• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2016.tde-05102016-134559
Document
Auteur
Nom complet
Nádia Junqueira Martarelli
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Nagano, Marcelo Seido (Président)
Milan, Luis Aparecido
Tavares Neto, Roberto Fernandes
Titre en portugais
Seleção de atributos em agrupamento de dados utilizando algoritmos evolutivos
Mots-clés en portugais
Agrupamento de dados
Algoritmos evolutivos
Algoritmos genéticos
Seleção de atributos
Resumé en portugais
Com o surgimento da tecnologia da informação, o processo de análise e interpretação de dados deixou de ser executado exclusivamente por seres humanos, passando a contar com auxílio computacional para a descoberta de conhecimento em grandes bancos de dados. Este auxílio exige uma organização e ordenação das atividades, antes manualmente exercidas, em um processo composto de três grandes etapas. A primeira etapa deste processo conta com uma tarefa de redução da dimensionalidade, que tem como objetivo a eliminação de atributos que não contribuem para a análise dos dados, resultando portanto, na seleção de um subconjunto dos atributos originais. A seleção de um subconjunto de atributos pode ser encarada como um problema de busca, já que há inúmeras possibilidades de combinação dos atributos originais em subconjuntos. Dessa forma, uma das estratégias de busca que pode ser adotada consiste na busca randômica, executada por um algoritmo genético ou pelas suas variações. Este trabalho propõe a aplicação de duas variações do algoritmo genético, Algoritmo Genético Construtivo e Algoritmo Genético Enviesado com Chave Aleatória, no problema de seleção de atributos em agrupamento de dados, já que estas duas variações ainda não foram aplicadas em tal problema. A fim de verificar o desempenho destas duas variações, comparou-se ambas com a abordagem tradicional do algoritmo genético. Efetuou-se também a comparação entre as duas variações. Para isto, foi utilizada três bases de dados retiradas do repositório UCI de aprendizado de máquinas. Os resultados obtidos mostraram que os desempenhos, em termos de qualidade da solução, dos algoritmos: genético construtivo e genético enviesado com chave aleatório foram melhores, de maneira geral, do que o desempenho da abordagem tradicional. Constatou-se também diferença significativa em termos de eficiência entre as duas variações e a abordagem tradicional.
Titre en anglais
Feature subset selection in data clustering using evolutionary algorithm
Mots-clés en anglais
Clustering data
Evolutionary algorithm
Feature subset selection
Genetic algorithms
Resumé en anglais
With the advent of information technology, the process of analysis and interpretation of data left to be run exclusively by humans, going to rely on computational support for knowledge discovery in large databases. This aid requires an organization and sequencing of activities before manually performed in a compound of three major step process. The first step of this process has a reduced dimensionality task, which aims to eliminate attributes that do not contribute to the data analysis, resulting therefore, in selecting a subset of the original attributes. Selecting a subset of attributes can be viewed as a search problem, since there are numerous possible combinations of unique attributes into subsets. Thus, one search strategies that can be adopted is to randomly search, performed by a genetic algorithm or its variants. This paper proposes the application of two variations of the genetic algorithm, Constructive Genetic Algorithm and Biased Random Key Genetic Algorithm in the feature selection problem in data grouping, as these two variations have not been applied in such a problem. In order to verify the performance of the two variations, we compare them with the traditional algorithm, genetic algorithm. It was also executed the comparison between the two variations. For this, we used three databases removed from the UCI repository of machine learning. The results showed that the performance, in term of quality solution, of algorithms: genetic constructive and genetic biased with random key are better than the performance of the traditional approach. It was also observed a significant difference in efficiency between of the two variations and the traditional approach.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-10-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.