• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Tesis Doctoral
Nombre completo
Augusto Martins
Área de Conocimiento
Fecha de Defensa
São Carlos, 2021
Martins, Emiliano Rezende (Presidente)
Alegre, Thiago Pedro Mayer
Escobar, Carlos Ourivio
Falco, Andrea di
Silva, Alexandre Manoel Pereira Alves da
Título en inglés
Metasurfaces for control of light propagation and diffractive optics applications
Palabras clave en inglés
computer holography
crystalline silicon
dielectric metasurfac
form birefringence
photonic crystals
photonic nanostructures
tandem solar cells
wide field of view metalens
Resumen en inglés
This PhD thesis describes the design, modelling, fabrication, and characterization of metasurfaces capable of controlling the propagation of light beams with low insertion losses. Metasurfaces are planar subwavelength structures that allow local control of phase, amplitude and/or polarization of light. These structures have proven to be extremely versatile, finding applications in imaging, holography, polarization optics and sensing, to mention only a few. One key aspect in the design of a metasurface is the material choice of its constituents, as it plays a significant role in defining the physical mechanism underlining its operation. In this sense, we can divide metasurfaces into two groups: plasmonic and dielectric. Plasmonic metasurfaces, which use metallic structures, were the first metasurfaces demonstrated in the literature. Nevertheless, the efficiencies of these metasurfaces are severely impacted by Ohmic losses and are theoretically limited in 25% when operating in transmission mode. For example, it is shown in this thesis that the transmission efficiencies of plasmonic metasurfaces based on aluminium are of the order of ~13%, which is typically too low for holography, for instance. Recently, all-dielectric metasurfaces based on high refractive index materials have been proposed as an alternative to circumvent the low transmission problem of plasmonic metasurfaces. In this thesis, it is shown how the transmission efficiencies of metasurfaces are dramatically improved by dielectric materials. The dielectric of choice in this thesis is crystalline silicon (c-Si), which has a combination of advantageous properties, such as: high refractive index, ease of patterning, and low absorption in the visible (as compared to amorphous silicon). Two metasurface designs are then proposed for holography applications. The first design uses cylindrical nanoposts to impose a phase modulation in the transmitted light. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on cSi metasurfaces are quite attractive for diffractive optics applications, and particularly for fullcolour holograms. The second design uses elliptical cross-section nanoposts that are form-birefringent, that is, they provide independent control of phase for two orthogonal polarizations in the visible spectrum. Relying on these properties, a holographic stereogram was encoded in the metasurface. Briefly, a stereoscopic image (stereogram) is composed of a pair of orthogonally polarized images taken from the same scene but recorded in slightly shifted positions to replicate the natural parallax of the human eye. For the stereoscopic effect (depth perception) to occur, each of these two images has to be directed to each of the user's eyes separately with the help of cross-polarized glasses. The stereoscopic effect is obtained by combining two holograms on the same metasurface (one for each polarization). The hologram was encoded with four phase levels. Two additional non-stereoscopic holograms using two uncorrelated images were also fabricated to help assessing polarization cross-talk. The reconstruction plane consists of a fine-sanded aluminium surface to preserve the polarization of the scattered light. The stereoscopic view is obtained with a pair of cross-polarized filters (or glasses) placed in front of the observers' eyes. The theoretical bandwidth is 110 nm with a signal to noise ratio (SNR) >15 dB. The measured transmission and diffraction efficiencies are about 70% and 15%, respectively, at 532 nm. Such high efficiency is due to a combination of low absorption and high index of c-Si at visible: the index is sufficiently high to enable sufficiently small posts to alleviate the material losses. We also investigated the metasurfaces at 444.9 nm and 635 nm to experimentally assess their bandwidth performance. The quality of the stereoscopic effect is surprisingly high at 444.9 nm (but not so much at 635 nm) with transmission and diffraction efficiencies around 70% and 18%, respectively. The proposed structure was able to successfully capture the depth effect on the reconstructed images, with potential applications in diverse areas such as visual arts, entertainment, and security. The latter, in particular, will certainly benefit from the increased degree-of-freedom conveyed by stereoscopic information. Leveraging on the experience obtained with the research on holograms, we focused on the problem of monochromatic aberrations on metalenses. Metalenses are nanostructured surfaces that mimic the functionality of optical elements. Many exciting demonstrations had already been made, for example, focusing into diffraction-limited spots or achromatic operation over a wide wavelength range. The key functionality that was yet missing, however, and that is most important for applications such as smartphones or virtual reality, is the ability to perform the imaging function with a single element over a wide field of view. Thus, relaxing the constraint on diffraction-limited resolution, we demonstrated the ability of single-layer metalenses to perform wide field of view (WFOV) imaging while maintaining high resolution suitable for most applications. We also discussed the WFOV physical properties and, in particular, we showed that such a WFOV metalens mimics a spherical lens in the limit of infinite radius of curvature and infinite refractive index. Finally, we explored the expertise acquired with the design of nanostructures to address an important problem in the renewable energy community: how to improve the performance of solar cells using nanostructures. In particular, we analysed the impact of these structures on the performance of a new class of solar cells: the tandem solar cell employing perovskites and silicon. Such tandem solar cells require careful photon management for optimum performance, which can be achieved with intermediate photonic structures. We first identified that a photonic intermediate structure in a perovskite/c-Si tandem solar cell should act as an optical impedance matching layer at the perovskite-silicon interface. This conclusion did not tally with the perception in the tandem community at the time, which tented to ascribe the role of a tailored reflector to intermediate structures. Relying on the new insights gained, we analysed two simple designs and compared their performances with intermediate reflectors based on Distributed Bragg Reflectors (DBR). Our conclusion was that the intermediate structures acting only as an optical impedance matching layer show similar performance as the DBR reflectors but are much simpler. We completed the analysis by simulating a realistic device configuration and showed that optical impedance matching alone can increase the short circuit current of the silicon solar cell by 18.5% (corresponding to a boost of 2.8 mA/cm2), thus resulting in an expected tandem efficiency in excess of 30%.
Título en portugués
Metassuperfícies para o controle da propagação da luz e aplicações em óptica difrativa
Palabras clave en portugués
birrefringência de forma
células solares tandem
cristais fotônicos
holografia computacional
metalentes com alto campo de visão
metassuperfícies dielétricas
silício cristalino
Resumen en portugués
Esta tese de doutorado descreve o projeto, a modelagem, a fabricação e a caracterização de metassuperfícies para o controle da propagação de feixes de luz com baixas perdas. Metassuperfícies são estruturas planas compostas de estruturas menores que o comprimento de onda operante que permitem o controle local da fase, amplitude e/ou polarização da luz. Tais estruturas se provaram extremamente versáteis com aplicações demonstradas em imageamento, holografia, polarização da luz e sensoriamento, por exemplo. Uma característica fundamental no projeto de uma metassuperfície é a escolha material de seus elementos, pois ele dita o mecanismo físico no qual ela se baseia. Dessa forma, podemos agrupar as metassuperfícies em duas categorias: as plasmônicas e as dielétricas. As metassuperfícies plasmônicas, que são compostas de estruturas metálicas, foram as primeiras metassuperfícies demonstradas na literatura. Porém, suas eficiências são afetadas por perdas ôhmicas e teoreticamente limitadas em 25% quando operando em transmissão. Por exemplo, nesta tese é mostrado que a eficiência de transmissão de metassuperfícies plasmônicas feitas em alumínio é da ordem de 13%, o que é muito baixo para muitas aplicações como holografia. Recentemente, metassuperfícies baseadas em materiais dielétricos de alto índice de refração foram propostas como uma alternativa para solucionar o problema da baixa transmissão das metassuperfícies plasmônicas. Nesta tese, nós demonstramos que as metassuperfícies dielétricas apresentam, de fato, uma melhora significativa na eficiência de transmissão quando comparadas com as plasmônicas. Para tanto, utilizamos como material dielétrico o silício cristalino (c-Si), que possui uma combinação de propriedades favoráveis, tais como: alto índice de refração, facilidade de corrugação e baixas perdas no visível quando comparadas com outros tipos de silício como o amorfo e o policristalino. Assim, foram propostas e projetadas duas metassuperfícies para aplicações em holografia. A primeira é baseada em nanopostes cilíndricos capazes de modular a fase de feixes não polarizados transmitidos através da metassuperfície. Os hologramas apresentam alta fidelidade e alta eficiência, com eficiências de transmissão e difração aproximadamente de 65% e 40%, respectivamente, medidas experimentalmente. Apesar de terem sido projetadas para operar em 532 nm, os hologramas também apresentaram bons resultados em comprimentos de onda de 444.9 nm e 635 nm. Portanto, as altas tolerâncias a variações na fabricação e comprimento de onda evidenciam que hologramas baseados em metassuperfícies de silício cristalino são ótimos candidatos para aplicações em ótica difrativa e, particularmente, para hologramas coloridos. O segundo projeto utiliza nanopostes com seção transversal elíptica que apresentam birrefringência de forma no visível. Ou seja, tais nanopostes modulam diferentemente a fase da luz transmitida de acordo com o estado de polarização da luz incidente. Dessa forma, um estereograma holográfico foi gerado com tal metassuperfície. Resumidamente, uma imagem esterocópica (estereograma) é composto de duas imagens tomadas de uma mesma cena mas fotografadas em posições diferentes para replicar a paralaxe natural da visão humana. Para o efeito estereoscópico (percepção de profundidade) ocorrer, cada uma dessas imagens deve ser vista independentemente por cada um dos olhos do observador. Para tanto, decidimos realizar dois hologramas com quatro níveis de fase cada, um para cada imagem do estereograma e numa mesma metassuperfície birrefringente em cada um dos dois estados de polarização ortogonal. Assim, o efeito estereoscópico pode ser visto na reconstrução birrefringente com o uso de óculos cujas lentes apresentam polarizadores ortogonais. Além disso, projetamos os hologramas de duas imagens diferentes para facilitar a análise de efeitos de cross-talk na polarização. O plano de reconstrução, para os hologramas estereoscópicos, consiste de uma superfície de alumínio lixada levemente para preservar o estado de polarização da luz espalhada. A largura de banda estimada teoreticamente é de 110 nm com uma relação de sinal ruído maior que 15 dB. As medidas de eficiências de transmissão e difração são da ordem de 70% e 15%, respectivamente, no comprimento de onda de 532 nm. Tais valores são consequências das baixas perdas e alto índice de refração do silício cristalino no visível. Ou seja, o índice de refração é alto o suficiente para minimizar as perdas materiais. As metassuperfícies foram investigadas experimentalmente quando iluminadas com lasers em 444.9 nm e 635 nm para avaliar experimentalmente sua largura de banda. A qualidade do efeito estereoscópico é surpreendentemente alta em 444.9 nm com eficiências de transmissão e difração de 70% e 18%. Já em 635 nm, as reconstruções não foram tão boas. Dessa forma, verificamos que a estrutura proposta foi capaz de demonstrar o efeito estereoscópico nas reconstruções com potencial para aplicações em diversas áreas como artes visuais, entretenimento e segurança. A última, em particular, certamente irá beneficiar do grau de liberdade adicional fornecido pela informação birrefringente. Com base na experiência obtida na pesquisa de metassuperfícies holográficas, decidimos focar no problema de aberrações monocromáticas em metalentes. Metalentes são metassuperfícies que reproduzem as funcionalidades de elementos óticos. Muitas demonstrações surpreendentes já foram demonstradas tais como foco em pontos no limite de difração e operação acromática em uma larga banda de comprimentos de onda. Uma característica importante que ainda não havia sido propriamente solucionada e que é fundamental em aplicações como smartphones e realidade virtual é a capacidade de formar imagens com alto campo de visão e apenas uma metalente. Para tanto, abdicando a operação no limite de difração, nós demonstramos a habilidade de apenas metalente obter imagens com alto campo de visão (WFOV) com resoluções altas o suficiente para grande parte das aplicações em imageamento. Também são discutidas as propriedades físicas de tais metalentes e, em particular, é mostrado que elas simulam uma lente esférica no limite de raio de curvatura e índice de refração interno infinitos. Por fim, a experiência no projeto de nanoestruturas para o controle da luz foi utilizado para resolver um problema importante no contexto de energia renovável: como aprimorar o desempenho de células solares com nanoestruturas. Em particular, foram analisados os impactos de tais estruturas na performance de uma nova classe de células solares tandem que utilizam peroviskitas e silício. Esse tipo de célula solar tandem requer um cuidados controle fotônico para obter o melhor desempenho e isso pode ser realizado com estruturas fotônicas intermediárias, ou seja, postas entre as camadas de silício e peroviskita. Primeiramente, nós identificamos que, para essa classe de célula solar tandem, a estrutura fotônica intermediária deve casar a impedância entre a peroviskita e o silício. Tal conclusão não concorda com a percepção da comunidade científica, que era a de que deveria utilizado refletor otimizado como estrutura intermediária. Com base na conclusão que obtivemos, nós decidimos avaliar duas estruturas simples, que agem como casadoras de impedância, e comparar seu desempenho com refletores intermediárioas baseados em refletores Bragg distribuídos. Assim, concluímos que, de fato, estruturas intermediárias baseadas em casadores de impedância ótica mostram desempenhos muito semelhantes aos dos refletores intermediários mas com a vantagem de serem muito mais simples.
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.