explicitly taking setup
times and machine blocking constraints into account, for example, a given production
scheduling problem can be solved more realistically with these important characteristics
that have many industrial applications (ALLAHVERDI et al., 2008).

Despite the theoretical and practical importance of the open shop, contributions in
the literature to new variants of the problem are limited. These limitations are highlighted
in some recent literature reviews on production scheduling problems with setup costs (AL-
LAHVERDI; GUPTA; ALDOWAISAN, 1999; ALLAHVERDI et al., 2008; ALLAHVERDI,
2015), blocking constraints (HALL; SRISKANDARAJAH, 1996; MIYATA; NAGANO,
2019), integrated scheduling and distribution problems (WANG; GRUNDER; MOUDNI,
2015) and on open shop problems (ANAND; PANNEERSELVAM, 2016; ADAK; AKAN;
BULKAN, 2020; AHMADIAN et al., 2021a). These are the most recent gaps in the open
shop literature.

In summary, the main motivation for this study is that there are few studies in
the open shop problem literature with different industrial applications, such as machine
blocking and operations repetitions characteristics. In addition, the need for more efficient
methods for solving the open shop in the current literature is also a research motivation,
as shown in the most recent open shop literature reviews (ADAK; AKAN; BULKAN,
2020; AHMADIAN et al., 2021a).

1.2 Objective

The doctoral dissertation aims to study the open shop production scheduling
problem, considering its classical structure, together with emerging variants, based on
characteristics of production scheduling in complex industrial environments, such as
explicit and sequence-dependent setup times; repetition of operations; zero buffer or
machine blocking constraints and job delivery by vehicle routing. In each variant, the
objective is to minimize the makespan.

1.2.1 Specific objectives

1. Implement new constructive heuristics to solve the classical open shop problem,
comparing it with seminal heuristics such as priority rules and constructive heuristics
presented in the literature;

2. Use matheuristic techniques with the proposed constructive heuristics, mixed-integer
linear programming, and constraint programming to solve the variant of the problem
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with setup times, considering randomly generated instances from the literature.
Comparing the algorithms with the main state-of-the-art solving methods;

3. Propose a formal definition for the open shop problem with machine blocking and
develop mathematical models of integer and constrained programming and hybrid
exact methods to solve the problem.

4. Study the open shop scheduling problem, considering the possibility of repetition
of operations, demonstrating properties of the problem, and developing exact and
approximate solving methods;

5. Study the open shop problem, integrating the scheduling and distribution of orders by
capacitated single vehicle and using exact methods and bio-inspired metaheuristics
for the problem’s solution;

With the structure of the objectives mentioned above, the doctoral dissertation is
formatted as a collection of articles. Each chapter is an article with a new variant of the
open shop problem with the proposed mathematical modeling and solution methods.

Based on the achievement of the declared objectives, it is possible to improve
the literature of the open shop problem by proposing efficient solution methods for the
proposed variants considering constraints of real industrial environments, such as the
machine blocking constraints, order distribution, and operation repetition. Furthermore, it
is possible to develop efficient solutions methods to the problems already mentioned in the
literature, comparing benchmarking methods, such as the classical open shop problem and
the variant with setup times.

1.3 Research methodology

Regarding the research methodology used, according to Lakatos and Marconi
(2010), scientific research can be classified concerning its nature, approach, objective and
technical procedure. This doctoral project is characterized by the scientific method as
applied nature research to solve real problems with a quantitative approach through
computational techniques as the main approach.

Concerning the research objective, the project is classified as an exploratory and ex-
planatory study because from a literature study on problem-solving methods, approximate
and exact methods will be developed to solve the proposed problems.

As for the technical procedure, the project can be classified as bibliographic and
experimental research since the methods tested for solving the problems will be developed
based on a survey of the main articles in the literature about the open shop problem and
its variants.
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In summary, according to the methodology for quantitative modeling research
proposed by Bertrand and Fransoo (2002), the present project is a normative axiomatic
research. Thus, the study finds the solution of idealized problems with a robust industrial
relationship, compares different solutions for problems already presented in the literature,
and searches for effective solutions for emerging open shop variants.





33

2 PRODUCTION SCHEDULING

Production planning, scheduling, and control (PPSC) is the area composed of
several multidisciplinary activities that has the objective of commanding and coordinating
the production process (TUBINO, 2017). The main activities performed by PPSC are
shop floor control, demand forecasting, inventory and capacity management, aggregate
planning, and production scheduling.

Production scheduling is a PPSC activity responsible for determining how tasks
will be allocated to existing resources over time (MACCARTHY; LIU, 1993). This area
consists of optimization problems with several industrial applications.

Figure 1 illustrates a diagram describing where is the production scheduling area
in the PPCP phases. In addition, the figure illustrates the division of the planning phases
for each of the PPSC stages into the short, medium, and long term.

Figure 1 – Diagram with phases of production planning, scheduling and control

Strategic Planning

Capacity Planning

Aggregate Production Planning

Master Production Schedule (MPS)

Material Requirement Planning (MRP)

Production Scheduling

Shop Floor Control

Long-term

Medium-term

Short-term

Source: Adapted from Fernandes and Filho (2010)

As illustrated in Figure 1, long-term activities consist of the strategic and capacity
planning of the operation. The medium-term consists of planning for job families, unit
jobs, and material requirements (TUBINO, 2017). The production scheduling phase is
in the short term of planning and is a more operational activity on the shop floor. The
scheduling time horizon is usually weekly or daily. Therefore, the solution methods for the
scheduling problems need low computational cost (PINEDO, 2016).
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The classical production scheduling problems consist of a set of jobs N ∈ {1, 2, 3, ...,

n}, where n is the number of jobs, each job is processed on a set of machines M ∈
{1, 2, 3, ..., m}, where m is the number of machines, for each of the processing operations
of the jobs j ∈ N on the machines i ∈M , there is a processing time pij. Furthermore, for
each job j ∈ N , there is a release date rj , the date on each job is available to be processed,
and a due date dj, the deadline for completion of all operations of jobs. These parameters
are used to calculate the performance metrics of the proposed solutions (PINEDO, 2016).

The basic notation to define classical production scheduling problems was proposed
by Graham et al. (1979). It consists of a tuple with three symbols (α|β|γ). The first
symbol α indicates the machine environment of the problem, the second symbol β the
technological constraints and job characteristics. Finally, the third symbol γ defines the
performance measure(s) of the solutions to the problem.

The notation considers several different production scheduling environments; each
environment describes how the machines are related to processing jobs. In addition, the
notation describes the constraints involved, the objectives, and the job flows in the machines
(MACCARTHY; LIU, 1993). The main α production environments are:

Single machine (1): an environment in which a single machine processes all jobs.

Parallel machines (Pm): there is only one production stage, with several machines
operating in parallel. The machines can be identical (Pm), have different speeds
(Qm), or unrelated processing times (Rm);

Flow shop (Fm): each job has the same processing sequence on the machines, corre-
sponding to the production layout by-product or linear;

Job shop (Jm): each job has its sequence in the machines, resembling the production
layout by-process or functional;

Open shop (Om): each job must be processed in all machines, and there is no specific
sequence for each one of the operations. It is also called classic open shop;

Flexible flow shop (FFm): environment of flow shop machines where each production
stage has a set of parallel machines;

Flexible job shop (JFm): job shop machine environment where each production stage
has a set of parallel machines.

Figure 2 illustrates the relationship between the various classes of production
scheduling problems, considering the differences in the production flow of jobs, the number
of production stages in each environment, and the number of parallel machines present in
each stage.
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Figure 2 – Production environments and its characteristics
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Source: Adapted from Maccarthy and Liu (1993)

In addition to defining the environment of the production scheduling problem,
it is necessary to illustrate the main parameters of these problems and what are the
technological constraints of the industrial environment, which involve constraints on
production flow, inventories, setup times, service level, etc. (PINEDO, 2016). Some of the
main parameters and technological constraints β are:

Precedence (prec): each job may have a set of other jobs or operations that must be
processed before the job is processed;

Blocking (block): the intermediate inventory between production stages cannot store
jobs, so the jobs must wait for the next machine to be released to exit from the
previous machine and perform their processing in the next machine;

Setup times (Ssd): between the processing of one job and another on a machine, there
is a setup time to prepare the machine to process the new job. This time can be
independent or dependent on the processing sequence.

Job family (fmls): jobs of the same family may have different processing times but may
be processed on a machine, one after the other, without any setup time.

Machine eligibility(Mj): each job has a subset of machines where its operations can
be processed.

Recirculation(rcrc): occurs when a job can visit a machine or production stage more
than once.



36

The performance measures are used to evaluate the quality of the generated
solutions. These measures are the objectives of the problems. Some γ objective functions
are illustrated below:

Makespan (Cmax): total duration of the schedule or the finishing time of the last opera-
tion to complete the schedule;

Total completion time (∑
Cj): sum of the completion time of the processing of all

jobs. The sum of the time that the jobs remain in the production system.

Maximum tardiness (Tmax): the longest delay in the completion of each job concerning
its due date.

Number of tardy jobs (∑
Uj): number of tardy jobs, where the completion time of at

least one of its operations was longer than its due date.

Some of the production environments, technological constraints, and objective
functions have been illustrated above. This chapter is a clipping of the main features of
production scheduling problems. Other examples and variants of the parameters can be
found in Maccarthy and Liu (1993) and Pinedo (2016).
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3 THEORETICAL FOUNDATIONS

The theoretical foundation chapter will describe the types of exact and approximate
solution methods to be used in the doctoral project, and a summary of these methods’
state-of-the-art applied to the classical open shop problem. In addition, it will be described
which forms of application of these methods have not yet been performed for open shop
problems, constituting a gap to be addressed in research.

3.1 Mathematical programming

Mathematical and constraint programming are examples of exact techniques for
solving optimization problems. These techniques aim to find the best solution to the
problem, taking polynomial times for treatable problems. However, the solving effort can
be exponential for more complex optimization problems, due to the difficulty of using these
methods for large problems. The main characteristic of exact techniques is the existence
of proof of optimality for the obtained solutions (ROTHLAUF, 2011).

Mathematical programming consists of modeling real-world problems through
mathematical equations, seeking to maximize or minimize an objective function within
a set of solutions that satisfy all constraints of the problem (HILLIER; LIEBERMAN,
2013). It is an example of an exact solution method.

A mathematical programming model consists of: decision variables, which constitute
unknown values that will be calculated when solving the model; the parameters, which
are previously known information about the problem; the objective function, which is the
indicator that one wants to maximize or minimize; and a set of constraints, which delimit
the space of solutions for the problem (ARENALES et al., 2015).

Linear programming, a model in which all constraints and objective function must
be linear, is a mathematical programming technique used to solve production scheduling
problems by modeling linear equations with integer variables, using models with the
decision variables can assume only discrete values (HILLIER; LIEBERMAN, 2013).

Mixed-integer linear programming (MILP), on the other hand, consists of a linear
programming model with both continuous and discrete decision variables (ARENALES et
al., 2015).

The method to model production scheduling problems is generally through MILP
models, due do simple modeling option of the decision variables with sequence or position-
based notation (NADERI et al., 2011b). A generic MILP model is illustrated below:
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minimize
n∑

i=1
cixi +

p∑
j=1

djyj (3.1)

subject to
n∑

i=1
akixi +

p∑
j=1

hkjyj ≥ b, ∀k ∈ {1, ..., m} (3.2)

xi ≥ 0, ∀i ∈ {1, ..., n} (3.3)
yj ∈ Z+, ∀j ∈ {1, ..., p} (3.4)

The variables x and y are the continuous and discrete decision variables, respectively.
The symbols c, p, and b are the problem’s parameters. The symbols n and p are the
quantities of decision variables, and, finally, the symbol m is the number of constraints of
the problem. This problem can be solved using several algorithms such as decomposition
methods, branch and bound, branch and cut, and dynamic programming (ARENALES et
al., 2015).

In summary, some of the literature has proposed solutions of the open shop through
mathematical programming methods: Brucker et al. (1997) proposed a branch and bound
algorithm for solving the classical problem, Guéret and Prins (1999) elaborated a new
lower bound for solving the problem. In addition, the lower bound is important information
of the problem domain. It can be used in heuristic and linear programming methods as a
problem parameter to improve the exact methods.

As an example, Guéret, Jussien and Prins (2000) implemented an improvement
of Bruckner’s branch and bound using the information from ower bound. In addition,
Ozolins (2019) proposed an exact solving method for the open shop problem using dynamic
programming.

3.2 Constraint programming

Constraint programming (CP) is a modeling paradigm for solving combinatorial
optimization problems, such as routing and scheduling problems (APT, 2003). It combines
logic programming and constraint solving techniques to solve optimization problems. It
is a relatively recent technique, when compared to linear programming, that has shown
promising results in solving several problems, mainly in production scheduling problems,
as in Trojet, H’Mida and Lopez (2011) and Lunardi et al. (2020).

A constraint programming model has the same linear mathematical programming
model characteristics: parameters, objective function, decision variables, and constraints.
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However, it is solved by exploring the problem domain, analyzing the constraints, and
defining and setting values for the variables, with a tree search process (CHERRI, 2018).

Constraint programming in production scheduling problems has several advantages;
due to the use of logic programming in modeling, it is possible to represent scheduling
problems with a smaller number of constraints, using logical arguments, linear and non-
linear operators. Therefore, it is possible to solve the models with reduced computational
times.

The main differences with linear programming are that constraint programming
uses logical constraints for the problem and applies heuristic techniques to reduce the
problem’s search space. Moreover, constraint programming finds feasible solutions quickly
due to the problem domain’s exploration.

Another difference is that linear programming can represent problems with both
continuous and discrete variables, making it easier to model mixed problems. On the
other hand, constraint programming is capable of representing problems with only discrete
variables, and it is difficult to model problems of a continuous nature (CHERRI, 2018).

Decision variables of constraint programming models, in some solvers, are of two
types: interval and sequence variables. Interval variables represent an operation to be
processed from a job on a machine, with the operation’s start, end, and duration times.
On the other hand, sequence decision variables group several interval variables into a set,
such as the processing sequence of jobs on a machine. (LABORIE, 2018).

Figure 3 illustrates a schematic view of the two types of CP model decision variables.
The interval variable (left) has a processing time of 100, starting at 100 and ending at 200.
Its schedule horizon is between time 0 and 100000. The sequence variable (right) indicates
the sequence of interval variables 5, 1, 3, and 6 processed in some problem resource.

Figure 3 – Interval (left) and sequence (right) decision variables of CP models

Source: Adapted from Laborie (2018)

The main constraints in CP models are the precedence constraints between two
interval variables and the NoOverlap constraints of interval variables present in a sequence
decision variables (LABORIE, 2018).

Figure 4 illustrates examples of precedence constraints used in CP models, where
e(.) is the end time of an x interval variable, s(.) is the start time of an x interval variable,
and zij is an optional wait time for processing an xj variable after the xi variable. In
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summary, the precedence constraints force interval variables to follow the established
sequence with a specific waiting time as an optional parameter.

Figure 4 – Precedence constraints of CP models

Source: Adapted from Laborie (2018)

Figure 5 illustrates a schematic view of how the NoOverlap constraint works in CP
models, where p is the sequence variable, M is a transition matrix with the waiting time
between two interval variables processed in sequence variable p, and true is an optional
parameter that forces the processing of the next interval variable in p to be immediately
after the end of the transition matrix time. NoOverlap constraints enforce that interval
decision variables in a sequence decision variable are not executed at the same time, with
a wait time if necessary (LABORIE et al., 2018).

Figure 5 – NonOverlap constraints of CP models

Source: Adapted from Laborie (2018)

Among the main competitive solvers for constraint scheduling, this doctoral project
uses IBM’s CP Optimizer, achieving competitive results for production scheduling problems
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and also packing and routing problems. (LABORIE; GODARD, 2007; LUNARDI et al.,
2020).

Table 1 shows an example of the main expressions used for modeling problems
with the CP Optimizer solver. These expressions and constraints will be used in modeling
the new variants proposed in the doctoral dissertation.

Table 1 – Expressions and global constraints used in the CP optimizer solver

Global constraints and expressions
NoOverlap it restricts a set of interval variables from overlapping each

other in the same resource.
endAtStart it limits to zero the delay between the end of one interval

variable and the start of another.
Alternative it forces an alternative constraint between interval variables.
endOf it returns the end of one interval variable.
sizeOf it returns the size of one interval variable.
presenceOf it returns the presence status of an interval variable.
typeOfPrev it returns the type of previous interval variable in an sequence.
startOfNext it returns the start of next interval variable in an sequence.

Source: Authors.

Using the constraints and expressions in Table 1 it is possible to model many
production scheduling problems logically, with few constraints and decision variables. For
example, a simple CP model for a single machine problem with total completion time
minimization is described below.

minimize
n∑

j=1
endOf (xj) (3.5)

subject to
noOverlap (Γ) , (3.6)
interval xj, size = pj, ∀j ∈ {1, ..., n} (3.7)
sequence Γ, on [xj]j∈{1,...,n} , (3.8)

(3.9)

Equation (3.5) shows the objective function of the model with the sum of the
completion time (endOf) of the operations of all the jobs in the single machine, represented
by the interval variable x that each has the processing time with size pj and n is the
total number of jobs. Constraint (3.6) illustrates the non-overlap of operations x, through
the sequence variable Γ, which has the sequence of jobs j on the machine. Thus the
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constraint forces that in the single machine, only one job is processed at a time. Finally,
the constraints (3.7) and (3.8) illustrate the domain of sequence and interval variables.

Using constraint programming methods, we can cite: Malapert et al. (2012) proposed
a constraint programming model for the classical Open Shop and Su and Hsiao (2015)
used constraint programming to solve the problem considering eligibility and machine
availability constraints, for the large instances, the method of Su and Hsiao (2015) had a
large computational cost being outperformed by heuristic methods. Finally, Cankaya, Wari
and Tokgoz (2019) implemented an integer and constrained linear programming model
for solving the problem considering explicit setup times, with a case study application in
chemical industry with tank cleaning.

3.3 Heuristic methods

Unlike exact methods, heuristic methods do not provide an optimal solution with
proof of optimally for optimization problems, providing only approximate solutions to the
problem. Nevertheless, heuristic methods have been used to solve production scheduling
problems due to the speed of solution generation. This feature is essential for solving
scheduling problems in complex industrial systems.

There are two main type of heuristics. Constructive heuristics start with an empty
solution and, in each iteration, extend the solution until it becomes a complete and valid
solution to the problem. On the other hand, improvement or local search heuristics start
with a complete and valid solution and try to improve the solution quality through moves
and perturbations in the neighborhood structure of the problem (PETCH; SALHI, 2003).

The priority rules are an example of a set of constructive heuristics to solve
optimization problems in production scheduling. They are simple and easy-to-implement
alternatives for production scheduling in real environments, always based on a performance
measure, such as processing time, setup times, and job delivery dates (FUCHIGAMI;
MOCCELLIN; RUIZ, 2015).

Regarding the application of heuristic methods for solving the open shop problem,
there are the following application studies: Pinedo (2016) developed two constructive
heuristics based on job processing times. Liaw (1985) proposed an improvement of Pinedo’s
heuristics with the insertion of solution improvement mechanisms. Naderi et al. (2010)
implemented efficient heuristics based on redundant solution filters. Finally, Colak and
Agarwal (2005) and Bai and Tang (2011) solved the classical problem using constructive
greedy heuristics.
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3.4 Metaheuristic methods

Other approximate methods for solving production scheduling problems are meta-
heuristics. In some cases, metaheuristics are inspired by nature, combining search tools
with randomness to find optimal or near-optimal solutions.

Metaheuristics are general strategies for solving optimization problems, with fea-
tures for intensifying the search and escaping local optima. Unlike heuristics that are
problem-dependent, metaheuristics constitute general frameworks, and little effort is re-
quired to adapt their structure to a specific optimization problem (BLUM; ROLI, 2003).
Figure 6 illustrates one type of classification of metaheuristics based on the number of
solutions searched in each iteration of the algorithms.

Figure 6 – Classification of metaheuristics based on number of solutions

Metaheuristics

Single-solution based Population-based

Evolutionary-based
(competition biology)

Swarm-based
(cooperation biology) Physics-based

Source: Adapted from Salih and Alsewari (2020)

One of the main classifications of metaheuristics is the single-solution based, which
search one solution at a time in each iteration, such as iterated local search or variable
neighborhood search (VNS), Simulated Annealing (SA) and Tabu Search (TS). As the
iterations occur, new solutions emerge, and the best solution is returned at the end of
the algorithms. These methods, as showed in Figure 6, are also called single-solution
metaheuristics.

It is possible to highlight single-solution metaheuristics to solve the open shop
problem. For example, Liaw (1999) implemented a tabu search, Goldansaz, Jolai and
Anaraki (2013) implemented an SA with an imperialistic strategy, Harmanani and Ghosn
(2016) implemented an SA with a mechanism for efficiently exploiting the search space of
the problem.
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Population-based metaheuristics, on the other hand, can be bio-inspired, as in the
competition of species in evolutionary strategies (evolutionary-based), in cooperation as in
particle approaches (swarm-based), and in physics as in the behavior of electromagnetic
particles (physics-based) (BLUM; ROLI, 2003).

The bio-inspired metaheuristics can be population-based and look to nature for
inspiration to solve complex computational problems. As showed in Figure 6, theses
metaheuristics based mainly on concepts of collective intelligence or evolution to generate
multiple solutions and efficiently explore the search space. Bio-inspired algorithms have
shown superior performance over single-solution metaheuristics in various production
scheduling problems, such as: Andresen et al. (2008) and Soares and Carvalho (2020) to
solve the open shop and parallel machine scheduling problems, respectively.

Bio-inspired metaheuristics can be based on the biology of competition and co-
operation among species. Regarding competition, the evolutionary computing methods
constitute genetic algorithms and evolutionary strategies. In these algorithms, a population
of solutions exchanges genetic material among themselves, generating better offspring over
generations, always keeping the best ones (GASPAR-CUNHA; TAKAHASHI; ANTUNES,
2012).

Regarding cooperation methods, there are collective intelligence or swarm-based
methods, such as Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO). In these algorithms, a set of solutions is improved with the collective problem
knowledge, and characteristics of the best solutions are shared among all solutions in the
population (GASPAR-CUNHA; TAKAHASHI; ANTUNES, 2012).

Regarding physics methods, there is the study of Naderi, Najafi and Yazdani (2012)
with an electromagnetism-like metaheuristic to solve the open shop problem.

As an example of bio-inspired meta-heuristic methods, we can highlight the im-
plementation of population algorithms to solve the open shop problem. Liaw (2000)
implemented a hybrid genetic algorithm (GA), Blum (2005) implemented ant colony
algorithm (ACO), Sha and Hsu (2006) implemented a particle swarm algorithm (PSO),
Zobolas, Tarantilis and Ioannou (2009) developed a GA with a variable neighborhood
structure, Anand and Panneerselvam (2018) implemented a GA with the steady-state
strategy. Finally, Bouzidi, Riffi and Barkatou (2019) developed a cat swarm meta-heuristic
for solving the problem.

3.5 Matheuristic methods

Matheuristics are hybrid strategies for solving optimization problems. The technique
is defined as the hybridization of mathematical or constraint programming models into
meta-heuristic algorithms or some heuristic approach (FISCHETTI; FISCHETTI, 2018).
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Matheuristics can be used in problems where conventional models do not obtain
reasonable solutions in admissible computational times. An essential feature of these
methods is exploiting parts of the problem properties coming from mathematical or con-
straint models, with a meta-heuristic execution improving the exact method (MANIEZZO;
STÜTZLE; VOSS, 2009). In summary, Figure 7 illustrates a classification of matheuristics
proposed by Archetti and Speranza (2014) based on the problem handling approach.

Figure 7 – Classification of matheuristics based on type of problem handling

Matheuristics

Decomposition
approaches

Improvement
heuristics

Branch-and-
price/column

generation-based
approaches

Source: Adapted from Archetti and Speranza (2014)

There are three main types of matheuristics: Decomposition approaches, improve-
ment heuristics, and branch-and-price/column generation-based approaches. Decomposition
approaches divide the problem into subproblems, and for each subproblem, either exact or
heuristic methods are applied to solve it. Improvement heuristics hybridize metaheuristics
with exact approaches. Exact approaches are used to improve solutions obtained by heuris-
tic/metaheuristic methods as a local search procedure. Finally, Branch-and-price/column
generation-based approaches change the main steps of these methods to decompose and
solve integer models. The exact method is changed to speed up convergence, but the
guarantee of optimally is lost. For example, the column generation phase is stopped
prematurely to improve the solution process (ARCHETTI; SPERANZA, 2014).

Furthermore, these three approaches for matheuristics can be grouped or performed
in parallel. For example, one can divide the problem into smaller subproblems and apply
improvement heuristics with a local search through exact models in each subproblem.
Hybrid matheuristics have obtained competitive performance in production scheduling
problems (FISCHETTI; FISCHETTI, 2018).

As such, matheuristic is not a rigid paradigm (with defined terms and procedures)
but a conceptual framework for designing mathematically useful heuristics. There are
several application examples. Among the main ones is the proposal of interactive solving
of relaxed and complete mathematical programming models with fixing subsets of decision
variables or the use of metaheuristics during the execution of the solve. Both strategies
aim at reducing the search space of decision variables (FISCHETTI; FISCHETTI, 2018).

There are no direct applications of matheuristics to open shop problems (AHMA-
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DIAN et al., 2021a). Recent applications of matheuristics methods in production scheduling
and vehicle routing problems are: Ozer and Sarac (2019) developed MILP models and
matheuristics for the parallel machine problem with shared resource constraints. Rohanine-
jad, Hanzálek and Tavakkoli-Moghaddam (2021) developed a hybridization of a genetic
algorithm with a MILP as a local search for solving the problem of parallel machines with
incompatible job families. Finally, Hà et al. (2020) developed a hybridization of constraint
programming with single-solution metaheuristics for solving the vehicle routing problem
with time windows.
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4 INTEGRATIVE REVIEW

In the integrative review chapter, a summary of the state of the art for the open
shop will be described, pointing out: the formal definition of the classical open shop,
proposed new variants of the problem, and bibliometric analysis of the term open shop in
the scientific databases. In addition, the role of each article (open shop variant) in the
doctoral dissertation’s construction will be explained, demonstrating at which stage of the
evolution of the project dissertation each variant was inserted and what contribution each
article made to the doctoral dissertation as a whole.

4.1 Classic open shop (OSSP)

Production scheduling problems in open shop environments are widely studied
because of their many industrial applications. In recent decades, variants of the scheduling
problems in flow shop and job shop environments have received much attention from
researchers (see, for example, (FERNANDEZ-VIAGAS; RUIZ; FRAMINAN, 2017; FAN et
al., 2018; ZHANG; WANG; XING, 2019)) for recent reviews about permutation flow shop,
hybrid flow shop, and job shop, respectively. However, this has not been the same for the
open shop production scheduling problem(OSSP), which has received less attention from
the researchers (ANAND; PANNEERSELVAM, 2016; ADAK; AKAN; BULKAN, 2020;
AHMADIAN et al., 2021a). This problem was first described by Gonzalez and Sahni (1976)
and consisted of scheduling a set of jobs in a set of machines, where each machine-job
operation has an associated processing time. However, unlike flow shop and job shop
scheduling problems, in OSSP, there are no predefined routes for jobs on machines. In the
notation by Lawler et al. (1993) , the problem is defined as: Om||Cmax.

When the objective is minimizing the makespan, and there is only one machine,
the OSSP can be reduced to the single-machine scheduling problem, and any solution
is optimal. For the two-machine case, polynomial algorithms with optimally proofs exist
(GONZALEZ; SAHNI, 1976). However, for problems with three or more machines, the
OSSP is NP-Complete (GAREY; JOHNSON, 2012).

Regarding the main exact methods for solving OSSP, three can be highlighted:
the linear programming models with branch-and-bound as solution procedure, dynamic
programming, and constraint programming (AHMADIAN et al., 2021a). Although some
branch and bound algorithms have been proposed for this problem (BRUCKER et al.,
1997; GUÉRET; PRINS, 1999; GUÉRET; JUSSIEN; PRINS, 2000), the exact MILP
methods are rather limited to solve OSSP problem instances of realistic size.

Concerning constraint programming techniques, Malapert et al. (2012) proposed a
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new approach that incorporates recent constraint propagation techniques, integrating with
knowledge of the problem’s lower bound, restart, and search diversification approaches.
The method is compared with metaheuristics and exact algorithms from the problem
literature and got competitive results in classical benchmarking instances.

Finally, Ozolins (2019) developed an exact dynamic programming algorithm, being
the first such approach applied to OSSP. Computational results show that the proposed
algorithm can solve benchmark instances with moderate sizes.

Given the difficulty of solving OSSP with the makespan minimization objective,
different approximate algorithms have been proposed. These are classified as constructive
heuristics/local search or meta-heuristic approaches. Concerning constructive heuris-
tics/local search, several contributions have been presented (PINEDO, 2016; GONZÁLEZ-
RODRÍGUEZ et al., 2010; COLAK; AGARWAL, 2005; NADERI et al., 2010).

Regarding the application of metaheuristics for OSSP, the following stand out:
Ahmadizar and Farahani (2012) propose a hybrid genetic algorithm with a local search
optimization procedure that outperforms previously reported metaheuristics for OSSP.
Ghosn, Drouby and Harmanani (2016) propose a parallel genetic algorithm using de-
terministic and random moves. Pongchairerks and Kachitvichyanukul (2016) propose a
two-level PSO that works very well on literature instances. Finally, an extended genetic
algorithm is proposed by Hosseinabadi et al. (2018) to solve the OSSP, being the most
recent metaheuristic so far for the problem.

As can be seen from the above analysis, several methods provide approximate
solutions to the OSSP with makespan minimization. However, there is still space for
improving the state of the art of the problem by proposing new efficient constructive
heuristics that incorporate some knowledge of the OSSP domain. More specifically, this
doctoral dissertation suggests applying a mechanism that estimates the lower bound and
makespan contribution of a partial solution in a constructive heuristic to insert operations
to discard less promising solutions as a filter mechanism. Another proposed mechanism is
an insertion algorithm that considers the idle time of machines between operations. Both
mechanics are improvements with beam search and cheapest insertion search strategies.

These developed heuristics will be tested on classical instances in the literature
and serve as a basis for developing metaheuristics and exact hybrid methods, both for the
OSSP and variants of the problem proposed in this doctoral dissertation.

4.2 Open shop with explicit setup times (OSSPST)

Unlike other classical production scheduling problems, there is no previous sequence
for the processing of the jobs in the machines in the open shop problem. Thus, the problem
has a large number of feasible solutions. In the classical problem, each job can only be
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processed by a machine at a time, and the jobs, when their processing starts, cannot be
interrupted (ABREU et al., 2020).

The variant of the present dissertation considers that between the processing time
of one job and one machine, there is a setup time for the operation that depends on the
previous job processed on the machine. The setup time is also non-anticipatory because
the job must already complete its processing on the previous machine to perform the
setup. It is also necessary for the job to enter the next machine to perform the setup. The
objective function is the makespan minimization. In Lawler et al. (1993) notation the
problem has the form: Om|Ssd|Cmax

Allahverdi, Gupta and Aldowaisan (1999) developed a literature review (survey)
of production scheduling problems with setup costs. For the open shop problem, only
one paper had been proposed at that time. For the second survey performed, eight more
articles were reviewed (ALLAHVERDI et al., 2008). In the last one performed by the
author, four more articles involving the problem were cited. Thus, based on the OSSPST
articles quantity when compared to other scheduling problems, the topic has not yet been
fully explored in the literature (ALLAHVERDI, 2015).

The first article to consider setup times in the open shop explicitly was Strusevich
(1993), which considered the case for the open shop with two machines, setup times,
processing times, and job removal times. In addition, the author developed an exact
algorithm in polynomial time O(n) for makespan minimization. Subsequent papers proposed
exact strategies for solving special cases of the open shop with setup times, considering
the problem with two machines or other trivial constraints (BEVERN; PYATKIN, 2016;
BABOU; REBAINE; BOUDHAR, 2021).

The exact solving strategies define good properties for the knowledge of the problem.
However, in some instances, these methods are optimal only for special cases of the open
shop, simplifying the main characteristics such as small machine numbers, constant or
machine-independent processing times, and fixed or independent setups. Therefore, for the
problem proposed in this paper, arising mainly from real complex systems, it is necessary
to use approximate strategies, such as heuristics and metaheuristics.

For solving problems with real characteristics, with large numbers of machines,
jobs, and constraints, it is necessary to use approximate solving algorithms. These include
priority rules, constructive solution strategies, and nature-inspired optimization algorithms.

Naderi et al. (2011a) developed an electromagnetic (EM) meta-heuristic for the
open shop problem with sequence-dependent setup times, with minimization of the total
completion time (TCT). The author tested the algorithm with a mixed-integer linear
programming (MILP) model and obtained significant results, which were analyzed by
statistical tests.
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Abreu et al. (2020) devised a hybrid genetic algorithm for the open shop problem
with sequence-dependent setup times and TCT minimization. In addition, three new
constructive heuristics were also proposed, based on features of the problem domain, such
as lower bound. Finally, the authors compared the GA with the EH of (NADERI et
al., 2011a) and the developed heuristics. Computational tests showed that GA obtained
significantly better results than all other methods.

Mejía and Yuraszeck (2020) studied the open shop problem with sequence-dependent
setup and transport times. A Variable Neighborhood Search (VNS) metaheuristic was
proposed. The authors tested the algorithm with new and classical instances from litera-
ture, adapted for the problem, compared with another metaheuristic and four constraint
programming models, with different search strategies. The methods were used to solve prob-
lems with makespan and TCT minimization. For both cases, VNS presented competitive
results.

Despite existing contributions (notably the algorithms EH by Naderi et al. (2011a),
GA by Abreu et al. (2020) and VNS by Mejía and Yuraszeck (2020)), there is space to
develop more efficient solution procedures for the problem, based on the hybridization of
exact and approximate methods and characteristics of the problem domain, such as the
type of setup.

This project dissertation aims to present a hybridization of adaptive large neigh-
borhood search with constraint programming (ALNS-CP) for OSSPST and makespan
minimization as an objective. For an efficient generation of the initial solution, a construc-
tive heuristic proposed by Abreu et al. (2020) is used, which produces reasonable solutions
in competitive computation times. A new constraint programming (CP) model is used in
the solution reconstruction phase as a solution reconstruction and local search strategy.
The new model uses features of the problem domain, such as non-anticipatory setups, to
reduce the number of variables and constraints.

4.3 Open shop with machine blocking (OSSPB)

In the literature, most of the production scheduling problems consider that the
capacity of the intermediate buffer between machines is unlimited. That is when the
process of a machine’s current job finishes. The machine is always available to process the
next job (HALL; SRISKANDARAJAH, 1996). However, in some practical environments,
production processes deal with physical buffer limits, causing machines blocking from
processing the next jobs (MIYATA; NAGANO, 2019).

According to Hall and Sriskandarajah (1996), one of the reasons for the occurrence
of blocking is the lack of intermediate storage between machines or production steps. In
addition, another possible cause of blocking lies in the production technology itself. For
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example, temperature or other characteristics of the materials require that the finished job
remains on the machine to avoid deterioration or additional costs until the next machine
is released. In addition, in industrial residues material handling, different types of waste
are discharged from machines, preventing the work from leaving the machine until the
process has finished (MIYATA; NAGANO, 2019).

The blocking assumption for the open shop, also called zero buffer constraints, means
that intermediate storage of materials between adjacent production steps is prohibited
because of physical or operational constraints. This feature is typical of many industry-
relevant production environments (HALL; SRISKANDARAJAH, 1996; MOCCELLIN et al.,
2018). In the notation by Lawler et al. (1993) , the problem is defined as: Om|block|Cmax.
However, variants of the OSSP taking into account machine blocking and makespan
minimization as performance measures have not been previously reported in the literature
over the last four decades of research on the problem (AHMADIAN et al., 2021b).

The significant contributions of blocking constraints with the open shop problem
are: Lin, Lee and Pan (2008) presented a multi-stage processing OSSP with dedicated
transportable machines with blocking constraints. The objective function is the total
completion time minimization for all processing stages. Naderi, Najafi and Yazdani (2012)
presented an OSSP without intermediate buffer, considering multiple machines and with
the objective function of total tardiness minimization. Finally, Naderi and Zandieh (2014)
studied an OSSP in an environment with machine blocking, considering multiple machines
and jobs and proposing three MILP models and two metaheuristics (variable neighborhood
search and genetic algorithm). The objective function was makespan minimization.

None of the cited papers proposed a formal definition for the open shop problem
with blocking constraints, the definition of properties as lower bounds, and neither an
integrated approach of exact and approximate methods for the problem’s solution.

Therefore, these points constitute a gap to be filled in the present research project
dissertation. The present doctoral dissertation investigates the open shop scheduling
problem with machine blocking constraints and makespan minimization. A two-stage
constrained scheduling model will be applied to solve the problem, hybridizing the CP
models of the classic open shop and the variant open shop with blocking. Furthermore,
new sets of challenging instances will be introduced to test the proposed solution methods
with benchmarking methods from the current OSSP literature.

4.4 Open shop with operations repetitions (OSSPRM)

Timkovsky (2004) addressed a class of production scheduling problems, called
production cycle scheduling problems, in which some jobs can be reprocessed on some
machines with a certain number of repetitions. For example, this situation occurs in
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microchip manufacturing in a VLSI technology environment. In the open shop scheduling
problem with repetitions (OSSPR), jobs can be processed on any machine more than once.
In this problem, all jobs can be scheduled without constraints, substantially increasing
the number of feasible solutions compared to the OSSP. In the notation by Lawler et al.
(1993), the problem is defined as: Om|rcrc|Cmax.

A practical application example of the proposed variant can be described: a large
automotive garage for vehicle maintenance and repair. Each workstation (box) has a
mechanic with a set of tools. Consequently, each workstation can receive any type of
vehicle and perform all necessary operations. Given the heterogeneity of the workstations,
expressed in terms of technical ability of mechanics and the characteristics of the available
tools, each workstation can perform the jobs with different processing times. The set of
vehicles are the jobs to be processed at a set of workstations. These workstations are
machines and process a set of maintenance activities on vehicles. The objective of the
problem is to find a sequence of processing operations minimizing the scheduling duration
(makespan).

This feature addresses a new open shop environment in which a given job can be
processed, for different operations, more than once for the same machine. In the recent
literature search on the open shop problem (ANAND; PANNEERSELVAM, 2016; ADAK;
AKAN; BULKAN, 2020; AHMADIAN et al., 2021a), there is no mention of the variant
proposed in this doctoral dissertation, and is therefore unpublished. Moreover, Ahmadian
et al. (2021a) in its review of the last four decades of OSSP publications, proposes the
study of open shop considering the reprocessing of the jobs as an fundamental contribution
to be made. Hence, this is one of the gaps that the project tries to address.

In recent years, new variants of the open shop have been proposed. Roshanaei,
Esfehani and Zandieh (2010) presented an open shop scheduling problem with sequence-
dependent setup times. Bai and Tang (2013) proposed an open shop problem considering
makespan minimization and job release dates. Naderi and Zandieh (2014) studied a no-wait
open store problem, in which there are no intermediate buffers between machines. In
addition, Bai and Tang (2013) presented a flexible open shop, in which the scheduling
concurrently considers the processing and routing of jobs through the production steps.
Mosheiov et al. (2018) and Sheikhalishahi et al. (2019) addressed open shop environments
taking maintenance issues into account. Finally, Aghighi et al. (2021) presented an open
shop environment with reverse flows.

The problem considers a variant not yet reported in the literature that has important
applications in the industrial and service sectors, especially in maintenance management
activities, in which repetition of activities may occur. In the project, new properties, data
sets, and methods will be proposed to solve the problem from an exact approach, such as
linear and constraint programming models and through metaheuristics, such as variable
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neighborhood search (VNS) using the search strategy with constraint programming (CP)
to provide better solutions with an admissible computational effort.

4.5 Open shop with vehicle routing (OSSP-VRP)

The integration between production and distribution in operations management
has become an essential factor for the operational success of industries. A large part of the
product costs involves the production and transportation phases along the supply chain,
with logistics costs almost 30 percent of the total cost. Moreover, the strategy of solving
these problems in an integrated solution is superior to solving them in a separate and
sequential solution (DARVISH; COELHO, 2018).

Therefore, aiming for ways to integrate the scheduling of production and distribution
of products becomes critical to the developments of modern companies. Through integrated
scheduling models, jobs are first processed by machines and then delivered to customers
by vehicles.

The problem by definition is to schedule a set of jobs j to be processed on a set
of machines m, where each machine and job operation has a processing time. When all
the operations required for a job are finished, it goes to an intermediate buffer. All jobs
are processed and located in a single depot. Each job has a specific volume and must
be delivered to a customer via a single vehicle with finite capacity. The travel time from
depot to job customers and one customer to another is defined by a matrix of travel
times. Each route to deliver the jobs must not exceed the vehicle’s maximum capacity
and must start and end at the depot. The objective of the problem is to minimize the
duration of production scheduling plus delivery time (makespan) by finding a sequence
for processing the operations and routing the orders to the customers. Since the problem
is integration between scheduling and distribution, the classical notation of scheduling
problems of Lawler et al. (1993) is not applicable.

Regarding integrated production and distribution problems considered in the
present dissertation, the following researches can be mentioned: Ullrich (2013) proposed a
parallel machine environment and distribution with time window constraints. The authors
proposed a genetic algorithm to solve the problem. Farahani, Grunow and Günther (2012)
developed a study for perishable products applying a MILP model, aiming to improve the
quality of service, with the optimization of production integrated with the routes. Chang,
Li and Chiang (2014) proposed an ant colony optimization algorithm (ACO) for solving
the problem of parallel machines integrated with the distribution with multiple capacitated
vehicles. The results showed the superiority of ACO over exact solving strategies. Finally,
Tavares-Neto and Nagano (2019) developed an IGA for the parallel machine problem with
sequence-dependent setup times, integrating the distribution through a single capacitated
vehicle. The results showed the superiority of the IGA over exact MILP models.



54

No examples of the use of metaheuristics and exact methods for solving integrated
scheduling and distribution problems in an open shop have been found in the literature
(WANG; GRUNDER; MOUDNI, 2015; MOONS et al., 2017). Therefore, the project
dissertation proposes to study new metaheuristics, comparing their performances with
exact strategies, such as MILP, and approximate ones, such as constructive heuristics, for
the proposed OSSP-VRP problem. A Biased Random-Key Genetic Algorithm with Iterated
Greedy Algorithm (BRKGA-IG) will be developed for the new problem OSSP-VRP with
makespan minimization as the objective function.

4.6 Integrative analyze of open shop problems

This section illustrates a bibliometric study, the summary of the open shop problems
studied as chapters of the doctoral dissertation (articles), where is each open shop variant
in the evolution of the project, the objectives of the project dissertation that each article
undertakes to answer, and which solution methods are applied in each variant tested.

Based on the five presented open shop problems, new emerging variants of the
problem were explored, considering aspects of setup times, machine blocking, repetition of
operations, and vehicle routing. These variants are essential for improving the open shop
scheduling problem literature, which has grown in recent years.

Figure 8 illustrates the evolution of citations and publications in the Web of Science
database for the respective problem under analysis until February 2023 using in the
search the keyword "open shop" AND schedul*. The citations of the area are growing,
and still, have much space for exploration and research. Moreover, it has many practical
applications that are part of a classic set of combinatorial optimization problems in
production scheduling.

Figure 8 – Number of open shop articles published and citations per year

Source: Web of Sience (2023)
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Another analysis concerns the main keywords of the articles and their co-occurrence
relationships with each other. Figure 9 illustrates a co-occurrence network of the keywords
in the same database used for the Figure 8, with articles from the open shop until February
2023. The size of the keywords is proportional to the occurrences in articles, and the
distance of the relationship between keywords is proportionate to the number of occurrences
they appear together in articles.

Figure 9 – Keyword co-occurrence network in open shop articles

Source: Bibliometrix (2023)

Figure 9 shows the frequent main terms in open shop articles, such as the makespan
objective function, environment characteristics such as no wait, and problem-solving
techniques such as genetic algorithms, tabu search, and MILP. No keywords related to the
emerging variants proposed in the article were found, which is an opportunity to improve
the literature, primarily studying these new variants of the open shop in the doctoral
project.

The present doctoral project aims to develop in three main phases. Figure 10
illustrates each of three stages of the research with the articles to be developed in each
phase. Each stage is developed through feedback with the doctoral dissertation advisor and
article reviewers, better positioning the project, and correcting methodological problems
of the constructs in the research.

The first phase of the research consists of studying the classical open shop problem
to acquire knowledge about the main properties of the problem and modeling forms to
be used in exact approaches and solution encoding forms to be used in heuristics and
metaheuristics.

Furthermore, with this initial study, new efficient constructive heuristics will be
proposed for the problem, based on new properties of the problem, such as idleness of
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Figure 10 – Proposed stages of the article-based doctoral dissertation
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operations. These constructive heuristics will also be applied as initial solution methods
for the new OSSP variants.

The second phase of the study tests new exact and meta-heuristic solution methods
for OSSP variants proposed in the literature, such as OSSPST. These methods will have
the constructive heuristics proposed in the previous phase as an initial solution.

As the OSSPST already has a set of instances in the literature, the developed
methods will be validated and compared with existing state-of-the-art solution methods,
verifying the improvement in the quality of the problem solutions with setup times on
already known instances.

With the properties of the classical problem known and new solution methods
created for existing problems, there is an opportunity for proposing new variants for the
OSSP. Finally, the third phase of the research consists of developing new variants for the
open shop.

The third phase proposes the formal definition of the new problems, MILP and CP
modeling, studies of new properties such as lower bounds formulation, creation of sets of
instances, and experimentation comparing the proposed solution methods for the problems
with metaheuristics implemented for similar problems and adapted for the new variants.

In summary, Figure 11 illustrates the integration between the doctoral dissertation
objectives, the research phases, the articles, and the methodologies and tools used in each
article. In addition, Figure 11 shows the importance of each article and what methods
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were used to achieve the main objectives of the doctoral dissertation.

Figure 11 – Integrative Review of proposed article-based doctoral dissertation
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Analyzing Figure 11, it is possible to see the integration of each objective with
each proposed article and the solving methods to be applied in each article. Mathematical
and constraint programming models, constructive heuristics, and metaheuristics will solve
the new variants, OSSP and OSSPST.

The following five chapters illustrate each of the proposed articles in the sequence
of the objectives and phases of the doctoral dissertation. These are the classical problem
and variants with setup times, machine blocking constraints, repetition of operations, and
order delivery by vehicle routing.
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5 NEW EFFICIENT HEURISTICS FOR SCHEDULING OPEN SHOPS WITH
MAKESPAN MINIMIZATION

5.1 Introduction

Shop scheduling problems are widely studied optimization problems because of
their many industrial applications. In the last decades, variants of the flow shop scheduling
problem and job shop scheduling problem have received a lot of attention by researchers
(see e.g. Fernandez-Viagas, Ruiz and Framinan (2017), Fan et al. (2018), Zhang, Wang and
Xing (2019) for recent reviews on permutation flowshop, hybrid flowshop, and job shop
scheduling, respectively). However, this has not been the same for the Open Shop Scheduling
Problem (OSSP), which has received much less attention (ANAND; PANNEERSELVAM,
2016; ADAK; AKAN; BULKAN, 2020; AHMADIAN et al., 2021a). This problem is first
described by Gonzalez and Sahni (1976), and consists of scheduling a set of jobs on a set of
machines, in which each job operation has an associated processing time. However, unlike
flow shop and job shop scheduling problems, in the OSSP there are no predefined routes
for the jobs in the machines. The OSSP has several industrial applications such as plastic
molding, chemical processes, oil industry, and food production, while in the service sector,
it is used to model medical care services, vehicle maintenance, telecommunications, and
museum visit schedules (GONZALEZ; SAHNI, 1976; LIN; LEE; PAN, 2008; NADERI et
al., 2010; NADERI; NAJAFI; YAZDANI, 2012; VINCENT; LIN; CHOU, 2010; ABREU
et al., 2021; ABREU; TAVARES-NETO; NAGANO, 2021).

When the objective considered is the minimization of the maximum completion
times of the jobs (makespan) and there is only one machine, the OSSP can be reduced to a
single machine problem and every schedule is optimal. For the case of two machines, there
are polynomial algorithms with optimality proof (GONZALEZ; SAHNI, 1976; PINEDO,
2016). However, for problems with three or more machines, the OSSP with makespan
objective is NP-Complete (GAREY; JOHNSON, 2012). Therefore, although some branch-
and-bound algorithms have been proposed for this problem (BRUCKER et al., 1997;
GUÉRET; PRINS, 1999; GUÉRET; JUSSIEN; PRINS, 2000), exact methods are quite
limited for solving realistic-size problem instances.

In view of the aforementioned hardness of the OSSP with makespan objective,
different approximate algorithms have been proposed. These can be broadly classified
as either constructive heuristics, or local search/metaheuristic approaches. Regarding
constructive heuristics, several contributions have been presented: Pinedo (2016) proposed
two dispatching rules: Longest Alternate Processing Times (LAPT) and Longest Total
Remaining Processing Times on Other Machines first (LTRPOM). LAPT schedules first
the jobs with the longest processing time in other machine and the LTRPOM allocates a
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job first with the greater sum of processing times in other machine. Liaw (1998) presented a
dispatching rule called Dense Schedule/Longest Total Remaining Processing (DS/LTRP),
which is an improvement of the LTRPOM applying the well-known label correction
algorithm (SKRIVER; ANDERSEN, 2000).

Ramudhin and Marier (1996) adapted to the OSSP the shifting bottleneck procedure
heuristic, originally used to solve the job shop scheduling problem. The heuristic iteratively
attempts to select the bottleneck job or machine to re-optimize the jobs’ processing
sequence. Strusevich (1998) proposed a greedy heuristic for the open shop, considering
job priorities. The results for the three-machine case showed that the method obtains
solutions with a maximum deviation of 3

2 from the optimal solution. Guéret and Prins
(1998) presented two constructive heuristics, the first based on dispatching rules and the
second based on the construction of matchings in a bipartite graph. Bai and Tang (2011)
proposed a modified rotation scheduling heuristic for the problem, with relevant theoretical
contributions, such as proof of optimality when the number of jobs tends to infinity.

Regarding the application of local search methods for the OSSP, Colak and Agarwal
(2005) proposed a neural network algorithm that uses ten heuristic rules and local search
procedures, González-Rodríguez et al. (2010) proposed a heuristic local search with neigh-
borhood procedure based on graph theory to solve OSSP with triangular fuzzy processing
times. Finally, Naderi et al. (2010) presented new efficient constructive algorithms with a
local search that outperforms other existing algorithms such as LAPT.

For the OSSP it is clear that, since the space of solutions is extremely large due
to the absence of a predefined routing of the jobs, the solution encoding scheme plays a
key role (AHMADIAN et al., 2021a). Three different encoding schemes have been used
in the literature, i.e.: the disjunctive graph representation, the rank matrix, and the
permutation list. The disjunctive graph representation can be used exclusively for the
makespan objective, and it was introduced by Liaw in a series of papers (see Liaw (1999)
and Liaw (2000)). The rank matrix encoding was first proposed by Bräsel, Tautenhahn
and Werner (1993), and it consists of a matrix in a data structure in which each row
represents the sequence of operations for a given job on the machines, and each column
represents the sequence of jobs on each machine. The permutation list encoding consists
of a sequence of the operations (i.e. each tuple job, machine is given a number so a
solution is represented by a sequence). Clearly, the permutation encoding scheme is much
simpler, however its main disadvantage is its redundancy, as different sequences may indeed
represent the same schedule. Naderi et al. (2010) presented four theorems to drastically
reduce the redundancies in the permutation list encoding. They also propose four local
search algorithms (IRH1, IRH2, IRH3 and IRH4) using these properties.

With respect to the application of metaheuristics for the OSSP, the aforementioned
references by Liaw presented a tabu search (LIAW, 1999), a simulated annealing (LIAW,
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1999), and a genetic algorithm (LIAW, 2000). Prins (2000) proposed a Genetic Algorithm
(GA) using the permutation list encoding with two special features: a population with
individuals with different makespan values and a procedure for reordering the generated
chromosomes. This algorithm outperformed the then-existing heuristics and metaheuris-
tics. Blum (2005) proposed a hybridized beam-search algorithm with ACO (Ant Colony
Optimisation) using the permutation list encoding. Sha and Hsu (2008) presented a new
Particle Swarm Optimization (PSO) algorithm using the permutation list scheme with
an innovative encoding for the particles and a particle movement based on an insertion
operator. Their computational results include several new best known solutions for the
unsolved problems, and it is shown to outperform the algorithms by Liaw (1999), Prins
(2000), and Blum (2005).

Also using the permutation list encoding, Ahmadizar and Farahani (2012) proposed
a hybrid genetic algorithm (HGA) with a local search optimization procedure which
outperforms the previously reported metaheuristics for the OSSP. Ghosn, Drouby and
Harmanani (2016) proposed a parallel genetic algorithm (PGA) using deterministic and
random moves. Pongchairerks and Kachitvichyanukul (2016) proposed a two level PSO
with competitive performance on the benchmark instances. Finally, an extended genetic
algorithm (EGA) was proposed by Hosseinabadi et al. (2018) to solve OSSP.

The Table 2 illustrates the main contributions of the literature to the classic
OSSP. The authors, year of publication, characteristics of the problem such as the type of
processing times, solution methods and main research contributions are illustrated.

Table 2 – Summary of the main contributions from the OSSP literature considering heuris-
tic and metaheuristics approach.

Author Problem characteristics Solution method Contribution

Colak and Agarwal (2005) Classic OSSP Neural network algorithm Eficient ten heuristic rules and local search procedures
with competitive results.

González-Rodríguez et al. (2010) Triangular fuzzy processing
times Heuristic local search Prove that feasibility and asymptotic convergence and

proposed new benchmarking instances.

Naderi et al. (2010) Classic OSSP Constructive algorithms with
local search

Theorems do reduce redundancies of the permutation list
encoding and outperforms algorithms like LAPT.

Bai and Tang (2011) Classic OSSP Modified rotation scheduling
heuristic Proof of optimally when jobs trends to infinite.

Sha and Hsu (2008) Classic OSSP PSO Innovative encoding of solutions and the results found
several new best known solution for instances of literature.

Ahmadizar and Farahani (2012) Classic OSSP HGA Outperforms the previously reported metaheuristics for
the classic OSSP.

Ghosn, Drouby and Harmanani (2016) Classic OSSP PGA Proposed new deterministic and random moves and got
competitive results in Taillard instances.

Hosseinabadi et al. (2018) Classic OSSP EGA New genetic operators and EGA outperforms all other
tested methods.

Source: Authors.

As it can be seen from the above review, there are several methods to provide
approximate solutions for the OSSP with makespan objective. However, we think that
there is room for improving the state of the art of the problem by proposing new efficient
constructive heuristics which incorporate some knowledge of the problem domain. More
specifically, in this paper we first suggest using a look-ahead mechanism to estimate the
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contribution to the makespan of a partial solution in order to discard less-promising
solutions, as well as some reasoning about the machines idle-time between operations.
We believe that the development of efficient constructive heuristics for the OSSP is
important for (at least) two reasons: 1) efficient constructive heuristics may provide high
quality solutions in reduced computation times, which is required in many manufacturing
environments and that allows to tackle problems of realistic size –particularly for the
OSSP as the space of solutions grows very quickly with the problem size–, and 2) most
metaheuristics and local search techniques use some constructive heuristic(s) as a starting
solution, so designing more efficient constructive heuristics also boosts the performance
of these procedures. These two aspects will be checked when developing our proposals.
Once these fast constructive heuristics are developed, we combine them with a beam
search algorithm and a cheapest insertion procedure. Finally, these are embedded in
a local search (LS) procedure which uses the permutation list encoding but takes into
consideration the four redundancy theorems proposed by Naderi et al. (2010) to overcome
the disadvantages of the chosen encoding. All the algorithms proposed in the paper are
compared with the existing constructive heuristics and local search approaches (i.e. LAPT,
LTRPOM, DS/LTRP, EGA, IRH1, IRH2, IRH3 and IRH4) in an exhaustive computational
experience.

The remainder of this paper is organized as follows: in Section 2, the scheduling
problem treated in this paper is formally stated and a Mixed-Integer Linear Programming
(MILP) model that will be used to obtain the optimal solutions for small-sized instances
is presented. In Section 3, the proposed algorithms are described; in Section 4, we discuss
some results of the computational experiments and statistical tests. Finally, in Section 5
we describe some conclusions and suggestions for future works.

5.2 Problem statement and MILP model

The problem considers n jobs that must be processed in m machines. Each job has
a processing time on each machine and can visit the machines in any order. Furthermore,
the usual hypotheses in scheduling apply: The processing of operations on the machines
occurs at different times, i.e., a particular job can not be processed at the same time on
more than one machine. In addition, we deal with the non-preemptive case of the OSSP,
hence the processing of the jobs cannot be interrupted, i.e., the job once started on a
machine, it must be processed until the end of the task. The objective of the decision
problem is to minimize the maximum completion time among the jobs (makespan). In the
notation of Lawler et al. (1993) , the problem is defined as: Om||Cmax.

If we use the permutation list as an encoding scheme (see e.g. Khuri and Miryala
(1999)), a solution of the problem is given by a sequence s containing all the operations to
be performed in the shop. The schedule corresponding to solution s consist in scheduling
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operation k corresponding to job j on machine i in order to start as earliest as possible
but not before any previous job in the schedule. A pseudo-code of this active scheduler
decoding scheme is given in Figure 12.

As an example, we present the classic instance GP03-01 of Guéret and Prins (1999)
in Table 3. The instance has three jobs and three machines. Using the permutation list
encoding, the operations to be performed in an instance with 3 jobs and 3 machines are
presented in Table 4, where Oij is the operation of job j in machine i. Taking into account
also the processing times in Table 3 (as processing time pij of job j in machine i), it can
be seen that the sequence s = (9, 3, 5, 6, 4, 8, 7, 2, 1) returns a solution with a makespan of
2064 time units, as shown in Figure 13.

Table 3 – Processing times for open shop example

pij (Oij) J1 J2 J3
M1 661 (O11) 168 (O12) 171 (O13)
M2 70 (O21) 489 (O22) 505 (O23)
M3 333 (O31) 343 (O32) 324 (O33)

Source: Authors.

Table 4 – Operations for the presented instance.
Operation 1 (O11) 2 (O12) 3 (O13) 4 (O21) 5 (O22) 6 (O23) 7 (O31) 8 (O32) 9 (O33)
Machine M1 M1 M1 M2 M2 M2 M3 M3 M3
Job J1 J2 J3 J1 J2 J3 J1 J2 J3

Source: Authors.

Data: A solution with sequence Π
Result: The maximum completion time (makespan)

1 U ← Π;
2 M ← list with time accumulated in each machine;
3 J ← list with time accumulated in each job;
4 while ∥U∥ > 0 do
5 πzd ← operation in the first position ∈ U ;
6 U ← U − {πzd};
7 update J and M with time of πzd operation;
8 end
9 makespan← max

i∈{1,...,m}
Mi

Figure 12 – Active schedule decoding scheme procedure.

There are several ways to model the OSSP problem using mathematical program-
ming, being different regarding to the way in which the decision variables are defined.
More specifically, three types of notations can be used, i.e. positional notation, sequential
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Figure 13 – Gantt chart for the presented solution.
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notation and time-indexed notation. In the study by Naderi et al. (2011b) it is illustrated
that models with sequential notation perform better in OSSP problems due to their smaller
number of variables and constraints, as compared to positional and time-indexed notation.
Therefore, we have used the sequential notation in the MILP model developed.

Although MILP models are not efficient to solve medium and large size instances
of many production scheduling problems due to their NP-hard nature, we find useful to
present a MILP model for the problem with the aim of assessing in Section 5.4 the quality
of the constructive heuristics proposed for small instances where the optima can be found.
To do so, we adapt the formulation proposed by Naderi et al. (2011a) with sequential
notation for the open shop with sequence-dependent setup times and total completion
time minimization. We consider a dummy job 0 preceding the first job on each machine.
Hereafter, the notation used for the problem is presented.

Indices and sets:

j: index for jobs {1,2,...,n}.

k: index for jobs (including the dummy job 0) {0,1,2,...,n}.

i, l: indices for machines {1,2,...,m}.

Parameters:

pji: processing time of job j on machine i (operation Oij).

M : a large and positive number.

Decision variables:

Cji: completion time of job j on machine i.



65

Cmax: makespan.

Yjik: 1 if operation Oij is processed immediately after Oik, and 0 otherwise.

Xjil: 1 if operation Oij is processed after Olj, and 0 otherwise.

The proposed MILP model is as follows.

minimize
Cmax (5.1)

subject to
n∑

k=0,k ̸=j

Yjik = 1, ∀j, i (5.2)

n∑
j=1,j ̸=k

Yjik ≤ 1, ∀i, k > 0 (5.3)

n∑
j=1,j ̸=k

Yji0 = 1, ∀i (5.4)

Yjik + Ykij ≤ 1, ∀i, j < n, k > j (5.5)
Cji ≥ Cki + pji − (1− Yjik)×M, ∀j, i, k, k ̸= j (5.6)
Cji ≥ Cjl + pji − (1−Xjil)×M, ∀j, i < m, l > i (5.7)
Cjl ≥ Cji + pjl −Xjil ×M, ∀j, i < m, l > i (5.8)
Cmax ≥ Cji, ∀j, i (5.9)
C0i = 0, ∀i (5.10)
Cji ∈ R+, ∀j, i (5.11)
Cmax ∈ R+, (5.12)
Yjik ∈ {0, 1}, ∀j, i, k ̸= j (5.13)
Xjil ∈ {0, 1}, ∀j, i < m, l > i (5.14)

The objective function (5.1) is the minimization of the makespan. Set of constraints
(5.2) ensures that all the jobs are scheduled only once on each machine. Set of constraints
(5.3) enforces that each job present at most one successor on each machine. Set of constraints
(5.4) guarantees that the dummy job is preceding any other job on each machine. Set of
constraints (5.5) avoids that a given job is simultaneously the predecessor and successor of
another job. Constraints sets (5.6), (5.7), and (5.8) guarantee that the jobs are processed
in the machines according to the previously defined processing times. Set of constraints
(5.9) determines the makespan (maximum among all completion times). Constraint set
(5.10) determines the completion time of dummy job. Finally, constraint sets (5.11),
(5.12), (5.13), and (5.14) determine the domain of the decision variables. The proposed
model includes n2m binary decision variables, nm + 1 continuous decision variables and
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nm
(

1
2 + 3

2n + m
)

+ n constraints. The constraint with the largest size is the one found
in equations (5.6) and (5.7) with the worst case complexity of O (mn2 + m2n). Table 5
illustrates a comparison of number of constraints and decision variables of MILP, for
several different instance sizes. The parameter m is the number of machines and n is the
number of jobs.

Table 5 – Comparison of MILP formulation with examples of instances sizes for OSSP

Instances sets MILP

m n # integer
variables

# continuous
variables # constraints

3 3 27 10 75
4 4 64 17 172
5 5 125 26 330
6 6 216 37 564
7 7 343 50 889
8 8 512 65 1320
9 9 729 82 1872

10 10 1000 101 2560
15 15 3375 226 8565
20 20 8000 401 20220

Source: Authors.

5.3 Proposed algorithms

This section is devoted to present the new algorithms proposed for the problem
under consideration. More specifically, in Section 5.3.1 we present three constructive
heuristics for the problem using a beam search and cheapest insertion procedure, while in
Section 5.3.2 we present an efficient local search procedure with reduction of the search
space which can be initialized with any of the aforementioned constructive heuristics.
The constructive heuristics start from the initial solutions obtained by an adaptation
to our problem of the methods by Abreu et al. (2020) for the problem with setups,
and are combined with an efficient beam search strategy and cheapest insertion. Beam
search algorithms have been successfully applied to other scheduling environments (RUIZ;
STÜTZLE, 2008; DONG; HUANG; CHEN, 2008; KIZILAY et al., 2019). However, to the
best of our knowledge, beam search algorithms have not been tested in the open shop
environment.

5.3.1 Constructive heuristics

In this section we present six constructive algorithms to solve the OSSP for
makespan minimization. These heuristics adapt the algorithms proposed by Abreu et al.
(2020) that presented high-quality results for the OSSP with sequence-dependent setup
times to minimize the total completion time. In Section 5.3.1.1 we propose the Bounded
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Insertion Constructive Heuristic + Beam Search (BICH-BS) algorithm, which uses a
projection of the makespan of the complete sequence for each step of the construction
procedure to select the most promising partial sequence. The rationale of this heuristic is
to reduce the solution search space by discarding sequences that would increase the lower
bound and, consequently, the makespan of the solution in the short term. In Section 5.3.1.2
we present Minimal Idleness Heuristic + Beam Search (MIH-BS), a new constructive
procedure that takes into consideration the minimization of the idleness of the machines
in the production environment under study. The rationale of this heuristic is the following:
the insertion of operations with less (local) idleness provides an increase in the utilization
of the machines and consequently, it can potentially reduce the makespan at the end of
the solution. In Section 5.3.1.3 we propose a method combining the two above-mentioned
strategies. All these constructive methods presented are embedded in a beam-search
procedure to explore the potential of using the constructive heuristics as a starting point
of a local search procedure. Finally, in Section 5.3.1.4 we propose a hybridization of three
proposed constructive heuristic by Abreu et al. (2020) with adaptation of cheapest insertion
as improvement heuristic for OSSP.

5.3.1.1 Bounded Insertion Constructive Heuristic + Beam Search (BICH-BS)

The BICH-BS algorithm that we proposed for the OSSP is the result of the
hybridization of two general approximate procedures (i.e. BICH and BS) adapted for the
problem under consideration with a new procedure for the search space reduction based
on the machine released earlier. We first give a brief description of these procedures and
how they have been hybridized, and secondly we provide the pseudo-code with a detailed
explanation.

The BICH procedure was first proposed by Fernandez-Viagas and Framinan (2015b)
for the permutation flowshop scheduling problem with makespan minimization (PFSP)
subject to a maximum tardiness, and it can be considered a state-of-the-art algorithm
for this problem. The BICH algorithm starts with an empty solution, and then, for each
unscheduled operation, an estimation of the lower bound if the unscheduled operation is
inserted is obtained. The operation with the best expected lower bound is selected and
inserted in the current solution, and the algorithm continues constructing the solution
until all operations have been inserted.

As it can be seen, the main idea of the BICH heuristic is to employ a mechanism
to limit the number of solutions to be explored in the solution space, hence it seems
particularly well-suited for combinatorial optimization problems with an extremely large
number of feasible solutions. An adaptation of the BICH for the open-shop scheduling
problem with sequence-dependent setups has been proposed by Abreu et al. (2020). Hence,
for our problem we propose a procedure that uses this heuristic (where setup times are
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considered to be zero) as initial solution and then the so-obtained solution is improved
using a beam search (BS) strategy. The BS is a search algorithm based on nodes search,
very similar to Branch and Bound, but only the best β nodes are selected for expansion,
thus consuming less computational time as only a subset of nodes from the set of all
possible solutions to the problem are explored (BIRGIN; FERREIRA; RONCONI, 2020).

The main elements of both BICH and BS are adapted to our problem. For the
BICH, the operation returning the lowest expected lower bound is selected. For the BS,
for each iteration, several operations are considered to be inserted in the solution. The
domain knowledge of the problem is the insertion of operations based on the expected
lower bound of the problem. This hedge prevents placing operations in positions that
contribute negatively to the expected lower bound.

The lower bound for the open shop required by BICH is calculated using the
well-known Equation (5.15) (PINEDO, 2016):

LB = max
{

max
j∈{1,··· ,n}

m∑
i=1

pij, max
i∈{1,··· ,m}

n∑
j=1

pij

}
(5.15)

One can observe that this lower bound can be computed with low computational
effort. In addition, the computation of the expected lower bound required for BS can be
also performed in a fast manner. First, we must calculate the expected contribution to
the makespan (EMC) with the addition of the operation of job j in machine k (πkj) in a
partial solution Π, using a matrix of processing times P where the processing times of the
operations previously inserted in the partial solution Π are equal to zero, and also that
of the operation πkj for the EMC calculation (Pkj = 0). Equation 5.16 presents EMC

calculation.

EMC(πkj, P ) = max
{

max
l∈{1,··· ,n}

m∑
i=1

Pil, max
i∈{1,··· ,m}

n∑
l=1

Pil

}
, with Pkj = 0 (5.16)

Therefore, using ECM , the expected lower bound can be calculated with the
makespan of the operations presented in the partial solution Π with the operation πkj,
adding in the value of the makespan, the ECM considering the insertion of the operation
πkj in the partial solution. Finally, we present the expected lower bound of insertion of
operation πkj in the partial solution Π in Equation (5.17).

makespan(Π ∪ {πkj}, p) + ECM(πkj, P ) (5.17)

The parameter Π is a (partial) sequence of operations, πkj is the operation of job
j in machine k, p is a default processing time matrix, and P is a processing time matrix
with the processing time of the operation πkj and all other allocated in Π equal to zero.
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The main feature regarding the hybridization of BS and BICH is the fact that the best β

operations are tested concerning the expected lower bound in each iteration. However, in
the classic BICH, a single solution is constructed for each iteration through the selection of
the best operation; thereby, this algorithm does not evaluate solutions with the insertions
of different operations. In contrast, in BICH-BS, the search tree adds the new nodes, and
in the next iterations, the insertion of β operations in each of the generated nodes is tested.
At the end of the algorithm, the so-built node with the lowest makespan is returned.

Note that, since forcing the BICH-BS algorithm to select the best β nodes from all
the existing set may demand a high computational cost, we propose a new local search
mechanism (LS) that performs an initial filter. More specifically, the filter chooses only
operations that contain the machine that is released earliest. We considered the operation
πkj to calculate the expected lower bound, where k is the index of the machine released
earlier. In this manner, the search is improved by reducing the number of operations whose
expected lower bound has to be computed.

The complete pseudo code of the proposed algorithm BICH-BS is shown in Figure 14.
In the pseudocode, EMC is a function that calculates the expected makespan contribution,
with a processing times matrix P and considering the time of candidate operation πkj

equal to zero so the time of this operation in the partial lower bound is not considered. If
BICH selects this operation, it is inserted in the solution, and its processing time in the
P matrix will be equal to zero. Thus, this operation will not be considered in the next
iterations. Finally, p is an example of an instance as presented in Table 3. The algorithm
returns a sequence of operations Π := {π11, π13, ..., πmn} as a solution for the OSSP.

In lines 1-8 of the pseudo-code, the main parameters are initialized, including the
N tree with the starting node with the empty parameters. N is a list of tuples where
each tuple represents a node of a partial solution constructed in each iteration with the
insertion of an operation into the sequence Π. Ni denotes a node of a partial solution
with an index of i, z is a counter for the number of nodes created in each iteration of BS,
and Nz is the node of the last partial solution created. Line 9 corresponds to the main
loop of the algorithm, while all operations are not allocated to the last created node, the
algorithm’s steps must be executed. Lines 15-16 select the operations to be tested for the
expected lower bound, consider only the possible operations to be programmed on the
machine released earlier, with jobs still available for programming in this machine.

Lines 17-19 creates the new nodes for each candidate operation to be inserted into
the solution in the current node of the for loop in line 11. The best node operation is
inserted in the current node on lines 27-28. In lines 30-35, the best new nodes found are
selected to be added to the N tree. Line 37 selects the best solution found from all the
nodes that have been created by BICH-BS.
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Data: EMC(.), p, β
Result: A sequence Πbest := {π11, π12, ..., πmn}

1 Π ← {};
2 P ← copy(p);
3 M ← list with time cumulative in each machine;
4 J ← list with time cumulative in each job;
5 Ωk ← list with the jobs alocated in machine k, ∀k ∈ {1, ..., m};
6 N ← set of nodes for solution, each node is a tuple; // Ni ← (Π, M, J, Ω, P ).
7 z ← 1 ; // number of nodes created in search.

8 N ← N ∪ (Π, M, J, Ω, P )
9 while ∥Nz.Π∥ < n×m do

10 new_nodes ← {}; // set of new nodes created.

11 foreach node i ∈ N do
12 if ∥Ni.Π∥ < n×m then
13 continue search for next node, this node i was completed;
14 end
15 machine k ← argmin

r∈{1,...,m},∥Ni.Ωr∥<n

Mr; // index from machine released more

early.

16 J ← list of jobs j sort by makespan(Ni.Π ∪ {πkj}, p) + EMC(πkj, P )
with j /∈ Ni.Ωk;

17 foreach j ∈ J do
18 if j is the first job in the list J then
19 w ← j; // The node Ni continues the insertion with the best job j by

BICH criteria.

20 else
21 Π

′
, Ω′

k, P
′
, P

′
kj ← Ni.Π ∪ {πkj},Ni.Ωk ∪ {j}, copy(Ni.P ), 0;

22 J
′
, M

′ ← Ni.J, Ni.M ;
23 update J

′ and M
′ with time of πkj operation;

24 new_nodes ← new_nodes ∪ (Π ′
, M

′
, J

′
, Ω′

, P
′);

25 end
26 end
27 Ni.Π,Ni.Ωk,Ni.Pkw ← Ni.Π ∪ {πkw},Ni.Ωk ∪ {w}, 0;
28 update Ni.J and Ni.M with time of πkw operation;
29 end
30 best_nodes ← the β best nodes ∈ new_nodes by makespan;
31 foreach node i ∈ best_nodes do
32 z ← z + 1; // A new node is create

33 extract Π, M , J , Ω, P from node i;
34 N ← N ∪ (Π, M, J, Ω, P );
35 end
36 end
37 Πbest ← the best solution found ∈ Ni.Π ∀i ∈ {1, ..., z};

Figure 14 – Pseudocode of the BICH-BS heuristic
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5.3.1.2 Minimal Idleness Heuristic + Beam Search (MIH-BS)

In this section we propose the MIH-BS algorithm, which is the results of hybridizing
the MIH heuristic (ABREU et al., 2020) for the open-shop problem with setups with the
BS strategy. First we describe the MIH heuristic and then we describe its adaptation and
hybridization with the BS.

MIH is a heuristic procedure which relies on the idea that classical dispatching rules
for the OSSP are largely based on LPT algorithms to sort operations in descending order
of their processing times. In view of the similarities of the open-shop with the parallel
machine environment, the allocation of jobs with the longest processing times using LPT
might be an interesting strategy. However, this may cause a high idle time when applied
to the open shop: While in the parallel machine environment this idleness is zero, in the
open shop it can increase the waiting time of a given solution. The idea of the MIH is that
partial solutions with low values of cumulative processing times would usually present a
low makespan in the final solution. Thus, an indicator for idleness can be calculated by the
accumulated times for jobs and machines in the production system over the execution of
operations in the scheduling sequence. If the cumulative time for a given job in the system
is greater than the accumulated time for a given machine, it means that the machine will
wait until the job is finished, and consequently, it can be allocated to the current machine.
If the cumulative time of this job is lower than the cumulative time of a given machine, this
job was already processed in another machine and its processing in the current machine
will not result in idleness (ABREU et al., 2020). Φij represents the idleness generated by
the allocation of job j to machine i. M and J store the cumulative processing times for
each machine and job are stored in Mi and Jj respectively, and both are updated every
time a new operation is inserted into the sequence. Equation (5.18) presents the procedure
to calculate idleness.

Φij =

Jj −Mi, if Jj > Mi

0, otherwise
(5.18)

The MIH algorithm starts with an empty solution, and all unscheduled operations
are inserted and their idleness is computed. The operation that results in the lowest idleness
is inserted, and the algorithm continues constructing the solution until all the operations
have been inserted. In the case of a tie, the decision is arbitrary. When operations have
the same idleness, for tie-breaking, the operation with the lowest index is selected.

For our problem, the MIH originally proposed for the open-shop with setups is
adapted. The main difference with the BS hybridization presented before is that the best
β operations are tested with respect to their idleness in each iteration. The new nodes are
added to the search tree, and in the next iterations, the insertion of β operations in each
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of the generated nodes is tested. At the end of the algorithm, the node with the lowest
makespan is returned.

Furthermore, for the MIH-BS algorithm selecting the best β nodes from all the
existing sets may demand a high computational cost. To overcome this problem we suggest
the same mechanisms of the BICH-BS algorithm in Section 5.3.1.1, i.e. the operations
selected to calculate the expected idleness are only the operations present in the machine
released earlier in order to optimize the search by reducing the number of operations in
which the expected idleness has to be computed.

Figure 15 shows the complete pseudo code for MIH-BS. In the algorithm, Φij is
the idle of operation πij, and p is a example of instance like in Table 3. As it can be seen,
the structure of the algorithm is similar to that of BICH-BS. The main differences refer to
lines 15-16 (where the operations to be tested are selected based on the expected idleness,
considering only the possible operations programmed in the machine released earlier), and
line 37 where the best solution found among all nodes that have been created by MIH-BS
is selected.

5.3.1.3 A combined approach + Beam Search (BICH-MIH-BS)

Framinan and Perez-Gonzalez (2017) present a constructive heuristic in which
there is a look-ahead procedure for measuring the potential contribution of the candidate
operations to the objective function and an estimation of the contribution to the objective
function of the non-scheduled operations in the sequence solution. This look-ahead mecha-
nism is the main feature in our combined approach, taking into account the makespan
lower bound, the machine’s idleness, as well as the BS scheme.

On the basis of such reasoning, we develop a constructive heuristic that adapts MIH
and BICH taking into consideration the contribution of an operation for the makespan
objective as well as the idleness indicator with a beam-search procedure. We adopt a
weight aggregation function for combining the two objectives, i.e. idleness minimization
and makespan minimization.

Let Ψij be a performance indicator for the insertion of the operation πij in the
permutation, α the weight of the expected contribution for the idleness minimization, Φij

the expected contribution for the idleness minimization, p is a default processing time
matrix, and P is a processing time matrix with the processing time of the operation πij

and all other allocated in Π equal to zero. The performance indicator Ψij can be computed
as follows:

Ψij = (1− α)× (makespan(Π ∪ {πij}, p) + EMC(πij, P )) + α× Φij (5.19)

If α = 1 the combined approach is equal to MIH and if α = 0 the combined



73

Data: Φ, p, β
Result: A sequence Πbest := {π11, π12, ..., πmn}

1 Π ← {};
2 P ← copy(p);
3 M ← list with time cumulative in each machine;
4 J ← list with time cumulative in each job;
5 Ωk ← list with the jobs alocated in machine k, ∀k ∈ {1, ..., m};
6 N ← set of nodes for solution, each node is a tuple; // Ni ← (Π, M, J, Ω, P ).
7 z ← 1 ; // number of nodes created in search.

8 N ← N ∪ (Π, M, J, Ω, P )
9 while ∥Nz.Π∥ < n×m do

10 new_nodes ← {}; // set of new nodes created.

11 foreach node i ∈ N do
12 if ∥Ni.Π∥ < n×m then
13 continue search for next node, this node i was completed;
14 end
15 machine k ← argmin

r∈{1,...,m},∥Ni.Ωr∥<n

Mr; // index from machine released more

early.

16 J ← list of jobs j sort by Φkj with j /∈ Ni.Ωk;
17 foreach j ∈ J do
18 if j is the first job in the list J then
19 w ← j; // The node Ni continues the insertion with the best job j by

MIH criteria.

20 else
21 Π

′
, Ω′

k, P
′
, P

′
kj ← Ni.Π ∪ {πkj},Ni.Ωk ∪ {j}, copy(Ni.P ), 0;

22 J
′
, M

′ ← Ni.J, Ni.M ;
23 update J

′ and M
′ with time of πkj operation;

24 new_nodes ← new_nodes ∪ (Π ′
, M

′
, J

′
, Ω′

, P
′);

25 end
26 end
27 Ni.Π,Ni.Ωk,Ni.Pkw ← Ni.Π ∪ {πkw},Ni.Ωk ∪ {w}, 0;
28 update Ni.J and Ni.M with time of πkw operation;
29 end
30 best_nodes ← the β best nodes ∈ new_nodes by makespan;
31 foreach node i ∈ best_nodes do
32 z ← z + 1; // A new node is create

33 extract Π, M , J , Ω, P from node i;
34 N ← N ∪ (Π, M, J, Ω, P );
35 end
36 end
37 Πbest ← the best solution found ∈ Ni.Π ∀i ∈ {1, ..., z};

Figure 15 – Pseudocode of the MIH-BS heuristic
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approach is equal to BICH. This heuristic need finding the best empirical α to solve the
proposed problem.

As it can be seen, the algorithm is similar to the ones presented in the Section
5.3.1.1 and 5.3.1.2, just changing the selection criteria to Eq. (5.19) in order to select the
operation to be inserted in the solution.

Therefore, BICH-MIH starts with an empty solution, and all unscheduled operations
are considered by calculating their hybrid indicator. The operation resulting in the smallest
Ψ is inserted, and the algorithm continues the construction of the solution until all the
operations have been inserted.

The main difference with the BS hybridization is that, in each iteration, the best β

operations are tested with respect to the hybrid criterion in Eq. (5.19). The new nodes are
added to the search tree and, in the next iterations, the insertion of β operations in each
of the generated nodes is tested. At the end of the algorithm, the node with the lowest
makespan is returned.

For the MIH-BS algorithm selecting the best β nodes from the entire existing
set may require a high computational cost. To overcome this problem we use the same
mechanisms of the BICH-BS and MIH-BS algorithms proposed in Section 5.3.1.1 and
5.3.1.2, respectively. The operations selected to calculate the hybrid indicator Ψ are only
operations present in the machine released earlier to optimize the search by reducing the
number of operations to be computed.

Figure 16 shows the complete pseudo code for BICH-MIH-BS. In the pseudo
code, As discussed previously, EMC(.) calculates the expected makespan contribution
of instance, Ψij is the indicator combining the expected makespan and the idleness of
inserting operation πij, and p is a example of instance like in Table 3.

The algorithm is similar to BICH-BS and MIH-BS. The main differences are in
lines 15-16, where the operations to be tested is selected based on the combined indicator
of makespan and the expected idleness, considering only the possible operations to be
programmed on the machine released earlier, with jobs still available for programming in
this machine. Line 42 selects the best solution found among all the nodes that have been
created by BICH-MIH-BS.

5.3.1.4 Constructive heuristics with Cheapest Insertion (IST)

The cheapest insertion heuristics is a constructive heuristic used in many production
scheduling problems (see e.g. Wu and Che (2020), or Rossi and Nagano (2020)). It starts
with a pre-established sequence of operations and it constructs a solution by inserting the
unscheduled operations one by one in an iterative manner. Each operation is inserted in
the position where it obtains the best value of the objective function (cheapest insertion).
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Data: EMC(.), Φ, Ψ, p, β, α
Result: A sequence Πbest := {π11, π12, ..., πmn}

1 Π ← {};
2 P ← copy(p);
3 M ← list with time cumulative in each machine;
4 J ← list with time cumulative in each job;
5 Ωk ← list with the jobs alocated in machine k, ∀k ∈ {1, ..., m};
6 N ← set of nodes for solution, each node is a tuple; // Ni ← (Π, M, J, Ω, P ).
7 z ← 1 ; // number of nodes created in search.

8 N ← N ∪ (Π, M, J, Ω, P )
9 while ∥Nz.Π∥ < n×m do

10 new_nodes ← {}; // set of new nodes created.

11 foreach node i ∈ N do
12 if ∥Ni.Π∥ < n×m then
13 continue search for next node, this node i was completed;
14 end
15 machine k ← argmin

r∈{1,...,m},∥Ni.Ωr∥<n

Mr; // index from machine released more

early.

16 J ← list of jobs j sort by Ψkj with j /∈ Ni.Ωk;
17 foreach j ∈ J do
18 if j is the first job in the list J then
19 w ← j; // The node Ni continues the insertion with the best job j by

BICH-MIH criteria.

20 else
21 Π

′
, Ω′

k, P
′
, P

′
kj ← Ni.Π ∪ {πkj},Ni.Ωk ∪ {j}, copy(Ni.P ), 0;

22 J
′
, M

′ ← Ni.J, Ni.M ;
23 update J

′ and M
′ with time of πkj operation;

24 new_nodes ← new_nodes ∪ (Π ′
, M

′
, J

′
, Ω′

, P
′);

25 end
26 end
27 Ni.Π,Ni.Ωk,Ni.Pkw ← Ni.Π ∪ {πkw},Ni.Ωk ∪ {w}, 0;
28 update Ni.J and Ni.M with time of πkw operation;
29 end
30 best_nodes ← the β best nodes ∈ new_nodes by makespan;
31 foreach node i ∈ best_nodes do
32 z ← z + 1; // A new node is create

33 extract Π, M , J , Ω, P from node i;
34 N ← N ∪ (Π, M, J, Ω, P );
35 end
36 end
37 Πbest ← the best solution found ∈ Ni.Π ∀i ∈ {1, ..., z};

Figure 16 – Pseudocode of the BICH-MIH-BS heuristic
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IST is a greedy constructive heuristic, being of simple implementation in the most diverse
scheduling problems.

Here we propose hybridizing the BICH, MIH, and BICH-MIH described above with
the improvement of the solutions through the IST heuristics, with the calculation of the
makespan using a decoding scheme, explained in Figure 19.

More specifically, the algorithm starts with a list of operations sorted according to
one of the three criteria: BICH, MIH, or BICH-MIH. Then, operations not yet allocated in
the solution, present in the list of ordered operations, is tested in each possible positions
in the solution. The chosen position is that where the best makespan is obtained. The
algorithm finishes when all the operations have been inserted into the solution.

The complete pseudo-code of the cheapest insertion heuristics adapted for the OSSP
is shown in Figure 17 where W is the list of operations sorted by some criteria and p is a
sample instance as in Table 3. The Algorithm returns a solution Πbest := {π11, π12, ..., πmn}.

Data: W , p
Result: A sequence Πbest := {π11, π12, ..., πmn}

1 Π ← {};
2 W ← a solution ordered by a constructive heuristic as BICH, MIH or BICH-MIH;
3 best_make ← best makespan generated in each interation;
4 best_pos ← best position found by insertion πij in solution;
5 while ∥W∥ > 0 do
6 πij ← first operation ∈ W ;
7 best_make ←∞
8 foreach position pos ∈ Π do
9 Π

′ ← a solution with insertion of πij in position pos in Π;
10 if makespan(Π ′, p) < best_make then
11 best_make ← makespan(Π ′ , p);
12 best_pos ← pos;
13 end
14 end
15 Π ← solution with insertion of of πij in position best_pos;
16 W ← W/{πij};
17 end

Figure 17 – Pseudocode of the cheapest insertion heuristic

Lines 1-4 set the parameters for the execution of the algorithm. Line 5 corresponds
to the algorithm’s main while loop: while the list of ordered operations is not empty, the
algorithm runs. Lines 6-7 select the operation to be tested in the current iteration. In lines
8-14, the operation is tested in all possible positions in the Π solution. In lines 15-16, the
operation is inserted in the best position found.
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5.3.2 Local search

As already mentioned, since the search space of the OSSP is very large, neighborhood
search algorithms play a key role for finding high-quality solutions, mainly for large-
sized instances. The local search applied is the well-known 2-opt algorithm, with a best
improvement strategy. This local search procedure includes the search space reduction
mechanisms based on the theorems proposed by Naderi et al. (2010) aiming to reduce the
movements that generate redundant solutions.

The search consists in the pairwise exchange (swap) of a given operation and the
rest, respecting the redundancy constraints. When all feasible exchanges are performed,
there are two possibilities: (a) if there is no improvement, the next operation in the
sequence is selected; (b) otherwise, the swap that generates the best makespan is selected.
Thereafter, the search is restarted so the procedure stops when all the feasible swaps are
evaluated.

In Figure 18 the proposed local search is presented. In this figure, makespan refers
to the objective function, redundancy is a function that returns whether a swap between
two operations is redundant or not based in Naderi et al. (2010) theorems, Π is a solution
that will receive a local search and p is a example of instance such as illustrated in Table 3.

The solution decoding used for the algorithms with local search procedures is
different from the previous one used in constructive algorithms. The main change is the
consideration of a non-delay schedule in makespan calculation, which consists in the
minimization of the idle time of machines. With this type of decoding, a given machine
is not kept idle if there are still jobs to be processed, thus no machine is kept idle at a
time when it could start processing other operations (SHA; HSU, 2008). The decoded
solutions with non-delay have an equal or better makespan than solutions decoded without
non-delay. With non-delay decoding, multiple permutations get the same makespan value,
which can reduce the search space of the solutions, improving the efficiency of the local
search algorithms (NADERI et al., 2010). Therefore, this decoding scheme prioritizes
the processing of the operations with the earliest starting time in each iteration of the
makespan calculation. This decoding is not used in the iterations of constructive heuristics
due to its high computational requirements.

This decoding always prioritizes scheduling first the operations with lower start
time sij. Where there is more than one operation with the same start time, the operation
πzd with the earliest relative position is prioritized. Figure 19 presents the decoding scheme
used in the proposed local search.
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Data: redundancy(.), Π, p
Result: A new sequence W

1 W ← an sequence Π generated by construtive heuristics;
2 BestMake← makespan(W );
3 r ← m× n;
4 improvemment ← True;
5 while r > 0 do
6 if improvemment = False then
7 r−−

8 end
9 improvemment ← False;

10 πij ← operation in r position in W ;
11 for r2 = 1 to m× n do
12 πzd ← operation in r2 position in W ;
13 if redundancy(πij, πzd) =False then
14 WW ← solution with swap between πij and πzd operations;
15 if makespan(WW, p) < BestMake then
16 improvemment ← True;
17 BestMake← makespan(WW, p);
18 r3← r2;
19 end
20 end
21 if improvemment = True then
22 πzd ← operation in r3 position in W ;
23 W ← solution with swap between πij and πzd operations; // the best

swap founded in search
24 r ← m× n; // the search restarts
25 end
26 end
27 end

Figure 18 – Local search with reduction of search space.

5.4 Computational results

The proposed constructive heuristics are evaluated using the literature test problems
proposed by Taillard (1993), Guéret and Prins (1999) and Brucker et al. (1997), which are
the usual testbeds employed in OSSP. In the test problems by Guéret and Prins a fixed
interval for the processing times is considered, with random values uniformly distributed
between 1 and 1000, and a constant value for the lower bound equal to 1000. Different
problem sizes are considered with n, m ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For each class we have
randomly generated 10 test instances, totaling 80 instances. Brucker et al. test problems
are generated with random values between 1 and 500 uniformly distributed and 6 sets
of problem sizes n, m ∈ {3, 4, 5, 6, 7, 8}, totaling 60 instances. Taillard test problems were
generated with random values uniformly distributed between 1 and 100, without a lower
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Data: A solution with sequence Π
Result: A sequence S := {π11, π12, ..., πmn} with encoding scheme

1 S ← {};
2 U ← Π;
3 M ← list with time acumulated in each machine;
4 J ← list with time acumulated in each job;
5 sij ← start time for processing of operation πij

6 while ∥U∥ > 0 do

7 y ← min
{

max
i∈{1,...,m}

Mi, max
k∈{1,...,n}

Jk

}
;

8 R = {πij|sij = y, πij ∈ U};
9 πzd ← operation in earliest relative position ∈ R;

10 U ← U − {πzd};
11 S ← S + {πzd};
12 update J and M with time of πzd operation;
13 update sij based on J and M times, ∀i ∈M, j ∈ N ;
14 end

Figure 19 – Non-delay schedule decoding scheme procedure.

bound constraint. Problem classes were considered according to the combination of the 6
sets of problem size n, m ∈ {4, 5, 7, 10, 15, 20}. For each size, 10 instances are randomly
generated, totaling 60 instances. The complete instances set has 192 instances.

The above mentioned algorithms were implemented in the Intel Distribution for
Python integrated development environment https://software.intel.com/content/www/
us/en/develop/tools/distribution-for-python.html and were run in C with Cython library
http://cython.org/ (BEHNEL et al., 2011). The computational experience was performed
on a PC with Intel Core i7-4771 CPU 3.50GHz and 12GB memory. The source codes,
results of all computational tests, and statistical analyses are available at http://repositorio.
uspdigital.usp.br/handle/item/447.

The parameter α of the proposed algorithm was tuned after several simulations. For
each instance size, a value of α contained in the set A = {0.00,0.11,0.22,0.33,0.44,0.56,0.67,
0.78,0.89,1.00} was tested. The best α values for BICH-MIH are presented in the Table
6 for each problem size. In the small-sized instances, the α value is close to 1 and the
combined constructive heuristic allocates operations prevailing the reduction of idleness. In
the large-sized instances, the α value is close to 0 and the constructive heuristic allocates
operations prevailing bounded insertion. The parameter β is set as β = 4 after preliminary
calibration experiments with β = {1, 2, ..., 10}, since this value was found to be a good
trade-off between solution quality and computational times in all problem sizes tested.

The statistic used in the analysis of the computational experiments is the gap
between the evaluated method (solik) and best known solution (BKSi), as presented in

https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
https://software.intel.com/content/www/us/en/develop/tools/distribution-for-python.html
http://cython.org/
http://repositorio.uspdigital.usp.br/handle/item/447
http://repositorio.uspdigital.usp.br/handle/item/447
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Table 6 – The α values used for constructive heuristics BICH-MIH in each problem size.

Problem size 3 4 5 6 7 8 9 10 15 20

α 0.89 0.89 0.56 0.11 0.22 0.22 0.67 0.67 0.89 0.22

Source: Authors.

the Equation (5.20). The value solik meaning the solution obtained by method k run on
instance i, and BKSi denotes the best known solution for instance i.

RPDik = solik −BKSi

BKSi

· 100 (5.20)

5.4.1 Computational results for constructive heuristics

Initially, we consider in our analysis constructive algorithms for the OSSP. The
considered algorithms are listed below. All constructive algorithms used the decoding
scheme procedure for the computation of the makespan of the final solution.

• Longest Processing Time (LPT): sort operations in non-increasing order of their
processing times

• Shortest Processing Time (SPT): sort operations in non-decreasing order of their
processing times.

• Longest Alternate Processing Times (LAPT): The priority rule developed by Pinedo
(2016) for the OSSP.

• Longest total processing time (LTPT): a variant of the LAPT rule proposed by
Naderi et al. (2010).

• Longest Total Remaining Processing Times on Other Machines first (LTRPOM): a
priority rule developed by Pinedo (2016). It is a more general rule than LAPT.

• Dense Scheduling / Longest Total Remaining Processing (DS/LTRP) developed by
Liaw (1998).

• Dense Scheduling / Longest Total Remaining Processing Time (DS/LTRPAM)
developed by Colak and Agarwal (2005).

• Modified Rotation Scheduling (MRS) a constructive heuristic developed by Bai and
Tang (2011).

• Cheap Insertion Heuristic with LPT initial solution (ISTH) adapted for OSSP.

• Bounded Insertion Constructive Heuristic (BICH) developed by Abreu et al. (2020).
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• Minimal Idleness Heuristic (MIH) developed by Abreu et al. (2020).

• Combined algorithm approach (BICH-MIH) developed by Abreu et al. (2020).

• Bounded Insertion Constructive Heuristic with Beam Search procedure (BICH-BS).

• Minimal Idleness Heuristic with Beam Search procedure (MIH-BS).

• Combined algorithm with Beam Search procedure (BICH-MIH-BS).

• Bounded Insertion Constructive Heuristic with cheap Insertion procedure (BICH-
IST).

• Minimal Idleness Heuristic with cheap Insertion procedure (MIH-IST).

• Combined algorithm with cheap Insertion procedure (BICH-MIH-IST).

For comparison purposes, we are also considering the results of the MILP model
expressed by Equations (5.1)-(5.13), which was modeled and run on IBM ILOG CPLEX
version 12.7, with 3600s of time limit.

A summary of the computational results is presented in Table 7. It can be highlighted
that the computational times for the constructive heuristics (without the BS or IST
procedure) are negligible (less than 1 second). The results of Average RPD (ARPD) in
each set of instance of Guéret and Prins, Taillard and Brucker are presented in Figures 20,
21 and 22 respectively.

In order to validate the results, it is important to verify whether the previous
differences in the RPD values are statistically significant. We apply an analysis of variance
(ANOVA) (MONTGOMERY, 2017). The p-value is very close to zero. We can see in
Figure 23 the ARPD boxplot for all constructive heuristics tested with HSD Tukey group
(α = 0.05) of the similar mean result. We can see that there are statistically significant
differences between the ARPD values among the constructive heuristics proposed. The
combined approach with IST and the constructive heuristics with BS gets the best results.
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According to the results for the 80 Guéret and Prins test problems. The MILP
model returns the best solutions for small and medium sizes classes of instances and
BICH-MIH-BS returns the best solutions for large instances sizes with 9 and 10 problems
size. The LPT and SPT rules are the worst algorithms for the instances analyzed. ISTH
outperforms BICH-IST and MIH-IST, showing that the LPT initial sequence gives better
results, but BICH-MIH-IST gets better results than ISTH. Therefore, the combined
approach as the initial sequence indicates an improvement in the construction procedure
of IST. The BS algorithms give the best results with ARPD less than 2%. Considering
only the constructive heuristics, the proposed BICH-MIH-BS algorithm presented the best
average results for all the eight classes of instances.

Figure 20 – Benchmark of constructive heuristics for each set of instances proposed by
Guéret and Prins (1999).
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With regard the results for the 60 Taillard test problems, the following comments
can be made. The MILP model returns the best average results only for the 4, 5 and 7
problems sizes. In general, the LTPT, BICH and SPT rules are the worst algorithms for
this set of problems. For large problems size, the MILP model returns the worst results.
The behavior of all other constructive heuristics is similar to the results for the Guéret
and Prins test problems. The combined BICH-MIH-BS presents the best results for the
largest instances (tai_10x10, tai_15x15 and tai_20x20).

With respect to the results for the 80 Brucker et al. test problems, the following
comments can be done. The MILP model finds the optimal solution within the time limit for
the test instances with 4, 5, and 7 jobs. However, for instances with size 8 the MILP model
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Figure 21 – Benchmark of constructive heuristics for each set of instances proposed by
Taillard (1993).
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returns solutions of average quality within the allowed time limit. The LTPT presents the
worst results compared to all others methods. Considering only the constructive heuristics,
the proposed BICH-MIH-BS algorithm presents the best average results for all the eight
classes of instances. For largest instances, (size 8) the BICH-MIH-BS presents the best
results.

Taking into consideration the three sets of instances, the proposed approach BICH-
MIH-BS presents the lower ARPD for all the analyzed constructive heuristics as well as
lower than the MILP model within the time limit. With respect to the ARPD, the difference
among BICH-MIH-BS and MILP methods is significant because they are clustered in
different groups (with h and fg letters, respectively). Also, they are represented in different
color groups that indicate groups with different ARPD. Therefore, the BICH-MIH-BS
outperforms MILP (within the given time limit) in terms of ARPD.

Regarding computational times, Table 8 shows the average computational times of
constructive heuristics in each set of instances.
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Figure 22 – Benchmark of constructive heuristics for each set of instances proposed by
Brucker et al. (1997).
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Figure 23 – Boxplot and Tukey HSD groups at the 95% confidence level for the constructive
heuristics in all sets of instances.
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Figure 24 illustrates the dependence between solution time and problem size for the
constructive heuristics. This figure presents the average computational for each evaluated
solution procedure for each size of instance. In the smaller test instances we have 3 machines
and 3 jobs (9 operations), and in the larger test instances we have 20 machines and 20
jobs (400 operations).

Figure 24 – Dependence between solution time and problem size for the constructive
heuristics.
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We can observe that the computation time increases exponentially when the number
of machines and jobs is greater than 10. This trend is even more evident for the solution
procedures based on IST and BS. For instance sizes with 15 or more machines and jobs,
the IST-based algorithms present smaller computation times than the BS-based algorithms.
Thus, the IST-based algorithms still are competitive with computation times less than
1700 seconds. The increase of the problem size does not imply a substantial augment in
the computation times for the IST and BS algorithms.

Figure 25 illustrates the average computation times with a 95% confidence interval
for each constructive heuristic. For the test instances with less than 5 machines and jobs,
the BS-based algorithms have lower computation times than the IST-based algorithms.
Concerning larger instance sizes, IST-based algorithms present lower computation times
than the BS-based algorithms. We can observe that this trend becomes more evident with
the increase of instance sizes. In summary, we can conclude that the constructive heuristics
based on IST and BS algorithms can treat problems presenting less than 15 machines and
jobs with adequate computation times (approximately 10 minutes).

The Pareto Chart of average computational times and ARPD of our proposed
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Figure 25 – Average computation times for the constructive heuristics.
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methods is presented in Figure 26. As it can be seen, the proposed IST approach presents
a better combination of solution quality and computational efficiency. The constructive
heuristics proposed by Abreu et al. (2020) present the best computation times, while the
hybridization of BICH-MIH with BS proposed in this paper gives the best ARPD results.

The hybridization of the heuristics with BS and IST procedure outperforms the
BICH and MIH algorithms, being the differences statistically significant as they are in
different groups in Figure 23. Therefore, the BICH-MIH-BS turns out to be the best
constructive heuristic for the OSSP with a good trade-off between solution quality and
computational times.

5.4.2 Computational results for local search heuristics

In this section, we evaluate the performance of the following local search/metaheu-
ristic algorithms (in addition, the MILP model is considered for comparison purposes):

• Insertion and Reinsertion Heuristic 1-4 (IRH1 to IRH4): local search algorithms
proposed by Naderi et al. (2010).

• Bounded Insertion Constructive Heuristic followed by local search (BICH-LS).

• Minimal Insertion Heuristic followed by local search (MIH-LS).

• Combined algorithm followed by local search (BICH-MIH-LS).

• Bounded Insertion Constructive Heuristic with Beam Search procedure followed by
local search (BICH-BS-LS).
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Figure 26 – Pareto Chart for Average computational times and ARPD of proposed con-
structive heuristics.
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• Minimal Idleness Heuristic with Beam Search procedure followed by local search
(MIH-BS-LS).

• Combined algorithm with Beam Search procedure followed by local search (BICH-
MIH-BS-LS).

• Bounded Insertion Constructive Heuristic with Cheap Insertion procedure followed
by local search (BICH-IST-LS).

• Minimal Idleness Heuristic with Cheap Insertion procedure followed by local search
(MIH-IST-LS).

• Combined algorithm with Cheap Insertion procedure followed by local search (BICH-
MIH-IST-LS).

• The genetic algorithm EGA proposed by Hosseinabadi et al. (2018).

A summary of the computational results is presented in Table 9. The results for
the test instances of Guéret and Prins, Taillard and Brucker are presented in Figures 27,
28 and 29 respectively.
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In order to validate the results, as in the previous experiments, an ANOVA is
applied in order to verifiy if the observed differences in the results of the local search
algorithms are statistically significant. The p-value is very close to zero. We can see
in Figure 30 the ARPD boxplot for all constructive heuristics with local search tested
with HSD Tukey group (α = 0.05) of the similar mean result. We can see that there
are statistically significant differences between the ARPD values among the local search
algorithms tested. The combined approach with IST and the constructive heuristics with
BS gets the best results with medians very close to zero.

According to the results obtained for the eighty Guéret and Prins test problems,
the following comments can be highlighted: The MILP returns the best solutions for
small and medium sizes classes of instances and BICH-MIH-BS-LS returns the best
solutions for large instances sizes with 8, 9 and 10 problems size. The IR1 method is the
worst algorithm for the analyzed instances. The methods with beam search procedure
outperforms BICH-LS, MIH-LS and BICH-MIH-LS, showing that the new approach to
construct solutions gives better results. The BS algorithms give the best results with
ARPD less than 1%. Considering only the constructive heuristics with local search, the
proposed BICH-MIH-BS-LS algorithm presented the best average results for all the eight
classes of instances.

Figure 27 – Benchmark of constructive heuristics with local search for each set of instances
proposed by Guéret and Prins (1999).
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With respect to the results for the sixty Taillard test problems, the following
comments can be made. The MILP model returns the best average results only for the 4
and 5 problems sizes. In general, the IR1, IR2 and EGA are the worst algorithms for this
set of problems. For large problems size, the MILP model returns the worst results. The
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behavior of all other constructive heuristics with local search is similar to the results for
the Guéret and Prins test problems. The combined BICH-MIH-BS-LS presented the best
results for the largest instances (tai_7x7, tai_10x10, tai_15x15 and tai_20x20).

Figure 28 – Benchmark of constructive heuristics with local search for each set of instances
proposed by Taillard (1993).
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For the Guéret and Prins instances, as well as for the Taillard instances, the
proposed algorithms with beam search and cheapest insertion procedure present better
results than IRx and EGA. In general, the MILP method obtains the better results for the
small-sized instances and the BICH-MIH-BS-LS present the best results for the large-sized
instances.

Finally, for the Brucker instances, the MILP method outperforms the other eval-
uated methods, with the exception of the j7 and j8 sets of instances, in which the
BICH-MIH-BS-LS algorithm returns the best results.

On average, the MILP method yields poor results, because the model returned
low-quality results for the large-sized test problems in the allotted CPU time. The proposed
BICH-MIH-BS-LS algorithm outperforms all the other evaluated methods, showing that
the combined approach with a weighted aggregation function is more efficient. Overall,
the proposed approach BICH-MIH-BS-LS presented the lower ARPD for all the analyzed
constructive heuristics as well as lower than the MILP model. Furthermore, the differences
among BICH-MIH-BS-LS, EGA, MILP and methods proposed by Naderi et al. (2010)
and Abreu et al. (2020) are significant because they are in different groups with different
letters. The methods with beam search procedure and BICH-MIH-IST-LS present the
lowest mean values for ARPD.
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Figure 29 – Benchmark of constructive heuristics with local search for each set of instances
proposed by Brucker et al. (1997).
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Regarding computational times, Table 10 shows the average computational times
of constructive heuristics and metaheuristics in each set of instances.
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Figure 30 – Boxplot and Tukey HSD groups at the 95% confidence level for the constructive
heuristics with local search in all sets of instances.

0

20

40

60

80

A
R

P
D

a
ab

abc

abcd

bcde bcdef cdefg defgh defgh efghi
fghij ghij hij ij j

IRH1
EGA

MILP
IRH2

BICH−LS

BICH−IST−LS

MIH−LS

MIH−IST−LS
IRH4

IRH3

BICH−MIH−LS

BICH−MIH−IST−LS

BICH−BS−LS

MIH−BS−LS

BICH−MIH−BS−LS

Source: Authors



95

Ta
bl

e
10

–
C

om
pu

ta
tio

na
lt

im
es

of
co

ns
tr

uc
tiv

e
he

ur
ist

ic
s

w
ith

lo
ca

ls
ea

rc
h

an
d

m
et

a
he

ur
ist

ic
s

fo
r

ea
ch

se
t

of
in

st
an

ce
s.

B
en

ch
m

ar
k

IR
H

1
IR

H
2

IR
H

3
IR

H
4

EG
A

B
IC

H
-L

S
M

IH
-L

S
B

IC
H

-M
IH

-L
S

B
IC

H
-B

S-
LS

M
IH

-B
S-

LS
B

IC
H

-M
IH

-B
S-

LS
B

IC
H

-I
ST

-L
S

M
IH

-I
ST

-L
S

B
IC

H
-M

IH
-I

ST
-L

S
G

ué
re

t
an

d
Pr

in
s

G
P-

03
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

13
0.

08
0.

07
0.

02
0.

02
1.

64
G

P-
04

0.
00

0.
00

0.
01

0.
01

36
.7

6
0.

01
0.

01
0.

01
1.

21
1.

22
1.

11
0.

09
0.

09
1.

47
G

P-
05

0.
00

0.
01

0.
03

0.
05

10
8.

36
0.

04
0.

03
0.

04
15

.0
6

14
.8

7
13

.0
7

0.
55

0.
49

1.
27

G
P-

06
0.

00
0.

02
0.

11
0.

15
13

4.
51

0.
15

0.
12

0.
16

99
.5

2
99

.4
9

89
.4

2
1.

06
1.

14
1.

73
G

P-
07

0.
01

0.
06

0.
37

0.
47

19
6.

41
0.

43
0.

38
0.

46
60

7.
42

59
9.

72
55

6.
41

3.
15

3.
16

3.
86

G
P-

08
0.

02
0.

15
1.

14
1.

20
30

0.
01

1.
17

1.
02

1.
24

11
40

.8
6

11
39

.3
8

10
05

.1
8

6.
20

6.
37

6.
85

G
P-

09
0.

03
0.

35
2.

77
2.

72
30

0.
01

2.
41

2.
92

2.
72

16
55

.4
2

16
69

.8
4

15
60

.1
0

15
.7

5
18

.3
5

17
.4

2
G

P-
10

0.
05

0.
66

4.
19

5.
43

30
0.

01
4.

61
4.

82
5.

54
24

39
.3

2
25

07
.1

3
21

39
.5

5
39

.6
8

39
.6

2
40

.1
9

Ta
ill

ar
d

ta
i_

4x
4

0.
00

0.
00

0.
01

0.
01

19
2.

29
0.

01
0.

01
0.

01
1.

18
1.

16
1.

08
0.

07
0.

06
1.

40
ta

i_
5x

5
0.

00
0.

01
0.

04
0.

05
25

4.
16

0.
04

0.
04

0.
04

14
.9

9
14

.7
3

13
.8

1
0.

26
0.

23
1.

51
ta

i_
7x

7
0.

01
0.

06
0.

39
0.

49
30

0.
01

0.
32

0.
38

0.
37

56
3.

31
57

2.
50

51
7.

97
2.

16
2.

56
3.

09
ta

i_
10

x1
0

0.
05

0.
68

4.
47

5.
54

30
0.

01
4.

59
3.

90
5.

26
21

40
.0

5
21

46
.4

0
18

85
.6

5
37

.9
8

37
.1

7
38

.1
5

ta
i_

15
x1

5
-

-
-

-
30

0.
03

73
.2

7
66

.6
2

81
.9

8
28

49
.6

3
28

80
.8

4
27

02
.7

2
70

6.
82

73
9.

87
70

2.
76

ta
i_

20
x2

0
1.

18
79

.4
6

51
7.

91
70

7.
79

30
0.

06
44

9.
55

37
8.

03
39

5.
84

36
60

.4
4

37
55

.2
6

35
06

.5
6

37
31

.0
2

36
19

.9
2

36
16

.2
9

B
ru

ck
er

j3
0.

00
0.

00
0.

00
0.

00
37

.5
0

0.
00

0.
00

0.
00

0.
10

0.
08

0.
07

0.
02

0.
02

1.
39

j4
0.

00
0.

00
0.

01
0.

01
67

.7
3

0.
01

0.
01

0.
01

1.
27

1.
26

1.
15

0.
09

0.
08

1.
54

j5
0.

00
0.

01
0.

04
0.

05
22

2.
09

0.
04

0.
03

0.
04

15
.8

5
15

.7
3

14
.6

0
0.

35
0.

34
1.

58
j6

0.
01

0.
02

0.
13

0.
16

30
0.

00
0.

16
0.

13
0.

18
97

.8
2

10
1.

85
89

.2
8

1.
31

0.
96

1.
97

j7
0.

01
0.

06
0.

37
0.

46
30

0.
01

0.
37

0.
33

0.
47

56
9.

31
57

1.
65

51
6.

13
2.

85
2.

95
3.

66
j8

0.
02

0.
15

0.
94

1.
10

30
0.

01
0.

85
0.

82
1.

06
10

31
.3

5
10

60
.0

0
90

4.
93

7.
31

8.
19

8.
52

M
in

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
10

0.
08

0.
07

0.
02

0.
02

1.
27

Av
er

ag
e

0.
08

4.
63

30
.4

6
41

.0
8

21
2.

50
26

.9
0

22
.9

8
24

.7
7

84
5.

21
85

7.
66

77
5.

94
22

7.
84

22
4.

08
22

2.
81

M
ax

1.
18

79
.4

6
51

7.
91

70
7.

79
30

0.
06

44
9.

55
37

8.
03

39
5.

84
36

60
.4

4
37

55
.2

6
35

06
.5

6
37

31
.0

2
36

19
.9

2
36

16
.2

9

So
ur

ce
:A

ut
ho

rs
.



96

With respect to computational times for the constructive heuristics with local
search, Figure 31 illustrates the dependence between solution time and problem size for the
constructive heuristics with local search. We can observe that the BS-based algorithms have
started to increase their computation times from the instances with 8 or more machines
and jobs. For problem sizes with 15 or more machines and jobs, we can observe that all
the constructive heuristics with local search increased their computation times.

Figure 31 – Dependence between solution time and problem size for the constructive
heuristics with local search.
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Figure 32 illustrates the average computation times with a 95% confidence interval
for each constructive heuristic with local search. In contrast with the constructive heuristics
without local search, in this situation, the IST-based heuristics present computation times
substantially smaller than the BS-based heuristics. The two classes of algorithms can deal
with problems with less than 15 jobs and machines (around 2000 s).

As a conclusion of the computational time analysis, IST- and BS-based constructive
heuristics can handle 20x20 instances in less than one hour while their local search
counterpart would require more than double of the time. Since the computation times
around this instance size grow rapidly, we believe that 20x20 (which represents a total of
400 operations in the shop) represents the limit in the problem size that, for many decision
scenarios, can be realistically addressed in a standard computer.

The Pareto Chart of average computational times and ARPD is presented in Figure
33. On the basis of the above, the proposed IST approach presents a better combination
of solution quality and computational efficiency. The constructive heuristics proposed by
Abreu et al. (2020) with local search and IRx algorithms presents best computation times
and BS approach presents the best ARPD results.
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Figure 32 – Average computation times for the constructive heuristics with local search.
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The constructive heuristics with BS and IST procedure outperforms the classic
approach of BICH and MIH algorithms proposed by Abreu et al. (2020), IRx algorithms
proposed by Naderi et al. (2010) and EGA proposed by Hosseinabadi et al. (2018). The
BICH and MIH with BS procedure gives the best results than BICH and MIH with
IST procedure, but the algorithms with IST procedure gets good computational times,
becoming a good choice for industrial applications with operational level of scheduling
problems. The BICH-MIH-BS-LS becoming the best constructive heuristic with local
search for OSSP.

As a summary of the performance of the BS-based algorithms, note that this
family of algorithms obtains very low ARPD values at the costs of requiring more CPU
time. As illustrated in Figure 26, the inclusion of beam search procedures resulted in
a substantial improvement in the quality of the solutions found when compared to the
algorithms considering cheap insertion procedures, even if it is to note that this increases the
computation times. In Figure 26, we can also observe that the BICH-MIH-BS dominated
the MIH-BS and BICH-BS algorithms.

Concerning the local search versions of the proposed algorithms, it can be seen in
Figure 33 that, when compared to IR3 and IR4 – the best versions of IRx algorithms –
the BICH-MIH-LS presented lower ARPD values with a similar average computational
time. With respect to the ARPD values, the BICH-MIH-BS-LS algorithm presented the
best results, dominating the MIH-BS-LS and BICH-BS-LS algorithms.
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Figure 33 – Pareto Chart for Average computational times and ARPD of proposed con-
structive heuristics with local search.
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5.5 Concluding remarks

In this paper, we focus on the classical variant of the OSSP. The objective function
is to minimize the total time to complete the schedule (makespan). We develop new beam
search and cheapest insertion procedures hybridized with constructive heuristics adapted
from the problem with setup considerations. Finally, an efficient local search algorithm
(LS) that leads to excellent results within an admissible computational effort is proposed.

A number of computational experiments were carried out in order to evaluate
the performance of the proposed algorithms. The results of the proposed approaches are
presented considering the literature benchmark instances proposed by Guéret and Prins
(1999), Taillard (1993) and Brucker et al. (1997). We used the relative percentage deviation
statistics as performance measure. Taking into consideration the above mentioned literature
benchmark instances, the proposed constructive algorithm BICH-MIH-BS outperforms
the existing constructive heuristics, the BICH-MIH-BS-LS algorithm outperforms the
four local search algorithms proposed by Naderi et al. (2010) and the genetic algorithm
proposed by Hosseinabadi et al. (2018).

As extensions of this work, we suggest the consideration of explicit travel times
and resource utilization in the OSSP to address more realistic environments. In addition,
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future studies could also investigate the behavior of the proposed approaches considering
different objective functions, such as total tardiness minimization with due dates of jobs
or total completion time minimization.
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6 A NEW HYBRIDIZATION OF ADAPTIVE LARGE NEIGHBORHOOD SEARCH
WITH CONSTRAINT PROGRAMMING FOR OPEN SHOP SCHEDULING
WITH SEQUENCE-DEPENDENT SETUP TIMES

Production scheduling is an area of production planning and control responsible
for determining how tasks will be allocated to existing resources over scheduling horizon
(MACCARTHY; LIU, 1993). This area is constituted by a set of optimization problems
having a series of real applications.

Production scheduling problems are widely studied as optimization problems due
to various industrial applications. An open shop scheduling problem (OSSP) consists of
scheduling a set of jobs in a set of machines, where each operation is associated with
a processing time and there is no predefined sequence of operations to execute. The
problem is of practical and theoretical importance and less attention is paid to traditional
production scheduling problems (ANAND; PANNEERSELVAM, 2016; ADAK; AKAN;
BULKAN, 2020; AHMADIAN et al., 2021a).

As the problem does not have a predefined sequence of operations, the number
of viable solutions is significantly higher than other production scheduling problems,
such as flow shop and job shop (AHMADIAN et al., 2021a). OSSP has many industrial
applications, such as plastic injection, chemical processes, oil industries, food production,
joint scheduling with low-carbon emissions and pharmaceuticals. In the service sector, this
problem can be modeled for scheduling medical services, vehicle maintenance, museum
visits, sharing economy, healthcare diagnostics, and telecommunications (GONZALEZ;
SAHNI, 1976; LIN; LEE; PAN, 2008; VINCENT; LIN; CHOU, 2010; NADERI; ZANDIEH,
2014; CANKAYA; WARI; TOKGOZ, 2019; FU et al., 2021; ABDELMAGUID, 2021;
AGHIGHI et al., 2021; ABREU et al., 2021; KURDI, 2022).

Among the industrial applications of the open shop, we can highlight the study
of the open shop problem with reverse flows in an assembly of computer boards and
chips industry with assembly and dismounting operations of electronic security alarm
boards presented by Aghighi et al. (2021) and the study of scheduling and handling in the
transportation of chemical tanks in ports presented by Cankaya, Wari and Tokgoz (2019).

Among the applications in the service sector, we can highlight the study of the
museums visitor scheduling problem where groups of visitors are jobs that can visit
exhibitions in any sequence presented by Vincent, Lin and Chou (2010). In addition,
Abreu et al. (2021) presented the study of scheduling vehicle maintenance operations in
workstations where there can be repetitions of operations in the same workstation.

In traditional production scheduling research, setup times are implicit, that is,
they are considered part of the processing time. However, this consideration may imply
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an increase in the total schedule duration when setup times are sequence-dependent,
as the planning obtained can result in a high occurrence of machine setup activities
(ALLAHVERDI, 2015).

Therefore, when sequence-dependent setup times are considered explicit production
scheduling problems can be solved more realistically, and schedules that reduce these
machine setup times can be developed (ALLAHVERDI et al., 2008).

Despite the theoretical and practical importance of the OSSP with explicit setup
times, contributions in the literature are limited. These limitations have been highlighted
in some recent literature reviews on production scheduling problems with setup costs (AL-
LAHVERDI; GUPTA; ALDOWAISAN, 1999; ALLAHVERDI et al., 2008; ALLAHVERDI,
2015) and the OSSP (ANAND; PANNEERSELVAM, 2016; ADAK; AKAN; BULKAN,
2020; AHMADIAN et al., 2021a).

Therefore, this research aims to study open shop scheduling with non-anticipatory
sequence-dependent setup time (OSSPST) considering its basic structure with explicit
machine setup times, that is, the duration of the setup time of a job on a machine depends
on the previous job that was processed on the machine. The setup time is non-anticipatory
as one has to wait for the current task to finish processing on the previous machine to start
preparing it on the next machine. As a practical example, there may be adjustments on the
next machine, in which the job needs to be present (FRAMINAN; LEISTEN; GARCÍA,
2014, chapter 4).

OSSPST aims to minimize the scheduling duration (makespan). For its resolution,
we applied new algorithms based on the hybridization of exact and approximate strategies,
comparing the performance of the proposed methods with other competitive methods in
the literature, leading to improvements in instance sets already reported for the problem.

In summary, this paper aims to present a hybridization of adaptive large neighbor-
hood search with constraint programming (ALNS-CP) for the open shop with setup times
and makespan minimization as the objective function. The main theoretical contributions
are: The proposal of a new constraint programming model using knowledge of the problem,
such as the type of setups, to reduce the number of variables and constraints. We propose,
for ALNS-CP, an adaptive destruction mechanism prioritizing the destruction’s operators
that return the best makespan results along iterations of the method. In addition, ALNS-
CP has a solution reconstruction mechanism that uses the new constraint programming
model, receiving a partial solution of the problem and returning an improved feasible
solution.

The main experimental findings are: The new proposed CP model gets competitive
results in quality and computational times when compared with all other exact methods
tested. We propose testing several emergent metaheuristics for the open shop with setups.
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These metaheuristics have never been fully applied together in the literature. ALNS-CP
has an average relative percentage deviation smaller than 22% in tested instances, obtained
good results in large-sized instances, and ALNS-CP has competitive computational times
compared to other benchmarking methods.

The article is structured as follows: Section 6.1 reviews the OSSPST literature,
Section 6.2 illustrates the formal definition of the problem and the exact resolution models.
Section 6.3 describes the proposed resolution method. Section 6.4 performs an extensive
analysis of the results and statistical tests. Finally, Section 6.5 comments on the main
conclusions of the research and proposes future studies on the problem.

6.1 Literature review

As open shop scheduling is NP-Hard (GAREY; JOHNSON, 2012), the main solving
techniques are the approximate algorithms, although there are exact applications for
OSSP, considering trivial cases (such as unit setup times). Below, we discuss the main
contributions related to OSSP with explicit setup times.

Allahverdi, Gupta and Aldowaisan (1999) carried out a literature review on produc-
tion scheduling problems with explicit setup time constraints. For the case of open shop
scheduling, only one article was proposed at the time. For the second survey carried out
by the author, eight more articles were mentioned (ALLAHVERDI et al., 2008). In the
last study carried out, four more articles that involved the problem were mentioned. This
shows that the topic has not yet been fully explored in the literature (ALLAHVERDI,
2015).

The first article to explicitly consider open shop setup times was that of Strusevich
(1993), who considered the case for open shop scheduling with two machines and times of:
setup, processing and job removal. The authors developed an accurate O(n) polynomial
time algorithm for makespan minimization.

Other articles aimed at developing exact strategies for solving special cases of
the problem, considering the system with two or three machines or other trivial con-
straints (STRUSEVICH, 1999; BLAZEWICZ; KOVALYOV, 2002; BRUCKER et al., 2004;
PANWALKAR; KOULAMAS, 2014; BEVERN; PYATKIN, 2016; BABOU; REBAINE;
BOUDHAR, 2021).

Exact solving strategies define good properties for problem knowledge. However, in
certain cases, these methods are only suitable for special open shop cases, simplifying the
main restrictions such as: small numbers of machines, constant or machine-independent
processing times, and fixed or independent setups. Therefore, for the problem proposed in
this article, arising mainly from complex real systems, approximate strategies need to be
used, such as heuristics and metaheuristics.
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To solve problems with real constraints, using many machines, jobs and constraints,
approximate algorithms need to be used. Among them are priority rules, constructive
solution strategies and nature-inspired optimization algorithms.

Lee and Malone (2000) propose the first meta-heuristic for the problem, considering
batch setups. Simulated Annealing (SA) is proposed to compare the results with classic
priority rules, such as: FIFO, SPT and EDD. The instances used came from a case study
of an industry. The proposed algorithm performed better than the priority rules.

Roshanaei, Esfehani and Zandieh (2010) addressed the OSSP with sequence-
dependent setup constraints, using SA with multiple neighborhoods and adaptive construc-
tive heuristics LAPT and LRPT for the setup problem. To test the methods, the authors
adapted classical benchmarking instances for the problem. The proposed SA obtained
a better performance when compared to classic metaheuristics from the literature, also
adapted for the problem.

Naderi et al. (2011a) developed an electromagnetism-like meta-heuristic (EH)
for open shop scheduling with sequence-dependent setup times to minimize the total
completion time (TCT). This objective has not been addressed in previous studies with
approximate methods. EH performs well for OSSP problems and is adapted for cases
with setups (NADERI; NAJAFI; YAZDANI, 2012). The authors compared the proposed
algorithm with a mixed-integer linear programming (MILP) model and obtained significant
results, analyzed by statistical tools. A new solution decoding scheme based on non-delay
programming was used, which seeks to anticipate the scheduling of operations respecting
their relative positions found in the solution of the problem.

Vincent, Lin and Chou (2010) explored a real problem that could be modeled as an
OSSP with setup times. The museum visitor routing problem, where each group of visitors
(jobs) visits a set of exhibitions (machines) within a museum, the transport time from one
exhibition to another, and the exhibition’s duration can be modeled as setup and processing
time, respectively. The authors propose SA, aiming to minimize the total duration of visits,
such as the makespan minimization. The SA algorithm presented acceptable computational
quality and times and was able to be used in practical applications.

Zhuang et al. (2019a) implemented a network-based constructive heuristic for solving
the OSSP with sequence-dependent setup times and job delivery times between machines.
The algorithm was compared with an MILP and classical metaheuristics such as the
artificial bee colony (ABC) proposed by Zhuang et al. (2019b). The constructive heuristic
obtained a better performance than the other methods for the makespan minimization.

Cankaya, Wari and Tokgoz (2019) proposed to solve a case study of chemical tanker
scheduling in the port of Houston (USA) as an OSSP with setup times based on cleaning
times and transport times between terminals. These times are dependent on the tank
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cleaning sequence. The authors proposed two exact methods for solving the problem, an
MILP and a constraint programming model. The methods are compared with an empirical
programming approach used by the rank, in this case the first in first out (FIFO) priority
rule. The results show that the constraint programming presents a better performance
than the empirical solution and the MILP, for normal operation conditions, which can be
widely used in the real system.

Abreu et al. (2020) developed a hybrid genetic algorithm (GA) for the OSSP with
sequence-dependent setup times to minimize the TCT. Three new constructive heuristics
were also proposed based on characteristics of the problem domain, such as the lower bound.
The authors optimize the GA parameters using the Taguchi experiment and combined the
GA procedure with constructive heuristics. The GA was compared with the EH of Naderi
et al. (2011a) and with the developed heuristics. Computational tests showed that the GA
obtained significantly better results than all other methods.

Mejía and Yuraszeck (2020) studied the OSSP with sequence-dependent travel/se-
tup times. The authors proposed a new decoding scheme and included it in a variable
neighborhood search (VNS) metaheuristic. The authors tested the algorithm with new and
classic instances from the literature, adapted for the problem, and compared it with another
meta-heuristic and four constraint programming models with different search strategies.
These methods were used to solve problems with makespan and TCT minimization. VNS
got better results in both cases but did not have significantly better results than the
constraint programming model. The new decoding scheme got a better result than that
presented by Naderi et al. (2011a).

Finally, Behnamian, Dezfooli and Asgari (2021) presented a scatter search algorithm
(SSA) for flexible open shop scheduling with independent setup times. The objective
function is the minimization of the makespan and the total delay time (total tardiness),
and is, therefore, a multiobjective problem. A new representation of a solution to the
problem is proposed. The proposed algorithm presented better results when compared to
classic multiobjective problem solving strategies, such as NSGA II.

Table 11 illustrates the main contributions of the literature to the OSSP considering
setup times. The authors, year of publication, characteristics of the problem such as the
type of setup, solution methods and main research contributions are illustrated.

Despite existing contributions (notably the EH algorithms by Naderi et al. (2011a),
GA by Abreu et al. (2020), and VNS by Mejía and Yuraszeck (2020)), there is an
opportunity to develop more efficient solution procedures for the problem based on the
hybridization of exact and approximate methods and characteristics of the problem domain,
such as the type of setup.

The present work aims to present a hybridization of adaptive large neighborhood
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Table 11 – Summary of the main contributions from the OSSP literature considering setup
times and metaheuristics approach.

Author Problem characteristics Solution method Contribution
Lee and Malone (2000) Batch setup times SA and priority rules Problem instances based in a industrial application.

Roshanaei, Esfehani and Zandieh (2010) Dependent setup times SA with multiple neighbohood
and priority rules SA outperforms all other tested methods.

Naderi et al. (2011a) Dependent setup times EH A new decoded scheme for solutions.

Vincent, Lin and Chou (2010) Dependent setup times
and transportation times SA Real aplication of OSSP in museum visitor problem.

Zhuang et al. (2019a) Dependent setup times
and delivery times

Heuristic rule based on complex
network The heuristic rule outperforms all other tested methods.

Zhuang et al. (2019b) Dependent setup times
and delivery times ABC The ABC gets best results in large-scale instances.

Cankaya, Wari and Tokgoz (2019) Dependent setup times MILP and CP models Real aplication of OSSP in tanks transports in ports.

Abreu et al. (2020) Dependent setup times GA and construtive heuristics Heuristics was based on problem knowledge and
domain.

Mejía and Yuraszeck (2020) Dependent setup times VNS and CP model A new decoded scheme for solutions and
VNS outperforms all other tested methods.

Behnamian, Dezfooli and Asgari (2021) Independent setup times SSA Multiobjetive problem to minimize makespan
and total tardness and a new solution representation.

Source: Authors.

search with constraint programming (ALNS-CP) for OSSPST and makespan minimization.
To efficiently generate the initial solution, we used a constructive heuristic proposed by
Abreu et al. (2020), which produces good solutions in competitive computational times.
In the solution reconstruction phase, we uses a new CP model as a reconstruction and
local search strategy. The new model uses features from the problem domain, such as
non-anticipatory setups, to reduce the number of variables and constraints. The proposed
CP model performed better than other CP models and the MILP model, already reported
in the literature on the problem.

In order to determine the best configuration of the proposed ALNS-CP hybrid
method, we used the IRACE package to determine the best execution parameters (LÓPEZ-
IBÁNEZ et al., 2016). Extensive computational experimentation was carried out using
the well-known OSSP test instances proposed by the authors Guéret and Prins (1998),
Taillard (1993) and Brucker et al. (1997), adapted to the problem by Abreu et al. (2020).
The results show that the developed algorithm outperforms the existing procedures for
the problem with competitive computational times.

6.2 Problem statement and exact models

OSSP was initially proposed by Gonzalez and Sahni (1976) and the objective was
to scheduling a set of jobs in a set of machines, where each processing of a job in a machine
(called an operation) had a processing time. The common objective for this problem was to
minimize the total duration of the scheduling of all tasks, called makespan in the literature.

For the permutation flow shop scheduling problem, each job has the same route
in each machine. On the other hand, in the job shop scheduling problem, each job has a
different machine processing route. Unlike other classic production scheduling problems, in
the OSSP there is no previous sequence for processing jobs on machines. The OSSP is like
an job shop with no predefined routes for jobs. Therefore, the problem is constituted by a
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large number of viable solutions. In the classic problem, each job can only be processed by
a single machine at a time, as well as jobs, once their processing starts, they cannot be
interrupted (ABREU et al., 2020).

Unlike other production scheduling problems, in the OSSP there is no previous
sequence for processing jobs on machines, therefore, the problem is constituted by a large
number of viable solutions. In the classic problem, each job can only be processed by a
single machine at a time, as well as jobs, once their processing starts, they cannot be
interrupted (GUÉRET; PRINS, 1998).

The variant of this article considers that between the processing time of one job
and another on a machine, there is a setup time for the operation, called setup time,
which depends on the previous job processed on the machine. The setup time is also
non-anticipatory, as it considers that the job should have completed its processing in the
previous machine to carry out the setup. It is also necessary that the job enters the next
machine for the setup to be carried out. The objective function is makespan minimization.
In the notation of Lawler et al. (1993) , the problem is defined as: Om|Ssd|Cmax.

As mentioned above, we use the makespan as a performance indicator in the article.
An important indicator to be achieved in practical production scheduling situations is
maximizing the utilization of production resources, such as machines, over the scheduling
horizon. When we use makespan as the objective function of scheduling problems, we
maximize the resource utilization by developing methods that reduce the makespan of the
schedule (FRAMINAN; LEISTEN; GARCÍA, 2014), unlike minimizing total flow time or
tardiness, that minimizes work-in-process inventory and job completion with tardiness,
respectively.

In addition, by using makespan as an objective function, considering a static
production environment such as the one proposed in the paper, it is possible to verify
whether a given schedule can be performed in a given short-term time interval, such as
a day or week (FRAMINAN; LEISTEN; GARCÍA, 2014). Furthermore, it is possible to
quickly verify this information with the result of the makespan of the schedule created.
Therefore, the objective function can generate agility for the decision-making process.

The data set for the problem consists of: a set of operations to be processed, where
Oij is the operation of job j on machine i, an m× n matrix of processing times pij , where
the processing time of job i on machine j, an m× n× n three-dimensional matrix of setup
times sijk, where the setup time of job j when processed after job k on machine i. Where
m is the number of machines and n the number of jobs. Table 12 illustrates an example
instance for the problem with m = 2 and n = 3 then with 6 operations.

Figure 34 illustrates a Gantt chart with an example of the instance solution shown
in Table 12. The solution is defined as the sequence of jobs on each machine. Machine 1
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Table 12 – Operations, processing times and setup times for open shop example

pij (Oij) J1 J2 J3
M1 10 (O11) 8 (O12) 5 (O13)
M2 9 (O21) 8 (O22) 6 (O23)

M1 M2
sijk J1 J2 J3 J1 J2 J3
J1 3 3 2 2 4 4
J2 3 2 2 3 2 2
J3 2 4 2 2 2 3

Source: Authors.

processes jobs 1, 3, and 2 and machine 2 processes jobs 2, 3, and 1.

Figure 34 – Gantt chart for scheduling of an example solution (makespan = 35 u.t.)
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Source: Authors

The solution in Figure 34 has a makespan of 35 u.t. It is noticeable that the setups
are non-anticipatory when the setup of job 3 on machine 1 starts only when job 3 finishes
its processing on machine 2. The setup times, when the job j is the first in the machine
sequence, is the time of the diagonal of the matrix sijj. Figure 35 illustrates the optimal
solution for the instance, with the smallest makespan of 30 u.t.

Figure 35 – Gantt chart for scheduling of best solution (makespan = 30 u.t.)
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For the solution in Figure 35, there is no idle time between machines, which
contributes to minimizing the makespan due to the greater use of resources in the scheduling



109

horizon, unlike the solution in Figure 34, where machine 1 has an idle time of 5 u.t. between
the processing of jobs 1 and 3.

6.2.1 Mixed-integer linear programming (MILP)

There are several ways to modeling the OSSPST problem using mathematical
programming, the main ones differ in relation to the way of defining the decision variables,
with notation of three types: positional notation, sequential notation and time-indexed
notation. In the study by Naderi et al. (2011b) it is illustrated that models with sequential
notation perform better in OSSP problems due to their smaller number of variables and
constraints, when compared to positional and time-indexed notation. Therefore, we used
the sequential notation of the developed MILP model.

The mathematical model in the equations (6.1) - (6.14) is an adaptation of the
model by Naderi et al. (2011a) for the OSSPST with non-anticipatory setups. The decision
sets, parameters and variables are defined below:

Indices and sets:

i, l ∈M : indices for machines {1, . . . , m}.

j, k ∈ N : indices for jobs {1, . . . , n}.

k ∈ Nd: indices for jobs with dummy job {0, 1, . . . , n}.

Parameters:

pij: processing time of job j in machine i.

sijk: setup time of job j processed immediately after job k in machine i (note: the
setup time of the first job j in the sequence of machine i is sij0 with dummy job 0).

M : a large positive number.

Decision variables:

Cij: completion time of operation Oij.

Cmax: the makespan of the schedule.

Yjik: 1 if Oi,j is processed immediately after Oi,k, and 0 otherwise; k ̸= j.

Xjil: 1 if Oi,j is processed not necessarily immediately after Ol,j, and 0 otherwise;
i < m and l > i.

The MILP model for the OSSPST is presented below:

minimize
Cmax (6.1)

subject to
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∑
k∈Nd:k ̸=j

Yjik = 1, ∀i ∈M, j ∈ N (6.2)

∑
j∈N :j ̸=k

Yjik ≤ 1, ∀i ∈M, k ∈ Nd, k > 0 (6.3)

∑
j∈N

Yji0 = 1, ∀i ∈M (6.4)

Yjik + Ykij ≤ 1, ∀i ∈M, j ∈ N, k ∈ Nd, j < n, k > j (6.5)
Cij ≥ Cik + pij + sijk −M(1− Yjik), ∀i ∈M, j ∈ N, k ∈ Nd, k ̸= j (6.6)

Cij ≥ Clj + pij +
∑

k∈Nd:k ̸=j

(Yjik × sijk)−M(1−Xjil), ∀i, l ∈M, j ∈ N, i < m, l > i (6.7)

Clj ≥ Cij + plj +
∑

k∈Nd:k ̸=j

(Yjlk × sljk)−M ×Xjil, ∀i, l ∈M, j ∈ N, i < m, l > i (6.8)

Ci,0 = 0, ∀i ∈M (6.9)
Cmax ≥ Cij , ∀i ∈M, j ∈ N (6.10)
Yjik ∈ {0, 1}, ∀i ∈M, j ∈ N, k ∈ Nd, k ̸= j (6.11)
Xjil ∈ {0, 1}, ∀i, l ∈M, j ∈ N, i < m, l > i (6.12)
Cij ∈ R+ , ∀i ∈M, j ∈ Nd (6.13)
Cmax ∈ R+, (6.14)

Expression (6.1) illustrates the objective function of the problem, constraint (6.2)
indicates that each job must be processed only once on each machine, having only one
predecessor. Constraint (6.3) forces that each job can be succeeded by up to one job in
the sequence of each machine. Constraint (6.4) indicates that the dummy job (index 0)
has only one successor on each machine. Constraint (6.5) prohibits each job from being
both the successor and predecessor of another job on each machine.

Regarding operation completion times, constraint (6.6) indicates that the comple-
tion time of the Oij operation, if the Oij operation is processed after the Oik operation,
must be greater than the completion time of the Oik operation plus processing and setup
time. Constraint (6.7) indicates that the completion time of job j on the next machine i

should be the job completion time on the previous machine l plus the processing and setup
time, considering the previous operation of machine i. Constraint (6.8) illustrates the
inverse case of constraint (6.7) with the next operation of job j taking place on machine l.
Constraints (6.9) and (6.10) indicate the completion time of the dummy job and the total
duration of the schedule (makespan), respectively.

Finally, expressions (6.11) - (6.14) illustrate the domain of the model’s decision
variables, where Xjil and Yjik are the integer and binary type and Cij and Cmax of the
real type with values greater than or equal to zero.

6.2.2 Constraint programming (CP)

Among recent emerging techniques applied in exact approaches, such as decomposi-
tion and constraint programming methods for scheduling problems (NISHI; HIRANAKA,
2013; HONG; CHOU; LEE, 2019; CHALESHTARTI et al., 2020), the constraint pro-
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gramming has achieved good performance for OSSP (MALAPERT et al., 2012; MEJÍA;
YURASZECK, 2020). Constraint programming is a relatively recent paradigm for solving
combinatorial optimization problems, especially for complex problems that cannot be
easily modelled with integer linear equations and production scheduling problems (ROSSI;
BEEK; WALSH, 2006). CP initially emerged in the field of artificial intelligence, but has
achieved good results when applied to production scheduling problems (PINEDO, 2016).

The OSSPST problem can be modelled through constraint programming using
the same sets and parameters of the MILP model and two types of decision variables:
interval and sequence. Interval variables represent an operation to be processed from a
job on a machine, with start, end and duration times of the operation. Sequence decision
variables, on the other hand, cluster several interval variables into a set, such as the
processing sequence of jobs on a machine, for example (LABORIE, 2018). Among the
main competitive solvers for constraint scheduling, we use IBM’s CP Optimizer, which
has been obtaining competitive results for production scheduling problems. (LABORIE;
GODARD, 2007; LUNARDI et al., 2020).

In production scheduling problems, with CP Optimizer models, it is common to
use transition matrices together with noOverlap constraints to represent the parameter of
sequence-dependent setup times (LABORIE et al., 2018). However, the setups represented
by transition matrices can only be of the anticipatory type and it is not possible to
represent the initial setup time when the machine processes the first job in the sequence.
Therefore, as the premises required for the proposed OSSPST are not met, adaptations in
the CP model that use transition matrices are necessary.

Next, we show an adaptation of the CP Optimizer model proposed by Mejía and
Yuraszeck (2020) for the OSSPST problem, considering non-anticipatory setups and initial
setup times for the machines’ first job.

Indices and sets:

i ∈M : index for machines {1, . . . , m}.

j ∈ N : index for jobs {1, . . . , n}.

Parameters:

pij: process time of job j in machine i.

sijk: setup time of job j processed immediately after job k in machine i (note: the
setup time of the first job j in the sequence of machine i is sijj).

Decision variables:

xij: an interval variable for processing the operation of job j in machine i.

yij: an interval variable for the setup of job j in machine i.
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Γi: a sequence variable with order of yij and xij intervals variables in machine i

with each type of interval variable is the number of job j.

The CP model for the OSSPST is presented below:

minimize
max

i∈M :j∈N
endOf (xij) (6.15)

subject to
noOverlap (Γi) , ∀i ∈M (6.16)
noOverlap

(
[yij, xij]i∈M

)
, ∀j ∈ N (6.17)

endAtStart (yij, xij) , ∀i ∈M, j ∈ N (6.18)
sizeOf (yij) = s [i] [j] [typeOfPrev (Γi, yij, j)] , ∀i ∈M, j ∈ N (6.19)
interval xij, size = pij, ∀i ∈M, j ∈ N (6.20)
interval yij, ∀i ∈M, j ∈ N (6.21)
sequence Γi, on [yij, xij]j∈N , types [j, j]j∈N , ∀i ∈M (6.22)

Equation (6.15) illustrates the objective function of the problem of minimizing the
maximum completion time of all operations Oik (makespan). Constraint (6.16) indicates
that only one job can be processed at a time on machine i. Constraint (6.17) assumes that
the same job j cannot be processed by more than one machine at the same time.

Constraint (6.18) forces the processing of job j on machine i to start only after its
setup. Constraint (6.19), on the other hand, forces the duration of the variable yij to be
equal to the setup time on machine i of job j processed immediately after the last job
present on the machine. The index of the last job processed on machine i is obtained using
the typeOfPrev expression, which returns the type of the last variable processed in the Γi

sequence before the yij operation. When the yij variable is the first in the sequence, the
third argument of the expression is returned, in this case it is the value j. Therefore, in
this case, the expression returns the setup time of job j when it is the first in the sequence
of machine i, according to Table 12, for example, it is setup time sijj.

Finally, constraints (6.20) - (6.22) indicate the domain of the variables. xij is an
interval variable that has duration pij, yij is an interval variable and Γi is a variable
that holds the sequence of setups and operations processed on machine i, all with type j

referring to the job that is part of the operation or setup.

Analyzing the model of the equations (6.15) - (6.22), it can be observed that
properties of the OSSPST problem can be exploited to improve the CP model, such as the
fact that setups are non-anticipatory. Setup time plus processing time can be clustered
together when it know the last job processed on the machine.
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This feature can be modelled using the logical constraints present in the CP
Optimizer, thus developing a new CP model for the problem, whereas variables x and y

can be clustered into a single interval variable, thus reducing the number of decision and
constraint variables.

Next, we show a new CP Optimizer model proposed in this work for the OSSPST
problem, considering a single interval decision variable. The sets and parameters are the
same as the previous model.

Decision variables:

zij: a unique interval variable for setup and processing the operation of job j in
machine i.

Υi: a sequence variable with order of zij intervals variables in machine i with each
type of interval variable is the number of job j.

The new constraint programming model with unique interval variable (CP-IV) for the
OSSPST is presented below:

minimize
max

i∈M :j∈N
endOf (zij) (6.23)

subject to
noOverlap (Υi) , ∀i ∈M (6.24)
noOverlap

(
[zij]i∈M

)
, ∀j ∈ N (6.25)

sizeOf (zij) = s [i] [j] [typeOfPrev (Υi, zij, j)] + pij, ∀i ∈M, j ∈ N (6.26)
interval zij, ∀i ∈M, j ∈ N (6.27)
sequence Υi, on [zij]j∈N , types [j]j∈N , ∀i ∈M (6.28)

Equation (6.23) illustrates the objective function of the problem of minimizing
the completion time of all setup operations and processing zij (makespan). Constraints
(6.24) and (6.25) are similar to the constraints of the previous CP model, indicating that a
machine only processes one job at a time and a job can only be processed by one machine
at a time.

Constraint (6.26) forces the duration of the variable zij to be equal to the setup
time on machine i of job j processed immediately after the last job present on the machine
plus the processing time pij. That is, it is the total time that job j occupies machine i.
Finally, (6.27) and (6.28) constraints indicate the domain of the variables. zij is an interval
variable and Υi is a variable that keeps the sequence of operations (setups + processing)
executed on machine i, all with type j referring to the operation’s job.
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6.2.3 Discussion

This subsection compares the complexity of the constraints, the number of decision
variables and the number of constraints for each of the exact approaches presented. We
compares the main components of OSSPST with the different ways of modelling the
problem.

The MILP model presented in equations (6.1) - (6.14) uses sequential notation for
decision variables, but due to problem domain characteristics, such as non-overlapping
constraints for machines and jobs and the presence of the non-anticipatory setup, the model
has an expressive constraint complexity. The constraint with the largest size is the one found
in equations (6.6) and (6.7) with the worst case complexity of O (mn2 + m2n). The MILP
model has altogether mn

(
1
2 + 3

2n + m
)

+n constraints and n (m + 1)+mn2 + 1
2mn (m− 1)

decision variables, of which n (m + 1) are real and mn2 + 1
2mn (m− 1) are binary integers

(NADERI et al., 2011a).

The CP model uses logical constraints for the problem and applies heuristic
techniques to reduce the search space for the solution. Furthermore, CP has a greater
ease in finding feasible solutions, due to the exploration of the combinatorial problem
domain (ROSSI; BEEK; WALSH, 2006). This results in a greater facility for modelling
combinatorial problems such as production scheduling, mainly due to the possibility
of using logical constraints, which reduces the amount of decision variables and model
constraints.

We presented the initial CP model in equations (6.15) - (6.22) which uses the
CP Optimizer solver notation for sequencing problems, the constraint with the largest
size was presented in equations (6.18) and (6.19) with the worst case complexity of only
O (nm). The CP model has a total of m (10n + 1) + n + 4 constraints and m (2n + 1) + n

decision variables, all variables are discrete and of the interval or sequence type. Therefore,
due to the CP modelling properties and forms, it has a smaller number of constraints
and decision variables than MILP, which can contribute to a better performance in the
OSSPST solution.

If the problem have anticipatory setups, it was possible to suppress the terms∑
k∈Nd:k ̸=j(Yjik × sijk) from the constraints (6.7) and (6.8) of the MILP model, reducing

the size from the problem to the anticipatory setup times case. However, in the case of
the present research study, properties can be explored for the reduction of the problem
size with the CP-IV model that will be compared with the other exact strategies in the
results analysis section.

The CP-IV model, presented in equations (6.23) - (6.28), uses the CP Optimizer
solver notation for scheduling problems, the model seeks to reduce the amount of decision
variables and constraints using OSSPST properties such as non-anticipatory setups. The
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constraint with the largest size is the one present in the equations (6.26) with worst case
complexity of O (mn). The CP-IV model has altogether m (9n + 1) + n + 3 constraints
and m (n + 1) + n decision variables. The Table 13 illustrates a comparison between the
key characteristics of exact approaches, for several different instance sizes. With m the
number of machines and n the number of jobs.

Table 13 – Comparison of MILP and CP formulations with examples of instances sizes for
OSSPST

Instances sets MILP CP CP-IV

m n # integer
variables

# continuous
variables # constraints # integer

variables # constraints # integer
variables # constraints

3 3 36 12 75 24 100 15 90
4 4 88 20 172 40 172 24 155
5 5 175 30 330 60 264 35 238
6 6 306 42 564 84 376 48 339
7 7 490 56 889 112 508 63 458
8 8 736 72 1320 144 660 80 595
9 9 1053 90 1872 180 832 99 750

10 10 1450 110 2560 220 1024 120 923
15 15 4950 240 8565 480 2284 255 2058
20 20 11800 420 20220 840 4044 440 3643

Source: Authors.

Analyzing the Table 13, it can be observed that with the increase in the size of
the problem, the decision variables and restrictions of the MILP models have a significant
increase when compared to the variables and restrictions of the CP models. The CP-IV
model presented the smallest amounts of decision variables and constraints for most of
the presented problem sizes. However, a smaller model will not necessarily perform better
than the others, therefore all exact methods will be performed in the testing and results
analysis section.

6.3 Proposed algorithm

The adaptive large neighborhood search (ALNS) method is a meta-heuristic based
on the large neighborhood search (LNS) method proposed by Shaw (1998). LNS is an
optimization method that iteratively performs a process of relaxation and re-optimization of
solutions. Both methods have several applications in combinatorial optimization problems,
including using hybridization with exact approaches such as integer linear programming and
constraint programming (PISINGER; ROPKE, 2007; LI; NEGENBORN; LODEWIJKS,
2017; HOJABRI et al., 2018; HE; WEERDT; YORKE-SMITH, 2019; HÀ et al., 2020).
LNS performs a process that comprises two phases: one of destruction or relaxation of the
solution and another phase of construction or re-optimization of the solution.

The destruction phase involves removing or destroying a portion of the solution,
making it a partial solution to the problem, such as removing a number of jobs from
the solution. The relaxation phase, to be more effective, can incorporate properties or
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characteristics of the problem domain, which can vary depending on the computational
representation of the problem-solution (SHAW, 1998).

The construction or re-optimization phase consists of using an exact method to
transform the partial solution generated by the destruction phase into a viable solution
to the problem. For this construction, constraints programming methods can be used.
The technique can receive a partial solution as a warm-start and promote considerable
improvements in the solution, such as a local search step (LABORIE et al., 2018).

The LNS uses only one destruction method during its execution. The main improve-
ment of the ALNS is the use of multiple destruction methods along with the iterations;
these methods are chosen adaptively, selecting with a higher priority the destruction
methods that generate better solutions. Furthermore, using multiple destruction methods,
we can explore various properties of the problem (HE; WEERDT; YORKE-SMITH, 2019;
HÀ et al., 2020).

ALNS has several recent applications with competitive results in routing and
container loading problems (LI; CHEN; HUO, 2022; FRIEDRICH; ELBERT, 2022).
However, there are not many applications of ALNS in scheduling problems, more precisely
in the open shop and in problems with setup times or costs with hybridization of CP
models (AHMADIAN et al., 2021a; ALLAHVERDI, 2015) which is a substantial gap to
be solved with the present research.

In addition, ALNS has obtained competitive results when compared to traditional
optimization methods in scheduling problems (COTA et al., 2019; LI et al., 2021) due to
its adaptive nature of solution destruction and construction. Traditional methods such as
LNS and IGA use only single destruction and reconstruction operators throughout their
iterations, and ALNS changes the type of operators used adaptively during the execution,
using the destruction and construction operators that return the best results. Therefore,
ALNS was used as the primary proposed optimization method.

The following subsections explain the development process of the matheuristic
ALNS-CP for the OSSPST problem.

6.3.1 Solution representation

For the OSSP, several ways of presenting solutions for heuristic and meta-heuristic
methods have already been presented in the literature. Three different coding schemes
were the most recurrent: the blocks operations on the critical path, the rank matrix, and
the permutation list (ANAND; PANNEERSELVAM, 2016).

The blocks operations on the critical path can be used exclusively for the makespan
minimization objective, introduced by Liaw (1999). The rank matrix coding was initially
proposed by Bräsel, Tautenhahn and Werner (1993). The matrix represents a data structure
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where each row is the sequence of operations for a given job on machines and each column
represents the sequence of jobs on each machine.

The permutation list encoding consists in a vector with the sequence of operations
(that is, each job and machine pair is assigned an index number so that a solution is
represented by a sequence). Clearly, the permutation list encoding scheme is much simpler,
but its main disadvantage is its redundancy, as different sequences can, in fact, represent
the same scheduling for the open shop. Naderi et al. (2010) present four theorems to
drastically reduce redundancies in permutation list encoding.

The chosen form to represent the solution in the ALNS-CP algorithm is the
representation by permutation list. Figure 36 illustrates an example of the permutation
list representation on an instance of size 2 x 3 (2 machines and 3 jobs).

Figure 36 – An illustrative example for the permutation list encoding representation
Sequence representation: 1 2 3 4 5 6

Operation representation: O11 O12 O13 O21 O22 O23

Machines: 1 1 1 2 2 2

Jobs: 1 2 3 1 2 3

Sequence solution: 3 4 2 6 1 5

Decoded solution: O13 O21 O12 O23 O11 O22

Source: Authors

The figure 36 illustrates the optimal solution for a problem with six operations,
presented in Figure 35, with a makespan of 30 u.t. The solution is decoded by ordering
the operations according to the sequence present in the permutation list solution. Problem
domain characteristics such as the theorems proposed by Naderi et al. (2010) will be
incorporated in the solution’s destruction phase so that only operations that will actually
change the makespan of the solution will be removed, for they will be re-inserted in the
permutation list to generate a new solution.

6.3.2 Procedure for destroy solutions

We proposes four different strategies for the destruction of solutions, which are the
following: random removal, job removal, machine removal and idleness removal operators.

Random removal operator consists of removing a percentage of operations from the
solution, randomly, not using any more specific criteria. The number of solutions to be
removed is br ×m× n, where br is the percentage of operations that will be removed and
m× n is the size of the list of operations. The remaining operations constitute a partial
solution to the problem ready for the solution construction phase.

Job removal operator consists of selecting a job at random and then removing all
operations that use that job from the solution. In order for the process of removing and
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inserting operations does not produce redundant solutions, the selected operations need to
be from the same job (NADERI et al., 2010). The job removal operator uses this concept
of the problem domain, which applies to the representation of permutation list solutions.

Machine removal operator consists of randomly selecting a machine and then
removing all operations that use that machine from the solution. This removal process
also uses another feature of the problem domain, similar to the feature present in the job
removal operator. The characteristic is that, in order not to produce redundant solutions,
it is necessary that the selected operations are from the same machine (NADERI et al.,
2010).

For the job and machine removal operators, a redundant solution is a solution that
even after removal and reinsertion of operations it continues with the same makespan
(NADERI et al., 2010).

Another important characteristic of the open shop domain is the idleness of
operations, considered in the heuristics proposed by Abreu et al. (2020). The idleness
of an operation can be defined as the time required to wait for job j to be processed
on machine i of operation Oij. Equation (6.29) illustrates the idle calculation of an Oij

operation. Φij represents the idleness generated by the insertion of job j on machine i. Job
e was the last job processed on machine i, so the setup of operation Oij is sije. M and J

store the accumulated processing times for each machine i and job j is stored in Mi and
Jj, respectively, and both are updated every time when a new operation is inserted.

Φij =

Jj −Mi + sije, if Jj > Mi

sije, otherwise
(6.29)

An open shop solution with little idleness between operations can result in a smaller
makespan. Therefore, this concept was used in the idle removal operator. This removal
operator calculates the idleness of all operations in the sequence; the bd×n×m operations
with the highest idleness are removed from the solution, where, where bd is the percentage
of operations to be removed and m× n is the size of the list of operations.

ALNS-CP has a total of four removal operators for the destruction phase, the
choice of which operator to use can be very costly due to the high number of parameters.
The standard ALNS has a mechanism for choosing the removal operator based on the
performance of each one along the algorithm’s iterations.

The choice mechanism consists of a weight to be used to calculate the selection
probability of each operator, during the execution of the ALNS-CP. We illustrates in
equation 6.30 the calculation of updating the weight of an operator, in an iteration of
the algorithm. The mechanism is based on the method proposed by Hojabri et al. (2018),
adapted to the OSSPST problem with destruction operators considering the solution
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representation of the OSSPST.

wk = γ · wk + (1− γ) · πk

ηk

(6.30)

In equation (6.30), wk is the weight of an operator k to be randomly selected
during an ALNS-CP iteration. πk is the number of times using the k operator improved
the correct solution, ηk is the number of times the operator was selected and γ is a degree
of importance that varies between 0 and 1. When γ is close to 1, the weight does not
change so much along the iterations, whereas when γ is close to 0 the most important
weight update is the recent success rate of its use.

All weights for each removal operator are initially set to 1 so that each operator
has an equal chance of selection. The selection probability of an operator k is given by
the relative weight of the operator

(
wk∑T

i=1 wi

)
, where T is the total number of removal

operators. This adaptive mechanism means operators that improve the quality of the
algorithm solutions may have a greater chance of being selected during ALNS-CP iterations.

The percentage parameters of the random and idle removal operators br and bd,
respectively, and the degree of importance γ need to be defined for the OSSPST problem.
In subsection 6.3.5, we illustrate the method used for the configuration of all parameters
used in the ALNS-CP.

6.3.3 Initial solution procedure

Priority rules for OSSP are largely based on LPT algorithms that sort operations in
descending order. However, these approaches do not explore important characteristics of the
problem domain, such as idleness between operations. Therefore, the constructive heuristic
minimal idleness heuristic (MIH) proposed by Abreu et al. (2020) was implemented to
create a quality initial solution for ALNS-CP.

MIH allocates in the solution the machine-job operation that returns the minimum
idleness in the machine related to the operation. The idleness indicator can be calculated
by the accumulated processing times for jobs and machines in the production system
throughout the execution of the operations in the scheduling sequence. Equation (6.29)
presents the procedure for calculating idleness in subsection 6.3.2.

According to equation (6.29), if the cumulative time for a given job in the system
is greater than the accumulated time for a given machine, it means that the machine will
wait until the job is finished, and consequently, it can be allocated to the current machine.
On the other hand, if the cumulative time of this job is lower than the cumulative time of
a given machine, this job was already processed in another machine, and its processing in
the current machine will not result in idleness (ABREU et al., 2020). Figure 11 shows the
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complete pseudocode for MIH where p is the processing time matrix, m is the number of
machines, and n is the number of jobs.

Data: p, m, n
Result: A sequence Π := (O11, O12, ..., Omn)

1 Π ← ∅;
2 M ← list with time cumulative in each machine;
3 J ← list with time cumulative in each job;
4 Ωk ← list with the jobs allocated to machine k, ∀k ∈ {1, ..., m};
5 while ∥Π∥ < n×m do
6 machine k ← argmin

i∈{1,...,m}
Mi; // index from machine finishing first

7 job j ← argmin
j∈{1,...,n},j /∈Ωk

Φkj; // the best job not allocated in machine k,

through the MIH rule
8 Π ← Π ∪ {Okj};
9 Ωk ← Ωk ∪ {j};

10 update J and M with time of Okj operation;
11 end

Figure 37 – Pseudocode of the minimal idleness heuristic

Lines 1-4 start the parameters and data structure of the algorithm. In line 5, there
is the main while loop of the algorithm. The algorithm runs while any operations are not
inserted in solution Π. Line 6 gets the index k of the machine released more early, and
line 7 gets the index j of the job that has not yet been inserted in the machine k, and that
will result in the minimum idleness Φkj. The selected operation Okj is inserted into the
solution in line 8. Line 9 inserts the index of the selected job j in the list of jobs allocated
in machine k to prevent the job from being selected again. Finally, line 10 updates the
accumulated processing times in the production system for operation of job j and machine
k.

6.3.4 Complete pseudo code for hybrid ALNS-CP

Figure 38 illustrates the complete pseudo-code of the ALNS-CP algorithm. The
algorithm has three main phases: initial solution construction, destruction, and recon-
struction phases. Then, the algorithm iteratively repeats the solution destruction and
reconstruction phase, and when the stopping criterion is satisfied, the best solution found
(Πbest) is returned.

The ALNS-CP algorithm has four main parameters: the percentage of operations of
the random and idle removal operators br and bd, respectively; the degree of importance γ;
the set of removal operators Q; and the time limit TL of the CP model in the reconstruction
phase. Finally, the algorithm needs the data of the problem instance: the processing time
matrix p and the setup time matrix s.



121

The proposed algorithm also has a search intensification mechanism for when the
iterative process does not return solutions better than the current solution over several
iterations. The algorithm performs the solution reconstruction phase by running the CP
model with the initial solution Πpartial with a time limit longer than the default TL

parameter. The function REPAIR_SOLUTION executes the CP model and, in the end,
converts the interval variables to the sequence-of-operations solution representation of the
figure 36. The function DESTROY _SOLUTION applies the selected removal operator.

Data: p, s, br, bd, Q, γ, TL
Result: A sequence Πbest := {O11, O12, ..., Omn}

1 Πcurrent ← a solution ordered by a constructive heuristic MIH;
2 Πbest ← Πcurrent;
3 makespan_best ← makespan(Πbest, p, s);
4 w ← initial weights for each removal operators with value 1.0;
5 stableit← 0; // number of iterations without improvement
6 while the stopping criterion is not satisfied do
7 select randomly a removal operator Qk with weight wk;
8 Πpartial ← DESTROY _SOLUTION(Qk, Πbest, br, bd);
9 if stableit < 10 then

10 Πcurrent ← REPAIR_SOLUTION(Πpartial, time_limit = TL);
11 Πcurrent ← local_search(Πcurrent); // apply 2-opt local search
12 else
13 Πcurrent ← REPAIR_SOLUTION(Πpartial, time_limit = 5× TL);
14 end
15 if makespan(Πcurrent, p, s) < makespan_best then
16 Πbest ← Πcurrent;
17 makespan_best ← makespan(Πbest, p, s);
18 stableit← 0;
19 else
20 stableit← stableit + 1;
21 end
22 update πk and ηk parameters of selected removal operator Qk;
23 wk = γ · wk + (1− γ) · πk

ηk
;

24 end

Figure 38 – Pseudocode of the adaptive large neighborhood search with constraint
programming

Lines 1-5 start the parameters and data structure of the algorithm. The algorithm
obtains the initial solution by the MIH constructive heuristic proposed by (ABREU et
al., 2020). In line 6, there is the main while loop of the algorithm. The algorithm runs
while the execution time limit is not exceeded. In line 7, the removal operator is chosen
randomly with the probability vector created by the weights w of each removal operator.
The higher the weight of an operator, the more probable it is to be selected. In line 8, the
ALNS-CP executes the selected removal operator, producing the partial solution Πpartial.
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In lines 9-14, the algorithm executes the procedure to repair the partial solu-
tion. If the number of iterations without improvement is less than 10, the function
REPAIR_SOLUTION is executed, which uses the CP model to reconstruct the partial
solution and improve the solution with iterations of the CP Optimizer solver, with a time
limit of TL seconds. After the reconstruction phase, the ALNS-CP applies a fast 2-opt
best-improvement local search in line 11, with the redundant solution filters proposed by
Naderi et al. (2010).

If the number of iterations without improvement is greater than or equal to 10,
ALNS-CP performs the solution repair procedure with a five-fold time limit. The CP
optimizer, when run from a partial or complete initial solution, can improve the solution in
the solver iterations (LABORIE; GODARD, 2007). Furthermore, with the more intensive
iterations of the CP optimizer, the ALNS-CP algorithm may escape possible local optima
solutions.

In lines 15-21, if the newly obtained solution Πcurrent is better than the best solution
found Πbest, the best solution is updated, the algorithm reset the unimproved iterations
counter to zero, and start the ALNS cycle of destruction and reconstruction phases again.
Otherwise, the interaction counter with no improvement is updated, and the algorithm
returns to the destruction and reconstruction phases with the current best solution. The
solution acceptance criterion is of the hill-climbing type (RUIZ; STÜTZLE, 2008).

Finally, lines 22 and 23 update the success rate parameter and the weight wk of the
removal operator used. After the end of iterations, the algorithm returns the best solution
found Πbest.

6.3.5 Parameter’s optimization

Researchers frequently use the IRACE package to find the best parameters for
optimization algorithms like metaheuristics (LÓPEZ-IBÁNEZ et al., 2016). Therefore,
we used the IRACE package to obtain the best parameters for the proposed ALNS-CP
algorithm. Table 14 illustrates the values of each parameter considered, and in the Selected
value column is the best result obtained from each parameter in the IRACE tests. IRACE
provides the test result information for a set of parameters, and each parameter has a
range of options available. For example, in Table 14, the IRACE package recommends
adopting intermediate values of parameters br and bd, the smallest value for parameter γ,
and the largest available value for parameter TL.

During the execution of IRACE, the algorithm iteratively updates the way the
parameters are sampled, aiming to use the region of values of these parameters that
improve the optimization algorithms’ performance. Therefore, the sampling frequency of
values of each parameter can provide essential insights into the behavior of the optimization
algorithm when these parameters are changed (LÓPEZ-IBÁNEZ et al., 2016). Figure 39
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Table 14 – IRACE parameter range settings and resulting values

Parameter IRACE name Range Selected value
br br [0, 1] 0.4052
bd bd [0, 1] 0.6588
γ gamma {0.3, 0.5, 0.7} 0.3
TL TL {10, 25, 50} 50

Source: Authors.

shows the sampling frequency of the values of each parameter for the developed ALNS-CP
algorithm.

Figure 39 – Parameters sampling frequency for developed method.
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In classical LNS algorithms, only one removal operator is used (SHAW, 1998).
However, ALNS-CP applies four different removal operators that consider important
characteristics of the problem domain, such as the operation’s idleness. Furthermore,
the ALNS-CP selects, adaptively, the removal operators that result in better solutions
throughout the algorithm iterations.

We perform a simulation to analyze the evolution of the selection probability of the
removal operators over the iterations of ALNS-CP. The simulation considers an example
instance of size 49 (seven machines and seven jobs), with the stopping criterion equal to 24
iterations

(⌊
m×n

2

⌋)
, where m× n is the size of the problem. The execution of ALNS-CP in

24 iterations was performed 100 times to generate a confidence interval (95% of confidence)
for the selection probability of the removal operator in each iteration. Figure 40 illustrates
the evolution of the selection probability for each of the four removal operators for each
iteration performed.

Figure 40 shows that all the four removal operators start with an equal probability of
selection of 25% and get different probability selection values throughout the iterations. For
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Figure 40 – An example of selection probability and confidence interval (alpha=0.05) of
removal operators by iterations in a instance with size 49.
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this tested instance, the idle and machine removal operators have the highest probability of
selection at the end of iterations, which may indicate that the selection of these operators
implies an improvement of the current ALNS-CP solution. For these two operators, the πk

term of the equation (6.30) increased its value due to obtaining better solutions than the
current one. The increment of πk increases the weight w of the operators and, consequently,
increases the selection probability of these operations in the iterations of ALNS-CP.

In addition, the selection of the random and job removal operators decreases
throughout the iterations, which may indicate that these operators are not selected or
when ALNS-CP uses them, the operators do not imply an improvement of the current
solution. For these two operators, the πk term of the equation (6.30) did not get a significant
increase in its value, due to not obtaining solutions better than the current one, this causes
a stagnation in the weight w of the operators and, consequently, reduces the selection
probability of these operations throughout the iterations of ALNS-CP, due to other better
operators increase their weight w and consequently their selection probability.

6.4 Computational experience

The section describes the methodology used for the computational experience of
the tested methods, the sets of instances, and the performance criteria to compare the
algorithms. We divided the comparison between the exact methods and the approximate
methods for solving the OSSPST.
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6.4.1 Instances sets and performance criteria

We evaluate the proposed exact and approximate techniques using benchmarking
problems from the literature. Taillard (1993), Guéret and Prins (1998) and Brucker et
al. (1997) propose these problems. Then, we use these datasets for testing algorithms
for solving classical OSSP, adapted for OSSPST by Abreu et al. (2020). The adaptation
has similar criteria as the instance generations proposed by Mejía and Yuraszeck (2020),
Naderi et al. (2011a) and Roshanaei, Esfehani and Zandieh (2010).

For the processing times matrix, in the instances of Guéret and Prins (1998),
the processing times are random values, uniformly distributed between 1 and 1000. The
problem sizes are n, m ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For each problem class, 10 instances were
generated, totaling 80. In Taillard (1993) instances, the processing times are random values,
uniformly distributed between 1 and 100. The problem sizes are n, m ∈ {4, 5, 7, 10, 15, 20}.
For each problem class, 10 instances were generated, totaling 60. In Brucker et al. (1997)
instances, the processing times are random values uniformly distributed between 1 and
500. The problem sizes are n, m ∈ {3, 4, 5, 6, 7, 8}, totaling 60 instances. In summary, we
test 192 instances for OSSPST.

We divided each set of instances into two groups; the low type instances have the
setup distribution with uniform numbers between [1, 499]. The high type instances have a
setup distribution between [500, 999]. We used the set of instances from Abreu et al. (2020)
for benchmarking against various algorithms already tested for Open Shop and OSSPST
problems. In addition, the set of instances is robust by not only use the adaptation of
Taillard instances, considered easy to solve by the literature due to having the optimal
solution equal to the lower bound of the problem (MALAPERT et al., 2012; TAILLARD,
1993; ANAND; PANNEERSELVAM, 2016). Therefore, Abreu et al. (2020) considers the
three main sets of OSSP instances and further divides the setups into low and high
instances to verify the performance of the algorithms with different setup distributions.

The first indicator used to measure the efficacy of the computational experiments
is the relative percentage deviation (RPD) between the solution obtained by the method
and the lower bound of the instance. We calculate the average RPD result for each
solving method tested on the instance sets. Equation (6.31) illustrates the average relative
percentage deviation indicator (ARPD) for a method h, where solkh is the value of instance
k obtained by method h, LBk is the lower bound for instance k. K and H are the numbers
of instances and methods, respectively.

ARPDh = 1
K

K∑
k=1

solkh − LBk

LBk

· 100, ∀h ∈ {1, . . . , H} (6.31)

Mejía and Yuraszeck (2020)) propose the lower bound used in the test of OSSPT,
which considers the setup times in the calculation, to have a tighter result close to the
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optimal integer solution. Equation 6.32 describes the lower bound LBk for an instance
k, where pij is the processing times matrix, and TSPi is the optimal tour for a traveling
salesman problem with the setup matrix of machine i. The distances from the source node
to the other nodes are the setup times of each job when the machine starts (diagonal of
the setup matrix), and the distances from the other nodes are the setup time from one job
to the other. M and N are the sets of machine jobs, respectively, and K is the number of
instances.

LBk = max
max

∀i∈M

∑
j∈N

pij + TSPi

 , max
∀j∈N

{ ∑
i∈M

pij

} ,∀k ∈ {1, . . . , K} (6.32)

To measure the efficiency of the computational experiments, the indicator used is
the average execution time of the algorithms for the set of tested instances. For example,
equation (6.33) illustrates the average computational time (ACT) indicator for a method
h, where CTkh is the value of the computational time of method h when executing instance
k. K and H are the numbers of instances and methods, respectively.

ACTk = 1
K

K∑
k=1

CTkh,∀h ∈ {1, . . . , H} (6.33)

We implement all the proposed methods and benchmarking algorithms in the
Python 3.7 language (https://www.python.org/). The MILP model and the CP model
were implemented in the IBM ILOG CPLEX 12.10 solver. The computational experiments
were executed on a virtual machine with Intel® Xeon(R) CPU E5-2660 2.20GHz and 8GB
of RAM. All source codes, instances, results, computational times, and statistical tests are
available at http://repositorio.uspdigital.usp.br/handle/item/446.

6.4.2 Computational results for exact approaches

For the exact models, we adopt a time limit of 1800 seconds in the computational
tests. The tested methods are listed below.

• Mixed Integer Linear Programming (MILP): the proposed mathematical program-
ming model given by the Equations (6.1)-(6.14).

• Constraint Programming (CP): the CP model proposed by Mejía and Yuraszeck
(2020) and adapted for OSSPST with non-anticipatory setup times given by the
Equations (6.15)-(6.22).

• Constraint Programming with unique Interval Variable (CP-IV): the new constraint
programming model with unique interval variable for the OSSPST given by the
Equations (6.23)-(6.28).

https://www.python.org/
http://repositorio.uspdigital.usp.br/handle/item/446
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Laborie et al. (2018) indicate CP Optimizer has several different search strategies
fixed before the solver execution: Auto strategy (CP Auto), which has a hybridization of
exact algorithms with Self-Adapting Large-Neighborhood Search metaheuristics. Depth-
first strategy (CP DF) is a tree search algorithm. Restart strategy (CP RS), where the
constructive search is restarted at defined intervals and oriented to obtain the optimal
solution quickly. Finally, the MultPoint strategy (CP MP) creates a combined set of
solutions to produce better solutions over iterations, similar to evolutionary strategies. The
Auto and Restart strategies have proof of optimally of the solutions, while the Depth-first
and Multipoint strategies do not have due to their heuristic nature in solver iterations.

Therefore, for each of the two CP models developed, the four search strategies were
applied, totaling eight different CP methods. MILP was run using the branch and bound
(B&B) method for integer linear programming problems. Table 15 illustrates the ARPD
for each exact method evaluated on each set of instances (GP - Guéret and Prins, Tai -
Taillard and Bru - Bruckner). The results are grouped by instance size (m× n) and by
setup type. The last four rows provide a statistical summary of the computational results:
the best ARPD value (Min), the average ARPD (Average), the worst ARPD value (Max),
as well as the number of unsolved instances for each exact proposed method. The results
with the symbols *** indicate that the method used did not find any feasible solution in
the computational time provided.

Table 15 – ARPD results of exact methods in all sets of instances

Instances sets MILP CP CP-IV
Group Size Setup B&B Auto DF RS MP Auto DF RS MP

GP 9 Low 17.25 17.25 17.25 17.25 17.25 17.25 17.25 17.25 17.25
High 9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44 9.44

16 Low 14.01 14.01 15.33 14.01 14.01 14.01 15.19 14.01 14.01
High 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60

25 Low 20.22 20.22 22.44 20.22 21.35 20.22 22.28 20.22 21.28
High 12.80 12.80 12.86 12.80 12.84 12.80 12.86 12.80 12.84

36 Low 13.81 14.73 21.31 17.33 25.04 13.81 19.85 13.81 18.40
High 14.60 16.07 20.19 16.43 17.56 13.27 16.01 13.36 17.35

49 Low 22.32 27.51 51.88 28.98 40.09 19.40 40.83 22.52 33.92
High 26.93 21.62 27.88 21.65 22.09 17.74 24.92 19.43 21.48

64 Low 27.70 22.64 60.30 26.53 36.49 17.61 46.47 20.79 36.52
High 33.10 22.72 29.00 22.45 22.71 21.62 25.63 22.16 24.56

81 Low 40.20 41.08 86.96 39.57 59.00 37.73 74.67 40.60 60.94
High *** 26.15 32.67 25.53 27.36 25.65 30.55 25.90 25.63

100 Low 47.45 37.93 89.35 46.21 75.42 37.06 88.56 39.68 72.44
High *** 29.44 36.25 30.12 32.01 27.74 36.68 29.54 30.46

Tai 16 Low 15.74 15.74 17.85 15.74 15.74 15.74 17.85 15.74 15.74
High 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22

25 Low 16.74 16.74 20.36 16.74 16.93 16.74 20.19 16.74 18.13
High 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.46

49 Low 14.81 23.57 66.99 26.87 40.33 17.63 53.46 19.57 37.05
High 24.70 16.30 25.51 17.04 20.53 15.37 23.11 15.55 18.95

100 Low 43.61 44.78 141.14 49.69 100.41 41.68 121.02 43.85 99.71
Continued on next page
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Table 15 continued from previous page
Instances sets MILP CP CP-IV
Group Size Setup B&B Auto DF RS MP Auto DF RS MP

High *** 26.80 36.90 29.28 29.14 24.40 33.45 24.89 29.47
225 Low 110.06 92.11 202.53 103.87 165.94 81.13 196.17 85.94 167.40

High *** 37.90 47.24 39.28 41.45 35.41 47.06 38.36 41.00
400 Low 209.90 151.20 244.80 174.55 212.41 136.67 239.24 148.73 214.46

High *** 41.58 50.09 42.97 44.16 41.28 48.85 42.11 43.60

Bru 9 Low 14.64 14.64 14.64 14.64 14.64 14.64 14.64 14.64 14.64
High 6.22 6.22 7.20 6.22 6.22 6.22 6.31 6.22 6.22

16 Low 21.96 21.96 25.75 21.96 21.96 21.96 25.75 21.96 21.96
High 17.08 17.08 17.08 17.08 17.08 17.08 17.08 17.08 17.08

25 Low 17.82 17.82 20.92 17.82 18.14 17.82 20.92 17.82 19.64
High 17.23 17.23 20.70 17.23 19.71 17.23 20.70 17.23 19.12

36 Low 15.74 17.09 38.52 17.68 32.29 15.74 28.43 15.74 26.31
High 11.35 12.55 27.53 14.06 23.36 11.35 20.88 11.35 19.39

49 Low 17.91 25.29 52.96 24.89 40.32 19.63 49.14 17.97 36.07
High 21.62 32.55 62.03 32.46 54.41 24.73 61.32 23.96 41.95

64 Low 24.06 34.66 100.56 30.50 66.12 24.51 81.32 25.76 48.28
High 25.01 35.50 91.51 35.35 61.87 29.50 77.15 29.56 55.33

Min 6.22 6.22 7.05 6.22 6.22 6.22 6.31 6.22 6.22
Average 27.85 27.05 47.37 28.58 38.12 24.52 43.35 25.53 36.43

Max 209.90 151.20 244.80 174.55 212.41 136.67 239.24 148.73 214.46
Unsolved instances 32 0 0 0 0 0 0 0 0

Analyzing Table 15, only the MILP method had unsolved instances. The method
could not solve instances with sizes greater than 81 with the setup type high for the
Gueret and Prins and Taillard sets. All CP methods were able to find feasible solutions
for all instances in the computational time provided. The CP-IV methods outperformed
the CP methods, showing that the improvement of the CP model implies a better quality
of solutions due to the reduction of constraints and decision variables.

MILP had the best performance on Brucker instances. CP-IV Auto had the best
average result and the best result on Gueret and Prins and Taillard instances. Overall, the
RS strategy obtained reasonable solutions on Taillard and Gueret and Prins instances and
solved more instances than the DF and MP strategies with the best ARPD. The MILP
method obtained lower ARPD on instances with low type setups, while the CP models
obtained lower ARPD on instances with high type setups.

The CP DF and CP-IV DF methods obtained the worst results among the search
methods tested. Figure 41 illustrates a boxplot of the distribution of the ARPD obtained
by the proposed methods on all tested instances. The dotted line is the average result for
each method.

Overall, CP-IV Auto obtained the best results, followed by CP-IV RS and CP
RS. In addition, the CP-IV Auto has the lowest median and mean among the methods
that can solve all instances. For a better comparison, Figure 42 illustrates each proposed
method’s ARPD, grouped by instance size.
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Figure 41 – ARPD for all exact methods in all sets of instances.
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Figure 42 – ARPD and confidence interval (α = 0.05) for all exact methods in each
instance size.
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Concerning figure 42, MILP performs well up to instance size 64, with the perfor-
mance loss gradually increasing with increasing instance size, showing the difficulty of
solving the OSSPST by exact integer linear programming methods. The CP-IV method
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obtained the best performance compared to the other methods in most of the instance
sizes. In instance sizes larger than 100, all exact methods obtained unsatisfactory results,
with ARPD greater than 50%.

Therefore, with the increase of complexity of the problem, considering initial
machine setups and asymmetric setups (setup time from job j to job k may be different
from the setup time from job k to job j on the same machine), solving the problem
becomes very costly for instances larger than 100, with no exact method obtaining good
results with the time limit used.

Regarding computational times, Figure 43 illustrates the average computational
times obtained for each method for each instance size tested. The CP and CP-VI methods
with the MP and DF type search strategies have no optimally proof and executed the
search for 1800 seconds for all instances, so they were not considered in the visualization.

Figure 43 – ACT and confidence interval (α = 0.05) for all exact methods in each instance
size.
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The MILP model from instances of size 64 has significant computational times,
denoting the difficulty of solving the problem by exact methods on large instances. CP-IV
has the best computational times because it is a model with fewer decision variables
and constraints, obtaining competitive times mainly for instances of sizes 36 to 64. The
CP Auto and CP RS methods, on the other hand, obtained the highest computational
cost, especially for instances of sizes 25 to 36. CP methods get the largest variability in
computational times. All the methods, starting from the instances of size 81, reached the
1800 seconds time limit.
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Since none of the exact strategies could obtain satisfactory results, especially
for the larger instances, we tested the meta-heuristic described in Section 6.3 with the
hybridization of ALNS with CP as a solution building mechanism. We used the CP search
strategy that obtained the best preliminary results (CP-IV Auto) with an initial solution
by the MIH constructive heuristic proposed by Abreu et al. (2020).

6.4.3 Computational results for approximation approaches

For the computational testing of the approximation approaches, we test several
competitive heuristics and metaheuristics from the OSSP and OSSPST literature, adapted
for the variant considered in the research, for comparison with ALNS-CP. In summary, we
test seven approximate approaches for OSSPST.

• Minimal Idleness Heuristic (MIH): a constructive heuristic proposed by Abreu et al.
(2020).

• Genetic Algorithm with restart procedure and direct decoding mechanism of solution
(GA (D)): the best genetic algorithm proposed by Abreu et al. (2020) for OSSPST.

• Electromagnetic Heuristic (EH): a metaheuristic proposed by Naderi et al. (2011a)
for OSSPST.

• A self-tuning variable neighborhood search algorithm (VNS): a metaheuristic pro-
posed by Mejía and Yuraszeck (2020) for OSSPST with anticipatory setup times
and adapted to non-anticipatory case.

• An innovative biased random key genetic algorithm with implicit path-relinking
(BRKGA): a metaheuristic for general scheduling problems, proposed by Andrade et
al. (2019) and adapted to OSSPST.

• Competitive Hybrid Genetic Algorithm (HGA): a competitive HGA for OSSP
proposed by Ahmadizar and Farahani (2012) and adapted to OSSPST in this study.

• A hybrid adaptive large neighborhood search with constraint programming (ALNS-
CP): the method proposed by us.

We added the six benchmarking approaches as a complementary reference (the
lower bound is the basis for the comparisons). In addition, we tested the MIH method.
Since ALNS-CP uses MIH in the initial solution as a hybrid approach, it is possible to
evaluate the improvement provided by ALNS-CP on the solution generated by MIH.

The metaheuristics HGA, EH, GA (D), and VNS are the most recent approximate
approaches applied for OSSP and OSSPST, and there are no articles that test on ensembles
and perform robust comparisons with all these metaheuristics (ALLAHVERDI, 2015;
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AHMADIAN et al., 2021a). Such tests constitute an important contribution to the present
research. Therefore, by comparing ALNS-CP with these techniques, it is possible to verify
the improvement in the solution quality compared to the best techniques in the literature
for the problem, being possible to analyze the impact of hybridizing CP models with the
ALNS technique on the OSSPST problem.

The comparison of ALNS-CP with BRKGA validates if the proposed solution
method for OSSPST can obtain better solutions than general and competitive techniques
for the scheduling problem. Therefore, the comparison is a validation of the proposed
method.

For the HGA, VNS, and BRKGA techniques, an adaptation of the objective
function was necessary to consider the makespan of OSSPST, considering explicit and
non-anticipatory setup times, according to the illustration of the makespan of the Gantt
charts 34 and 35.

For the HGA, EH, GA (D), BRKGA, and VNS the same parameters used by
Ahmadizar and Farahani (2012), Naderi et al. (2011a), Abreu et al. (2020), Andrade
et al. (2019), and Mejía and Yuraszeck (2020) respectively, were considered in the tests.
In HGA we use the parameters: population size 200, crossover rate 0.9, mutation rate
0.2, local optimization heuristic rate 0.2, maximum number of iterations of the local
optimization heuristic 200 and q 0.9. In EH we use the parameters: population size 10,
initial temperature 20, CT 2, and FN 20. In GA (D) we use the parameters: population
size 100, mutation ratio 0.05, restart ratio 0.5, and initial temperature 100. In BRKGA we
use the parameters: |P| 4500, Pe% 11, Pm% 35, πt 2, πe 3 and Φ e−r. Finally, in VNS we
use the parameters: a 50 and decoding scheme m-AS.

We implemented all metaheuristics in the same Python 3.7 programming language
and adopted the same stopping criteria for all algorithms for a fair comparison. We adopted
the stopping criterion of 10×m× n iterations per method, which depends on the size of
the problem, where m is the number of machines and n is the number of jobs. In addition,
we used a run-time limit of 1800 seconds. The required parameters of each benchmarking
method were the values used by the respective authors.

Table 16 illustrates the average relative percent deviation (ARPD) for each bench-
mark method evaluated on each set of instances (GP - Guéret and Prins, Tai - Taillard
and Bru - Bruckner). The results are grouped by instance size (m× n) and by setup type.
The last four rows provide a statistical summary of the computational results: the best
ARPD value (Min), the average ARPD (Average), and the worst ARPD value (Max).
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Table 16 – ARPD results of approximation methods in all sets of instances

Instances sets Approximation approaches
Group Size Setup MIH GA (D) EH VNS BRKGA HGA ALNS-CP

GP 9 Low 34.65 17.25 17.25 17.25 17.25 17.25 17.25
High 22.32 9.44 9.44 9.44 9.44 9.44 9.44

16 Low 36.47 20.89 16.56 14.01 14.01 21.57 14.01
High 29.45 20.08 16.48 13.60 13.60 23.65 13.60

25 Low 55.57 30.40 36.34 20.22 20.22 27.83 20.22
High 35.14 17.38 21.34 12.80 14.79 20.02 12.80

36 Low 53.89 22.74 38.18 14.44 16.62 47.51 13.81
High 34.31 19.20 27.16 14.68 20.08 24.53 13.27

49 Low 68.24 31.23 45.36 25.98 25.77 66.38 18.94
High 32.54 21.23 26.56 20.15 23.40 35.83 16.08

64 Low 55.01 28.60 43.19 21.17 20.31 23.29 13.92
High 36.77 27.66 29.26 21.54 27.45 47.94 19.41

81 Low 76.64 38.98 58.52 39.39 37.32 47.23 30.36
High 35.72 29.49 29.23 24.93 30.92 42.09 22.34

100 Low 74.89 40.32 63.87 36.61 47.65 37.52 30.16
High 38.27 31.67 31.85 28.19 32.50 83.10 25.58

Tai 16 Low 56.37 20.08 25.04 15.74 15.74 27.51 15.74
High 18.84 12.29 10.81 8.22 8.22 14.76 8.22

25 Low 69.79 35.49 42.25 16.74 17.67 52.76 16.74
High 36.89 12.39 23.57 7.05 9.29 19.91 7.05

49 Low 74.83 30.24 53.24 22.07 21.41 18.90 14.43
High 36.08 18.02 32.11 14.91 22.37 51.96 9.66

100 Low 104.47 49.98 73.12 43.05 55.14 55.09 28.27
High 36.57 30.30 31.36 25.28 31.81 66.79 19.49

225 Low 104.76 65.62 81.74 89.81 81.56 89.38 58.41
High 39.16 33.94 34.71 36.57 35.67 42.34 33.83

400 Low 103.78 96.94 91.99 148.18 81.44 91.09 79.04
High 34.41 44.82 32.94 39.88 32.58 40.86 31.66

Bru 9 Low 32.62 17.93 14.64 14.64 14.64 21.92 14.64
High 25.74 9.09 6.22 6.22 6.22 9.29 6.22

16 Low 50.25 28.15 28.35 21.96 21.96 25.43 21.96
High 52.57 21.68 22.00 17.08 17.08 27.42 17.08

25 Low 66.42 30.11 36.75 17.82 17.93 51.24 17.82
High 56.10 27.84 39.37 17.23 17.23 53.90 17.23

36 Low 70.85 29.96 46.60 16.79 17.16 31.35 15.74
High 57.80 32.13 44.26 11.86 14.75 15.12 11.35

49 Low 68.63 32.58 67.60 23.79 21.20 22.18 13.91
High 86.81 43.37 62.61 30.96 25.94 25.66 20.44

64 Low 80.73 36.14 67.95 33.05 29.17 26.30 17.90
High 87.91 41.39 66.33 33.88 32.56 33.86 22.04

Min 18.84 9.09 6.22 6.22 6.22 9.29 6.22
Average 54.31 30.18 38.65 26.18 25.50 37.26 20.25

Max 104.76 96.94 91.99 148.18 81.56 91.09 79.04

Most methods obtained the best solutions on small instances up to size 9. The
matheuristic ALNS-CP obtained the best results for the Min, Average, and Max ARPD
indicators, which shows the improvement of the quality of solutions with the hybridization
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of exact and approximate techniques for OSSPST.

The ALNS-CP, VNS, and BRKGA methods obtained the best results in instances
up to 25. From the larger instances of Gueret and Prins, Taillard, and Brucker, the
ALNS-CP method obtained the best ARPD results. Also, about table 16, the bold values
illustrate the best ARPD results for each instance set. The ALNS-CP method was the one
that obtained the best results for each of the tested instance sizes. Figure 44 illustrates a
boxplot of the distribution of ARPD obtained by the approximate methods on all tested
instances. The dotted line illustrates the average result for each method.

Figure 44 – ARPD for all approximation methods in all sets of instances.

0 25 50 75 100 125 150 175

ARPD (%)

MIH

GA (D)

EH

VNS

BRKGA

HGA

ALNS-CP

M
et

ho
d

Source: Authors

Overall, ALNS-CP obtained the best results, followed by BRKGA and VNS.
Comparing the matheuristic method and the tested metaheuristics, the proposed ALNS-CP
math heuristic has the lowest mean, median, and outliers values. For a better comparison,
figure 45 illustrates the ARPD of each of the approximate tested methods, grouped by
instance size.

From figure 45, MIH performs poorly compared to the other strategies up to
instance size 100, with its performance becoming similar to the other methods at instance
sizes 225 and 400. The HGA method has good performance up to instance size 81; for
instances with larger sizes, the method obtained the worst results among all metaheuristics.
The VNS and BRKGA methods had competitive results on most instance sizes, with
BRKGA having better results on large instances of sizes 225 and 400. Both methods had
ARPD results larger than 50% on the larger instances, which shows that the problem
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Figure 45 – ARPD and confidence interval (α = 0.05) for all approximation methods in
each instance size.
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considering initial machine setups and asymmetric setups has a costly resolution for these
metaheuristics.

The ALNS-CP method got the best ARPD results in relation to the others methods
in most of the instance sizes, with a significant difference mainly for the intermediate
instances sizes between 49 to 100, with the confidence interval not crossing with most of
the other methods.

Regarding table 16, for instances of size 400 with low setups, all approximate
methods obtained results with ARPD greater than 50%. For size 400 with setup type high
instances, the approximate methods obtained similar results, with ALNS-CP gets the best
ARPD result of 31.66%.

Regarding computational times, Figure 46 illustrates the average computational
times obtained for each method for each instance size tested. The MIH method is a
constructive heuristic and has a negligible computational time (less than 1 second), so the
method is not in the visualization.

The GA (D) and EH methods from instances size 64 have expressive computational
times, showing the difficulty of solving larger problems by these approaches. VNS has the
best computational times, especially intermediate instance sizes, due to an efficient solution
decoding mechanism and perturbation filters on operations (MEJÍA; YURASZECK, 2020)).
Therefore, VNS achieved competitive computational times mainly, for instance sizes 36 to
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Figure 46 – ACT and confidence interval (α = 0.05) for all approximation methods in
each instance size.
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64. The ALNS-CP method performed competitive computational times on the instances
sizes 64 and 81, obtaining better computational times than the GA (D), EH, and BRKGA
methods. All the methods, starting from the instances size 225, reached the 1800 seconds
time limit.

It is essential to check whether the differences in ARPD values are statistically
significant between the approximate methods tested to validate the results. Since the
data are not normally distributed and do not have similar variances, non-parametric
tests are recommended (LATORRE et al., 2020). We perform a Kruskal-Wallis test for
non-parametric analysis of variance (MONTGOMERY, 2017), the p-value is very close to
zero.

Table 17 illustrates the non-parametric Mann-Whitney rank test to see if the
differences in ARPD means between the proposed ALNS-CP method and the other
benchmarking algorithms are significant. Table 17 shows the difference of ARPD of ALNS-
CP compared with other methods (Average diff. (%)). ALNS-CP obtained significantly
better results when compared peer-to-peer with all other benchmarking methods.

We applied the ALNS-CP algorithm to the instances of Gueret and Prins, Taillard,
and Brucker in the classical OSSP. We perform this test not to develop a new algorithm
for the OSSP problem but rather to validate the proposed algorithm on classic instances
in the literature, where the best solution is known (SHA; HSU, 2006). Table 18 shows
the ARPD and ACT results of the ALNS-CP method for the classical OSSP instances.
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Table 17 – Mann-Whitney rank test between ALNS-CP and all other benchmarking
methods.

ALNS-CP vs. Average diff. (%) Statistic U p-value
MIH -33.7 3519 0.0000

GA (D) -9.83 10484 0.0000
EH -18.06 8077.5 0.0000

VNS -5.96 15653 0.0053
BRKGA -5.3 14408 0.0001

HGA -17.29 9049 0.0000

Source: Authors.

We added a new stopping criterion in the proposed method in addition to the number of
iterations and time limit. The new stopping criterion indicates that the algorithm stops
when it found the best solution for the instance for the classic OSSP.

Table 18 – Results of the ALNS-CP on the classical OSSP instances.
Group ARPD (%) ACT (s) Group ARPD (%) ACT (s) Group ARPD (%) ACT (s)
GP03 0.00 0.46 tai_4x4 0.00 1.01 j4 0.00 0.68
GP04 0.00 2.35 tai_5x5 0.00 2.94 j5 0.00 2.93
GP05 0.00 2.41 tai_7x7 0.00 6.01 j6 0.00 8.11
GP06 0.00 6.60 tai_10x10 0.00 6.91 j7 0.02 445.00
GP07 0.00 7.56 tai_15x15 0.00 2.12 j8 0.35 1185.98
GP08 0.00 12.75 tai_20x20 0.00 10.25
GP09 0.00 24.53
GP10 0.00 38.85

Source: Authors.

In Table 18, ALNS-CP found the optimal solutions for all instances of the Gueret
and Prins and Taillard sets in competitive computational times with less than 100 seconds.
For the Brucker set of instances, the proposed method found the best solutions up to set
j6. As for the larger sets of instances, the optimal solutions of some instances were not
found, with ALNS-CP reaching either the iteration limit or the computational time limit.

Therefore, analyzing the results reported in Tables 16 and 18 and Figures 45 and 46.
VNS and BRKGA methods obtained better solutions than GA (D) and EH metaheuristics
and better computational times. ALNS-CP outperformed the tested benchmarking methods
MIH, GA (D), EH, VNS, and BRKGA concerning solution quality. For classical OSSP,
the proposed method found the optimal solution for most tested instances with admissible
computational times. Therefore, ALNS-CP is so far considered a competitive meta-heuristic
for OSSPST, with a good trade-off between solution quality and computational cost.

6.5 Conclusion and future studies

In the present paper, we addressed the production scheduling problem in an open
shop environment, with sequence-dependent setup times and the objective function of
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minimizing the total scheduling duration (makespan). Furthermore, we developed a math
heuristic hybridizing the adaptive large neighborhood search algorithm with a constraint
scheduling model as a local search strategy.

As contributions of the paper: we proposed a new constraint programming schedul-
ing model that considers characteristics of the OSSP problem with non-anticipatory setup
times to reduce the number of constraints and variables. As a result, the new CP model got
superior performance in solution quality and computational times compared to traditional
MILP and CP models. Furthermore, the proposed CP model was hybridized with the
ALNS algorithm and obtained competitive performances compared with benchmarking
metaheuristics in the literature as EH proposed by Naderi et al. (2011a), GA (D) proposed
by Abreu et al. (2020) and VNS proposed by Mejía and Yuraszeck (2020).

As an extension of this work, we suggests the study of the OSSPST problem
considering travel times and resource consumption constraints, which are some of the main
parameters present in complex industrial systems. It is also recommended a comparison
between exact approaches, applying the constraint programming methods developed from
the paper against decomposition approaches, such as Dantzig-Wolfe decomposition, La-
grangian relaxation, and Benders decomposition. Furthermore, different objective functions
for the problem can be considered, such as total tardiness and total flow time. Finally, it
is possible to easily apply the methods developed in the paper to solve other emerging
production scheduling problems, including practical cases in real industries.
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7 A NEW TWO-STAGE CONSTRAINT PROGRAMMING APPROACH FOR
OPEN SHOP SCHEDULING PROBLEM WITH MACHINE BLOCKING

7.1 Introduction

In the last decades, mechanical and industrial engineering practitioners have paid
much attention to production manufacturing scheduling systems. This attention occurs
because the optimization of such systems involves cost reduction and planning automation
to the companies (BEHNAMIAN; GHOMI, 2016). In general, parallel machines, flow shop,
and job shop production environments have received much attention from operational
research practitioners. Although the open shop scheduling problem presents theoretical
and practical importance, the researchers have paid less attention to this class of problems.
Thus there are several research opportunities in this production environment.

The open shop scheduling problem is a production environment in which the jobs
are processed in m machines where all the machines can process any of the n jobs, and each
machine presents a specific processing time for a given job. There are no fixed routes in
the machines, leading to an increase in the search space compared to the other production
scheduling environments, such as flow shop or job shop, for example.

The open shop environment arises in several practical situations, such as mainte-
nance, telecommunications, oil industry, plastic molding, chemical, highway construction,
food production, medical care services, and teacher-class timetabling (GONZALEZ; SAHNI,
1976; LIN; LEE; PAN, 2008; NADERI et al., 2010; NADERI; NAJAFI; YAZDANI, 2012;
ABREU et al., 2020; PALACIOS et al., 2015; ARAÚJO; BONATES; PRATA, 2021;
ABREU et al., 2022).

The blocking assumption, also called zero buffer constraints, means that the inter-
mediate storage of materials between adjacent production stages is forbidden because of
physical or operational restrictions. This characteristic is typical of many relevant produc-
tion environments in the industry (HALL; SRISKANDARAJAH, 1996; MOCCELLIN et
al., 2018).

The first contribution to the flow shop scheduling problem with machine blocking is
presented by Levner (1969). Recently, Miyata and Nagano (2019) presented a review article
on the m-machine flow shop scheduling problem considering machine blocking constraints.
Mascis and Pacciarelli (2002) firstly addressed the m-machine with blocking considerations.
To the best of our knowledge, variants of open shop scheduling problem taking into account
machine blocking and makespan minimization as performance measures have not been
previously reported in the literature of the last four decades of research on the open shop
scheduling problem to minimize the makespan (AHMADIAN et al., 2021b).
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This paper explores a variant of the open shop problem considering machine-
blocking constraints for makespan minimization as the objective function (OSSPB). Under
the state of the art, this variant has not been addressed before, despite its theoretical
importance and real-world applications. We can highlight real-world applications, such
as plastic molding, chemical and pharmaceutical industries, medical laboratory analysis,
and advanced manufacturing environments with just-in-time production systems (HALL;
SRISKANDARAJAH, 1996; BAI et al., 2017).

One of the more recent proposed variants of the open shop is the addition of
no-wait constraints that have differences from blocking constraints (AHMADIAN et al.,
2021b). The jobs must be processed continuously in the available machines without
interruption in the no-wait open shop. Therefore, there is no wait time for a job between its
processing in two machines. On the other hand, in the open shop with machine blocking,
the intermediate storage capacity between machines is considered limited (buffer zero
constraints). Consequently, a job finished on a given machine blocks it until the next
machine is available.

The main contributions of this paper are listed as follows. First, the study of open
shop variant with machine-blocking constraints to fill the gaps in current literature. Second,
we propose two mixed-integer linear programming (MILP) models for the variant under
study, which can solve small-sized instances optimally, and we propose a new constraint
programming (CP) model considering machine-blocking constraints. Third, we propose a
two-stage constraint programming model as a new exact method for obtaining high-quality
solutions within admissible computational times, including the ability to solve large-sized
problems. Finally, we develop a new set of instances with challenging sizes to test the
performance of proposed methods compared to benchmarking methods.

The remainder of this paper is organized as follows: in Section 7.2, the literature
review is presented; in Section 7.3, the proposed exact methods are presented; in Section
7.4, a two-stage constraint programming algorithm is proposed; in Section 7.5, some results
from computational experiments are discussed; finally, in Section 7.6 the final remarks are
presented.

7.2 Literature review

To the best of our knowledge, the Om|block|Cmax variant has not been previously
addressed in the available literature. In this section, some related approaches are reviewed
to study similar production environments. Sidney and Sriskandarajah (1999) presented
a two-machine no-wait open shop scheduling problem and proposed a heuristic for the
makespan minimization. As with no-buffer constraints, the intermediate storage of jobs
between production stages is forbidden in the no-wait environment.
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Yao, Soewandi and Elmaghraby (2000) presented a two-machine scheduling problem
in an open shop with blocking, considering n jobs, two machines and the minimization of
the makespan. Four heuristics are presented, with a better performance of the random
search algorithm.

Lin, Lee and Pan (2008) presented a multi-processing-stage open shop with movable
dedicated machines and no-wait constraints and proposes a mixed integer programming
model and a two-phase heuristic. The objective function minimizes the total occupation
time for all the processing stages. Naderi, Najafi and Yazdani (2012) presented an open
shop with no buffer, considering multiple machines and jobs with the objective function
of minimizing the total tardiness. As solutions procedures, a MILP formulation and an
electromagnetism-like metaheuristic are developed. Finally, Naderi and Zandieh (2014)
studied an open shop in a no-wait environment, taking into consideration multiple machines
and jobs and proposing three mixed-integer programming models and two metaheuristics
(variable neighborhood search and genetic algorithm). The objective function is the
makespan minimization.

Mejía, Caballero-Villalobos and Montoya (2018) studied the m-machine open shop
scheduling problem with deadlocking and blocking considerations. An ordinary Petri Net is
proposed to model this production environment. Several heuristic functions are developed
using the structural properties of the proposed Petri Net.

Due to its similarity to the open shop problem, the blocking job shop problem has a
large number of recent contributions that can help the development of new solution methods
for the open shop with blocking. Dabah et al. (2019) presented a multi-start tabu search
approach to reduce infeasible solutions in the search process. Lange and Werner (2019)
proposed new neighborhood structures and repair techniques with simulated annealing to
blocking job shop with total tardiness minimization. The computational tests highlight
the capability of the proposed method to construct feasible schedules of valuable quality,
even large-size instances.

Abreu and Nagano (2022) proposed an adaptive large neighborhood search with
constraint programming for the open shop with sequence-dependent setup times. The prob-
lem differs from the one proposed in this paper since it does not consider machine blocking,
considering only sequence-dependent setup times. However, the constraint programming
model developed by Abreu and Nagano (2022) outperforms other exact approaches, indi-
cating that a constraint programming model for the variant with machine blocking could
obtain competitive performance. Furthermore, the open shop with setup paper proposes a
hybridized metaheuristic with a constraint programming model, while the present paper
develops a two-stage constraint programming approach as an exact method.

Finally, Mogali, Barbulescu and Smith (2021) presented new primal heuristic
updates to improve local search methods with job insertion moves for blocking job shop.
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The results showed a significant improvement to the computational efficiency of existing
local search procedures. However, according to the review, few exact methods are applied
to the problem. Therefore, with a further contribution of the paper, the exact approaches
proposed in the manuscript can be adapted for solving the blocking job shop and compared
with benchmarking methods.

Table 19 illustrates the main contributions of the literature to the OSSP considering
blocking and similar constraints. The authors, year of publication, characteristics of the
problem such as the type of setup, solution methods and main research contributions are
illustrated.

Table 19 – Summary of the main contributions from the OSSP literature considering
blocking and similar constraints.

Author Problem characteristics Solution method Contribution

Sidney and Sriskandarajah (1999) No-wait Polinomial time heuristic The heuristic requires O (n log n) for the two
machine case.

Yao, Soewandi and Elmaghraby (2000) Blocking RSA A new meta-heuristic that outperforms classics
flowshop-based heuristics.

Lin, Lee and Pan (2008) Multi-processing-stage andno-wait MILP and two-phase
heuristics

The proposed heuriscs got optimal and near-optimal
results in small-sized instances.

Naderi, Najafi and Yazdani (2012) Blocking EH EH outperforms MILP in small and large-sized instances.

Naderi and Zandieh (2014) No-wait VNS and GA A new encoding and decoding shcheme for solutions and GA
outperforms all other metaheuristcs in benchmarking instances.

Mejía, Caballero-Villalobos and Montoya (2018) Blocking Heuristics with petri net The method found solutions very close to the lower bound.

Source: Authors.

According to the literature review by Ahmadian et al. (2021b), OSSPB is still not
well explored, and there is not much work considering buffer zero or machine blocking
constraints. Thus, the paper’s main contribution further explores the OSSPB by proposing:
new efficient exact methods as MILP and CP models as a new hybrid method that
incorporates characteristics of CP and two-stages approaches for solving the OSSPB. In
addition, another gap pointed out by Ahmadian et al. (2021b) is the existence of a few sets
of instances for the problem. Thus, we introduced new sets of challenging instances to test
proposed solution methods with benchmarking methods of the current literature of OSSP.

7.3 Problem statement, mathematical formulations and properties

This section illustrates a example of instance for the OSSP, new integer programming
and constraint programming model and some proprieties of the problem as lower bound
and valid inequalities.

7.3.1 An illustrated example

Let n be the number of jobs to be scheduled in a set of m machines. Each job
j presents an associated processing time pij on machine i. In this problem, there is no
pre-established production route. Each processing time is associated an operation Oij

of job j in machine i that can be processed in any sequence. Furthermore, zero buffer
(machine blocking) constraints are considered: the intermediate storage of jobs is not
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allowed between two adjacent machines. Each machine processes one job at a time and
each job can be processed by one machine at a time. Hereinafter, this problem is referred
to as the open shop with blocking (OSSPB).

Given these definitions, the problem under study is to find the sequence, the start
and end dates of each operation on the machines that minimize the total duration of
the schedule or the maximal completion time (makespan or Cmax). Table 20 describes an
instance for the OSSPB with three machines and three jobs, where Oij is the operation of
job j in machine i and pij is the matrix of processing times of job j in machine i. Figure
47 illustrates an Gantt Chart of a feasible solution for the problem under study. For this
solution, job 2 is processed on machines 2, 3, and 1; then job 3 is processed on machines 2,
3, and 1; finally, job 1 is processed on machines 1, 2, and 3. Each operation is processed at
the earliest possible time to avoid blocking the machines. The presented solution has a
makespan of 52 time units (u.t.) with the end of job 3 processing on machine 1.

Table 20 – Processing times per operations for a example of instance

pij (Oij) J1 J2 J3
M1 4 (O11) 10 (O12) 20 (O13)
M2 8 (O21) 10 (O22) 5 (O23)
M3 2 (O31) 12 (O32) 5 (O33)

Source: Authors.

Figure 47 – Gantt chart for the feasible solution (makespan = 52 u.t.)

Source: Authors

In Figure 47, we can see the blocking time for machine 3 between the processing of
jobs 3 and 1. The blocking time is 5 u.t. due to the waiting time of job 3 on machine 3
before job 3 processing on machine 1. This waiting time blocks machine 3 until the current
job leaves it to go to another machine or leave the schedule (when it is the last job to
enter the machine).
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This blocking delays the start time of job 1 on machine 3, which could have started
at time 30 u.t. (when the job processing on machine 2 was finished). However, due to the
blocking of machine 3, it was started only at time 32 u.t. Figure 48 illustrates the optimal
solution for the example instance, with a makespan of 34 u.t.

Figure 48 – Gantt chart for the optimal solution (makespan = 34 u.t.)

Source: Authors

Figure 48 shows that no occurrence of machine blocking is delaying any operation
from starting. For example, the blocking of job 3 on machine 3 ends precisely when the
processing of job 1 on machine 3 should be started (after the end of job 1 on machine 2),
with no delays occurring. This efficient allocation of the blocks contributes to the reduction
of the makespan.

7.3.2 Mixed-integer linear programming models

Although mixed-integer programming models are usually not efficient methods
for solving large-sized instances of many production scheduling problems due to their
NP-hard nature, we present a mathematical programming model for the problem to assess
the quality of the heuristics proposed. A MILP model can provide high-quality or even
optimal solutions for small-sized or medium-sized test instances.

Among the main decision variable notations for production scheduling problems,
we can highlight the positional and the sequence-based notation (STAFFORD; TSENG;
GUPTA, 2005). These two notations have been competitive performances in MILP models
of classical open shop problems (NADERI et al., 2011b). Since the problem with makespan
blocking, m machines and minimization is new and exact approach models have never
been applied, MILP models will be developed exploiting these two main decision variable
notations to check which has the best performance.
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The first MILP (MILP1) model uses a sequence-based notation for the decision
variables. Each one represents a part of a sequence of the operations not necessarily
immediately between two machines or two jobs. MILP models with this type of notation
has a good performance in classic OSSP (NADERI et al., 2011b). Next, we describe the
notation and equations adopted in the developed MILP model.

Indices and sets:

j ∈ N : index for jobs {1,2,...,n}.

k ∈ Nd: index for jobs with dummy job {0,1,2,...,n}.

i ∈M: index for machines {1,2,...,m}.

l ∈Md: index for machines with dummy machine {0, 1,2,...,m}.

Parameters:

pij: processing time of job j in machine i (with dummy pi0 = 0,∀i ∈ Md and
p0j = 0, ∀j ∈ N ).

M : a large and positive number.

Decision variables:

Cmax: makespan.

Tjl: starting time of job j in machine l.

Xj
il: 1 if job j is processed in machine i immediately after machine l, and 0 otherwise;

l ̸= i.

Y i
jk: 1 if job j is processed immediately after job k in machine i, and 0 otherwise;

k ̸= j.

The proposed MILP formulation is presented as follows.

minimize

Cmax (7.1)

subject to

Cmax ≥ Tij + pij , ∀i ∈M, j ∈ N (7.2)

T0j = 0, ∀j ∈ N (7.3)∑
l∈Md,l ̸=i

Xj
il = 1, ∀i ∈M, j ∈ N (7.4)

∑
k∈Nd,k ̸=j

Y i
jk = 1, ∀i ∈M, j ∈ N (7.5)

∑
i∈M,i̸=l

Xj
il ≤ 1, ∀l ∈M, j ∈ N (7.6)
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∑
j∈N,j ̸=k

Y i
jk ≤ 1, ∀i ∈M, k ∈ N (7.7)

Xj
il + Xj

li ≤ 1, ∀i ∈M, j ∈ N , l ∈Md, l > i (7.8)

Y i
jk + Y i

kj ≤ 1, ∀i ∈M, j ∈ N , k ∈ Nd, k > j (7.9)∑
i∈M

Xj
i0 = 1, ∀j ∈ N (7.10)

∑
j∈N

Y i
j0 = 1, ∀i ∈M (7.11)

Tij ≥ Tlj + plj −M(1−Xj
il), ∀j ∈ N , i, l ∈M, l ̸= i (7.12)

Tij ≥ Tik + pik −M(1− Y i
jk), ∀j, k ∈ N , i ∈M, k ̸= j (7.13)

Tlk ≥ Tij −M(2− Y l
kj −Xj

il), ∀i, l ∈M, j, k ∈ N , j ̸= k, l ̸= i (7.14)

Cmax ≥ 0 (7.15)

Tlj ≥ 0, ∀j ∈ N , l ∈Md (7.16)

Xj
il ∈ {0, 1}, ∀j ∈ N , i,∈M, l ∈Md, l ̸= i (7.17)

Y i
jk ∈ {0, 1}, ∀j ∈ N , k ∈ Nd, i ∈M, k ̸= j (7.18)

Objective function (7.1) is the makespan minimization, defined by the constraint
set (7.2). Constraint set (7.3) ensures the start processing time for all jobs in machine
dummy is zero. Constraint set (7.4) enforces each machine i to have only one predecessor
in the route of machines for each job j. Constraint set (7.5) forces that each job j has
only one predecessor for each machine i. Constraints sets (7.6) and (7.7) ensures that each
each job k to have up to one successor in machine i and each machine l to have up to one
successor in route of machines for each job j, respectively. Constraint sets (7.8) and (7.9)
avoid the occurrence of one job or machine has successor or predecessor at same time.
Constraint (7.10) ensure that the dummy machine 0 has one successor in route of each
job j. Constraint (7.11) ensure that the dummy job 0 has one successor in each machine i.
Constraint set (7.12) ensures that if job j is sequentially processed in the machines l and i,
then the start time of machine i must initiate after the conclusion of this job on machine
l. Constraint set (7.13) guarantees that if job k precedes job j, then the start processing
time job j must be initiated after the conclusion of job k in machine i. Constraint set
(7.14) guarantees the machine blocking constraints. The start time of job k on machine l

must be greater than or equal to the start time of the next operation of job j that was
on machine l before job k and moved to machine i. If the start time of job j on the next
machine i is greater than the completion time of job j on machine l, then machine l will
be blocked until operation ij is started and job j leaves machine l. Finally, constraints
(7.15), (7.16), (7.17), and (7.18) define the domain of decision variables.

The second MILP (MILP2) model uses a positional-based notation for the decision
variables. Each one represents a order of an operation in the solution sequence of machines
and jobs. This type of notation has less number of constraints, when compared to other
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notation as time-index notations, in classic OSSP and do not need to define the dummy
job and dummy machine anymore (NADERI et al., 2011b). Next, we describe the notation
and equations adopted in the developed MILP model, the parameters are the same of the
first MILP model.

Indices and sets:

j, l, e, y ∈ N : index for jobs {1,2,...,n}.

i, k, r, t, z ∈M: index for machines {1,2,...,m}.

Decision variables:

Cmax: makespan.

Tij: starting time of job j in machine i.

Xj
ik: 1 if machine i is the kth machine visited by job j in its sequence, and 0

otherwise.

Y i
jl: 1 if job j is the lth job processed by machine i in its sequence, and 0 otherwise.

The proposed MILP formulation is presented as follows.

minimize

Cmax (7.19)

subject to

Cmax ≥ Tij + pij , ∀i ∈M, j ∈ N (7.20)∑
k∈M

Xj
ik = 1, ∀i ∈M, j ∈ N (7.21)

∑
l∈N

Y i
jl = 1, ∀i ∈M, j ∈ N (7.22)

∑
i∈M

Xj
ik = 1, ∀k ∈M, j ∈ N (7.23)

∑
j∈N

Y i
jl = 1, ∀i ∈M, l ∈ N (7.24)

Tij ≥ Trj + prj −M(1−Xj
ik)−M(1−

k∑
t=1

Xj
rt),

∀i, r, k ∈M,

j ∈ N ,

j > 1

(7.25)

Tij ≥ Tie + pie −M(1− Y i
jl)−M(1−

l∑
y=1

Y i
ey),

∀i ∈M,

j, e, l ∈ N ,

l > 1

(7.26)
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Tie ≥ Tzl −M(4−Xj
ik −Xj

zk+1 − Y i
jl − Y i

el+1),

∀i, z, k ∈M,

j, e, l ∈ N ,

k < m− 1,

l < n− 1

(7.27)

Cmax ≥ 0 (7.28)

Tij ≥ 0, ∀j ∈ N , i ∈M (7.29)

Xj
ik ∈ {0, 1}, ∀j ∈ N , i, k ∈M (7.30)

Y i
jl ∈ {0, 1}, ∀j, l ∈ N , i ∈M (7.31)

Objective function (7.19) is the makespan minimization, defined by the constraint
set (7.20). Constraints sets (7.3) and (7.4) guarantee that each machine i is in one position
in the sequence of each job j and each job j is in one position in the sequence of each
machine i, respectively. Constraints sets (7.5) and (7.6) guarantee that one machine is
allocated is position k in the sequence of job j and one job is allocated is position l in
the sequence of machine i, respectively. Constraint set (7.25) ensures that if job j visits
machine i after machine r (not necessarily immediately) in its sequence, then the start
processing time of machine i must initiate after the conclusion of this job on machine r.
Constraint set (7.26) ensures that if machine i process job j after job e (not necessarily
immediately) in its sequence, then the start processing time of job j must initiate after the
conclusion of job e on machine i. Constraint set (7.27) guarantees the machine blocking
constraints. The start time of job e on machine i must be greater than or equal to the
start time of the next operation of job l that was on machine i before job e and moved to
machine z. If the start time of job l on the next machine z is greater than the completion
time of job l on machine i, then machine i will be blocked until operation zl is started
and job l leaves machine i. Finally, constraints (7.28), (7.29), (7.30), and (7.31) define the
domain of the decision variables.

7.3.3 Constraint programming model

Constraint programming is a paradigm for solving combinatorial optimization
problems, especially for complex problems that cannot be easily modelled with integer
linear equations (ROSSI; BEEK; WALSH, 2006). CP initially emerged in the field of
artificial intelligence, but has achieved good results when applied to production scheduling
problems (PINEDO, 2016).

The OSSPB problem can be modelled through constraint programming using the
same sets and parameters of the MILP model and two types of decision variables: interval
and sequence. Interval variables represent an operation to be processed from a job on a
machine, with start, end and duration times of the operation. Sequence decision variables,
on the other hand, cluster several interval variables into a set, such as the processing
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sequence of jobs on a machine, for example. The sequence decision variables could be used
in non-overlapping constraints for scheduling problems (LABORIE, 2018). Among the main
competitive solvers for constraint scheduling, the research uses IBM’s CP Optimizer, which
has been obtaining competitive results for production scheduling problems (LABORIE;
GODARD, 2007; KELBEL; HANZÁLEK, 2011; ZARANDI; KHORSHIDIAN; SHIRAZI,
2016; GEDIK et al., 2018; MENG et al., 2020; YUNUSOGLU; YILDIZ, 2021; ÖZTOP et
al., 2021; ABREU et al., 2021).

Next, we illustrate a new constraint programming (CP) model for open shop
considering blocking constraints. This CP model uses interval variables to represent the
operations of jobs in machines and sequence variables to represent the sequence of jobs for
each machine and the sequence of machines for each job.

Indices and sets:

i ∈M: index for machines {1,2,...,m}.

j ∈ N : index for jobs {1,2,...,n}.

Parameters:

pij: processing time of job j in machine i.

M : a large and positive number.

Decision variables:

xij: an interval variable for to indicate the operation of job j in machine i.

Γi: a sequence variable with order of xij interval variable in machine i.

Υj: a sequence variable with order of xij interval variable in job j.

The constraint programming model for the OSSPB is presented bellow:

minimize

max
i∈M,j∈N

endOf (xij) (7.32)

subject to

noOverlap (Γi) , ∀i ∈M (7.33)

noOverlap (Υj) , ∀j ∈ N (7.34)

startOfNext (Γi, xij , M) ≥ startOfNext (Υj , xij , 0) , ∀i ∈M, j ∈ N (7.35)

interval xij , size = pij , ∀i ∈M, j ∈ N (7.36)

sequence Γi, on [xij ]j∈N , ∀i ∈M (7.37)

sequence Υj , on [xij ]i∈M , ∀j ∈ N (7.38)

Equation (7.32) is the makespan minimization. Constraint set (7.33) enforces
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machine i processes only one job at a time. Constraint set (7.34) imposes that a given job
j cannot be processed simultaneously for two or more machines. Hence, a given job j is
processed by only one machine at a time. Constraint set (7.35) guarantees the machine
blocking constraints. The start time of the next job to be processed in the machine i

after the job j must be greater than or equal to the start time of the next machine to
process the job j. If this constraint is not satisfied the machine i will be blocked until the
operation of the next machine to receive the job j is completed. If the job j is the last
one processed on the machine i and/or the machine i is the last one to process the job
j, the third argument of the startOfNext expression is returned, producing a redundant
constraint and causing no impact to the logic of the CP model. Finally, constraints (7.36),
(7.37), and (7.38) define the scope of decision variables. The variable xij is an interval
decision variable with a duration pij , Γi is a variable that stores the sequence of operations
of all jobs on machine i, and Υi is a variable that stores the sequence of machines that
process the job j.

7.3.4 Comparison of models

This subsection compares the complexity of the constraints, the number of decision
variables and the number of constraints for each of the exact approaches presented. We
compared the main components of OSSPB with the different ways of modelling the problem
with mixed-integer programming and constraint programming.

MILP1 model uses sequential notation for decision variables, but due to problem
domain characteristics, such as non-overlapping constraints for machines and jobs, the
model has an expressive constraint complexity. The constraint with the largest size
is the one found in equation (7.15) with the worst case complexity of O (m2n2). The
MILP model has altogether mn

[
(n− 1)(m− 1) + 3

2(n + m) + 3
]

+ m + n constraints and
nm (n + m) + nm + 1 decision variables, of which nm + 1 are real and nm (n + m) are
binary integers (NADERI et al., 2011b).

MILP2 model uses positional notation for decision variables. The constraint with the
largest size is the one found in equation (7.27) with the worst case complexity of O (m3n3).
The MILP model has altogether nm {4 + (n− 1) [nm (m− 1) + n] + m (m− 1)} con-
straints and nm (n + m) + nm + 1 decision variables, of which nm + 1 are real and
nm (n + m) are binary integers (NADERI et al., 2011b). The first model has less con-
straint and decision variables than the second MILP model.

The CP model uses logical constraints for the problem and applies heuristic
techniques to reduce the search space for the solution. Furthermore, CP has a greater ease
in finding feasible solutions, due to the exploration of the combinatorial problem domain
Rossi, Beek and Walsh (2006). This results in a greater facility for modelling combinatorial
problems such as production scheduling, mainly due to the possibility of using logical



151

constraints, which reduces the amount of decision variables and model constraints.

We presented the CP model in equations (7.32) - (7.38) which uses the CP Optimizer
solver notation for sequencing problems, the constraint with the largest size was presented
in equation(7.35) with the worst case complexity of only O (nm). The CP model has
a total of n (m + 1) + m constraints and n (m + 1) + m decision variables, all variables
are discrete and of the interval or sequence type. Therefore, due to the CP modelling
properties and forms, it has a smaller number of constraints and decision variables than
MILP, which can contribute to a better performance in the OSSPST solution. However, a
smaller model will not necessarily perform better than the others, therefore we will test
all exact methods in the Section 7.5. The Table 21 illustrates a comparison between the
key characteristics of exact approaches, for several different instance sizes. With m the
number of machines and n the number of jobs.

Table 21 – Comparison of MILP and CP formulations with examples of instances sizes for
OSSPB

Instances sets MILP1 MILP2 CP

m n # integer
variables

# continuous
variables # constraints # integer

variables
# continuous

variables # constraints # integer
variables # constraints

3 3 54 10 150 54 10 468 15 15
4 4 128 17 392 128 17 2752 24 24
5 5 250 26 860 250 26 11100 35 35
6 6 432 37 1668 432 37 34704 48 48
7 7 686 50 2954 686 50 90748 63 63
8 8 1024 65 4880 1024 65 208128 80 80
9 9 1458 82 7632 1458 82 431892 99 99

10 10 2000 101 11420 2000 101 828400 120 120
15 15 6750 226 54930 6750 226 10017900 255 255
20 20 16000 401 169640 16000 401 58065600 440 440
25 25 31250 626 408800 31250 626 225752500 675 675
30 30 54000 901 840660 54000 901 682779600 960 960
40 40 128000 1601 2630480 128000 1601 3898758400 1680 1680

Source: Authors.

Analyzing the Table 21, it can be observed that with the increase in the size of
the problem, the decision variables and restrictions of the MILP models have a significant
increase when compared to the variables and restrictions of the CP models. The CP
model presented the smallest amounts of decision variables and constraints for most of the
presented problem sizes. The constraints with the largest sizes for the MILPs and the CP
models are the machine blocking constraints. Therefore, the results analysis section will
analyze how each model handles these constraints and performs in solution quality and
computational times.

7.3.5 Problem properties

In this subsection, we present six properties for the OSSPB. Firstly, we present
the NP-hardness of the proposed problem. Secondly, we present a preposition about the
optimal solution of instances with and without blocking. Finally, we present a lower bound
for the OSSPB and two valid inequalities for exact models.
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Theorem 7.3.1. The OSSPB is NP-hard.

Proof. Taking into consideration the set of constraints of the first MILP model (7.14), if
we remove them, the constraint are relaxed and the problem becomes the classic OSSP,
which is NP-Hard for m ≥ 3 (GONZALEZ; SAHNI, 1976).

Since Gonzalez and Sahni (1976) demonstrated that O3||Cmax is an NP-hard
problem in the ordinary sense, the Om|block|Cmax variant also is NP-hard. In the OSSPB,
there are the same constraint of OSSP with blocking of machines constraints, thus the
problem can be reduced to the classical open shop.

Proposition 7.3.2. An optimal solution for an OSSP instance with no machine blocking
is a valid solution for the same instance in OSSPB.

Proof. An optimal solution for the classical open shop with no machine blocking occurrence
before all processed operations satisfy all the constraints of the mathematical models
presented. Therefore, it is also a valid solution for the OSSPB.

There is no guarantee that mixed-integer linear programming models, as well as
heuristic algorithms and constraint programming, can find the global optimal solution,
or even high-quality solutions. Thus, starting from a valid solution for the classic open
shop might be a good start for solving OSSPB. In this sense, the determination of a lower
bound, aiming at obtaining a reference for the evaluation of a given solution found, is
quite relevant.

The lower bound calculation for OSSPB starts from the relaxed OSSP problem,
which considers that a job can be processed on more than one machine simultaneously
(PINEDO, 2016). The makespan of the relaxed problem is an estimation of the OSSP
makespan and therefore is an estimate of OSSPB makespan. It is, therefore, a lower bound
for the problem.

Proposition 7.3.3. A lower bound for OSSPB is given by:

LB = max
max

∀i∈M

∑
j∈N

pij

 , max
∀j∈N

{ ∑
i∈M

pij

} (7.39)

Proof. The lower bound considers there is no idle time between operations of jobs in
machines. Taking into basis the well-known lower bound for the classic open shop present
by Pinedo (2016), this study extend this concept to the OSSPB. The lower bound considers
the relaxed OSSP without the restrictions that a job is processed on only one machine at
a time and a machine processes only one job at a time.



153

From the lower bound proposition, we can estimate the Big M number to be used
in MILP and CP models.

Proposition 7.3.4. A possible Big M number for the OSSPB exact models is:

M =
∑
i∈M

∑
j∈N

pij (7.40)

Proof. The lower bound is the expectation of the maximum completion time of jobs and is
a summation of times of jobs or machines. The Big M is a summation of processing time
of jobs and machines. Since M > LB, there will never be an operation with a completion
time greater than Big M (ABREU; TAVARES-NETO; NAGANO, 2021). Thus, this value
is valid for use in the inequalities of the exact OSSPB models for the completion time of
operations and blocking calculations in the CP model.

In addition to these essential properties, user cut parameters can improve solvers
of mathematical models. The user cuts are a set of valid inequality constraints that are
not part of the original mathematical model and do not eliminate any feasible solution to
the optimization problem, i.e., they are redundant constraints to the problem (HARDIN;
NEMHAUSER; SAVELSBERGH, 2008).

We can use user cuts to reduce the relaxed search space of the problem, reducing
the possibility of solutions in the region with continuous values of the problem (APT,
2003). The implementation of user cuts starts from the knowledge of the problem domain,
such as the lower bounds that can be used as user cuts to the objective function of the
problem.

There are several applications of user cuts in scheduling problems that obtain
competitive results in MILP models (HARDIN; NEMHAUSER; SAVELSBERGH, 2008;
KANG; CHEN; MENG, 2019; SABERI-ALIABAD; REISI-NAFCHI; MOSLEHI, 2020).
As there are also applications of user cuts in scheduling problems that use CP models
Gedik et al. (2018), Yunusoglu and Yildiz (2021).

Equation (7.41) illustrates a user cuts added to the constraints for the improvement
of exact and constraint scheduling models.

Proposition 7.3.5. The following inequality is valid for the OSSPB:

Cmax ≥ LB (7.41)

Proof. The lower bound is an estimate of the value of the objective function of the problem
through a model with relaxed constraints. Therefore, it does not eliminate any feasible
solution to the problem.
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Regarding user cuts for constraint-based programming models, in addition to the
constraint (7.41) that can increase improvements in model solving Al-Salem et al. (2004),
it is also possible to add a redundant constraint. The new constraint is that the number of
machines used simultaneously cannot be greater than the number of total machines.

Proposition 7.3.6. The following inequality is valid for the OSSPB with the constraint
programming model: ∑

i∈M

∑
j∈N

pulse (xij, 1) ≤ m (7.42)

Proof. The constraint indicates the number of operations performed at any one time with
the function pulse and this quantity will never exceed the number of machines available
because each machine processes only one job at a time.

The extra constraint (7.42) is added to CP models to speed up the search phase of
the solver by indicating the maximum amount of resources to be used at each time during
the solution of the instance (GEDIK et al., 2018).

7.4 Proposed solution approach

7.4.1 Initial considerations

Since the OSSPB is NP-hard, a two-stage method to solve this problem is presented.
We sought an algorithm with a low parameter dependency and an easy computational
implementation. In the open shop scheduling problem, the operations can be sequenced in
any order, increasing the number of feasible solutions to the problem and consequently the
search space (NADERI et al., 2010). Despite the complexity of the problem, constraint
programming models have obtained excellent performances in solving the classical OSSP,
as in Malapert et al. (2012).

However, with the addition of machine blocking constraints, the complexity of the
mathematical and constraint programming models increases, as seen in the subsection
7.3.4. It makes these methods intractable for solving large-sized instances. Therefore, it is
necessary to propose a flexible method to handle this type of challenging instances.

Constraint programming models have an important characteristic that it is possible
to receive partial or feasible solutions with low quality for the problem (LABORIE, 2018).
On the other hand, it is possible to receive the solution of the problem with relaxed
constraints as a warm start to processing the search phase of the solver, which can reduce
the computational time and increase the quality of solution of combinatorial optimization
problems (HOJABRI et al., 2018).
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Therefore, this paper proposes a two-stage constraint programming (2SCP) model
for solving OSSPB in competitive computational time. Figure 49 illustrates the flowchart
with the execution stages of the 2SCP model.

Figure 49 – Flowchart of the proposed two-stage constraint programming approach.

Source: Authors

The first stage consists of starting the parameters of the problem instance, such as
the processing time matrix p. The second stage of the algorithm consists of solving the
problem with the CP model, without the machine blocking constraints (7.35). This model
is the relaxed model of the OSSPB and is equivalent to the classic OSSP.

With the relaxed solution of the problem, the third phase consists of decoding the
solution into a sequence representation of operations (see Naderi et al. (2010)). Then, we
use this sequence as an encoding scheme to add the blocking constraints before processing
each operation, transforming the sequence of operations into a feasible solution for the
OSSPB. The encoding scheme will be described in the following subsection.

The fourth phase of the algorithm consists of converting the generated solution
into the decision variables required for the CP model and then using the data as the
initial solution for the search phase of the CP Optimizer constraint programming solver
(LABORIE, 2018). After the warm start, it executes the CP model with the blocking
constraints starting from the initial solution generated by the relaxed model. Finally, the
best solution found is returned after the algorithm reaches the time limit.

The proposed exact method is considered a two-stage method because, in brief,
the relaxed model of the problem is solved, and then the full problem model with the
machine-blocking constraints is solved.
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7.4.2 Encoding scheme

We convert the solution of relaxed the CP model in a permutation encoding the
sequence of each operations machine-job and from this encoding we construct a general
sequence of jobs and a sequence of machines for each job to represent a encoded scheme
as a valid OSSPB solution with correct blocking constraints in before each operation.

The encoding plays a key role in the solution of the open shop with blocking
constraints because the machine blocking usually incurs in a deadlock of the system. After
several computational tests, we adopt an encoding based on three data structures: a vector
with the sequence of operations machine-job, a vector with the sequencing of the jobs,
and a matrix with the allocation of jobs per machine. Tables 4, 23, and 24 present an
illustration of the proposed encoding for three jobs (J1, J2, and J3) and three machines
(M1, M2, and M3) for the best solution of the example instance in Figure 48.

For the encoding scheme, we transform the solution of the relaxed CP model into
a sequence of machine-job operations, such as illustrated in Table 22. This information
makes it possible to obtain the sequence of jobs and machines. From the job sequence on
each machine, it is possible to extract the general job sequence of the solution. The first
positions of each job that appears in the job sequence on the machines will be the final
positions in the job-only sequence. In the example, machine 1 processes job 2, then the
next job to appear is job 1 processed on machine 2, and finally, job 3 on machine 3. So
the sequence of jobs is 2, 1, and 3, present in the Table 23.

To construct the sequence of machines that process each job, we need to check the
sequence of machines that appear in the processing of each job in Table 22. For example,
job 1 is processed on machines 2, 3, and 1, job 2 on machines 1, 3, and 2, and job 3 on
machines 3, 2, 1. With this, it is possible to build the allocation of machines for each job
in Table 24.

Table 22 – Sequence of operations for the machines and jobs

Operation Index 1 2 3 4 5 6 7 8 9
Machine 1 1 1 2 2 2 3 3 3
Job 1 2 3 1 2 3 1 2 3
Sequence 2 8 5 4 7 1 9 6 3
Machine Sequence 1 3 2 2 3 1 3 2 1
Job Sequence 2 2 2 1 1 1 3 3 3

Source: Authors.

Considering the generated sequence, we allocate the jobs in the available machines
with the basis of the allocation matrix. Given the processing times, the jobs are allocated
in the machines so that two jobs cannot be processed concomitantly in different machines.
Wherever possible, a given job is allocated in the machine earliest available. Subsequently,
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Table 23 – Sequencing of jobs

Sequence 1st 2nd 3rd

Job J2 J1 J3

Source: Authors.

Table 24 – Allocation of jobs per machine

job \ machine 1st 2nd 3rd

J1 M2 M3 M1
J2 M1 M3 M2
J3 M3 M2 M1

Source: Authors.

the job starts processing with a maximum delay, aiming to avoid machine blocking. Finally,
if it is not possible, we block the current machine. Figure 48 illustrates the solution
represented by Tables 22, 23 and 24.

7.4.3 Complete pseudo code for 2SCP

Figure 50 illustrates the complete pseudo-code of the 2SCP algorithm. The algorithm
has two main phases: the construction of an initial relaxed solution from a classic OSSP
CP model and the construction of a complete solution from an OSSPB CP model with the
initial solution of the first phase and a complete set of constraints. Then, when the stopping
criterion of the second phase is satisfied, the best solution found (Πbest) is returned.

The 2SCP algorithm has just two parameters: the time limit TLr (in seconds) of
the relaxed CP model to solve OSSP and the time limit TLc (in seconds) of the complete
CP model to solve OSSPB. These parameters constitute an important trade-off between
the time spent creating the partial solution to the problem and the time spent constructing
a valid solution, and the search process of the CP optimizer solver. The sum of the two
time limit parameters must equal the time limit defined for the 2SCP algorithm. Finally,
the algorithm needs the data of the problem instance, as the processing time matrix p,
the set of machines M and the set of jobs N .

The proposed algorithm also has a function RUN_CP_RELAXED which solves
the classical OSSP without the blocking constraints and generates a relaxed initial solution
(xr) of the OSSPB and a function CREATE_V ALID_SOLUTION converts a permu-
tation encoding solution in a valid CP model with blocking solution. Finally, function
RUN_CP_COMPLETE executes a CP model for OSSPB.

Line 1 executes the CP model for OSSP without blocking constraint and with a
time limit TLr and gets a relaxed solution for OSSP. Line 2 and 3 initialize a permutation
encoding Πr and sort the operations to construct the solution of OSSP with the sequence
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Data: p, M , N , TLr, TLc

Result: A sequence of operations Πbest

1 xr ← RUN_CP_RELAXED(p, time_limit = TLr) ; // 1st stage
2 Πr ← {1, 2, 3, ..., mn}; // initialize solution
3 sort Πr

ij ∈ Πr by endOf(xr
ij) ∀i ∈M ; j ∈ N in non-decreasing order;

4 xv ← CREATE_V ALID_SOLUTION(Πr, p, M, N) ; // apply blocking
constraints

5 xc ← RUN_CP_COMPLETE(p, initial_solution = xv, time_limit = TLc) ;
// 2nd stage

6 Πbest ← {1, 2, 3, ..., mn}; // initialize best solution
7 sort Πbest

ij ∈ Πbest by endOf(xc
ij) ∀i ∈M ; j ∈ N in non-decreasing order;

Figure 50 – Pseudocode of the 2SCP to solve OSSPB

of operations, respectively.

Line 4 transforms the sequence Πr in a valid solution of OSSPB with the data
structures of tables 23 and 24 transformed in the decision variable xv. Line 5 executes a
CP model with blocking constraints with an initial solution xv from a solution of OSSP
and converted in a valid solution for OSSPB. The time limit of the last CP model is TLc.
Line 6 initializes a permutation encoding Πbest. Finally, sort the operations to construct
the best solution found in the CP model for OSSPB with permutation encoding.

7.5 Computational experience

7.5.1 Indicators for evaluation measure

The main performance indicator adopted in the analysis of the computational
experiments is relative percentage deviation (RPD) calculated as in Equation (7.43).

RPD = solmethod − LB

LB
× 100 (7.43)

In this equation, solmethod represents the solution returned by a given method, and
LB the lower bound calculated by Equation (7.39).

Aiming to determine if the difference of RPD between the two methods is statisti-
cally significant, we use the p-value as another performance indicator with a significant
test. In addition, we compare the solution methods under comparison taking into account
the confident interval of RPD in each benchmarking instance set.

7.5.2 Description of test instances and design

Since the problem under study was not previously reported in the revised literature,
three sets of test instances are evaluated, based on the well-known benchmark problems
for the classic open shop proposed by Guéret and Prins (1998), Brucker et al. (1997),
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and Taillard (1993). As stated in Ahmadian et al. (2021b), for OSSP, there is a gap for
proposals for new challenging instance sets. Within this context, the paper also proposes a
new set of large-sized instances to stress the performance of the proposed methods in real
industry size applications.

For the processing times matrix, in the instances of Guéret and Prins (1998), the
processing times are random values, uniformly distributed between 1 and 1000. The problem
sizes are n, m ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For each problem class, 10 instances were generated,
totalizing 80. In Taillard (1993) instances, the processing times are random values, uniformly
distributed between 1 and 100. The problem sizes are n, m ∈ {4, 5, 7, 10, 15, 20}. For each
problem class, 10 instances were generated, totalizing 60. In Brucker et al. (1997) instances,
the processing times are random values uniformly distributed between 1 and 500. The
problem sizes are n, m ∈ {3, 4, 5, 6, 7, 8}, totalizing 60 instances. In our instances set
the processing times are random values uniformly distributed between 1 and 1000. The
problem sizes are n, m ∈ {25, 30, 40}. For each problem class, 10 instances were generated,
totalizing 30. In summary, we test 222 instances for OSSPB. The size of a instances, used
in next subsections, are the number of operations as number of machines plus the number
of jobs (m× n).

The MILP models were executed in the IBM ILOG CPLEX solver version 12.10 and
the CP model were executed in the IBM ILOG CP Optimizer solver version 12.8. boths
are implemented in OPL modeling language (https://www.ibm.com/br-pt/products/
ilog-cplex-optimization-studio). The proposed method 2SCP was implemented in the
python programming language 3.7 using DOcplex 2.10.155 libray with IBM ILOG CP
Optimizer 12.10. The benchmarking methods were also implement in the python program-
ming language 3.7. The computational experience was performed on a PC with Intel Core
2 Duo CPU 3.00 GHz and 4Gb memory, with the Windows 10 operating system.

The source codes, instance sets, results of all computational tests, and statistical
analyses are available in the following link: http://repositorio.uspdigital.usp.br/handle/
item/445. Another data or any questions are available upon request.

7.5.3 Results and discussion for exact models

For the exact models, we adopt a time limit of 3600 seconds in the computational
tests. The tested methods are listed below.

• MILP1: the proposed mathematical programming model given by the equations
(7.1)-(7.18) with sequence-based notation of decision variables.

• MILP2: the proposed mathematical programming model given by the equations
(7.19)-(7.31) with position-based notation of decision variables.

https://www.ibm.com/br-pt/products/ilog-cplex-optimization-studio
https://www.ibm.com/br-pt/products/ilog-cplex-optimization-studio
http://repositorio.uspdigital.usp.br/handle/item/445
http://repositorio.uspdigital.usp.br/handle/item/445
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• CP: the proposed constraint programming model given by the equations (7.32)-(7.38)
with Auto search strategy (ABREU et al., 2021).

• Mixed-Integer Linear Programming with user cuts (MILPUC): the proposed mathe-
matical programming model given by the Equations (7.1) - (7.18) with sequence-based
notation of decision variables and the user cut proposed in equation (7.41).

• Constraint Programming with User Cuts (CPUC): the proposed CP model given
by the equations (7.32)-(7.38) with the user cuts proposed in equations (7.41) and
(7.42) with Auto search strategy (ABREU et al., 2021).

The computational tests aim at comparing the performance of the exact models
in standalone form and with the use of valid inequalities, verifying if adding user cuts
causes improvements in the quality of the solution. Also, it can be verified whether the
proposed time limit is sufficient for the exact methods to find feasible solutions for all sets
of instances, including large-sized sets such as the one proposed in the paper.

Table 25 illustrates the average RPD (ARPD) for each exact method evaluated
on each set of instances. The results are grouped by instance type and size. The last four
rows provide a statistical summary of the computational results: the best ARPD value
(Min), the average ARPD (Average), the worst ARPD value (Max), as well as the number
of unsolved instances for each exact proposed method. The results with the symbols "***"
indicate that the method used did not find any feasible solution in the computational
time provided for all instances in the set. The instance size (column labeled Size) is the
multiplication of the machine number by the job number m× n of each instance set.

Table 15 shows that all the exact methods have not returned feasible solutions for
some test instances within the considered time limit. The MILPs methods presented a
greater number of unsolved instances. All the other CP-based methods presented better
results, expressed by a lower average ARPD (less than 6%) and fewer unsolved instances
than MILP. The MILP2 presented worse result than MILP1. Therefore, the sequence-based
notation of decision variables gets best results of ARPD in OSSPB.

With respect to the exact methods with user cuts, MILPUC gets better results
of ARPD in medium-sized instances (36 and 64) and (49 and 100) in Gueret and Prins
and Taillard instances, respectively. When is compared to MILP1 and MILP2. However,
the average ARPD for all instances of MILP1 and MILPUC is quite similar. CPUC and
CP methods presents similar results of ARPD in each set of instances. Guéret and Prins
(1999) demonstrates that the conventional LB of OSSP is very loose, which may explain
that the improvement using LB as user cuts is not significant.

Figure 51 illustrates a boxplot of the distribution of the RPD obtained by the
proposed methods on all tested instances. The dotted line is the average result for each
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Table 25 – ARPD results of exact methods in all sets of instances

Group Size MILP 1 MILP 2 CP MILPUC CPUC
Gueret and Prins 9 0.00 0.00 0.00 0.00 0.00

16 0.13 0.13 0.13 0.13 0.13
25 0.68 0.68 0.33 0.49 0.33
36 14.92 14.70 0.19 4.85 0.19
49 38.47 68.34 0.00 52.51 0.00
64 75.39 134.38 0.12 73.18 0.12
81 103.16 223.24 0.29 104.50 0.32

100 139.61 255.62 0.67 137.31 0.86

Taillard 16 1.81 1.81 1.81 1.81 1.81
25 1.85 4.51 1.85 1.95 1.85
49 50.73 78.00 0.22 34.19 0.13

100 91.60 117.63 0.92 77.83 0.88
225 113.35 *** 0.38 118.87 0.48
400 125.63 *** 0.68 130.25 0.67

Brucker 9 1.53 1.53 1.53 1.53 1.53
16 0.98 0.98 0.98 0.98 0.98
25 1.06 2.39 1.04 1.08 1.04
36 15.02 38.28 0.70 15.81 0.70
49 44.17 83.61 1.16 48.80 1.16
64 71.64 134.00 1.36 71.39 1.34

Abreu et al. 625 *** *** 4.01 *** 4.08
900 *** *** 5.31 *** 5.64

1600 *** *** *** *** ***

Min 0.00 0.00 0.00 0.00 0.00
Average 44.59 64.43 1.08 43.87 1.10

Max 139.61 255.62 5.31 137.31 5.64
Unsolved Instances 30 50 10 30 10

Source: Authors.

method. Overall, CP and CPUC obtained the best results, followed by MILPUC. In
addition, the MILPUC has the lowest median and mean among the MILP methods. For
a better comparison, Figure 52 illustrates each proposed method’s ARPD, grouped by
instance size.

Concerning Figure 52, MILP performs well up to instance size 25, with the per-
formance loss gradually increasing with increasing instance size, showing the difficulty
of solving the OSSPB by the MILP models. The CP and CPUC methods obtained the
best performance compared to the other methods in most of the instance sizes. Both
methods presents similar results in each instance size (their lines overlap) and presents
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Figure 51 – RPD distribution for all exact methods in all sets of instances.
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Figure 52 – ARPD and confidence interval (α = 0.05) for all exact methods in each
instance size.
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the best results between all others methods. In instance sizes larger than 100 and 400,
MILP2 and (MILP1 and MILPUC) could not found valid solution with the time limit
used, respectively.
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MILP2 gets the worst results, with exponential growth in the difficulty of getting
quality solutions. MILPUC achieves slightly better results than MILP1 on medium-sized
instances (36 to 100). However, it has worse results than MILP1 on instances greater than
100.

Therefore, with the increase of complexity of the problem, considering difficult
blocking constraints, solving the problem becomes very costly for instances larger than
900, with no exact method obtaining valid results with the time limit used.

Regarding computational times, Figure 53 illustrates the average computational
times (ACT) obtained for each method for each instance size tested. The MILP models
from instances of size 36 has significant computational times, denoting the difficulty of
solving the problem by exact methods on large instances. CP and CPUC have the best
computational times because it are a models with fewer decision variables and constraints,
obtaining competitive times mainly for instances of sizes 36 to 400. Both get similar
computational times, but CPUC gets lower ACT than CP in instances of size 40 to 81
and 400.

Figure 53 – Average computational times for all exact methods in each instance size.
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CP methods have the highest variability in computational times due to finding
the optimal solution for some instances of a set (in competitive times) and others not
(reaching the time limit). All the methods, starting from the instances of size 625, reached
the 3600 seconds time limit.

Since no exact methods were able to solve all the evaluated test instances, espe-
cially for the large-sized instances, we proposed a new two-stage method to improve the
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performance of CP models to get better results in acceptable computational times and find
valid solutions for large-sized instances. We compare the 2SCP, described in Section 7.4,
with benchmarking metaheuristics from the literature of OSSP in the following subsection.
The 2SCP approach adopts the CP model without user cuts (with better results between
exact methods) in its two search phrases.

7.5.4 A comparison between CP and 2SCP methods

To verify the improvement of the two-stage method over the traditional CP model,
we performed a comparative analysis of the two approaches. We compare 600 and 3600
seconds as the time limit of each instance for each tested method. For 2SCP, we adopt 120
or 720 seconds to TLr for solving the relaxed model (OSSP) and 480 or 2880 seconds to
TLc for solving the complete model (OSSP) with 600 and 3600 as time limit, respectively.

Table 26 illustrates the ARPD results of the CP and 2SCP methods. The results
are grouped by instance type and size. As the total execution times are similar between
the two approaches, in Table 26, we perform a comparison of the time for each method
to reach the best solution found (Avg. T. best column). The last four rows provide a
statistical summary of the computational results similar to the summary of Table 25. The
instance size (column labeled Size) is the multiplication of the machine number by the job
number m× n of each instance set.

Analyzing the general results in Table 26, the CP model in both tests with different
time limits did not obtain feasible solutions for all instances sets. The 2SCP model, on
the other hand, obtained feasible solutions for all sets of instances, including large-sized
instances. Hence, using the two-stage strategy, 2SCP obtains feasible solutions in admissible
times, even within time limits of 600 seconds.

Regarding the solutions’ quality for the 600 seconds time limit, the 2SCP obtained
better solutions than the CP in instances sizes larger than 81 in all instance sets. For the
3600 seconds time limit, CP obtains better solutions than 2SCP in instance sizes 100 and
400, and 2SCP obtains better solutions than CP in large-sized instances up to 625. The
2SCP generates competitive solutions even for challenging instances with size larger than
400.

Regarding execution times, the 2SCP for the large-sized instances of each instance
set has a shorter average time to find the best solution than the CP. Thus, besides finding
similar or better solutions than the CP, the 2SCP can find these solutions faster. This
result shows the efficiency of the 2SCP method concerning the traditional CP.

To illustrate the ARPD results of the two methods, Figure 54 shows the results of
the RPD distribution between CP and 2SCP for the 600 and 3600 second time limits. The
2SCP method has the best median values at the tested time limits. However, the methods
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Table 26 – ARPD results and the average time to get the best solution found (Avg. T.
best) of CP and 2SCP methods in all sets of instances

Group Size Time Limit = 600 seconds Time Limit = 3600 seconds
CP Avg T. best 2SCP Avg T. best CP Avg T. best 2SCP Avg T. best

Gueret and Prins 9 0.00 0.07 0.00 0.07 0.00 0.09 0.00 0.07
16 0.13 0.09 0.13 0.09 0.13 0.12 0.13 0.10
25 0.33 0.29 0.33 0.16 0.33 0.35 0.33 0.16
36 0.19 0.45 0.19 0.22 0.19 0.43 0.19 0.21
49 0.00 0.45 0.00 0.88 0.00 0.91 0.00 0.89
64 0.12 45.10 0.12 80.64 0.12 23.21 0.12 80.88
81 0.43 113.45 0.28 124.53 0.29 334.22 0.25 539.18

100 0.94 199.14 0.80 191.16 0.67 751.82 0.80 705.08

Taillard 16 1.81 0.14 1.81 0.08 1.81 0.11 1.81 0.08
25 1.85 0.69 1.85 0.63 1.85 0.67 1.85 0.63
49 0.49 126.58 0.27 187.97 0.22 833.09 0.07 879.21

100 1.48 135.51 0.98 234.23 0.92 1716.73 0.88 976.87
225 0.57 283.54 0.56 326.69 0.38 923.17 0.37 1388.80
400 0.88 380.66 0.82 375.15 0.68 1741.73 0.72 1631.44

Brucker 9 1.53 0.05 1.53 0.05 1.53 0.05 1.53 0.05
16 0.98 0.07 0.98 0.07 0.98 0.07 0.98 0.07
25 1.04 0.37 1.04 0.26 1.04 0.38 1.04 0.26
36 0.70 1.17 0.70 1.98 0.70 1.20 0.70 1.98
49 1.18 98.11 1.21 24.73 1.16 351.78 1.16 266.18
81 2.07 198.27 1.40 193.54 1.36 1833.15 1.36 920.73

Abreu et al. 625 73.49 522.29 4.11 470.91 4.01 2071.30 3.83 2226.71
900 *** *** 6.05 472.45 5.31 1985.72 5.01 2535.76

1600 *** *** 221.47 439.33 *** *** 197.16 2509.20

Min 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05
Average 4.30 100.31 10.72 135.90 1.08 571.38 9.58 637.59

Max 73.49 522.29 221.47 472.45 5.31 2071.30 197.16 2535.76
Unsolved Instances 20 - 0 - 10 - 0 -

Source: Authors.

have similar overall mean and outliers to the CP method.

Figure 54 – RPD distribution for CP and 2SCP comparison in all sets of instances
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Furthermore, as the time limit increases, the medians of RPD become more similar.
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However, Table 26 indicates that at shorter time limit(600 seconds), 2SCP is able to obtain
better solutions on most sets of instances. Therefore, adding two stages in CP makes
it possible to find better solutions in a shorter time than the traditional CP approach.
Regarding the results per instance size, Figure 55 illustrates the results of the ARPD
between CP and 2SCP for the tested time limits and each instance size.

Figure 55 – ARPD and confidence interval (α = 0.05) for CP and 2SCP comparison in
each instance size.
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Analyzing Figure 55, with the time limit of 600 seconds, the CP model cannot
obtain valid solutions for instance sizes of 900 and 1000, and for instance sizes 625, it
obtains a worse ARPD than 2SCP. In addition, for the tests with a time limit of 3600
seconds, the CP model can obtain solutions for size 900, but only 2SCP can obtain feasible
solutions for size 1000. Thus, the 2SCP strategy is competitive in large-sized instances.

7.5.5 Results and discussion for benchmarking metaheuristics and the proposed two-stage
method

For this testes we compare the proposed method 2SCP with benchmarking meta-
heuristics from the literature of OSSP and adapted for OSSPB by us and a adaptation of
MILP in the same procedure of 2SCP as a two-stage MILP model (2SMILP) for comparison
purposes with the new 2SCP. We adopt 600 seconds as a time limit of each instance for
each tested metaheuristic. We adopted the same stopping criteria for all algorithms for a
fair comparison. With this time limit, we can test if the approximation methods obtain
quality solutions with a competitive computational times. Each of the metaheuristics, due
to stochastic behavior, tested were executed five times, the best and average value found
for each instance set is reported in the results.

For 2SCP and 2SMILP we adopt 120 seconds to TLr for solving the relaxed model
(OSSP) and 480 seconds to TLc for solving the complete model (OSSP). The solution
time for the classical OSSP problem using the CP model is fast, even obtaining optimal
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solutions with less than 1 minute for large instances, as in the study of CP models for
OSSP of Malapert et al. (2012). In 2SMILP the relaxed model got competitive results in
OSSP (NADERI et al., 2011b). Thus most of the execution time is allocated to solving
the OSSPB problem. Hence, the total execution time of 2SCP and 2SMILP is 600 seconds
to compare with the benchmarking metaheuristics.

For the computational testing of the approximation approaches, we test several
competitive metaheuristics from the OSSP, adapted for the variant considered in the
research, for comparison with 2SCP and 2SMILP. In summary, we test 7 approximate
approaches for OSSPB.

• Electromagnetic Heuristic (EH): a complete metaheuristic to solve OSSPB with
total completion time minimization proposed by Naderi, Najafi and Yazdani (2012)
and adapted to makespan minimization by us.

• Extended Genetic Algorithm (EGA): a algorithm to solve classic OSSP proposed by
Hosseinabadi et al. (2018) and adapted for OSSPB by us.

• Genetic Algorithm with restart procedure and direct decoding mechanism of solution
(GA (D)): a competitive algorithm to solve OSSP with setup times proposed by
Abreu et al. (2020) and adapted to OSSPB by us.

• Hybrid Genetic Algorithm (HGA): a improved genetic algorithm for OSSP proposed
by Ahmadizar and Farahani (2012) and adapted to OSSPB in this study.

• A self-tuning variable neighborhood search algorithm (VNS): a metaheuristic pro-
posed by Mejía and Yuraszeck (2020) for OSSPST and adapted to OSSPB by
us.

• Two-Stage Constraint Programming method (2SCP): the proposed two-stage method
to solve OSSPB with a hybridization of solving classic and with blocking open shop
problems.

• Two-Stage Mixed-Integer Linear Programming method (2MILP): the same procedure
and phases of 2SCP in flowchart 49 with the proposed MILP1 model with (1º phase)
and without (2º phase) blocking constraint (7.14).

For the EH, EGA, GA (D), HGA and VNS the same parameters used by Hossein-
abadi et al. (2018), Naderi et al. (2010), Abreu et al. (2020), Ahmadizar and Farahani
(2012) and Mejía and Yuraszeck (2020), respectively, were considered in the tests. In EH we
use the parameters: population size 10, initial temperature 20, CT 2, and FN 20. In EGA
we use the parameters: population size 92, crossover ratio 0.8, and mutation ratio 0.2. In
GA (D) we use the parameters: population size 100, mutation ratio 0.05, restart ratio 0.5,
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and initial temperature 100. In HGA we use the parameters: population size 200, crossover
rate 0.9, mutation rate 0.2, local optimization heuristic rate 0.2, maximum number of
iterations of the local optimization heuristic 200 and q 0.9. Finally, in VNS we use the
parameters: a 50 and decoding scheme m-AS. For a fair comparison with metaheuristics,
the two-stage methods 2SCP and 2SMILP use one thread only due to metaheuristics not
using parallelization.

Table 27 shows the best and average results of the ARPD of approximation methods
in each set of instances. Analyzing Table 27, it can observe that feasible solutions are
found for all the methods under comparison for all the test instances. The instance size
(column labeled Size) is the multiplication of the machine number by the job number
m× n of each instance set.

Table 27 – ARPD results of approximate methods in all sets of instances

Group Size 2SCP 2SMILP EGA EH GA (D) HGA VNS
Best Avg Best Avg Best Avg Best Avg Best Avg

Gueret and Prins 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.13 0.13 0.19 0.42 0.17 0.42 0.17 0.17 0.43 0.88 0.17 1.97
25 0.33 1.09 1.84 3.33 1.51 1.91 1.52 2.24 3.98 5.97 1.26 3.50
36 0.19 32.06 4.04 12.27 3.16 4.72 4.23 7.15 11.31 24.70 2.82 4.68
49 0.00 65.40 19.23 31.66 18.93 26.33 30.08 35.89 44.14 51.16 9.72 11.91
64 0.12 82.74 42.81 54.09 43.43 52.47 47.23 57.91 66.41 72.95 30.17 32.50
81 0.32 104.82 60.40 73.68 63.95 73.05 68.51 78.03 80.79 85.12 46.33 49.12

100 0.94 118.15 78.57 88.30 85.13 89.74 82.50 91.72 87.60 90.60 65.47 69.15

Taillard 16 1.81 1.81 3.52 5.34 2.67 3.11 2.52 2.67 3.52 4.87 2.52 4.67
25 1.85 3.76 14.46 21.19 11.60 17.81 11.97 17.44 16.91 18.66 4.46 6.63
49 0.58 61.65 39.05 45.56 41.89 45.24 43.57 47.14 45.67 48.16 30.17 32.78

100 1.54 88.64 58.34 63.66 62.79 67.09 60.08 66.54 64.57 66.86 48.41 51.97
225 1.01 100.86 79.85 85.94 89.95 92.88 77.56 84.36 89.95 92.61 65.68 69.51
400 1.28 107.20 101.23 108.32 108.80 112.74 92.04 97.98 108.80 111.72 80.43 84.75

Brucker 9 1.53 1.53 1.59 1.59 1.59 1.59 1.59 1.59 1.59 3.37 1.59 3.88
16 0.98 0.98 2.41 4.76 1.93 2.11 1.93 1.99 2.47 3.84 1.93 4.08
25 1.04 4.99 11.49 19.75 11.80 14.60 12.19 17.31 17.05 19.13 4.71 6.67
36 0.70 44.58 26.24 36.91 29.46 35.86 32.37 37.68 38.48 40.65 16.22 18.54
49 1.25 79.84 46.20 53.95 49.32 55.93 51.82 59.14 58.29 60.56 35.72 38.59
64 1.87 85.31 59.65 68.65 63.72 70.04 62.53 70.08 73.08 75.69 46.72 49.82

Abreu et al. 625 14.76 182.33 175.16 181.70 180.81 185.95 151.27 161.30 181.89 186.11 135.42 138.95
900 6.05 206.70 199.33 205.10 200.41 205.45 188.99 192.13 203.62 208.17 170.84 176.78

1600 221.47 *** 224.93 230.27 225.38 229.20 223.51 224.36 226.80 231.38 223.56 239.83

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 11.29 62.48 54.37 60.71 56.45 60.36 54.27 58.91 62.06 65.36 44.53 47.84

Max 221.47 206.70 224.93 230.27 225.38 229.20 223.51 224.36 226.80 231.38 223.56 239.83
Unsolved Instances 0 10 0 0 0 0 0 0 0 0 0 0

Source: Authors.

In the results of Table 27, the 2SCP, as a two-stage method, could find valid
solutions for all tested instances, including the large-sized instances. The classic CP model
could not obtain valid solution for instances of size larger than 900 with the same time limit
of 600 seconds used in this test (results of Tables 26). This may indicate that adopting a
two-stage solution procedure in CP model can promote improvements in the CP Optimizer
execution. Finally, the 2SMILP could not obtain valid solution for instances of size larger
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than 900.

Furthermore, the 2SCP returned the best values for Min, Average, and Max
performance indicators. Comparing the best results with the average results of the 2SCP,
both have similar values, which might indicate that the 2SCP has low variability of results.
Also, about Table 27, the bold values illustrate the best ARPD results for each instance
set. The 2SCP method was the one that obtained the best results for each of the tested
instance sizes. Figure 56 illustrates a boxplot of the distribution of RPD obtained by the
approximate methods on all tested instances. The dotted line illustrates the average result
for each method.

Figure 56 – RPD distribution for all approximation methods in all sets of instances.
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In general, 2SCP obtained the best results, followed by VNS and GA (D). Comparing
the proposed method and the tested metaheuristics and 2SMILP, the proposed 2SCP has
the lowest mean, median, and outliers values, thus the two-stage method with the CP
model is more competitive than with the MILP model. For a better comparison, Figure 57
illustrates the ARPD of each of the approximate methods tested, grouped by instance size.

From Figure 57, the metaheuristics have good performance up to instance size 16;
for instances with larger sizes, the methods obtained the worse results than 2SCP. The
EGA, GA (D) and VNS methods had similar results on most instance sizes, with VNS
having better results on large-sized test instances of sizes 36 to 900. These methods had
ARPD results larger than 50% on the larger instances, which shows that the problem
considering blocking constraints has a costly resolution for these metaheuristics.
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Figure 57 – ARPD and confidence interval (α = 0.05) for all approximation methods in
each instance size.
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The 2SMILP method got competitive ARPD results in instances sizes up to 25 but
is outperformed by other methods in instances sizes between 36 to 225. For instance sizes
greater than 225, 2SMILP got similar performance as EGA and EH metaheuristics. The
2SCP method obtained the best performances about the others in most of the instance
sizes, with a significant difference mainly for the intermediate instances sizes between
25 to 900, with the confidence interval not crossing with most of the other methods.
However, in the challenging instances of size 1600 the methods got similar results with
2SCP exponentially decreasing its performance, but still has a better ARPD than the
metaheuristics and 2SMILP.

The growth of the ARPD from size 900 to 1600 indicates an increase in the difficulty
of solving large-sized instances. Still, 2SCP obtained viable solutions with relative quality
when compared to other metaheuristics and 2SMILP, while the standard CP did not
obtain any viable solution in the time limit of 3600 seconds for all instances of the set.
These results indicate the competitive performance of the 2SCP concerning the standard
CP with adopting the two-stage solution method.

Regarding computational times, Figure 58 illustrates the average computational
times obtained for each method for each instance size tested. We can see when 2SCP
reaches the available time limit of 600 seconds.

Analyzing the Figure 58, 2SCP manages to obtain the optimal solution of sets of
some small and medium-size instances before reaching the time limit. Starting at instances
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Figure 58 – Average computational times for all approximation methods in each instance
size.
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size 625, the 2SCP can reach the time limit (600 seconds) for all instances and the 2SMILP
can reach the time limit in instances size larger than 16. In addition, some metaheuristics
go a bit past 600 seconds on large instances due to the high computational cost of the last
iteration, eventually reaching the time limit. 2SCP algorithm have the highest variability
in computational times due to finding the optimal solution for some instances of a set (in
competitive times) and others not (reaching the time limit).

It is essential to check whether the differences in ARPD values are statistically
significant between the approximate methods tested to validate the results. Since the
data are not normally distributed and do not have similar variances, non-parametric
tests are recommended (LATORRE et al., 2020). We perform a Kruskal-Wallis test for
non-parametric analysis of variance (MONTGOMERY, 2017), the p-value is very close to
zero.

Table 28 illustrates the non-parametric Mann-Whitney rank test to see if the differ-
ences in ARPD means between the proposed 2SCP method and the other benchmarking
algorithms are significant. Table 28 shows the difference of ARPD of 2SCP compared
with other methods (Average diff. (%)). 2SCP obtained significantly better results when
compared peer-to-peer with all other benchmarking methods.

Therefore, analyzing the results present in Table 27 and Figures 57 and 58. 2SMILP,
EGA, EH, GA (D), HGA and VNS methods obtained good solution in small-sized instances.
However, 2SCP outperformed the tested benchmarking methods 2SMILP, EGA, EH, GA
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Table 28 – Mann-Whitney rank test between 2SCP and all other benchmarking methods.

2SCP vs. Average diff. (%) Statistic U p-value
2SMILP -61.65 9799 0.0000

EGA -43.74 8392 0.0000
EH -45.83 8991 0.0000

GA (D) -43.55 8867.5 0.0000
HGA -51.45 74478 0.0000
VNS -33.79 9516 0.0000

Source: Authors.

(D), HGA and VNS concerning solution quality in the most set of instances. Therefore,
2SCP is so far considered a competitive solution procedure for OSSPB, with a good
trade-off between solution quality and computational cost.

7.6 Final remarks

In this paper, a variant for the open shop scheduling problem considering machine
blocking (zero buffer constraints) is presented. The objective function is minimizing the
total time to complete the schedule (makespan). A two-stage constraint programming
algorithm is presented to solve this challenging problem.

The expressive results of the proposed approach in the well-known classical open
shop benchmarks proposed by Guéret and Prins (1998), Taillard (1993) and Brucker et al.
(1997) and the new set of challenging large-sized instances proposed by us, point to its
efficacy and efficiency for solving open shop scheduling problems with machine blocking
constraints.

Computational experiments were carried out in order to evaluate the performance
of the proposed two-stage method. To the best of the authors’ knowledge, there is no other
work that has presented an open shop scheduling environment with machine blocking for
the makespan minimization.

Although the computational effort used by the proposed two-stage method was
smaller than the computational time required and ARPD for MILP models for the all
test instances, for the medium-sized and large-sized problems the proposed algorithm
outperformed the MILP models and the benchmarking metaheuristics tested in ARPD
indicator. In addition, 2SCP could solve problems with large-sized instances that classic
CP model could not solve. Thus, the proposed approach can be used to solve real-world
problems.

As extensions of this work, the proposed an local search operator for increasing
the efficiency of 2SCP in solving large-sized problems is recommended. Other open shop
variants could be investigated, considering different performance measures, such as total
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completion time as well as total tardiness minimization. The development of hybrid
algorithms, such as matheuristics or constraint programming approaches with better valid
inequalities, is another research opportunity. Finally, it is possible to easily adapt the exact
method approach developed in the paper to solve other emerging production scheduling
problems, including practical cases in real-word factories.
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8 A NEW VARIABLE NEIGHBORHOOD SEARCH WITH CONSTRAINT PRO-
GRAMMING SEARCH STRATEGY FOR OPEN SHOP SCHEDULING PROB-
LEM WITH OPERATION REPETITIONS

8.1 Introduction

Shop scheduling problems are widely studied optimization problems because of their
several industrial applications. In the last decades, variants of the flow shop scheduling
problem and job shop scheduling problem have received a lot of attention by the researchers
of production scheduling area. Nevertheless, despite its theoretical and practical importance,
open shop scheduling problem (OSSP) has received much less attention. Gonzalez and
Sahni (1976) firstly proposed the OSSP. The classical open shop can be defined as follows:
let n jobs that must be processed in m machines, in which each job operation presents an
associated processing time. The problem concerns in the determination of a job sequence
for the optimization of a given objective function, usually the makespan or the total
tardiness.

Unlike flow shop and job shop scheduling problems, in the OSSP there are no
predefined routes for the jobs in the machines, which can process all jobs. Thus, the number
of viable solutions is significantly higher than the classical production scheduling problems,
such as flow shop and job shop. One can observe that the processing of the jobs in the
machines occurs in distinct moments, i.e. a given job cannot be processed concomitantly for
more than one machine. In the non-preemptive case of the OSSP, the processing of a given
job cannot be stopped until the end of the task. OSSP is suitable for various industrial
applications, such as: plastic injections, chemical processes, the oil industry, food production
and pharmaceutical production. In the service sector, this problem can be modelled for
scheduling medical services, museum visits and telecommunications (GONZALEZ; SAHNI,
1976; LIN; LEE; PAN, 2008; VINCENT; LIN; CHOU, 2010; NADERI; NAJAFI; YAZDANI,
2012; ABREU et al., 2020; BAI et al., 2017).

Taking into consideration one machine (m=1), the open shop can be reduced to
a single machine problem. For the case of two machines (m=2), there are polynomial
algorithms with optimality proof (GONZALEZ; SAHNI, 1976). For problems with three
or more machines (m ≥ 3), the OSSP is NP-hard (GAREY; JOHNSON, 2012). Although
have been proposed some branch-and-bound algorithms and mathematical programming
approaches for open shop (BRUCKER et al., 1997; GUÉRET; PRINS, 1999; GUÉRET;
JUSSIEN; PRINS, 2000; OZOLINS, 2019), exact methods are quite limited for solving
large-sized problems.

Therefore, the proposition of heuristic or metaheuristics algorithms is of great
importance in order to obtain solutions to NP-Hard optimization problems. The develop-
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ment of metaheuristics for scheduling problems can contribute to obtaining high quality
solutions with competitive computational times, especially in large-sized problems present
in several industrial applications. There are many recent metaheuristics algorithms to
solve optimization problems in production scheduling (HAN et al., 2016; HAN et al., 2017;
GONG; HAN; SUN, 2018).

This article aims at investigating a new variant of the open shop problem considering
the processing of more than one operation per job by a same machine, the open shop
scheduling problem with repetitions (OSSPR). The problem is to process a set of jobs,
with a list of operations, in a set of machines. Each machine processes one operation at a
time, and each machine may process multiple operations of the same job. The objective is
to find a processing sequence of operations that minimizes the total scheduling duration
(makespan).

According to the literature review, the OSSPR has not been reported yet (AH-
MADIAN et al., 2021a). The authors propose an innovative variable neighborhood search
(VNS) using variable search strategy with constraint programming (CP) to provide good
solutions with admissible computational effort. The new proposal outperformed seven
heuristics and a competitive meta-heuristic adapted from the classic variant of the open
shop.

The main theoretical and experimental contributions are threefold. First, an in-
novative constraint programming approach is developed with an efficient structure to
model the most complex constraints of the problem. In addition, the proposed VNS uses
several search strategies from the CP model as local search mechanisms. Finally, the
VNS hybridized with CP presented better results than other methods, such as integer
programming, heuristics, and metaheuristics in three sets of randomly generated sets
instances adapted from the literature.

The remainder of this article is organized as follows: Section 2 presents the literature
review as well as the proposed innovation, Section 3 describes the scheduling problem
treated in this article, Section 4 describes the proposed solution approach, Section 5
presents results discussion from computational experiments; finally, in Section 6 there are
some conclusions and suggestions for future works.

8.2 Related approaches and proposed innovation

In a flow shop scheduling problem, all the jobs must be processed with a fixed
route, while in a job shop scheduling problem each job presents its own processing route
in the available machines. Conway, Maxwell and Miller (2003) presented a problem named
randomly routed job shop in which a given job is a set of operations strictly ordered. In
other words, each job presents its technological precedence. Based on this concept, in this
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production environment, there is not a predefined sequence of machines for the several
operations of a given job; however, these operations must be processed in a predefined
technological order.

On the other hand, in the available literature has been considered that the difference
between the open shop and flow shop or job shop is that in the open shop, there is no
precedence relations between the operations of the same job and a given operation must
be processed for a determined machine (GONZALEZ; SAHNI, 1976; SHA; HSU, 2008;
ANAND; PANNEERSELVAM, 2016). Thereby, the open shop concept refers to the fact
of the operations of a given job are technologically independent. In addition, there is an
indexation of the operations to determined machines, as well as a job cannot present two
or more operations processed in the same machine.

In the view of the complexity of the open shop scheduling problems, approximate
algorithms have been proposed for their solution. Liaw (1999) presented a tabu search that
uses blocks of operations on a critical path as the neighborhood structure. In addition, an
efficient procedure is proposed for evaluating a neighborhood. Extensive computational
tests point to the efficiency of the proposed approach. Prins (2000) proposed a Genetic
Algorithm (GA) with two special features: a population with individuals with different
makespan values and a procedure for the reordering of the generated chromosomes. This
simple as fast algorithm could reach high quality solutions in comparison with the best
known heuristics and metaheuristics. Sha and Hsu (2008) presented a new Particle Swarm
Optimization (PSO) algorithm with an innovative encoding for the particles and a particle
movement based on an insertion operator. The computational results presented several
new best known solutions for the unsolved problems. Naderi et al. (2010) proposed four
constructive heuristics taking into account problem properties, which have outperformed all
the other constructive heuristics in the reported literature. One of such heuristics adopts
a local search procedure, aiming to improve the initial solution found. More recently,
Hosseinabadi et al. (2018) proposed an extended genetic algorithm and the hybrid genetic
operations produced high-quality results in a set of small-sized random generated instances,
as well as in the well-known Taillard benchmark instances (TAILLARD, 1993).

In the last few years, new variants of the open shop have been proposed. Roshanaei,
Esfehani and Zandieh (2010) presented an open shop scheduling problem with sequence-
dependent setup times. Bai and Tang (2013) proposed an open shop problem considering
makespan minimization and release dates. Naderi and Zandieh (2014) studied a no-wait
open shop problem, in which there are no intermediate buffers between the machines. Also,
Bai, Zhang and Zhang (2016) presented a flexible open shop, in which the scheduling
considers concomitantly the processing orders and the route of the jobs through production
stages. Mosheiov et al. (2018) and Sheikhalishahi et al. (2019) addressed open shop
environments taking into account maintenance issues. Aghighi et al. (2021) presented a
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open shop environment with reverse job flows.

Timkovsky (2004) addressed a class of shop scheduling problems, denominated cycle
shop scheduling problems, in which some jobs can be reprocessed on some machines with
a given number of repetitions. This situation occurs in the manufacturing of microchips in
a VLSI technology environment. In the open shop scheduling problem with repetitions
(OSSPR), it study an open shop scheduling problem in which the jobs can be processed
in any machine more than once (operation by operation). Thereby, all the jobs can be
scheduled in an unconstrained way, increasing substantially the number of feasible solutions,
in comparison with the classical OSSP.

Among many variants of shop scheduling problems, several recent studies have
addressed the flexible open shop (WITKOWSKI; ANTCZAK; ANTCZAK, 2012; AZADEH
et al., 2014; BAI; ZHANG; ZHANG, 2016). The flexible open shop problem considers a set
of parallel machines in each production stage, where each available machine can process a
given job. On the other hand, in the problem under study, it considers a single machine
in each production stage, where each machine can process a given job more than once,
depending on the number of operations required for the job.

The table 29 illustrates the main contributions of the literature to the OSSP
considering new variants similar to operations repetitions. The authors, year of publication,
characteristics of the problem such as the type of setup, solution methods and main
research contributions are illustrated.

Table 29 – Summary of the main contributions from the OSSP literature considering new
variants similar to operations repetitions.

Author Problem characteristics Solution method Contribution

Roshanaei, Esfehani and Zandieh (2010) Setup times SA Proposed a new multi-neighborhood search to improve SA
and got competitive results in Taillard instances.

Bai and Tang (2013) Release dates Heuristic dense
sheduling-based

New online heuristic and a proof for asymptotically optimal
lower bound.

Naderi and Zandieh (2014) Blocking EH EH outperforms MILP in small and large-sized instances.

Bai, Zhang and Zhang (2016) Flexible OSSP Diferential evolution The algorithm obtain high-quality solution in moderate-scale
problems.

Mosheiov et al. (2018) Maintenance actives Aproximation
algorithm

Computational experimets with two machine OSSP with
maintenance start windows got competitive reults.

Sheikhalishahi et al. (2019) Human error
and maintenance actives NSGA-II A real case study is solved by the NSGA-II multiobjective

metaheuristic. The method found near optimal results.

Aghighi et al. (2021) Reverse flows MILP and vibration
damping optimization

The proposed method outperforms al other tested methods
in large-scale problems.

Source: Authors.

An example of a real-world application of the proposed variant can be described
as follows: it is considered a large automotive garage for vehicle maintenance and repair.
Each workstation (box) has a mechanic with a set of tools. Consequently, each workstation
can receive any type of vehicle and perform all of the required operations. In the view of
the heterogeneity of the workstations, expressed in terms of the ability of each mechanic as
well as features of the available tools, each workstation can perform the jobs with different
processing times.
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The set of vehicles are the jobs to be processed in a set of workstations (boxes).
These workstations are machines and process a set of maintenance activities in vehicles.
These activities are a set of operations of vehicles, and each workstation has mechanics
with different abilities. Therefore, the vehicle’s operations have different processing times
in each workstation.

Figure 59 shows an example of the maintenance system as an example of the
proposed problem. The set of vehicles are the jobs to be processed in a set of workstations
(boxes). These workstations are machines and process a set of maintenance activities in
vehicles. These activities are a set of operations of vehicles, and each workstation has
mechanics with different abilities. Thus, the vehicle’s operations have different processing
times in each workstation.

Figure 59 – A practical example of OSSPRM

Source: Authors

This characteristic addresses a new open shop environment in which a given job
can be processed, for different operations, more than one time for the same machine. All
operations can be processed on all machines, as well as a given machine can perform
all operations for each job. In a recent literature survey for the open shop scheduling
problem (ANAND; PANNEERSELVAM, 2016; ADAK; AKAN; BULKAN, 2020), there is
no mention of the variant proposed in this article.
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Table 30 – Processing times per operation for each job

pk
ij \ J J1 J2

Oj \M M1 M2 M1 M2

k1 2 2 5 3
k2 1 3 1 2
k3 3 2 - -

Source: Authors.

8.3 Problem statement

8.3.1 An illustrative example

The following is an illustrative example of the proposed open shop variant. Let M
a set of m machines, N a set of n jobs and Oj a set of operations for each job j with index
k1, k2, ..., k|Oj |, one can present a matrix with the processing times for each operation, per
job, in each machine. In the notation of Lawler et al. (1993), the problem is defined as:
Om/rcrc/Cmax. Table 30 provides an illustrative example of instance with m = 2, n = 2,
three operations for J1 (O1 = {k1, k2, k3}) and two operations for J2 (O2 = {k1, k2}), where
pk

ij is the processing time for the operation k of job j in machine i. Figure 60 illustrates
an Gantt Chart of a feasible solution for the problem under study. In this example, each
job presents a different amount of required operations with a makespan of 10 units of time
(u.t.).

One can observe in Figure 60 that the first job was processed two times in the
second machine, for different operations (in this case, operations 3 and 2, respectively).
Furthermore, all jobs have to be processed in each machine at least one time. The operations
of jobs in machines can be performed in any sequence.

Figure 60 – Gantt chart for the solution (makespan = 10 u.t.)

Source: Authors
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Figure 61 illustrates the optimal solution for the presented instance, with the lowest
makespan of 5 u.t. The finishing times of operation 1 of jobs 1 and operation 1 of job 2 end
in sync, contributing to reduce the makespan. There is just idle time of 1 u.t. in machine 1
for these jobs operations scheduling, whereas in Figure 60 there is a high idle time of 3
u.t. in machine 2 between operation 3 of job 1 and operation 2 of job 2, contributing to
increase the makespan.

Figure 61 – Gantt chart for the best solution (makespan = 5 u.t.)

Source: Authors

8.3.2 Mixed-integer linear programming model

Although mixed-integer programming models are usually not efficient methods
for solving large-sized instances of many production scheduling problems due to their
NP-hard characteristic, it find useful to present a mathematical programming model for
the problem to assess the quality of the heuristics proposed for small-sized instances where
the optimal can be found. Hereafter, the notation used for the problem is presented.

Indices and sets:

i ∈M : index for machines.

j, l, e ∈ N : indices for jobs.

k, w, q ∈ Oj: indices for operations of job j.

Parameters:

pk
ij: processing time of job j in machine i for the operation k.

M: a large and positive number.

Decision variables:

Cmax: makespan.

xk
ij: 1, if operation k of job j is processed on machine i, and 0 otherwise.
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sk
j : starting time of operation k of job j.

ywq
ile : 1, if operation w of job l precedes operation q of job e in machine i, and 0

otherwise.

zwq
ile : 1, if operation w of job l and operation q of job e are processed in machine i,

and 0 otherwise.

bwq
j : 1, if operation w of job j precedes operation q of job j, and 0 otherwise.

The mixed-integer linear programming model for the OSSPR is presented bellow:

minimize
Cmax (8.1)

subject to ∑
i∈M

xk
ij = 1 j ∈ N ; k ∈ Oj (8.2)

∑
k∈Oj

xk
ij ≥ 1 i ∈M ; j ∈ N (8.3)

sq
e ≥ sw

l + pw
il −M(2− zwq

ile − ywq
ile )

sw
l ≥ sq

e + pq
ie −M(1− zwq

ile + ywq
ile )

zwq
ile ≥ ywq

ile


l, e ∈ N ; w ∈ Ol;

q ∈ Oe; i ∈M ;
w ̸= q if l = e

(8.4)

zwq
ile ≥ xw

il + xq
ie − 1

zwq
ile ≤ xw

il

zwq
ile ≤ xq

ie


l, e ∈ N ; w ∈ Ol;

q ∈ Oe; i ∈M ;
w ̸= q if l = e

(8.5)

sw
j ≥ sq

j +
∑
i∈M

pq
ijx

q
ij +M(1− bwq

j )

sq
j ≥ sw

j +
∑
i∈M

pw
ijx

w
ij +Mbwq

j


j ∈ N ; w, q ∈ Oj;

w ̸= q
(8.6)

Cmax ≥ sk
j + xk

ijp
k
ij i ∈M ; j ∈ N ; k ∈ Oj (8.7)

xk
ij, ywq

ile , zwq
ile , bwq

j ∈ {0, 1}
i ∈M ; j, l, e ∈ N

k ∈ Oj; w ∈ Ol; q ∈ Oe

(8.8)

sk
j ∈ R+ j ∈ N ; k ∈ Oj (8.9)

Cmax ∈ R+ (8.10)

The objective function (1) is the makespan minimization. The set of constraints (8.2)
guarantees that each operation is processed by exactly one machine. The set of constraints
(8.3) guarantees that each machine processes every job at least once. The set of constraints
(8.4) imposes that a given machine cannot process two or more jobs simultaneously.
Constraint sets (8.5) imposes that variables zwq

ile assume value 1 if and only if both xw
il and

xq
ie assume value 1. Constraint sets (8.6) impose that operations of the same job cannot be
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processed simultaneously. Constraint sets (8.7) calculate the makespan. Finally, constraint
sets (8.8), (8.9) and (8.10) define the scope of decision variables.

8.3.3 Constraint programming model

Constraint Programming (CP) is a recent paradigm to solve combinatorial op-
timization problems, particularly for complex problems that are not solved easily with
integer linear Equations (ROSSI; BEEK; WALSH, 2006). CP appeared initially in the
artificial intelligence area; however, it has been presented high-quality results when applied
to solve production sequencing problems (PINEDO, 2016).

CP Optimizer is a constraint programming solver that extends the concepts of
classical CP to production scheduling problems. The CP optimizer has a structure to
handle complex production scheduling constraints and has an automatic search algorithm
that uses metaheuristics in its execution. The CP model developed in this article uses
the modeling notation of the CP Optimizer. For more information, see (LABORIE et al.,
2018) and the CP Optimizer manual.

The problem under study can be modeled with CP using sets, parameters, and
two types of domains: interval decision variables and interval sequence decision variables.
The first one represents an operation from a given job to be processed in a given machine,
with start and finish times. The second one represents several interval decision variables,
such as the processing sequence. Next, there is the proposed CP model for the OSSPR.

Indices and sets:

i ∈M : index for machines.

j ∈ N : index for jobs.

k ∈ Oj: index for operations of job j.

Parameters:

pk
ij: processing time of job j in machine i for the operation k.

Decision variables:

xk
ij: optional interval variable for processing the operation k of job j in machine i.

yjk: interval variable for to indicate the operation k of job j.

Γi: sequence variable with order of xk
ij interval variable in machine i.

The constraint programming model for the OSSPR is presented bellow:

minimize
max

i∈M :j∈N :k∈Oj

endOf
(
xk

ij

)
(8.11)



184

subject to
noOverlap (Γi) i ∈M (8.12)

noOverlap
([

xk
ij

]
i∈M :k∈Oj

)
j ∈ N (8.13)

alternative
(

yjk,
[
xk

ij

]
i∈M

)
j ∈ N ; k ∈ Oj (8.14)∑

k∈Oj

presenceOf
(
xk

ij

)
≥ 1 i ∈M ; j ∈ N (8.15)

interval xk
ik, opt, size = pk

ij i ∈M ; j ∈ N ; k ∈ Oj (8.16)
interval yjk j ∈ N ; k ∈ Oj (8.17)
sequence Γi, on

[
xk

ij

]
j∈N :k∈Oj

i ∈M (8.18)

Equation (8.11) is the makespan minimization. Constraint set (8.12) states that
a single job at a time can be produced on machine i. Constraint set (8.13) imposes that
a given job j cannot be processed simultaneously for two or more machines. Constraint
set (8.14) enforces that a single machine processes a given operation. Constraint set (8.15)
enforces that a machine i processes a job j at least once in any operation of this job.
Finally, constraints (8.16)-(8.18) define the scope of decision variables. The variables xk

ij

and yjk are an intervals decisions variables with a duration, and Γi is a variable that stores
the sequence of operations on machine i.

8.3.4 Comparison of models

There are several ways to model OSSPRM using mathematical programming. The
main ones differ concerning the definition of decision variables, with the notation in three
types: positional, sequential, and time-indexed notation. Naderi et al. (2011b) show models
with sequential notation perform better on OSSP problems due to their smaller number of
variables and constraints compared to positional and time-indexed notation.

The MILP model presented in Equations (8.1) - (8.10) uses the positional notation
for the decision variables, but due to characteristics of the problem domain, such as the
number of operations, it presents a expressive number of constraints, the constraint with
the largest size is in Equations (8.4) and (8.5) with worst case complexity (all jobs with
the largest number of operations |Oj|) of O (n2m|Oj|2). The MILP model necessitates
n2|Oj|2 (6m + 1)+n (|Oj|+ m + |Oj|m) constraints and mn|Oj| (1 + n)+n|Oj|+1 decision
variables, where mn|Oj| (1 + n) are integers and n|Oj|+ 1 are reals.

The CP model uses logical constraints for the problem and applies heuristic
techniques to reduce the search space. In addition, constraint programming finds feasible
solutions with low computational cost due to exploiting the combinatorial problem domain
(ROSSI; BEEK; WALSH, 2006). The use of CP results in a significant facility for modeling
combinatorial problems such as production scheduling and other industrial problems,
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mainly due to the use of logical constraints in modeling (see examples in Lunardi et al.
(2020), Sacramento, Solnon and Pisinger (2020), Kizilay and Çil (2020), and Pınarbaşı
(2021)).

The CP model presented in Equations (8.11) - (8.18) uses the notation of the
IBM CP Optimizer solver for scheduling problems, the constraint with the largest size is
present in Equations (8.14) and (8.15) with worst case complexity (for m = n see Taillard
(1993) and with all jobs with the largest number of operations |Oj|) of O (n|Oj|). The CP
model necessitates m + n (m + |Oj|+ 1) constraints and m + n (m|Oj|+ |Oj|+ 1) decision
variables, all decision variables are discrete with type interval or sequence. Therefore, due
to the properties and modeling forms of CP, it has less constraints and decision variables
than MILP, which can contribute to better performance solving the OSSPRM. The Table
31 illustrates a comparison between the key characteristics of exact approaches, for several
different instance sizes. With m the number of machines and n the number of jobs.

Table 31 – Comparison of MILP and CP formulations with examples of instances sizes for
OSSPR

Instances sets MILP CP

m n # integer
variables

# continuous
variables # constraints # integer

variables # constraints

3 3 108 10 1584 42 24
4 4 320 17 6496 88 40
5 5 750 26 19550 160 60
6 6 1512 37 48240 264 84
7 7 2744 50 103684 406 112
8 8 4608 65 201344 592 144
9 9 7290 82 361746 828 180

10 10 11000 101 611200 1120 220
15 15 54000 226 4610700 3630 480
20 20 168000 401 19368800 8440 840

Source: Authors.

Analyzing the Table 31, it can be observed that with the increase in the size of
the problem, the decision variables and restrictions of the MILP models have a significant
increase when compared to the variables and restrictions of the CP models.

8.3.5 Problem properties

In this subsection, are presented two properties for the OSSPR. Firstly, is presented
the NP-hardness of the proposed problem. Secondly, is presented a lower bound for the
OSSPR.

Theorem 8.3.1. The OSSPR is NP-hard.
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Proof. Taking into consideration the set of operations of jobs Oj, if Oj = {k1, k2,

. . . , km}, ∀j ∈ N and pk
ij = pij, ∀i ∈M ; j ∈ N ; k ∈ Oj, each job have just one operation

in each machine and the problem is equivalent of the classic OSSP, which is NP-Hard for
m ≥ 3 (GONZALEZ; SAHNI, 1976). Thus, the classic OSSP is a particular case of the
OSSPR.

The classical open shop is an NP-hard problem (GONZALEZ; SAHNI, 1976),
thus the variant under study also is NP-hard, because if there are not repetitions, the
problem can be reduced to the classical open shop. Therefore, there is no guarantee that
mixed-integer linear programming models, as well as heuristic algorithms, can find the
global optimal solution, or even high-quality solutions. In this sense, the determination
of a lower bound, aiming at obtaining a reference for the evaluation of a given solution
found, is quite relevant.

Proposition 8.3.2. A lower bound for OSSPR is given by:

LB = max

{
max
j∈N

{∑
i∈M

(
min
k∈Oj

{
pk

ij

})
+ (|Oj | −m)× min

i∈M :k∈Oj

{
pk

ij

}}
, max

i∈M

{∑
j∈N

min
k∈Oj

{
pk

ij

}}}
(8.19)

Proof. The lower bound considers there is no idle time between operations of jobs in
machines. Taking into basis the well-known lower bound for the classic open shop present
by Pinedo (2016), this study extend this concept to the OSSPR. The lower bound considers
the greatest value between the summation of processing times per job plus the summation
of processing times of the remaining operations per job (|Oj| −m) and the summation
of processing times per machine. If |Oj| = m ∀j ∈ N the lower bound reduces to a lower
bound of classic OSSP.

8.4 Variable search strategy with constraint programming

In the last few years, several contributions have presented hybridization of mathe-
matical programming and heuristics to solve production sequencing problems (CROCE;
NARAYAN; TADEI, 1996; LIN; YING, 2016; FRAMINAN; PEREZ-GONZALEZ, 2018;
PRATA; RODRIGUES; FRAMINAN, 2021; PRATA; ABREU; LIMA, 2020). Another
promising research topic is the application of constraint programming approaches for the
resolution of production sequencing problems. We can observe that the hybridization of
constraint programming and metaheuristics is rather limited, despite the potential benefits
of this class of algorithms (ALAMEEN et al., 2016; HOJABRI et al., 2018; HÀ et al.,
2020).

Firstly proposed by Mladenović and Hansen (1997), the variable neighborhood
search (VNS) is a metaheuristic based on systematic changes in the neighborhood structure,
aiming to escape from local optima to solve optimization problems. VNS explores different
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neighborhoods of the incumbent solutions and moves to a new solution taking into account
the improvement of the current incumbent solution. The VNS has received a lot of attention
from researchers in the production scheduling area mainly due to its low dependency on
parameters and robustness (HANSEN; MLADENOVIĆ; PÉREZ, 2010).

Based on the above, we presented the proposition of a hybrid algorithm considering
constraint programming and variable neighborhood search methods. Instead of the neigh-
borhood concept, it adopts the conception of search strategy in constraint programming.
Starting from an initial heuristic solution, several search strategies with a given time limit
are applied, accepting solutions with a better makespan value. The proposal explores
different search strategies in a constraint programming model, escaping from local optima
and reducing the computation effort using different search strategies.

Concerning the terminology of a VNS framework, the proposed VNS-CP algorithm
is a Union VNS approach (HANSEN et al., 2017). The proposed Union VNS explores, in
each iteration, one type of neighborhood, chosen randomly from the set of all neighborhoods
of the solution. In addition, Union VNS-CP considers the set of CP model search strategies
as the union of the neighborhoods in the iterations of the algorithm.

Among the main constraint programming solvers, the CP Optimizer, which presents
an extension of the classic CP models, considering logical expressions to modeling complex
scheduling constraints (LABORIE, 2018). CP Optimizer presents several different search
strategies to define before the solver execution; for example: Auto: presents a hybridization
between exact and Self-Adapting Large-Neighborhood Search algorithms. Depth-first: a
well-known tree search algorithm. Restart: the constructive search is restarted periodically
and guided to the optimal solution. MultiPoint: generate a set of solutions that are
combined, aiming to produce better solutions. The Auto and Restart strategies can provide
the optimally proof. On the other hand, the Depth-first and Multipoint strategies cannot
provide this proof due to the heuristic nature of the solver. The hybrid VNS consider the
four strategies as possible local searches.

Each search strategy can generate good results, depending on the evaluated test
instances and available computational time. According to Apt (2003), constraint program-
ming uses logic programming and constraint solving techniques to create solutions to
optimization problems, such as Boolean satisfiability problems (SAT).

The hybrid algorithm uses two representations throughout the search process. The
first one is the constraint programming encoding, expressed by decision variables x, y,
and Γ. The second one is heuristic encoding, using a permutational representation of
the operations Naderi et al. (2010). Each operation is allocated in the earliest available
machine, considering the constraint in which the jobs are processed at least once in each
machine.
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For sequence representation, a ∑n
j∈N |Oj| array to represent a sequence that gen-

erates a solution is used, each bit from the sequence contains values = 1, . . . ,
∑n

j∈N |Oj|,
where the k̂-th operation of the ĵ-th job is represented by the value ∑ĵ−1

j=1 |Oj|+ k̂. Figure
62 illustrates an example of a possible sequence for 2 jobs and 3 operations of job 1 and 2
operations of job 2.

Figure 62 – An illustrative example for the sequence encoding.

Sequence representation: 1 2 3 4 5

Operation representation: J1-k1 J1-k2 J1-k3 J2-k1 J2-k2

Sequence solution: 3 5 2 4 1

Decoded solution: J1-k3 J2-k2 J1-k2 J2-k1 J1-k1

Source: Authors

Algorithm 63 describes the proposed Variable Neighborhood Search Constraint
Programming (VNS-CP) solution procedure. The inputs of the algorithm are the pro-
cessing times matrix, the number of iterations niter, the time limit TL, and the set
of search strategies Q. The function CREATE_CP_SOLUTION(SOL, p) converts
the heuristic encoding representation of the sequence of operations to the constraint
programming encoding representation for use in the CP model. The inverse function
is CREATE_SEQUENCE_SOLUTION(x, y, Γ, p) which converts the constraint pro-
gramming encoding representation to the heuristic encoding representation. Finally, the
function RUN_CP (x, y, Γ, searchstrategy = st, timelimit = TL) performs a CP Optimizer
execution with the search strategy st and the time limit TL seconds, returning a solution
SOL already in the heuristic encoding representation.

The initial solution is the MIH constructive heuristic, which was proposed by Abreu
et al. (2020) for the open shop with sequence-dependent setup times with the objective
function of minimizing the total completion time. Next, this heuristic solution is converted
into a CP solution. While the algorithm’s runtime is not over, a CP search strategy is
randomly selected and executed within the time limit TL. If the solution is improved, it is
used as the new incumbent solution. In each iteration, the GAP as the relative deviation
between the best solution found and the lower bound is calculated. If this value is less
than or equal to 10−4 (the considered tolerance), the search is finished with the global
optimal solution found. Otherwise, the algorithm is performed until the available run time
ends.
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Data: Instance p, niter, TL, Q
Result: Solution S

1 S ←MIH(p);
2 makespan_best← makespan(S);
3 x, y, Γ← CREATE_CP_SOLUTION(SOL, p);
4 iter ← 0;
5 while run time does not end do
6 st← chosen a random search strategy ∈ Q;
7 x

′
, y

′
, Γ′

, GAP← RUN_CP (x, y, Γ, searchstrategy = st, timelimit = TL);
8 S ′ ← CREATE_SEQUENCE_SOLUTION(x′

, y
′
, Γ′

, p);
9 makespan_new ← makespan(S ′

, p);
10 ∆← makespan_new −makespan_best;
11 if ∆ < 0 then
12 makespan_best← makespan_new;
13 x, y, Γ← x

′
, y

′
, Γ′ ;

14 S ← S ′ ;
15 if the solution GAP is less than or equal to 10−4 then
16 break while loop;
17 end
18 end
19 end

Figure 63 – VNS-CP

8.5 Computational experience

8.5.1 Proposed test instances and performance criteria

Since the problem under study was not previously reported in the revised literature,
three sets of test instances are proposed, based on the well-known benchmark problems
for the classic open shop proposed by Guéret and Prins (1998), Brucker et al. (1997), and
Taillard (1993).

In the test problems proposed by Guéret and Prins a fixed interval for the pro-
cessing times is considered, with random values uniformly distributed between 1 and
1000, and a constant value for the lower bound equal to 1000. Different problem sizes
are considered with n, m ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For each class were randomly generated
10 test instances, totaling 80 instances. Brucker et al. test problems are generated in a
similar way, with random values uniformly distributed between 1 and 500 and 6 sets of
jobs n, m ∈ {3, 4, 5, 6, 7, 8}, totaling 60 instances. Taillard test problems were generated
with random values uniformly distributed between 1 and 100, without a lower bound
constraint. Problem classes were considered according to the combination of the 6 sets
of jobs n, m ∈ {4, 5, 7, 10, 15, 20}. For each size, 10 instances are randomly generated,
totaling 60 instances. For the OSSPR every instance of Guéret and Prins, Brucker et al.,
and Taillard were adapted adding randomly a number of repetitions between 0 and 2 to
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each job regarding to at least one job to be repeated at least once.

Relative percentage deviation (RPD) is the performance criteria used in this article.
Equation (8.20) shows the calculation of RPD. In this equation, solmethod represents the
solution returned by a given method, and LB the lower bound calculated by Equation
(8.19).

RPD = solmethod − LB

LB
× 100 (8.20)

For the mixed-integer linear programming model implementation, the solver IBM
ILOG CPLEX 12.10 with C++ programming language is used. The LTPROM, MIH,
IRH1 to IRH4, and EGA methods were implemented in the Intel®Distribution for Python
(https://software.intel.com/en-us/distribution-for-python) and were run in C with Cython
library (http://cython.org/) (BEHNEL et al., 2011). The constraint programming model
and VNS-CP were developed with the python programming language using DOcplex
2.10.155 libray with IBM ILOG CP Optimizer 12.10. The computational experience was
performed on a Linux Ubuntu 18.04 64bits machine with 8GB of memory and Intel Core
i5-3470 CPU 3.20 GHz ×4 processor.

The source codes, instance sets, results of all computational tests, and statistical
analyses are available in the following link: http://repositorio.uspdigital.usp.br/handle/
item/444. Another data or any questions are available upon request.

8.5.2 Test results for exact methods

For the exact models MILP and CP models, a time limit of 600s is adopted in
computational tests. The considered methods are listed bellow. Four search strategies of
CP Optimizer solver are tested.

• Mixed Integer Linear Programming (MILP): the proposed mathematical program-
ming model given by the Equations (8.1)-(8.9).

• Constraint Programming Auto (CP Auto): the proposed CP model given by the
Equations (8.11)-(8.18) with automatic search strategy.

• Constraint Programming Depth-first (CP DF): the proposed CP model with Depth-
first search strategy.

• Constraint Programming Restart (CP RS): the proposed CP model with Restart
search strategy.

• Constraint Programming Multi-Point (CP MP): the proposed CP model with Multi-
Point search strategy.

https://software.intel.com/en-us/distribution-for-python
http://cython.org/
http://repositorio.uspdigital.usp.br/handle/item/444
http://repositorio.uspdigital.usp.br/handle/item/444
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Table 32 illustrates the Average Relative Percentage Deviation (ARPD) and Average
Computational Times (Avg. CT (s)) for each exact method evaluated in each set of instances.
The last four lines provide a summary of the computational results: the best ARPD value
(Min), the average ARPD (Average), the worst ARPD value (Max), as well as the number
of unsolved instances. The results marked "***" indicate that the tested method did not
find any feasible solution for all instances of the set within the time limit.

Table 32 – ARPD results and average computational times of exact methods in all sets of
instances

Group Size MILP CP Auto CP DF CP RS CP MP
ARPD Avg. CT (s) ARPD Avg. CT (s) ARPD Avg. CT (s) ARPD Avg. CT (s) ARPD Avg. CT (s)

Gueret and Prins 3 1.47 1.17 1.47 10.85 1.47 600.03 1.47 10.60 1.47 600.02
4 24.54 548.44 24.54 473.88 24.98 600.03 24.54 396.40 24.54 600.03
5 26.04 600.00 25.07 596.93 67.12 600.04 25.07 600.07 25.07 600.04
6 45.14 600.00 26.45 600.13 *** 600.00 26.45 600.11 26.45 600.05
7 100.35 600.00 19.24 600.17 *** 600.00 19.26 600.16 19.24 600.06
8 *** 600.00 14.21 600.20 *** 600.00 12.87 600.15 14.12 600.07
9 *** 600.00 13.86 600.18 *** 600.00 *** 600.00 16.15 600.10

10 *** 600.00 *** 600.00 *** 600.00 *** 600.00 *** 600.00

Taillard 4 0.25 435.60 5.14 19.38 7.95 600.03 5.14 13.59 5.14 600.03
5 3.47 475.79 0.00 10.24 *** 600.00 0.00 7.36 0.00 600.03
7 133.08 600.00 0.00 547.07 *** 600.00 0.00 495.40 0.00 600.06

10 *** 600.00 1.81 600.08 *** 600.00 *** 600.00 1.93 600.09
15 *** 600.00 *** 600.00 *** 600.00 *** 600.00 *** 600.00
20 *** 600.00 *** 600.00 *** 600.00 *** 600.00 *** 600.00

Brucker 3 5.07 2.82 5.07 2.48 5.07 600.03 5.07 2.39 5.07 600.03
4 3.69 600.00 3.69 281.85 5.18 600.03 3.69 279.17 3.69 600.03
5 11.22 600.00 1.57 489.24 8.48 600.04 1.57 482.94 1.61 600.04
6 59.37 600.00 1.10 478.03 *** 600.00 1.10 536.54 1.48 600.04
7 121.40 600.00 1.10 600.07 *** 600.00 1.07 600.08 2.42 600.06
8 *** 600.00 2.76 600.11 *** 600.00 2.75 600.11 3.66 600.07

Min 0.25 1.17 0.00 2.48 1.47 600.00 0.00 2.39 0.00 600.00
Average 41.16 523.19 8.65 445.54 17.18 600.01 8.67 441.25 8.94 600.04

Max 133.08 600.00 26.45 600.20 67.12 600.04 26.45 600.16 26.45 600.10
Unsolved Instances 73 – 38 – 144 – 66 – 42 –

Source: Authors.

Table 32 shows that all the exact methods have not returned feasible solutions for
some test instances within the considered time limit. The CP DF and MILP methods
presented a greater number of unsolved instances. All the other CP-based methods
presented better results, expressed by a lower average ARPD and fewer unsolved instances
than MILP. Also, the CP Auto method presented the best values of average ARPD and
the number of unsolved instances than all other methods; however, it presented worse
ARPD results than CP RS in Brucker instances with sizes 7 and 8. CP MP presented
high-quality solutions in the instances of Taillard Gueret and Prins. Furthermore, the CP
MP method solved more instances than CP DF and CP RS strategies.

Since no exact methods were able to solve all the evaluated test instances, and the
distinct search strategies returned different results among the considered sets of instances,
the proposed hybrid method, described in the Section 8.4, is evaluated. The VNS-CP
approach adopt the three better search strategies (CP Auto, CP RS, and CP MP).
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Figure 64 illustrates the average computational times, clustered by the size of the
instances (expressed by the number of jobs). For all the evaluated exact methods, the time
limit was reached for the large-sized instances. Among the evaluated exact methods, the
CP Auto and the CP RS presented the lowest computational times, only reaching the
time limit for the problems with 8 or more jobs. On the other hand, the methods CP MP
and CP DF, when did not provide the optimality proof, were executed using the specified
time limit.

Figure 64 – Average computational times for all proposed exact methods in each instance
size

Source: Authors

The CP RS and CP DF have a higher computational time than MILP, but overall,
they get a better average ARPD than MILP. Also, the CP RS, CP Auto, and CP MP
methods can find feasible solutions for more instances than MILP.

8.5.3 Test results for approximate methods

Concerning the approximate methods under comparison, we can highlight the
following issues. Since the problem under study is not reported yet in the current literature,
the proposed approaches (the MILP model, CP model and the VNS-CP algorithm)
cannot be directly compared with other methods. This article considers the adaptation of
three constructive heuristics: a classic priority rule, a recent heuristic and a competitive
meta-heuristic for classic OSSP.

These three approaches are inserted as a complementary reference (the lower bound
is a basis for the comparisons). The MIH is used in initial solution for the VNS-CP as a
hybrid solution approach, it is possible to evaluate the improvement provided by the VNS
with CP procedure.
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The considered methods are listed bellow. Eight approximate methods are tested
to solve the OSSPR.

• Longest Total Remaining Processing Times on Other Machines first (LTRPOM): a
adaptation of constructive heuristic developed by Pinedo (2016). It is a more general
rule than classical priority rule LAPT also developed by Pinedo (2016) for the OSSP.

• Minimal Idleness Heuristic (MIH): a constructive heuristic developed by Abreu et al.
(2020) and adapted for OSSPR.

• Insertion and Reinsertion Heuristic 1-4 (IRH1 to IRH4): local search algorithms
proposed by Naderi et al. (2010) and adapted for OSSPR.

• The extended genetic algorithm (EGA): is a adaptation of the most recent meta-
heuristic for the classic OSSP proposed by Hosseinabadi et al. (2018).

• A variable neighborhood search with constraint programming with a variable search
strategy (VNS-CP): The new approach to solve the OSSPR.

The computational times of two constructive heuristics LTPROM and MIH are
negligible (less than one second for all the evaluated test instances). The IRx heuristics
are constructive algorithms that present variable execution times, which are proportionate
to the size of the instances. The EGA and the VNS-CP were run with a time limit of 600s.
After several preliminary computational experiments, the time limit for the CP Optimizer
execution TL is set in 200s. For the EGA, the same parameters used by Hosseinabadi et al.
(2018) were considered in the tests: population size 92, crossover ratio 0.8, and mutation
ratio 0.2.

Table 33 illustrates the ARPD values for each method under comparison for each
set of instances. As we have already defined previously, the last four lines are related to
the summary of the results.

Due to the stochastic behavior of VNS-CP and EGA, each method was run five
times for each instance. Table 33 shows the best and average results of the ARPD of
both algorithms in each set of instances. For comparison purposes between exact and
approximation methods, the Table 33 shows the best result found by all exact approaches
in each set of instances. The results marked *** indicate that the tested method did not
find any feasible solution for all instances of the set within the time limit. Analyzing Table
33, it can observe that feasible solutions are found for all the methods under comparison
for all the test instances.

VNS-CP uses the best search strategies tested. The metaheuristic can find feasible
solutions for all instances tested, which shows a good improvement with the hybridization
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Table 33 – ARPD results of approximate methods in all sets of instances

Group Size Best Exact
Results LTRPOS MIH IR1 IR2 IR3 IR4 EGA VNS-CP

Best Avg. Best Avg.
Gueret and Prins 3 1.47 39.39 43.41 8.00 8.00 4.35 7.75 1.58 3.29 1.47 1.47

4 24.54 89.65 88.38 49.84 49.84 28.73 30.23 26.28 29.02 24.54 24.54
5 25.07 115.66 82.16 44.88 44.88 29.18 39.28 26.53 28.78 25.07 25.07
6 26.45 124.62 82.86 48.13 48.13 33.80 35.95 28.11 30.75 26.45 26.45
7 19.24 129.36 83.84 55.10 55.10 35.37 42.30 21.29 24.06 19.24 19.24
8 12.87 152.05 72.60 59.11 59.11 39.85 40.08 20.28 22.89 13.87 13.90
9 13.86 185.03 68.32 61.49 61.49 35.53 44.82 18.63 20.63 11.61 11.78

10 *** 181.90 55.39 56.01 56.01 36.48 42.77 20.62 23.38 8.49 8.99

Taillard 4 0.25 54.64 26.43 13.49 13.49 5.49 6.70 1.53 4.08 0.11 0.11
5 0.00 64.46 24.37 11.10 11.10 6.07 5.96 0.96 3.57 0.00 0.00
7 0.00 79.61 15.20 19.17 19.17 7.70 7.58 0.68 2.67 0.00 0.00

10 1.81 101.16 14.14 26.65 26.65 15.99 13.26 4.19 6.39 0.00 0.31
15 *** 109.77 10.14 37.94 37.94 30.54 17.85 9.55 12.07 0.00 0.00
20 *** 124.51 9.18 46.15 46.15 40.96 25.91 13.03 15.80 0.00 0.40

Brucker 3 5.07 37.59 48.08 19.29 19.29 12.17 11.92 8.58 10.85 5.07 5.07
4 3.69 59.01 37.59 27.15 27.15 16.87 18.08 8.86 11.62 3.69 3.69
5 1.57 84.75 40.52 29.95 29.95 13.61 15.45 5.83 8.15 1.57 1.57
6 1.10 116.85 44.92 28.93 28.93 16.70 23.35 5.90 8.34 1.10 1.24
7 1.07 143.64 35.05 43.55 43.55 26.26 27.48 8.81 10.97 1.09 1.26
8 2.75 161.06 42.17 41.97 41.97 22.10 29.87 9.66 11.82 1.35 1.47

Min 0.00 37.59 9.18 8.00 8.00 4.35 5.96 0.68 2.67 0.00 0.00
Average 8.28 107.74 46.24 36.40 36.40 22.89 24.33 12.04 14.46 7.24 7.33

Max 26.45 185.03 88.38 61.49 61.49 40.96 44.82 28.11 30.75 26.45 26.45
Unsolved Instances 37 0 0 0 0 0 0 0 0 0 0

Source: Authors.

of exact and approximate techniques. Furthermore, the VNS-CP returned the best values
for Min, Average, and Max performance indicators. Comparing the best results with the
average results of the VNS-CP, both have similar values, which might indicate that the
VNS-CP has low variability of results.

Figure 65 illustrates the box plot with ARPD distribution for all proposed approxi-
mate methods. LTRPOS and MIH get the worst median results, IRx heuristics get the
average performance of median of ARPD. EGA and VNS-CP get the smallest median of
ARPD, with the VNS-CP obtaining the best median and interquartile range between all
approximate methods.

Table 34 shows the average computational times of all approximate approaches
in each set of instances. The constructive heuristics LTRPOS and MIH have ineligible
computational times. The IR-based heuristics are constructive algorithms with local search
procedures that present an exponential increase in computational time with an increase in
instance size, especially IR3 and IR4. It can be observed that the IR-based heuristics are
deterministic.

Based on the results obtained, it can be observed that the EGA and VNS-CP
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Figure 65 – Distribution of ARPD for all proposed approximate methods

Source: Authors

algorithms presented similar computational times. However, for small and medium-sized
instances, VNS-CP can prove optimally, with the algorithm finishing before the time limit.

Figure 66 illustrates the average computational times for each instance size and
proposed approximate methods. The time limit could be reached for all the evaluated
approximate methods. Besides, the constructive heuristics IRx with local search could
exceed this value for the large-sized instances (with 15 and 20 jobs).

Figure 66 – Average computational times for all proposed approximate methods in each
instance size

Source: Authors

The VNS-CP (the article proposal) outperformed all the other approximate ap-
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Table 34 – Average computational times of approximate methods in all sets of instances

Group Size LTRPOS MIH IR1 IR2 IR3 IR4 ILS EGA VNS-CP
Gueret and Prins 3 <0.01 <0.10 0.01 0.00 0.02 0.02 4.03 600.41 15.75

4 <0.01 <0.10 0.01 0.01 0.07 0.11 26.30 600.57 547.34
5 <0.01 <0.10 0.04 0.04 0.20 0.35 27.06 600.42 600.51
6 <0.01 <0.10 0.13 0.13 0.66 1.12 29.73 600.59 600.45
7 <0.01 <0.10 0.32 0.32 1.83 2.84 31.67 600.56 600.36
8 <0.01 <0.10 0.69 0.68 3.60 6.41 36.02 600.50 600.48
9 <0.01 <0.10 1.42 1.42 8.37 13.27 30.82 600.36 600.47

10 <0.01 <0.10 2.82 2.81 16.24 26.95 28.39 600.48 600.56

Taillard 4 <0.01 <0.10 0.01 0.01 0.06 0.11 2.23 600.51 25.59
5 <0.01 <0.10 0.05 0.04 0.20 0.39 3.32 600.56 16.66
7 <0.01 <0.10 0.29 0.29 1.59 2.61 3.96 600.47 600.46

10 <0.01 <0.10 2.75 2.75 16.34 27.61 6.23 600.50 600.47
15 <0.01 <0.10 38.51 38.54 201.04 405.04 3.38 600.60 600.60
20 <0.01 <0.10 273.13 273.27 1383.88 2926.48 3.73 600.59 600.60

Brucker 3 <0.01 <0.10 0.01 0.00 0.01 0.02 28.39 600.61 78.80
4 <0.01 <0.10 0.01 0.01 0.06 0.09 6.39 600.44 286.98
5 <0.01 <0.10 0.04 0.04 0.24 0.38 11.14 600.51 600.44
6 <0.01 <0.10 0.14 0.13 0.82 1.26 18.45 600.51 600.54
7 <0.01 <0.10 0.31 0.31 1.92 2.97 20.82 600.48 600.40
8 <0.01 <0.10 0.68 0.67 4.76 6.69 18.26 600.35 600.53

Min <0.01 <0.10 0.01 0.00 0.01 0.02 2.23 600.35 15.75
Average <0.01 <0.10 16.07 16.08 82.09 171.24 17.02 600.50 468.90

Max <0.01 <0.10 273.13 273.27 1383.88 2926.48 36.02 600.61 600.60

Source: Authors.

proaches under comparison for ARPD with competitive computation times. Due to the fact
that the proposed approach presents optimally proof, the algorithm was able to finish the
search before the specified time limit, for the small-sized and medium-sized test instances.
For the large-sized instances with sizes 10, 15, and 20, VNS-CP obtained the best results
for these instance sets among all other exact and approximate methods.

In order to validate the results, it is important to verify whether the previous
differences in the ARPD values are statistically significant. An non-parametric analysis of
variance (Welch Test) is applied (MONTGOMERY, 2017). The p-value is very close to zero.
Figure 67 show the ARPD boxplot for all constructive heuristics tested with Games-Howell
confidence interval (α = 0.05) and groups of the similar mean result. Methods that do not
share letters are significantly different.

It can see that there are statistically significant differences between the ARPD
values among the approximate methods proposed. The VNS-CP gets the best results. With
respect to the ARPD, the difference among VNS-CP and competitive EGA is significant
because they are clustered in different groups (with F and E letters, respectively).

Its clearly that the hybridization of the VNS for variable search strategies of
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Figure 67 – Mean, confidence intervals and Games-Howell post-hoc test at the 95% confi-
dence level for the approximate methods in all sets of instances.

Source: Authors

constraint programming procedure outperforms the all other tested methods, being the
differences statistically significant as they are in different groups in Figure 67. Hence, the
VNS-CP turns out to be the best approximate approach for the OSSPR with a good
trade-off between solution quality and computational times.

8.6 Conclusions

This article address a new open shop scheduling problem with the processing
of more than one operation per job in the same machine, the open shop scheduling
problem with repetitions (OSSPR). A mixed-integer linear formulation for the OSSPR is
presented. Besides, two constructive heuristics is adapted for the problem under study, and
a variable neighborhood search with constraint programming search strategy (VNS-CP)
meta-heuristic is proposed for solving the problem.

An extensive computational experimentation was performed to assess the perfor-
mance of the proposed methods. The lower bound deviation percentage was the indicator
of the quality of the solutions, and the average computation time was the indicator of the
computational effort. Regarding the quality of the solutions, the VNS-CP outperforms
the MILP model, requiring less time than this method. The VNS-CP also outperforms all
others approximate methods, becomes the best approach to solve OSSPR.

VNS-CP presents an intensive exploitation mechanism with constraint programming
local search procedure, with a variable search strategy to improve search diversification,
which is one of the main contributions of the research. With these innovative mechanisms,
the VNS-CP approach presented smaller ARPD values, and it outperformed all other
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evaluated algorithms.

As extensions of this work, variable fixing approaches can improve the solutions
generated by the presented mathematical model. These solutions can interact with heuris-
tic methods, as in a matheuristic framework. Future studies could also propose other
competitive metaheuristics to solve the problem. Another possibility is to consider different
objective functions and constraints for the proposed variant, such as total completion time,
total tardiness, or travel time constraints.
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9 A NEW EFFICIENT BIASED RANDOM KEY GENETIC ALGORITHM FOR
OPEN SHOP SCHEDULING WITH ROUTING BY CAPACITATED SINGLE
VEHICLE AND MAKESPAN MINIMIZATION

9.1 Introduction

Production scheduling problems have been widely studied as optimization problems
due to their varied industrial applications. The open-shop scheduling problem (OSSP)
consists of scheduling a set of jobs in a set of machines, where each operation is associated
with a processing time and where there is no preset sequence of operation execution. The
problem has a practical and theoretical relevance and has received less attention than
classical production scheduling problems (ANAND; PANNEERSELVAM, 2016).

As the problem does not have a predefined sequence of operations, the number of
viable solutions is significantly higher than the classical production scheduling problems,
such as flow shop and job shop. OSSP is suitable for various industrial applications, such as:
plastic injections, chemical processes, the oil industry, food production and pharmaceutical
production. In the service sector, this problem can be modelled for scheduling medi-
cal services, vehicle maintenance, museum visits and telecommunications (GONZALEZ;
SAHNI, 1976; LIN; LEE; PAN, 2008; VINCENT; LIN; CHOU, 2010; NADERI; NAJAFI;
YAZDANI, 2012; ABREU et al., 2020).

The vehicle routing problem (VRP) concerns the delivery of products to a set of
customers through a set of vehicles on an appropriate road network. The problem has
different operational constraints to consider real characteristics of distribution systems
(TOTH; VIGO, 2002). Several recent articles address optimization problems involving VRP
(ZHANG et al., 2020; ALI; CÔTÉ; COELHO, 2020; CHEN et al., 2020; GHANNADPOUR;
ZANDIYEH, 2020; MOLINA et al., 2020). OSSP is directly related to VRP because, as
the OSSP is a production scheduling problem, it is necessary to schedule the delivery of
products to the customers after the production phase in the open shop environment. The
scheduling of production and distribution of the products can be done in an integrated
way to improve decision-making.

Integration between production and distribution in operations management has
become an important factor for operational success in industries. This is because many of
the product costs include production and logistics stages throughout the supply chain. It
should be mentioned that logistics corresponds to almost 30% of the total costs (MIN;
ZHOU, 2002). The strategy for solving these problems in an integrated approach has
shown to be better than solving them separately and sequentially (DARVISH; COELHO,
2018).

Therefore, looking for ways to integrate production scheduling and distribution
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becomes critical for the development of modern companies, integrating scheduling models
in which jobs are first processed by machines and then delivered to customers by vehicles.

According to Wang, Grunder and Moudni (2015), integrated scheduling and
distribution problems can be classified into two categories: Integrated Scheduling of
Production-Distribution Problems (ISPDP) and Integrated Scheduling of Production-
Inventory-Distribution Problems (ISPIDP). The former category includes those cases
where production and distribution are directly linked, i.e., where the product has to be
distributed immediately after production has been finished. This type of scheduling is
observed in industries where there are time-sensitive products, such as: newspaper printing
and distribution, industrial adhesive material production and delivery and perishable food
production and delivery. Examples of these are shown in: (FARAHANI; GRUNOW; GÜN-
THER, 2012; BUER; WOODRUFF; OLSON, 1999; DEVAPRIYA; FERRELL; GEISMAR,
2006).

The second category illustrates supply chains where production and distribution
are linked through an intermediate inventory aimed at balancing production rates and
distribution speed. This integrated model can be found in different supply chains either
where production and distribution rates are unbalanced or where there is demand un-
certainty, in which the main variations in demand are supplied by the inventory. Many
different applications for ISPIDP are described in: (WANG; GRUNDER; MOUDNI, 2015;
MOONS et al., 2017).

The objective function of these problems can be classified into two groups: objectives
related to costs that involve: setups, Work-in-Process (WIP), costs incurred by maintaining
inventory and delivery, and time-related goals, which involve the classical production
scheduling indicators such as makespan, tardiness, and earliness (DARVISH; COELHO,
2018). We used the integrated makespan of the system’s production and distribution as
the proposed problem’s objective function. Minimizing the makespan can contribute to
improving the service level of production and distribution operations (PINEDO, 2016).

Due to the complexity of the standard open shop scheduling problem, it has become
a challenge to develop efficient methods for optimal or sub-optimal problem solutions. No
examples of studies were found in the literature that seek to integrate this production
environment with product distribution, aiming at assuming more realistic constraints with
complex industrial contexts (ANAND; PANNEERSELVAM, 2016; WANG; GRUNDER;
MOUDNI, 2015; MOONS et al., 2017; ADAK; AKAN; BULKAN, 2020).

Therefore, this paper aims to develop efficient strategies for solving the open shop
scheduling problem with routing by capacitated single vehicle (OSSP-VRP), characterized
as an ISPIDP problem minimizing the makespan as an objective function based on time.
Four proposals are developed in this work: a Mixed-Integer Linear Programming model
(MILP) as an exact solution; a Greedy Insertion Algorithm (GIA) as a constructive
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heuristic; an Iterated Greedy Algorithm (IGA) a metaheuristic search as an improvement
strategy proposed by Tavares-Neto and Nagano (2019); a Biased Random-Key Genetic
Algorithm (BRKGA) and a hybrid approach with BRKGA and IGa (BRKGA-IG). To
use BRKGA and BRKGA-IG, a new solution decoding/representation scheme will be
proposed. Consequently, these methods have never been used in the literature to solve the
proposed problem.

There are many other recent algorithms to solve optimization problems using
evolutionary techniques (COBAN; CAN, 2010; COBAN, 2013; COBAN; AKSU, 2018;
ABREU; PRATA, 2020; LI et al., 2020a; NIU et al., 2021). We consider as benchmarking
to optimization methods more two recent competitive metaheuristics. The first is a
Cooperation Search Algorithm (CSA) proposed by Feng, Niu and Liu (2021) for numerical
optimization and engineering optimization problems, and the second is an Improved
Artificial Bee Colony (IABC) algorithm proposed by Li et al. (2020b) for combinatorial
optimization problems as VRP.

In summary, this paper aims to present a Biased Random-Key Genetic Algorithm
with Iterated Greedy Algorithm (BRKGA-IG) for the new problem OSSP-VRP with
makespan minimization as the objective function. The main theoretical contributions are:
for an efficient generation of the initial solution, a constructive heuristic GIA proposed in
this study is used, which produces solutions in competitive computation times. BRKGA-IG
has an intensive exploitation mechanism with iterated greedy local search procedure, a
restart mechanism to reduce premature convergence of the population, and a new decoding
scheme proposed for OSSP-VRP solutions.

To determine the best configuration of the proposed BRKGA-IG method, We used
the IRACE package for determining the best execution parameters (LÓPEZ-IBÁNEZ et
al., 2016). Extensive computational tests were performed using the well-known OSSP test
instances proposed by Guéret and Prins (1998), Taillard (1993) and Brucker et al. (1997),
adapted for OSSP-VRP. The results show that the developed algorithm outperforms
the other procedures tested for the problem. The main experimental contributions are:
BRKGA-IG has an average relative percentage deviation smaller than 9% in tested
instances, obtained good results in large-sized instances, and BRKGA-IG has competitive
computational times compared to other benchmarking methods.

The paper is organized as follows: section 2 provides a literature review of the OSSP
and the ISPIDP problems. In section 3, a formal definition of the problem and an example
of an instance are illustrated. Section 4 describes the methods adapted from literature for
the solution. Section 5 describes the new hybrid method BRKGA-IG. Section 6 performs
an extensive analysis of the statistical tests and results. Finally, section 7 discusses the
main conclusions of the research and proposes future work for the new problem.
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9.2 Literature Review

9.2.1 Open shop scheduling

The Open Shop problem was initially proposed by Gonzalez and Sahni (1976). The
problem consists of scheduling a set of jobs on a set of machines, where each processing of
a job on a machine (called an operation), has a processing time and can be performed
in any sequence. The main objective functions, present in the problem literature, are the
minimization of scheduling completion time (makespan), flow time (flowtime) and the sum
of tardiness of the jobs (total tardiness) (ANAND; PANNEERSELVAM, 2016).

Regarding the OSSP solution minimizing makespan, several constructive heuristics
have been proposed: Pinedo (2016) developed two priority rules based on the bottleneck
machine, the Longest Alternate Processing Times (LAPT) and Longest Total Remaining
Processing Times on Other Machines (LTRPOM). Liaw (1998) developed the Dense
Schedule/Longest Total Remaining Processing (DS/LTRP) dispatch rule as an improve-
ment on LTRPOM. Colak and Agarwal (2005) proposed a heuristic as an amendment
to DS/LTRP, creating the Dense Scheduling Longest Total Remaining Processing Time
(DS/LTRPAM) rule. Finally, Bai and Tang (2011) proposed a rotation heuristic that
achieves good approximate solutions for large problems, the Modified Rotation Scheduling
(MRS) heuristic.

Many studies have focused on using metaheuristics to address the topic. For
example, Liaw proposed a taboo search (TS) (LIAW, 1999), a simulated annealing (SA)
(LIAW, 1999) and a genetic algorithm (GA) (LIAW, 2000) for the problem. The GA
performed better than the other methods. Ahmadizar and Farahani (2012) proposed a
new hybrid genetic algorithm with a local search strategy that performed better than all
other solution strategies already reported. Finally, Hosseinabadi et al. (2018) developed
an extended genetic algorithm that performed well for large OSSP instances.

The BRKGA Algorithm, hybridized with local search strategies, has shown good
results in solving production scheduling problems (CHAVES; GONÇALVES; LORENA,
2018; ANDRADE et al., 2019). No reports were found in the literature regarding the use of
BRKGA strategies as metaheuristics and IGA as constructive/improvement heuristics for
solving the proposed problem (ANAND; PANNEERSELVAM, 2016). This factor is present
in the research, using BRKGA and IGA methods for solving production and distribution
scheduling of the OSSP-VRP.

9.2.2 Vehicle routing problem

VRP consists of scheduling one or more vehicles to deliver products from distribution
centers to customers. VRP is an extension of the classic traveling salesman problem
considering that vehicles have limited capacity and cannot serve all customers in a single
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route. The objective of the problem is to find, for example, a schedule that minimizes the
delivery cost, distance traveled, or routing duration (TOTH; VIGO, 2002).

VRP has many new variants, with applications in the industrial and service sector.
Zhang et al. (2020) studied the stochastic VRP, considering probability constraints with
distribution uncertainty in deadlines. Ghannadpour and Zandiyeh (2020) proposed a
multiobjective GA to solve transit vehicle routing problem with vulnerability estimation
for risk quantification to optimize the safety of cash/valuable commodities transportation.
Finally, Vincent et al. (2021) introduced the problem of heterogeneous fleet vehicle routing
problem with multiple cross-docks using an adaptive neighborhood simulated annealing
algorithm to solve the problem.

Time windows are a critical VRP constraint and have many real applications. This
constraint sets pre-defined time intervals that force the vehicles to serve all customers
attending these pre-defined time intervals (TOTH; VIGO, 2002). Notable recent contribu-
tions are verified for the VRP with time windows. Ali, Côté and Coelho (2020) presented
a real-life vehicle routing problem with time windows, synchronization, and heterogeneous
fleets. Chen et al. (2020) proposed a Multi-Trip Multi-Pickup and Delivery Problem with
Time Windows with a customized bus. Molina et al. (2020) presented a VRP with time
windows and limited number of resources. Finally, Chen, Demir and Huang (2021) studied
a VRP with time windows, delivery robots, and a fleet of vans and autonomous robots.

9.2.3 Integrated problems with production and distribution

Concerning the ISPIDP-type integrated problems, considered in this article, the
following research can be mentioned: Ullrich (2013) who proposed an environment of
parallel machines with distribution with time-window constraints, proposing a genetic
algorithm to solve the problem; Farahani, Grunow and Günther (2012) developed a study
for perishable products using an MILP model, aiming to improve the quality of service, by
optimizing production integrated with the routes. Chang, Li and Chiang (2014) proposed
an ant colony optimization (ACO) algorithm to solve the problem of parallel machines
integrated with distribution by multiple capacitated vehicles. The results showed the
superiority of ACO compared to the exact resolution strategies. Cheng, Leung and Li
(2017) developed resolution techniques for the single batch machine problem with delivery
by a capacitated single vehicle. For problems with identical processing times, polynomial
algorithms were developed for the exact solution. Gao, Qi and Lei (2015) developed
heuristic techniques for the general case of the problem studied by Cheng, the techniques,
in relation to MILP proved to be promising both in efficiency and speed of execution.
Rostami, Nikravesh and Shahin (2018) developed an MILP model for the integrated
scheduling of production and distribution of wax with constraints of deterioration of
products and learning effect curves.
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Concerning the multiple comparison of metaheuristics, Mousavi, Hajiaghaei-Keshteli
and Tavakkoli-Moghaddam (2020) developed a SA, GA, particle swarm optimization (PSO)
and a hybrid SA strategy with variable neighborhood search (VNS), to solve the integrated
production and air transportation scheduling problem with time windows for the due date.
They compared different encoding schemes in the proposed solution and their designed
algorithms proved to be superior to those already reported in the literature.

Regarding hybridization of ISPIDP with setup times, Tavares-Neto and Nagano
(2019) developed an IGA for the parallel machine scheduling problem with sequence
dependent setup times, integrating distribution by a capacitated single vehicle. The results
obtained showed the superiority of IGA over the exact MILP models.

Concerning the integrated problems with multi-objective functions, Abid, Ayadi
and Masmoudi (2020) conducted a study to develop an exact MILP model for the multi-
period distribution-planning problem for sea-air intermodal transportation. The model
was tested in instances from a real-world case study. Finally, Ganji et al. (2020) developed
a non-linear integer programming model and a multiobjective GA (NSGA-II) for the
multiobjective problem of green production and distribution with heterogeneous fleets and
time window constraints, considering objective carbon emission reduction functions. The
NSGA II method obtained better results compared to all other tested methods.

The table 35 illustrates the main contributions of the literature to the scheduling
problems considering integration between production and distribution. The authors, year
of publication, characteristics of the problem such as the type of setup, solution methods
and main research contributions are illustrated.

Table 35 – Summary of the main contributions from the literature of scheduling and
distribution considering integrated problems.

Author Problem characteristics Solution method Contribution

Farahani, Grunow and Günther (2012) Perishable products MILP The model implementation shows promising results to creates
with short time interval between production and delivery.

Ullrich (2013) Parallel machines GA The GA got competitive results with proposed test instances.
Chang, Li and Chiang (2014) Parallel machines ACO ACO was capable of generating near-optimal solutions.

Gao, Qi and Lei (2015) Parallel machines Polynomial time
algorithms

The algorithms obtain high-quality solution in terms of
accuracy and speed with.

Cheng, Leung and Li (2017) Single batch machine Polynomial time
algorithms

There is a O (n log n) algorithm to solve problem
concerning jobs with the same size.

Rostami, Nikravesh and Shahin (2018) Deterioration of products
and learning effect curves MILP MILP got competitive results in distribution of

wax problem.

Tavares-Neto and Nagano (2019) Parallel machine with
setup times IGA IGA outperforms GA proposed by Ullrich (2013).

Mousavi, Hajiaghaei-Keshteli and Tavakkoli-Moghaddam (2020) Air transportation
scheduling

SA, GA PSO
and VNS

Proposed diferent encoding schemes and the developing
methods that outperforms the already reported in the literature.

Abid, Ayadi and Masmoudi (2020) Sea-air intermodal
transportation MILP MILP got competitive results in instances from a

real-world case study.

Ganji et al. (2020) Green production and
distribution

Non-linear model
and NSGA-II

The proposed method got solutions that minimizes the carbon
emitted by the vehicles with statistical testes to validate results.

Source: Authors.

No examples were found in the literature of using the BRKGA metaheuristic
together with the IGA to solve integrated scheduling and distribution problems (WANG;
GRUNDER; MOUDNI, 2015; MOONS et al., 2017). Therefore, the paper proposes studying
these metaheuristics, comparing their performance with exact strategies, such as MILP and
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approximates, such as constructive heuristics and single metaheuristics, for the proposed
OSSP-VRP problem.

9.3 Problem statement and MILP model

In this section some basic characteristics of the OSSP-VRP are illustrated. The main
premises adopted for modelling the production and distribution environment proposed are
as follows:

1. The production system considered is the open shop environment. The system com-
prises a limited set of stages. Each stage has one single machine. The jobs can be
processed in different sequences by each of the machines.

2. All jobs are processed in a production environment and stored in a single depot
before distribution.

3. There is an intermediate inventory between production and distribution with unlim-
ited capacity for storing jobs with completed production.

4. The distribution system considered is the transportation by a capacitated single
vehicle. Each job allocated to a route has a volume; the sum of the volumes of all
jobs allocated to a route should comply with the vehicle capacity.

5. The aim of the problem is the minimization of the distribution total time, i.e., the
accumulated distribution time of the last job plus the time needed for the vehicle to
return to the depot. This is the total length of scheduling (makespan).

The problem consists of scheduling a set of jobs n to be processed on a set of
machines m, where each machine and job operation has a processing time. When a job
finishes all the operations required for it, the job goes to an intermediate inventory. All
jobs are processed and stored in a single depot. Each job is an order, has a volume (size),
and must be delivered to a customer by a single vehicle with finite capacity (maximum
size). The travel time between the depot and the customers of the jobs, and the customer
to another, is defined by a matrix of travel times. Each delivery route must not exceed the
vehicle’s maximum capacity and must start and end at the depot. The objective of the
problem is to minimize the total duration of the scheduling + route planning (makespan),
finding a sequence to process the operations and a route to deliver the orders to the
customers.

Thus, according to the classification of integrated problems, as proposed by Moons
et al. (2017), OSSP-VRP is a production scheduling problem in an open shop environment
in a single production plant, with intermediate inventory of unlimited capacity and routing
by a capacitated single vehicle with limited capacity, multiple trips and deterministic
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routing times. Since the problem is integration between scheduling and distribution, the
classical notation of scheduling problems of Lawler et al. (1993) is not applicable.

Tables 36, 37 and 38 show a complete example of an instance for the problem, with
three machines and three jobs. Table 36 shows the processing time matrix pdj for each
job operation on a machine. In this table, each line corresponds to a processing stage
(machine), and each column corresponds to a job. The indices represent machines or jobs
(1, 2 and 3 are M1, M2 and M3, respectively or J1, J2 and J3, respectively).

Table 36 – Processing times for open shop example

pdj 1 2 3
1 65 15 20
2 70 50 50
3 30 35 30

Source: Authors.

Table 37 illustrates the travel time matrix σij between the depot (location of the
plant where the products are produced) and customers. On this matrix, the index 0
represents the depot, and the others represent the customers. The matrix is asymmetric.

Table 37 – Delivery times for open shop example

σij 0 1 2 3
0 0 10 20 30
1 30 0 20 10
2 30 10 0 11
3 20 10 11 0

Source: Authors.

Finally, Table 38 shows the volume sj of each job. The total vehicle capacity Ψ is
equal to 10. The total volume allocated to a route must not exceed the capacity Ψ.

Table 38 – Size of jobs (in volume)

1 2 3
sj 3 7 5

Source: Authors.

In order to represent this problem in an effective data structure for heuristics
modelling, the open shop scheduling to be carried out needs to be represented as the
sequence of operation of jobs in machines. Several representation schemes for the solution
of the open shop problem have been used in the literature (ANAND; PANNEERSELVAM,
2016; BRÄSEL; TAUTENHAHN; WERNER, 1993). The representation through the list
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of operations obtained the best performances, when used in heuristic methods (NADERI
et al., 2010). The representation is illustrated in Table 39; due to the characteristics of the
open shop, operations can be carried out in any sequence.

Table 39 – Operations for the presented instance

Operation 1 2 3 4 5 6 7 8 9
Machine 1 1 1 2 2 2 3 3 3
Job 1 2 3 1 2 3 1 2 3

Source: Authors.

The instance of three jobs and three machines have nine operations (3 × 3) Odj.
Each operation is the processing of job j in machine d. A solution of the open shop
scheduling is any sequence of these operations.

The other part of the solution representation is allocating jobs on the routes and
their sequence. This structure is represented by an ordered array, where each element
corresponds to a route and each route has a sequence of jobs. An example of a solution to
the problem described in tables 36 to 38, is illustrated below:

S = {5, 3, 9, 6, 4, 8, 7, 2, 1}

R = {R1 : [3, 1], R2 : [2]}

Where S is the sequence of operations to be processed and R is the route sequence.
In this case, there are two routes; in the first route, job 3 and job 1 are delivered whereas
in the second route only job 2 is delivered.

Figure 68 shows the graphic representation of the problem solution. The Figure
illustrates a Gantt chart with the scheduling of jobs and distribution routes. On the y-axis,
there are resources such as machines and routes, and on the x-axis, there is time in time
units (u.t.).

In the scheduling of the jobs on the machines M , each bar represents the processing
time of each job, with the time pdj. The J is the completion time of each job in the
production schedule. It is the time that the job is available to enter in a route.

In the scheduling of the R routes, the time of the first job consists of the time
spent from depot to customer, whereas the time of the last job of the route consists of the
time to arrive at customer and to return to the depot. The time of any intermediate job
on the route is the travel time from the previous job to the intermediate job. It can be
observed that the routes are ordered by the shortest possible starting time (the starting
time of an route is the maximum completion time of all jobs allocated in route).
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Figure 68 – Gantt chart for scheduling and routing of solution
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For example, the start time of route R1 at the depot is 265, then it delivers order 3
and 1 then returns to the depot. The total time would be the start time + σ03 + σ31 +
σ10, ending the delivery at 335 (u.t.).

Therefore, route 1 can only initiate in 265 u.t. time, because of the finishing time
of job 1 allocated to the route, route 2 is executed first in the scheduling. Route 2 can
be initiated at time of 100 u.t, when job 2 finishes processing. In this solution, there is a
total delivery time of 335 u.t. Figure 69 illustrates the optimal solution for the presented
instance, with the lowest makespan of 210 u.t.

It can be clearly seen that the finishing times of production for jobs 2 and 1 end
in sync with the time the routes start. There is no waiting time for these jobs in the
intermediate inventory to enter the route and be delivered to the customer.

We proposed the mathematical integer linear programming model in equations
(9.1)-(9.27). As the constraints concerning the open shop were created based on a positional
notation of the decision variables used to model numerous production programming prob-
lems (STAFFORD; TSENG; GUPTA, 2005). The routing and integration constraints were
based on the model proposed by Tavares-Neto and Nagano (2019). The sets, parameters
and decision variables used to design the mathematical model were defined below. The
parameter m is the number of machines and n the number of jobs.

Indices and sets:

d, r: Index used to identify machines {1,2,...,m}.
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Figure 69 – Gantt chart for scheduling and routing of best solution
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j, q, l, e: Indexes used to identify jobs {1,2,...,n}.

i, j, h: Indexes used to identify distribution points (depot + jobs) {0,1,2,...,n}.

k: Index used to identify a route {1,2,...,n}.

Parameters:

pdj: The processing time of job j in machine d.

sj: The volume of job j.

Ψ: The total capacity of the vehicle (in volume).

σij: Travel time between customer of job i to customers of job j.

M , G e V : Very large constants (used in MILP).

Decision variables:

Xjdq: 1, if operation Odj is processed in position q of job j, and 0 otherwise.

Yjdl: 1, if operation Odj is processed in position l of machine d, and 0 otherwise.

CTjd: Completion time of operation Odj.

Cj: Completion time of job j.

wijk: 1, if job j is delivery by route k immediately after job i, and 0 otherwise.

Aj: Amount of capacity allocated to the vehicle when it arrives at the customer of
job j or depot.
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Rk: Release time of route k.

Dj: Delivery time of job j at customer.

z: The system makespan.

The mixed-integer linear programming model for the OSSP-VRP is presented below:

minimize
z (9.1)

subject to
CTjd ≥ pdj , ∀d > 0, j > 0 (9.2)
Cj ≥ CTjd, ∀d > 0, j > 0 (9.3)∑

q

Xjdq =
∑

l

Yjdl = 1, ∀j > 0, d > 0 (9.4)

∑
d

Xjdq = 1, ∀j > 0, q (9.5)∑
j

Yjdl = 1, ∀d > 0, l (9.6)

CTjd ≥ CTjr + pdj − (1−Xjdq)M − (1−
q−1∑
t=1

Xjrt)M, ∀j > 0, d > 0, r, q > 1 (9.7)

CTjd ≥ CTed + pdj − (1− Yjdl)M − (1−
l−1∑
t=1

Yedt)M, ∀j > 0, d > 0, e, l > 1 (9.8)

w00k−1 ≤ w00k, ∀k > 1 (9.9)∑
k

wijk ≤ 1, ∀i > 0, j > 0 (9.10)∑
i

∑
k

wijk = 1, ∀j > 0 (9.11)∑
j

w0jk = 1, ∀k (9.12)

∑
j

wj0k = 1, ∀k (9.13)

wjjk = 0, ∀j > 0, k (9.14)

w00k +
∑
j≥0

wijk ≤ 1, ∀i, k (9.15)

∑
h,h̸=i

wihk =
∑

h,h̸=i

whik, ∀i, k (9.16)

A0 = 0, (9.17)
si ≤ Ai ≤ Ψ, ∀i > 0 (9.18)
Ai ≥ Aj + si −G(1− wijk), ∀i > 0, j ̸= i, k (9.19)

Ai ≤
∑

j,j≥0

∑
h

(sjwihk + G(1− wihk)), ∀i > 0, k (9.20)

Rk ≥ Ci −M(1− wijk), ∀i > 0, j, k (9.21)
Di ≥ Rk + σ0i − V (1− w0ik), ∀i > 0, j, k (9.22)

Dj ≥ Di + σij − V (1−
∑

k

wijk), ∀i > 0, j ̸= i (9.23)

Rk ≥ Di + σi0 − V (1− wi0k−1), ∀i > 0, k > 1 (9.24)
z ≥ Di + σi0 − V (1− wi0k), ∀i > 0, k (9.25)
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Xjik, Yjil, wijk ∈ {0, 1} ∀i, j, k, l (9.26)
CTij , Cj , Aj , Rk, Dj , z ∈ R+ ∀i, j, k (9.27)

The mathematical model is divided into four parts. The first part are the constraints
for the open shop problem, with the positional notation, presented constraints (9.2) - (9.8).
The second one are the constraints for the single vehicle routing, present in constraints
(9.9) - (9.16).

The third part involves the constraints of vehicle capacity and volume of each
job, found in constraints (9.17) - (9.20). Finally, the fourth part shows the integration
constraints between the open shop scheduling problem and the routing problem, found
in equations (9.21) - (9.25). Equations (9.28) - (9.30) illustrate the calculation of the
parameters used as sufficiently big numbers in MILP.

Equation (9.2) assumes that the time to complete an operation must be equal or
higher than its processing time. Equation (9.3) enforces that the completion time of a job
be higher than the completion time of all its operations. Equations (9.4)-(9.6) illustrate
the flow control of the open shop decision variables, where each operation has only one
position and each position has only one operation. Equation (9.7) and equation (9.8) define
the completion time of the operations.

Equation (9.9) ensures that no empty route should exist between two populated
routes. An empty route starts and ends in the depot. A populated route starts in the
depot, visits customers, and ends in the depot. Equation (9.10) indicates that each arc
(i,j) can be part of only one route. Equation (9.11) indicates that only one route visits a
customer. Equation (9.12) and Equation (9.13) ensures that each route enters and leaves
the depot only once. Equation (9.14) prohibits the vehicle from entering and leaving the
same customer. Equation (9.15) enforces that route k does not enter and leave the depot,
when it is used in the solution. Equation (9.16) keeps the flow control of the routing.

Equation (9.17) sets the capacity allocated to the vehicle when it arrives at the
depot (end of a route) must be equal to zero, the depot has index 0. Equation (9.18) and
Equation (9.19) establish the lowest and highest load limits when it arrives at customers.
Equation (9.20) and Equation (9.21) establish the removal of sub-routes, based on the MTZ
constraints (DESROCHERS; LAPORTE, 1991). In addition, Equation (9.21) indicates
that the release time of a k route must be higher than the completion time of the jobs
allocated to that route.

Equation (9.22) and Equation (9.23) calculate the job delivery time to the customer.
Equation (9.24) enforces that a route´s starting time is higher than the finishing time of
the previous route. Equation (9.25) calculates the objective function value as the time of
completion of the last route added to the vehicle´s returning time to the depot. Finally,
Equation (9.26) and Equation (9.27) describe the domain of the decision variables.
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M =
∑

d

∑
j

pdj (9.28)

G =
∑

i

si (9.29)

V = M +
∑

i

∑
j

σij (9.30)

Equations (9.28)-(9.30) show the calculation of the Big-M parameters for mod-
eling the "if-then" constraints. The MILP model proposed has altogether nm (n + m) +
n (n + 1)2 + n (m + 4) + 3 decision variables, where nm (n + m) + n (n + 1)2 are binary
variables and n (m + 4) + 3 are real variables. The model has 5nm + nm2 (m− 1) +
n2m (n− 1) + n (3n2 + 9n + 7) linear constraints. The constraint with the largest size is
the one found in equations (9.7) and (9.7) with the worst case complexity of O (m2n2).
The Table 40 illustrates a comparison of number of constraints and decision variables of
MILP, for several different instance sizes.

Table 40 – Comparison of MILP formulation with examples of instances sizes for OSSP-
VRP

Instances sets MILP

m n # integer
variables

# continuous
variables # constraints

3 3 102 24 336
4 4 228 35 828
5 5 430 48 1760
6 6 726 63 3354
7 7 1134 80 5880
8 8 1672 99 9656
9 9 2358 120 15048

10 10 3210 143 22470
15 15 10590 288 107880
20 20 24820 483 333740

Source: Authors.

9.4 Optimization methods

As the problem is a generalization of the classical open shop, there is a high number
of viable solutions, which is considered a problem hard to solve (GUÉRET; PRINS, 1998).
Exact approaches for this problem are hard to apply in practical situations with large-
scale instances, due to the high computational costs incurred. Therefore, heuristic and
metaheuristic methods need to be used. Thus, the proposal is: a greedy insertion heuristic,
based on the NEH constructive technique (NAWAZ; JR; HAM, 1983), as a heuristic



213

method and an iterated greedy algorithm and a biased random key genetic algorithm, as
metaheuristic methods. Moreover, the proposal also includes a hybrid approach joining
together the three resolution strategies considered.

The following subsections describe the GIA, IGA, and BRKGA methods adapted
for OSSP-VRP. Section 5 illustrates the new proposed hybrid method BRKGA-IG that
uses a hybridization of BRKGA and IGA to improve the solutions’ quality.

9.4.1 Greedy insertion algorithm (GIA)

The proposed insertion heuristic is an adaptation of the insert-and-order algorithm
proposed by Tavares-Neto and Nagano (2019). In each iteration, the heuristic is based
on two steps: the first is the ordering of operations and the second is the insertion of
operations, in all possible positions in the operations sequence and the insertion of jobs, in
all possible positions in the routes, returning the insertion of the operations and routes
that obtain the best makespan.

GIA is based on the NEH constructive heuristic, adapted for the OSSP-VRP. The
operations are tested in all possible positions of the operations vector, whereas the jobs
are tested in each route and the best position considered in each route is the one that has
the cheapest insertion cost, as in Equation (9.31), where ∆ is the insertion cost of job j

between job i and job e in the route.

∆ = σij + σje − σie (9.31)

Figure 70 illustrates the pseudo-code of GIA; the algorithm receives the V list as
input with the ordered operations in decreasing order of processing time. The algorithm
returns the S∗ operations vector and the R∗ route vector obtained with the best insertions
carried out. The heuristic proposed is not dependent on the parameters.
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Data: p, σ, s, Ψ
Result: A operation sequence S∗ and route R∗

1 V ← set of operations sorting in non-increasing order of processing time p;
2 S, S∗ ← {}, {} operation sequences;
3 R, R∗ ← {}, {} route sequences;
4 foreach πdj ∈ V do
5 foreach position q ∈ S∗ do
6 S ← solution with πdj inserted in position q in S∗;
7 if job j of operation πdj was processed totally then
8 foreach route r ∈ R∗ do
9 R← solution with insertion of job j in route r in position with best

saving ∆ = σij + σje − σie respecting the total volume Ψ;
10 compute makespan of new S and R solutions;
11 end
12 end
13 end
14 Update S∗, R∗ with the best solution found;
15 end

Figure 70 – The pseudo-code for the GIA heuristic

Lines 1-3 lines initiate the data structures of the algorithm. In line 4, the main
GIA loop is initiated, where each operation πdj is tested in every possible position in line
6. Line 7 tests if all the operations related with j job were inserted, if true, the algorithm
tests the insertion of job j in all routes, and the position that obtains the smallest saving
is selected. This test is performed in line 9. Finally, in line 14 solutions S∗ and R∗ are
updated with the best insertions found in the operations and routes vector, respectively.

9.4.2 Iterated greedy algorithm (IGA)

The proposed iterated greedy algorithm is an adaptation of the IGA algorithm
proposed by Tavares-Neto and Nagano (2019), for the OSSP-VRP. The IGA algorithm
proposed works as a GIA constructive heuristic natural extension. The IGA is an algorithm
widely used for scheduling problems, such as flow shop (RUIZ; STÜTZLE, 2008; JIN;
SONG; WU, 2007).

The IGA is a type of stochastic local search, in which its basic framework consists
of three main processes:

Generation of the initial solution: This is the structure that provides the initial so-
lution for the algorithm to be executed from it. In this study, it is the solution
generated by the GIA algorithm.

Destruction phase: One part of the current solutions is removed using a given criteria.
In the study, a percentage of the operations are randomly removed from the solution.
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In the case in which an operation of a job is removed, that job is also removed from
the route to which it was allocated.

Construction phase: A structure is used that builds a new solution from the partial
solution obtained from the destruction phase. In the proposed algorithm, the GIA
algorithm is executed again from the partial solution of the operations and routes
vector.

Figure 71 illustrates the IGA pseudo-code; the algorithm receives two parameters
as input: Ncycles is the number of cycles (iterations) of IGA and that pr is the percentage
of operations to be removed randomly in the destruction phase. Those two parameters
are dependent on the size of the problem and must be optimized. The algorithm returns
the best S∗ operation vector and the best vector with the routes R∗ obtained among all
iterations of the algorithm performed.

Data: p, σ, s, Ψ
Result: A operation sequence S∗

π and route R∗
π

1 Ncycles← number of iterations;
2 pr ← percentage of operations removed in the destruction phase;
3 Sπ, Rπ ← GIA(, Ψ);
4 S∗

π ← Sπ;
5 R∗

π ← Rπ;
6 for i = 1 to Ncycles do
7 S

′
π, R

′
π ← Destruction(Sπ, Rπ, pr);

8 Sπ, Rπ ← GIA(S ′
π, R

′
π) // Construction phase

9 if makespan(Sπ, Rπ) < makespan(S∗
π, R∗

π) then
10 S∗

π ← Sπ;
11 R∗

π ← Rπ;
12 else
13 Sπ ← S∗

π;
14 Rπ ← R∗

π;
15 end
16 end

Figure 71 – A generic pseudo-code for IGA

Lines 1-5 initiate the parameters and data structures of the algorithm. In line 6, the
main IGA loop initiates, where each destruction and reconstruction pair is executed. In
line 7, the algorithm destruction phase is executed, where N × pr operations are removed
randomly from vector Sπ, where N is the size of the problem. For all removed operations,
their respective jobs in route Rπ are removed.

In line 8, the IGA construction phase is carried out; the GIA algorithm is executed
from the partial solution S

′
π, R

′
π. The algorithm is executed testing the insertions of the
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operations insertions not yet inserted in the solution. In lines 9-14, if the new solution
obtained is better than the best solution found, the best solution is then updated and
the construction phase starts again. Otherwise, the algorithm returns to the construction
phase still with the best current solution. It is clear that the acceptance criterion is of the
hillclimbing type (RUIZ; STÜTZLE, 2008).

9.4.3 Biased random key genetic algorithm (BRKGA)

The BRKGA algorithm is a populational metaheuristic, based on the key concepts
of the genetic algorithm, with each individual of the population as a vector with random
keys (GONÇALVES; RESENDE, 2011), where the crossover between individuals occurs
in a biased manner, favouring the genetic material from the population‘s best solutions.
The BRKGA was initially designed to solve permutational problems, where the solution
could be structured as a single-value sequence (ANDRADE et al., 2019).

Because of this structure, the BRKGA has been widely used to solve production
scheduling problems because usually the solution of these problems can be represented as
a single-value sequence, as a list of the sequence of jobs or operations processing, in the
OSSP case.

The BRKGA performed better compared to the classical metaheuristics proposals
for industrial engineering problems, as in: Gonçalves and Resende (2004) that devel-
oped a BRKGA for the cell formation problem, which performed better than classic
GA. The BRKGA gets good performance for job shop problems, as in (GONÇALVES;
MENDES; RESENDE, 2005) and (BEIRÃO et al., 1997). Obtaining better results than
the metaheuristics SA and Tabu Search.

Andrade, Silva and Pessoa (2019) developed a BRKGA for a flow shop problem
minimizing the total flowtime, proposing a new perturbation mechanism of the solution,
population reset and local search. The algorithm obtained better results than an ILS and
IGA. Finally, Andrade et al. (2019) developed a BRKGA with a path relinking structure
as a local search. They obtained a better performance than the classic BRKGA strategies
for the firmware-over-the-air scheduling problem (FOTA).

The proposed BRKGA algorithm starts by generating p random keys with values
between 0 and 1. Two individuals from this population are replaced by solutions generated
by the GIA algorithm, the first with the vector of operations V increasing order of
processing times and the second in decreasing order, as a warm-start strategy. The
individuals generated by the GIA, are encoded in the form of random keys to be inserted
into the population.

After having created the initial population, the BRKGA initiates its cycle of
generations. Figure 72 illustrates the process of a generation of the algorithm; it is used a
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decoding function that converts the random key in the value of the makespan of solution.
Therefore, all the solutions are ordered in relation to the makespan. The best pe are
considered from the elite set and added directly to the new population.

Figure 72 – BRKGA scheme for population evolution

Source: Authors

The worst pm solutions are replaced by the new mutating solutions, created ac-
cording to the initial population generation procedure. The rest of the solutions from the
new population are inserted through a p− pe − pm crossover execution between an elite
group member and a non-elite group member. A uniform crossover operator is used, the
probability of the father elite gene insertion is ρ. These steps are executed by a certain
number of generations or until a time limit. The BRKGA has the following parameters:
pe, pm, ρ, p, num_gen and time_limit, these parameters need to be optimized.

The only BRKGA operator that is dependent on the problem is the decoding
operator. It must be formulated so that it is possible to convert the characteristics of
the solution in the form of random keys for the problem domain, so that it is possible to
calculate the objective function. Figure 73 illustrates the proposed decoding scheme.

An example of a random key is illustrated for the best solution of the example
problem, shown in figure 69. The key has a size of m×n+n+n. Each dashed line represents
a block of the solution. Where the first block represents the sequence of operations, the
second the sequence of jobs in routes and the third the allocation of jobs on each route.

The jobs in routes and operations sequences are obtained by ordering the vector in
its respective blocks with increasing order. Therefore, the jobs in routes or operations are
the indexes of vectors, ordering by values of each index in increasing order. The assignment
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Figure 73 – Proposed decoder for OSSP-VRP

Source: Authors

of the jobs to the routes is obtained by multiplying the value of each key, with index
related to a job, by the total number of routes, which is equivalent to the number of
jobs of the instance, rounding the value up. The sequence of routes are ordered by the
shortest possible starting time. The starting time of the route is the maximum production
completion time among all jobs allocated in route.

With this decoding scheme unfeasible solutions can still be obtained, with routes
that do not comply with the capacity Ψ of the vehicle. Therefore, a penalty mechanism of
the solution is proposed. Equation (9.32) describes the calculation of the decoded solution
fitness, applying the penalty operator.

Fitness = makespan +
∑

r∈Routes|vr>Ψ
(vr −Ψ)×Ψ (9.32)

Where vr is the amount of volume assigned to route r and Ψ is the capacity of the
vehicle. Thus, if there is a route in which the capacity of the vehicle is exceeded, a penalty
is added to the makespan, which is proportional to the exceding volume in the route.

9.5 The new hybrid approach (BRKGA-IG)

The proposed hybrid approach uses local search strategies in metaheuristics that
provoke considerable improvements in algorithms, intensifying the exploitation phase of the
neighborhood of solutions (ANDRADE; SILVA; PESSOA, 2019). Therefore, the present
paper proposes the hybridization of BRKGA and IGA, with IGA as a local search strategy
(BRKGA-IG). The BRKGA-IG uses IGA as a search algorithm in the exploitation phase
to improve solutions during execution of generations. Also, is added a restart procedure
to reduce premature convergence of the population, where to each R iterations without
improvement, the population is restarted, keeping only the best solution.
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The figure 74 illustrates the complete pseudo-code of BRKGA-IG. The algorithm
is dependent on the following parameters: pe, pm, ρ, p, L, R, gen e time_limit.

Data: p, σ, s, , Ψ, pe, pm, ρ, p, L, R, gen e time_limit
Result: A bestsol solution found

1 p← number of individuals in population P ;
2 pe ← percentage of elite set;
3 pm ← percentage of mutant set;
4 ρ← probability to select a elite father key in crossover;
5 L← number of generations to apply IGA;
6 R← number of generation without improvement to apply restart;
7 gen← number of generation;
8 Initialize population P with p random individuals and GIA solutions;
9 bestsol← best GIA solution found;

10 k ← 0 ; // Number of generations without improvement
11 iter ← 1;
12 while iter < gen or run time does not end do
13 Evolve P one generation ; // Using P, p, ρ, pe and pm

14 sol← best solution ∈ P ;
15 if iter mod L = 0 then
16 Apply IGA in sol and inject chromosome in population P ;
17 end
18 if makespan(sol) ≥ makespan(bestsol) then
19 k ← k + 1 ; // The best solution was no improvement
20 if k ≥ R then
21 Replace population P with bestsol, GIA solutions and random

individuals;
22 end
23 else
24 k ← 0;
25 bestsol← sol;
26 end
27 iter ← iter + 1
28 end
29 return bestsol

Figure 74 – A generic pseudo-code for a BRKGA-IG

In lines 1-11, starts the parameters and data structures of BRKGA-IG. In line 12,
there is the main while loop of the algorithm. The algorithm runs while the number of
generations or the execution time limit is not exceeded. In line 13, the generation process
of BRKGA is executed according to figure 72. In lines 14-17, the algorithm applies to each
L generations the IGA procedure in the best solution obtained in that generation.

In lines 18-26, the BRKGA-IG tests if the generation found no better solution than
bestsol. If the number of generations without improvement is greater than R limit, the
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algorithm executes the restart in line 21. Otherwise, the best solution is updated and is
reset the k counter. In line 29, the BRKGA-IG returns the best solution found.

9.6 Results and analysis

The exact and approximate optimization methods were evaluated using literature
benchmarking problems. These problems are instances proposed by Guéret and Prins
(1998), Taillard (1993) and Brucker et al. (1997). These instances are a set of data usually
used for testing algorithms to solve classic OSSP. We adapted these instances to the
OSSP-VRP problem.

In Guéret and Prins (1998) instances, the processing times are random values,
uniformly distributed between 1 and 1000. The problem sizes considered were: n, m ∈
{3, 4, 5, 6, 7, 8, 9, 10}. There are 10 instances for each problem class, totalizing 80. In
Taillard (1993) instances, the processing times are random values, uniformly distributed
between 1 and 100. The problem sizes considered were: n, m ∈ {4, 5, 7, 10, 15, 20}. There
are 10 instances for each problem class, totalizing 60. In Brucker et al. (1997) instances,
the processing times are random values uniformly distributed between 1 and 500. The
problem sizes considered were: n, m ∈ {3, 4, 5, 6, 7, 8}, totalizing 60 instances. In summary,
we adapted 192 instances to OSSP-VRP.

The parameters sj, σij and Ψ were randomly created, based on the procedure
proposed by Tavares-Neto and Nagano (2019). The volume of order sj, is an integer
between [1, 10]. The travel time, σij is determined by generating points in a plane θs × θs,
where θs is an integer between {10, 20, 30}, the travel time is calculated based on the
euclidean distance between the points. Finally, the vehicle capacity Ψ is a random integer
between [max(σ), 5×max(σ)].

We implemented all the proposed and benchmarking algorithms in the Julia 1.5.1
language (https://julialang.org/). The MILP model was implemented in the IBM ILOG
CPLEX 12.10 solver. The computational experiments were executed in a virtual machine
with Intel® Xeon(R) CPU E5-2660 2.20GHz and 12GB of RAM. All the source codes,
instances sets, and results of the algorithms are available at http://repositorio.uspdigital.
usp.br/handle/item/443.

To obtain the best parameters of each proposed metaheuristic, the IRACE package
(LÓPEZ-IBÁNEZ et al., 2016) was used. The table 41 illustrates the parameters considered
for tuning each of the algorithms and the best parameter obtained in the IRACE tests,
where N = m × n is the problem’s size. The IRACE package is used to find the best
combination of parameters for optimization algorithms; IRACE provide the information
of the test results for a set of combination parameters. For example, in table 41 for the
BRKGA algorithm, IRACE recommends adopting intermediate values of the parameters

https://julialang.org/
http://repositorio.uspdigital.usp.br/handle/item/443
http://repositorio.uspdigital.usp.br/handle/item/443
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pe, pm, ρ and gen and the smallest available value for parameter p equal to 10×N .

Table 41 – IRACE parameter range settings and resulting values

Parameters IGA BRKGA BRKGA-IG
Ncycles pr p pe pm ρ gen L R

Proposed {5, 10, 15} [0.30, 0.70] {10, 25, 50} [0.15, 0.30] [0.05, 0.15] [0.50, 0.85] {10, 25, 50} {10, 50, 100} {100, 500, 1000}
IRACE 10×N 0.55 10×N 0.25 0.15 0.55 25×N 10 1000

Source: Authors.

During the IRACE execution, the algorithm interactively updates the form of pa-
rameter sampling, aiming to use the best parameters region that improves the performance
of the optimization algorithms. The sampling frequency of the parameters can provide
important insights into the behavior of the optimization algorithm when the parameters
are changed (LÓPEZ-IBÁNEZ et al., 2016). Figure 75 shows the parameters sampling
frequency for developed methods.

Figure 75 – Parameters sampling frequency for developed methods
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The parameters related to the generations of BRKGA-IG were the same used in
BRKGA. For the BRKGA and BRKGA-IG algorithms were defined 30 min of execution
time, as one more stop criterion, in addition to the number of generations. The maximum
execution time of MILP was the same as other approximation methods (30 min).

For comparison purposes, the parameters for the number of generations and
maximum execution time of the CSA and IABC algorithms were the same as those used
in the BRKGA and BRKGA-IG algorithms. We set the other CSA parameters according
to Feng, Niu and Liu (2021). The IGA was used as a global search in the IABC algorithm,
with the other parameters set according to Li et al. (2020b).

The indicator used to measure the efficacy of the computational experiments is
the gap between the solution obtained by the method (solik) and the best-known solution
for the instance of the classic OSSP (BKSi), as an estimate of the lower bound for the
OSSP-VRP. Therefore, it may be reduced to a classic open shop problem, eliminating
the routing parameters. The equation (9.33) illustrates the relative percentage deviation
indicator, where solik is the value of the instance i obtained by the method k and BKSi

is the best solution of the classic OSSP, for instance i.

RPDik = solik −BKSi

BKSi

· 100 (9.33)

In summary, the methods considered for the comparison between performance and
computational times were:

• Mixed-Integer Linear Programming (MILP): the proposed MILP model.

• Greedy Insertion Algorithm (GIA): a constructive heuristic developed by us.

• Cooperation Search Algorithm (CSA): a competitive metaheuristic proposed by
Feng, Niu and Liu (2021).

• Improved Artificial Bee Colony (IABC): a competitive metaheuristic proposed by Li
et al. (2020b).

• Iterated Greedy Algorithm (IGA): a meta-heuristic adapted for OSSP-VRP and
initially proposed by Tavares-Neto and Nagano (2019).

• BRKGA with a new decoding scheme (BRKGA): a meta-heuristic proposed by us.

• BRKGA hybridized with IGA (BRKGA-IG): a meta-heuristic proposed by us.

Table 42 illustrates the average RPD (ARPD) for each set of instances and the
optimization methods. In bold are the best results obtained for each set of instances. In
the last three lines, there is a statistical summary of the optimization methods tested.
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Table 42 – Results of optimization methods for each set of instances

Group Size MILP GIA CSA IABC IGA BRKGA BRKGA-IG
Gueret and Prins 3 1.37 22.95 1.37 1.37 1.37 1.37 1.37

4 1.48 12.94 1.77 1.59 1.53 1.48 1.48
5 2.61 24.59 1.92 1.77 1.30 1.16 1.15
6 6.24 33.75 3.61 1.90 1.31 1.20 1.04
7 29.90 27.46 5.74 4.78 2.60 1.93 1.13
8 46.00 49.00 13.15 10.42 8.45 8.22 5.14
9 41.41 52.46 13.14 12.69 11.08 9.49 6.33

10 45.97 51.32 16.79 16.23 16.36 12.79 9.36

Taillard 4 15.39 44.48 17.53 16.77 15.42 18.02 15.39
5 16.80 40.90 17.08 15.94 15.67 18.18 14.70
7 39.47 47.05 14.67 14.21 16.45 13.40 12.10

10 50.29 41.47 15.34 13.44 20.40 45.99 11.58
15 50.42 37.69 16.14 19.18 18.79 72.05 15.05
20 62.40 39.20 20.13 23.34 21.53 28.38 18.34

Brucker 3 1.71 10.59 1.71 1.71 1.71 1.71 1.71
4 1.88 30.56 3.45 4.08 1.96 2.22 1.88
5 5.48 38.87 5.75 5.54 4.63 4.59 3.30
6 23.73 45.66 7.45 6.65 8.08 6.23 4.14
7 47.86 51.64 11.27 11.53 15.16 10.11 7.75
8 48.94 58.42 14.42 13.20 19.36 15.39 10.13

Min 1.37 10.59 1.37 1.37 1.30 1.16 1.04
Average 26.97 38.05 10.12 9.82 10.16 13.70 7.15

Max 62.40 58.42 20.13 23.34 21.53 72.05 18.34

Source: Authors.

Regarding the results of the instances of Gueret and Prins, most of the methods
obtained good results in instances of size 3 and 4. For the larger instances, BRKGA-IG
got the best results. For Taillard instances, the ARPD results, in general, presents high
values, with the BRKGA-IG metaheuristic obtaining the best results in instances of size
greater than 4. Finally, for Brucker instances, the IGA and BRKGA-IG obtained similar
results, with a greater difference in instances with sizes between 7 and 8.

Figure 76 shows a violin graph of the RPD distribution obtained by the optimization
methods in all tested instances. In general, BRKGA-IG obtained the best results, followed
by IGA and BRKGA. The CSA e IABC got similar results of RPD. The GIA heuristics
got the worst results, denoting the difficulty of solving the problem using simple heuristic
methods.

Concerning the RPD distribution, in figure 76, the BRKGA-IG method has the
lowest median in comparison to the other methods, although it is very similar to the
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Figure 76 – RPD for all optimization methods in all sets of instances
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results of the CSA, IABC and IGA median. However, the RPD distribution of BRKGA-IG
has more values closer to zero than other methods because the base of the distribution
is denser. For a better comparison, figure 77 illustrates the ARPD of each optimization
methods, grouped by instance size. The figure illustrates the comparison between our
proposed algorithms (MILP, GIA and BRKGA-IG) and other benchmarking algorithms
(CSA, IABC, BRKGA and IGA).

Concerning figure 77, it is possible to verify that the MILP obtains a good perfor-
mance up to the instances of size 6, with the loss of performance increasing gradually with
the increase of instance size. It is indicating the difficulty of solving the complex problem
by exact methods. The constructive heuristics GIA gets the worst performances in relation
to the others ranging in GAPs between 20% and 50%. In larger instances, GIA gets better
performance than MILP.

Among the metaheuristic methods, they have a similar performance until the
instances of size 9. BRKGA obtains the worst results, especially in size 15 instances, and
this may indicate that the generation of large-size instances of Taillard (1993) is difficult
to solve by the method. In larger instances, BRKGA-IG obtains better performance than
CSA, IABC, BRKGA and IGA, meaning that with the hybridization of the methods, it
is possible to improve OSSP-VRP solutions, especially with larger instances. The GAPs
of the instances sizes greater than 9 are, on average, smaller than 20%, showing that
BRKGA-IG is promising to solve large-size instances.

Regarding computational times, figure 78 illustrates the average computational
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Figure 77 – ARPD and confidence interval (α = 0.05) for all optimization methods in
each instance size
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Figure 78 – Average computational times and confidence interval (α = 0.05) for all opti-
mization methods in each instance size
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times obtained in each method for each grouped instance size. To analyze the computational
time with increasing instance size, table 43 shows average computational times of all
optimization methods for each set of instances. The GIA heuristics presents computational
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times smaller than 1 second, so it was not considered in the visualizations.

Table 43 – Average computational times of optimization methods for each set of instances

Group Size MILP CSA IABC IGA BRKGA BRKGA-IG
Gueret and Prins 3 0.71 2.56 1.62 0.09 0.37 0.61

4 417.79 7.27 5.36 0.06 1.36 2.77
5 1801.40 19.32 16.91 0.24 4.25 10.75
6 1441.25 43.13 46.63 0.83 11.42 31.16
7 986.12 86.77 125.21 1.96 26.83 88.77
8 1759.28 313.35 313.92 3.43 54.96 228.97
9 1742.39 563.47 845.11 8.84 108.52 550.24

10 1800.03 1030.41 1730.10 14.51 198.27 1170.60

Taillard 4 30.94 9.21 6.81 0.06 1.32 2.73
5 1206.73 25.09 22.37 0.19 4.22 9.94
7 1187.10 110.87 169.55 1.43 26.67 79.88

10 1265.32 1164.50 1789.83 12.27 198.59 1064.79
15 1800.28 1803.21 1849.71 94.78 674.80 1815.47
20 1800.55 1813.69 1856.63 234.82 1774.79 1817.14

Brucker 3 0.70 3.05 1.84 0.01 0.33 0.51
4 81.99 8.43 6.43 0.07 1.33 2.69
5 945.57 23.32 20.20 0.22 4.24 10.38
6 704.89 50.43 61.39 0.77 11.36 33.67
7 743.09 110.94 162.82 1.98 26.60 80.12
8 1309.92 396.35 431.21 4.81 54.85 225.94

Min 0.70 2.56 1.62 0.01 0.33 0.51
Average 1051.30 379.27 473.18 19.07 159.25 361.36

Max 1801.40 1813.69 1856.63 234.82 1774.79 1817.14

Source: Authors.

It is perceptible that the MILP model with instances size greater than 7 presents
expressive computational times, indicating the difficulty of solving larger problems by
exact methods. The IGA presents the best computational times because it is a single
solution-based metaheuristic. The BRKGA-IG, as a population-based metaheuristic, gives
the highest computational costs. The CSA and IABC presents similar computational cost
until instances with size 8. For larger instances, the IABC present high computational
times than CSA and BRKGA-IG. The MILP presents the most considerable variability
between the computational times.

For a fair comparison, all metaheuristic methods used the same criteria of compu-
tational time and number of iterations (LATORRE et al., 2020). With these criteria, the
proposed method BRKGA-IG outperformed the other methods tested in solution quality.
For the same number of iterations, 10 x N and execution time limit of 30 min BRKGA-IG
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obtained better RPD results. MILP is an exact method with time-dependent branch and
bound interactions, GIA is a deterministic method, so it has a small duration with a
time less than 1 second. The other metaheuristics have the same basis of comparison and
can stop at local optimum, which indicates that the solution will not improve if more
computational time is provided. The proposed method has a restart scheme to escape
convergence to a local optimum.

To validate the results, it is essential to verify if the ARPD differences are sta-
tistically significant among better performance methods. It was then applied the t-test
for two samples (MONTGOMERY, 2017) between the BRKGA-IG and CSA methods,
with α = 0.05. The p-value result is very close to zero (p-value < 0.001), indicating that
BRKGA-IG performs significantly better than CSA.

According to figures 76 and 77, the proposed BRKGA-IG method outperforms
the MILP, GIA, CSA, IABC, BRKGA, and IGA methods. The CSA, IABC, IGA and
BRKGA algorithms have similar performances in small and medium instances

Analyzing the average of the results in the table 42 and table 43, it is possible to
verify that the MILP has the highest computational time with average ARPD results, the
GIA algorithm gets the worst ARPD, but with the lowest computational cost. BRKGA-IG
presents the best ARPD results compared to all tested methods, with higher computational
times than IGA and BRKGA and lower computational times than CSA and IABC. Finally,
BRKGA-IG is considered a competitive metaheuristic so far for OSSP-VRP, with a good
trade-off between solution quality and computational costs.

9.7 Final remarks

This paper aimed to develop a biased random key genetic algorithm for the
open shop scheduling problem, with routing by capacitated single-vehicle. The problem’s
objective function is the minimization of the total time to complete the scheduling and
distribution of jobs to customers (makespan).

We develop a new integer linear programming model to define the problem and
solve it using a commercial solver. MILP was not able to obtain optimal solutions for
m× n ≥ 6 size problems. It was also proposed approximate solution methods: GIA, IGA,
BRKGA, and a hybrid metaheuristic (BRKGA-IG), combining the three previous methods.

The BRKGA-IG obtained better results than the constructive heuristics GIA, the
classic BRKGA, the benchmarking metaheuristics CSA and IABC proposed by Feng, Niu
and Liu (2021) and Li et al. (2020b), respectively, and the metaheuristic IGA, initially
proposed by Tavares-Neto and Nagano (2019) to solve integrated problems of scheduling
and distribution. BRKGA-IG, in comparison with the other approximate and exact tested
methods, obtained the best ARPD in all sizes of instances, with admissible computational
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times.

BRKGA-IG has an intensive exploitation mechanism with iterated greedy local
search procedure, a restart mechanism to reduce premature convergence of the population,
and a new decoding scheme proposed for OSSP-VRP solutions; these mechanisms are one
of the main contributions of the research. With these mechanisms, BRKGA-IG resulted
in an average relative percentage deviation smaller than 9% and outperformed all other
algorithms tested.

As an extension of this work, we also suggest studying the problem with scheduling
considering explicit setup times, which is one of the main parameters present in complex
industrial systems. Concerning the distribution, the routing can use multiple delivery
vehicles and time window restrictions, present in several VRP problems.

Regarding the improvement of the solutions found for OSSP-VRP, it is recom-
mended to improve the MILP, using decomposition methods, aiming to improve the
efficiency and linear relaxation of the model. It is also recommended to use path-relinking
together with BRKGA to improve metaheuristics since this hybridization has been obtain-
ing good results for production scheduling problems Andrade et al. (2019). Finally, it is
possible to verify that it can easily apply the methods developed in the article to solve
other integrated production and distribution problems, including in practical instances of
real industries.
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10 CONCLUSIONS AND FUTURE RESEARCH

This section will illustrate the main contributions of each chapter of the doctoral
dissertation and its relation to the objectives of the work presented in the introduction
section. Finally, proposals for future studies will be described.

10.1 Conclusions

In this doctoral dissertation, we addressed the open shop scheduling problem. The
doctoral research was the first time this problem was studied in the literature with new
variants based in real industrial environments, such as operations repetition, zero buffer
or machine blocking constraints, and job delivery by vehicle routing. The present study
developed efficient solution methods for proposed variants considering the constraints of
the cited real industrial environments. Furthermore, it was possible to develop efficient
solutions methods to the problems already mentioned in the literature, such as the classical
open shop problem and the variant with setup times. Finally, the proposed methods were
compared with literature benchmarking methods and got competitive results.

In summary, the goal of this doctoral dissertation was to provide further insight
into these important open shop problems, deeply analyzing and developing new efficient
methods to solve them. In order to deal with this goal, several general research objectives
were identified in Section 1.2, which have been addressed along the five parts of this
doctoral dissertation as follows:

Objective 1. Implement new constructive heuristics to solve the classical open
shop problem, comparing it with seminal heuristics such as priority rules and
constructive heuristics presented in the literature.

In chapter 5, several efficient constructive heuristics that exploit some specific
properties of the OSSP, such as operations idleness and lower bound, were proposed.
An extensive computational experience using problem instances taken from the related
literature was conducted to assess the performance of the proposed algorithms compared
to existing ones with respect to the quality of the solutions and the CPU time required.

In summary, a new beam search and cheapest insertion procedures hybridized with
new constructive heuristics were developed. Finally, an efficient local search algorithm (LS)
that leads to excellent results within an admissible computational effort was proposed. The
extensive computational tests show the excellent performance of the heuristics proposed,
resulting in the one of best heuristics for the classic problem.

Objective 2. Use matheuristic techniques with the proposed constructive
heuristics, mixed-integer linear programming, and constraint programming to



230

solve the variant of the problem with setup times, with randomly generated
instances from the literature. Comparing the algorithms with the main state-
of-the-art solving methods.

In chapter 6, a new hybridization of an ALNS with a CP model as a local search
phase was presented to solve the open shop scheduling with non-anticipatory sequence-
dependent setup time. ALNS-CP used an heuristic based in operations idleness proposed
in the classic OSSP study as initial solution. An MILP model is also presented based on
the classic open shop model, and a new CP model was proposed considering proprieties of
the non-anticipatory setup times.

The proposed CP model has not been addressed in the revised literature and
outperforms all other exact methods. Many approximations and exact algorithms to
obtain high-quality solutions in acceptable computational times were tested. The extensive
computational experience shows that the proposed hybridization of metaheuristic and
constraint programming as a matheuristic approach with improvement heuristics type is
promising for solving large-sized instances.

Objective 3. Propose a formal definition for the open shop problem with
machine blocking and develop mathematical models of integer and constrained
programming and hybrid exact methods to solve the problem.

In chapter 7, a variant of the open shop scheduling problem is considered in which
the intermediate storage is forbidden among two adjacent production stages (zero buffer
or machine blocking constraint). Since this is an NP-hard problem, a two-stage constraint
programming approach was proposed as a new exact method.

Computational results point to the ability of the proposed method to solve large-
sized instances in comparison with the developed MILP model and a simple CP model,
both with user cuts. In all set of instances, the proposed two-stage method performed better
than benchmarking methods and a two-stage integer programming model implemented for
comparisons purposes.

Objective 4. Study the open shop scheduling problem, considering the possibil-
ity of repetition of operations, demonstrating properties of the problem, and
developing exact and approximate solving methods.

In chapter 8, a new variant for the open shop scheduling problem, the open shop
scheduling problem with repetitions (OSSPR), where the jobs can be processed on any
machine more than once (operation by operation) was presented. Thereby, all the jobs
can be scheduled in an unconstrained way, substantially increasing the number of feasible
solutions in comparison with the classical open shop. The OSSPR has many applications
in automotive and maintenance actives.

To solve the problem, a mixed-integer linear programming model was presented and
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a new constraint programming model was proposed. A new efficient variable neighborhood
search is also proposed using variable search strategies through a proposed constraint
programming model. Computational results show very good performance of the proposed
metaheuristic on the instances tested.

Objective 5. Study the open shop problem, integrating the scheduling and
distribution of orders by capacitated single vehicle and using exact methods
and bio-inspired metaheuristics for the problem’s solution.

In chapter 9, the open shop problem with routing by a capacitated single vehicle
was proposed in attention to scheduling problems integrating production environments and
distribution systems to adopt more realistic assumptions. The study presented a MILP
model and a new BRKGA with an IGA local search procedure to solve the problem.

BRKGA-IG has a new decoding scheme for OSSP-VRP solutions, an intensive
exploitation mechanism with an iterated greedy local search procedure, and a restart
mechanism to reduce premature population convergence. With these new mechanisms, the
extensive computational experience carried out showed that the proposed metaheuristic
BRKGA-IG was promising in solving large-sized instances for the new proposed problem,
outperforming all other tested methods.

In order to highlight the contributions already made by the doctoral dissertation,
the following studies were published and have a fundamental relationship with the present
research. The studies are ordered according to the doctoral dissertation’s objectives
sequence.

• New efficient heuristics for scheduling open shops with makespan minimization.
Computers & Operations Research. 2022.

• A new hybridization of adaptive large neighborhood search with constraint program-
ming for open shop scheduling with sequence-dependent setup times. Computers
& Industrial Engineering. 2022.

• A new two-stage constraint programming approach for open shop scheduling problem
with machine blocking. International Journal of Production Research. 2023.

• A new variable neighborhood search with constraint programming search strategy
for open shop scheduling problem with repetitions of operation. Engineering
Optimization. 2021.

• A new efficient biased random key genetic algorithm for open shop scheduling with
routing by capacitated single vehicle and makespan minimization. Engineering
Applications of Artificial Intelligence. 2021.
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Therefore, this research contributed to the production scheduling field by improving
the state of the art of the open shop problem, implementing new exact and approximate
methods, and providing opportunities for future studies.

10.2 Future research

Some studies could improve the current literature, addressing not only the open
shop mentioned variants, but other emerging variants, such as the distribution open shop,
with several factory options for the jobs production (MENG et al., 2020), the adoption
of constraints on the jobs and machines flows, such as the characteristics of no-wait
and no-idle production environments (CROCE; GROSSO; SALASSA, 2021), and the
hybridization of the distribution open shop with routing problems (MOONS et al., 2017).

Recently, green scheduling has received a lot of attention from operational research
practitioners (BAMPIS; LETSIOS; LUCARELLI, 2015; GAHM et al., 2016), and there are
several opportunities in this field. Also, it is interesting to study the effect of controllable
processing times (SHABTAY; STEINER, 2007; FERNANDEZ-VIAGAS; FRAMINAN,
2015a) in the constraint programming techniques on open shop variants.

Another research trend is the hybridization of constraint programming and meta-
heuristics in the context of decomposition matheuristics to improve efficiency to find
valid solution in admissible computational times (MANIEZZO; BOSCHETTI; STÜTZLE,
2021).

Finally, the proposed metaheuristics, exact methods, and matheuristics can be
extended to other manufacturing layouts, i.e., hybrid flow shop, job shop, distributed
flow shop, among others. In addition, the doctoral dissertation presented extensions of
the classical open shop variant, which still needed to be explored due to their practical
applications in industrial and service areas. Therefore, when we compare the new proposed
variants with the classical open shop problem presented in Figure 2, there was a significant
growth in the production scheduling literature.
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APPENDIX A – DATA REPOSITORY

The data management of the doctoral dissertation is based on the free availability
of the contents proposed, aiming at the literature growth of the problem and the possibility
of using the proposed solution methods in practical projects in industries and other areas
with a production environment similar to the one studied in the research. In the data
repository, we divided the main data generated into four categories:

• Source codes of the exact, heuristic, metaheuristic, and matheuristic methods devel-
oped in Python, Julia, and OPL languages.

• Instance sets used for methods comparison. Instances are available in .txt or .csv
formats.

• Tables with the individual results of each method on each instance. Tables are
available in Excel in .xlsx format.

• Results of the statistical tests performed, developed in R language, and presented in
Excel in .xlsx format.

The instance sets, codes, figures, tables, and results do not involve ethical or legal
issues. Therefore, they may be used in research projects, provided the source (doctoral
thesis or articles of each thesis’s chapter) is cited. They can also be reproduced in public
documents, such as scientific articles and technical reports, as long as the source is cited.
Table 44 provides the link to the data repository for each of the five chapters of the thesis:

Table 44 – Doctoral dissertation datasets
Problem Data Access link

Classic open shop Experiments results, developed algorithms,
and statistical tests Link I

Open shop with setup times Experiment results, problem instances,
proposed algorithms, and statistical tests Link II

Open shop with machine blocking Experiment results, problem instances,
proposed algorithms, and statistical tests Link III

Open shop with repetitions of operation Experiment results, problem instances,
proposed algorithms, and statistical tests Link IV

Open shop with vehicle routing Experiment results, problem instances,
and proposed algorithms Link V

Source: Authors.

http://repositorio.uspdigital.usp.br/handle/item/447
http://repositorio.uspdigital.usp.br/handle/item/446
http://repositorio.uspdigital.usp.br/handle/item/445
http://repositorio.uspdigital.usp.br/handle/item/444
http://repositorio.uspdigital.usp.br/handle/item/443
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